Merge git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-3.0-fixes
[deliverable/linux.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
43b2e5d8 40#include "md.h"
ef740c37
CH
41#include "raid1.h"
42#include "bitmap.h"
191ea9b2 43
1da177e4
LT
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
473e87ce
JB
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
34db0cd6
N
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
1da177e4 68
e8096360
N
69static void allow_barrier(struct r1conf *conf);
70static void lower_barrier(struct r1conf *conf);
1da177e4 71
dd0fc66f 72static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
73{
74 struct pool_info *pi = data;
9f2c9d12 75 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
76
77 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 78 return kzalloc(size, gfp_flags);
1da177e4
LT
79}
80
81static void r1bio_pool_free(void *r1_bio, void *data)
82{
83 kfree(r1_bio);
84}
85
86#define RESYNC_BLOCK_SIZE (64*1024)
87//#define RESYNC_BLOCK_SIZE PAGE_SIZE
88#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90#define RESYNC_WINDOW (2048*1024)
91
dd0fc66f 92static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
93{
94 struct pool_info *pi = data;
9f2c9d12 95 struct r1bio *r1_bio;
1da177e4
LT
96 struct bio *bio;
97 int i, j;
98
99 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 100 if (!r1_bio)
1da177e4 101 return NULL;
1da177e4
LT
102
103 /*
104 * Allocate bios : 1 for reading, n-1 for writing
105 */
106 for (j = pi->raid_disks ; j-- ; ) {
6746557f 107 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
108 if (!bio)
109 goto out_free_bio;
110 r1_bio->bios[j] = bio;
111 }
112 /*
113 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
114 * the first bio.
115 * If this is a user-requested check/repair, allocate
116 * RESYNC_PAGES for each bio.
1da177e4 117 */
d11c171e
N
118 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
119 j = pi->raid_disks;
120 else
121 j = 1;
122 while(j--) {
123 bio = r1_bio->bios[j];
a0787606 124 bio->bi_vcnt = RESYNC_PAGES;
d11c171e 125
a0787606
KO
126 if (bio_alloc_pages(bio, gfp_flags))
127 goto out_free_bio;
d11c171e
N
128 }
129 /* If not user-requests, copy the page pointers to all bios */
130 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
131 for (i=0; i<RESYNC_PAGES ; i++)
132 for (j=1; j<pi->raid_disks; j++)
133 r1_bio->bios[j]->bi_io_vec[i].bv_page =
134 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
135 }
136
137 r1_bio->master_bio = NULL;
138
139 return r1_bio;
140
1da177e4 141out_free_bio:
8f19ccb2 142 while (++j < pi->raid_disks)
1da177e4
LT
143 bio_put(r1_bio->bios[j]);
144 r1bio_pool_free(r1_bio, data);
145 return NULL;
146}
147
148static void r1buf_pool_free(void *__r1_bio, void *data)
149{
150 struct pool_info *pi = data;
d11c171e 151 int i,j;
9f2c9d12 152 struct r1bio *r1bio = __r1_bio;
1da177e4 153
d11c171e
N
154 for (i = 0; i < RESYNC_PAGES; i++)
155 for (j = pi->raid_disks; j-- ;) {
156 if (j == 0 ||
157 r1bio->bios[j]->bi_io_vec[i].bv_page !=
158 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 159 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 160 }
1da177e4
LT
161 for (i=0 ; i < pi->raid_disks; i++)
162 bio_put(r1bio->bios[i]);
163
164 r1bio_pool_free(r1bio, data);
165}
166
e8096360 167static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
168{
169 int i;
170
8f19ccb2 171 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 172 struct bio **bio = r1_bio->bios + i;
4367af55 173 if (!BIO_SPECIAL(*bio))
1da177e4
LT
174 bio_put(*bio);
175 *bio = NULL;
176 }
177}
178
9f2c9d12 179static void free_r1bio(struct r1bio *r1_bio)
1da177e4 180{
e8096360 181 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 182
1da177e4
LT
183 put_all_bios(conf, r1_bio);
184 mempool_free(r1_bio, conf->r1bio_pool);
185}
186
9f2c9d12 187static void put_buf(struct r1bio *r1_bio)
1da177e4 188{
e8096360 189 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
190 int i;
191
8f19ccb2 192 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
193 struct bio *bio = r1_bio->bios[i];
194 if (bio->bi_end_io)
195 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
196 }
1da177e4
LT
197
198 mempool_free(r1_bio, conf->r1buf_pool);
199
17999be4 200 lower_barrier(conf);
1da177e4
LT
201}
202
9f2c9d12 203static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
204{
205 unsigned long flags;
fd01b88c 206 struct mddev *mddev = r1_bio->mddev;
e8096360 207 struct r1conf *conf = mddev->private;
1da177e4
LT
208
209 spin_lock_irqsave(&conf->device_lock, flags);
210 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 211 conf->nr_queued ++;
1da177e4
LT
212 spin_unlock_irqrestore(&conf->device_lock, flags);
213
17999be4 214 wake_up(&conf->wait_barrier);
1da177e4
LT
215 md_wakeup_thread(mddev->thread);
216}
217
218/*
219 * raid_end_bio_io() is called when we have finished servicing a mirrored
220 * operation and are ready to return a success/failure code to the buffer
221 * cache layer.
222 */
9f2c9d12 223static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
224{
225 struct bio *bio = r1_bio->master_bio;
226 int done;
e8096360 227 struct r1conf *conf = r1_bio->mddev->private;
d2eb35ac
N
228
229 if (bio->bi_phys_segments) {
230 unsigned long flags;
231 spin_lock_irqsave(&conf->device_lock, flags);
232 bio->bi_phys_segments--;
233 done = (bio->bi_phys_segments == 0);
234 spin_unlock_irqrestore(&conf->device_lock, flags);
235 } else
236 done = 1;
237
238 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
239 clear_bit(BIO_UPTODATE, &bio->bi_flags);
240 if (done) {
241 bio_endio(bio, 0);
242 /*
243 * Wake up any possible resync thread that waits for the device
244 * to go idle.
245 */
246 allow_barrier(conf);
247 }
248}
249
9f2c9d12 250static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
251{
252 struct bio *bio = r1_bio->master_bio;
253
4b6d287f
N
254 /* if nobody has done the final endio yet, do it now */
255 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
256 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
257 (bio_data_dir(bio) == WRITE) ? "write" : "read",
258 (unsigned long long) bio->bi_sector,
259 (unsigned long long) bio->bi_sector +
aa8b57aa 260 bio_sectors(bio) - 1);
4b6d287f 261
d2eb35ac 262 call_bio_endio(r1_bio);
4b6d287f 263 }
1da177e4
LT
264 free_r1bio(r1_bio);
265}
266
267/*
268 * Update disk head position estimator based on IRQ completion info.
269 */
9f2c9d12 270static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 271{
e8096360 272 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
273
274 conf->mirrors[disk].head_position =
275 r1_bio->sector + (r1_bio->sectors);
276}
277
ba3ae3be
NK
278/*
279 * Find the disk number which triggered given bio
280 */
9f2c9d12 281static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
282{
283 int mirror;
30194636
N
284 struct r1conf *conf = r1_bio->mddev->private;
285 int raid_disks = conf->raid_disks;
ba3ae3be 286
8f19ccb2 287 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
288 if (r1_bio->bios[mirror] == bio)
289 break;
290
8f19ccb2 291 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
292 update_head_pos(mirror, r1_bio);
293
294 return mirror;
295}
296
6712ecf8 297static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
298{
299 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 300 struct r1bio *r1_bio = bio->bi_private;
1da177e4 301 int mirror;
e8096360 302 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 303
1da177e4
LT
304 mirror = r1_bio->read_disk;
305 /*
306 * this branch is our 'one mirror IO has finished' event handler:
307 */
ddaf22ab
N
308 update_head_pos(mirror, r1_bio);
309
dd00a99e
N
310 if (uptodate)
311 set_bit(R1BIO_Uptodate, &r1_bio->state);
312 else {
313 /* If all other devices have failed, we want to return
314 * the error upwards rather than fail the last device.
315 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 316 */
dd00a99e
N
317 unsigned long flags;
318 spin_lock_irqsave(&conf->device_lock, flags);
319 if (r1_bio->mddev->degraded == conf->raid_disks ||
320 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
321 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
322 uptodate = 1;
323 spin_unlock_irqrestore(&conf->device_lock, flags);
324 }
1da177e4 325
7ad4d4a6 326 if (uptodate) {
1da177e4 327 raid_end_bio_io(r1_bio);
7ad4d4a6
N
328 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
329 } else {
1da177e4
LT
330 /*
331 * oops, read error:
332 */
333 char b[BDEVNAME_SIZE];
8bda470e
CD
334 printk_ratelimited(
335 KERN_ERR "md/raid1:%s: %s: "
336 "rescheduling sector %llu\n",
337 mdname(conf->mddev),
338 bdevname(conf->mirrors[mirror].rdev->bdev,
339 b),
340 (unsigned long long)r1_bio->sector);
d2eb35ac 341 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 342 reschedule_retry(r1_bio);
7ad4d4a6 343 /* don't drop the reference on read_disk yet */
1da177e4 344 }
1da177e4
LT
345}
346
9f2c9d12 347static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
348{
349 /* it really is the end of this request */
350 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
351 /* free extra copy of the data pages */
352 int i = r1_bio->behind_page_count;
353 while (i--)
354 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
355 kfree(r1_bio->behind_bvecs);
356 r1_bio->behind_bvecs = NULL;
357 }
358 /* clear the bitmap if all writes complete successfully */
359 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
360 r1_bio->sectors,
361 !test_bit(R1BIO_Degraded, &r1_bio->state),
362 test_bit(R1BIO_BehindIO, &r1_bio->state));
363 md_write_end(r1_bio->mddev);
364}
365
9f2c9d12 366static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 367{
cd5ff9a1
N
368 if (!atomic_dec_and_test(&r1_bio->remaining))
369 return;
370
371 if (test_bit(R1BIO_WriteError, &r1_bio->state))
372 reschedule_retry(r1_bio);
373 else {
374 close_write(r1_bio);
4367af55
N
375 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
376 reschedule_retry(r1_bio);
377 else
378 raid_end_bio_io(r1_bio);
4e78064f
N
379 }
380}
381
6712ecf8 382static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
383{
384 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 385 struct r1bio *r1_bio = bio->bi_private;
a9701a30 386 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 387 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 388 struct bio *to_put = NULL;
1da177e4 389
ba3ae3be 390 mirror = find_bio_disk(r1_bio, bio);
1da177e4 391
e9c7469b
TH
392 /*
393 * 'one mirror IO has finished' event handler:
394 */
e9c7469b 395 if (!uptodate) {
cd5ff9a1
N
396 set_bit(WriteErrorSeen,
397 &conf->mirrors[mirror].rdev->flags);
19d67169
N
398 if (!test_and_set_bit(WantReplacement,
399 &conf->mirrors[mirror].rdev->flags))
400 set_bit(MD_RECOVERY_NEEDED, &
401 conf->mddev->recovery);
402
cd5ff9a1 403 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 404 } else {
1da177e4 405 /*
e9c7469b
TH
406 * Set R1BIO_Uptodate in our master bio, so that we
407 * will return a good error code for to the higher
408 * levels even if IO on some other mirrored buffer
409 * fails.
410 *
411 * The 'master' represents the composite IO operation
412 * to user-side. So if something waits for IO, then it
413 * will wait for the 'master' bio.
1da177e4 414 */
4367af55
N
415 sector_t first_bad;
416 int bad_sectors;
417
cd5ff9a1
N
418 r1_bio->bios[mirror] = NULL;
419 to_put = bio;
3056e3ae
AL
420 /*
421 * Do not set R1BIO_Uptodate if the current device is
422 * rebuilding or Faulty. This is because we cannot use
423 * such device for properly reading the data back (we could
424 * potentially use it, if the current write would have felt
425 * before rdev->recovery_offset, but for simplicity we don't
426 * check this here.
427 */
428 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
429 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
430 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 431
4367af55
N
432 /* Maybe we can clear some bad blocks. */
433 if (is_badblock(conf->mirrors[mirror].rdev,
434 r1_bio->sector, r1_bio->sectors,
435 &first_bad, &bad_sectors)) {
436 r1_bio->bios[mirror] = IO_MADE_GOOD;
437 set_bit(R1BIO_MadeGood, &r1_bio->state);
438 }
439 }
440
e9c7469b
TH
441 if (behind) {
442 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
443 atomic_dec(&r1_bio->behind_remaining);
444
445 /*
446 * In behind mode, we ACK the master bio once the I/O
447 * has safely reached all non-writemostly
448 * disks. Setting the Returned bit ensures that this
449 * gets done only once -- we don't ever want to return
450 * -EIO here, instead we'll wait
451 */
452 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
453 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
454 /* Maybe we can return now */
455 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
456 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
457 pr_debug("raid1: behind end write sectors"
458 " %llu-%llu\n",
459 (unsigned long long) mbio->bi_sector,
460 (unsigned long long) mbio->bi_sector +
aa8b57aa 461 bio_sectors(mbio) - 1);
d2eb35ac 462 call_bio_endio(r1_bio);
4b6d287f
N
463 }
464 }
465 }
4367af55
N
466 if (r1_bio->bios[mirror] == NULL)
467 rdev_dec_pending(conf->mirrors[mirror].rdev,
468 conf->mddev);
e9c7469b 469
1da177e4 470 /*
1da177e4
LT
471 * Let's see if all mirrored write operations have finished
472 * already.
473 */
af6d7b76 474 r1_bio_write_done(r1_bio);
c70810b3 475
04b857f7
N
476 if (to_put)
477 bio_put(to_put);
1da177e4
LT
478}
479
480
481/*
482 * This routine returns the disk from which the requested read should
483 * be done. There is a per-array 'next expected sequential IO' sector
484 * number - if this matches on the next IO then we use the last disk.
485 * There is also a per-disk 'last know head position' sector that is
486 * maintained from IRQ contexts, both the normal and the resync IO
487 * completion handlers update this position correctly. If there is no
488 * perfect sequential match then we pick the disk whose head is closest.
489 *
490 * If there are 2 mirrors in the same 2 devices, performance degrades
491 * because position is mirror, not device based.
492 *
493 * The rdev for the device selected will have nr_pending incremented.
494 */
e8096360 495static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 496{
af3a2cd6 497 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
498 int sectors;
499 int best_good_sectors;
9dedf603
SL
500 int best_disk, best_dist_disk, best_pending_disk;
501 int has_nonrot_disk;
be4d3280 502 int disk;
76073054 503 sector_t best_dist;
9dedf603 504 unsigned int min_pending;
3cb03002 505 struct md_rdev *rdev;
f3ac8bf7 506 int choose_first;
12cee5a8 507 int choose_next_idle;
1da177e4
LT
508
509 rcu_read_lock();
510 /*
8ddf9efe 511 * Check if we can balance. We can balance on the whole
1da177e4
LT
512 * device if no resync is going on, or below the resync window.
513 * We take the first readable disk when above the resync window.
514 */
515 retry:
d2eb35ac 516 sectors = r1_bio->sectors;
76073054 517 best_disk = -1;
9dedf603 518 best_dist_disk = -1;
76073054 519 best_dist = MaxSector;
9dedf603
SL
520 best_pending_disk = -1;
521 min_pending = UINT_MAX;
d2eb35ac 522 best_good_sectors = 0;
9dedf603 523 has_nonrot_disk = 0;
12cee5a8 524 choose_next_idle = 0;
d2eb35ac 525
1da177e4 526 if (conf->mddev->recovery_cp < MaxSector &&
be4d3280 527 (this_sector + sectors >= conf->next_resync))
f3ac8bf7 528 choose_first = 1;
be4d3280 529 else
f3ac8bf7 530 choose_first = 0;
1da177e4 531
be4d3280 532 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 533 sector_t dist;
d2eb35ac
N
534 sector_t first_bad;
535 int bad_sectors;
9dedf603 536 unsigned int pending;
12cee5a8 537 bool nonrot;
d2eb35ac 538
f3ac8bf7
N
539 rdev = rcu_dereference(conf->mirrors[disk].rdev);
540 if (r1_bio->bios[disk] == IO_BLOCKED
541 || rdev == NULL
6b740b8d 542 || test_bit(Unmerged, &rdev->flags)
76073054 543 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 544 continue;
76073054
N
545 if (!test_bit(In_sync, &rdev->flags) &&
546 rdev->recovery_offset < this_sector + sectors)
1da177e4 547 continue;
76073054
N
548 if (test_bit(WriteMostly, &rdev->flags)) {
549 /* Don't balance among write-mostly, just
550 * use the first as a last resort */
307729c8
N
551 if (best_disk < 0) {
552 if (is_badblock(rdev, this_sector, sectors,
553 &first_bad, &bad_sectors)) {
554 if (first_bad < this_sector)
555 /* Cannot use this */
556 continue;
557 best_good_sectors = first_bad - this_sector;
558 } else
559 best_good_sectors = sectors;
76073054 560 best_disk = disk;
307729c8 561 }
76073054
N
562 continue;
563 }
564 /* This is a reasonable device to use. It might
565 * even be best.
566 */
d2eb35ac
N
567 if (is_badblock(rdev, this_sector, sectors,
568 &first_bad, &bad_sectors)) {
569 if (best_dist < MaxSector)
570 /* already have a better device */
571 continue;
572 if (first_bad <= this_sector) {
573 /* cannot read here. If this is the 'primary'
574 * device, then we must not read beyond
575 * bad_sectors from another device..
576 */
577 bad_sectors -= (this_sector - first_bad);
578 if (choose_first && sectors > bad_sectors)
579 sectors = bad_sectors;
580 if (best_good_sectors > sectors)
581 best_good_sectors = sectors;
582
583 } else {
584 sector_t good_sectors = first_bad - this_sector;
585 if (good_sectors > best_good_sectors) {
586 best_good_sectors = good_sectors;
587 best_disk = disk;
588 }
589 if (choose_first)
590 break;
591 }
592 continue;
593 } else
594 best_good_sectors = sectors;
595
12cee5a8
SL
596 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
597 has_nonrot_disk |= nonrot;
9dedf603 598 pending = atomic_read(&rdev->nr_pending);
76073054 599 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 600 if (choose_first) {
76073054 601 best_disk = disk;
1da177e4
LT
602 break;
603 }
12cee5a8
SL
604 /* Don't change to another disk for sequential reads */
605 if (conf->mirrors[disk].next_seq_sect == this_sector
606 || dist == 0) {
607 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
608 struct raid1_info *mirror = &conf->mirrors[disk];
609
610 best_disk = disk;
611 /*
612 * If buffered sequential IO size exceeds optimal
613 * iosize, check if there is idle disk. If yes, choose
614 * the idle disk. read_balance could already choose an
615 * idle disk before noticing it's a sequential IO in
616 * this disk. This doesn't matter because this disk
617 * will idle, next time it will be utilized after the
618 * first disk has IO size exceeds optimal iosize. In
619 * this way, iosize of the first disk will be optimal
620 * iosize at least. iosize of the second disk might be
621 * small, but not a big deal since when the second disk
622 * starts IO, the first disk is likely still busy.
623 */
624 if (nonrot && opt_iosize > 0 &&
625 mirror->seq_start != MaxSector &&
626 mirror->next_seq_sect > opt_iosize &&
627 mirror->next_seq_sect - opt_iosize >=
628 mirror->seq_start) {
629 choose_next_idle = 1;
630 continue;
631 }
632 break;
633 }
634 /* If device is idle, use it */
635 if (pending == 0) {
636 best_disk = disk;
637 break;
638 }
639
640 if (choose_next_idle)
641 continue;
9dedf603
SL
642
643 if (min_pending > pending) {
644 min_pending = pending;
645 best_pending_disk = disk;
646 }
647
76073054
N
648 if (dist < best_dist) {
649 best_dist = dist;
9dedf603 650 best_dist_disk = disk;
1da177e4 651 }
f3ac8bf7 652 }
1da177e4 653
9dedf603
SL
654 /*
655 * If all disks are rotational, choose the closest disk. If any disk is
656 * non-rotational, choose the disk with less pending request even the
657 * disk is rotational, which might/might not be optimal for raids with
658 * mixed ratation/non-rotational disks depending on workload.
659 */
660 if (best_disk == -1) {
661 if (has_nonrot_disk)
662 best_disk = best_pending_disk;
663 else
664 best_disk = best_dist_disk;
665 }
666
76073054
N
667 if (best_disk >= 0) {
668 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
669 if (!rdev)
670 goto retry;
671 atomic_inc(&rdev->nr_pending);
76073054 672 if (test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
673 /* cannot risk returning a device that failed
674 * before we inc'ed nr_pending
675 */
03c902e1 676 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
677 goto retry;
678 }
d2eb35ac 679 sectors = best_good_sectors;
12cee5a8
SL
680
681 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
682 conf->mirrors[best_disk].seq_start = this_sector;
683
be4d3280 684 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
685 }
686 rcu_read_unlock();
d2eb35ac 687 *max_sectors = sectors;
1da177e4 688
76073054 689 return best_disk;
1da177e4
LT
690}
691
6b740b8d
N
692static int raid1_mergeable_bvec(struct request_queue *q,
693 struct bvec_merge_data *bvm,
694 struct bio_vec *biovec)
695{
696 struct mddev *mddev = q->queuedata;
697 struct r1conf *conf = mddev->private;
698 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
699 int max = biovec->bv_len;
700
701 if (mddev->merge_check_needed) {
702 int disk;
703 rcu_read_lock();
704 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
705 struct md_rdev *rdev = rcu_dereference(
706 conf->mirrors[disk].rdev);
707 if (rdev && !test_bit(Faulty, &rdev->flags)) {
708 struct request_queue *q =
709 bdev_get_queue(rdev->bdev);
710 if (q->merge_bvec_fn) {
711 bvm->bi_sector = sector +
712 rdev->data_offset;
713 bvm->bi_bdev = rdev->bdev;
714 max = min(max, q->merge_bvec_fn(
715 q, bvm, biovec));
716 }
717 }
718 }
719 rcu_read_unlock();
720 }
721 return max;
722
723}
724
fd01b88c 725int md_raid1_congested(struct mddev *mddev, int bits)
0d129228 726{
e8096360 727 struct r1conf *conf = mddev->private;
0d129228
N
728 int i, ret = 0;
729
34db0cd6
N
730 if ((bits & (1 << BDI_async_congested)) &&
731 conf->pending_count >= max_queued_requests)
732 return 1;
733
0d129228 734 rcu_read_lock();
f53e29fc 735 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 736 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 737 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 738 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 739
1ed7242e
JB
740 BUG_ON(!q);
741
0d129228
N
742 /* Note the '|| 1' - when read_balance prefers
743 * non-congested targets, it can be removed
744 */
91a9e99d 745 if ((bits & (1<<BDI_async_congested)) || 1)
0d129228
N
746 ret |= bdi_congested(&q->backing_dev_info, bits);
747 else
748 ret &= bdi_congested(&q->backing_dev_info, bits);
749 }
750 }
751 rcu_read_unlock();
752 return ret;
753}
1ed7242e 754EXPORT_SYMBOL_GPL(md_raid1_congested);
0d129228 755
1ed7242e
JB
756static int raid1_congested(void *data, int bits)
757{
fd01b88c 758 struct mddev *mddev = data;
1ed7242e
JB
759
760 return mddev_congested(mddev, bits) ||
761 md_raid1_congested(mddev, bits);
762}
0d129228 763
e8096360 764static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
765{
766 /* Any writes that have been queued but are awaiting
767 * bitmap updates get flushed here.
a35e63ef 768 */
a35e63ef
N
769 spin_lock_irq(&conf->device_lock);
770
771 if (conf->pending_bio_list.head) {
772 struct bio *bio;
773 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 774 conf->pending_count = 0;
a35e63ef
N
775 spin_unlock_irq(&conf->device_lock);
776 /* flush any pending bitmap writes to
777 * disk before proceeding w/ I/O */
778 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 779 wake_up(&conf->wait_barrier);
a35e63ef
N
780
781 while (bio) { /* submit pending writes */
782 struct bio *next = bio->bi_next;
783 bio->bi_next = NULL;
2ff8cc2c
SL
784 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
785 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
786 /* Just ignore it */
787 bio_endio(bio, 0);
788 else
789 generic_make_request(bio);
a35e63ef
N
790 bio = next;
791 }
a35e63ef
N
792 } else
793 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
794}
795
17999be4
N
796/* Barriers....
797 * Sometimes we need to suspend IO while we do something else,
798 * either some resync/recovery, or reconfigure the array.
799 * To do this we raise a 'barrier'.
800 * The 'barrier' is a counter that can be raised multiple times
801 * to count how many activities are happening which preclude
802 * normal IO.
803 * We can only raise the barrier if there is no pending IO.
804 * i.e. if nr_pending == 0.
805 * We choose only to raise the barrier if no-one is waiting for the
806 * barrier to go down. This means that as soon as an IO request
807 * is ready, no other operations which require a barrier will start
808 * until the IO request has had a chance.
809 *
810 * So: regular IO calls 'wait_barrier'. When that returns there
811 * is no backgroup IO happening, It must arrange to call
812 * allow_barrier when it has finished its IO.
813 * backgroup IO calls must call raise_barrier. Once that returns
814 * there is no normal IO happeing. It must arrange to call
815 * lower_barrier when the particular background IO completes.
1da177e4
LT
816 */
817#define RESYNC_DEPTH 32
818
e8096360 819static void raise_barrier(struct r1conf *conf)
1da177e4
LT
820{
821 spin_lock_irq(&conf->resync_lock);
17999be4
N
822
823 /* Wait until no block IO is waiting */
824 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
eed8c02e 825 conf->resync_lock);
17999be4
N
826
827 /* block any new IO from starting */
828 conf->barrier++;
829
046abeed 830 /* Now wait for all pending IO to complete */
17999be4
N
831 wait_event_lock_irq(conf->wait_barrier,
832 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
eed8c02e 833 conf->resync_lock);
17999be4
N
834
835 spin_unlock_irq(&conf->resync_lock);
836}
837
e8096360 838static void lower_barrier(struct r1conf *conf)
17999be4
N
839{
840 unsigned long flags;
709ae487 841 BUG_ON(conf->barrier <= 0);
17999be4
N
842 spin_lock_irqsave(&conf->resync_lock, flags);
843 conf->barrier--;
844 spin_unlock_irqrestore(&conf->resync_lock, flags);
845 wake_up(&conf->wait_barrier);
846}
847
e8096360 848static void wait_barrier(struct r1conf *conf)
17999be4
N
849{
850 spin_lock_irq(&conf->resync_lock);
851 if (conf->barrier) {
852 conf->nr_waiting++;
d6b42dcb
N
853 /* Wait for the barrier to drop.
854 * However if there are already pending
855 * requests (preventing the barrier from
856 * rising completely), and the
857 * pre-process bio queue isn't empty,
858 * then don't wait, as we need to empty
859 * that queue to get the nr_pending
860 * count down.
861 */
862 wait_event_lock_irq(conf->wait_barrier,
863 !conf->barrier ||
864 (conf->nr_pending &&
865 current->bio_list &&
866 !bio_list_empty(current->bio_list)),
eed8c02e 867 conf->resync_lock);
17999be4 868 conf->nr_waiting--;
1da177e4 869 }
17999be4 870 conf->nr_pending++;
1da177e4
LT
871 spin_unlock_irq(&conf->resync_lock);
872}
873
e8096360 874static void allow_barrier(struct r1conf *conf)
17999be4
N
875{
876 unsigned long flags;
877 spin_lock_irqsave(&conf->resync_lock, flags);
878 conf->nr_pending--;
879 spin_unlock_irqrestore(&conf->resync_lock, flags);
880 wake_up(&conf->wait_barrier);
881}
882
e2d59925 883static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab
N
884{
885 /* stop syncio and normal IO and wait for everything to
886 * go quite.
887 * We increment barrier and nr_waiting, and then
e2d59925 888 * wait until nr_pending match nr_queued+extra
1c830532
N
889 * This is called in the context of one normal IO request
890 * that has failed. Thus any sync request that might be pending
891 * will be blocked by nr_pending, and we need to wait for
892 * pending IO requests to complete or be queued for re-try.
e2d59925 893 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
894 * must match the number of pending IOs (nr_pending) before
895 * we continue.
ddaf22ab
N
896 */
897 spin_lock_irq(&conf->resync_lock);
898 conf->barrier++;
899 conf->nr_waiting++;
eed8c02e 900 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 901 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
902 conf->resync_lock,
903 flush_pending_writes(conf));
ddaf22ab
N
904 spin_unlock_irq(&conf->resync_lock);
905}
e8096360 906static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
907{
908 /* reverse the effect of the freeze */
909 spin_lock_irq(&conf->resync_lock);
910 conf->barrier--;
911 conf->nr_waiting--;
912 wake_up(&conf->wait_barrier);
913 spin_unlock_irq(&conf->resync_lock);
914}
915
17999be4 916
4e78064f 917/* duplicate the data pages for behind I/O
4e78064f 918 */
9f2c9d12 919static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
920{
921 int i;
922 struct bio_vec *bvec;
2ca68f5e 923 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 924 GFP_NOIO);
2ca68f5e 925 if (unlikely(!bvecs))
af6d7b76 926 return;
4b6d287f 927
cb34e057 928 bio_for_each_segment_all(bvec, bio, i) {
2ca68f5e
N
929 bvecs[i] = *bvec;
930 bvecs[i].bv_page = alloc_page(GFP_NOIO);
931 if (unlikely(!bvecs[i].bv_page))
4b6d287f 932 goto do_sync_io;
2ca68f5e
N
933 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
934 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
935 kunmap(bvecs[i].bv_page);
4b6d287f
N
936 kunmap(bvec->bv_page);
937 }
2ca68f5e 938 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
939 r1_bio->behind_page_count = bio->bi_vcnt;
940 set_bit(R1BIO_BehindIO, &r1_bio->state);
941 return;
4b6d287f
N
942
943do_sync_io:
af6d7b76 944 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
945 if (bvecs[i].bv_page)
946 put_page(bvecs[i].bv_page);
947 kfree(bvecs);
36a4e1fe 948 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
4b6d287f
N
949}
950
f54a9d0e
N
951struct raid1_plug_cb {
952 struct blk_plug_cb cb;
953 struct bio_list pending;
954 int pending_cnt;
955};
956
957static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
958{
959 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
960 cb);
961 struct mddev *mddev = plug->cb.data;
962 struct r1conf *conf = mddev->private;
963 struct bio *bio;
964
874807a8 965 if (from_schedule || current->bio_list) {
f54a9d0e
N
966 spin_lock_irq(&conf->device_lock);
967 bio_list_merge(&conf->pending_bio_list, &plug->pending);
968 conf->pending_count += plug->pending_cnt;
969 spin_unlock_irq(&conf->device_lock);
ee0b0244 970 wake_up(&conf->wait_barrier);
f54a9d0e
N
971 md_wakeup_thread(mddev->thread);
972 kfree(plug);
973 return;
974 }
975
976 /* we aren't scheduling, so we can do the write-out directly. */
977 bio = bio_list_get(&plug->pending);
978 bitmap_unplug(mddev->bitmap);
979 wake_up(&conf->wait_barrier);
980
981 while (bio) { /* submit pending writes */
982 struct bio *next = bio->bi_next;
983 bio->bi_next = NULL;
32f9f570
SL
984 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
985 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
986 /* Just ignore it */
987 bio_endio(bio, 0);
988 else
989 generic_make_request(bio);
f54a9d0e
N
990 bio = next;
991 }
992 kfree(plug);
993}
994
b4fdcb02 995static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 996{
e8096360 997 struct r1conf *conf = mddev->private;
0eaf822c 998 struct raid1_info *mirror;
9f2c9d12 999 struct r1bio *r1_bio;
1da177e4 1000 struct bio *read_bio;
1f68f0c4 1001 int i, disks;
84255d10 1002 struct bitmap *bitmap;
191ea9b2 1003 unsigned long flags;
a362357b 1004 const int rw = bio_data_dir(bio);
2c7d46ec 1005 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1006 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
2ff8cc2c
SL
1007 const unsigned long do_discard = (bio->bi_rw
1008 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 1009 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
3cb03002 1010 struct md_rdev *blocked_rdev;
f54a9d0e
N
1011 struct blk_plug_cb *cb;
1012 struct raid1_plug_cb *plug = NULL;
1f68f0c4
N
1013 int first_clone;
1014 int sectors_handled;
1015 int max_sectors;
191ea9b2 1016
1da177e4
LT
1017 /*
1018 * Register the new request and wait if the reconstruction
1019 * thread has put up a bar for new requests.
1020 * Continue immediately if no resync is active currently.
1021 */
62de608d 1022
3d310eb7
N
1023 md_write_start(mddev, bio); /* wait on superblock update early */
1024
6eef4b21 1025 if (bio_data_dir(bio) == WRITE &&
f73a1c7d 1026 bio_end_sector(bio) > mddev->suspend_lo &&
6eef4b21
N
1027 bio->bi_sector < mddev->suspend_hi) {
1028 /* As the suspend_* range is controlled by
1029 * userspace, we want an interruptible
1030 * wait.
1031 */
1032 DEFINE_WAIT(w);
1033 for (;;) {
1034 flush_signals(current);
1035 prepare_to_wait(&conf->wait_barrier,
1036 &w, TASK_INTERRUPTIBLE);
f73a1c7d 1037 if (bio_end_sector(bio) <= mddev->suspend_lo ||
6eef4b21
N
1038 bio->bi_sector >= mddev->suspend_hi)
1039 break;
1040 schedule();
1041 }
1042 finish_wait(&conf->wait_barrier, &w);
1043 }
62de608d 1044
17999be4 1045 wait_barrier(conf);
1da177e4 1046
84255d10
N
1047 bitmap = mddev->bitmap;
1048
1da177e4
LT
1049 /*
1050 * make_request() can abort the operation when READA is being
1051 * used and no empty request is available.
1052 *
1053 */
1054 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1055
1056 r1_bio->master_bio = bio;
aa8b57aa 1057 r1_bio->sectors = bio_sectors(bio);
191ea9b2 1058 r1_bio->state = 0;
1da177e4
LT
1059 r1_bio->mddev = mddev;
1060 r1_bio->sector = bio->bi_sector;
1061
d2eb35ac
N
1062 /* We might need to issue multiple reads to different
1063 * devices if there are bad blocks around, so we keep
1064 * track of the number of reads in bio->bi_phys_segments.
1065 * If this is 0, there is only one r1_bio and no locking
1066 * will be needed when requests complete. If it is
1067 * non-zero, then it is the number of not-completed requests.
1068 */
1069 bio->bi_phys_segments = 0;
1070 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1071
a362357b 1072 if (rw == READ) {
1da177e4
LT
1073 /*
1074 * read balancing logic:
1075 */
d2eb35ac
N
1076 int rdisk;
1077
1078read_again:
1079 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
1080
1081 if (rdisk < 0) {
1082 /* couldn't find anywhere to read from */
1083 raid_end_bio_io(r1_bio);
5a7bbad2 1084 return;
1da177e4
LT
1085 }
1086 mirror = conf->mirrors + rdisk;
1087
e555190d
N
1088 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1089 bitmap) {
1090 /* Reading from a write-mostly device must
1091 * take care not to over-take any writes
1092 * that are 'behind'
1093 */
1094 wait_event(bitmap->behind_wait,
1095 atomic_read(&bitmap->behind_writes) == 0);
1096 }
1da177e4
LT
1097 r1_bio->read_disk = rdisk;
1098
a167f663 1099 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d2eb35ac
N
1100 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
1101 max_sectors);
1da177e4
LT
1102
1103 r1_bio->bios[rdisk] = read_bio;
1104
1105 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
1106 read_bio->bi_bdev = mirror->rdev->bdev;
1107 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 1108 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1109 read_bio->bi_private = r1_bio;
1110
d2eb35ac
N
1111 if (max_sectors < r1_bio->sectors) {
1112 /* could not read all from this device, so we will
1113 * need another r1_bio.
1114 */
d2eb35ac
N
1115
1116 sectors_handled = (r1_bio->sector + max_sectors
1117 - bio->bi_sector);
1118 r1_bio->sectors = max_sectors;
1119 spin_lock_irq(&conf->device_lock);
1120 if (bio->bi_phys_segments == 0)
1121 bio->bi_phys_segments = 2;
1122 else
1123 bio->bi_phys_segments++;
1124 spin_unlock_irq(&conf->device_lock);
1125 /* Cannot call generic_make_request directly
1126 * as that will be queued in __make_request
1127 * and subsequent mempool_alloc might block waiting
1128 * for it. So hand bio over to raid1d.
1129 */
1130 reschedule_retry(r1_bio);
1131
1132 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1133
1134 r1_bio->master_bio = bio;
aa8b57aa 1135 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
d2eb35ac
N
1136 r1_bio->state = 0;
1137 r1_bio->mddev = mddev;
1138 r1_bio->sector = bio->bi_sector + sectors_handled;
1139 goto read_again;
1140 } else
1141 generic_make_request(read_bio);
5a7bbad2 1142 return;
1da177e4
LT
1143 }
1144
1145 /*
1146 * WRITE:
1147 */
34db0cd6
N
1148 if (conf->pending_count >= max_queued_requests) {
1149 md_wakeup_thread(mddev->thread);
1150 wait_event(conf->wait_barrier,
1151 conf->pending_count < max_queued_requests);
1152 }
1f68f0c4 1153 /* first select target devices under rcu_lock and
1da177e4
LT
1154 * inc refcount on their rdev. Record them by setting
1155 * bios[x] to bio
1f68f0c4
N
1156 * If there are known/acknowledged bad blocks on any device on
1157 * which we have seen a write error, we want to avoid writing those
1158 * blocks.
1159 * This potentially requires several writes to write around
1160 * the bad blocks. Each set of writes gets it's own r1bio
1161 * with a set of bios attached.
1da177e4 1162 */
c3b328ac 1163
8f19ccb2 1164 disks = conf->raid_disks * 2;
6bfe0b49
DW
1165 retry_write:
1166 blocked_rdev = NULL;
1da177e4 1167 rcu_read_lock();
1f68f0c4 1168 max_sectors = r1_bio->sectors;
1da177e4 1169 for (i = 0; i < disks; i++) {
3cb03002 1170 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1171 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1172 atomic_inc(&rdev->nr_pending);
1173 blocked_rdev = rdev;
1174 break;
1175 }
1f68f0c4 1176 r1_bio->bios[i] = NULL;
6b740b8d
N
1177 if (!rdev || test_bit(Faulty, &rdev->flags)
1178 || test_bit(Unmerged, &rdev->flags)) {
8f19ccb2
N
1179 if (i < conf->raid_disks)
1180 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1181 continue;
1182 }
1183
1184 atomic_inc(&rdev->nr_pending);
1185 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1186 sector_t first_bad;
1187 int bad_sectors;
1188 int is_bad;
1189
1190 is_bad = is_badblock(rdev, r1_bio->sector,
1191 max_sectors,
1192 &first_bad, &bad_sectors);
1193 if (is_bad < 0) {
1194 /* mustn't write here until the bad block is
1195 * acknowledged*/
1196 set_bit(BlockedBadBlocks, &rdev->flags);
1197 blocked_rdev = rdev;
1198 break;
1199 }
1200 if (is_bad && first_bad <= r1_bio->sector) {
1201 /* Cannot write here at all */
1202 bad_sectors -= (r1_bio->sector - first_bad);
1203 if (bad_sectors < max_sectors)
1204 /* mustn't write more than bad_sectors
1205 * to other devices yet
1206 */
1207 max_sectors = bad_sectors;
03c902e1 1208 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1209 /* We don't set R1BIO_Degraded as that
1210 * only applies if the disk is
1211 * missing, so it might be re-added,
1212 * and we want to know to recover this
1213 * chunk.
1214 * In this case the device is here,
1215 * and the fact that this chunk is not
1216 * in-sync is recorded in the bad
1217 * block log
1218 */
1219 continue;
964147d5 1220 }
1f68f0c4
N
1221 if (is_bad) {
1222 int good_sectors = first_bad - r1_bio->sector;
1223 if (good_sectors < max_sectors)
1224 max_sectors = good_sectors;
1225 }
1226 }
1227 r1_bio->bios[i] = bio;
1da177e4
LT
1228 }
1229 rcu_read_unlock();
1230
6bfe0b49
DW
1231 if (unlikely(blocked_rdev)) {
1232 /* Wait for this device to become unblocked */
1233 int j;
1234
1235 for (j = 0; j < i; j++)
1236 if (r1_bio->bios[j])
1237 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1238 r1_bio->state = 0;
6bfe0b49
DW
1239 allow_barrier(conf);
1240 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1241 wait_barrier(conf);
1242 goto retry_write;
1243 }
1244
1f68f0c4
N
1245 if (max_sectors < r1_bio->sectors) {
1246 /* We are splitting this write into multiple parts, so
1247 * we need to prepare for allocating another r1_bio.
1248 */
1249 r1_bio->sectors = max_sectors;
1250 spin_lock_irq(&conf->device_lock);
1251 if (bio->bi_phys_segments == 0)
1252 bio->bi_phys_segments = 2;
1253 else
1254 bio->bi_phys_segments++;
1255 spin_unlock_irq(&conf->device_lock);
191ea9b2 1256 }
1f68f0c4 1257 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
4b6d287f 1258
4e78064f 1259 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1260 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1261
1f68f0c4 1262 first_clone = 1;
1da177e4
LT
1263 for (i = 0; i < disks; i++) {
1264 struct bio *mbio;
1265 if (!r1_bio->bios[i])
1266 continue;
1267
a167f663 1268 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1f68f0c4
N
1269 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1270
1271 if (first_clone) {
1272 /* do behind I/O ?
1273 * Not if there are too many, or cannot
1274 * allocate memory, or a reader on WriteMostly
1275 * is waiting for behind writes to flush */
1276 if (bitmap &&
1277 (atomic_read(&bitmap->behind_writes)
1278 < mddev->bitmap_info.max_write_behind) &&
1279 !waitqueue_active(&bitmap->behind_wait))
1280 alloc_behind_pages(mbio, r1_bio);
1281
1282 bitmap_startwrite(bitmap, r1_bio->sector,
1283 r1_bio->sectors,
1284 test_bit(R1BIO_BehindIO,
1285 &r1_bio->state));
1286 first_clone = 0;
1287 }
2ca68f5e 1288 if (r1_bio->behind_bvecs) {
4b6d287f
N
1289 struct bio_vec *bvec;
1290 int j;
1291
cb34e057
KO
1292 /*
1293 * We trimmed the bio, so _all is legit
4b6d287f 1294 */
d74c6d51 1295 bio_for_each_segment_all(bvec, mbio, j)
2ca68f5e 1296 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1297 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1298 atomic_inc(&r1_bio->behind_remaining);
1299 }
1300
1f68f0c4
N
1301 r1_bio->bios[i] = mbio;
1302
1303 mbio->bi_sector = (r1_bio->sector +
1304 conf->mirrors[i].rdev->data_offset);
1305 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1306 mbio->bi_end_io = raid1_end_write_request;
c8dc9c65
JL
1307 mbio->bi_rw =
1308 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1f68f0c4
N
1309 mbio->bi_private = r1_bio;
1310
1da177e4 1311 atomic_inc(&r1_bio->remaining);
f54a9d0e
N
1312
1313 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1314 if (cb)
1315 plug = container_of(cb, struct raid1_plug_cb, cb);
1316 else
1317 plug = NULL;
4e78064f 1318 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1319 if (plug) {
1320 bio_list_add(&plug->pending, mbio);
1321 plug->pending_cnt++;
1322 } else {
1323 bio_list_add(&conf->pending_bio_list, mbio);
1324 conf->pending_count++;
1325 }
4e78064f 1326 spin_unlock_irqrestore(&conf->device_lock, flags);
f54a9d0e 1327 if (!plug)
b357f04a 1328 md_wakeup_thread(mddev->thread);
1da177e4 1329 }
079fa166
N
1330 /* Mustn't call r1_bio_write_done before this next test,
1331 * as it could result in the bio being freed.
1332 */
aa8b57aa 1333 if (sectors_handled < bio_sectors(bio)) {
079fa166 1334 r1_bio_write_done(r1_bio);
1f68f0c4
N
1335 /* We need another r1_bio. It has already been counted
1336 * in bio->bi_phys_segments
1337 */
1338 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1339 r1_bio->master_bio = bio;
aa8b57aa 1340 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1f68f0c4
N
1341 r1_bio->state = 0;
1342 r1_bio->mddev = mddev;
1343 r1_bio->sector = bio->bi_sector + sectors_handled;
1344 goto retry_write;
1345 }
1346
079fa166
N
1347 r1_bio_write_done(r1_bio);
1348
1349 /* In case raid1d snuck in to freeze_array */
1350 wake_up(&conf->wait_barrier);
1da177e4
LT
1351}
1352
fd01b88c 1353static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1354{
e8096360 1355 struct r1conf *conf = mddev->private;
1da177e4
LT
1356 int i;
1357
1358 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1359 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1360 rcu_read_lock();
1361 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1362 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1363 seq_printf(seq, "%s",
ddac7c7e
N
1364 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1365 }
1366 rcu_read_unlock();
1da177e4
LT
1367 seq_printf(seq, "]");
1368}
1369
1370
fd01b88c 1371static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1372{
1373 char b[BDEVNAME_SIZE];
e8096360 1374 struct r1conf *conf = mddev->private;
1da177e4
LT
1375
1376 /*
1377 * If it is not operational, then we have already marked it as dead
1378 * else if it is the last working disks, ignore the error, let the
1379 * next level up know.
1380 * else mark the drive as failed
1381 */
b2d444d7 1382 if (test_bit(In_sync, &rdev->flags)
4044ba58 1383 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1384 /*
1385 * Don't fail the drive, act as though we were just a
4044ba58
N
1386 * normal single drive.
1387 * However don't try a recovery from this drive as
1388 * it is very likely to fail.
1da177e4 1389 */
5389042f 1390 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1391 return;
4044ba58 1392 }
de393cde 1393 set_bit(Blocked, &rdev->flags);
c04be0aa
N
1394 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1395 unsigned long flags;
1396 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1397 mddev->degraded++;
dd00a99e 1398 set_bit(Faulty, &rdev->flags);
c04be0aa 1399 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1400 /*
1401 * if recovery is running, make sure it aborts.
1402 */
dfc70645 1403 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
dd00a99e
N
1404 } else
1405 set_bit(Faulty, &rdev->flags);
850b2b42 1406 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1407 printk(KERN_ALERT
1408 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1409 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1410 mdname(mddev), bdevname(rdev->bdev, b),
1411 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1412}
1413
e8096360 1414static void print_conf(struct r1conf *conf)
1da177e4
LT
1415{
1416 int i;
1da177e4 1417
9dd1e2fa 1418 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1419 if (!conf) {
9dd1e2fa 1420 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1421 return;
1422 }
9dd1e2fa 1423 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1424 conf->raid_disks);
1425
ddac7c7e 1426 rcu_read_lock();
1da177e4
LT
1427 for (i = 0; i < conf->raid_disks; i++) {
1428 char b[BDEVNAME_SIZE];
3cb03002 1429 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1430 if (rdev)
9dd1e2fa 1431 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1432 i, !test_bit(In_sync, &rdev->flags),
1433 !test_bit(Faulty, &rdev->flags),
1434 bdevname(rdev->bdev,b));
1da177e4 1435 }
ddac7c7e 1436 rcu_read_unlock();
1da177e4
LT
1437}
1438
e8096360 1439static void close_sync(struct r1conf *conf)
1da177e4 1440{
17999be4
N
1441 wait_barrier(conf);
1442 allow_barrier(conf);
1da177e4
LT
1443
1444 mempool_destroy(conf->r1buf_pool);
1445 conf->r1buf_pool = NULL;
1446}
1447
fd01b88c 1448static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1449{
1450 int i;
e8096360 1451 struct r1conf *conf = mddev->private;
6b965620
N
1452 int count = 0;
1453 unsigned long flags;
1da177e4
LT
1454
1455 /*
1456 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1457 * and mark them readable.
1458 * Called under mddev lock, so rcu protection not needed.
1da177e4
LT
1459 */
1460 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1461 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1462 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1463 if (repl
1464 && repl->recovery_offset == MaxSector
1465 && !test_bit(Faulty, &repl->flags)
1466 && !test_and_set_bit(In_sync, &repl->flags)) {
1467 /* replacement has just become active */
1468 if (!rdev ||
1469 !test_and_clear_bit(In_sync, &rdev->flags))
1470 count++;
1471 if (rdev) {
1472 /* Replaced device not technically
1473 * faulty, but we need to be sure
1474 * it gets removed and never re-added
1475 */
1476 set_bit(Faulty, &rdev->flags);
1477 sysfs_notify_dirent_safe(
1478 rdev->sysfs_state);
1479 }
1480 }
ddac7c7e
N
1481 if (rdev
1482 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1483 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1484 count++;
654e8b5a 1485 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1486 }
1487 }
6b965620
N
1488 spin_lock_irqsave(&conf->device_lock, flags);
1489 mddev->degraded -= count;
1490 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1491
1492 print_conf(conf);
6b965620 1493 return count;
1da177e4
LT
1494}
1495
1496
fd01b88c 1497static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1498{
e8096360 1499 struct r1conf *conf = mddev->private;
199050ea 1500 int err = -EEXIST;
41158c7e 1501 int mirror = 0;
0eaf822c 1502 struct raid1_info *p;
6c2fce2e 1503 int first = 0;
30194636 1504 int last = conf->raid_disks - 1;
6b740b8d 1505 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4 1506
5389042f
N
1507 if (mddev->recovery_disabled == conf->recovery_disabled)
1508 return -EBUSY;
1509
6c2fce2e
NB
1510 if (rdev->raid_disk >= 0)
1511 first = last = rdev->raid_disk;
1512
6b740b8d
N
1513 if (q->merge_bvec_fn) {
1514 set_bit(Unmerged, &rdev->flags);
1515 mddev->merge_check_needed = 1;
1516 }
1517
7ef449d1
N
1518 for (mirror = first; mirror <= last; mirror++) {
1519 p = conf->mirrors+mirror;
1520 if (!p->rdev) {
1da177e4 1521
9092c02d
JB
1522 if (mddev->gendisk)
1523 disk_stack_limits(mddev->gendisk, rdev->bdev,
1524 rdev->data_offset << 9);
1da177e4
LT
1525
1526 p->head_position = 0;
1527 rdev->raid_disk = mirror;
199050ea 1528 err = 0;
6aea114a
N
1529 /* As all devices are equivalent, we don't need a full recovery
1530 * if this was recently any drive of the array
1531 */
1532 if (rdev->saved_raid_disk < 0)
41158c7e 1533 conf->fullsync = 1;
d6065f7b 1534 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1535 break;
1536 }
7ef449d1
N
1537 if (test_bit(WantReplacement, &p->rdev->flags) &&
1538 p[conf->raid_disks].rdev == NULL) {
1539 /* Add this device as a replacement */
1540 clear_bit(In_sync, &rdev->flags);
1541 set_bit(Replacement, &rdev->flags);
1542 rdev->raid_disk = mirror;
1543 err = 0;
1544 conf->fullsync = 1;
1545 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1546 break;
1547 }
1548 }
6b740b8d
N
1549 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1550 /* Some requests might not have seen this new
1551 * merge_bvec_fn. We must wait for them to complete
1552 * before merging the device fully.
1553 * First we make sure any code which has tested
1554 * our function has submitted the request, then
1555 * we wait for all outstanding requests to complete.
1556 */
1557 synchronize_sched();
e2d59925
N
1558 freeze_array(conf, 0);
1559 unfreeze_array(conf);
6b740b8d
N
1560 clear_bit(Unmerged, &rdev->flags);
1561 }
ac5e7113 1562 md_integrity_add_rdev(rdev, mddev);
9092c02d 1563 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2ff8cc2c 1564 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1565 print_conf(conf);
199050ea 1566 return err;
1da177e4
LT
1567}
1568
b8321b68 1569static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1570{
e8096360 1571 struct r1conf *conf = mddev->private;
1da177e4 1572 int err = 0;
b8321b68 1573 int number = rdev->raid_disk;
0eaf822c 1574 struct raid1_info *p = conf->mirrors + number;
1da177e4 1575
b014f14c
N
1576 if (rdev != p->rdev)
1577 p = conf->mirrors + conf->raid_disks + number;
1578
1da177e4 1579 print_conf(conf);
b8321b68 1580 if (rdev == p->rdev) {
b2d444d7 1581 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1582 atomic_read(&rdev->nr_pending)) {
1583 err = -EBUSY;
1584 goto abort;
1585 }
046abeed 1586 /* Only remove non-faulty devices if recovery
dfc70645
N
1587 * is not possible.
1588 */
1589 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1590 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1591 mddev->degraded < conf->raid_disks) {
1592 err = -EBUSY;
1593 goto abort;
1594 }
1da177e4 1595 p->rdev = NULL;
fbd568a3 1596 synchronize_rcu();
1da177e4
LT
1597 if (atomic_read(&rdev->nr_pending)) {
1598 /* lost the race, try later */
1599 err = -EBUSY;
1600 p->rdev = rdev;
ac5e7113 1601 goto abort;
8c7a2c2b
N
1602 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1603 /* We just removed a device that is being replaced.
1604 * Move down the replacement. We drain all IO before
1605 * doing this to avoid confusion.
1606 */
1607 struct md_rdev *repl =
1608 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1609 freeze_array(conf, 0);
8c7a2c2b
N
1610 clear_bit(Replacement, &repl->flags);
1611 p->rdev = repl;
1612 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1613 unfreeze_array(conf);
8c7a2c2b
N
1614 clear_bit(WantReplacement, &rdev->flags);
1615 } else
b014f14c 1616 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1617 err = md_integrity_register(mddev);
1da177e4
LT
1618 }
1619abort:
1620
1621 print_conf(conf);
1622 return err;
1623}
1624
1625
6712ecf8 1626static void end_sync_read(struct bio *bio, int error)
1da177e4 1627{
9f2c9d12 1628 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1629
0fc280f6 1630 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1631
1da177e4
LT
1632 /*
1633 * we have read a block, now it needs to be re-written,
1634 * or re-read if the read failed.
1635 * We don't do much here, just schedule handling by raid1d
1636 */
69382e85 1637 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1638 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1639
1640 if (atomic_dec_and_test(&r1_bio->remaining))
1641 reschedule_retry(r1_bio);
1da177e4
LT
1642}
1643
6712ecf8 1644static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1645{
1646 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1647 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1648 struct mddev *mddev = r1_bio->mddev;
e8096360 1649 struct r1conf *conf = mddev->private;
1da177e4 1650 int mirror=0;
4367af55
N
1651 sector_t first_bad;
1652 int bad_sectors;
1da177e4 1653
ba3ae3be
NK
1654 mirror = find_bio_disk(r1_bio, bio);
1655
6b1117d5 1656 if (!uptodate) {
57dab0bd 1657 sector_t sync_blocks = 0;
6b1117d5
N
1658 sector_t s = r1_bio->sector;
1659 long sectors_to_go = r1_bio->sectors;
1660 /* make sure these bits doesn't get cleared. */
1661 do {
5e3db645 1662 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1663 &sync_blocks, 1);
1664 s += sync_blocks;
1665 sectors_to_go -= sync_blocks;
1666 } while (sectors_to_go > 0);
d8f05d29
N
1667 set_bit(WriteErrorSeen,
1668 &conf->mirrors[mirror].rdev->flags);
19d67169
N
1669 if (!test_and_set_bit(WantReplacement,
1670 &conf->mirrors[mirror].rdev->flags))
1671 set_bit(MD_RECOVERY_NEEDED, &
1672 mddev->recovery);
d8f05d29 1673 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55
N
1674 } else if (is_badblock(conf->mirrors[mirror].rdev,
1675 r1_bio->sector,
1676 r1_bio->sectors,
3a9f28a5
N
1677 &first_bad, &bad_sectors) &&
1678 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1679 r1_bio->sector,
1680 r1_bio->sectors,
1681 &first_bad, &bad_sectors)
1682 )
4367af55 1683 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1684
1da177e4 1685 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1686 int s = r1_bio->sectors;
d8f05d29
N
1687 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1688 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1689 reschedule_retry(r1_bio);
1690 else {
1691 put_buf(r1_bio);
1692 md_done_sync(mddev, s, uptodate);
1693 }
1da177e4 1694 }
1da177e4
LT
1695}
1696
3cb03002 1697static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1698 int sectors, struct page *page, int rw)
1699{
1700 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1701 /* success */
1702 return 1;
19d67169 1703 if (rw == WRITE) {
d8f05d29 1704 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1705 if (!test_and_set_bit(WantReplacement,
1706 &rdev->flags))
1707 set_bit(MD_RECOVERY_NEEDED, &
1708 rdev->mddev->recovery);
1709 }
d8f05d29
N
1710 /* need to record an error - either for the block or the device */
1711 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1712 md_error(rdev->mddev, rdev);
1713 return 0;
1714}
1715
9f2c9d12 1716static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1717{
a68e5870
N
1718 /* Try some synchronous reads of other devices to get
1719 * good data, much like with normal read errors. Only
1720 * read into the pages we already have so we don't
1721 * need to re-issue the read request.
1722 * We don't need to freeze the array, because being in an
1723 * active sync request, there is no normal IO, and
1724 * no overlapping syncs.
06f60385
N
1725 * We don't need to check is_badblock() again as we
1726 * made sure that anything with a bad block in range
1727 * will have bi_end_io clear.
a68e5870 1728 */
fd01b88c 1729 struct mddev *mddev = r1_bio->mddev;
e8096360 1730 struct r1conf *conf = mddev->private;
a68e5870
N
1731 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1732 sector_t sect = r1_bio->sector;
1733 int sectors = r1_bio->sectors;
1734 int idx = 0;
1735
1736 while(sectors) {
1737 int s = sectors;
1738 int d = r1_bio->read_disk;
1739 int success = 0;
3cb03002 1740 struct md_rdev *rdev;
78d7f5f7 1741 int start;
a68e5870
N
1742
1743 if (s > (PAGE_SIZE>>9))
1744 s = PAGE_SIZE >> 9;
1745 do {
1746 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1747 /* No rcu protection needed here devices
1748 * can only be removed when no resync is
1749 * active, and resync is currently active
1750 */
1751 rdev = conf->mirrors[d].rdev;
9d3d8011 1752 if (sync_page_io(rdev, sect, s<<9,
a68e5870
N
1753 bio->bi_io_vec[idx].bv_page,
1754 READ, false)) {
1755 success = 1;
1756 break;
1757 }
1758 }
1759 d++;
8f19ccb2 1760 if (d == conf->raid_disks * 2)
a68e5870
N
1761 d = 0;
1762 } while (!success && d != r1_bio->read_disk);
1763
78d7f5f7 1764 if (!success) {
a68e5870 1765 char b[BDEVNAME_SIZE];
3a9f28a5
N
1766 int abort = 0;
1767 /* Cannot read from anywhere, this block is lost.
1768 * Record a bad block on each device. If that doesn't
1769 * work just disable and interrupt the recovery.
1770 * Don't fail devices as that won't really help.
1771 */
a68e5870
N
1772 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1773 " for block %llu\n",
1774 mdname(mddev),
1775 bdevname(bio->bi_bdev, b),
1776 (unsigned long long)r1_bio->sector);
8f19ccb2 1777 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1778 rdev = conf->mirrors[d].rdev;
1779 if (!rdev || test_bit(Faulty, &rdev->flags))
1780 continue;
1781 if (!rdev_set_badblocks(rdev, sect, s, 0))
1782 abort = 1;
1783 }
1784 if (abort) {
d890fa2b
N
1785 conf->recovery_disabled =
1786 mddev->recovery_disabled;
3a9f28a5
N
1787 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1788 md_done_sync(mddev, r1_bio->sectors, 0);
1789 put_buf(r1_bio);
1790 return 0;
1791 }
1792 /* Try next page */
1793 sectors -= s;
1794 sect += s;
1795 idx++;
1796 continue;
d11c171e 1797 }
78d7f5f7
N
1798
1799 start = d;
1800 /* write it back and re-read */
1801 while (d != r1_bio->read_disk) {
1802 if (d == 0)
8f19ccb2 1803 d = conf->raid_disks * 2;
78d7f5f7
N
1804 d--;
1805 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1806 continue;
1807 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1808 if (r1_sync_page_io(rdev, sect, s,
1809 bio->bi_io_vec[idx].bv_page,
1810 WRITE) == 0) {
78d7f5f7
N
1811 r1_bio->bios[d]->bi_end_io = NULL;
1812 rdev_dec_pending(rdev, mddev);
9d3d8011 1813 }
78d7f5f7
N
1814 }
1815 d = start;
1816 while (d != r1_bio->read_disk) {
1817 if (d == 0)
8f19ccb2 1818 d = conf->raid_disks * 2;
78d7f5f7
N
1819 d--;
1820 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1821 continue;
1822 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1823 if (r1_sync_page_io(rdev, sect, s,
1824 bio->bi_io_vec[idx].bv_page,
1825 READ) != 0)
9d3d8011 1826 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1827 }
a68e5870
N
1828 sectors -= s;
1829 sect += s;
1830 idx ++;
1831 }
78d7f5f7 1832 set_bit(R1BIO_Uptodate, &r1_bio->state);
7ca78d57 1833 set_bit(BIO_UPTODATE, &bio->bi_flags);
a68e5870
N
1834 return 1;
1835}
1836
9f2c9d12 1837static int process_checks(struct r1bio *r1_bio)
a68e5870
N
1838{
1839 /* We have read all readable devices. If we haven't
1840 * got the block, then there is no hope left.
1841 * If we have, then we want to do a comparison
1842 * and skip the write if everything is the same.
1843 * If any blocks failed to read, then we need to
1844 * attempt an over-write
1845 */
fd01b88c 1846 struct mddev *mddev = r1_bio->mddev;
e8096360 1847 struct r1conf *conf = mddev->private;
a68e5870
N
1848 int primary;
1849 int i;
f4380a91 1850 int vcnt;
a68e5870 1851
30bc9b53
N
1852 /* Fix variable parts of all bios */
1853 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1854 for (i = 0; i < conf->raid_disks * 2; i++) {
1855 int j;
1856 int size;
1857 struct bio *b = r1_bio->bios[i];
1858 if (b->bi_end_io != end_sync_read)
1859 continue;
1860 /* fixup the bio for reuse */
1861 bio_reset(b);
1862 b->bi_vcnt = vcnt;
1863 b->bi_size = r1_bio->sectors << 9;
1864 b->bi_sector = r1_bio->sector +
1865 conf->mirrors[i].rdev->data_offset;
1866 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1867 b->bi_end_io = end_sync_read;
1868 b->bi_private = r1_bio;
1869
1870 size = b->bi_size;
1871 for (j = 0; j < vcnt ; j++) {
1872 struct bio_vec *bi;
1873 bi = &b->bi_io_vec[j];
1874 bi->bv_offset = 0;
1875 if (size > PAGE_SIZE)
1876 bi->bv_len = PAGE_SIZE;
1877 else
1878 bi->bv_len = size;
1879 size -= PAGE_SIZE;
1880 }
1881 }
8f19ccb2 1882 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870
N
1883 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1884 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1885 r1_bio->bios[primary]->bi_end_io = NULL;
1886 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1887 break;
1888 }
1889 r1_bio->read_disk = primary;
8f19ccb2 1890 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 1891 int j;
78d7f5f7
N
1892 struct bio *pbio = r1_bio->bios[primary];
1893 struct bio *sbio = r1_bio->bios[i];
a68e5870 1894
2aabaa65 1895 if (sbio->bi_end_io != end_sync_read)
78d7f5f7
N
1896 continue;
1897
1898 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1899 for (j = vcnt; j-- ; ) {
1900 struct page *p, *s;
1901 p = pbio->bi_io_vec[j].bv_page;
1902 s = sbio->bi_io_vec[j].bv_page;
1903 if (memcmp(page_address(p),
1904 page_address(s),
5020ad7d 1905 sbio->bi_io_vec[j].bv_len))
78d7f5f7 1906 break;
69382e85 1907 }
78d7f5f7
N
1908 } else
1909 j = 0;
1910 if (j >= 0)
7f7583d4 1911 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7
N
1912 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1913 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1914 /* No need to write to this device. */
1915 sbio->bi_end_io = NULL;
1916 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1917 continue;
1918 }
d3b45c2a
KO
1919
1920 bio_copy_data(sbio, pbio);
78d7f5f7 1921 }
a68e5870
N
1922 return 0;
1923}
1924
9f2c9d12 1925static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 1926{
e8096360 1927 struct r1conf *conf = mddev->private;
a68e5870 1928 int i;
8f19ccb2 1929 int disks = conf->raid_disks * 2;
a68e5870
N
1930 struct bio *bio, *wbio;
1931
1932 bio = r1_bio->bios[r1_bio->read_disk];
1933
a68e5870
N
1934 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1935 /* ouch - failed to read all of that. */
1936 if (!fix_sync_read_error(r1_bio))
1937 return;
7ca78d57
N
1938
1939 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1940 if (process_checks(r1_bio) < 0)
1941 return;
d11c171e
N
1942 /*
1943 * schedule writes
1944 */
1da177e4
LT
1945 atomic_set(&r1_bio->remaining, 1);
1946 for (i = 0; i < disks ; i++) {
1947 wbio = r1_bio->bios[i];
3e198f78
N
1948 if (wbio->bi_end_io == NULL ||
1949 (wbio->bi_end_io == end_sync_read &&
1950 (i == r1_bio->read_disk ||
1951 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
1952 continue;
1953
3e198f78
N
1954 wbio->bi_rw = WRITE;
1955 wbio->bi_end_io = end_sync_write;
1da177e4 1956 atomic_inc(&r1_bio->remaining);
aa8b57aa 1957 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 1958
1da177e4
LT
1959 generic_make_request(wbio);
1960 }
1961
1962 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 1963 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
1964 int s = r1_bio->sectors;
1965 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1966 test_bit(R1BIO_WriteError, &r1_bio->state))
1967 reschedule_retry(r1_bio);
1968 else {
1969 put_buf(r1_bio);
1970 md_done_sync(mddev, s, 1);
1971 }
1da177e4
LT
1972 }
1973}
1974
1975/*
1976 * This is a kernel thread which:
1977 *
1978 * 1. Retries failed read operations on working mirrors.
1979 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 1980 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1981 */
1982
e8096360 1983static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
1984 sector_t sect, int sectors)
1985{
fd01b88c 1986 struct mddev *mddev = conf->mddev;
867868fb
N
1987 while(sectors) {
1988 int s = sectors;
1989 int d = read_disk;
1990 int success = 0;
1991 int start;
3cb03002 1992 struct md_rdev *rdev;
867868fb
N
1993
1994 if (s > (PAGE_SIZE>>9))
1995 s = PAGE_SIZE >> 9;
1996
1997 do {
1998 /* Note: no rcu protection needed here
1999 * as this is synchronous in the raid1d thread
2000 * which is the thread that might remove
2001 * a device. If raid1d ever becomes multi-threaded....
2002 */
d2eb35ac
N
2003 sector_t first_bad;
2004 int bad_sectors;
2005
867868fb
N
2006 rdev = conf->mirrors[d].rdev;
2007 if (rdev &&
da8840a7 2008 (test_bit(In_sync, &rdev->flags) ||
2009 (!test_bit(Faulty, &rdev->flags) &&
2010 rdev->recovery_offset >= sect + s)) &&
d2eb35ac
N
2011 is_badblock(rdev, sect, s,
2012 &first_bad, &bad_sectors) == 0 &&
ccebd4c4
JB
2013 sync_page_io(rdev, sect, s<<9,
2014 conf->tmppage, READ, false))
867868fb
N
2015 success = 1;
2016 else {
2017 d++;
8f19ccb2 2018 if (d == conf->raid_disks * 2)
867868fb
N
2019 d = 0;
2020 }
2021 } while (!success && d != read_disk);
2022
2023 if (!success) {
d8f05d29 2024 /* Cannot read from anywhere - mark it bad */
3cb03002 2025 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2026 if (!rdev_set_badblocks(rdev, sect, s, 0))
2027 md_error(mddev, rdev);
867868fb
N
2028 break;
2029 }
2030 /* write it back and re-read */
2031 start = d;
2032 while (d != read_disk) {
2033 if (d==0)
8f19ccb2 2034 d = conf->raid_disks * 2;
867868fb
N
2035 d--;
2036 rdev = conf->mirrors[d].rdev;
2037 if (rdev &&
d8f05d29
N
2038 test_bit(In_sync, &rdev->flags))
2039 r1_sync_page_io(rdev, sect, s,
2040 conf->tmppage, WRITE);
867868fb
N
2041 }
2042 d = start;
2043 while (d != read_disk) {
2044 char b[BDEVNAME_SIZE];
2045 if (d==0)
8f19ccb2 2046 d = conf->raid_disks * 2;
867868fb
N
2047 d--;
2048 rdev = conf->mirrors[d].rdev;
2049 if (rdev &&
2050 test_bit(In_sync, &rdev->flags)) {
d8f05d29
N
2051 if (r1_sync_page_io(rdev, sect, s,
2052 conf->tmppage, READ)) {
867868fb
N
2053 atomic_add(s, &rdev->corrected_errors);
2054 printk(KERN_INFO
9dd1e2fa 2055 "md/raid1:%s: read error corrected "
867868fb
N
2056 "(%d sectors at %llu on %s)\n",
2057 mdname(mddev), s,
969b755a
RD
2058 (unsigned long long)(sect +
2059 rdev->data_offset),
867868fb
N
2060 bdevname(rdev->bdev, b));
2061 }
2062 }
2063 }
2064 sectors -= s;
2065 sect += s;
2066 }
2067}
2068
9f2c9d12 2069static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2070{
fd01b88c 2071 struct mddev *mddev = r1_bio->mddev;
e8096360 2072 struct r1conf *conf = mddev->private;
3cb03002 2073 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2074
2075 /* bio has the data to be written to device 'i' where
2076 * we just recently had a write error.
2077 * We repeatedly clone the bio and trim down to one block,
2078 * then try the write. Where the write fails we record
2079 * a bad block.
2080 * It is conceivable that the bio doesn't exactly align with
2081 * blocks. We must handle this somehow.
2082 *
2083 * We currently own a reference on the rdev.
2084 */
2085
2086 int block_sectors;
2087 sector_t sector;
2088 int sectors;
2089 int sect_to_write = r1_bio->sectors;
2090 int ok = 1;
2091
2092 if (rdev->badblocks.shift < 0)
2093 return 0;
2094
2095 block_sectors = 1 << rdev->badblocks.shift;
2096 sector = r1_bio->sector;
2097 sectors = ((sector + block_sectors)
2098 & ~(sector_t)(block_sectors - 1))
2099 - sector;
2100
cd5ff9a1
N
2101 while (sect_to_write) {
2102 struct bio *wbio;
2103 if (sectors > sect_to_write)
2104 sectors = sect_to_write;
2105 /* Write at 'sector' for 'sectors'*/
2106
b783863f
KO
2107 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2108 unsigned vcnt = r1_bio->behind_page_count;
2109 struct bio_vec *vec = r1_bio->behind_bvecs;
2110
2111 while (!vec->bv_page) {
2112 vec++;
2113 vcnt--;
2114 }
2115
2116 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2117 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2118
2119 wbio->bi_vcnt = vcnt;
2120 } else {
2121 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2122 }
2123
cd5ff9a1 2124 wbio->bi_rw = WRITE;
b783863f 2125 wbio->bi_sector = r1_bio->sector;
cd5ff9a1 2126 wbio->bi_size = r1_bio->sectors << 9;
cd5ff9a1
N
2127
2128 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2129 wbio->bi_sector += rdev->data_offset;
2130 wbio->bi_bdev = rdev->bdev;
2131 if (submit_bio_wait(WRITE, wbio) == 0)
2132 /* failure! */
2133 ok = rdev_set_badblocks(rdev, sector,
2134 sectors, 0)
2135 && ok;
2136
2137 bio_put(wbio);
2138 sect_to_write -= sectors;
2139 sector += sectors;
2140 sectors = block_sectors;
2141 }
2142 return ok;
2143}
2144
e8096360 2145static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2146{
2147 int m;
2148 int s = r1_bio->sectors;
8f19ccb2 2149 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2150 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2151 struct bio *bio = r1_bio->bios[m];
2152 if (bio->bi_end_io == NULL)
2153 continue;
2154 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2155 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2156 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce
N
2157 }
2158 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2159 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2160 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2161 md_error(conf->mddev, rdev);
2162 }
2163 }
2164 put_buf(r1_bio);
2165 md_done_sync(conf->mddev, s, 1);
2166}
2167
e8096360 2168static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2169{
2170 int m;
8f19ccb2 2171 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2172 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2173 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2174 rdev_clear_badblocks(rdev,
2175 r1_bio->sector,
c6563a8c 2176 r1_bio->sectors, 0);
62096bce
N
2177 rdev_dec_pending(rdev, conf->mddev);
2178 } else if (r1_bio->bios[m] != NULL) {
2179 /* This drive got a write error. We need to
2180 * narrow down and record precise write
2181 * errors.
2182 */
2183 if (!narrow_write_error(r1_bio, m)) {
2184 md_error(conf->mddev,
2185 conf->mirrors[m].rdev);
2186 /* an I/O failed, we can't clear the bitmap */
2187 set_bit(R1BIO_Degraded, &r1_bio->state);
2188 }
2189 rdev_dec_pending(conf->mirrors[m].rdev,
2190 conf->mddev);
2191 }
2192 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2193 close_write(r1_bio);
2194 raid_end_bio_io(r1_bio);
2195}
2196
e8096360 2197static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2198{
2199 int disk;
2200 int max_sectors;
fd01b88c 2201 struct mddev *mddev = conf->mddev;
62096bce
N
2202 struct bio *bio;
2203 char b[BDEVNAME_SIZE];
3cb03002 2204 struct md_rdev *rdev;
62096bce
N
2205
2206 clear_bit(R1BIO_ReadError, &r1_bio->state);
2207 /* we got a read error. Maybe the drive is bad. Maybe just
2208 * the block and we can fix it.
2209 * We freeze all other IO, and try reading the block from
2210 * other devices. When we find one, we re-write
2211 * and check it that fixes the read error.
2212 * This is all done synchronously while the array is
2213 * frozen
2214 */
2215 if (mddev->ro == 0) {
e2d59925 2216 freeze_array(conf, 1);
62096bce
N
2217 fix_read_error(conf, r1_bio->read_disk,
2218 r1_bio->sector, r1_bio->sectors);
2219 unfreeze_array(conf);
2220 } else
2221 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
7ad4d4a6 2222 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
62096bce
N
2223
2224 bio = r1_bio->bios[r1_bio->read_disk];
2225 bdevname(bio->bi_bdev, b);
2226read_more:
2227 disk = read_balance(conf, r1_bio, &max_sectors);
2228 if (disk == -1) {
2229 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2230 " read error for block %llu\n",
2231 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2232 raid_end_bio_io(r1_bio);
2233 } else {
2234 const unsigned long do_sync
2235 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2236 if (bio) {
2237 r1_bio->bios[r1_bio->read_disk] =
2238 mddev->ro ? IO_BLOCKED : NULL;
2239 bio_put(bio);
2240 }
2241 r1_bio->read_disk = disk;
2242 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2243 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2244 r1_bio->bios[r1_bio->read_disk] = bio;
2245 rdev = conf->mirrors[disk].rdev;
2246 printk_ratelimited(KERN_ERR
2247 "md/raid1:%s: redirecting sector %llu"
2248 " to other mirror: %s\n",
2249 mdname(mddev),
2250 (unsigned long long)r1_bio->sector,
2251 bdevname(rdev->bdev, b));
2252 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2253 bio->bi_bdev = rdev->bdev;
2254 bio->bi_end_io = raid1_end_read_request;
2255 bio->bi_rw = READ | do_sync;
2256 bio->bi_private = r1_bio;
2257 if (max_sectors < r1_bio->sectors) {
2258 /* Drat - have to split this up more */
2259 struct bio *mbio = r1_bio->master_bio;
2260 int sectors_handled = (r1_bio->sector + max_sectors
2261 - mbio->bi_sector);
2262 r1_bio->sectors = max_sectors;
2263 spin_lock_irq(&conf->device_lock);
2264 if (mbio->bi_phys_segments == 0)
2265 mbio->bi_phys_segments = 2;
2266 else
2267 mbio->bi_phys_segments++;
2268 spin_unlock_irq(&conf->device_lock);
2269 generic_make_request(bio);
2270 bio = NULL;
2271
2272 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2273
2274 r1_bio->master_bio = mbio;
aa8b57aa 2275 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
62096bce
N
2276 r1_bio->state = 0;
2277 set_bit(R1BIO_ReadError, &r1_bio->state);
2278 r1_bio->mddev = mddev;
2279 r1_bio->sector = mbio->bi_sector + sectors_handled;
2280
2281 goto read_more;
2282 } else
2283 generic_make_request(bio);
2284 }
2285}
2286
4ed8731d 2287static void raid1d(struct md_thread *thread)
1da177e4 2288{
4ed8731d 2289 struct mddev *mddev = thread->mddev;
9f2c9d12 2290 struct r1bio *r1_bio;
1da177e4 2291 unsigned long flags;
e8096360 2292 struct r1conf *conf = mddev->private;
1da177e4 2293 struct list_head *head = &conf->retry_list;
e1dfa0a2 2294 struct blk_plug plug;
1da177e4
LT
2295
2296 md_check_recovery(mddev);
e1dfa0a2
N
2297
2298 blk_start_plug(&plug);
1da177e4 2299 for (;;) {
191ea9b2 2300
0021b7bc 2301 flush_pending_writes(conf);
191ea9b2 2302
a35e63ef
N
2303 spin_lock_irqsave(&conf->device_lock, flags);
2304 if (list_empty(head)) {
2305 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2306 break;
a35e63ef 2307 }
9f2c9d12 2308 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2309 list_del(head->prev);
ddaf22ab 2310 conf->nr_queued--;
1da177e4
LT
2311 spin_unlock_irqrestore(&conf->device_lock, flags);
2312
2313 mddev = r1_bio->mddev;
070ec55d 2314 conf = mddev->private;
4367af55 2315 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2316 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2317 test_bit(R1BIO_WriteError, &r1_bio->state))
2318 handle_sync_write_finished(conf, r1_bio);
2319 else
4367af55 2320 sync_request_write(mddev, r1_bio);
cd5ff9a1 2321 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2322 test_bit(R1BIO_WriteError, &r1_bio->state))
2323 handle_write_finished(conf, r1_bio);
2324 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2325 handle_read_error(conf, r1_bio);
2326 else
d2eb35ac
N
2327 /* just a partial read to be scheduled from separate
2328 * context
2329 */
2330 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2331
1d9d5241 2332 cond_resched();
de393cde
N
2333 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2334 md_check_recovery(mddev);
1da177e4 2335 }
e1dfa0a2 2336 blk_finish_plug(&plug);
1da177e4
LT
2337}
2338
2339
e8096360 2340static int init_resync(struct r1conf *conf)
1da177e4
LT
2341{
2342 int buffs;
2343
2344 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2345 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2346 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2347 conf->poolinfo);
2348 if (!conf->r1buf_pool)
2349 return -ENOMEM;
2350 conf->next_resync = 0;
2351 return 0;
2352}
2353
2354/*
2355 * perform a "sync" on one "block"
2356 *
2357 * We need to make sure that no normal I/O request - particularly write
2358 * requests - conflict with active sync requests.
2359 *
2360 * This is achieved by tracking pending requests and a 'barrier' concept
2361 * that can be installed to exclude normal IO requests.
2362 */
2363
fd01b88c 2364static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4 2365{
e8096360 2366 struct r1conf *conf = mddev->private;
9f2c9d12 2367 struct r1bio *r1_bio;
1da177e4
LT
2368 struct bio *bio;
2369 sector_t max_sector, nr_sectors;
3e198f78 2370 int disk = -1;
1da177e4 2371 int i;
3e198f78
N
2372 int wonly = -1;
2373 int write_targets = 0, read_targets = 0;
57dab0bd 2374 sector_t sync_blocks;
e3b9703e 2375 int still_degraded = 0;
06f60385
N
2376 int good_sectors = RESYNC_SECTORS;
2377 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2378
2379 if (!conf->r1buf_pool)
2380 if (init_resync(conf))
57afd89f 2381 return 0;
1da177e4 2382
58c0fed4 2383 max_sector = mddev->dev_sectors;
1da177e4 2384 if (sector_nr >= max_sector) {
191ea9b2
N
2385 /* If we aborted, we need to abort the
2386 * sync on the 'current' bitmap chunk (there will
2387 * only be one in raid1 resync.
2388 * We can find the current addess in mddev->curr_resync
2389 */
6a806c51
N
2390 if (mddev->curr_resync < max_sector) /* aborted */
2391 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2392 &sync_blocks, 1);
6a806c51 2393 else /* completed sync */
191ea9b2 2394 conf->fullsync = 0;
6a806c51
N
2395
2396 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
2397 close_sync(conf);
2398 return 0;
2399 }
2400
07d84d10
N
2401 if (mddev->bitmap == NULL &&
2402 mddev->recovery_cp == MaxSector &&
6394cca5 2403 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2404 conf->fullsync == 0) {
2405 *skipped = 1;
2406 return max_sector - sector_nr;
2407 }
6394cca5
N
2408 /* before building a request, check if we can skip these blocks..
2409 * This call the bitmap_start_sync doesn't actually record anything
2410 */
e3b9703e 2411 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2412 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2413 /* We can skip this block, and probably several more */
2414 *skipped = 1;
2415 return sync_blocks;
2416 }
1da177e4 2417 /*
17999be4
N
2418 * If there is non-resync activity waiting for a turn,
2419 * and resync is going fast enough,
2420 * then let it though before starting on this new sync request.
1da177e4 2421 */
17999be4 2422 if (!go_faster && conf->nr_waiting)
1da177e4 2423 msleep_interruptible(1000);
17999be4 2424
b47490c9 2425 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1c4588e9 2426 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4
N
2427 raise_barrier(conf);
2428
2429 conf->next_resync = sector_nr;
1da177e4 2430
3e198f78 2431 rcu_read_lock();
1da177e4 2432 /*
3e198f78
N
2433 * If we get a correctably read error during resync or recovery,
2434 * we might want to read from a different device. So we
2435 * flag all drives that could conceivably be read from for READ,
2436 * and any others (which will be non-In_sync devices) for WRITE.
2437 * If a read fails, we try reading from something else for which READ
2438 * is OK.
1da177e4 2439 */
1da177e4 2440
1da177e4
LT
2441 r1_bio->mddev = mddev;
2442 r1_bio->sector = sector_nr;
191ea9b2 2443 r1_bio->state = 0;
1da177e4 2444 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2445
8f19ccb2 2446 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2447 struct md_rdev *rdev;
1da177e4 2448 bio = r1_bio->bios[i];
2aabaa65 2449 bio_reset(bio);
1da177e4 2450
3e198f78
N
2451 rdev = rcu_dereference(conf->mirrors[i].rdev);
2452 if (rdev == NULL ||
06f60385 2453 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2454 if (i < conf->raid_disks)
2455 still_degraded = 1;
3e198f78 2456 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2457 bio->bi_rw = WRITE;
2458 bio->bi_end_io = end_sync_write;
2459 write_targets ++;
3e198f78
N
2460 } else {
2461 /* may need to read from here */
06f60385
N
2462 sector_t first_bad = MaxSector;
2463 int bad_sectors;
2464
2465 if (is_badblock(rdev, sector_nr, good_sectors,
2466 &first_bad, &bad_sectors)) {
2467 if (first_bad > sector_nr)
2468 good_sectors = first_bad - sector_nr;
2469 else {
2470 bad_sectors -= (sector_nr - first_bad);
2471 if (min_bad == 0 ||
2472 min_bad > bad_sectors)
2473 min_bad = bad_sectors;
2474 }
2475 }
2476 if (sector_nr < first_bad) {
2477 if (test_bit(WriteMostly, &rdev->flags)) {
2478 if (wonly < 0)
2479 wonly = i;
2480 } else {
2481 if (disk < 0)
2482 disk = i;
2483 }
2484 bio->bi_rw = READ;
2485 bio->bi_end_io = end_sync_read;
2486 read_targets++;
d57368af
AL
2487 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2488 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2489 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2490 /*
2491 * The device is suitable for reading (InSync),
2492 * but has bad block(s) here. Let's try to correct them,
2493 * if we are doing resync or repair. Otherwise, leave
2494 * this device alone for this sync request.
2495 */
2496 bio->bi_rw = WRITE;
2497 bio->bi_end_io = end_sync_write;
2498 write_targets++;
3e198f78 2499 }
3e198f78 2500 }
06f60385
N
2501 if (bio->bi_end_io) {
2502 atomic_inc(&rdev->nr_pending);
2503 bio->bi_sector = sector_nr + rdev->data_offset;
2504 bio->bi_bdev = rdev->bdev;
2505 bio->bi_private = r1_bio;
2506 }
1da177e4 2507 }
3e198f78
N
2508 rcu_read_unlock();
2509 if (disk < 0)
2510 disk = wonly;
2511 r1_bio->read_disk = disk;
191ea9b2 2512
06f60385
N
2513 if (read_targets == 0 && min_bad > 0) {
2514 /* These sectors are bad on all InSync devices, so we
2515 * need to mark them bad on all write targets
2516 */
2517 int ok = 1;
8f19ccb2 2518 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2519 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2520 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2521 ok = rdev_set_badblocks(rdev, sector_nr,
2522 min_bad, 0
2523 ) && ok;
2524 }
2525 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2526 *skipped = 1;
2527 put_buf(r1_bio);
2528
2529 if (!ok) {
2530 /* Cannot record the badblocks, so need to
2531 * abort the resync.
2532 * If there are multiple read targets, could just
2533 * fail the really bad ones ???
2534 */
2535 conf->recovery_disabled = mddev->recovery_disabled;
2536 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2537 return 0;
2538 } else
2539 return min_bad;
2540
2541 }
2542 if (min_bad > 0 && min_bad < good_sectors) {
2543 /* only resync enough to reach the next bad->good
2544 * transition */
2545 good_sectors = min_bad;
2546 }
2547
3e198f78
N
2548 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2549 /* extra read targets are also write targets */
2550 write_targets += read_targets-1;
2551
2552 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2553 /* There is nowhere to write, so all non-sync
2554 * drives must be failed - so we are finished
2555 */
b7219ccb
N
2556 sector_t rv;
2557 if (min_bad > 0)
2558 max_sector = sector_nr + min_bad;
2559 rv = max_sector - sector_nr;
57afd89f 2560 *skipped = 1;
1da177e4 2561 put_buf(r1_bio);
1da177e4
LT
2562 return rv;
2563 }
2564
c6207277
N
2565 if (max_sector > mddev->resync_max)
2566 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2567 if (max_sector > sector_nr + good_sectors)
2568 max_sector = sector_nr + good_sectors;
1da177e4 2569 nr_sectors = 0;
289e99e8 2570 sync_blocks = 0;
1da177e4
LT
2571 do {
2572 struct page *page;
2573 int len = PAGE_SIZE;
2574 if (sector_nr + (len>>9) > max_sector)
2575 len = (max_sector - sector_nr) << 9;
2576 if (len == 0)
2577 break;
6a806c51
N
2578 if (sync_blocks == 0) {
2579 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2580 &sync_blocks, still_degraded) &&
2581 !conf->fullsync &&
2582 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2583 break;
9e77c485 2584 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
7571ae88 2585 if ((len >> 9) > sync_blocks)
6a806c51 2586 len = sync_blocks<<9;
ab7a30c7 2587 }
191ea9b2 2588
8f19ccb2 2589 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2590 bio = r1_bio->bios[i];
2591 if (bio->bi_end_io) {
d11c171e 2592 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2593 if (bio_add_page(bio, page, len, 0) == 0) {
2594 /* stop here */
d11c171e 2595 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2596 while (i > 0) {
2597 i--;
2598 bio = r1_bio->bios[i];
6a806c51
N
2599 if (bio->bi_end_io==NULL)
2600 continue;
1da177e4
LT
2601 /* remove last page from this bio */
2602 bio->bi_vcnt--;
2603 bio->bi_size -= len;
2604 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2605 }
2606 goto bio_full;
2607 }
2608 }
2609 }
2610 nr_sectors += len>>9;
2611 sector_nr += len>>9;
191ea9b2 2612 sync_blocks -= (len>>9);
1da177e4
LT
2613 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2614 bio_full:
1da177e4
LT
2615 r1_bio->sectors = nr_sectors;
2616
d11c171e
N
2617 /* For a user-requested sync, we read all readable devices and do a
2618 * compare
2619 */
2620 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2621 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2622 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2623 bio = r1_bio->bios[i];
2624 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2625 read_targets--;
ddac7c7e 2626 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2627 generic_make_request(bio);
2628 }
2629 }
2630 } else {
2631 atomic_set(&r1_bio->remaining, 1);
2632 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2633 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2634 generic_make_request(bio);
1da177e4 2635
d11c171e 2636 }
1da177e4
LT
2637 return nr_sectors;
2638}
2639
fd01b88c 2640static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2641{
2642 if (sectors)
2643 return sectors;
2644
2645 return mddev->dev_sectors;
2646}
2647
e8096360 2648static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2649{
e8096360 2650 struct r1conf *conf;
709ae487 2651 int i;
0eaf822c 2652 struct raid1_info *disk;
3cb03002 2653 struct md_rdev *rdev;
709ae487 2654 int err = -ENOMEM;
1da177e4 2655
e8096360 2656 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2657 if (!conf)
709ae487 2658 goto abort;
1da177e4 2659
0eaf822c 2660 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2661 * mddev->raid_disks * 2,
1da177e4
LT
2662 GFP_KERNEL);
2663 if (!conf->mirrors)
709ae487 2664 goto abort;
1da177e4 2665
ddaf22ab
N
2666 conf->tmppage = alloc_page(GFP_KERNEL);
2667 if (!conf->tmppage)
709ae487 2668 goto abort;
ddaf22ab 2669
709ae487 2670 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2671 if (!conf->poolinfo)
709ae487 2672 goto abort;
8f19ccb2 2673 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2674 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2675 r1bio_pool_free,
2676 conf->poolinfo);
2677 if (!conf->r1bio_pool)
709ae487
N
2678 goto abort;
2679
ed9bfdf1 2680 conf->poolinfo->mddev = mddev;
1da177e4 2681
c19d5798 2682 err = -EINVAL;
e7e72bf6 2683 spin_lock_init(&conf->device_lock);
dafb20fa 2684 rdev_for_each(rdev, mddev) {
aba336bd 2685 struct request_queue *q;
709ae487 2686 int disk_idx = rdev->raid_disk;
1da177e4
LT
2687 if (disk_idx >= mddev->raid_disks
2688 || disk_idx < 0)
2689 continue;
c19d5798 2690 if (test_bit(Replacement, &rdev->flags))
02b898f2 2691 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2692 else
2693 disk = conf->mirrors + disk_idx;
1da177e4 2694
c19d5798
N
2695 if (disk->rdev)
2696 goto abort;
1da177e4 2697 disk->rdev = rdev;
aba336bd
N
2698 q = bdev_get_queue(rdev->bdev);
2699 if (q->merge_bvec_fn)
2700 mddev->merge_check_needed = 1;
1da177e4
LT
2701
2702 disk->head_position = 0;
12cee5a8 2703 disk->seq_start = MaxSector;
1da177e4
LT
2704 }
2705 conf->raid_disks = mddev->raid_disks;
2706 conf->mddev = mddev;
1da177e4 2707 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
2708
2709 spin_lock_init(&conf->resync_lock);
17999be4 2710 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2711
191ea9b2 2712 bio_list_init(&conf->pending_bio_list);
34db0cd6 2713 conf->pending_count = 0;
d890fa2b 2714 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2715
c19d5798 2716 err = -EIO;
8f19ccb2 2717 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2718
2719 disk = conf->mirrors + i;
2720
c19d5798
N
2721 if (i < conf->raid_disks &&
2722 disk[conf->raid_disks].rdev) {
2723 /* This slot has a replacement. */
2724 if (!disk->rdev) {
2725 /* No original, just make the replacement
2726 * a recovering spare
2727 */
2728 disk->rdev =
2729 disk[conf->raid_disks].rdev;
2730 disk[conf->raid_disks].rdev = NULL;
2731 } else if (!test_bit(In_sync, &disk->rdev->flags))
2732 /* Original is not in_sync - bad */
2733 goto abort;
2734 }
2735
5fd6c1dc
N
2736 if (!disk->rdev ||
2737 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2738 disk->head_position = 0;
4f0a5e01
JB
2739 if (disk->rdev &&
2740 (disk->rdev->saved_raid_disk < 0))
918f0238 2741 conf->fullsync = 1;
be4d3280 2742 }
1da177e4 2743 }
709ae487 2744
709ae487 2745 err = -ENOMEM;
0232605d 2746 conf->thread = md_register_thread(raid1d, mddev, "raid1");
709ae487
N
2747 if (!conf->thread) {
2748 printk(KERN_ERR
9dd1e2fa 2749 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2750 mdname(mddev));
2751 goto abort;
11ce99e6 2752 }
1da177e4 2753
709ae487
N
2754 return conf;
2755
2756 abort:
2757 if (conf) {
2758 if (conf->r1bio_pool)
2759 mempool_destroy(conf->r1bio_pool);
2760 kfree(conf->mirrors);
2761 safe_put_page(conf->tmppage);
2762 kfree(conf->poolinfo);
2763 kfree(conf);
2764 }
2765 return ERR_PTR(err);
2766}
2767
5220ea1e 2768static int stop(struct mddev *mddev);
fd01b88c 2769static int run(struct mddev *mddev)
709ae487 2770{
e8096360 2771 struct r1conf *conf;
709ae487 2772 int i;
3cb03002 2773 struct md_rdev *rdev;
5220ea1e 2774 int ret;
2ff8cc2c 2775 bool discard_supported = false;
709ae487
N
2776
2777 if (mddev->level != 1) {
9dd1e2fa 2778 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2779 mdname(mddev), mddev->level);
2780 return -EIO;
2781 }
2782 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2783 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2784 mdname(mddev));
2785 return -EIO;
2786 }
1da177e4 2787 /*
709ae487
N
2788 * copy the already verified devices into our private RAID1
2789 * bookkeeping area. [whatever we allocate in run(),
2790 * should be freed in stop()]
1da177e4 2791 */
709ae487
N
2792 if (mddev->private == NULL)
2793 conf = setup_conf(mddev);
2794 else
2795 conf = mddev->private;
1da177e4 2796
709ae487
N
2797 if (IS_ERR(conf))
2798 return PTR_ERR(conf);
1da177e4 2799
c8dc9c65 2800 if (mddev->queue)
5026d7a9
PA
2801 blk_queue_max_write_same_sectors(mddev->queue, 0);
2802
dafb20fa 2803 rdev_for_each(rdev, mddev) {
1ed7242e
JB
2804 if (!mddev->gendisk)
2805 continue;
709ae487
N
2806 disk_stack_limits(mddev->gendisk, rdev->bdev,
2807 rdev->data_offset << 9);
2ff8cc2c
SL
2808 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2809 discard_supported = true;
1da177e4 2810 }
191ea9b2 2811
709ae487
N
2812 mddev->degraded = 0;
2813 for (i=0; i < conf->raid_disks; i++)
2814 if (conf->mirrors[i].rdev == NULL ||
2815 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2816 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2817 mddev->degraded++;
2818
2819 if (conf->raid_disks - mddev->degraded == 1)
2820 mddev->recovery_cp = MaxSector;
2821
8c6ac868 2822 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2823 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2824 " -- starting background reconstruction\n",
2825 mdname(mddev));
1da177e4 2826 printk(KERN_INFO
9dd1e2fa 2827 "md/raid1:%s: active with %d out of %d mirrors\n",
1da177e4
LT
2828 mdname(mddev), mddev->raid_disks - mddev->degraded,
2829 mddev->raid_disks);
709ae487 2830
1da177e4
LT
2831 /*
2832 * Ok, everything is just fine now
2833 */
709ae487
N
2834 mddev->thread = conf->thread;
2835 conf->thread = NULL;
2836 mddev->private = conf;
2837
1f403624 2838 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2839
1ed7242e
JB
2840 if (mddev->queue) {
2841 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2842 mddev->queue->backing_dev_info.congested_data = mddev;
6b740b8d 2843 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2ff8cc2c
SL
2844
2845 if (discard_supported)
2846 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2847 mddev->queue);
2848 else
2849 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2850 mddev->queue);
1ed7242e 2851 }
5220ea1e 2852
2853 ret = md_integrity_register(mddev);
2854 if (ret)
2855 stop(mddev);
2856 return ret;
1da177e4
LT
2857}
2858
fd01b88c 2859static int stop(struct mddev *mddev)
1da177e4 2860{
e8096360 2861 struct r1conf *conf = mddev->private;
4b6d287f 2862 struct bitmap *bitmap = mddev->bitmap;
4b6d287f
N
2863
2864 /* wait for behind writes to complete */
e555190d 2865 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
9dd1e2fa
N
2866 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2867 mdname(mddev));
4b6d287f 2868 /* need to kick something here to make sure I/O goes? */
e555190d
N
2869 wait_event(bitmap->behind_wait,
2870 atomic_read(&bitmap->behind_writes) == 0);
4b6d287f 2871 }
1da177e4 2872
409c57f3
N
2873 raise_barrier(conf);
2874 lower_barrier(conf);
2875
01f96c0a 2876 md_unregister_thread(&mddev->thread);
1da177e4
LT
2877 if (conf->r1bio_pool)
2878 mempool_destroy(conf->r1bio_pool);
990a8baf 2879 kfree(conf->mirrors);
0fea7ed8 2880 safe_put_page(conf->tmppage);
990a8baf 2881 kfree(conf->poolinfo);
1da177e4
LT
2882 kfree(conf);
2883 mddev->private = NULL;
2884 return 0;
2885}
2886
fd01b88c 2887static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
2888{
2889 /* no resync is happening, and there is enough space
2890 * on all devices, so we can resize.
2891 * We need to make sure resync covers any new space.
2892 * If the array is shrinking we should possibly wait until
2893 * any io in the removed space completes, but it hardly seems
2894 * worth it.
2895 */
a4a6125a
N
2896 sector_t newsize = raid1_size(mddev, sectors, 0);
2897 if (mddev->external_size &&
2898 mddev->array_sectors > newsize)
b522adcd 2899 return -EINVAL;
a4a6125a
N
2900 if (mddev->bitmap) {
2901 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2902 if (ret)
2903 return ret;
2904 }
2905 md_set_array_sectors(mddev, newsize);
f233ea5c 2906 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 2907 revalidate_disk(mddev->gendisk);
b522adcd 2908 if (sectors > mddev->dev_sectors &&
b098636c 2909 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 2910 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
2911 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2912 }
b522adcd 2913 mddev->dev_sectors = sectors;
4b5c7ae8 2914 mddev->resync_max_sectors = sectors;
1da177e4
LT
2915 return 0;
2916}
2917
fd01b88c 2918static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
2919{
2920 /* We need to:
2921 * 1/ resize the r1bio_pool
2922 * 2/ resize conf->mirrors
2923 *
2924 * We allocate a new r1bio_pool if we can.
2925 * Then raise a device barrier and wait until all IO stops.
2926 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
2927 *
2928 * At the same time, we "pack" the devices so that all the missing
2929 * devices have the higher raid_disk numbers.
1da177e4
LT
2930 */
2931 mempool_t *newpool, *oldpool;
2932 struct pool_info *newpoolinfo;
0eaf822c 2933 struct raid1_info *newmirrors;
e8096360 2934 struct r1conf *conf = mddev->private;
63c70c4f 2935 int cnt, raid_disks;
c04be0aa 2936 unsigned long flags;
b5470dc5 2937 int d, d2, err;
1da177e4 2938
63c70c4f 2939 /* Cannot change chunk_size, layout, or level */
664e7c41 2940 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
2941 mddev->layout != mddev->new_layout ||
2942 mddev->level != mddev->new_level) {
664e7c41 2943 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
2944 mddev->new_layout = mddev->layout;
2945 mddev->new_level = mddev->level;
2946 return -EINVAL;
2947 }
2948
b5470dc5
DW
2949 err = md_allow_write(mddev);
2950 if (err)
2951 return err;
2a2275d6 2952
63c70c4f
N
2953 raid_disks = mddev->raid_disks + mddev->delta_disks;
2954
6ea9c07c
N
2955 if (raid_disks < conf->raid_disks) {
2956 cnt=0;
2957 for (d= 0; d < conf->raid_disks; d++)
2958 if (conf->mirrors[d].rdev)
2959 cnt++;
2960 if (cnt > raid_disks)
1da177e4 2961 return -EBUSY;
6ea9c07c 2962 }
1da177e4
LT
2963
2964 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2965 if (!newpoolinfo)
2966 return -ENOMEM;
2967 newpoolinfo->mddev = mddev;
8f19ccb2 2968 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
2969
2970 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2971 r1bio_pool_free, newpoolinfo);
2972 if (!newpool) {
2973 kfree(newpoolinfo);
2974 return -ENOMEM;
2975 }
0eaf822c 2976 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 2977 GFP_KERNEL);
1da177e4
LT
2978 if (!newmirrors) {
2979 kfree(newpoolinfo);
2980 mempool_destroy(newpool);
2981 return -ENOMEM;
2982 }
1da177e4 2983
e2d59925 2984 freeze_array(conf, 0);
1da177e4
LT
2985
2986 /* ok, everything is stopped */
2987 oldpool = conf->r1bio_pool;
2988 conf->r1bio_pool = newpool;
6ea9c07c 2989
a88aa786 2990 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 2991 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 2992 if (rdev && rdev->raid_disk != d2) {
36fad858 2993 sysfs_unlink_rdev(mddev, rdev);
a88aa786 2994 rdev->raid_disk = d2;
36fad858
NK
2995 sysfs_unlink_rdev(mddev, rdev);
2996 if (sysfs_link_rdev(mddev, rdev))
a88aa786 2997 printk(KERN_WARNING
36fad858
NK
2998 "md/raid1:%s: cannot register rd%d\n",
2999 mdname(mddev), rdev->raid_disk);
6ea9c07c 3000 }
a88aa786
N
3001 if (rdev)
3002 newmirrors[d2++].rdev = rdev;
3003 }
1da177e4
LT
3004 kfree(conf->mirrors);
3005 conf->mirrors = newmirrors;
3006 kfree(conf->poolinfo);
3007 conf->poolinfo = newpoolinfo;
3008
c04be0aa 3009 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3010 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3011 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3012 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3013 mddev->delta_disks = 0;
1da177e4 3014
e2d59925 3015 unfreeze_array(conf);
1da177e4
LT
3016
3017 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3018 md_wakeup_thread(mddev->thread);
3019
3020 mempool_destroy(oldpool);
3021 return 0;
3022}
3023
fd01b88c 3024static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3025{
e8096360 3026 struct r1conf *conf = mddev->private;
36fa3063
N
3027
3028 switch(state) {
6eef4b21
N
3029 case 2: /* wake for suspend */
3030 wake_up(&conf->wait_barrier);
3031 break;
9e6603da 3032 case 1:
17999be4 3033 raise_barrier(conf);
36fa3063 3034 break;
9e6603da 3035 case 0:
17999be4 3036 lower_barrier(conf);
36fa3063
N
3037 break;
3038 }
36fa3063
N
3039}
3040
fd01b88c 3041static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3042{
3043 /* raid1 can take over:
3044 * raid5 with 2 devices, any layout or chunk size
3045 */
3046 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3047 struct r1conf *conf;
709ae487
N
3048 mddev->new_level = 1;
3049 mddev->new_layout = 0;
3050 mddev->new_chunk_sectors = 0;
3051 conf = setup_conf(mddev);
3052 if (!IS_ERR(conf))
3053 conf->barrier = 1;
3054 return conf;
3055 }
3056 return ERR_PTR(-EINVAL);
3057}
1da177e4 3058
84fc4b56 3059static struct md_personality raid1_personality =
1da177e4
LT
3060{
3061 .name = "raid1",
2604b703 3062 .level = 1,
1da177e4
LT
3063 .owner = THIS_MODULE,
3064 .make_request = make_request,
3065 .run = run,
3066 .stop = stop,
3067 .status = status,
3068 .error_handler = error,
3069 .hot_add_disk = raid1_add_disk,
3070 .hot_remove_disk= raid1_remove_disk,
3071 .spare_active = raid1_spare_active,
3072 .sync_request = sync_request,
3073 .resize = raid1_resize,
80c3a6ce 3074 .size = raid1_size,
63c70c4f 3075 .check_reshape = raid1_reshape,
36fa3063 3076 .quiesce = raid1_quiesce,
709ae487 3077 .takeover = raid1_takeover,
1da177e4
LT
3078};
3079
3080static int __init raid_init(void)
3081{
2604b703 3082 return register_md_personality(&raid1_personality);
1da177e4
LT
3083}
3084
3085static void raid_exit(void)
3086{
2604b703 3087 unregister_md_personality(&raid1_personality);
1da177e4
LT
3088}
3089
3090module_init(raid_init);
3091module_exit(raid_exit);
3092MODULE_LICENSE("GPL");
0efb9e61 3093MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3094MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3095MODULE_ALIAS("md-raid1");
2604b703 3096MODULE_ALIAS("md-level-1");
34db0cd6
N
3097
3098module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.887946 seconds and 5 git commands to generate.