Merge branch 'fix/rt5645' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[deliverable/linux.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
43b2e5d8 40#include "md.h"
ef740c37
CH
41#include "raid1.h"
42#include "bitmap.h"
191ea9b2 43
1da177e4
LT
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
473e87ce
JB
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
34db0cd6
N
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
1da177e4 68
79ef3a8a 69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
e8096360 71static void lower_barrier(struct r1conf *conf);
1da177e4 72
dd0fc66f 73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
74{
75 struct pool_info *pi = data;
9f2c9d12 76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 79 return kzalloc(size, gfp_flags);
1da177e4
LT
80}
81
82static void r1bio_pool_free(void *r1_bio, void *data)
83{
84 kfree(r1_bio);
85}
86
87#define RESYNC_BLOCK_SIZE (64*1024)
8e005f7c 88#define RESYNC_DEPTH 32
1da177e4
LT
89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
8e005f7c 91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
1da177e4 94
dd0fc66f 95static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
96{
97 struct pool_info *pi = data;
9f2c9d12 98 struct r1bio *r1_bio;
1da177e4 99 struct bio *bio;
da1aab3d 100 int need_pages;
1da177e4
LT
101 int i, j;
102
103 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 104 if (!r1_bio)
1da177e4 105 return NULL;
1da177e4
LT
106
107 /*
108 * Allocate bios : 1 for reading, n-1 for writing
109 */
110 for (j = pi->raid_disks ; j-- ; ) {
6746557f 111 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
112 if (!bio)
113 goto out_free_bio;
114 r1_bio->bios[j] = bio;
115 }
116 /*
117 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
118 * the first bio.
119 * If this is a user-requested check/repair, allocate
120 * RESYNC_PAGES for each bio.
1da177e4 121 */
d11c171e 122 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 123 need_pages = pi->raid_disks;
d11c171e 124 else
da1aab3d
N
125 need_pages = 1;
126 for (j = 0; j < need_pages; j++) {
d11c171e 127 bio = r1_bio->bios[j];
a0787606 128 bio->bi_vcnt = RESYNC_PAGES;
d11c171e 129
a0787606 130 if (bio_alloc_pages(bio, gfp_flags))
da1aab3d 131 goto out_free_pages;
d11c171e
N
132 }
133 /* If not user-requests, copy the page pointers to all bios */
134 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 for (i=0; i<RESYNC_PAGES ; i++)
136 for (j=1; j<pi->raid_disks; j++)
137 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
139 }
140
141 r1_bio->master_bio = NULL;
142
143 return r1_bio;
144
da1aab3d
N
145out_free_pages:
146 while (--j >= 0) {
147 struct bio_vec *bv;
148
149 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 __free_page(bv->bv_page);
151 }
152
1da177e4 153out_free_bio:
8f19ccb2 154 while (++j < pi->raid_disks)
1da177e4
LT
155 bio_put(r1_bio->bios[j]);
156 r1bio_pool_free(r1_bio, data);
157 return NULL;
158}
159
160static void r1buf_pool_free(void *__r1_bio, void *data)
161{
162 struct pool_info *pi = data;
d11c171e 163 int i,j;
9f2c9d12 164 struct r1bio *r1bio = __r1_bio;
1da177e4 165
d11c171e
N
166 for (i = 0; i < RESYNC_PAGES; i++)
167 for (j = pi->raid_disks; j-- ;) {
168 if (j == 0 ||
169 r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 171 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 172 }
1da177e4
LT
173 for (i=0 ; i < pi->raid_disks; i++)
174 bio_put(r1bio->bios[i]);
175
176 r1bio_pool_free(r1bio, data);
177}
178
e8096360 179static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
180{
181 int i;
182
8f19ccb2 183 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 184 struct bio **bio = r1_bio->bios + i;
4367af55 185 if (!BIO_SPECIAL(*bio))
1da177e4
LT
186 bio_put(*bio);
187 *bio = NULL;
188 }
189}
190
9f2c9d12 191static void free_r1bio(struct r1bio *r1_bio)
1da177e4 192{
e8096360 193 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 194
1da177e4
LT
195 put_all_bios(conf, r1_bio);
196 mempool_free(r1_bio, conf->r1bio_pool);
197}
198
9f2c9d12 199static void put_buf(struct r1bio *r1_bio)
1da177e4 200{
e8096360 201 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
202 int i;
203
8f19ccb2 204 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
205 struct bio *bio = r1_bio->bios[i];
206 if (bio->bi_end_io)
207 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 }
1da177e4
LT
209
210 mempool_free(r1_bio, conf->r1buf_pool);
211
17999be4 212 lower_barrier(conf);
1da177e4
LT
213}
214
9f2c9d12 215static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
216{
217 unsigned long flags;
fd01b88c 218 struct mddev *mddev = r1_bio->mddev;
e8096360 219 struct r1conf *conf = mddev->private;
1da177e4
LT
220
221 spin_lock_irqsave(&conf->device_lock, flags);
222 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 223 conf->nr_queued ++;
1da177e4
LT
224 spin_unlock_irqrestore(&conf->device_lock, flags);
225
17999be4 226 wake_up(&conf->wait_barrier);
1da177e4
LT
227 md_wakeup_thread(mddev->thread);
228}
229
230/*
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
233 * cache layer.
234 */
9f2c9d12 235static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
236{
237 struct bio *bio = r1_bio->master_bio;
238 int done;
e8096360 239 struct r1conf *conf = r1_bio->mddev->private;
79ef3a8a 240 sector_t start_next_window = r1_bio->start_next_window;
4f024f37 241 sector_t bi_sector = bio->bi_iter.bi_sector;
d2eb35ac
N
242
243 if (bio->bi_phys_segments) {
244 unsigned long flags;
245 spin_lock_irqsave(&conf->device_lock, flags);
246 bio->bi_phys_segments--;
247 done = (bio->bi_phys_segments == 0);
248 spin_unlock_irqrestore(&conf->device_lock, flags);
79ef3a8a 249 /*
250 * make_request() might be waiting for
251 * bi_phys_segments to decrease
252 */
253 wake_up(&conf->wait_barrier);
d2eb35ac
N
254 } else
255 done = 1;
256
257 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 clear_bit(BIO_UPTODATE, &bio->bi_flags);
259 if (done) {
260 bio_endio(bio, 0);
261 /*
262 * Wake up any possible resync thread that waits for the device
263 * to go idle.
264 */
79ef3a8a 265 allow_barrier(conf, start_next_window, bi_sector);
d2eb35ac
N
266 }
267}
268
9f2c9d12 269static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
270{
271 struct bio *bio = r1_bio->master_bio;
272
4b6d287f
N
273 /* if nobody has done the final endio yet, do it now */
274 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
275 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
277 (unsigned long long) bio->bi_iter.bi_sector,
278 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 279
d2eb35ac 280 call_bio_endio(r1_bio);
4b6d287f 281 }
1da177e4
LT
282 free_r1bio(r1_bio);
283}
284
285/*
286 * Update disk head position estimator based on IRQ completion info.
287 */
9f2c9d12 288static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 289{
e8096360 290 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
291
292 conf->mirrors[disk].head_position =
293 r1_bio->sector + (r1_bio->sectors);
294}
295
ba3ae3be
NK
296/*
297 * Find the disk number which triggered given bio
298 */
9f2c9d12 299static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
300{
301 int mirror;
30194636
N
302 struct r1conf *conf = r1_bio->mddev->private;
303 int raid_disks = conf->raid_disks;
ba3ae3be 304
8f19ccb2 305 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
306 if (r1_bio->bios[mirror] == bio)
307 break;
308
8f19ccb2 309 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
310 update_head_pos(mirror, r1_bio);
311
312 return mirror;
313}
314
6712ecf8 315static void raid1_end_read_request(struct bio *bio, int error)
1da177e4
LT
316{
317 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 318 struct r1bio *r1_bio = bio->bi_private;
1da177e4 319 int mirror;
e8096360 320 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 321
1da177e4
LT
322 mirror = r1_bio->read_disk;
323 /*
324 * this branch is our 'one mirror IO has finished' event handler:
325 */
ddaf22ab
N
326 update_head_pos(mirror, r1_bio);
327
dd00a99e
N
328 if (uptodate)
329 set_bit(R1BIO_Uptodate, &r1_bio->state);
330 else {
331 /* If all other devices have failed, we want to return
332 * the error upwards rather than fail the last device.
333 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 334 */
dd00a99e
N
335 unsigned long flags;
336 spin_lock_irqsave(&conf->device_lock, flags);
337 if (r1_bio->mddev->degraded == conf->raid_disks ||
338 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
34cab6f4 339 test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
dd00a99e
N
340 uptodate = 1;
341 spin_unlock_irqrestore(&conf->device_lock, flags);
342 }
1da177e4 343
7ad4d4a6 344 if (uptodate) {
1da177e4 345 raid_end_bio_io(r1_bio);
7ad4d4a6
N
346 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347 } else {
1da177e4
LT
348 /*
349 * oops, read error:
350 */
351 char b[BDEVNAME_SIZE];
8bda470e
CD
352 printk_ratelimited(
353 KERN_ERR "md/raid1:%s: %s: "
354 "rescheduling sector %llu\n",
355 mdname(conf->mddev),
356 bdevname(conf->mirrors[mirror].rdev->bdev,
357 b),
358 (unsigned long long)r1_bio->sector);
d2eb35ac 359 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 360 reschedule_retry(r1_bio);
7ad4d4a6 361 /* don't drop the reference on read_disk yet */
1da177e4 362 }
1da177e4
LT
363}
364
9f2c9d12 365static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
366{
367 /* it really is the end of this request */
368 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 /* free extra copy of the data pages */
370 int i = r1_bio->behind_page_count;
371 while (i--)
372 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 kfree(r1_bio->behind_bvecs);
374 r1_bio->behind_bvecs = NULL;
375 }
376 /* clear the bitmap if all writes complete successfully */
377 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378 r1_bio->sectors,
379 !test_bit(R1BIO_Degraded, &r1_bio->state),
380 test_bit(R1BIO_BehindIO, &r1_bio->state));
381 md_write_end(r1_bio->mddev);
382}
383
9f2c9d12 384static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 385{
cd5ff9a1
N
386 if (!atomic_dec_and_test(&r1_bio->remaining))
387 return;
388
389 if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 reschedule_retry(r1_bio);
391 else {
392 close_write(r1_bio);
4367af55
N
393 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 reschedule_retry(r1_bio);
395 else
396 raid_end_bio_io(r1_bio);
4e78064f
N
397 }
398}
399
6712ecf8 400static void raid1_end_write_request(struct bio *bio, int error)
1da177e4
LT
401{
402 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 403 struct r1bio *r1_bio = bio->bi_private;
a9701a30 404 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 405 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 406 struct bio *to_put = NULL;
1da177e4 407
ba3ae3be 408 mirror = find_bio_disk(r1_bio, bio);
1da177e4 409
e9c7469b
TH
410 /*
411 * 'one mirror IO has finished' event handler:
412 */
e9c7469b 413 if (!uptodate) {
cd5ff9a1
N
414 set_bit(WriteErrorSeen,
415 &conf->mirrors[mirror].rdev->flags);
19d67169
N
416 if (!test_and_set_bit(WantReplacement,
417 &conf->mirrors[mirror].rdev->flags))
418 set_bit(MD_RECOVERY_NEEDED, &
419 conf->mddev->recovery);
420
cd5ff9a1 421 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 422 } else {
1da177e4 423 /*
e9c7469b
TH
424 * Set R1BIO_Uptodate in our master bio, so that we
425 * will return a good error code for to the higher
426 * levels even if IO on some other mirrored buffer
427 * fails.
428 *
429 * The 'master' represents the composite IO operation
430 * to user-side. So if something waits for IO, then it
431 * will wait for the 'master' bio.
1da177e4 432 */
4367af55
N
433 sector_t first_bad;
434 int bad_sectors;
435
cd5ff9a1
N
436 r1_bio->bios[mirror] = NULL;
437 to_put = bio;
3056e3ae
AL
438 /*
439 * Do not set R1BIO_Uptodate if the current device is
440 * rebuilding or Faulty. This is because we cannot use
441 * such device for properly reading the data back (we could
442 * potentially use it, if the current write would have felt
443 * before rdev->recovery_offset, but for simplicity we don't
444 * check this here.
445 */
446 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 449
4367af55
N
450 /* Maybe we can clear some bad blocks. */
451 if (is_badblock(conf->mirrors[mirror].rdev,
452 r1_bio->sector, r1_bio->sectors,
453 &first_bad, &bad_sectors)) {
454 r1_bio->bios[mirror] = IO_MADE_GOOD;
455 set_bit(R1BIO_MadeGood, &r1_bio->state);
456 }
457 }
458
e9c7469b
TH
459 if (behind) {
460 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 atomic_dec(&r1_bio->behind_remaining);
462
463 /*
464 * In behind mode, we ACK the master bio once the I/O
465 * has safely reached all non-writemostly
466 * disks. Setting the Returned bit ensures that this
467 * gets done only once -- we don't ever want to return
468 * -EIO here, instead we'll wait
469 */
470 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 /* Maybe we can return now */
473 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
475 pr_debug("raid1: behind end write sectors"
476 " %llu-%llu\n",
4f024f37
KO
477 (unsigned long long) mbio->bi_iter.bi_sector,
478 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 479 call_bio_endio(r1_bio);
4b6d287f
N
480 }
481 }
482 }
4367af55
N
483 if (r1_bio->bios[mirror] == NULL)
484 rdev_dec_pending(conf->mirrors[mirror].rdev,
485 conf->mddev);
e9c7469b 486
1da177e4 487 /*
1da177e4
LT
488 * Let's see if all mirrored write operations have finished
489 * already.
490 */
af6d7b76 491 r1_bio_write_done(r1_bio);
c70810b3 492
04b857f7
N
493 if (to_put)
494 bio_put(to_put);
1da177e4
LT
495}
496
1da177e4
LT
497/*
498 * This routine returns the disk from which the requested read should
499 * be done. There is a per-array 'next expected sequential IO' sector
500 * number - if this matches on the next IO then we use the last disk.
501 * There is also a per-disk 'last know head position' sector that is
502 * maintained from IRQ contexts, both the normal and the resync IO
503 * completion handlers update this position correctly. If there is no
504 * perfect sequential match then we pick the disk whose head is closest.
505 *
506 * If there are 2 mirrors in the same 2 devices, performance degrades
507 * because position is mirror, not device based.
508 *
509 * The rdev for the device selected will have nr_pending incremented.
510 */
e8096360 511static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 512{
af3a2cd6 513 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
514 int sectors;
515 int best_good_sectors;
9dedf603
SL
516 int best_disk, best_dist_disk, best_pending_disk;
517 int has_nonrot_disk;
be4d3280 518 int disk;
76073054 519 sector_t best_dist;
9dedf603 520 unsigned int min_pending;
3cb03002 521 struct md_rdev *rdev;
f3ac8bf7 522 int choose_first;
12cee5a8 523 int choose_next_idle;
1da177e4
LT
524
525 rcu_read_lock();
526 /*
8ddf9efe 527 * Check if we can balance. We can balance on the whole
1da177e4
LT
528 * device if no resync is going on, or below the resync window.
529 * We take the first readable disk when above the resync window.
530 */
531 retry:
d2eb35ac 532 sectors = r1_bio->sectors;
76073054 533 best_disk = -1;
9dedf603 534 best_dist_disk = -1;
76073054 535 best_dist = MaxSector;
9dedf603
SL
536 best_pending_disk = -1;
537 min_pending = UINT_MAX;
d2eb35ac 538 best_good_sectors = 0;
9dedf603 539 has_nonrot_disk = 0;
12cee5a8 540 choose_next_idle = 0;
d2eb35ac 541
7d49ffcf
GR
542 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
543 (mddev_is_clustered(conf->mddev) &&
90382ed9 544 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
545 this_sector + sectors)))
546 choose_first = 1;
547 else
548 choose_first = 0;
1da177e4 549
be4d3280 550 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 551 sector_t dist;
d2eb35ac
N
552 sector_t first_bad;
553 int bad_sectors;
9dedf603 554 unsigned int pending;
12cee5a8 555 bool nonrot;
d2eb35ac 556
f3ac8bf7
N
557 rdev = rcu_dereference(conf->mirrors[disk].rdev);
558 if (r1_bio->bios[disk] == IO_BLOCKED
559 || rdev == NULL
6b740b8d 560 || test_bit(Unmerged, &rdev->flags)
76073054 561 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 562 continue;
76073054
N
563 if (!test_bit(In_sync, &rdev->flags) &&
564 rdev->recovery_offset < this_sector + sectors)
1da177e4 565 continue;
76073054
N
566 if (test_bit(WriteMostly, &rdev->flags)) {
567 /* Don't balance among write-mostly, just
568 * use the first as a last resort */
d1901ef0 569 if (best_dist_disk < 0) {
307729c8
N
570 if (is_badblock(rdev, this_sector, sectors,
571 &first_bad, &bad_sectors)) {
572 if (first_bad < this_sector)
573 /* Cannot use this */
574 continue;
575 best_good_sectors = first_bad - this_sector;
576 } else
577 best_good_sectors = sectors;
d1901ef0
TH
578 best_dist_disk = disk;
579 best_pending_disk = disk;
307729c8 580 }
76073054
N
581 continue;
582 }
583 /* This is a reasonable device to use. It might
584 * even be best.
585 */
d2eb35ac
N
586 if (is_badblock(rdev, this_sector, sectors,
587 &first_bad, &bad_sectors)) {
588 if (best_dist < MaxSector)
589 /* already have a better device */
590 continue;
591 if (first_bad <= this_sector) {
592 /* cannot read here. If this is the 'primary'
593 * device, then we must not read beyond
594 * bad_sectors from another device..
595 */
596 bad_sectors -= (this_sector - first_bad);
597 if (choose_first && sectors > bad_sectors)
598 sectors = bad_sectors;
599 if (best_good_sectors > sectors)
600 best_good_sectors = sectors;
601
602 } else {
603 sector_t good_sectors = first_bad - this_sector;
604 if (good_sectors > best_good_sectors) {
605 best_good_sectors = good_sectors;
606 best_disk = disk;
607 }
608 if (choose_first)
609 break;
610 }
611 continue;
612 } else
613 best_good_sectors = sectors;
614
12cee5a8
SL
615 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
616 has_nonrot_disk |= nonrot;
9dedf603 617 pending = atomic_read(&rdev->nr_pending);
76073054 618 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 619 if (choose_first) {
76073054 620 best_disk = disk;
1da177e4
LT
621 break;
622 }
12cee5a8
SL
623 /* Don't change to another disk for sequential reads */
624 if (conf->mirrors[disk].next_seq_sect == this_sector
625 || dist == 0) {
626 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
627 struct raid1_info *mirror = &conf->mirrors[disk];
628
629 best_disk = disk;
630 /*
631 * If buffered sequential IO size exceeds optimal
632 * iosize, check if there is idle disk. If yes, choose
633 * the idle disk. read_balance could already choose an
634 * idle disk before noticing it's a sequential IO in
635 * this disk. This doesn't matter because this disk
636 * will idle, next time it will be utilized after the
637 * first disk has IO size exceeds optimal iosize. In
638 * this way, iosize of the first disk will be optimal
639 * iosize at least. iosize of the second disk might be
640 * small, but not a big deal since when the second disk
641 * starts IO, the first disk is likely still busy.
642 */
643 if (nonrot && opt_iosize > 0 &&
644 mirror->seq_start != MaxSector &&
645 mirror->next_seq_sect > opt_iosize &&
646 mirror->next_seq_sect - opt_iosize >=
647 mirror->seq_start) {
648 choose_next_idle = 1;
649 continue;
650 }
651 break;
652 }
653 /* If device is idle, use it */
654 if (pending == 0) {
655 best_disk = disk;
656 break;
657 }
658
659 if (choose_next_idle)
660 continue;
9dedf603
SL
661
662 if (min_pending > pending) {
663 min_pending = pending;
664 best_pending_disk = disk;
665 }
666
76073054
N
667 if (dist < best_dist) {
668 best_dist = dist;
9dedf603 669 best_dist_disk = disk;
1da177e4 670 }
f3ac8bf7 671 }
1da177e4 672
9dedf603
SL
673 /*
674 * If all disks are rotational, choose the closest disk. If any disk is
675 * non-rotational, choose the disk with less pending request even the
676 * disk is rotational, which might/might not be optimal for raids with
677 * mixed ratation/non-rotational disks depending on workload.
678 */
679 if (best_disk == -1) {
680 if (has_nonrot_disk)
681 best_disk = best_pending_disk;
682 else
683 best_disk = best_dist_disk;
684 }
685
76073054
N
686 if (best_disk >= 0) {
687 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
688 if (!rdev)
689 goto retry;
690 atomic_inc(&rdev->nr_pending);
76073054 691 if (test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
692 /* cannot risk returning a device that failed
693 * before we inc'ed nr_pending
694 */
03c902e1 695 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
696 goto retry;
697 }
d2eb35ac 698 sectors = best_good_sectors;
12cee5a8
SL
699
700 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
701 conf->mirrors[best_disk].seq_start = this_sector;
702
be4d3280 703 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
704 }
705 rcu_read_unlock();
d2eb35ac 706 *max_sectors = sectors;
1da177e4 707
76073054 708 return best_disk;
1da177e4
LT
709}
710
64590f45 711static int raid1_mergeable_bvec(struct mddev *mddev,
6b740b8d
N
712 struct bvec_merge_data *bvm,
713 struct bio_vec *biovec)
714{
6b740b8d
N
715 struct r1conf *conf = mddev->private;
716 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
717 int max = biovec->bv_len;
718
719 if (mddev->merge_check_needed) {
720 int disk;
721 rcu_read_lock();
722 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
723 struct md_rdev *rdev = rcu_dereference(
724 conf->mirrors[disk].rdev);
725 if (rdev && !test_bit(Faulty, &rdev->flags)) {
726 struct request_queue *q =
727 bdev_get_queue(rdev->bdev);
728 if (q->merge_bvec_fn) {
729 bvm->bi_sector = sector +
730 rdev->data_offset;
731 bvm->bi_bdev = rdev->bdev;
732 max = min(max, q->merge_bvec_fn(
733 q, bvm, biovec));
734 }
735 }
736 }
737 rcu_read_unlock();
738 }
739 return max;
740
741}
742
5c675f83 743static int raid1_congested(struct mddev *mddev, int bits)
0d129228 744{
e8096360 745 struct r1conf *conf = mddev->private;
0d129228
N
746 int i, ret = 0;
747
4452226e 748 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
749 conf->pending_count >= max_queued_requests)
750 return 1;
751
0d129228 752 rcu_read_lock();
f53e29fc 753 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 754 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 755 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 756 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 757
1ed7242e
JB
758 BUG_ON(!q);
759
0d129228
N
760 /* Note the '|| 1' - when read_balance prefers
761 * non-congested targets, it can be removed
762 */
4452226e 763 if ((bits & (1 << WB_async_congested)) || 1)
0d129228
N
764 ret |= bdi_congested(&q->backing_dev_info, bits);
765 else
766 ret &= bdi_congested(&q->backing_dev_info, bits);
767 }
768 }
769 rcu_read_unlock();
770 return ret;
771}
0d129228 772
e8096360 773static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
774{
775 /* Any writes that have been queued but are awaiting
776 * bitmap updates get flushed here.
a35e63ef 777 */
a35e63ef
N
778 spin_lock_irq(&conf->device_lock);
779
780 if (conf->pending_bio_list.head) {
781 struct bio *bio;
782 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 783 conf->pending_count = 0;
a35e63ef
N
784 spin_unlock_irq(&conf->device_lock);
785 /* flush any pending bitmap writes to
786 * disk before proceeding w/ I/O */
787 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 788 wake_up(&conf->wait_barrier);
a35e63ef
N
789
790 while (bio) { /* submit pending writes */
791 struct bio *next = bio->bi_next;
792 bio->bi_next = NULL;
2ff8cc2c
SL
793 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
794 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
795 /* Just ignore it */
796 bio_endio(bio, 0);
797 else
798 generic_make_request(bio);
a35e63ef
N
799 bio = next;
800 }
a35e63ef
N
801 } else
802 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
803}
804
17999be4
N
805/* Barriers....
806 * Sometimes we need to suspend IO while we do something else,
807 * either some resync/recovery, or reconfigure the array.
808 * To do this we raise a 'barrier'.
809 * The 'barrier' is a counter that can be raised multiple times
810 * to count how many activities are happening which preclude
811 * normal IO.
812 * We can only raise the barrier if there is no pending IO.
813 * i.e. if nr_pending == 0.
814 * We choose only to raise the barrier if no-one is waiting for the
815 * barrier to go down. This means that as soon as an IO request
816 * is ready, no other operations which require a barrier will start
817 * until the IO request has had a chance.
818 *
819 * So: regular IO calls 'wait_barrier'. When that returns there
820 * is no backgroup IO happening, It must arrange to call
821 * allow_barrier when it has finished its IO.
822 * backgroup IO calls must call raise_barrier. Once that returns
823 * there is no normal IO happeing. It must arrange to call
824 * lower_barrier when the particular background IO completes.
1da177e4 825 */
c2fd4c94 826static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4
LT
827{
828 spin_lock_irq(&conf->resync_lock);
17999be4
N
829
830 /* Wait until no block IO is waiting */
831 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
eed8c02e 832 conf->resync_lock);
17999be4
N
833
834 /* block any new IO from starting */
835 conf->barrier++;
c2fd4c94 836 conf->next_resync = sector_nr;
17999be4 837
79ef3a8a 838 /* For these conditions we must wait:
839 * A: while the array is in frozen state
840 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
841 * the max count which allowed.
842 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
843 * next resync will reach to the window which normal bios are
844 * handling.
2f73d3c5 845 * D: while there are any active requests in the current window.
79ef3a8a 846 */
17999be4 847 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 848 !conf->array_frozen &&
79ef3a8a 849 conf->barrier < RESYNC_DEPTH &&
2f73d3c5 850 conf->current_window_requests == 0 &&
79ef3a8a 851 (conf->start_next_window >=
852 conf->next_resync + RESYNC_SECTORS),
eed8c02e 853 conf->resync_lock);
17999be4 854
34e97f17 855 conf->nr_pending++;
17999be4
N
856 spin_unlock_irq(&conf->resync_lock);
857}
858
e8096360 859static void lower_barrier(struct r1conf *conf)
17999be4
N
860{
861 unsigned long flags;
709ae487 862 BUG_ON(conf->barrier <= 0);
17999be4
N
863 spin_lock_irqsave(&conf->resync_lock, flags);
864 conf->barrier--;
34e97f17 865 conf->nr_pending--;
17999be4
N
866 spin_unlock_irqrestore(&conf->resync_lock, flags);
867 wake_up(&conf->wait_barrier);
868}
869
79ef3a8a 870static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
17999be4 871{
79ef3a8a 872 bool wait = false;
873
874 if (conf->array_frozen || !bio)
875 wait = true;
876 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
23554960
N
877 if ((conf->mddev->curr_resync_completed
878 >= bio_end_sector(bio)) ||
879 (conf->next_resync + NEXT_NORMALIO_DISTANCE
880 <= bio->bi_iter.bi_sector))
79ef3a8a 881 wait = false;
882 else
883 wait = true;
884 }
885
886 return wait;
887}
888
889static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
890{
891 sector_t sector = 0;
892
17999be4 893 spin_lock_irq(&conf->resync_lock);
79ef3a8a 894 if (need_to_wait_for_sync(conf, bio)) {
17999be4 895 conf->nr_waiting++;
d6b42dcb
N
896 /* Wait for the barrier to drop.
897 * However if there are already pending
898 * requests (preventing the barrier from
899 * rising completely), and the
5965b642 900 * per-process bio queue isn't empty,
d6b42dcb 901 * then don't wait, as we need to empty
5965b642
N
902 * that queue to allow conf->start_next_window
903 * to increase.
d6b42dcb
N
904 */
905 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 906 !conf->array_frozen &&
907 (!conf->barrier ||
5965b642
N
908 ((conf->start_next_window <
909 conf->next_resync + RESYNC_SECTORS) &&
910 current->bio_list &&
911 !bio_list_empty(current->bio_list))),
eed8c02e 912 conf->resync_lock);
17999be4 913 conf->nr_waiting--;
1da177e4 914 }
79ef3a8a 915
916 if (bio && bio_data_dir(bio) == WRITE) {
2f73d3c5 917 if (bio->bi_iter.bi_sector >=
23554960 918 conf->mddev->curr_resync_completed) {
79ef3a8a 919 if (conf->start_next_window == MaxSector)
920 conf->start_next_window =
921 conf->next_resync +
922 NEXT_NORMALIO_DISTANCE;
923
924 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
4f024f37 925 <= bio->bi_iter.bi_sector)
79ef3a8a 926 conf->next_window_requests++;
927 else
928 conf->current_window_requests++;
79ef3a8a 929 sector = conf->start_next_window;
41a336e0 930 }
79ef3a8a 931 }
932
17999be4 933 conf->nr_pending++;
1da177e4 934 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 935 return sector;
1da177e4
LT
936}
937
79ef3a8a 938static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
939 sector_t bi_sector)
17999be4
N
940{
941 unsigned long flags;
79ef3a8a 942
17999be4
N
943 spin_lock_irqsave(&conf->resync_lock, flags);
944 conf->nr_pending--;
79ef3a8a 945 if (start_next_window) {
946 if (start_next_window == conf->start_next_window) {
947 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
948 <= bi_sector)
949 conf->next_window_requests--;
950 else
951 conf->current_window_requests--;
952 } else
953 conf->current_window_requests--;
954
955 if (!conf->current_window_requests) {
956 if (conf->next_window_requests) {
957 conf->current_window_requests =
958 conf->next_window_requests;
959 conf->next_window_requests = 0;
960 conf->start_next_window +=
961 NEXT_NORMALIO_DISTANCE;
962 } else
963 conf->start_next_window = MaxSector;
964 }
965 }
17999be4
N
966 spin_unlock_irqrestore(&conf->resync_lock, flags);
967 wake_up(&conf->wait_barrier);
968}
969
e2d59925 970static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab
N
971{
972 /* stop syncio and normal IO and wait for everything to
973 * go quite.
b364e3d0 974 * We wait until nr_pending match nr_queued+extra
1c830532
N
975 * This is called in the context of one normal IO request
976 * that has failed. Thus any sync request that might be pending
977 * will be blocked by nr_pending, and we need to wait for
978 * pending IO requests to complete or be queued for re-try.
e2d59925 979 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
980 * must match the number of pending IOs (nr_pending) before
981 * we continue.
ddaf22ab
N
982 */
983 spin_lock_irq(&conf->resync_lock);
b364e3d0 984 conf->array_frozen = 1;
eed8c02e 985 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 986 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
987 conf->resync_lock,
988 flush_pending_writes(conf));
ddaf22ab
N
989 spin_unlock_irq(&conf->resync_lock);
990}
e8096360 991static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
992{
993 /* reverse the effect of the freeze */
994 spin_lock_irq(&conf->resync_lock);
b364e3d0 995 conf->array_frozen = 0;
ddaf22ab
N
996 wake_up(&conf->wait_barrier);
997 spin_unlock_irq(&conf->resync_lock);
998}
999
f72ffdd6 1000/* duplicate the data pages for behind I/O
4e78064f 1001 */
9f2c9d12 1002static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
1003{
1004 int i;
1005 struct bio_vec *bvec;
2ca68f5e 1006 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 1007 GFP_NOIO);
2ca68f5e 1008 if (unlikely(!bvecs))
af6d7b76 1009 return;
4b6d287f 1010
cb34e057 1011 bio_for_each_segment_all(bvec, bio, i) {
2ca68f5e
N
1012 bvecs[i] = *bvec;
1013 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1014 if (unlikely(!bvecs[i].bv_page))
4b6d287f 1015 goto do_sync_io;
2ca68f5e
N
1016 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1017 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1018 kunmap(bvecs[i].bv_page);
4b6d287f
N
1019 kunmap(bvec->bv_page);
1020 }
2ca68f5e 1021 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
1022 r1_bio->behind_page_count = bio->bi_vcnt;
1023 set_bit(R1BIO_BehindIO, &r1_bio->state);
1024 return;
4b6d287f
N
1025
1026do_sync_io:
af6d7b76 1027 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
1028 if (bvecs[i].bv_page)
1029 put_page(bvecs[i].bv_page);
1030 kfree(bvecs);
4f024f37
KO
1031 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1032 bio->bi_iter.bi_size);
4b6d287f
N
1033}
1034
f54a9d0e
N
1035struct raid1_plug_cb {
1036 struct blk_plug_cb cb;
1037 struct bio_list pending;
1038 int pending_cnt;
1039};
1040
1041static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1042{
1043 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1044 cb);
1045 struct mddev *mddev = plug->cb.data;
1046 struct r1conf *conf = mddev->private;
1047 struct bio *bio;
1048
874807a8 1049 if (from_schedule || current->bio_list) {
f54a9d0e
N
1050 spin_lock_irq(&conf->device_lock);
1051 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1052 conf->pending_count += plug->pending_cnt;
1053 spin_unlock_irq(&conf->device_lock);
ee0b0244 1054 wake_up(&conf->wait_barrier);
f54a9d0e
N
1055 md_wakeup_thread(mddev->thread);
1056 kfree(plug);
1057 return;
1058 }
1059
1060 /* we aren't scheduling, so we can do the write-out directly. */
1061 bio = bio_list_get(&plug->pending);
1062 bitmap_unplug(mddev->bitmap);
1063 wake_up(&conf->wait_barrier);
1064
1065 while (bio) { /* submit pending writes */
1066 struct bio *next = bio->bi_next;
1067 bio->bi_next = NULL;
32f9f570
SL
1068 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1069 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1070 /* Just ignore it */
1071 bio_endio(bio, 0);
1072 else
1073 generic_make_request(bio);
f54a9d0e
N
1074 bio = next;
1075 }
1076 kfree(plug);
1077}
1078
b4fdcb02 1079static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 1080{
e8096360 1081 struct r1conf *conf = mddev->private;
0eaf822c 1082 struct raid1_info *mirror;
9f2c9d12 1083 struct r1bio *r1_bio;
1da177e4 1084 struct bio *read_bio;
1f68f0c4 1085 int i, disks;
84255d10 1086 struct bitmap *bitmap;
191ea9b2 1087 unsigned long flags;
a362357b 1088 const int rw = bio_data_dir(bio);
2c7d46ec 1089 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1090 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
2ff8cc2c
SL
1091 const unsigned long do_discard = (bio->bi_rw
1092 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 1093 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
3cb03002 1094 struct md_rdev *blocked_rdev;
f54a9d0e
N
1095 struct blk_plug_cb *cb;
1096 struct raid1_plug_cb *plug = NULL;
1f68f0c4
N
1097 int first_clone;
1098 int sectors_handled;
1099 int max_sectors;
79ef3a8a 1100 sector_t start_next_window;
191ea9b2 1101
1da177e4
LT
1102 /*
1103 * Register the new request and wait if the reconstruction
1104 * thread has put up a bar for new requests.
1105 * Continue immediately if no resync is active currently.
1106 */
62de608d 1107
3d310eb7
N
1108 md_write_start(mddev, bio); /* wait on superblock update early */
1109
6eef4b21 1110 if (bio_data_dir(bio) == WRITE &&
589a1c49
GR
1111 ((bio_end_sector(bio) > mddev->suspend_lo &&
1112 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1113 (mddev_is_clustered(mddev) &&
90382ed9
GR
1114 md_cluster_ops->area_resyncing(mddev, WRITE,
1115 bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
6eef4b21
N
1116 /* As the suspend_* range is controlled by
1117 * userspace, we want an interruptible
1118 * wait.
1119 */
1120 DEFINE_WAIT(w);
1121 for (;;) {
1122 flush_signals(current);
1123 prepare_to_wait(&conf->wait_barrier,
1124 &w, TASK_INTERRUPTIBLE);
f73a1c7d 1125 if (bio_end_sector(bio) <= mddev->suspend_lo ||
589a1c49
GR
1126 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1127 (mddev_is_clustered(mddev) &&
90382ed9 1128 !md_cluster_ops->area_resyncing(mddev, WRITE,
589a1c49 1129 bio->bi_iter.bi_sector, bio_end_sector(bio))))
6eef4b21
N
1130 break;
1131 schedule();
1132 }
1133 finish_wait(&conf->wait_barrier, &w);
1134 }
62de608d 1135
79ef3a8a 1136 start_next_window = wait_barrier(conf, bio);
1da177e4 1137
84255d10
N
1138 bitmap = mddev->bitmap;
1139
1da177e4
LT
1140 /*
1141 * make_request() can abort the operation when READA is being
1142 * used and no empty request is available.
1143 *
1144 */
1145 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1146
1147 r1_bio->master_bio = bio;
aa8b57aa 1148 r1_bio->sectors = bio_sectors(bio);
191ea9b2 1149 r1_bio->state = 0;
1da177e4 1150 r1_bio->mddev = mddev;
4f024f37 1151 r1_bio->sector = bio->bi_iter.bi_sector;
1da177e4 1152
d2eb35ac
N
1153 /* We might need to issue multiple reads to different
1154 * devices if there are bad blocks around, so we keep
1155 * track of the number of reads in bio->bi_phys_segments.
1156 * If this is 0, there is only one r1_bio and no locking
1157 * will be needed when requests complete. If it is
1158 * non-zero, then it is the number of not-completed requests.
1159 */
1160 bio->bi_phys_segments = 0;
1161 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1162
a362357b 1163 if (rw == READ) {
1da177e4
LT
1164 /*
1165 * read balancing logic:
1166 */
d2eb35ac
N
1167 int rdisk;
1168
1169read_again:
1170 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
1171
1172 if (rdisk < 0) {
1173 /* couldn't find anywhere to read from */
1174 raid_end_bio_io(r1_bio);
5a7bbad2 1175 return;
1da177e4
LT
1176 }
1177 mirror = conf->mirrors + rdisk;
1178
e555190d
N
1179 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1180 bitmap) {
1181 /* Reading from a write-mostly device must
1182 * take care not to over-take any writes
1183 * that are 'behind'
1184 */
1185 wait_event(bitmap->behind_wait,
1186 atomic_read(&bitmap->behind_writes) == 0);
1187 }
1da177e4 1188 r1_bio->read_disk = rdisk;
f0cc9a05 1189 r1_bio->start_next_window = 0;
1da177e4 1190
a167f663 1191 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1192 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1193 max_sectors);
1da177e4
LT
1194
1195 r1_bio->bios[rdisk] = read_bio;
1196
4f024f37
KO
1197 read_bio->bi_iter.bi_sector = r1_bio->sector +
1198 mirror->rdev->data_offset;
1da177e4
LT
1199 read_bio->bi_bdev = mirror->rdev->bdev;
1200 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 1201 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1202 read_bio->bi_private = r1_bio;
1203
d2eb35ac
N
1204 if (max_sectors < r1_bio->sectors) {
1205 /* could not read all from this device, so we will
1206 * need another r1_bio.
1207 */
d2eb35ac
N
1208
1209 sectors_handled = (r1_bio->sector + max_sectors
4f024f37 1210 - bio->bi_iter.bi_sector);
d2eb35ac
N
1211 r1_bio->sectors = max_sectors;
1212 spin_lock_irq(&conf->device_lock);
1213 if (bio->bi_phys_segments == 0)
1214 bio->bi_phys_segments = 2;
1215 else
1216 bio->bi_phys_segments++;
1217 spin_unlock_irq(&conf->device_lock);
1218 /* Cannot call generic_make_request directly
1219 * as that will be queued in __make_request
1220 * and subsequent mempool_alloc might block waiting
1221 * for it. So hand bio over to raid1d.
1222 */
1223 reschedule_retry(r1_bio);
1224
1225 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1226
1227 r1_bio->master_bio = bio;
aa8b57aa 1228 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
d2eb35ac
N
1229 r1_bio->state = 0;
1230 r1_bio->mddev = mddev;
4f024f37
KO
1231 r1_bio->sector = bio->bi_iter.bi_sector +
1232 sectors_handled;
d2eb35ac
N
1233 goto read_again;
1234 } else
1235 generic_make_request(read_bio);
5a7bbad2 1236 return;
1da177e4
LT
1237 }
1238
1239 /*
1240 * WRITE:
1241 */
34db0cd6
N
1242 if (conf->pending_count >= max_queued_requests) {
1243 md_wakeup_thread(mddev->thread);
1244 wait_event(conf->wait_barrier,
1245 conf->pending_count < max_queued_requests);
1246 }
1f68f0c4 1247 /* first select target devices under rcu_lock and
1da177e4
LT
1248 * inc refcount on their rdev. Record them by setting
1249 * bios[x] to bio
1f68f0c4
N
1250 * If there are known/acknowledged bad blocks on any device on
1251 * which we have seen a write error, we want to avoid writing those
1252 * blocks.
1253 * This potentially requires several writes to write around
1254 * the bad blocks. Each set of writes gets it's own r1bio
1255 * with a set of bios attached.
1da177e4 1256 */
c3b328ac 1257
8f19ccb2 1258 disks = conf->raid_disks * 2;
6bfe0b49 1259 retry_write:
79ef3a8a 1260 r1_bio->start_next_window = start_next_window;
6bfe0b49 1261 blocked_rdev = NULL;
1da177e4 1262 rcu_read_lock();
1f68f0c4 1263 max_sectors = r1_bio->sectors;
1da177e4 1264 for (i = 0; i < disks; i++) {
3cb03002 1265 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1266 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1267 atomic_inc(&rdev->nr_pending);
1268 blocked_rdev = rdev;
1269 break;
1270 }
1f68f0c4 1271 r1_bio->bios[i] = NULL;
6b740b8d
N
1272 if (!rdev || test_bit(Faulty, &rdev->flags)
1273 || test_bit(Unmerged, &rdev->flags)) {
8f19ccb2
N
1274 if (i < conf->raid_disks)
1275 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1276 continue;
1277 }
1278
1279 atomic_inc(&rdev->nr_pending);
1280 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1281 sector_t first_bad;
1282 int bad_sectors;
1283 int is_bad;
1284
1285 is_bad = is_badblock(rdev, r1_bio->sector,
1286 max_sectors,
1287 &first_bad, &bad_sectors);
1288 if (is_bad < 0) {
1289 /* mustn't write here until the bad block is
1290 * acknowledged*/
1291 set_bit(BlockedBadBlocks, &rdev->flags);
1292 blocked_rdev = rdev;
1293 break;
1294 }
1295 if (is_bad && first_bad <= r1_bio->sector) {
1296 /* Cannot write here at all */
1297 bad_sectors -= (r1_bio->sector - first_bad);
1298 if (bad_sectors < max_sectors)
1299 /* mustn't write more than bad_sectors
1300 * to other devices yet
1301 */
1302 max_sectors = bad_sectors;
03c902e1 1303 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1304 /* We don't set R1BIO_Degraded as that
1305 * only applies if the disk is
1306 * missing, so it might be re-added,
1307 * and we want to know to recover this
1308 * chunk.
1309 * In this case the device is here,
1310 * and the fact that this chunk is not
1311 * in-sync is recorded in the bad
1312 * block log
1313 */
1314 continue;
964147d5 1315 }
1f68f0c4
N
1316 if (is_bad) {
1317 int good_sectors = first_bad - r1_bio->sector;
1318 if (good_sectors < max_sectors)
1319 max_sectors = good_sectors;
1320 }
1321 }
1322 r1_bio->bios[i] = bio;
1da177e4
LT
1323 }
1324 rcu_read_unlock();
1325
6bfe0b49
DW
1326 if (unlikely(blocked_rdev)) {
1327 /* Wait for this device to become unblocked */
1328 int j;
79ef3a8a 1329 sector_t old = start_next_window;
6bfe0b49
DW
1330
1331 for (j = 0; j < i; j++)
1332 if (r1_bio->bios[j])
1333 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1334 r1_bio->state = 0;
4f024f37 1335 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
6bfe0b49 1336 md_wait_for_blocked_rdev(blocked_rdev, mddev);
79ef3a8a 1337 start_next_window = wait_barrier(conf, bio);
1338 /*
1339 * We must make sure the multi r1bios of bio have
1340 * the same value of bi_phys_segments
1341 */
1342 if (bio->bi_phys_segments && old &&
1343 old != start_next_window)
1344 /* Wait for the former r1bio(s) to complete */
1345 wait_event(conf->wait_barrier,
1346 bio->bi_phys_segments == 1);
6bfe0b49
DW
1347 goto retry_write;
1348 }
1349
1f68f0c4
N
1350 if (max_sectors < r1_bio->sectors) {
1351 /* We are splitting this write into multiple parts, so
1352 * we need to prepare for allocating another r1_bio.
1353 */
1354 r1_bio->sectors = max_sectors;
1355 spin_lock_irq(&conf->device_lock);
1356 if (bio->bi_phys_segments == 0)
1357 bio->bi_phys_segments = 2;
1358 else
1359 bio->bi_phys_segments++;
1360 spin_unlock_irq(&conf->device_lock);
191ea9b2 1361 }
4f024f37 1362 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
4b6d287f 1363
4e78064f 1364 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1365 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1366
1f68f0c4 1367 first_clone = 1;
1da177e4
LT
1368 for (i = 0; i < disks; i++) {
1369 struct bio *mbio;
1370 if (!r1_bio->bios[i])
1371 continue;
1372
a167f663 1373 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1374 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1f68f0c4
N
1375
1376 if (first_clone) {
1377 /* do behind I/O ?
1378 * Not if there are too many, or cannot
1379 * allocate memory, or a reader on WriteMostly
1380 * is waiting for behind writes to flush */
1381 if (bitmap &&
1382 (atomic_read(&bitmap->behind_writes)
1383 < mddev->bitmap_info.max_write_behind) &&
1384 !waitqueue_active(&bitmap->behind_wait))
1385 alloc_behind_pages(mbio, r1_bio);
1386
1387 bitmap_startwrite(bitmap, r1_bio->sector,
1388 r1_bio->sectors,
1389 test_bit(R1BIO_BehindIO,
1390 &r1_bio->state));
1391 first_clone = 0;
1392 }
2ca68f5e 1393 if (r1_bio->behind_bvecs) {
4b6d287f
N
1394 struct bio_vec *bvec;
1395 int j;
1396
cb34e057
KO
1397 /*
1398 * We trimmed the bio, so _all is legit
4b6d287f 1399 */
d74c6d51 1400 bio_for_each_segment_all(bvec, mbio, j)
2ca68f5e 1401 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1402 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1403 atomic_inc(&r1_bio->behind_remaining);
1404 }
1405
1f68f0c4
N
1406 r1_bio->bios[i] = mbio;
1407
4f024f37 1408 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4
N
1409 conf->mirrors[i].rdev->data_offset);
1410 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1411 mbio->bi_end_io = raid1_end_write_request;
c8dc9c65
JL
1412 mbio->bi_rw =
1413 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1f68f0c4
N
1414 mbio->bi_private = r1_bio;
1415
1da177e4 1416 atomic_inc(&r1_bio->remaining);
f54a9d0e
N
1417
1418 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1419 if (cb)
1420 plug = container_of(cb, struct raid1_plug_cb, cb);
1421 else
1422 plug = NULL;
4e78064f 1423 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1424 if (plug) {
1425 bio_list_add(&plug->pending, mbio);
1426 plug->pending_cnt++;
1427 } else {
1428 bio_list_add(&conf->pending_bio_list, mbio);
1429 conf->pending_count++;
1430 }
4e78064f 1431 spin_unlock_irqrestore(&conf->device_lock, flags);
f54a9d0e 1432 if (!plug)
b357f04a 1433 md_wakeup_thread(mddev->thread);
1da177e4 1434 }
079fa166
N
1435 /* Mustn't call r1_bio_write_done before this next test,
1436 * as it could result in the bio being freed.
1437 */
aa8b57aa 1438 if (sectors_handled < bio_sectors(bio)) {
079fa166 1439 r1_bio_write_done(r1_bio);
1f68f0c4
N
1440 /* We need another r1_bio. It has already been counted
1441 * in bio->bi_phys_segments
1442 */
1443 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1444 r1_bio->master_bio = bio;
aa8b57aa 1445 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1f68f0c4
N
1446 r1_bio->state = 0;
1447 r1_bio->mddev = mddev;
4f024f37 1448 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1f68f0c4
N
1449 goto retry_write;
1450 }
1451
079fa166
N
1452 r1_bio_write_done(r1_bio);
1453
1454 /* In case raid1d snuck in to freeze_array */
1455 wake_up(&conf->wait_barrier);
1da177e4
LT
1456}
1457
fd01b88c 1458static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1459{
e8096360 1460 struct r1conf *conf = mddev->private;
1da177e4
LT
1461 int i;
1462
1463 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1464 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1465 rcu_read_lock();
1466 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1467 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1468 seq_printf(seq, "%s",
ddac7c7e
N
1469 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1470 }
1471 rcu_read_unlock();
1da177e4
LT
1472 seq_printf(seq, "]");
1473}
1474
fd01b88c 1475static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1476{
1477 char b[BDEVNAME_SIZE];
e8096360 1478 struct r1conf *conf = mddev->private;
423f04d6 1479 unsigned long flags;
1da177e4
LT
1480
1481 /*
1482 * If it is not operational, then we have already marked it as dead
1483 * else if it is the last working disks, ignore the error, let the
1484 * next level up know.
1485 * else mark the drive as failed
1486 */
b2d444d7 1487 if (test_bit(In_sync, &rdev->flags)
4044ba58 1488 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1489 /*
1490 * Don't fail the drive, act as though we were just a
4044ba58
N
1491 * normal single drive.
1492 * However don't try a recovery from this drive as
1493 * it is very likely to fail.
1da177e4 1494 */
5389042f 1495 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1496 return;
4044ba58 1497 }
de393cde 1498 set_bit(Blocked, &rdev->flags);
423f04d6 1499 spin_lock_irqsave(&conf->device_lock, flags);
c04be0aa 1500 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1da177e4 1501 mddev->degraded++;
dd00a99e 1502 set_bit(Faulty, &rdev->flags);
dd00a99e
N
1503 } else
1504 set_bit(Faulty, &rdev->flags);
423f04d6 1505 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1506 /*
1507 * if recovery is running, make sure it aborts.
1508 */
1509 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
850b2b42 1510 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1511 printk(KERN_ALERT
1512 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1513 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1514 mdname(mddev), bdevname(rdev->bdev, b),
1515 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1516}
1517
e8096360 1518static void print_conf(struct r1conf *conf)
1da177e4
LT
1519{
1520 int i;
1da177e4 1521
9dd1e2fa 1522 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1523 if (!conf) {
9dd1e2fa 1524 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1525 return;
1526 }
9dd1e2fa 1527 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1528 conf->raid_disks);
1529
ddac7c7e 1530 rcu_read_lock();
1da177e4
LT
1531 for (i = 0; i < conf->raid_disks; i++) {
1532 char b[BDEVNAME_SIZE];
3cb03002 1533 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1534 if (rdev)
9dd1e2fa 1535 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1536 i, !test_bit(In_sync, &rdev->flags),
1537 !test_bit(Faulty, &rdev->flags),
1538 bdevname(rdev->bdev,b));
1da177e4 1539 }
ddac7c7e 1540 rcu_read_unlock();
1da177e4
LT
1541}
1542
e8096360 1543static void close_sync(struct r1conf *conf)
1da177e4 1544{
79ef3a8a 1545 wait_barrier(conf, NULL);
1546 allow_barrier(conf, 0, 0);
1da177e4
LT
1547
1548 mempool_destroy(conf->r1buf_pool);
1549 conf->r1buf_pool = NULL;
79ef3a8a 1550
669cc7ba 1551 spin_lock_irq(&conf->resync_lock);
79ef3a8a 1552 conf->next_resync = 0;
1553 conf->start_next_window = MaxSector;
669cc7ba
N
1554 conf->current_window_requests +=
1555 conf->next_window_requests;
1556 conf->next_window_requests = 0;
1557 spin_unlock_irq(&conf->resync_lock);
1da177e4
LT
1558}
1559
fd01b88c 1560static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1561{
1562 int i;
e8096360 1563 struct r1conf *conf = mddev->private;
6b965620
N
1564 int count = 0;
1565 unsigned long flags;
1da177e4
LT
1566
1567 /*
f72ffdd6 1568 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1569 * and mark them readable.
1570 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1571 * device_lock used to avoid races with raid1_end_read_request
1572 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1573 */
423f04d6 1574 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1575 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1576 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1577 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1578 if (repl
1aee41f6 1579 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1580 && repl->recovery_offset == MaxSector
1581 && !test_bit(Faulty, &repl->flags)
1582 && !test_and_set_bit(In_sync, &repl->flags)) {
1583 /* replacement has just become active */
1584 if (!rdev ||
1585 !test_and_clear_bit(In_sync, &rdev->flags))
1586 count++;
1587 if (rdev) {
1588 /* Replaced device not technically
1589 * faulty, but we need to be sure
1590 * it gets removed and never re-added
1591 */
1592 set_bit(Faulty, &rdev->flags);
1593 sysfs_notify_dirent_safe(
1594 rdev->sysfs_state);
1595 }
1596 }
ddac7c7e 1597 if (rdev
61e4947c 1598 && rdev->recovery_offset == MaxSector
ddac7c7e 1599 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1600 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1601 count++;
654e8b5a 1602 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1603 }
1604 }
6b965620
N
1605 mddev->degraded -= count;
1606 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1607
1608 print_conf(conf);
6b965620 1609 return count;
1da177e4
LT
1610}
1611
fd01b88c 1612static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1613{
e8096360 1614 struct r1conf *conf = mddev->private;
199050ea 1615 int err = -EEXIST;
41158c7e 1616 int mirror = 0;
0eaf822c 1617 struct raid1_info *p;
6c2fce2e 1618 int first = 0;
30194636 1619 int last = conf->raid_disks - 1;
6b740b8d 1620 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4 1621
5389042f
N
1622 if (mddev->recovery_disabled == conf->recovery_disabled)
1623 return -EBUSY;
1624
6c2fce2e
NB
1625 if (rdev->raid_disk >= 0)
1626 first = last = rdev->raid_disk;
1627
6b740b8d
N
1628 if (q->merge_bvec_fn) {
1629 set_bit(Unmerged, &rdev->flags);
1630 mddev->merge_check_needed = 1;
1631 }
1632
7ef449d1
N
1633 for (mirror = first; mirror <= last; mirror++) {
1634 p = conf->mirrors+mirror;
1635 if (!p->rdev) {
1da177e4 1636
9092c02d
JB
1637 if (mddev->gendisk)
1638 disk_stack_limits(mddev->gendisk, rdev->bdev,
1639 rdev->data_offset << 9);
1da177e4
LT
1640
1641 p->head_position = 0;
1642 rdev->raid_disk = mirror;
199050ea 1643 err = 0;
6aea114a
N
1644 /* As all devices are equivalent, we don't need a full recovery
1645 * if this was recently any drive of the array
1646 */
1647 if (rdev->saved_raid_disk < 0)
41158c7e 1648 conf->fullsync = 1;
d6065f7b 1649 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1650 break;
1651 }
7ef449d1
N
1652 if (test_bit(WantReplacement, &p->rdev->flags) &&
1653 p[conf->raid_disks].rdev == NULL) {
1654 /* Add this device as a replacement */
1655 clear_bit(In_sync, &rdev->flags);
1656 set_bit(Replacement, &rdev->flags);
1657 rdev->raid_disk = mirror;
1658 err = 0;
1659 conf->fullsync = 1;
1660 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1661 break;
1662 }
1663 }
6b740b8d
N
1664 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1665 /* Some requests might not have seen this new
1666 * merge_bvec_fn. We must wait for them to complete
1667 * before merging the device fully.
1668 * First we make sure any code which has tested
1669 * our function has submitted the request, then
1670 * we wait for all outstanding requests to complete.
1671 */
1672 synchronize_sched();
e2d59925
N
1673 freeze_array(conf, 0);
1674 unfreeze_array(conf);
6b740b8d
N
1675 clear_bit(Unmerged, &rdev->flags);
1676 }
ac5e7113 1677 md_integrity_add_rdev(rdev, mddev);
9092c02d 1678 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2ff8cc2c 1679 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1680 print_conf(conf);
199050ea 1681 return err;
1da177e4
LT
1682}
1683
b8321b68 1684static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1685{
e8096360 1686 struct r1conf *conf = mddev->private;
1da177e4 1687 int err = 0;
b8321b68 1688 int number = rdev->raid_disk;
0eaf822c 1689 struct raid1_info *p = conf->mirrors + number;
1da177e4 1690
b014f14c
N
1691 if (rdev != p->rdev)
1692 p = conf->mirrors + conf->raid_disks + number;
1693
1da177e4 1694 print_conf(conf);
b8321b68 1695 if (rdev == p->rdev) {
b2d444d7 1696 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1697 atomic_read(&rdev->nr_pending)) {
1698 err = -EBUSY;
1699 goto abort;
1700 }
046abeed 1701 /* Only remove non-faulty devices if recovery
dfc70645
N
1702 * is not possible.
1703 */
1704 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1705 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1706 mddev->degraded < conf->raid_disks) {
1707 err = -EBUSY;
1708 goto abort;
1709 }
1da177e4 1710 p->rdev = NULL;
fbd568a3 1711 synchronize_rcu();
1da177e4
LT
1712 if (atomic_read(&rdev->nr_pending)) {
1713 /* lost the race, try later */
1714 err = -EBUSY;
1715 p->rdev = rdev;
ac5e7113 1716 goto abort;
8c7a2c2b
N
1717 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1718 /* We just removed a device that is being replaced.
1719 * Move down the replacement. We drain all IO before
1720 * doing this to avoid confusion.
1721 */
1722 struct md_rdev *repl =
1723 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1724 freeze_array(conf, 0);
8c7a2c2b
N
1725 clear_bit(Replacement, &repl->flags);
1726 p->rdev = repl;
1727 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1728 unfreeze_array(conf);
8c7a2c2b
N
1729 clear_bit(WantReplacement, &rdev->flags);
1730 } else
b014f14c 1731 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1732 err = md_integrity_register(mddev);
1da177e4
LT
1733 }
1734abort:
1735
1736 print_conf(conf);
1737 return err;
1738}
1739
6712ecf8 1740static void end_sync_read(struct bio *bio, int error)
1da177e4 1741{
9f2c9d12 1742 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1743
0fc280f6 1744 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1745
1da177e4
LT
1746 /*
1747 * we have read a block, now it needs to be re-written,
1748 * or re-read if the read failed.
1749 * We don't do much here, just schedule handling by raid1d
1750 */
69382e85 1751 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1da177e4 1752 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1753
1754 if (atomic_dec_and_test(&r1_bio->remaining))
1755 reschedule_retry(r1_bio);
1da177e4
LT
1756}
1757
6712ecf8 1758static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1759{
1760 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1761 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1762 struct mddev *mddev = r1_bio->mddev;
e8096360 1763 struct r1conf *conf = mddev->private;
1da177e4 1764 int mirror=0;
4367af55
N
1765 sector_t first_bad;
1766 int bad_sectors;
1da177e4 1767
ba3ae3be
NK
1768 mirror = find_bio_disk(r1_bio, bio);
1769
6b1117d5 1770 if (!uptodate) {
57dab0bd 1771 sector_t sync_blocks = 0;
6b1117d5
N
1772 sector_t s = r1_bio->sector;
1773 long sectors_to_go = r1_bio->sectors;
1774 /* make sure these bits doesn't get cleared. */
1775 do {
5e3db645 1776 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1777 &sync_blocks, 1);
1778 s += sync_blocks;
1779 sectors_to_go -= sync_blocks;
1780 } while (sectors_to_go > 0);
d8f05d29
N
1781 set_bit(WriteErrorSeen,
1782 &conf->mirrors[mirror].rdev->flags);
19d67169
N
1783 if (!test_and_set_bit(WantReplacement,
1784 &conf->mirrors[mirror].rdev->flags))
1785 set_bit(MD_RECOVERY_NEEDED, &
1786 mddev->recovery);
d8f05d29 1787 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55
N
1788 } else if (is_badblock(conf->mirrors[mirror].rdev,
1789 r1_bio->sector,
1790 r1_bio->sectors,
3a9f28a5
N
1791 &first_bad, &bad_sectors) &&
1792 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1793 r1_bio->sector,
1794 r1_bio->sectors,
1795 &first_bad, &bad_sectors)
1796 )
4367af55 1797 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1798
1da177e4 1799 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1800 int s = r1_bio->sectors;
d8f05d29
N
1801 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1802 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1803 reschedule_retry(r1_bio);
1804 else {
1805 put_buf(r1_bio);
1806 md_done_sync(mddev, s, uptodate);
1807 }
1da177e4 1808 }
1da177e4
LT
1809}
1810
3cb03002 1811static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1812 int sectors, struct page *page, int rw)
1813{
1814 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1815 /* success */
1816 return 1;
19d67169 1817 if (rw == WRITE) {
d8f05d29 1818 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1819 if (!test_and_set_bit(WantReplacement,
1820 &rdev->flags))
1821 set_bit(MD_RECOVERY_NEEDED, &
1822 rdev->mddev->recovery);
1823 }
d8f05d29
N
1824 /* need to record an error - either for the block or the device */
1825 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1826 md_error(rdev->mddev, rdev);
1827 return 0;
1828}
1829
9f2c9d12 1830static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1831{
a68e5870
N
1832 /* Try some synchronous reads of other devices to get
1833 * good data, much like with normal read errors. Only
1834 * read into the pages we already have so we don't
1835 * need to re-issue the read request.
1836 * We don't need to freeze the array, because being in an
1837 * active sync request, there is no normal IO, and
1838 * no overlapping syncs.
06f60385
N
1839 * We don't need to check is_badblock() again as we
1840 * made sure that anything with a bad block in range
1841 * will have bi_end_io clear.
a68e5870 1842 */
fd01b88c 1843 struct mddev *mddev = r1_bio->mddev;
e8096360 1844 struct r1conf *conf = mddev->private;
a68e5870
N
1845 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1846 sector_t sect = r1_bio->sector;
1847 int sectors = r1_bio->sectors;
1848 int idx = 0;
1849
1850 while(sectors) {
1851 int s = sectors;
1852 int d = r1_bio->read_disk;
1853 int success = 0;
3cb03002 1854 struct md_rdev *rdev;
78d7f5f7 1855 int start;
a68e5870
N
1856
1857 if (s > (PAGE_SIZE>>9))
1858 s = PAGE_SIZE >> 9;
1859 do {
1860 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1861 /* No rcu protection needed here devices
1862 * can only be removed when no resync is
1863 * active, and resync is currently active
1864 */
1865 rdev = conf->mirrors[d].rdev;
9d3d8011 1866 if (sync_page_io(rdev, sect, s<<9,
a68e5870
N
1867 bio->bi_io_vec[idx].bv_page,
1868 READ, false)) {
1869 success = 1;
1870 break;
1871 }
1872 }
1873 d++;
8f19ccb2 1874 if (d == conf->raid_disks * 2)
a68e5870
N
1875 d = 0;
1876 } while (!success && d != r1_bio->read_disk);
1877
78d7f5f7 1878 if (!success) {
a68e5870 1879 char b[BDEVNAME_SIZE];
3a9f28a5
N
1880 int abort = 0;
1881 /* Cannot read from anywhere, this block is lost.
1882 * Record a bad block on each device. If that doesn't
1883 * work just disable and interrupt the recovery.
1884 * Don't fail devices as that won't really help.
1885 */
a68e5870
N
1886 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1887 " for block %llu\n",
1888 mdname(mddev),
1889 bdevname(bio->bi_bdev, b),
1890 (unsigned long long)r1_bio->sector);
8f19ccb2 1891 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1892 rdev = conf->mirrors[d].rdev;
1893 if (!rdev || test_bit(Faulty, &rdev->flags))
1894 continue;
1895 if (!rdev_set_badblocks(rdev, sect, s, 0))
1896 abort = 1;
1897 }
1898 if (abort) {
d890fa2b
N
1899 conf->recovery_disabled =
1900 mddev->recovery_disabled;
3a9f28a5
N
1901 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1902 md_done_sync(mddev, r1_bio->sectors, 0);
1903 put_buf(r1_bio);
1904 return 0;
1905 }
1906 /* Try next page */
1907 sectors -= s;
1908 sect += s;
1909 idx++;
1910 continue;
d11c171e 1911 }
78d7f5f7
N
1912
1913 start = d;
1914 /* write it back and re-read */
1915 while (d != r1_bio->read_disk) {
1916 if (d == 0)
8f19ccb2 1917 d = conf->raid_disks * 2;
78d7f5f7
N
1918 d--;
1919 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1920 continue;
1921 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1922 if (r1_sync_page_io(rdev, sect, s,
1923 bio->bi_io_vec[idx].bv_page,
1924 WRITE) == 0) {
78d7f5f7
N
1925 r1_bio->bios[d]->bi_end_io = NULL;
1926 rdev_dec_pending(rdev, mddev);
9d3d8011 1927 }
78d7f5f7
N
1928 }
1929 d = start;
1930 while (d != r1_bio->read_disk) {
1931 if (d == 0)
8f19ccb2 1932 d = conf->raid_disks * 2;
78d7f5f7
N
1933 d--;
1934 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1935 continue;
1936 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1937 if (r1_sync_page_io(rdev, sect, s,
1938 bio->bi_io_vec[idx].bv_page,
1939 READ) != 0)
9d3d8011 1940 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1941 }
a68e5870
N
1942 sectors -= s;
1943 sect += s;
1944 idx ++;
1945 }
78d7f5f7 1946 set_bit(R1BIO_Uptodate, &r1_bio->state);
7ca78d57 1947 set_bit(BIO_UPTODATE, &bio->bi_flags);
a68e5870
N
1948 return 1;
1949}
1950
c95e6385 1951static void process_checks(struct r1bio *r1_bio)
a68e5870
N
1952{
1953 /* We have read all readable devices. If we haven't
1954 * got the block, then there is no hope left.
1955 * If we have, then we want to do a comparison
1956 * and skip the write if everything is the same.
1957 * If any blocks failed to read, then we need to
1958 * attempt an over-write
1959 */
fd01b88c 1960 struct mddev *mddev = r1_bio->mddev;
e8096360 1961 struct r1conf *conf = mddev->private;
a68e5870
N
1962 int primary;
1963 int i;
f4380a91 1964 int vcnt;
a68e5870 1965
30bc9b53
N
1966 /* Fix variable parts of all bios */
1967 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1968 for (i = 0; i < conf->raid_disks * 2; i++) {
1969 int j;
1970 int size;
1877db75 1971 int uptodate;
30bc9b53
N
1972 struct bio *b = r1_bio->bios[i];
1973 if (b->bi_end_io != end_sync_read)
1974 continue;
1877db75
N
1975 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1976 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
30bc9b53 1977 bio_reset(b);
1877db75
N
1978 if (!uptodate)
1979 clear_bit(BIO_UPTODATE, &b->bi_flags);
30bc9b53 1980 b->bi_vcnt = vcnt;
4f024f37
KO
1981 b->bi_iter.bi_size = r1_bio->sectors << 9;
1982 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53
N
1983 conf->mirrors[i].rdev->data_offset;
1984 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1985 b->bi_end_io = end_sync_read;
1986 b->bi_private = r1_bio;
1987
4f024f37 1988 size = b->bi_iter.bi_size;
30bc9b53
N
1989 for (j = 0; j < vcnt ; j++) {
1990 struct bio_vec *bi;
1991 bi = &b->bi_io_vec[j];
1992 bi->bv_offset = 0;
1993 if (size > PAGE_SIZE)
1994 bi->bv_len = PAGE_SIZE;
1995 else
1996 bi->bv_len = size;
1997 size -= PAGE_SIZE;
1998 }
1999 }
8f19ccb2 2000 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870
N
2001 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2002 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
2003 r1_bio->bios[primary]->bi_end_io = NULL;
2004 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2005 break;
2006 }
2007 r1_bio->read_disk = primary;
8f19ccb2 2008 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 2009 int j;
78d7f5f7
N
2010 struct bio *pbio = r1_bio->bios[primary];
2011 struct bio *sbio = r1_bio->bios[i];
1877db75 2012 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
a68e5870 2013
2aabaa65 2014 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 2015 continue;
1877db75
N
2016 /* Now we can 'fixup' the BIO_UPTODATE flag */
2017 set_bit(BIO_UPTODATE, &sbio->bi_flags);
78d7f5f7 2018
1877db75 2019 if (uptodate) {
78d7f5f7
N
2020 for (j = vcnt; j-- ; ) {
2021 struct page *p, *s;
2022 p = pbio->bi_io_vec[j].bv_page;
2023 s = sbio->bi_io_vec[j].bv_page;
2024 if (memcmp(page_address(p),
2025 page_address(s),
5020ad7d 2026 sbio->bi_io_vec[j].bv_len))
78d7f5f7 2027 break;
69382e85 2028 }
78d7f5f7
N
2029 } else
2030 j = 0;
2031 if (j >= 0)
7f7583d4 2032 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 2033 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1877db75 2034 && uptodate)) {
78d7f5f7
N
2035 /* No need to write to this device. */
2036 sbio->bi_end_io = NULL;
2037 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2038 continue;
2039 }
d3b45c2a
KO
2040
2041 bio_copy_data(sbio, pbio);
78d7f5f7 2042 }
a68e5870
N
2043}
2044
9f2c9d12 2045static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2046{
e8096360 2047 struct r1conf *conf = mddev->private;
a68e5870 2048 int i;
8f19ccb2 2049 int disks = conf->raid_disks * 2;
a68e5870
N
2050 struct bio *bio, *wbio;
2051
2052 bio = r1_bio->bios[r1_bio->read_disk];
2053
a68e5870
N
2054 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2055 /* ouch - failed to read all of that. */
2056 if (!fix_sync_read_error(r1_bio))
2057 return;
7ca78d57
N
2058
2059 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2060 process_checks(r1_bio);
2061
d11c171e
N
2062 /*
2063 * schedule writes
2064 */
1da177e4
LT
2065 atomic_set(&r1_bio->remaining, 1);
2066 for (i = 0; i < disks ; i++) {
2067 wbio = r1_bio->bios[i];
3e198f78
N
2068 if (wbio->bi_end_io == NULL ||
2069 (wbio->bi_end_io == end_sync_read &&
2070 (i == r1_bio->read_disk ||
2071 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
2072 continue;
2073
3e198f78
N
2074 wbio->bi_rw = WRITE;
2075 wbio->bi_end_io = end_sync_write;
1da177e4 2076 atomic_inc(&r1_bio->remaining);
aa8b57aa 2077 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2078
1da177e4
LT
2079 generic_make_request(wbio);
2080 }
2081
2082 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 2083 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
2084 int s = r1_bio->sectors;
2085 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2086 test_bit(R1BIO_WriteError, &r1_bio->state))
2087 reschedule_retry(r1_bio);
2088 else {
2089 put_buf(r1_bio);
2090 md_done_sync(mddev, s, 1);
2091 }
1da177e4
LT
2092 }
2093}
2094
2095/*
2096 * This is a kernel thread which:
2097 *
2098 * 1. Retries failed read operations on working mirrors.
2099 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2100 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2101 */
2102
e8096360 2103static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2104 sector_t sect, int sectors)
2105{
fd01b88c 2106 struct mddev *mddev = conf->mddev;
867868fb
N
2107 while(sectors) {
2108 int s = sectors;
2109 int d = read_disk;
2110 int success = 0;
2111 int start;
3cb03002 2112 struct md_rdev *rdev;
867868fb
N
2113
2114 if (s > (PAGE_SIZE>>9))
2115 s = PAGE_SIZE >> 9;
2116
2117 do {
2118 /* Note: no rcu protection needed here
2119 * as this is synchronous in the raid1d thread
2120 * which is the thread that might remove
2121 * a device. If raid1d ever becomes multi-threaded....
2122 */
d2eb35ac
N
2123 sector_t first_bad;
2124 int bad_sectors;
2125
867868fb
N
2126 rdev = conf->mirrors[d].rdev;
2127 if (rdev &&
da8840a7 2128 (test_bit(In_sync, &rdev->flags) ||
2129 (!test_bit(Faulty, &rdev->flags) &&
2130 rdev->recovery_offset >= sect + s)) &&
d2eb35ac
N
2131 is_badblock(rdev, sect, s,
2132 &first_bad, &bad_sectors) == 0 &&
ccebd4c4
JB
2133 sync_page_io(rdev, sect, s<<9,
2134 conf->tmppage, READ, false))
867868fb
N
2135 success = 1;
2136 else {
2137 d++;
8f19ccb2 2138 if (d == conf->raid_disks * 2)
867868fb
N
2139 d = 0;
2140 }
2141 } while (!success && d != read_disk);
2142
2143 if (!success) {
d8f05d29 2144 /* Cannot read from anywhere - mark it bad */
3cb03002 2145 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2146 if (!rdev_set_badblocks(rdev, sect, s, 0))
2147 md_error(mddev, rdev);
867868fb
N
2148 break;
2149 }
2150 /* write it back and re-read */
2151 start = d;
2152 while (d != read_disk) {
2153 if (d==0)
8f19ccb2 2154 d = conf->raid_disks * 2;
867868fb
N
2155 d--;
2156 rdev = conf->mirrors[d].rdev;
2157 if (rdev &&
b8cb6b4c 2158 !test_bit(Faulty, &rdev->flags))
d8f05d29
N
2159 r1_sync_page_io(rdev, sect, s,
2160 conf->tmppage, WRITE);
867868fb
N
2161 }
2162 d = start;
2163 while (d != read_disk) {
2164 char b[BDEVNAME_SIZE];
2165 if (d==0)
8f19ccb2 2166 d = conf->raid_disks * 2;
867868fb
N
2167 d--;
2168 rdev = conf->mirrors[d].rdev;
2169 if (rdev &&
b8cb6b4c 2170 !test_bit(Faulty, &rdev->flags)) {
d8f05d29
N
2171 if (r1_sync_page_io(rdev, sect, s,
2172 conf->tmppage, READ)) {
867868fb
N
2173 atomic_add(s, &rdev->corrected_errors);
2174 printk(KERN_INFO
9dd1e2fa 2175 "md/raid1:%s: read error corrected "
867868fb
N
2176 "(%d sectors at %llu on %s)\n",
2177 mdname(mddev), s,
969b755a
RD
2178 (unsigned long long)(sect +
2179 rdev->data_offset),
867868fb
N
2180 bdevname(rdev->bdev, b));
2181 }
2182 }
2183 }
2184 sectors -= s;
2185 sect += s;
2186 }
2187}
2188
9f2c9d12 2189static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2190{
fd01b88c 2191 struct mddev *mddev = r1_bio->mddev;
e8096360 2192 struct r1conf *conf = mddev->private;
3cb03002 2193 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2194
2195 /* bio has the data to be written to device 'i' where
2196 * we just recently had a write error.
2197 * We repeatedly clone the bio and trim down to one block,
2198 * then try the write. Where the write fails we record
2199 * a bad block.
2200 * It is conceivable that the bio doesn't exactly align with
2201 * blocks. We must handle this somehow.
2202 *
2203 * We currently own a reference on the rdev.
2204 */
2205
2206 int block_sectors;
2207 sector_t sector;
2208 int sectors;
2209 int sect_to_write = r1_bio->sectors;
2210 int ok = 1;
2211
2212 if (rdev->badblocks.shift < 0)
2213 return 0;
2214
ab713cdc
ND
2215 block_sectors = roundup(1 << rdev->badblocks.shift,
2216 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2217 sector = r1_bio->sector;
2218 sectors = ((sector + block_sectors)
2219 & ~(sector_t)(block_sectors - 1))
2220 - sector;
2221
cd5ff9a1
N
2222 while (sect_to_write) {
2223 struct bio *wbio;
2224 if (sectors > sect_to_write)
2225 sectors = sect_to_write;
2226 /* Write at 'sector' for 'sectors'*/
2227
b783863f
KO
2228 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2229 unsigned vcnt = r1_bio->behind_page_count;
2230 struct bio_vec *vec = r1_bio->behind_bvecs;
2231
2232 while (!vec->bv_page) {
2233 vec++;
2234 vcnt--;
2235 }
2236
2237 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2238 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2239
2240 wbio->bi_vcnt = vcnt;
2241 } else {
2242 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2243 }
2244
cd5ff9a1 2245 wbio->bi_rw = WRITE;
4f024f37
KO
2246 wbio->bi_iter.bi_sector = r1_bio->sector;
2247 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2248
6678d83f 2249 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2250 wbio->bi_iter.bi_sector += rdev->data_offset;
cd5ff9a1
N
2251 wbio->bi_bdev = rdev->bdev;
2252 if (submit_bio_wait(WRITE, wbio) == 0)
2253 /* failure! */
2254 ok = rdev_set_badblocks(rdev, sector,
2255 sectors, 0)
2256 && ok;
2257
2258 bio_put(wbio);
2259 sect_to_write -= sectors;
2260 sector += sectors;
2261 sectors = block_sectors;
2262 }
2263 return ok;
2264}
2265
e8096360 2266static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2267{
2268 int m;
2269 int s = r1_bio->sectors;
8f19ccb2 2270 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2271 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2272 struct bio *bio = r1_bio->bios[m];
2273 if (bio->bi_end_io == NULL)
2274 continue;
2275 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2276 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2277 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce
N
2278 }
2279 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2280 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2281 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2282 md_error(conf->mddev, rdev);
2283 }
2284 }
2285 put_buf(r1_bio);
2286 md_done_sync(conf->mddev, s, 1);
2287}
2288
e8096360 2289static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2290{
2291 int m;
8f19ccb2 2292 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2293 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2294 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2295 rdev_clear_badblocks(rdev,
2296 r1_bio->sector,
c6563a8c 2297 r1_bio->sectors, 0);
62096bce
N
2298 rdev_dec_pending(rdev, conf->mddev);
2299 } else if (r1_bio->bios[m] != NULL) {
2300 /* This drive got a write error. We need to
2301 * narrow down and record precise write
2302 * errors.
2303 */
2304 if (!narrow_write_error(r1_bio, m)) {
2305 md_error(conf->mddev,
2306 conf->mirrors[m].rdev);
2307 /* an I/O failed, we can't clear the bitmap */
2308 set_bit(R1BIO_Degraded, &r1_bio->state);
2309 }
2310 rdev_dec_pending(conf->mirrors[m].rdev,
2311 conf->mddev);
2312 }
2313 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2314 close_write(r1_bio);
2315 raid_end_bio_io(r1_bio);
2316}
2317
e8096360 2318static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2319{
2320 int disk;
2321 int max_sectors;
fd01b88c 2322 struct mddev *mddev = conf->mddev;
62096bce
N
2323 struct bio *bio;
2324 char b[BDEVNAME_SIZE];
3cb03002 2325 struct md_rdev *rdev;
62096bce
N
2326
2327 clear_bit(R1BIO_ReadError, &r1_bio->state);
2328 /* we got a read error. Maybe the drive is bad. Maybe just
2329 * the block and we can fix it.
2330 * We freeze all other IO, and try reading the block from
2331 * other devices. When we find one, we re-write
2332 * and check it that fixes the read error.
2333 * This is all done synchronously while the array is
2334 * frozen
2335 */
2336 if (mddev->ro == 0) {
e2d59925 2337 freeze_array(conf, 1);
62096bce
N
2338 fix_read_error(conf, r1_bio->read_disk,
2339 r1_bio->sector, r1_bio->sectors);
2340 unfreeze_array(conf);
2341 } else
2342 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
7ad4d4a6 2343 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
62096bce
N
2344
2345 bio = r1_bio->bios[r1_bio->read_disk];
2346 bdevname(bio->bi_bdev, b);
2347read_more:
2348 disk = read_balance(conf, r1_bio, &max_sectors);
2349 if (disk == -1) {
2350 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2351 " read error for block %llu\n",
2352 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2353 raid_end_bio_io(r1_bio);
2354 } else {
2355 const unsigned long do_sync
2356 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2357 if (bio) {
2358 r1_bio->bios[r1_bio->read_disk] =
2359 mddev->ro ? IO_BLOCKED : NULL;
2360 bio_put(bio);
2361 }
2362 r1_bio->read_disk = disk;
2363 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
4f024f37
KO
2364 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2365 max_sectors);
62096bce
N
2366 r1_bio->bios[r1_bio->read_disk] = bio;
2367 rdev = conf->mirrors[disk].rdev;
2368 printk_ratelimited(KERN_ERR
2369 "md/raid1:%s: redirecting sector %llu"
2370 " to other mirror: %s\n",
2371 mdname(mddev),
2372 (unsigned long long)r1_bio->sector,
2373 bdevname(rdev->bdev, b));
4f024f37 2374 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
62096bce
N
2375 bio->bi_bdev = rdev->bdev;
2376 bio->bi_end_io = raid1_end_read_request;
2377 bio->bi_rw = READ | do_sync;
2378 bio->bi_private = r1_bio;
2379 if (max_sectors < r1_bio->sectors) {
2380 /* Drat - have to split this up more */
2381 struct bio *mbio = r1_bio->master_bio;
2382 int sectors_handled = (r1_bio->sector + max_sectors
4f024f37 2383 - mbio->bi_iter.bi_sector);
62096bce
N
2384 r1_bio->sectors = max_sectors;
2385 spin_lock_irq(&conf->device_lock);
2386 if (mbio->bi_phys_segments == 0)
2387 mbio->bi_phys_segments = 2;
2388 else
2389 mbio->bi_phys_segments++;
2390 spin_unlock_irq(&conf->device_lock);
2391 generic_make_request(bio);
2392 bio = NULL;
2393
2394 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2395
2396 r1_bio->master_bio = mbio;
aa8b57aa 2397 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
62096bce
N
2398 r1_bio->state = 0;
2399 set_bit(R1BIO_ReadError, &r1_bio->state);
2400 r1_bio->mddev = mddev;
4f024f37
KO
2401 r1_bio->sector = mbio->bi_iter.bi_sector +
2402 sectors_handled;
62096bce
N
2403
2404 goto read_more;
2405 } else
2406 generic_make_request(bio);
2407 }
2408}
2409
4ed8731d 2410static void raid1d(struct md_thread *thread)
1da177e4 2411{
4ed8731d 2412 struct mddev *mddev = thread->mddev;
9f2c9d12 2413 struct r1bio *r1_bio;
1da177e4 2414 unsigned long flags;
e8096360 2415 struct r1conf *conf = mddev->private;
1da177e4 2416 struct list_head *head = &conf->retry_list;
e1dfa0a2 2417 struct blk_plug plug;
1da177e4
LT
2418
2419 md_check_recovery(mddev);
e1dfa0a2
N
2420
2421 blk_start_plug(&plug);
1da177e4 2422 for (;;) {
191ea9b2 2423
0021b7bc 2424 flush_pending_writes(conf);
191ea9b2 2425
a35e63ef
N
2426 spin_lock_irqsave(&conf->device_lock, flags);
2427 if (list_empty(head)) {
2428 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2429 break;
a35e63ef 2430 }
9f2c9d12 2431 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2432 list_del(head->prev);
ddaf22ab 2433 conf->nr_queued--;
1da177e4
LT
2434 spin_unlock_irqrestore(&conf->device_lock, flags);
2435
2436 mddev = r1_bio->mddev;
070ec55d 2437 conf = mddev->private;
4367af55 2438 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2439 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2440 test_bit(R1BIO_WriteError, &r1_bio->state))
2441 handle_sync_write_finished(conf, r1_bio);
2442 else
4367af55 2443 sync_request_write(mddev, r1_bio);
cd5ff9a1 2444 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2445 test_bit(R1BIO_WriteError, &r1_bio->state))
2446 handle_write_finished(conf, r1_bio);
2447 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2448 handle_read_error(conf, r1_bio);
2449 else
d2eb35ac
N
2450 /* just a partial read to be scheduled from separate
2451 * context
2452 */
2453 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2454
1d9d5241 2455 cond_resched();
de393cde
N
2456 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2457 md_check_recovery(mddev);
1da177e4 2458 }
e1dfa0a2 2459 blk_finish_plug(&plug);
1da177e4
LT
2460}
2461
e8096360 2462static int init_resync(struct r1conf *conf)
1da177e4
LT
2463{
2464 int buffs;
2465
2466 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2467 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2468 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2469 conf->poolinfo);
2470 if (!conf->r1buf_pool)
2471 return -ENOMEM;
2472 conf->next_resync = 0;
2473 return 0;
2474}
2475
2476/*
2477 * perform a "sync" on one "block"
2478 *
2479 * We need to make sure that no normal I/O request - particularly write
2480 * requests - conflict with active sync requests.
2481 *
2482 * This is achieved by tracking pending requests and a 'barrier' concept
2483 * that can be installed to exclude normal IO requests.
2484 */
2485
09314799 2486static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 2487{
e8096360 2488 struct r1conf *conf = mddev->private;
9f2c9d12 2489 struct r1bio *r1_bio;
1da177e4
LT
2490 struct bio *bio;
2491 sector_t max_sector, nr_sectors;
3e198f78 2492 int disk = -1;
1da177e4 2493 int i;
3e198f78
N
2494 int wonly = -1;
2495 int write_targets = 0, read_targets = 0;
57dab0bd 2496 sector_t sync_blocks;
e3b9703e 2497 int still_degraded = 0;
06f60385
N
2498 int good_sectors = RESYNC_SECTORS;
2499 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2500
2501 if (!conf->r1buf_pool)
2502 if (init_resync(conf))
57afd89f 2503 return 0;
1da177e4 2504
58c0fed4 2505 max_sector = mddev->dev_sectors;
1da177e4 2506 if (sector_nr >= max_sector) {
191ea9b2
N
2507 /* If we aborted, we need to abort the
2508 * sync on the 'current' bitmap chunk (there will
2509 * only be one in raid1 resync.
2510 * We can find the current addess in mddev->curr_resync
2511 */
6a806c51
N
2512 if (mddev->curr_resync < max_sector) /* aborted */
2513 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2514 &sync_blocks, 1);
6a806c51 2515 else /* completed sync */
191ea9b2 2516 conf->fullsync = 0;
6a806c51
N
2517
2518 bitmap_close_sync(mddev->bitmap);
1da177e4
LT
2519 close_sync(conf);
2520 return 0;
2521 }
2522
07d84d10
N
2523 if (mddev->bitmap == NULL &&
2524 mddev->recovery_cp == MaxSector &&
6394cca5 2525 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2526 conf->fullsync == 0) {
2527 *skipped = 1;
2528 return max_sector - sector_nr;
2529 }
6394cca5
N
2530 /* before building a request, check if we can skip these blocks..
2531 * This call the bitmap_start_sync doesn't actually record anything
2532 */
e3b9703e 2533 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2534 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2535 /* We can skip this block, and probably several more */
2536 *skipped = 1;
2537 return sync_blocks;
2538 }
17999be4 2539
b47490c9 2540 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1c4588e9 2541 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4 2542
c2fd4c94 2543 raise_barrier(conf, sector_nr);
1da177e4 2544
3e198f78 2545 rcu_read_lock();
1da177e4 2546 /*
3e198f78
N
2547 * If we get a correctably read error during resync or recovery,
2548 * we might want to read from a different device. So we
2549 * flag all drives that could conceivably be read from for READ,
2550 * and any others (which will be non-In_sync devices) for WRITE.
2551 * If a read fails, we try reading from something else for which READ
2552 * is OK.
1da177e4 2553 */
1da177e4 2554
1da177e4
LT
2555 r1_bio->mddev = mddev;
2556 r1_bio->sector = sector_nr;
191ea9b2 2557 r1_bio->state = 0;
1da177e4 2558 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2559
8f19ccb2 2560 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2561 struct md_rdev *rdev;
1da177e4 2562 bio = r1_bio->bios[i];
2aabaa65 2563 bio_reset(bio);
1da177e4 2564
3e198f78
N
2565 rdev = rcu_dereference(conf->mirrors[i].rdev);
2566 if (rdev == NULL ||
06f60385 2567 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2568 if (i < conf->raid_disks)
2569 still_degraded = 1;
3e198f78 2570 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2571 bio->bi_rw = WRITE;
2572 bio->bi_end_io = end_sync_write;
2573 write_targets ++;
3e198f78
N
2574 } else {
2575 /* may need to read from here */
06f60385
N
2576 sector_t first_bad = MaxSector;
2577 int bad_sectors;
2578
2579 if (is_badblock(rdev, sector_nr, good_sectors,
2580 &first_bad, &bad_sectors)) {
2581 if (first_bad > sector_nr)
2582 good_sectors = first_bad - sector_nr;
2583 else {
2584 bad_sectors -= (sector_nr - first_bad);
2585 if (min_bad == 0 ||
2586 min_bad > bad_sectors)
2587 min_bad = bad_sectors;
2588 }
2589 }
2590 if (sector_nr < first_bad) {
2591 if (test_bit(WriteMostly, &rdev->flags)) {
2592 if (wonly < 0)
2593 wonly = i;
2594 } else {
2595 if (disk < 0)
2596 disk = i;
2597 }
2598 bio->bi_rw = READ;
2599 bio->bi_end_io = end_sync_read;
2600 read_targets++;
d57368af
AL
2601 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2602 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2603 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2604 /*
2605 * The device is suitable for reading (InSync),
2606 * but has bad block(s) here. Let's try to correct them,
2607 * if we are doing resync or repair. Otherwise, leave
2608 * this device alone for this sync request.
2609 */
2610 bio->bi_rw = WRITE;
2611 bio->bi_end_io = end_sync_write;
2612 write_targets++;
3e198f78 2613 }
3e198f78 2614 }
06f60385
N
2615 if (bio->bi_end_io) {
2616 atomic_inc(&rdev->nr_pending);
4f024f37 2617 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
06f60385
N
2618 bio->bi_bdev = rdev->bdev;
2619 bio->bi_private = r1_bio;
2620 }
1da177e4 2621 }
3e198f78
N
2622 rcu_read_unlock();
2623 if (disk < 0)
2624 disk = wonly;
2625 r1_bio->read_disk = disk;
191ea9b2 2626
06f60385
N
2627 if (read_targets == 0 && min_bad > 0) {
2628 /* These sectors are bad on all InSync devices, so we
2629 * need to mark them bad on all write targets
2630 */
2631 int ok = 1;
8f19ccb2 2632 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2633 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2634 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2635 ok = rdev_set_badblocks(rdev, sector_nr,
2636 min_bad, 0
2637 ) && ok;
2638 }
2639 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2640 *skipped = 1;
2641 put_buf(r1_bio);
2642
2643 if (!ok) {
2644 /* Cannot record the badblocks, so need to
2645 * abort the resync.
2646 * If there are multiple read targets, could just
2647 * fail the really bad ones ???
2648 */
2649 conf->recovery_disabled = mddev->recovery_disabled;
2650 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2651 return 0;
2652 } else
2653 return min_bad;
2654
2655 }
2656 if (min_bad > 0 && min_bad < good_sectors) {
2657 /* only resync enough to reach the next bad->good
2658 * transition */
2659 good_sectors = min_bad;
2660 }
2661
3e198f78
N
2662 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2663 /* extra read targets are also write targets */
2664 write_targets += read_targets-1;
2665
2666 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2667 /* There is nowhere to write, so all non-sync
2668 * drives must be failed - so we are finished
2669 */
b7219ccb
N
2670 sector_t rv;
2671 if (min_bad > 0)
2672 max_sector = sector_nr + min_bad;
2673 rv = max_sector - sector_nr;
57afd89f 2674 *skipped = 1;
1da177e4 2675 put_buf(r1_bio);
1da177e4
LT
2676 return rv;
2677 }
2678
c6207277
N
2679 if (max_sector > mddev->resync_max)
2680 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2681 if (max_sector > sector_nr + good_sectors)
2682 max_sector = sector_nr + good_sectors;
1da177e4 2683 nr_sectors = 0;
289e99e8 2684 sync_blocks = 0;
1da177e4
LT
2685 do {
2686 struct page *page;
2687 int len = PAGE_SIZE;
2688 if (sector_nr + (len>>9) > max_sector)
2689 len = (max_sector - sector_nr) << 9;
2690 if (len == 0)
2691 break;
6a806c51
N
2692 if (sync_blocks == 0) {
2693 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2694 &sync_blocks, still_degraded) &&
2695 !conf->fullsync &&
2696 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2697 break;
9e77c485 2698 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
7571ae88 2699 if ((len >> 9) > sync_blocks)
6a806c51 2700 len = sync_blocks<<9;
ab7a30c7 2701 }
191ea9b2 2702
8f19ccb2 2703 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2704 bio = r1_bio->bios[i];
2705 if (bio->bi_end_io) {
d11c171e 2706 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2707 if (bio_add_page(bio, page, len, 0) == 0) {
2708 /* stop here */
d11c171e 2709 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2710 while (i > 0) {
2711 i--;
2712 bio = r1_bio->bios[i];
6a806c51
N
2713 if (bio->bi_end_io==NULL)
2714 continue;
1da177e4
LT
2715 /* remove last page from this bio */
2716 bio->bi_vcnt--;
4f024f37 2717 bio->bi_iter.bi_size -= len;
3fd83717 2718 __clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1da177e4
LT
2719 }
2720 goto bio_full;
2721 }
2722 }
2723 }
2724 nr_sectors += len>>9;
2725 sector_nr += len>>9;
191ea9b2 2726 sync_blocks -= (len>>9);
1da177e4
LT
2727 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2728 bio_full:
1da177e4
LT
2729 r1_bio->sectors = nr_sectors;
2730
d11c171e
N
2731 /* For a user-requested sync, we read all readable devices and do a
2732 * compare
2733 */
2734 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2735 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2736 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2737 bio = r1_bio->bios[i];
2738 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2739 read_targets--;
ddac7c7e 2740 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2741 generic_make_request(bio);
2742 }
2743 }
2744 } else {
2745 atomic_set(&r1_bio->remaining, 1);
2746 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2747 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2748 generic_make_request(bio);
1da177e4 2749
d11c171e 2750 }
1da177e4
LT
2751 return nr_sectors;
2752}
2753
fd01b88c 2754static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2755{
2756 if (sectors)
2757 return sectors;
2758
2759 return mddev->dev_sectors;
2760}
2761
e8096360 2762static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2763{
e8096360 2764 struct r1conf *conf;
709ae487 2765 int i;
0eaf822c 2766 struct raid1_info *disk;
3cb03002 2767 struct md_rdev *rdev;
709ae487 2768 int err = -ENOMEM;
1da177e4 2769
e8096360 2770 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2771 if (!conf)
709ae487 2772 goto abort;
1da177e4 2773
0eaf822c 2774 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2775 * mddev->raid_disks * 2,
1da177e4
LT
2776 GFP_KERNEL);
2777 if (!conf->mirrors)
709ae487 2778 goto abort;
1da177e4 2779
ddaf22ab
N
2780 conf->tmppage = alloc_page(GFP_KERNEL);
2781 if (!conf->tmppage)
709ae487 2782 goto abort;
ddaf22ab 2783
709ae487 2784 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2785 if (!conf->poolinfo)
709ae487 2786 goto abort;
8f19ccb2 2787 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2788 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2789 r1bio_pool_free,
2790 conf->poolinfo);
2791 if (!conf->r1bio_pool)
709ae487
N
2792 goto abort;
2793
ed9bfdf1 2794 conf->poolinfo->mddev = mddev;
1da177e4 2795
c19d5798 2796 err = -EINVAL;
e7e72bf6 2797 spin_lock_init(&conf->device_lock);
dafb20fa 2798 rdev_for_each(rdev, mddev) {
aba336bd 2799 struct request_queue *q;
709ae487 2800 int disk_idx = rdev->raid_disk;
1da177e4
LT
2801 if (disk_idx >= mddev->raid_disks
2802 || disk_idx < 0)
2803 continue;
c19d5798 2804 if (test_bit(Replacement, &rdev->flags))
02b898f2 2805 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2806 else
2807 disk = conf->mirrors + disk_idx;
1da177e4 2808
c19d5798
N
2809 if (disk->rdev)
2810 goto abort;
1da177e4 2811 disk->rdev = rdev;
aba336bd
N
2812 q = bdev_get_queue(rdev->bdev);
2813 if (q->merge_bvec_fn)
2814 mddev->merge_check_needed = 1;
1da177e4
LT
2815
2816 disk->head_position = 0;
12cee5a8 2817 disk->seq_start = MaxSector;
1da177e4
LT
2818 }
2819 conf->raid_disks = mddev->raid_disks;
2820 conf->mddev = mddev;
1da177e4 2821 INIT_LIST_HEAD(&conf->retry_list);
1da177e4
LT
2822
2823 spin_lock_init(&conf->resync_lock);
17999be4 2824 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2825
191ea9b2 2826 bio_list_init(&conf->pending_bio_list);
34db0cd6 2827 conf->pending_count = 0;
d890fa2b 2828 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2829
79ef3a8a 2830 conf->start_next_window = MaxSector;
2831 conf->current_window_requests = conf->next_window_requests = 0;
2832
c19d5798 2833 err = -EIO;
8f19ccb2 2834 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2835
2836 disk = conf->mirrors + i;
2837
c19d5798
N
2838 if (i < conf->raid_disks &&
2839 disk[conf->raid_disks].rdev) {
2840 /* This slot has a replacement. */
2841 if (!disk->rdev) {
2842 /* No original, just make the replacement
2843 * a recovering spare
2844 */
2845 disk->rdev =
2846 disk[conf->raid_disks].rdev;
2847 disk[conf->raid_disks].rdev = NULL;
2848 } else if (!test_bit(In_sync, &disk->rdev->flags))
2849 /* Original is not in_sync - bad */
2850 goto abort;
2851 }
2852
5fd6c1dc
N
2853 if (!disk->rdev ||
2854 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2855 disk->head_position = 0;
4f0a5e01
JB
2856 if (disk->rdev &&
2857 (disk->rdev->saved_raid_disk < 0))
918f0238 2858 conf->fullsync = 1;
be4d3280 2859 }
1da177e4 2860 }
709ae487 2861
709ae487 2862 err = -ENOMEM;
0232605d 2863 conf->thread = md_register_thread(raid1d, mddev, "raid1");
709ae487
N
2864 if (!conf->thread) {
2865 printk(KERN_ERR
9dd1e2fa 2866 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2867 mdname(mddev));
2868 goto abort;
11ce99e6 2869 }
1da177e4 2870
709ae487
N
2871 return conf;
2872
2873 abort:
2874 if (conf) {
2875 if (conf->r1bio_pool)
2876 mempool_destroy(conf->r1bio_pool);
2877 kfree(conf->mirrors);
2878 safe_put_page(conf->tmppage);
2879 kfree(conf->poolinfo);
2880 kfree(conf);
2881 }
2882 return ERR_PTR(err);
2883}
2884
afa0f557 2885static void raid1_free(struct mddev *mddev, void *priv);
fd01b88c 2886static int run(struct mddev *mddev)
709ae487 2887{
e8096360 2888 struct r1conf *conf;
709ae487 2889 int i;
3cb03002 2890 struct md_rdev *rdev;
5220ea1e 2891 int ret;
2ff8cc2c 2892 bool discard_supported = false;
709ae487
N
2893
2894 if (mddev->level != 1) {
9dd1e2fa 2895 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2896 mdname(mddev), mddev->level);
2897 return -EIO;
2898 }
2899 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2900 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2901 mdname(mddev));
2902 return -EIO;
2903 }
1da177e4 2904 /*
709ae487
N
2905 * copy the already verified devices into our private RAID1
2906 * bookkeeping area. [whatever we allocate in run(),
afa0f557 2907 * should be freed in raid1_free()]
1da177e4 2908 */
709ae487
N
2909 if (mddev->private == NULL)
2910 conf = setup_conf(mddev);
2911 else
2912 conf = mddev->private;
1da177e4 2913
709ae487
N
2914 if (IS_ERR(conf))
2915 return PTR_ERR(conf);
1da177e4 2916
c8dc9c65 2917 if (mddev->queue)
5026d7a9
PA
2918 blk_queue_max_write_same_sectors(mddev->queue, 0);
2919
dafb20fa 2920 rdev_for_each(rdev, mddev) {
1ed7242e
JB
2921 if (!mddev->gendisk)
2922 continue;
709ae487
N
2923 disk_stack_limits(mddev->gendisk, rdev->bdev,
2924 rdev->data_offset << 9);
2ff8cc2c
SL
2925 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2926 discard_supported = true;
1da177e4 2927 }
191ea9b2 2928
709ae487
N
2929 mddev->degraded = 0;
2930 for (i=0; i < conf->raid_disks; i++)
2931 if (conf->mirrors[i].rdev == NULL ||
2932 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2933 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2934 mddev->degraded++;
2935
2936 if (conf->raid_disks - mddev->degraded == 1)
2937 mddev->recovery_cp = MaxSector;
2938
8c6ac868 2939 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2940 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2941 " -- starting background reconstruction\n",
2942 mdname(mddev));
f72ffdd6 2943 printk(KERN_INFO
9dd1e2fa 2944 "md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 2945 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 2946 mddev->raid_disks);
709ae487 2947
1da177e4
LT
2948 /*
2949 * Ok, everything is just fine now
2950 */
709ae487
N
2951 mddev->thread = conf->thread;
2952 conf->thread = NULL;
2953 mddev->private = conf;
2954
1f403624 2955 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2956
1ed7242e 2957 if (mddev->queue) {
2ff8cc2c
SL
2958 if (discard_supported)
2959 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2960 mddev->queue);
2961 else
2962 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2963 mddev->queue);
1ed7242e 2964 }
5220ea1e 2965
2966 ret = md_integrity_register(mddev);
5aa61f42
N
2967 if (ret) {
2968 md_unregister_thread(&mddev->thread);
afa0f557 2969 raid1_free(mddev, conf);
5aa61f42 2970 }
5220ea1e 2971 return ret;
1da177e4
LT
2972}
2973
afa0f557 2974static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 2975{
afa0f557 2976 struct r1conf *conf = priv;
409c57f3 2977
1da177e4
LT
2978 if (conf->r1bio_pool)
2979 mempool_destroy(conf->r1bio_pool);
990a8baf 2980 kfree(conf->mirrors);
0fea7ed8 2981 safe_put_page(conf->tmppage);
990a8baf 2982 kfree(conf->poolinfo);
1da177e4 2983 kfree(conf);
1da177e4
LT
2984}
2985
fd01b88c 2986static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
2987{
2988 /* no resync is happening, and there is enough space
2989 * on all devices, so we can resize.
2990 * We need to make sure resync covers any new space.
2991 * If the array is shrinking we should possibly wait until
2992 * any io in the removed space completes, but it hardly seems
2993 * worth it.
2994 */
a4a6125a
N
2995 sector_t newsize = raid1_size(mddev, sectors, 0);
2996 if (mddev->external_size &&
2997 mddev->array_sectors > newsize)
b522adcd 2998 return -EINVAL;
a4a6125a
N
2999 if (mddev->bitmap) {
3000 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3001 if (ret)
3002 return ret;
3003 }
3004 md_set_array_sectors(mddev, newsize);
f233ea5c 3005 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 3006 revalidate_disk(mddev->gendisk);
b522adcd 3007 if (sectors > mddev->dev_sectors &&
b098636c 3008 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3009 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3010 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3011 }
b522adcd 3012 mddev->dev_sectors = sectors;
4b5c7ae8 3013 mddev->resync_max_sectors = sectors;
1da177e4
LT
3014 return 0;
3015}
3016
fd01b88c 3017static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3018{
3019 /* We need to:
3020 * 1/ resize the r1bio_pool
3021 * 2/ resize conf->mirrors
3022 *
3023 * We allocate a new r1bio_pool if we can.
3024 * Then raise a device barrier and wait until all IO stops.
3025 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3026 *
3027 * At the same time, we "pack" the devices so that all the missing
3028 * devices have the higher raid_disk numbers.
1da177e4
LT
3029 */
3030 mempool_t *newpool, *oldpool;
3031 struct pool_info *newpoolinfo;
0eaf822c 3032 struct raid1_info *newmirrors;
e8096360 3033 struct r1conf *conf = mddev->private;
63c70c4f 3034 int cnt, raid_disks;
c04be0aa 3035 unsigned long flags;
b5470dc5 3036 int d, d2, err;
1da177e4 3037
63c70c4f 3038 /* Cannot change chunk_size, layout, or level */
664e7c41 3039 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3040 mddev->layout != mddev->new_layout ||
3041 mddev->level != mddev->new_level) {
664e7c41 3042 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3043 mddev->new_layout = mddev->layout;
3044 mddev->new_level = mddev->level;
3045 return -EINVAL;
3046 }
3047
b5470dc5
DW
3048 err = md_allow_write(mddev);
3049 if (err)
3050 return err;
2a2275d6 3051
63c70c4f
N
3052 raid_disks = mddev->raid_disks + mddev->delta_disks;
3053
6ea9c07c
N
3054 if (raid_disks < conf->raid_disks) {
3055 cnt=0;
3056 for (d= 0; d < conf->raid_disks; d++)
3057 if (conf->mirrors[d].rdev)
3058 cnt++;
3059 if (cnt > raid_disks)
1da177e4 3060 return -EBUSY;
6ea9c07c 3061 }
1da177e4
LT
3062
3063 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3064 if (!newpoolinfo)
3065 return -ENOMEM;
3066 newpoolinfo->mddev = mddev;
8f19ccb2 3067 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
3068
3069 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3070 r1bio_pool_free, newpoolinfo);
3071 if (!newpool) {
3072 kfree(newpoolinfo);
3073 return -ENOMEM;
3074 }
0eaf822c 3075 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 3076 GFP_KERNEL);
1da177e4
LT
3077 if (!newmirrors) {
3078 kfree(newpoolinfo);
3079 mempool_destroy(newpool);
3080 return -ENOMEM;
3081 }
1da177e4 3082
e2d59925 3083 freeze_array(conf, 0);
1da177e4
LT
3084
3085 /* ok, everything is stopped */
3086 oldpool = conf->r1bio_pool;
3087 conf->r1bio_pool = newpool;
6ea9c07c 3088
a88aa786 3089 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3090 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3091 if (rdev && rdev->raid_disk != d2) {
36fad858 3092 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3093 rdev->raid_disk = d2;
36fad858
NK
3094 sysfs_unlink_rdev(mddev, rdev);
3095 if (sysfs_link_rdev(mddev, rdev))
a88aa786 3096 printk(KERN_WARNING
36fad858
NK
3097 "md/raid1:%s: cannot register rd%d\n",
3098 mdname(mddev), rdev->raid_disk);
6ea9c07c 3099 }
a88aa786
N
3100 if (rdev)
3101 newmirrors[d2++].rdev = rdev;
3102 }
1da177e4
LT
3103 kfree(conf->mirrors);
3104 conf->mirrors = newmirrors;
3105 kfree(conf->poolinfo);
3106 conf->poolinfo = newpoolinfo;
3107
c04be0aa 3108 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3109 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3110 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3111 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3112 mddev->delta_disks = 0;
1da177e4 3113
e2d59925 3114 unfreeze_array(conf);
1da177e4
LT
3115
3116 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3117 md_wakeup_thread(mddev->thread);
3118
3119 mempool_destroy(oldpool);
3120 return 0;
3121}
3122
fd01b88c 3123static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3124{
e8096360 3125 struct r1conf *conf = mddev->private;
36fa3063
N
3126
3127 switch(state) {
6eef4b21
N
3128 case 2: /* wake for suspend */
3129 wake_up(&conf->wait_barrier);
3130 break;
9e6603da 3131 case 1:
07169fd4 3132 freeze_array(conf, 0);
36fa3063 3133 break;
9e6603da 3134 case 0:
07169fd4 3135 unfreeze_array(conf);
36fa3063
N
3136 break;
3137 }
36fa3063
N
3138}
3139
fd01b88c 3140static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3141{
3142 /* raid1 can take over:
3143 * raid5 with 2 devices, any layout or chunk size
3144 */
3145 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3146 struct r1conf *conf;
709ae487
N
3147 mddev->new_level = 1;
3148 mddev->new_layout = 0;
3149 mddev->new_chunk_sectors = 0;
3150 conf = setup_conf(mddev);
3151 if (!IS_ERR(conf))
07169fd4 3152 /* Array must appear to be quiesced */
3153 conf->array_frozen = 1;
709ae487
N
3154 return conf;
3155 }
3156 return ERR_PTR(-EINVAL);
3157}
1da177e4 3158
84fc4b56 3159static struct md_personality raid1_personality =
1da177e4
LT
3160{
3161 .name = "raid1",
2604b703 3162 .level = 1,
1da177e4
LT
3163 .owner = THIS_MODULE,
3164 .make_request = make_request,
3165 .run = run,
afa0f557 3166 .free = raid1_free,
1da177e4
LT
3167 .status = status,
3168 .error_handler = error,
3169 .hot_add_disk = raid1_add_disk,
3170 .hot_remove_disk= raid1_remove_disk,
3171 .spare_active = raid1_spare_active,
3172 .sync_request = sync_request,
3173 .resize = raid1_resize,
80c3a6ce 3174 .size = raid1_size,
63c70c4f 3175 .check_reshape = raid1_reshape,
36fa3063 3176 .quiesce = raid1_quiesce,
709ae487 3177 .takeover = raid1_takeover,
5c675f83 3178 .congested = raid1_congested,
64590f45 3179 .mergeable_bvec = raid1_mergeable_bvec,
1da177e4
LT
3180};
3181
3182static int __init raid_init(void)
3183{
2604b703 3184 return register_md_personality(&raid1_personality);
1da177e4
LT
3185}
3186
3187static void raid_exit(void)
3188{
2604b703 3189 unregister_md_personality(&raid1_personality);
1da177e4
LT
3190}
3191
3192module_init(raid_init);
3193module_exit(raid_exit);
3194MODULE_LICENSE("GPL");
0efb9e61 3195MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3196MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3197MODULE_ALIAS("md-raid1");
2604b703 3198MODULE_ALIAS("md-level-1");
34db0cd6
N
3199
3200module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.953729 seconds and 5 git commands to generate.