md/raid1: make sequential read detection per disk based
[deliverable/linux.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
43b2e5d8 40#include "md.h"
ef740c37
CH
41#include "raid1.h"
42#include "bitmap.h"
191ea9b2 43
1da177e4
LT
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
473e87ce
JB
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
34db0cd6
N
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
1da177e4 68
e8096360
N
69static void allow_barrier(struct r1conf *conf);
70static void lower_barrier(struct r1conf *conf);
1da177e4 71
dd0fc66f 72static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
73{
74 struct pool_info *pi = data;
9f2c9d12 75 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
76
77 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 78 return kzalloc(size, gfp_flags);
1da177e4
LT
79}
80
81static void r1bio_pool_free(void *r1_bio, void *data)
82{
83 kfree(r1_bio);
84}
85
86#define RESYNC_BLOCK_SIZE (64*1024)
87//#define RESYNC_BLOCK_SIZE PAGE_SIZE
88#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90#define RESYNC_WINDOW (2048*1024)
91
dd0fc66f 92static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
93{
94 struct pool_info *pi = data;
95 struct page *page;
9f2c9d12 96 struct r1bio *r1_bio;
1da177e4
LT
97 struct bio *bio;
98 int i, j;
99
100 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 101 if (!r1_bio)
1da177e4 102 return NULL;
1da177e4
LT
103
104 /*
105 * Allocate bios : 1 for reading, n-1 for writing
106 */
107 for (j = pi->raid_disks ; j-- ; ) {
6746557f 108 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
109 if (!bio)
110 goto out_free_bio;
111 r1_bio->bios[j] = bio;
112 }
113 /*
114 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
115 * the first bio.
116 * If this is a user-requested check/repair, allocate
117 * RESYNC_PAGES for each bio.
1da177e4 118 */
d11c171e
N
119 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
120 j = pi->raid_disks;
121 else
122 j = 1;
123 while(j--) {
124 bio = r1_bio->bios[j];
125 for (i = 0; i < RESYNC_PAGES; i++) {
126 page = alloc_page(gfp_flags);
127 if (unlikely(!page))
128 goto out_free_pages;
129
130 bio->bi_io_vec[i].bv_page = page;
303a0e11 131 bio->bi_vcnt = i+1;
d11c171e
N
132 }
133 }
134 /* If not user-requests, copy the page pointers to all bios */
135 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
136 for (i=0; i<RESYNC_PAGES ; i++)
137 for (j=1; j<pi->raid_disks; j++)
138 r1_bio->bios[j]->bi_io_vec[i].bv_page =
139 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
140 }
141
142 r1_bio->master_bio = NULL;
143
144 return r1_bio;
145
146out_free_pages:
303a0e11
N
147 for (j=0 ; j < pi->raid_disks; j++)
148 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
149 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 150 j = -1;
1da177e4 151out_free_bio:
8f19ccb2 152 while (++j < pi->raid_disks)
1da177e4
LT
153 bio_put(r1_bio->bios[j]);
154 r1bio_pool_free(r1_bio, data);
155 return NULL;
156}
157
158static void r1buf_pool_free(void *__r1_bio, void *data)
159{
160 struct pool_info *pi = data;
d11c171e 161 int i,j;
9f2c9d12 162 struct r1bio *r1bio = __r1_bio;
1da177e4 163
d11c171e
N
164 for (i = 0; i < RESYNC_PAGES; i++)
165 for (j = pi->raid_disks; j-- ;) {
166 if (j == 0 ||
167 r1bio->bios[j]->bi_io_vec[i].bv_page !=
168 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 169 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 170 }
1da177e4
LT
171 for (i=0 ; i < pi->raid_disks; i++)
172 bio_put(r1bio->bios[i]);
173
174 r1bio_pool_free(r1bio, data);
175}
176
e8096360 177static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
178{
179 int i;
180
8f19ccb2 181 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 182 struct bio **bio = r1_bio->bios + i;
4367af55 183 if (!BIO_SPECIAL(*bio))
1da177e4
LT
184 bio_put(*bio);
185 *bio = NULL;
186 }
187}
188
9f2c9d12 189static void free_r1bio(struct r1bio *r1_bio)
1da177e4 190{
e8096360 191 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 192
1da177e4
LT
193 put_all_bios(conf, r1_bio);
194 mempool_free(r1_bio, conf->r1bio_pool);
195}
196
9f2c9d12 197static void put_buf(struct r1bio *r1_bio)
1da177e4 198{
e8096360 199 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
200 int i;
201
8f19ccb2 202 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
203 struct bio *bio = r1_bio->bios[i];
204 if (bio->bi_end_io)
205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206 }
1da177e4
LT
207
208 mempool_free(r1_bio, conf->r1buf_pool);
209
17999be4 210 lower_barrier(conf);
1da177e4
LT
211}
212
9f2c9d12 213static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
214{
215 unsigned long flags;
fd01b88c 216 struct mddev *mddev = r1_bio->mddev;
e8096360 217 struct r1conf *conf = mddev->private;
1da177e4
LT
218
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 221 conf->nr_queued ++;
1da177e4
LT
222 spin_unlock_irqrestore(&conf->device_lock, flags);
223
17999be4 224 wake_up(&conf->wait_barrier);
1da177e4
LT
225 md_wakeup_thread(mddev->thread);
226}
227
228/*
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
231 * cache layer.
232 */
9f2c9d12 233static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
234{
235 struct bio *bio = r1_bio->master_bio;
236 int done;
e8096360 237 struct r1conf *conf = r1_bio->mddev->private;
d2eb35ac
N
238
239 if (bio->bi_phys_segments) {
240 unsigned long flags;
241 spin_lock_irqsave(&conf->device_lock, flags);
242 bio->bi_phys_segments--;
243 done = (bio->bi_phys_segments == 0);
244 spin_unlock_irqrestore(&conf->device_lock, flags);
245 } else
246 done = 1;
247
248 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249 clear_bit(BIO_UPTODATE, &bio->bi_flags);
250 if (done) {
251 bio_endio(bio, 0);
252 /*
253 * Wake up any possible resync thread that waits for the device
254 * to go idle.
255 */
256 allow_barrier(conf);
257 }
258}
259
9f2c9d12 260static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
261{
262 struct bio *bio = r1_bio->master_bio;
263
4b6d287f
N
264 /* if nobody has done the final endio yet, do it now */
265 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267 (bio_data_dir(bio) == WRITE) ? "write" : "read",
268 (unsigned long long) bio->bi_sector,
269 (unsigned long long) bio->bi_sector +
270 (bio->bi_size >> 9) - 1);
4b6d287f 271
d2eb35ac 272 call_bio_endio(r1_bio);
4b6d287f 273 }
1da177e4
LT
274 free_r1bio(r1_bio);
275}
276
277/*
278 * Update disk head position estimator based on IRQ completion info.
279 */
9f2c9d12 280static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 281{
e8096360 282 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
283
284 conf->mirrors[disk].head_position =
285 r1_bio->sector + (r1_bio->sectors);
286}
287
ba3ae3be
NK
288/*
289 * Find the disk number which triggered given bio
290 */
9f2c9d12 291static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
292{
293 int mirror;
30194636
N
294 struct r1conf *conf = r1_bio->mddev->private;
295 int raid_disks = conf->raid_disks;
ba3ae3be 296
8f19ccb2 297 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
298 if (r1_bio->bios[mirror] == bio)
299 break;
300
8f19ccb2 301 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
302 update_head_pos(mirror, r1_bio);
303
304 return mirror;
305}
306
6712ecf8 307static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
308{
309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 310 struct r1bio *r1_bio = bio->bi_private;
1da177e4 311 int mirror;
e8096360 312 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 313
1da177e4
LT
314 mirror = r1_bio->read_disk;
315 /*
316 * this branch is our 'one mirror IO has finished' event handler:
317 */
ddaf22ab
N
318 update_head_pos(mirror, r1_bio);
319
dd00a99e
N
320 if (uptodate)
321 set_bit(R1BIO_Uptodate, &r1_bio->state);
322 else {
323 /* If all other devices have failed, we want to return
324 * the error upwards rather than fail the last device.
325 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 326 */
dd00a99e
N
327 unsigned long flags;
328 spin_lock_irqsave(&conf->device_lock, flags);
329 if (r1_bio->mddev->degraded == conf->raid_disks ||
330 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
331 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
332 uptodate = 1;
333 spin_unlock_irqrestore(&conf->device_lock, flags);
334 }
1da177e4 335
dd00a99e 336 if (uptodate)
1da177e4 337 raid_end_bio_io(r1_bio);
dd00a99e 338 else {
1da177e4
LT
339 /*
340 * oops, read error:
341 */
342 char b[BDEVNAME_SIZE];
8bda470e
CD
343 printk_ratelimited(
344 KERN_ERR "md/raid1:%s: %s: "
345 "rescheduling sector %llu\n",
346 mdname(conf->mddev),
347 bdevname(conf->mirrors[mirror].rdev->bdev,
348 b),
349 (unsigned long long)r1_bio->sector);
d2eb35ac 350 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4
LT
351 reschedule_retry(r1_bio);
352 }
353
354 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
1da177e4
LT
355}
356
9f2c9d12 357static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
358{
359 /* it really is the end of this request */
360 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
361 /* free extra copy of the data pages */
362 int i = r1_bio->behind_page_count;
363 while (i--)
364 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
365 kfree(r1_bio->behind_bvecs);
366 r1_bio->behind_bvecs = NULL;
367 }
368 /* clear the bitmap if all writes complete successfully */
369 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
370 r1_bio->sectors,
371 !test_bit(R1BIO_Degraded, &r1_bio->state),
372 test_bit(R1BIO_BehindIO, &r1_bio->state));
373 md_write_end(r1_bio->mddev);
374}
375
9f2c9d12 376static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 377{
cd5ff9a1
N
378 if (!atomic_dec_and_test(&r1_bio->remaining))
379 return;
380
381 if (test_bit(R1BIO_WriteError, &r1_bio->state))
382 reschedule_retry(r1_bio);
383 else {
384 close_write(r1_bio);
4367af55
N
385 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
386 reschedule_retry(r1_bio);
387 else
388 raid_end_bio_io(r1_bio);
4e78064f
N
389 }
390}
391
6712ecf8 392static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
393{
394 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 395 struct r1bio *r1_bio = bio->bi_private;
a9701a30 396 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 397 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 398 struct bio *to_put = NULL;
1da177e4 399
ba3ae3be 400 mirror = find_bio_disk(r1_bio, bio);
1da177e4 401
e9c7469b
TH
402 /*
403 * 'one mirror IO has finished' event handler:
404 */
e9c7469b 405 if (!uptodate) {
cd5ff9a1
N
406 set_bit(WriteErrorSeen,
407 &conf->mirrors[mirror].rdev->flags);
19d67169
N
408 if (!test_and_set_bit(WantReplacement,
409 &conf->mirrors[mirror].rdev->flags))
410 set_bit(MD_RECOVERY_NEEDED, &
411 conf->mddev->recovery);
412
cd5ff9a1 413 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 414 } else {
1da177e4 415 /*
e9c7469b
TH
416 * Set R1BIO_Uptodate in our master bio, so that we
417 * will return a good error code for to the higher
418 * levels even if IO on some other mirrored buffer
419 * fails.
420 *
421 * The 'master' represents the composite IO operation
422 * to user-side. So if something waits for IO, then it
423 * will wait for the 'master' bio.
1da177e4 424 */
4367af55
N
425 sector_t first_bad;
426 int bad_sectors;
427
cd5ff9a1
N
428 r1_bio->bios[mirror] = NULL;
429 to_put = bio;
e9c7469b
TH
430 set_bit(R1BIO_Uptodate, &r1_bio->state);
431
4367af55
N
432 /* Maybe we can clear some bad blocks. */
433 if (is_badblock(conf->mirrors[mirror].rdev,
434 r1_bio->sector, r1_bio->sectors,
435 &first_bad, &bad_sectors)) {
436 r1_bio->bios[mirror] = IO_MADE_GOOD;
437 set_bit(R1BIO_MadeGood, &r1_bio->state);
438 }
439 }
440
e9c7469b
TH
441 if (behind) {
442 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
443 atomic_dec(&r1_bio->behind_remaining);
444
445 /*
446 * In behind mode, we ACK the master bio once the I/O
447 * has safely reached all non-writemostly
448 * disks. Setting the Returned bit ensures that this
449 * gets done only once -- we don't ever want to return
450 * -EIO here, instead we'll wait
451 */
452 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
453 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
454 /* Maybe we can return now */
455 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
456 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
457 pr_debug("raid1: behind end write sectors"
458 " %llu-%llu\n",
459 (unsigned long long) mbio->bi_sector,
460 (unsigned long long) mbio->bi_sector +
461 (mbio->bi_size >> 9) - 1);
d2eb35ac 462 call_bio_endio(r1_bio);
4b6d287f
N
463 }
464 }
465 }
4367af55
N
466 if (r1_bio->bios[mirror] == NULL)
467 rdev_dec_pending(conf->mirrors[mirror].rdev,
468 conf->mddev);
e9c7469b 469
1da177e4 470 /*
1da177e4
LT
471 * Let's see if all mirrored write operations have finished
472 * already.
473 */
af6d7b76 474 r1_bio_write_done(r1_bio);
c70810b3 475
04b857f7
N
476 if (to_put)
477 bio_put(to_put);
1da177e4
LT
478}
479
480
481/*
482 * This routine returns the disk from which the requested read should
483 * be done. There is a per-array 'next expected sequential IO' sector
484 * number - if this matches on the next IO then we use the last disk.
485 * There is also a per-disk 'last know head position' sector that is
486 * maintained from IRQ contexts, both the normal and the resync IO
487 * completion handlers update this position correctly. If there is no
488 * perfect sequential match then we pick the disk whose head is closest.
489 *
490 * If there are 2 mirrors in the same 2 devices, performance degrades
491 * because position is mirror, not device based.
492 *
493 * The rdev for the device selected will have nr_pending incremented.
494 */
e8096360 495static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 496{
af3a2cd6 497 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
498 int sectors;
499 int best_good_sectors;
76073054 500 int best_disk;
be4d3280 501 int disk;
76073054 502 sector_t best_dist;
3cb03002 503 struct md_rdev *rdev;
f3ac8bf7 504 int choose_first;
1da177e4
LT
505
506 rcu_read_lock();
507 /*
8ddf9efe 508 * Check if we can balance. We can balance on the whole
1da177e4
LT
509 * device if no resync is going on, or below the resync window.
510 * We take the first readable disk when above the resync window.
511 */
512 retry:
d2eb35ac 513 sectors = r1_bio->sectors;
76073054
N
514 best_disk = -1;
515 best_dist = MaxSector;
d2eb35ac
N
516 best_good_sectors = 0;
517
1da177e4 518 if (conf->mddev->recovery_cp < MaxSector &&
be4d3280 519 (this_sector + sectors >= conf->next_resync))
f3ac8bf7 520 choose_first = 1;
be4d3280 521 else
f3ac8bf7 522 choose_first = 0;
1da177e4 523
be4d3280 524 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 525 sector_t dist;
d2eb35ac
N
526 sector_t first_bad;
527 int bad_sectors;
528
f3ac8bf7
N
529 rdev = rcu_dereference(conf->mirrors[disk].rdev);
530 if (r1_bio->bios[disk] == IO_BLOCKED
531 || rdev == NULL
6b740b8d 532 || test_bit(Unmerged, &rdev->flags)
76073054 533 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 534 continue;
76073054
N
535 if (!test_bit(In_sync, &rdev->flags) &&
536 rdev->recovery_offset < this_sector + sectors)
1da177e4 537 continue;
76073054
N
538 if (test_bit(WriteMostly, &rdev->flags)) {
539 /* Don't balance among write-mostly, just
540 * use the first as a last resort */
307729c8
N
541 if (best_disk < 0) {
542 if (is_badblock(rdev, this_sector, sectors,
543 &first_bad, &bad_sectors)) {
544 if (first_bad < this_sector)
545 /* Cannot use this */
546 continue;
547 best_good_sectors = first_bad - this_sector;
548 } else
549 best_good_sectors = sectors;
76073054 550 best_disk = disk;
307729c8 551 }
76073054
N
552 continue;
553 }
554 /* This is a reasonable device to use. It might
555 * even be best.
556 */
d2eb35ac
N
557 if (is_badblock(rdev, this_sector, sectors,
558 &first_bad, &bad_sectors)) {
559 if (best_dist < MaxSector)
560 /* already have a better device */
561 continue;
562 if (first_bad <= this_sector) {
563 /* cannot read here. If this is the 'primary'
564 * device, then we must not read beyond
565 * bad_sectors from another device..
566 */
567 bad_sectors -= (this_sector - first_bad);
568 if (choose_first && sectors > bad_sectors)
569 sectors = bad_sectors;
570 if (best_good_sectors > sectors)
571 best_good_sectors = sectors;
572
573 } else {
574 sector_t good_sectors = first_bad - this_sector;
575 if (good_sectors > best_good_sectors) {
576 best_good_sectors = good_sectors;
577 best_disk = disk;
578 }
579 if (choose_first)
580 break;
581 }
582 continue;
583 } else
584 best_good_sectors = sectors;
585
76073054
N
586 dist = abs(this_sector - conf->mirrors[disk].head_position);
587 if (choose_first
588 /* Don't change to another disk for sequential reads */
be4d3280 589 || conf->mirrors[disk].next_seq_sect == this_sector
76073054
N
590 || dist == 0
591 /* If device is idle, use it */
592 || atomic_read(&rdev->nr_pending) == 0) {
593 best_disk = disk;
1da177e4
LT
594 break;
595 }
76073054
N
596 if (dist < best_dist) {
597 best_dist = dist;
598 best_disk = disk;
1da177e4 599 }
f3ac8bf7 600 }
1da177e4 601
76073054
N
602 if (best_disk >= 0) {
603 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
604 if (!rdev)
605 goto retry;
606 atomic_inc(&rdev->nr_pending);
76073054 607 if (test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
608 /* cannot risk returning a device that failed
609 * before we inc'ed nr_pending
610 */
03c902e1 611 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
612 goto retry;
613 }
d2eb35ac 614 sectors = best_good_sectors;
be4d3280 615 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
616 }
617 rcu_read_unlock();
d2eb35ac 618 *max_sectors = sectors;
1da177e4 619
76073054 620 return best_disk;
1da177e4
LT
621}
622
6b740b8d
N
623static int raid1_mergeable_bvec(struct request_queue *q,
624 struct bvec_merge_data *bvm,
625 struct bio_vec *biovec)
626{
627 struct mddev *mddev = q->queuedata;
628 struct r1conf *conf = mddev->private;
629 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
630 int max = biovec->bv_len;
631
632 if (mddev->merge_check_needed) {
633 int disk;
634 rcu_read_lock();
635 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
636 struct md_rdev *rdev = rcu_dereference(
637 conf->mirrors[disk].rdev);
638 if (rdev && !test_bit(Faulty, &rdev->flags)) {
639 struct request_queue *q =
640 bdev_get_queue(rdev->bdev);
641 if (q->merge_bvec_fn) {
642 bvm->bi_sector = sector +
643 rdev->data_offset;
644 bvm->bi_bdev = rdev->bdev;
645 max = min(max, q->merge_bvec_fn(
646 q, bvm, biovec));
647 }
648 }
649 }
650 rcu_read_unlock();
651 }
652 return max;
653
654}
655
fd01b88c 656int md_raid1_congested(struct mddev *mddev, int bits)
0d129228 657{
e8096360 658 struct r1conf *conf = mddev->private;
0d129228
N
659 int i, ret = 0;
660
34db0cd6
N
661 if ((bits & (1 << BDI_async_congested)) &&
662 conf->pending_count >= max_queued_requests)
663 return 1;
664
0d129228 665 rcu_read_lock();
f53e29fc 666 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 667 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 668 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 669 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 670
1ed7242e
JB
671 BUG_ON(!q);
672
0d129228
N
673 /* Note the '|| 1' - when read_balance prefers
674 * non-congested targets, it can be removed
675 */
91a9e99d 676 if ((bits & (1<<BDI_async_congested)) || 1)
0d129228
N
677 ret |= bdi_congested(&q->backing_dev_info, bits);
678 else
679 ret &= bdi_congested(&q->backing_dev_info, bits);
680 }
681 }
682 rcu_read_unlock();
683 return ret;
684}
1ed7242e 685EXPORT_SYMBOL_GPL(md_raid1_congested);
0d129228 686
1ed7242e
JB
687static int raid1_congested(void *data, int bits)
688{
fd01b88c 689 struct mddev *mddev = data;
1ed7242e
JB
690
691 return mddev_congested(mddev, bits) ||
692 md_raid1_congested(mddev, bits);
693}
0d129228 694
e8096360 695static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
696{
697 /* Any writes that have been queued but are awaiting
698 * bitmap updates get flushed here.
a35e63ef 699 */
a35e63ef
N
700 spin_lock_irq(&conf->device_lock);
701
702 if (conf->pending_bio_list.head) {
703 struct bio *bio;
704 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 705 conf->pending_count = 0;
a35e63ef
N
706 spin_unlock_irq(&conf->device_lock);
707 /* flush any pending bitmap writes to
708 * disk before proceeding w/ I/O */
709 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 710 wake_up(&conf->wait_barrier);
a35e63ef
N
711
712 while (bio) { /* submit pending writes */
713 struct bio *next = bio->bi_next;
714 bio->bi_next = NULL;
715 generic_make_request(bio);
716 bio = next;
717 }
a35e63ef
N
718 } else
719 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
720}
721
17999be4
N
722/* Barriers....
723 * Sometimes we need to suspend IO while we do something else,
724 * either some resync/recovery, or reconfigure the array.
725 * To do this we raise a 'barrier'.
726 * The 'barrier' is a counter that can be raised multiple times
727 * to count how many activities are happening which preclude
728 * normal IO.
729 * We can only raise the barrier if there is no pending IO.
730 * i.e. if nr_pending == 0.
731 * We choose only to raise the barrier if no-one is waiting for the
732 * barrier to go down. This means that as soon as an IO request
733 * is ready, no other operations which require a barrier will start
734 * until the IO request has had a chance.
735 *
736 * So: regular IO calls 'wait_barrier'. When that returns there
737 * is no backgroup IO happening, It must arrange to call
738 * allow_barrier when it has finished its IO.
739 * backgroup IO calls must call raise_barrier. Once that returns
740 * there is no normal IO happeing. It must arrange to call
741 * lower_barrier when the particular background IO completes.
1da177e4
LT
742 */
743#define RESYNC_DEPTH 32
744
e8096360 745static void raise_barrier(struct r1conf *conf)
1da177e4
LT
746{
747 spin_lock_irq(&conf->resync_lock);
17999be4
N
748
749 /* Wait until no block IO is waiting */
750 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
c3b328ac 751 conf->resync_lock, );
17999be4
N
752
753 /* block any new IO from starting */
754 conf->barrier++;
755
046abeed 756 /* Now wait for all pending IO to complete */
17999be4
N
757 wait_event_lock_irq(conf->wait_barrier,
758 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
c3b328ac 759 conf->resync_lock, );
17999be4
N
760
761 spin_unlock_irq(&conf->resync_lock);
762}
763
e8096360 764static void lower_barrier(struct r1conf *conf)
17999be4
N
765{
766 unsigned long flags;
709ae487 767 BUG_ON(conf->barrier <= 0);
17999be4
N
768 spin_lock_irqsave(&conf->resync_lock, flags);
769 conf->barrier--;
770 spin_unlock_irqrestore(&conf->resync_lock, flags);
771 wake_up(&conf->wait_barrier);
772}
773
e8096360 774static void wait_barrier(struct r1conf *conf)
17999be4
N
775{
776 spin_lock_irq(&conf->resync_lock);
777 if (conf->barrier) {
778 conf->nr_waiting++;
d6b42dcb
N
779 /* Wait for the barrier to drop.
780 * However if there are already pending
781 * requests (preventing the barrier from
782 * rising completely), and the
783 * pre-process bio queue isn't empty,
784 * then don't wait, as we need to empty
785 * that queue to get the nr_pending
786 * count down.
787 */
788 wait_event_lock_irq(conf->wait_barrier,
789 !conf->barrier ||
790 (conf->nr_pending &&
791 current->bio_list &&
792 !bio_list_empty(current->bio_list)),
17999be4 793 conf->resync_lock,
d6b42dcb 794 );
17999be4 795 conf->nr_waiting--;
1da177e4 796 }
17999be4 797 conf->nr_pending++;
1da177e4
LT
798 spin_unlock_irq(&conf->resync_lock);
799}
800
e8096360 801static void allow_barrier(struct r1conf *conf)
17999be4
N
802{
803 unsigned long flags;
804 spin_lock_irqsave(&conf->resync_lock, flags);
805 conf->nr_pending--;
806 spin_unlock_irqrestore(&conf->resync_lock, flags);
807 wake_up(&conf->wait_barrier);
808}
809
e8096360 810static void freeze_array(struct r1conf *conf)
ddaf22ab
N
811{
812 /* stop syncio and normal IO and wait for everything to
813 * go quite.
814 * We increment barrier and nr_waiting, and then
1c830532
N
815 * wait until nr_pending match nr_queued+1
816 * This is called in the context of one normal IO request
817 * that has failed. Thus any sync request that might be pending
818 * will be blocked by nr_pending, and we need to wait for
819 * pending IO requests to complete or be queued for re-try.
820 * Thus the number queued (nr_queued) plus this request (1)
821 * must match the number of pending IOs (nr_pending) before
822 * we continue.
ddaf22ab
N
823 */
824 spin_lock_irq(&conf->resync_lock);
825 conf->barrier++;
826 conf->nr_waiting++;
827 wait_event_lock_irq(conf->wait_barrier,
1c830532 828 conf->nr_pending == conf->nr_queued+1,
ddaf22ab 829 conf->resync_lock,
c3b328ac 830 flush_pending_writes(conf));
ddaf22ab
N
831 spin_unlock_irq(&conf->resync_lock);
832}
e8096360 833static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
834{
835 /* reverse the effect of the freeze */
836 spin_lock_irq(&conf->resync_lock);
837 conf->barrier--;
838 conf->nr_waiting--;
839 wake_up(&conf->wait_barrier);
840 spin_unlock_irq(&conf->resync_lock);
841}
842
17999be4 843
4e78064f 844/* duplicate the data pages for behind I/O
4e78064f 845 */
9f2c9d12 846static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
847{
848 int i;
849 struct bio_vec *bvec;
2ca68f5e 850 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 851 GFP_NOIO);
2ca68f5e 852 if (unlikely(!bvecs))
af6d7b76 853 return;
4b6d287f 854
4b6d287f 855 bio_for_each_segment(bvec, bio, i) {
2ca68f5e
N
856 bvecs[i] = *bvec;
857 bvecs[i].bv_page = alloc_page(GFP_NOIO);
858 if (unlikely(!bvecs[i].bv_page))
4b6d287f 859 goto do_sync_io;
2ca68f5e
N
860 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
861 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
862 kunmap(bvecs[i].bv_page);
4b6d287f
N
863 kunmap(bvec->bv_page);
864 }
2ca68f5e 865 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
866 r1_bio->behind_page_count = bio->bi_vcnt;
867 set_bit(R1BIO_BehindIO, &r1_bio->state);
868 return;
4b6d287f
N
869
870do_sync_io:
af6d7b76 871 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
872 if (bvecs[i].bv_page)
873 put_page(bvecs[i].bv_page);
874 kfree(bvecs);
36a4e1fe 875 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
4b6d287f
N
876}
877
b4fdcb02 878static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 879{
e8096360 880 struct r1conf *conf = mddev->private;
0eaf822c 881 struct raid1_info *mirror;
9f2c9d12 882 struct r1bio *r1_bio;
1da177e4 883 struct bio *read_bio;
1f68f0c4 884 int i, disks;
84255d10 885 struct bitmap *bitmap;
191ea9b2 886 unsigned long flags;
a362357b 887 const int rw = bio_data_dir(bio);
2c7d46ec 888 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 889 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
3cb03002 890 struct md_rdev *blocked_rdev;
1f68f0c4
N
891 int first_clone;
892 int sectors_handled;
893 int max_sectors;
191ea9b2 894
1da177e4
LT
895 /*
896 * Register the new request and wait if the reconstruction
897 * thread has put up a bar for new requests.
898 * Continue immediately if no resync is active currently.
899 */
62de608d 900
3d310eb7
N
901 md_write_start(mddev, bio); /* wait on superblock update early */
902
6eef4b21
N
903 if (bio_data_dir(bio) == WRITE &&
904 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
905 bio->bi_sector < mddev->suspend_hi) {
906 /* As the suspend_* range is controlled by
907 * userspace, we want an interruptible
908 * wait.
909 */
910 DEFINE_WAIT(w);
911 for (;;) {
912 flush_signals(current);
913 prepare_to_wait(&conf->wait_barrier,
914 &w, TASK_INTERRUPTIBLE);
915 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
916 bio->bi_sector >= mddev->suspend_hi)
917 break;
918 schedule();
919 }
920 finish_wait(&conf->wait_barrier, &w);
921 }
62de608d 922
17999be4 923 wait_barrier(conf);
1da177e4 924
84255d10
N
925 bitmap = mddev->bitmap;
926
1da177e4
LT
927 /*
928 * make_request() can abort the operation when READA is being
929 * used and no empty request is available.
930 *
931 */
932 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
933
934 r1_bio->master_bio = bio;
935 r1_bio->sectors = bio->bi_size >> 9;
191ea9b2 936 r1_bio->state = 0;
1da177e4
LT
937 r1_bio->mddev = mddev;
938 r1_bio->sector = bio->bi_sector;
939
d2eb35ac
N
940 /* We might need to issue multiple reads to different
941 * devices if there are bad blocks around, so we keep
942 * track of the number of reads in bio->bi_phys_segments.
943 * If this is 0, there is only one r1_bio and no locking
944 * will be needed when requests complete. If it is
945 * non-zero, then it is the number of not-completed requests.
946 */
947 bio->bi_phys_segments = 0;
948 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
949
a362357b 950 if (rw == READ) {
1da177e4
LT
951 /*
952 * read balancing logic:
953 */
d2eb35ac
N
954 int rdisk;
955
956read_again:
957 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
958
959 if (rdisk < 0) {
960 /* couldn't find anywhere to read from */
961 raid_end_bio_io(r1_bio);
5a7bbad2 962 return;
1da177e4
LT
963 }
964 mirror = conf->mirrors + rdisk;
965
e555190d
N
966 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
967 bitmap) {
968 /* Reading from a write-mostly device must
969 * take care not to over-take any writes
970 * that are 'behind'
971 */
972 wait_event(bitmap->behind_wait,
973 atomic_read(&bitmap->behind_writes) == 0);
974 }
1da177e4
LT
975 r1_bio->read_disk = rdisk;
976
a167f663 977 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d2eb35ac
N
978 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
979 max_sectors);
1da177e4
LT
980
981 r1_bio->bios[rdisk] = read_bio;
982
983 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
984 read_bio->bi_bdev = mirror->rdev->bdev;
985 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 986 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
987 read_bio->bi_private = r1_bio;
988
d2eb35ac
N
989 if (max_sectors < r1_bio->sectors) {
990 /* could not read all from this device, so we will
991 * need another r1_bio.
992 */
d2eb35ac
N
993
994 sectors_handled = (r1_bio->sector + max_sectors
995 - bio->bi_sector);
996 r1_bio->sectors = max_sectors;
997 spin_lock_irq(&conf->device_lock);
998 if (bio->bi_phys_segments == 0)
999 bio->bi_phys_segments = 2;
1000 else
1001 bio->bi_phys_segments++;
1002 spin_unlock_irq(&conf->device_lock);
1003 /* Cannot call generic_make_request directly
1004 * as that will be queued in __make_request
1005 * and subsequent mempool_alloc might block waiting
1006 * for it. So hand bio over to raid1d.
1007 */
1008 reschedule_retry(r1_bio);
1009
1010 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1011
1012 r1_bio->master_bio = bio;
1013 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1014 r1_bio->state = 0;
1015 r1_bio->mddev = mddev;
1016 r1_bio->sector = bio->bi_sector + sectors_handled;
1017 goto read_again;
1018 } else
1019 generic_make_request(read_bio);
5a7bbad2 1020 return;
1da177e4
LT
1021 }
1022
1023 /*
1024 * WRITE:
1025 */
34db0cd6
N
1026 if (conf->pending_count >= max_queued_requests) {
1027 md_wakeup_thread(mddev->thread);
1028 wait_event(conf->wait_barrier,
1029 conf->pending_count < max_queued_requests);
1030 }
1f68f0c4 1031 /* first select target devices under rcu_lock and
1da177e4
LT
1032 * inc refcount on their rdev. Record them by setting
1033 * bios[x] to bio
1f68f0c4
N
1034 * If there are known/acknowledged bad blocks on any device on
1035 * which we have seen a write error, we want to avoid writing those
1036 * blocks.
1037 * This potentially requires several writes to write around
1038 * the bad blocks. Each set of writes gets it's own r1bio
1039 * with a set of bios attached.
1da177e4 1040 */
c3b328ac 1041
8f19ccb2 1042 disks = conf->raid_disks * 2;
6bfe0b49
DW
1043 retry_write:
1044 blocked_rdev = NULL;
1da177e4 1045 rcu_read_lock();
1f68f0c4 1046 max_sectors = r1_bio->sectors;
1da177e4 1047 for (i = 0; i < disks; i++) {
3cb03002 1048 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1049 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1050 atomic_inc(&rdev->nr_pending);
1051 blocked_rdev = rdev;
1052 break;
1053 }
1f68f0c4 1054 r1_bio->bios[i] = NULL;
6b740b8d
N
1055 if (!rdev || test_bit(Faulty, &rdev->flags)
1056 || test_bit(Unmerged, &rdev->flags)) {
8f19ccb2
N
1057 if (i < conf->raid_disks)
1058 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1059 continue;
1060 }
1061
1062 atomic_inc(&rdev->nr_pending);
1063 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1064 sector_t first_bad;
1065 int bad_sectors;
1066 int is_bad;
1067
1068 is_bad = is_badblock(rdev, r1_bio->sector,
1069 max_sectors,
1070 &first_bad, &bad_sectors);
1071 if (is_bad < 0) {
1072 /* mustn't write here until the bad block is
1073 * acknowledged*/
1074 set_bit(BlockedBadBlocks, &rdev->flags);
1075 blocked_rdev = rdev;
1076 break;
1077 }
1078 if (is_bad && first_bad <= r1_bio->sector) {
1079 /* Cannot write here at all */
1080 bad_sectors -= (r1_bio->sector - first_bad);
1081 if (bad_sectors < max_sectors)
1082 /* mustn't write more than bad_sectors
1083 * to other devices yet
1084 */
1085 max_sectors = bad_sectors;
03c902e1 1086 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1087 /* We don't set R1BIO_Degraded as that
1088 * only applies if the disk is
1089 * missing, so it might be re-added,
1090 * and we want to know to recover this
1091 * chunk.
1092 * In this case the device is here,
1093 * and the fact that this chunk is not
1094 * in-sync is recorded in the bad
1095 * block log
1096 */
1097 continue;
964147d5 1098 }
1f68f0c4
N
1099 if (is_bad) {
1100 int good_sectors = first_bad - r1_bio->sector;
1101 if (good_sectors < max_sectors)
1102 max_sectors = good_sectors;
1103 }
1104 }
1105 r1_bio->bios[i] = bio;
1da177e4
LT
1106 }
1107 rcu_read_unlock();
1108
6bfe0b49
DW
1109 if (unlikely(blocked_rdev)) {
1110 /* Wait for this device to become unblocked */
1111 int j;
1112
1113 for (j = 0; j < i; j++)
1114 if (r1_bio->bios[j])
1115 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1116 r1_bio->state = 0;
6bfe0b49
DW
1117 allow_barrier(conf);
1118 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1119 wait_barrier(conf);
1120 goto retry_write;
1121 }
1122
1f68f0c4
N
1123 if (max_sectors < r1_bio->sectors) {
1124 /* We are splitting this write into multiple parts, so
1125 * we need to prepare for allocating another r1_bio.
1126 */
1127 r1_bio->sectors = max_sectors;
1128 spin_lock_irq(&conf->device_lock);
1129 if (bio->bi_phys_segments == 0)
1130 bio->bi_phys_segments = 2;
1131 else
1132 bio->bi_phys_segments++;
1133 spin_unlock_irq(&conf->device_lock);
191ea9b2 1134 }
1f68f0c4 1135 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
4b6d287f 1136
4e78064f 1137 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1138 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1139
1f68f0c4 1140 first_clone = 1;
1da177e4
LT
1141 for (i = 0; i < disks; i++) {
1142 struct bio *mbio;
1143 if (!r1_bio->bios[i])
1144 continue;
1145
a167f663 1146 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1f68f0c4
N
1147 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1148
1149 if (first_clone) {
1150 /* do behind I/O ?
1151 * Not if there are too many, or cannot
1152 * allocate memory, or a reader on WriteMostly
1153 * is waiting for behind writes to flush */
1154 if (bitmap &&
1155 (atomic_read(&bitmap->behind_writes)
1156 < mddev->bitmap_info.max_write_behind) &&
1157 !waitqueue_active(&bitmap->behind_wait))
1158 alloc_behind_pages(mbio, r1_bio);
1159
1160 bitmap_startwrite(bitmap, r1_bio->sector,
1161 r1_bio->sectors,
1162 test_bit(R1BIO_BehindIO,
1163 &r1_bio->state));
1164 first_clone = 0;
1165 }
2ca68f5e 1166 if (r1_bio->behind_bvecs) {
4b6d287f
N
1167 struct bio_vec *bvec;
1168 int j;
1169
1170 /* Yes, I really want the '__' version so that
1171 * we clear any unused pointer in the io_vec, rather
1172 * than leave them unchanged. This is important
1173 * because when we come to free the pages, we won't
046abeed 1174 * know the original bi_idx, so we just free
4b6d287f
N
1175 * them all
1176 */
1177 __bio_for_each_segment(bvec, mbio, j, 0)
2ca68f5e 1178 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1179 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1180 atomic_inc(&r1_bio->behind_remaining);
1181 }
1182
1f68f0c4
N
1183 r1_bio->bios[i] = mbio;
1184
1185 mbio->bi_sector = (r1_bio->sector +
1186 conf->mirrors[i].rdev->data_offset);
1187 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1188 mbio->bi_end_io = raid1_end_write_request;
1189 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1190 mbio->bi_private = r1_bio;
1191
1da177e4 1192 atomic_inc(&r1_bio->remaining);
4e78064f
N
1193 spin_lock_irqsave(&conf->device_lock, flags);
1194 bio_list_add(&conf->pending_bio_list, mbio);
34db0cd6 1195 conf->pending_count++;
4e78064f 1196 spin_unlock_irqrestore(&conf->device_lock, flags);
b357f04a
N
1197 if (!mddev_check_plugged(mddev))
1198 md_wakeup_thread(mddev->thread);
1da177e4 1199 }
079fa166
N
1200 /* Mustn't call r1_bio_write_done before this next test,
1201 * as it could result in the bio being freed.
1202 */
1f68f0c4 1203 if (sectors_handled < (bio->bi_size >> 9)) {
079fa166 1204 r1_bio_write_done(r1_bio);
1f68f0c4
N
1205 /* We need another r1_bio. It has already been counted
1206 * in bio->bi_phys_segments
1207 */
1208 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1209 r1_bio->master_bio = bio;
1210 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1211 r1_bio->state = 0;
1212 r1_bio->mddev = mddev;
1213 r1_bio->sector = bio->bi_sector + sectors_handled;
1214 goto retry_write;
1215 }
1216
079fa166
N
1217 r1_bio_write_done(r1_bio);
1218
1219 /* In case raid1d snuck in to freeze_array */
1220 wake_up(&conf->wait_barrier);
1da177e4
LT
1221}
1222
fd01b88c 1223static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1224{
e8096360 1225 struct r1conf *conf = mddev->private;
1da177e4
LT
1226 int i;
1227
1228 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1229 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1230 rcu_read_lock();
1231 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1232 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1233 seq_printf(seq, "%s",
ddac7c7e
N
1234 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1235 }
1236 rcu_read_unlock();
1da177e4
LT
1237 seq_printf(seq, "]");
1238}
1239
1240
fd01b88c 1241static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1242{
1243 char b[BDEVNAME_SIZE];
e8096360 1244 struct r1conf *conf = mddev->private;
1da177e4
LT
1245
1246 /*
1247 * If it is not operational, then we have already marked it as dead
1248 * else if it is the last working disks, ignore the error, let the
1249 * next level up know.
1250 * else mark the drive as failed
1251 */
b2d444d7 1252 if (test_bit(In_sync, &rdev->flags)
4044ba58 1253 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1254 /*
1255 * Don't fail the drive, act as though we were just a
4044ba58
N
1256 * normal single drive.
1257 * However don't try a recovery from this drive as
1258 * it is very likely to fail.
1da177e4 1259 */
5389042f 1260 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1261 return;
4044ba58 1262 }
de393cde 1263 set_bit(Blocked, &rdev->flags);
c04be0aa
N
1264 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1265 unsigned long flags;
1266 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1267 mddev->degraded++;
dd00a99e 1268 set_bit(Faulty, &rdev->flags);
c04be0aa 1269 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1270 /*
1271 * if recovery is running, make sure it aborts.
1272 */
dfc70645 1273 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
dd00a99e
N
1274 } else
1275 set_bit(Faulty, &rdev->flags);
850b2b42 1276 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1277 printk(KERN_ALERT
1278 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1279 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1280 mdname(mddev), bdevname(rdev->bdev, b),
1281 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1282}
1283
e8096360 1284static void print_conf(struct r1conf *conf)
1da177e4
LT
1285{
1286 int i;
1da177e4 1287
9dd1e2fa 1288 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1289 if (!conf) {
9dd1e2fa 1290 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1291 return;
1292 }
9dd1e2fa 1293 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1294 conf->raid_disks);
1295
ddac7c7e 1296 rcu_read_lock();
1da177e4
LT
1297 for (i = 0; i < conf->raid_disks; i++) {
1298 char b[BDEVNAME_SIZE];
3cb03002 1299 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1300 if (rdev)
9dd1e2fa 1301 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1302 i, !test_bit(In_sync, &rdev->flags),
1303 !test_bit(Faulty, &rdev->flags),
1304 bdevname(rdev->bdev,b));
1da177e4 1305 }
ddac7c7e 1306 rcu_read_unlock();
1da177e4
LT
1307}
1308
e8096360 1309static void close_sync(struct r1conf *conf)
1da177e4 1310{
17999be4
N
1311 wait_barrier(conf);
1312 allow_barrier(conf);
1da177e4
LT
1313
1314 mempool_destroy(conf->r1buf_pool);
1315 conf->r1buf_pool = NULL;
1316}
1317
fd01b88c 1318static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1319{
1320 int i;
e8096360 1321 struct r1conf *conf = mddev->private;
6b965620
N
1322 int count = 0;
1323 unsigned long flags;
1da177e4
LT
1324
1325 /*
1326 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1327 * and mark them readable.
1328 * Called under mddev lock, so rcu protection not needed.
1da177e4
LT
1329 */
1330 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1331 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1332 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1333 if (repl
1334 && repl->recovery_offset == MaxSector
1335 && !test_bit(Faulty, &repl->flags)
1336 && !test_and_set_bit(In_sync, &repl->flags)) {
1337 /* replacement has just become active */
1338 if (!rdev ||
1339 !test_and_clear_bit(In_sync, &rdev->flags))
1340 count++;
1341 if (rdev) {
1342 /* Replaced device not technically
1343 * faulty, but we need to be sure
1344 * it gets removed and never re-added
1345 */
1346 set_bit(Faulty, &rdev->flags);
1347 sysfs_notify_dirent_safe(
1348 rdev->sysfs_state);
1349 }
1350 }
ddac7c7e
N
1351 if (rdev
1352 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1353 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1354 count++;
654e8b5a 1355 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1356 }
1357 }
6b965620
N
1358 spin_lock_irqsave(&conf->device_lock, flags);
1359 mddev->degraded -= count;
1360 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1361
1362 print_conf(conf);
6b965620 1363 return count;
1da177e4
LT
1364}
1365
1366
fd01b88c 1367static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1368{
e8096360 1369 struct r1conf *conf = mddev->private;
199050ea 1370 int err = -EEXIST;
41158c7e 1371 int mirror = 0;
0eaf822c 1372 struct raid1_info *p;
6c2fce2e 1373 int first = 0;
30194636 1374 int last = conf->raid_disks - 1;
6b740b8d 1375 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4 1376
5389042f
N
1377 if (mddev->recovery_disabled == conf->recovery_disabled)
1378 return -EBUSY;
1379
6c2fce2e
NB
1380 if (rdev->raid_disk >= 0)
1381 first = last = rdev->raid_disk;
1382
6b740b8d
N
1383 if (q->merge_bvec_fn) {
1384 set_bit(Unmerged, &rdev->flags);
1385 mddev->merge_check_needed = 1;
1386 }
1387
7ef449d1
N
1388 for (mirror = first; mirror <= last; mirror++) {
1389 p = conf->mirrors+mirror;
1390 if (!p->rdev) {
1da177e4 1391
8f6c2e4b
MP
1392 disk_stack_limits(mddev->gendisk, rdev->bdev,
1393 rdev->data_offset << 9);
1da177e4
LT
1394
1395 p->head_position = 0;
1396 rdev->raid_disk = mirror;
199050ea 1397 err = 0;
6aea114a
N
1398 /* As all devices are equivalent, we don't need a full recovery
1399 * if this was recently any drive of the array
1400 */
1401 if (rdev->saved_raid_disk < 0)
41158c7e 1402 conf->fullsync = 1;
d6065f7b 1403 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1404 break;
1405 }
7ef449d1
N
1406 if (test_bit(WantReplacement, &p->rdev->flags) &&
1407 p[conf->raid_disks].rdev == NULL) {
1408 /* Add this device as a replacement */
1409 clear_bit(In_sync, &rdev->flags);
1410 set_bit(Replacement, &rdev->flags);
1411 rdev->raid_disk = mirror;
1412 err = 0;
1413 conf->fullsync = 1;
1414 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1415 break;
1416 }
1417 }
6b740b8d
N
1418 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1419 /* Some requests might not have seen this new
1420 * merge_bvec_fn. We must wait for them to complete
1421 * before merging the device fully.
1422 * First we make sure any code which has tested
1423 * our function has submitted the request, then
1424 * we wait for all outstanding requests to complete.
1425 */
1426 synchronize_sched();
1427 raise_barrier(conf);
1428 lower_barrier(conf);
1429 clear_bit(Unmerged, &rdev->flags);
1430 }
ac5e7113 1431 md_integrity_add_rdev(rdev, mddev);
1da177e4 1432 print_conf(conf);
199050ea 1433 return err;
1da177e4
LT
1434}
1435
b8321b68 1436static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1437{
e8096360 1438 struct r1conf *conf = mddev->private;
1da177e4 1439 int err = 0;
b8321b68 1440 int number = rdev->raid_disk;
0eaf822c 1441 struct raid1_info *p = conf->mirrors + number;
1da177e4 1442
b014f14c
N
1443 if (rdev != p->rdev)
1444 p = conf->mirrors + conf->raid_disks + number;
1445
1da177e4 1446 print_conf(conf);
b8321b68 1447 if (rdev == p->rdev) {
b2d444d7 1448 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1449 atomic_read(&rdev->nr_pending)) {
1450 err = -EBUSY;
1451 goto abort;
1452 }
046abeed 1453 /* Only remove non-faulty devices if recovery
dfc70645
N
1454 * is not possible.
1455 */
1456 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1457 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1458 mddev->degraded < conf->raid_disks) {
1459 err = -EBUSY;
1460 goto abort;
1461 }
1da177e4 1462 p->rdev = NULL;
fbd568a3 1463 synchronize_rcu();
1da177e4
LT
1464 if (atomic_read(&rdev->nr_pending)) {
1465 /* lost the race, try later */
1466 err = -EBUSY;
1467 p->rdev = rdev;
ac5e7113 1468 goto abort;
8c7a2c2b
N
1469 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1470 /* We just removed a device that is being replaced.
1471 * Move down the replacement. We drain all IO before
1472 * doing this to avoid confusion.
1473 */
1474 struct md_rdev *repl =
1475 conf->mirrors[conf->raid_disks + number].rdev;
1476 raise_barrier(conf);
1477 clear_bit(Replacement, &repl->flags);
1478 p->rdev = repl;
1479 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1480 lower_barrier(conf);
1481 clear_bit(WantReplacement, &rdev->flags);
1482 } else
b014f14c 1483 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1484 err = md_integrity_register(mddev);
1da177e4
LT
1485 }
1486abort:
1487
1488 print_conf(conf);
1489 return err;
1490}
1491
1492
6712ecf8 1493static void end_sync_read(struct bio *bio, int error)
1da177e4 1494{
9f2c9d12 1495 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1496
0fc280f6 1497 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1498
1da177e4
LT
1499 /*
1500 * we have read a block, now it needs to be re-written,
1501 * or re-read if the read failed.
1502 * We don't do much here, just schedule handling by raid1d
1503 */
69382e85 1504 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1505 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1506
1507 if (atomic_dec_and_test(&r1_bio->remaining))
1508 reschedule_retry(r1_bio);
1da177e4
LT
1509}
1510
6712ecf8 1511static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1512{
1513 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1514 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1515 struct mddev *mddev = r1_bio->mddev;
e8096360 1516 struct r1conf *conf = mddev->private;
1da177e4 1517 int mirror=0;
4367af55
N
1518 sector_t first_bad;
1519 int bad_sectors;
1da177e4 1520
ba3ae3be
NK
1521 mirror = find_bio_disk(r1_bio, bio);
1522
6b1117d5 1523 if (!uptodate) {
57dab0bd 1524 sector_t sync_blocks = 0;
6b1117d5
N
1525 sector_t s = r1_bio->sector;
1526 long sectors_to_go = r1_bio->sectors;
1527 /* make sure these bits doesn't get cleared. */
1528 do {
5e3db645 1529 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1530 &sync_blocks, 1);
1531 s += sync_blocks;
1532 sectors_to_go -= sync_blocks;
1533 } while (sectors_to_go > 0);
d8f05d29
N
1534 set_bit(WriteErrorSeen,
1535 &conf->mirrors[mirror].rdev->flags);
19d67169
N
1536 if (!test_and_set_bit(WantReplacement,
1537 &conf->mirrors[mirror].rdev->flags))
1538 set_bit(MD_RECOVERY_NEEDED, &
1539 mddev->recovery);
d8f05d29 1540 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55
N
1541 } else if (is_badblock(conf->mirrors[mirror].rdev,
1542 r1_bio->sector,
1543 r1_bio->sectors,
3a9f28a5
N
1544 &first_bad, &bad_sectors) &&
1545 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1546 r1_bio->sector,
1547 r1_bio->sectors,
1548 &first_bad, &bad_sectors)
1549 )
4367af55 1550 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1551
1da177e4 1552 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1553 int s = r1_bio->sectors;
d8f05d29
N
1554 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1555 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1556 reschedule_retry(r1_bio);
1557 else {
1558 put_buf(r1_bio);
1559 md_done_sync(mddev, s, uptodate);
1560 }
1da177e4 1561 }
1da177e4
LT
1562}
1563
3cb03002 1564static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1565 int sectors, struct page *page, int rw)
1566{
1567 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1568 /* success */
1569 return 1;
19d67169 1570 if (rw == WRITE) {
d8f05d29 1571 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1572 if (!test_and_set_bit(WantReplacement,
1573 &rdev->flags))
1574 set_bit(MD_RECOVERY_NEEDED, &
1575 rdev->mddev->recovery);
1576 }
d8f05d29
N
1577 /* need to record an error - either for the block or the device */
1578 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1579 md_error(rdev->mddev, rdev);
1580 return 0;
1581}
1582
9f2c9d12 1583static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1584{
a68e5870
N
1585 /* Try some synchronous reads of other devices to get
1586 * good data, much like with normal read errors. Only
1587 * read into the pages we already have so we don't
1588 * need to re-issue the read request.
1589 * We don't need to freeze the array, because being in an
1590 * active sync request, there is no normal IO, and
1591 * no overlapping syncs.
06f60385
N
1592 * We don't need to check is_badblock() again as we
1593 * made sure that anything with a bad block in range
1594 * will have bi_end_io clear.
a68e5870 1595 */
fd01b88c 1596 struct mddev *mddev = r1_bio->mddev;
e8096360 1597 struct r1conf *conf = mddev->private;
a68e5870
N
1598 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1599 sector_t sect = r1_bio->sector;
1600 int sectors = r1_bio->sectors;
1601 int idx = 0;
1602
1603 while(sectors) {
1604 int s = sectors;
1605 int d = r1_bio->read_disk;
1606 int success = 0;
3cb03002 1607 struct md_rdev *rdev;
78d7f5f7 1608 int start;
a68e5870
N
1609
1610 if (s > (PAGE_SIZE>>9))
1611 s = PAGE_SIZE >> 9;
1612 do {
1613 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1614 /* No rcu protection needed here devices
1615 * can only be removed when no resync is
1616 * active, and resync is currently active
1617 */
1618 rdev = conf->mirrors[d].rdev;
9d3d8011 1619 if (sync_page_io(rdev, sect, s<<9,
a68e5870
N
1620 bio->bi_io_vec[idx].bv_page,
1621 READ, false)) {
1622 success = 1;
1623 break;
1624 }
1625 }
1626 d++;
8f19ccb2 1627 if (d == conf->raid_disks * 2)
a68e5870
N
1628 d = 0;
1629 } while (!success && d != r1_bio->read_disk);
1630
78d7f5f7 1631 if (!success) {
a68e5870 1632 char b[BDEVNAME_SIZE];
3a9f28a5
N
1633 int abort = 0;
1634 /* Cannot read from anywhere, this block is lost.
1635 * Record a bad block on each device. If that doesn't
1636 * work just disable and interrupt the recovery.
1637 * Don't fail devices as that won't really help.
1638 */
a68e5870
N
1639 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1640 " for block %llu\n",
1641 mdname(mddev),
1642 bdevname(bio->bi_bdev, b),
1643 (unsigned long long)r1_bio->sector);
8f19ccb2 1644 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1645 rdev = conf->mirrors[d].rdev;
1646 if (!rdev || test_bit(Faulty, &rdev->flags))
1647 continue;
1648 if (!rdev_set_badblocks(rdev, sect, s, 0))
1649 abort = 1;
1650 }
1651 if (abort) {
d890fa2b
N
1652 conf->recovery_disabled =
1653 mddev->recovery_disabled;
3a9f28a5
N
1654 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1655 md_done_sync(mddev, r1_bio->sectors, 0);
1656 put_buf(r1_bio);
1657 return 0;
1658 }
1659 /* Try next page */
1660 sectors -= s;
1661 sect += s;
1662 idx++;
1663 continue;
d11c171e 1664 }
78d7f5f7
N
1665
1666 start = d;
1667 /* write it back and re-read */
1668 while (d != r1_bio->read_disk) {
1669 if (d == 0)
8f19ccb2 1670 d = conf->raid_disks * 2;
78d7f5f7
N
1671 d--;
1672 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1673 continue;
1674 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1675 if (r1_sync_page_io(rdev, sect, s,
1676 bio->bi_io_vec[idx].bv_page,
1677 WRITE) == 0) {
78d7f5f7
N
1678 r1_bio->bios[d]->bi_end_io = NULL;
1679 rdev_dec_pending(rdev, mddev);
9d3d8011 1680 }
78d7f5f7
N
1681 }
1682 d = start;
1683 while (d != r1_bio->read_disk) {
1684 if (d == 0)
8f19ccb2 1685 d = conf->raid_disks * 2;
78d7f5f7
N
1686 d--;
1687 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1688 continue;
1689 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1690 if (r1_sync_page_io(rdev, sect, s,
1691 bio->bi_io_vec[idx].bv_page,
1692 READ) != 0)
9d3d8011 1693 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1694 }
a68e5870
N
1695 sectors -= s;
1696 sect += s;
1697 idx ++;
1698 }
78d7f5f7 1699 set_bit(R1BIO_Uptodate, &r1_bio->state);
7ca78d57 1700 set_bit(BIO_UPTODATE, &bio->bi_flags);
a68e5870
N
1701 return 1;
1702}
1703
9f2c9d12 1704static int process_checks(struct r1bio *r1_bio)
a68e5870
N
1705{
1706 /* We have read all readable devices. If we haven't
1707 * got the block, then there is no hope left.
1708 * If we have, then we want to do a comparison
1709 * and skip the write if everything is the same.
1710 * If any blocks failed to read, then we need to
1711 * attempt an over-write
1712 */
fd01b88c 1713 struct mddev *mddev = r1_bio->mddev;
e8096360 1714 struct r1conf *conf = mddev->private;
a68e5870
N
1715 int primary;
1716 int i;
f4380a91 1717 int vcnt;
a68e5870 1718
8f19ccb2 1719 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870
N
1720 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1721 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1722 r1_bio->bios[primary]->bi_end_io = NULL;
1723 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1724 break;
1725 }
1726 r1_bio->read_disk = primary;
f4380a91 1727 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
8f19ccb2 1728 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 1729 int j;
78d7f5f7
N
1730 struct bio *pbio = r1_bio->bios[primary];
1731 struct bio *sbio = r1_bio->bios[i];
1732 int size;
a68e5870 1733
78d7f5f7
N
1734 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1735 continue;
1736
1737 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1738 for (j = vcnt; j-- ; ) {
1739 struct page *p, *s;
1740 p = pbio->bi_io_vec[j].bv_page;
1741 s = sbio->bi_io_vec[j].bv_page;
1742 if (memcmp(page_address(p),
1743 page_address(s),
5020ad7d 1744 sbio->bi_io_vec[j].bv_len))
78d7f5f7 1745 break;
69382e85 1746 }
78d7f5f7
N
1747 } else
1748 j = 0;
1749 if (j >= 0)
1750 mddev->resync_mismatches += r1_bio->sectors;
1751 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1752 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1753 /* No need to write to this device. */
1754 sbio->bi_end_io = NULL;
1755 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1756 continue;
1757 }
1758 /* fixup the bio for reuse */
1759 sbio->bi_vcnt = vcnt;
1760 sbio->bi_size = r1_bio->sectors << 9;
1761 sbio->bi_idx = 0;
1762 sbio->bi_phys_segments = 0;
1763 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1764 sbio->bi_flags |= 1 << BIO_UPTODATE;
1765 sbio->bi_next = NULL;
1766 sbio->bi_sector = r1_bio->sector +
1767 conf->mirrors[i].rdev->data_offset;
1768 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1769 size = sbio->bi_size;
1770 for (j = 0; j < vcnt ; j++) {
1771 struct bio_vec *bi;
1772 bi = &sbio->bi_io_vec[j];
1773 bi->bv_offset = 0;
1774 if (size > PAGE_SIZE)
1775 bi->bv_len = PAGE_SIZE;
1776 else
1777 bi->bv_len = size;
1778 size -= PAGE_SIZE;
1779 memcpy(page_address(bi->bv_page),
1780 page_address(pbio->bi_io_vec[j].bv_page),
1781 PAGE_SIZE);
69382e85 1782 }
78d7f5f7 1783 }
a68e5870
N
1784 return 0;
1785}
1786
9f2c9d12 1787static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 1788{
e8096360 1789 struct r1conf *conf = mddev->private;
a68e5870 1790 int i;
8f19ccb2 1791 int disks = conf->raid_disks * 2;
a68e5870
N
1792 struct bio *bio, *wbio;
1793
1794 bio = r1_bio->bios[r1_bio->read_disk];
1795
a68e5870
N
1796 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1797 /* ouch - failed to read all of that. */
1798 if (!fix_sync_read_error(r1_bio))
1799 return;
7ca78d57
N
1800
1801 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1802 if (process_checks(r1_bio) < 0)
1803 return;
d11c171e
N
1804 /*
1805 * schedule writes
1806 */
1da177e4
LT
1807 atomic_set(&r1_bio->remaining, 1);
1808 for (i = 0; i < disks ; i++) {
1809 wbio = r1_bio->bios[i];
3e198f78
N
1810 if (wbio->bi_end_io == NULL ||
1811 (wbio->bi_end_io == end_sync_read &&
1812 (i == r1_bio->read_disk ||
1813 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
1814 continue;
1815
3e198f78
N
1816 wbio->bi_rw = WRITE;
1817 wbio->bi_end_io = end_sync_write;
1da177e4
LT
1818 atomic_inc(&r1_bio->remaining);
1819 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
191ea9b2 1820
1da177e4
LT
1821 generic_make_request(wbio);
1822 }
1823
1824 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 1825 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
1826 int s = r1_bio->sectors;
1827 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1828 test_bit(R1BIO_WriteError, &r1_bio->state))
1829 reschedule_retry(r1_bio);
1830 else {
1831 put_buf(r1_bio);
1832 md_done_sync(mddev, s, 1);
1833 }
1da177e4
LT
1834 }
1835}
1836
1837/*
1838 * This is a kernel thread which:
1839 *
1840 * 1. Retries failed read operations on working mirrors.
1841 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 1842 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1843 */
1844
e8096360 1845static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
1846 sector_t sect, int sectors)
1847{
fd01b88c 1848 struct mddev *mddev = conf->mddev;
867868fb
N
1849 while(sectors) {
1850 int s = sectors;
1851 int d = read_disk;
1852 int success = 0;
1853 int start;
3cb03002 1854 struct md_rdev *rdev;
867868fb
N
1855
1856 if (s > (PAGE_SIZE>>9))
1857 s = PAGE_SIZE >> 9;
1858
1859 do {
1860 /* Note: no rcu protection needed here
1861 * as this is synchronous in the raid1d thread
1862 * which is the thread that might remove
1863 * a device. If raid1d ever becomes multi-threaded....
1864 */
d2eb35ac
N
1865 sector_t first_bad;
1866 int bad_sectors;
1867
867868fb
N
1868 rdev = conf->mirrors[d].rdev;
1869 if (rdev &&
da8840a7 1870 (test_bit(In_sync, &rdev->flags) ||
1871 (!test_bit(Faulty, &rdev->flags) &&
1872 rdev->recovery_offset >= sect + s)) &&
d2eb35ac
N
1873 is_badblock(rdev, sect, s,
1874 &first_bad, &bad_sectors) == 0 &&
ccebd4c4
JB
1875 sync_page_io(rdev, sect, s<<9,
1876 conf->tmppage, READ, false))
867868fb
N
1877 success = 1;
1878 else {
1879 d++;
8f19ccb2 1880 if (d == conf->raid_disks * 2)
867868fb
N
1881 d = 0;
1882 }
1883 } while (!success && d != read_disk);
1884
1885 if (!success) {
d8f05d29 1886 /* Cannot read from anywhere - mark it bad */
3cb03002 1887 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
1888 if (!rdev_set_badblocks(rdev, sect, s, 0))
1889 md_error(mddev, rdev);
867868fb
N
1890 break;
1891 }
1892 /* write it back and re-read */
1893 start = d;
1894 while (d != read_disk) {
1895 if (d==0)
8f19ccb2 1896 d = conf->raid_disks * 2;
867868fb
N
1897 d--;
1898 rdev = conf->mirrors[d].rdev;
1899 if (rdev &&
d8f05d29
N
1900 test_bit(In_sync, &rdev->flags))
1901 r1_sync_page_io(rdev, sect, s,
1902 conf->tmppage, WRITE);
867868fb
N
1903 }
1904 d = start;
1905 while (d != read_disk) {
1906 char b[BDEVNAME_SIZE];
1907 if (d==0)
8f19ccb2 1908 d = conf->raid_disks * 2;
867868fb
N
1909 d--;
1910 rdev = conf->mirrors[d].rdev;
1911 if (rdev &&
1912 test_bit(In_sync, &rdev->flags)) {
d8f05d29
N
1913 if (r1_sync_page_io(rdev, sect, s,
1914 conf->tmppage, READ)) {
867868fb
N
1915 atomic_add(s, &rdev->corrected_errors);
1916 printk(KERN_INFO
9dd1e2fa 1917 "md/raid1:%s: read error corrected "
867868fb
N
1918 "(%d sectors at %llu on %s)\n",
1919 mdname(mddev), s,
969b755a
RD
1920 (unsigned long long)(sect +
1921 rdev->data_offset),
867868fb
N
1922 bdevname(rdev->bdev, b));
1923 }
1924 }
1925 }
1926 sectors -= s;
1927 sect += s;
1928 }
1929}
1930
cd5ff9a1
N
1931static void bi_complete(struct bio *bio, int error)
1932{
1933 complete((struct completion *)bio->bi_private);
1934}
1935
1936static int submit_bio_wait(int rw, struct bio *bio)
1937{
1938 struct completion event;
1939 rw |= REQ_SYNC;
1940
1941 init_completion(&event);
1942 bio->bi_private = &event;
1943 bio->bi_end_io = bi_complete;
1944 submit_bio(rw, bio);
1945 wait_for_completion(&event);
1946
1947 return test_bit(BIO_UPTODATE, &bio->bi_flags);
1948}
1949
9f2c9d12 1950static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 1951{
fd01b88c 1952 struct mddev *mddev = r1_bio->mddev;
e8096360 1953 struct r1conf *conf = mddev->private;
3cb03002 1954 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
1955 int vcnt, idx;
1956 struct bio_vec *vec;
1957
1958 /* bio has the data to be written to device 'i' where
1959 * we just recently had a write error.
1960 * We repeatedly clone the bio and trim down to one block,
1961 * then try the write. Where the write fails we record
1962 * a bad block.
1963 * It is conceivable that the bio doesn't exactly align with
1964 * blocks. We must handle this somehow.
1965 *
1966 * We currently own a reference on the rdev.
1967 */
1968
1969 int block_sectors;
1970 sector_t sector;
1971 int sectors;
1972 int sect_to_write = r1_bio->sectors;
1973 int ok = 1;
1974
1975 if (rdev->badblocks.shift < 0)
1976 return 0;
1977
1978 block_sectors = 1 << rdev->badblocks.shift;
1979 sector = r1_bio->sector;
1980 sectors = ((sector + block_sectors)
1981 & ~(sector_t)(block_sectors - 1))
1982 - sector;
1983
1984 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1985 vcnt = r1_bio->behind_page_count;
1986 vec = r1_bio->behind_bvecs;
1987 idx = 0;
1988 while (vec[idx].bv_page == NULL)
1989 idx++;
1990 } else {
1991 vcnt = r1_bio->master_bio->bi_vcnt;
1992 vec = r1_bio->master_bio->bi_io_vec;
1993 idx = r1_bio->master_bio->bi_idx;
1994 }
1995 while (sect_to_write) {
1996 struct bio *wbio;
1997 if (sectors > sect_to_write)
1998 sectors = sect_to_write;
1999 /* Write at 'sector' for 'sectors'*/
2000
2001 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2002 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2003 wbio->bi_sector = r1_bio->sector;
2004 wbio->bi_rw = WRITE;
2005 wbio->bi_vcnt = vcnt;
2006 wbio->bi_size = r1_bio->sectors << 9;
2007 wbio->bi_idx = idx;
2008
2009 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2010 wbio->bi_sector += rdev->data_offset;
2011 wbio->bi_bdev = rdev->bdev;
2012 if (submit_bio_wait(WRITE, wbio) == 0)
2013 /* failure! */
2014 ok = rdev_set_badblocks(rdev, sector,
2015 sectors, 0)
2016 && ok;
2017
2018 bio_put(wbio);
2019 sect_to_write -= sectors;
2020 sector += sectors;
2021 sectors = block_sectors;
2022 }
2023 return ok;
2024}
2025
e8096360 2026static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2027{
2028 int m;
2029 int s = r1_bio->sectors;
8f19ccb2 2030 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2031 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2032 struct bio *bio = r1_bio->bios[m];
2033 if (bio->bi_end_io == NULL)
2034 continue;
2035 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2036 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2037 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce
N
2038 }
2039 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2040 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2041 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2042 md_error(conf->mddev, rdev);
2043 }
2044 }
2045 put_buf(r1_bio);
2046 md_done_sync(conf->mddev, s, 1);
2047}
2048
e8096360 2049static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2050{
2051 int m;
8f19ccb2 2052 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2053 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2054 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2055 rdev_clear_badblocks(rdev,
2056 r1_bio->sector,
c6563a8c 2057 r1_bio->sectors, 0);
62096bce
N
2058 rdev_dec_pending(rdev, conf->mddev);
2059 } else if (r1_bio->bios[m] != NULL) {
2060 /* This drive got a write error. We need to
2061 * narrow down and record precise write
2062 * errors.
2063 */
2064 if (!narrow_write_error(r1_bio, m)) {
2065 md_error(conf->mddev,
2066 conf->mirrors[m].rdev);
2067 /* an I/O failed, we can't clear the bitmap */
2068 set_bit(R1BIO_Degraded, &r1_bio->state);
2069 }
2070 rdev_dec_pending(conf->mirrors[m].rdev,
2071 conf->mddev);
2072 }
2073 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2074 close_write(r1_bio);
2075 raid_end_bio_io(r1_bio);
2076}
2077
e8096360 2078static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2079{
2080 int disk;
2081 int max_sectors;
fd01b88c 2082 struct mddev *mddev = conf->mddev;
62096bce
N
2083 struct bio *bio;
2084 char b[BDEVNAME_SIZE];
3cb03002 2085 struct md_rdev *rdev;
62096bce
N
2086
2087 clear_bit(R1BIO_ReadError, &r1_bio->state);
2088 /* we got a read error. Maybe the drive is bad. Maybe just
2089 * the block and we can fix it.
2090 * We freeze all other IO, and try reading the block from
2091 * other devices. When we find one, we re-write
2092 * and check it that fixes the read error.
2093 * This is all done synchronously while the array is
2094 * frozen
2095 */
2096 if (mddev->ro == 0) {
2097 freeze_array(conf);
2098 fix_read_error(conf, r1_bio->read_disk,
2099 r1_bio->sector, r1_bio->sectors);
2100 unfreeze_array(conf);
2101 } else
2102 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2103
2104 bio = r1_bio->bios[r1_bio->read_disk];
2105 bdevname(bio->bi_bdev, b);
2106read_more:
2107 disk = read_balance(conf, r1_bio, &max_sectors);
2108 if (disk == -1) {
2109 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2110 " read error for block %llu\n",
2111 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2112 raid_end_bio_io(r1_bio);
2113 } else {
2114 const unsigned long do_sync
2115 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2116 if (bio) {
2117 r1_bio->bios[r1_bio->read_disk] =
2118 mddev->ro ? IO_BLOCKED : NULL;
2119 bio_put(bio);
2120 }
2121 r1_bio->read_disk = disk;
2122 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2123 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2124 r1_bio->bios[r1_bio->read_disk] = bio;
2125 rdev = conf->mirrors[disk].rdev;
2126 printk_ratelimited(KERN_ERR
2127 "md/raid1:%s: redirecting sector %llu"
2128 " to other mirror: %s\n",
2129 mdname(mddev),
2130 (unsigned long long)r1_bio->sector,
2131 bdevname(rdev->bdev, b));
2132 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2133 bio->bi_bdev = rdev->bdev;
2134 bio->bi_end_io = raid1_end_read_request;
2135 bio->bi_rw = READ | do_sync;
2136 bio->bi_private = r1_bio;
2137 if (max_sectors < r1_bio->sectors) {
2138 /* Drat - have to split this up more */
2139 struct bio *mbio = r1_bio->master_bio;
2140 int sectors_handled = (r1_bio->sector + max_sectors
2141 - mbio->bi_sector);
2142 r1_bio->sectors = max_sectors;
2143 spin_lock_irq(&conf->device_lock);
2144 if (mbio->bi_phys_segments == 0)
2145 mbio->bi_phys_segments = 2;
2146 else
2147 mbio->bi_phys_segments++;
2148 spin_unlock_irq(&conf->device_lock);
2149 generic_make_request(bio);
2150 bio = NULL;
2151
2152 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2153
2154 r1_bio->master_bio = mbio;
2155 r1_bio->sectors = (mbio->bi_size >> 9)
2156 - sectors_handled;
2157 r1_bio->state = 0;
2158 set_bit(R1BIO_ReadError, &r1_bio->state);
2159 r1_bio->mddev = mddev;
2160 r1_bio->sector = mbio->bi_sector + sectors_handled;
2161
2162 goto read_more;
2163 } else
2164 generic_make_request(bio);
2165 }
2166}
2167
fd01b88c 2168static void raid1d(struct mddev *mddev)
1da177e4 2169{
9f2c9d12 2170 struct r1bio *r1_bio;
1da177e4 2171 unsigned long flags;
e8096360 2172 struct r1conf *conf = mddev->private;
1da177e4 2173 struct list_head *head = &conf->retry_list;
e1dfa0a2 2174 struct blk_plug plug;
1da177e4
LT
2175
2176 md_check_recovery(mddev);
e1dfa0a2
N
2177
2178 blk_start_plug(&plug);
1da177e4 2179 for (;;) {
191ea9b2 2180
c3b328ac
N
2181 if (atomic_read(&mddev->plug_cnt) == 0)
2182 flush_pending_writes(conf);
191ea9b2 2183
a35e63ef
N
2184 spin_lock_irqsave(&conf->device_lock, flags);
2185 if (list_empty(head)) {
2186 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2187 break;
a35e63ef 2188 }
9f2c9d12 2189 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2190 list_del(head->prev);
ddaf22ab 2191 conf->nr_queued--;
1da177e4
LT
2192 spin_unlock_irqrestore(&conf->device_lock, flags);
2193
2194 mddev = r1_bio->mddev;
070ec55d 2195 conf = mddev->private;
4367af55 2196 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2197 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2198 test_bit(R1BIO_WriteError, &r1_bio->state))
2199 handle_sync_write_finished(conf, r1_bio);
2200 else
4367af55 2201 sync_request_write(mddev, r1_bio);
cd5ff9a1 2202 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2203 test_bit(R1BIO_WriteError, &r1_bio->state))
2204 handle_write_finished(conf, r1_bio);
2205 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2206 handle_read_error(conf, r1_bio);
2207 else
d2eb35ac
N
2208 /* just a partial read to be scheduled from separate
2209 * context
2210 */
2211 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2212
1d9d5241 2213 cond_resched();
de393cde
N
2214 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2215 md_check_recovery(mddev);
1da177e4 2216 }
e1dfa0a2 2217 blk_finish_plug(&plug);
1da177e4
LT
2218}
2219
2220
e8096360 2221static int init_resync(struct r1conf *conf)
1da177e4
LT
2222{
2223 int buffs;
2224
2225 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2226 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2227 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2228 conf->poolinfo);
2229 if (!conf->r1buf_pool)
2230 return -ENOMEM;
2231 conf->next_resync = 0;
2232 return 0;
2233}
2234
2235/*
2236 * perform a "sync" on one "block"
2237 *
2238 * We need to make sure that no normal I/O request - particularly write
2239 * requests - conflict with active sync requests.
2240 *
2241 * This is achieved by tracking pending requests and a 'barrier' concept
2242 * that can be installed to exclude normal IO requests.
2243 */
2244
fd01b88c 2245static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4 2246{
e8096360 2247 struct r1conf *conf = mddev->private;
9f2c9d12 2248 struct r1bio *r1_bio;
1da177e4
LT
2249 struct bio *bio;
2250 sector_t max_sector, nr_sectors;
3e198f78 2251 int disk = -1;
1da177e4 2252 int i;
3e198f78
N
2253 int wonly = -1;
2254 int write_targets = 0, read_targets = 0;
57dab0bd 2255 sector_t sync_blocks;
e3b9703e 2256 int still_degraded = 0;
06f60385
N
2257 int good_sectors = RESYNC_SECTORS;
2258 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2259
2260 if (!conf->r1buf_pool)
2261 if (init_resync(conf))
57afd89f 2262 return 0;
1da177e4 2263
58c0fed4 2264 max_sector = mddev->dev_sectors;
1da177e4 2265 if (sector_nr >= max_sector) {
191ea9b2
N
2266 /* If we aborted, we need to abort the
2267 * sync on the 'current' bitmap chunk (there will
2268 * only be one in raid1 resync.
2269 * We can find the current addess in mddev->curr_resync
2270 */
6a806c51
N
2271 if (mddev->curr_resync < max_sector) /* aborted */
2272 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2273 &sync_blocks, 1);
6a806c51 2274 else /* completed sync */
191ea9b2 2275 conf->fullsync = 0;
6a806c51
N
2276
2277 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
2278 close_sync(conf);
2279 return 0;
2280 }
2281
07d84d10
N
2282 if (mddev->bitmap == NULL &&
2283 mddev->recovery_cp == MaxSector &&
6394cca5 2284 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2285 conf->fullsync == 0) {
2286 *skipped = 1;
2287 return max_sector - sector_nr;
2288 }
6394cca5
N
2289 /* before building a request, check if we can skip these blocks..
2290 * This call the bitmap_start_sync doesn't actually record anything
2291 */
e3b9703e 2292 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2293 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2294 /* We can skip this block, and probably several more */
2295 *skipped = 1;
2296 return sync_blocks;
2297 }
1da177e4 2298 /*
17999be4
N
2299 * If there is non-resync activity waiting for a turn,
2300 * and resync is going fast enough,
2301 * then let it though before starting on this new sync request.
1da177e4 2302 */
17999be4 2303 if (!go_faster && conf->nr_waiting)
1da177e4 2304 msleep_interruptible(1000);
17999be4 2305
b47490c9 2306 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1c4588e9 2307 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4
N
2308 raise_barrier(conf);
2309
2310 conf->next_resync = sector_nr;
1da177e4 2311
3e198f78 2312 rcu_read_lock();
1da177e4 2313 /*
3e198f78
N
2314 * If we get a correctably read error during resync or recovery,
2315 * we might want to read from a different device. So we
2316 * flag all drives that could conceivably be read from for READ,
2317 * and any others (which will be non-In_sync devices) for WRITE.
2318 * If a read fails, we try reading from something else for which READ
2319 * is OK.
1da177e4 2320 */
1da177e4 2321
1da177e4
LT
2322 r1_bio->mddev = mddev;
2323 r1_bio->sector = sector_nr;
191ea9b2 2324 r1_bio->state = 0;
1da177e4 2325 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2326
8f19ccb2 2327 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2328 struct md_rdev *rdev;
1da177e4
LT
2329 bio = r1_bio->bios[i];
2330
2331 /* take from bio_init */
2332 bio->bi_next = NULL;
db8d9d35 2333 bio->bi_flags &= ~(BIO_POOL_MASK-1);
1da177e4 2334 bio->bi_flags |= 1 << BIO_UPTODATE;
802ba064 2335 bio->bi_rw = READ;
1da177e4
LT
2336 bio->bi_vcnt = 0;
2337 bio->bi_idx = 0;
2338 bio->bi_phys_segments = 0;
1da177e4
LT
2339 bio->bi_size = 0;
2340 bio->bi_end_io = NULL;
2341 bio->bi_private = NULL;
2342
3e198f78
N
2343 rdev = rcu_dereference(conf->mirrors[i].rdev);
2344 if (rdev == NULL ||
06f60385 2345 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2346 if (i < conf->raid_disks)
2347 still_degraded = 1;
3e198f78 2348 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2349 bio->bi_rw = WRITE;
2350 bio->bi_end_io = end_sync_write;
2351 write_targets ++;
3e198f78
N
2352 } else {
2353 /* may need to read from here */
06f60385
N
2354 sector_t first_bad = MaxSector;
2355 int bad_sectors;
2356
2357 if (is_badblock(rdev, sector_nr, good_sectors,
2358 &first_bad, &bad_sectors)) {
2359 if (first_bad > sector_nr)
2360 good_sectors = first_bad - sector_nr;
2361 else {
2362 bad_sectors -= (sector_nr - first_bad);
2363 if (min_bad == 0 ||
2364 min_bad > bad_sectors)
2365 min_bad = bad_sectors;
2366 }
2367 }
2368 if (sector_nr < first_bad) {
2369 if (test_bit(WriteMostly, &rdev->flags)) {
2370 if (wonly < 0)
2371 wonly = i;
2372 } else {
2373 if (disk < 0)
2374 disk = i;
2375 }
2376 bio->bi_rw = READ;
2377 bio->bi_end_io = end_sync_read;
2378 read_targets++;
3e198f78 2379 }
3e198f78 2380 }
06f60385
N
2381 if (bio->bi_end_io) {
2382 atomic_inc(&rdev->nr_pending);
2383 bio->bi_sector = sector_nr + rdev->data_offset;
2384 bio->bi_bdev = rdev->bdev;
2385 bio->bi_private = r1_bio;
2386 }
1da177e4 2387 }
3e198f78
N
2388 rcu_read_unlock();
2389 if (disk < 0)
2390 disk = wonly;
2391 r1_bio->read_disk = disk;
191ea9b2 2392
06f60385
N
2393 if (read_targets == 0 && min_bad > 0) {
2394 /* These sectors are bad on all InSync devices, so we
2395 * need to mark them bad on all write targets
2396 */
2397 int ok = 1;
8f19ccb2 2398 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2399 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2400 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2401 ok = rdev_set_badblocks(rdev, sector_nr,
2402 min_bad, 0
2403 ) && ok;
2404 }
2405 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2406 *skipped = 1;
2407 put_buf(r1_bio);
2408
2409 if (!ok) {
2410 /* Cannot record the badblocks, so need to
2411 * abort the resync.
2412 * If there are multiple read targets, could just
2413 * fail the really bad ones ???
2414 */
2415 conf->recovery_disabled = mddev->recovery_disabled;
2416 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2417 return 0;
2418 } else
2419 return min_bad;
2420
2421 }
2422 if (min_bad > 0 && min_bad < good_sectors) {
2423 /* only resync enough to reach the next bad->good
2424 * transition */
2425 good_sectors = min_bad;
2426 }
2427
3e198f78
N
2428 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2429 /* extra read targets are also write targets */
2430 write_targets += read_targets-1;
2431
2432 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2433 /* There is nowhere to write, so all non-sync
2434 * drives must be failed - so we are finished
2435 */
57afd89f
N
2436 sector_t rv = max_sector - sector_nr;
2437 *skipped = 1;
1da177e4 2438 put_buf(r1_bio);
1da177e4
LT
2439 return rv;
2440 }
2441
c6207277
N
2442 if (max_sector > mddev->resync_max)
2443 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2444 if (max_sector > sector_nr + good_sectors)
2445 max_sector = sector_nr + good_sectors;
1da177e4 2446 nr_sectors = 0;
289e99e8 2447 sync_blocks = 0;
1da177e4
LT
2448 do {
2449 struct page *page;
2450 int len = PAGE_SIZE;
2451 if (sector_nr + (len>>9) > max_sector)
2452 len = (max_sector - sector_nr) << 9;
2453 if (len == 0)
2454 break;
6a806c51
N
2455 if (sync_blocks == 0) {
2456 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2457 &sync_blocks, still_degraded) &&
2458 !conf->fullsync &&
2459 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2460 break;
9e77c485 2461 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
7571ae88 2462 if ((len >> 9) > sync_blocks)
6a806c51 2463 len = sync_blocks<<9;
ab7a30c7 2464 }
191ea9b2 2465
8f19ccb2 2466 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2467 bio = r1_bio->bios[i];
2468 if (bio->bi_end_io) {
d11c171e 2469 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2470 if (bio_add_page(bio, page, len, 0) == 0) {
2471 /* stop here */
d11c171e 2472 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2473 while (i > 0) {
2474 i--;
2475 bio = r1_bio->bios[i];
6a806c51
N
2476 if (bio->bi_end_io==NULL)
2477 continue;
1da177e4
LT
2478 /* remove last page from this bio */
2479 bio->bi_vcnt--;
2480 bio->bi_size -= len;
2481 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2482 }
2483 goto bio_full;
2484 }
2485 }
2486 }
2487 nr_sectors += len>>9;
2488 sector_nr += len>>9;
191ea9b2 2489 sync_blocks -= (len>>9);
1da177e4
LT
2490 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2491 bio_full:
1da177e4
LT
2492 r1_bio->sectors = nr_sectors;
2493
d11c171e
N
2494 /* For a user-requested sync, we read all readable devices and do a
2495 * compare
2496 */
2497 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2498 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2499 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2500 bio = r1_bio->bios[i];
2501 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2502 read_targets--;
ddac7c7e 2503 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2504 generic_make_request(bio);
2505 }
2506 }
2507 } else {
2508 atomic_set(&r1_bio->remaining, 1);
2509 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2510 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2511 generic_make_request(bio);
1da177e4 2512
d11c171e 2513 }
1da177e4
LT
2514 return nr_sectors;
2515}
2516
fd01b88c 2517static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2518{
2519 if (sectors)
2520 return sectors;
2521
2522 return mddev->dev_sectors;
2523}
2524
e8096360 2525static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2526{
e8096360 2527 struct r1conf *conf;
709ae487 2528 int i;
0eaf822c 2529 struct raid1_info *disk;
3cb03002 2530 struct md_rdev *rdev;
709ae487 2531 int err = -ENOMEM;
1da177e4 2532
e8096360 2533 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2534 if (!conf)
709ae487 2535 goto abort;
1da177e4 2536
0eaf822c 2537 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2538 * mddev->raid_disks * 2,
1da177e4
LT
2539 GFP_KERNEL);
2540 if (!conf->mirrors)
709ae487 2541 goto abort;
1da177e4 2542
ddaf22ab
N
2543 conf->tmppage = alloc_page(GFP_KERNEL);
2544 if (!conf->tmppage)
709ae487 2545 goto abort;
ddaf22ab 2546
709ae487 2547 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2548 if (!conf->poolinfo)
709ae487 2549 goto abort;
8f19ccb2 2550 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2551 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2552 r1bio_pool_free,
2553 conf->poolinfo);
2554 if (!conf->r1bio_pool)
709ae487
N
2555 goto abort;
2556
ed9bfdf1 2557 conf->poolinfo->mddev = mddev;
1da177e4 2558
c19d5798 2559 err = -EINVAL;
e7e72bf6 2560 spin_lock_init(&conf->device_lock);
dafb20fa 2561 rdev_for_each(rdev, mddev) {
aba336bd 2562 struct request_queue *q;
709ae487 2563 int disk_idx = rdev->raid_disk;
1da177e4
LT
2564 if (disk_idx >= mddev->raid_disks
2565 || disk_idx < 0)
2566 continue;
c19d5798
N
2567 if (test_bit(Replacement, &rdev->flags))
2568 disk = conf->mirrors + conf->raid_disks + disk_idx;
2569 else
2570 disk = conf->mirrors + disk_idx;
1da177e4 2571
c19d5798
N
2572 if (disk->rdev)
2573 goto abort;
1da177e4 2574 disk->rdev = rdev;
aba336bd
N
2575 q = bdev_get_queue(rdev->bdev);
2576 if (q->merge_bvec_fn)
2577 mddev->merge_check_needed = 1;
1da177e4
LT
2578
2579 disk->head_position = 0;
1da177e4
LT
2580 }
2581 conf->raid_disks = mddev->raid_disks;
2582 conf->mddev = mddev;
1da177e4 2583 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
2584
2585 spin_lock_init(&conf->resync_lock);
17999be4 2586 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2587
191ea9b2 2588 bio_list_init(&conf->pending_bio_list);
34db0cd6 2589 conf->pending_count = 0;
d890fa2b 2590 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2591
c19d5798 2592 err = -EIO;
8f19ccb2 2593 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2594
2595 disk = conf->mirrors + i;
2596
c19d5798
N
2597 if (i < conf->raid_disks &&
2598 disk[conf->raid_disks].rdev) {
2599 /* This slot has a replacement. */
2600 if (!disk->rdev) {
2601 /* No original, just make the replacement
2602 * a recovering spare
2603 */
2604 disk->rdev =
2605 disk[conf->raid_disks].rdev;
2606 disk[conf->raid_disks].rdev = NULL;
2607 } else if (!test_bit(In_sync, &disk->rdev->flags))
2608 /* Original is not in_sync - bad */
2609 goto abort;
2610 }
2611
5fd6c1dc
N
2612 if (!disk->rdev ||
2613 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2614 disk->head_position = 0;
4f0a5e01
JB
2615 if (disk->rdev &&
2616 (disk->rdev->saved_raid_disk < 0))
918f0238 2617 conf->fullsync = 1;
be4d3280 2618 }
1da177e4 2619 }
709ae487 2620
709ae487 2621 err = -ENOMEM;
0232605d 2622 conf->thread = md_register_thread(raid1d, mddev, "raid1");
709ae487
N
2623 if (!conf->thread) {
2624 printk(KERN_ERR
9dd1e2fa 2625 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2626 mdname(mddev));
2627 goto abort;
11ce99e6 2628 }
1da177e4 2629
709ae487
N
2630 return conf;
2631
2632 abort:
2633 if (conf) {
2634 if (conf->r1bio_pool)
2635 mempool_destroy(conf->r1bio_pool);
2636 kfree(conf->mirrors);
2637 safe_put_page(conf->tmppage);
2638 kfree(conf->poolinfo);
2639 kfree(conf);
2640 }
2641 return ERR_PTR(err);
2642}
2643
5220ea1e 2644static int stop(struct mddev *mddev);
fd01b88c 2645static int run(struct mddev *mddev)
709ae487 2646{
e8096360 2647 struct r1conf *conf;
709ae487 2648 int i;
3cb03002 2649 struct md_rdev *rdev;
5220ea1e 2650 int ret;
709ae487
N
2651
2652 if (mddev->level != 1) {
9dd1e2fa 2653 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2654 mdname(mddev), mddev->level);
2655 return -EIO;
2656 }
2657 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2658 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2659 mdname(mddev));
2660 return -EIO;
2661 }
1da177e4 2662 /*
709ae487
N
2663 * copy the already verified devices into our private RAID1
2664 * bookkeeping area. [whatever we allocate in run(),
2665 * should be freed in stop()]
1da177e4 2666 */
709ae487
N
2667 if (mddev->private == NULL)
2668 conf = setup_conf(mddev);
2669 else
2670 conf = mddev->private;
1da177e4 2671
709ae487
N
2672 if (IS_ERR(conf))
2673 return PTR_ERR(conf);
1da177e4 2674
dafb20fa 2675 rdev_for_each(rdev, mddev) {
1ed7242e
JB
2676 if (!mddev->gendisk)
2677 continue;
709ae487
N
2678 disk_stack_limits(mddev->gendisk, rdev->bdev,
2679 rdev->data_offset << 9);
1da177e4 2680 }
191ea9b2 2681
709ae487
N
2682 mddev->degraded = 0;
2683 for (i=0; i < conf->raid_disks; i++)
2684 if (conf->mirrors[i].rdev == NULL ||
2685 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2686 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2687 mddev->degraded++;
2688
2689 if (conf->raid_disks - mddev->degraded == 1)
2690 mddev->recovery_cp = MaxSector;
2691
8c6ac868 2692 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2693 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2694 " -- starting background reconstruction\n",
2695 mdname(mddev));
1da177e4 2696 printk(KERN_INFO
9dd1e2fa 2697 "md/raid1:%s: active with %d out of %d mirrors\n",
1da177e4
LT
2698 mdname(mddev), mddev->raid_disks - mddev->degraded,
2699 mddev->raid_disks);
709ae487 2700
1da177e4
LT
2701 /*
2702 * Ok, everything is just fine now
2703 */
709ae487
N
2704 mddev->thread = conf->thread;
2705 conf->thread = NULL;
2706 mddev->private = conf;
2707
1f403624 2708 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2709
1ed7242e
JB
2710 if (mddev->queue) {
2711 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2712 mddev->queue->backing_dev_info.congested_data = mddev;
6b740b8d 2713 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
1ed7242e 2714 }
5220ea1e 2715
2716 ret = md_integrity_register(mddev);
2717 if (ret)
2718 stop(mddev);
2719 return ret;
1da177e4
LT
2720}
2721
fd01b88c 2722static int stop(struct mddev *mddev)
1da177e4 2723{
e8096360 2724 struct r1conf *conf = mddev->private;
4b6d287f 2725 struct bitmap *bitmap = mddev->bitmap;
4b6d287f
N
2726
2727 /* wait for behind writes to complete */
e555190d 2728 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
9dd1e2fa
N
2729 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2730 mdname(mddev));
4b6d287f 2731 /* need to kick something here to make sure I/O goes? */
e555190d
N
2732 wait_event(bitmap->behind_wait,
2733 atomic_read(&bitmap->behind_writes) == 0);
4b6d287f 2734 }
1da177e4 2735
409c57f3
N
2736 raise_barrier(conf);
2737 lower_barrier(conf);
2738
01f96c0a 2739 md_unregister_thread(&mddev->thread);
1da177e4
LT
2740 if (conf->r1bio_pool)
2741 mempool_destroy(conf->r1bio_pool);
990a8baf
JJ
2742 kfree(conf->mirrors);
2743 kfree(conf->poolinfo);
1da177e4
LT
2744 kfree(conf);
2745 mddev->private = NULL;
2746 return 0;
2747}
2748
fd01b88c 2749static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
2750{
2751 /* no resync is happening, and there is enough space
2752 * on all devices, so we can resize.
2753 * We need to make sure resync covers any new space.
2754 * If the array is shrinking we should possibly wait until
2755 * any io in the removed space completes, but it hardly seems
2756 * worth it.
2757 */
a4a6125a
N
2758 sector_t newsize = raid1_size(mddev, sectors, 0);
2759 if (mddev->external_size &&
2760 mddev->array_sectors > newsize)
b522adcd 2761 return -EINVAL;
a4a6125a
N
2762 if (mddev->bitmap) {
2763 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2764 if (ret)
2765 return ret;
2766 }
2767 md_set_array_sectors(mddev, newsize);
f233ea5c 2768 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 2769 revalidate_disk(mddev->gendisk);
b522adcd 2770 if (sectors > mddev->dev_sectors &&
b098636c 2771 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 2772 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
2773 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2774 }
b522adcd 2775 mddev->dev_sectors = sectors;
4b5c7ae8 2776 mddev->resync_max_sectors = sectors;
1da177e4
LT
2777 return 0;
2778}
2779
fd01b88c 2780static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
2781{
2782 /* We need to:
2783 * 1/ resize the r1bio_pool
2784 * 2/ resize conf->mirrors
2785 *
2786 * We allocate a new r1bio_pool if we can.
2787 * Then raise a device barrier and wait until all IO stops.
2788 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
2789 *
2790 * At the same time, we "pack" the devices so that all the missing
2791 * devices have the higher raid_disk numbers.
1da177e4
LT
2792 */
2793 mempool_t *newpool, *oldpool;
2794 struct pool_info *newpoolinfo;
0eaf822c 2795 struct raid1_info *newmirrors;
e8096360 2796 struct r1conf *conf = mddev->private;
63c70c4f 2797 int cnt, raid_disks;
c04be0aa 2798 unsigned long flags;
b5470dc5 2799 int d, d2, err;
1da177e4 2800
63c70c4f 2801 /* Cannot change chunk_size, layout, or level */
664e7c41 2802 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
2803 mddev->layout != mddev->new_layout ||
2804 mddev->level != mddev->new_level) {
664e7c41 2805 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
2806 mddev->new_layout = mddev->layout;
2807 mddev->new_level = mddev->level;
2808 return -EINVAL;
2809 }
2810
b5470dc5
DW
2811 err = md_allow_write(mddev);
2812 if (err)
2813 return err;
2a2275d6 2814
63c70c4f
N
2815 raid_disks = mddev->raid_disks + mddev->delta_disks;
2816
6ea9c07c
N
2817 if (raid_disks < conf->raid_disks) {
2818 cnt=0;
2819 for (d= 0; d < conf->raid_disks; d++)
2820 if (conf->mirrors[d].rdev)
2821 cnt++;
2822 if (cnt > raid_disks)
1da177e4 2823 return -EBUSY;
6ea9c07c 2824 }
1da177e4
LT
2825
2826 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2827 if (!newpoolinfo)
2828 return -ENOMEM;
2829 newpoolinfo->mddev = mddev;
8f19ccb2 2830 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
2831
2832 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2833 r1bio_pool_free, newpoolinfo);
2834 if (!newpool) {
2835 kfree(newpoolinfo);
2836 return -ENOMEM;
2837 }
0eaf822c 2838 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 2839 GFP_KERNEL);
1da177e4
LT
2840 if (!newmirrors) {
2841 kfree(newpoolinfo);
2842 mempool_destroy(newpool);
2843 return -ENOMEM;
2844 }
1da177e4 2845
17999be4 2846 raise_barrier(conf);
1da177e4
LT
2847
2848 /* ok, everything is stopped */
2849 oldpool = conf->r1bio_pool;
2850 conf->r1bio_pool = newpool;
6ea9c07c 2851
a88aa786 2852 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 2853 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 2854 if (rdev && rdev->raid_disk != d2) {
36fad858 2855 sysfs_unlink_rdev(mddev, rdev);
a88aa786 2856 rdev->raid_disk = d2;
36fad858
NK
2857 sysfs_unlink_rdev(mddev, rdev);
2858 if (sysfs_link_rdev(mddev, rdev))
a88aa786 2859 printk(KERN_WARNING
36fad858
NK
2860 "md/raid1:%s: cannot register rd%d\n",
2861 mdname(mddev), rdev->raid_disk);
6ea9c07c 2862 }
a88aa786
N
2863 if (rdev)
2864 newmirrors[d2++].rdev = rdev;
2865 }
1da177e4
LT
2866 kfree(conf->mirrors);
2867 conf->mirrors = newmirrors;
2868 kfree(conf->poolinfo);
2869 conf->poolinfo = newpoolinfo;
2870
c04be0aa 2871 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 2872 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 2873 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2874 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 2875 mddev->delta_disks = 0;
1da177e4 2876
17999be4 2877 lower_barrier(conf);
1da177e4
LT
2878
2879 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2880 md_wakeup_thread(mddev->thread);
2881
2882 mempool_destroy(oldpool);
2883 return 0;
2884}
2885
fd01b88c 2886static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 2887{
e8096360 2888 struct r1conf *conf = mddev->private;
36fa3063
N
2889
2890 switch(state) {
6eef4b21
N
2891 case 2: /* wake for suspend */
2892 wake_up(&conf->wait_barrier);
2893 break;
9e6603da 2894 case 1:
17999be4 2895 raise_barrier(conf);
36fa3063 2896 break;
9e6603da 2897 case 0:
17999be4 2898 lower_barrier(conf);
36fa3063
N
2899 break;
2900 }
36fa3063
N
2901}
2902
fd01b88c 2903static void *raid1_takeover(struct mddev *mddev)
709ae487
N
2904{
2905 /* raid1 can take over:
2906 * raid5 with 2 devices, any layout or chunk size
2907 */
2908 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 2909 struct r1conf *conf;
709ae487
N
2910 mddev->new_level = 1;
2911 mddev->new_layout = 0;
2912 mddev->new_chunk_sectors = 0;
2913 conf = setup_conf(mddev);
2914 if (!IS_ERR(conf))
2915 conf->barrier = 1;
2916 return conf;
2917 }
2918 return ERR_PTR(-EINVAL);
2919}
1da177e4 2920
84fc4b56 2921static struct md_personality raid1_personality =
1da177e4
LT
2922{
2923 .name = "raid1",
2604b703 2924 .level = 1,
1da177e4
LT
2925 .owner = THIS_MODULE,
2926 .make_request = make_request,
2927 .run = run,
2928 .stop = stop,
2929 .status = status,
2930 .error_handler = error,
2931 .hot_add_disk = raid1_add_disk,
2932 .hot_remove_disk= raid1_remove_disk,
2933 .spare_active = raid1_spare_active,
2934 .sync_request = sync_request,
2935 .resize = raid1_resize,
80c3a6ce 2936 .size = raid1_size,
63c70c4f 2937 .check_reshape = raid1_reshape,
36fa3063 2938 .quiesce = raid1_quiesce,
709ae487 2939 .takeover = raid1_takeover,
1da177e4
LT
2940};
2941
2942static int __init raid_init(void)
2943{
2604b703 2944 return register_md_personality(&raid1_personality);
1da177e4
LT
2945}
2946
2947static void raid_exit(void)
2948{
2604b703 2949 unregister_md_personality(&raid1_personality);
1da177e4
LT
2950}
2951
2952module_init(raid_init);
2953module_exit(raid_exit);
2954MODULE_LICENSE("GPL");
0efb9e61 2955MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 2956MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 2957MODULE_ALIAS("md-raid1");
2604b703 2958MODULE_ALIAS("md-level-1");
34db0cd6
N
2959
2960module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.827357 seconds and 5 git commands to generate.