Merge remote-tracking branch 'iwlwifi-fixes/master' into next
[deliverable/linux.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
056075c7 24#include <linux/module.h>
bff61975 25#include <linux/seq_file.h>
8bda470e 26#include <linux/ratelimit.h>
3ea7daa5 27#include <linux/kthread.h>
43b2e5d8 28#include "md.h"
ef740c37 29#include "raid10.h"
dab8b292 30#include "raid0.h"
ef740c37 31#include "bitmap.h"
1da177e4
LT
32
33/*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
c93983bf 40 * far_offset (stored in bit 16 of layout )
475901af 41 * use_far_sets (stored in bit 17 of layout )
8bce6d35 42 * use_far_sets_bugfixed (stored in bit 18 of layout )
1da177e4 43 *
475901af
JB
44 * The data to be stored is divided into chunks using chunksize. Each device
45 * is divided into far_copies sections. In each section, chunks are laid out
46 * in a style similar to raid0, but near_copies copies of each chunk is stored
47 * (each on a different drive). The starting device for each section is offset
48 * near_copies from the starting device of the previous section. Thus there
49 * are (near_copies * far_copies) of each chunk, and each is on a different
50 * drive. near_copies and far_copies must be at least one, and their product
51 * is at most raid_disks.
c93983bf
N
52 *
53 * If far_offset is true, then the far_copies are handled a bit differently.
475901af
JB
54 * The copies are still in different stripes, but instead of being very far
55 * apart on disk, there are adjacent stripes.
56 *
57 * The far and offset algorithms are handled slightly differently if
58 * 'use_far_sets' is true. In this case, the array's devices are grouped into
59 * sets that are (near_copies * far_copies) in size. The far copied stripes
60 * are still shifted by 'near_copies' devices, but this shifting stays confined
61 * to the set rather than the entire array. This is done to improve the number
62 * of device combinations that can fail without causing the array to fail.
63 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
64 * on a device):
65 * A B C D A B C D E
66 * ... ...
67 * D A B C E A B C D
68 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69 * [A B] [C D] [A B] [C D E]
70 * |...| |...| |...| | ... |
71 * [B A] [D C] [B A] [E C D]
1da177e4
LT
72 */
73
74/*
75 * Number of guaranteed r10bios in case of extreme VM load:
76 */
77#define NR_RAID10_BIOS 256
78
473e87ce
JB
79/* when we get a read error on a read-only array, we redirect to another
80 * device without failing the first device, or trying to over-write to
81 * correct the read error. To keep track of bad blocks on a per-bio
82 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
83 */
84#define IO_BLOCKED ((struct bio *)1)
85/* When we successfully write to a known bad-block, we need to remove the
86 * bad-block marking which must be done from process context. So we record
87 * the success by setting devs[n].bio to IO_MADE_GOOD
88 */
89#define IO_MADE_GOOD ((struct bio *)2)
90
91#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
92
93/* When there are this many requests queued to be written by
34db0cd6
N
94 * the raid10 thread, we become 'congested' to provide back-pressure
95 * for writeback.
96 */
97static int max_queued_requests = 1024;
98
e879a879
N
99static void allow_barrier(struct r10conf *conf);
100static void lower_barrier(struct r10conf *conf);
635f6416 101static int _enough(struct r10conf *conf, int previous, int ignore);
3ea7daa5
N
102static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
103 int *skipped);
104static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
4246a0b6 105static void end_reshape_write(struct bio *bio);
3ea7daa5 106static void end_reshape(struct r10conf *conf);
0a27ec96 107
dd0fc66f 108static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 109{
e879a879 110 struct r10conf *conf = data;
9f2c9d12 111 int size = offsetof(struct r10bio, devs[conf->copies]);
1da177e4 112
69335ef3
N
113 /* allocate a r10bio with room for raid_disks entries in the
114 * bios array */
7eaceacc 115 return kzalloc(size, gfp_flags);
1da177e4
LT
116}
117
118static void r10bio_pool_free(void *r10_bio, void *data)
119{
120 kfree(r10_bio);
121}
122
0310fa21 123/* Maximum size of each resync request */
1da177e4 124#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 125#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
126/* amount of memory to reserve for resync requests */
127#define RESYNC_WINDOW (1024*1024)
128/* maximum number of concurrent requests, memory permitting */
129#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
130
131/*
132 * When performing a resync, we need to read and compare, so
133 * we need as many pages are there are copies.
134 * When performing a recovery, we need 2 bios, one for read,
135 * one for write (we recover only one drive per r10buf)
136 *
137 */
dd0fc66f 138static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 139{
e879a879 140 struct r10conf *conf = data;
1da177e4 141 struct page *page;
9f2c9d12 142 struct r10bio *r10_bio;
1da177e4
LT
143 struct bio *bio;
144 int i, j;
145 int nalloc;
146
147 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 148 if (!r10_bio)
1da177e4 149 return NULL;
1da177e4 150
3ea7daa5
N
151 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
152 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
1da177e4
LT
153 nalloc = conf->copies; /* resync */
154 else
155 nalloc = 2; /* recovery */
156
157 /*
158 * Allocate bios.
159 */
160 for (j = nalloc ; j-- ; ) {
6746557f 161 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
162 if (!bio)
163 goto out_free_bio;
164 r10_bio->devs[j].bio = bio;
69335ef3
N
165 if (!conf->have_replacement)
166 continue;
167 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
168 if (!bio)
169 goto out_free_bio;
170 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
171 }
172 /*
173 * Allocate RESYNC_PAGES data pages and attach them
174 * where needed.
175 */
176 for (j = 0 ; j < nalloc; j++) {
69335ef3 177 struct bio *rbio = r10_bio->devs[j].repl_bio;
1da177e4
LT
178 bio = r10_bio->devs[j].bio;
179 for (i = 0; i < RESYNC_PAGES; i++) {
3ea7daa5
N
180 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
181 &conf->mddev->recovery)) {
182 /* we can share bv_page's during recovery
183 * and reshape */
c65060ad
NK
184 struct bio *rbio = r10_bio->devs[0].bio;
185 page = rbio->bi_io_vec[i].bv_page;
186 get_page(page);
187 } else
188 page = alloc_page(gfp_flags);
1da177e4
LT
189 if (unlikely(!page))
190 goto out_free_pages;
191
192 bio->bi_io_vec[i].bv_page = page;
69335ef3
N
193 if (rbio)
194 rbio->bi_io_vec[i].bv_page = page;
1da177e4
LT
195 }
196 }
197
198 return r10_bio;
199
200out_free_pages:
201 for ( ; i > 0 ; i--)
1345b1d8 202 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
203 while (j--)
204 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 205 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
5fdd2cf8 206 j = 0;
1da177e4 207out_free_bio:
5fdd2cf8 208 for ( ; j < nalloc; j++) {
209 if (r10_bio->devs[j].bio)
210 bio_put(r10_bio->devs[j].bio);
69335ef3
N
211 if (r10_bio->devs[j].repl_bio)
212 bio_put(r10_bio->devs[j].repl_bio);
213 }
1da177e4
LT
214 r10bio_pool_free(r10_bio, conf);
215 return NULL;
216}
217
218static void r10buf_pool_free(void *__r10_bio, void *data)
219{
220 int i;
e879a879 221 struct r10conf *conf = data;
9f2c9d12 222 struct r10bio *r10bio = __r10_bio;
1da177e4
LT
223 int j;
224
225 for (j=0; j < conf->copies; j++) {
226 struct bio *bio = r10bio->devs[j].bio;
227 if (bio) {
228 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 229 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
230 bio->bi_io_vec[i].bv_page = NULL;
231 }
232 bio_put(bio);
233 }
69335ef3
N
234 bio = r10bio->devs[j].repl_bio;
235 if (bio)
236 bio_put(bio);
1da177e4
LT
237 }
238 r10bio_pool_free(r10bio, conf);
239}
240
e879a879 241static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
242{
243 int i;
244
245 for (i = 0; i < conf->copies; i++) {
246 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 247 if (!BIO_SPECIAL(*bio))
1da177e4
LT
248 bio_put(*bio);
249 *bio = NULL;
69335ef3
N
250 bio = &r10_bio->devs[i].repl_bio;
251 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
252 bio_put(*bio);
253 *bio = NULL;
1da177e4
LT
254 }
255}
256
9f2c9d12 257static void free_r10bio(struct r10bio *r10_bio)
1da177e4 258{
e879a879 259 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 260
1da177e4
LT
261 put_all_bios(conf, r10_bio);
262 mempool_free(r10_bio, conf->r10bio_pool);
263}
264
9f2c9d12 265static void put_buf(struct r10bio *r10_bio)
1da177e4 266{
e879a879 267 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
268
269 mempool_free(r10_bio, conf->r10buf_pool);
270
0a27ec96 271 lower_barrier(conf);
1da177e4
LT
272}
273
9f2c9d12 274static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
275{
276 unsigned long flags;
fd01b88c 277 struct mddev *mddev = r10_bio->mddev;
e879a879 278 struct r10conf *conf = mddev->private;
1da177e4
LT
279
280 spin_lock_irqsave(&conf->device_lock, flags);
281 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 282 conf->nr_queued ++;
1da177e4
LT
283 spin_unlock_irqrestore(&conf->device_lock, flags);
284
388667be
AJ
285 /* wake up frozen array... */
286 wake_up(&conf->wait_barrier);
287
1da177e4
LT
288 md_wakeup_thread(mddev->thread);
289}
290
291/*
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
294 * cache layer.
295 */
9f2c9d12 296static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
297{
298 struct bio *bio = r10_bio->master_bio;
856e08e2 299 int done;
e879a879 300 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 301
856e08e2
N
302 if (bio->bi_phys_segments) {
303 unsigned long flags;
304 spin_lock_irqsave(&conf->device_lock, flags);
305 bio->bi_phys_segments--;
306 done = (bio->bi_phys_segments == 0);
307 spin_unlock_irqrestore(&conf->device_lock, flags);
308 } else
309 done = 1;
310 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4246a0b6 311 bio->bi_error = -EIO;
856e08e2 312 if (done) {
4246a0b6 313 bio_endio(bio);
856e08e2
N
314 /*
315 * Wake up any possible resync thread that waits for the device
316 * to go idle.
317 */
318 allow_barrier(conf);
319 }
1da177e4
LT
320 free_r10bio(r10_bio);
321}
322
323/*
324 * Update disk head position estimator based on IRQ completion info.
325 */
9f2c9d12 326static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 327{
e879a879 328 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
329
330 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
331 r10_bio->devs[slot].addr + (r10_bio->sectors);
332}
333
778ca018
NK
334/*
335 * Find the disk number which triggered given bio
336 */
e879a879 337static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 338 struct bio *bio, int *slotp, int *replp)
778ca018
NK
339{
340 int slot;
69335ef3 341 int repl = 0;
778ca018 342
69335ef3 343 for (slot = 0; slot < conf->copies; slot++) {
778ca018
NK
344 if (r10_bio->devs[slot].bio == bio)
345 break;
69335ef3
N
346 if (r10_bio->devs[slot].repl_bio == bio) {
347 repl = 1;
348 break;
349 }
350 }
778ca018
NK
351
352 BUG_ON(slot == conf->copies);
353 update_head_pos(slot, r10_bio);
354
749c55e9
N
355 if (slotp)
356 *slotp = slot;
69335ef3
N
357 if (replp)
358 *replp = repl;
778ca018
NK
359 return r10_bio->devs[slot].devnum;
360}
361
4246a0b6 362static void raid10_end_read_request(struct bio *bio)
1da177e4 363{
4246a0b6 364 int uptodate = !bio->bi_error;
9f2c9d12 365 struct r10bio *r10_bio = bio->bi_private;
1da177e4 366 int slot, dev;
abbf098e 367 struct md_rdev *rdev;
e879a879 368 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 369
1da177e4
LT
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
abbf098e 372 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
373 /*
374 * this branch is our 'one mirror IO has finished' event handler:
375 */
4443ae10
N
376 update_head_pos(slot, r10_bio);
377
378 if (uptodate) {
1da177e4
LT
379 /*
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
383 *
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
387 */
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
fae8cc5e
N
389 } else {
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
394 */
635f6416
N
395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 rdev->raid_disk))
fae8cc5e 397 uptodate = 1;
fae8cc5e
N
398 }
399 if (uptodate) {
1da177e4 400 raid_end_bio_io(r10_bio);
abbf098e 401 rdev_dec_pending(rdev, conf->mddev);
4443ae10 402 } else {
1da177e4 403 /*
7c4e06ff 404 * oops, read error - keep the refcount on the rdev
1da177e4
LT
405 */
406 char b[BDEVNAME_SIZE];
8bda470e
CD
407 printk_ratelimited(KERN_ERR
408 "md/raid10:%s: %s: rescheduling sector %llu\n",
409 mdname(conf->mddev),
abbf098e 410 bdevname(rdev->bdev, b),
8bda470e 411 (unsigned long long)r10_bio->sector);
856e08e2 412 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
413 reschedule_retry(r10_bio);
414 }
1da177e4
LT
415}
416
9f2c9d12 417static void close_write(struct r10bio *r10_bio)
bd870a16
N
418{
419 /* clear the bitmap if all writes complete successfully */
420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 r10_bio->sectors,
422 !test_bit(R10BIO_Degraded, &r10_bio->state),
423 0);
424 md_write_end(r10_bio->mddev);
425}
426
9f2c9d12 427static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
428{
429 if (atomic_dec_and_test(&r10_bio->remaining)) {
430 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 reschedule_retry(r10_bio);
432 else {
433 close_write(r10_bio);
434 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 reschedule_retry(r10_bio);
436 else
437 raid_end_bio_io(r10_bio);
438 }
439 }
440}
441
4246a0b6 442static void raid10_end_write_request(struct bio *bio)
1da177e4 443{
9f2c9d12 444 struct r10bio *r10_bio = bio->bi_private;
778ca018 445 int dev;
749c55e9 446 int dec_rdev = 1;
e879a879 447 struct r10conf *conf = r10_bio->mddev->private;
475b0321 448 int slot, repl;
4ca40c2c 449 struct md_rdev *rdev = NULL;
1da177e4 450
475b0321 451 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1da177e4 452
475b0321
N
453 if (repl)
454 rdev = conf->mirrors[dev].replacement;
4ca40c2c
N
455 if (!rdev) {
456 smp_rmb();
457 repl = 0;
475b0321 458 rdev = conf->mirrors[dev].rdev;
4ca40c2c 459 }
1da177e4
LT
460 /*
461 * this branch is our 'one mirror IO has finished' event handler:
462 */
4246a0b6 463 if (bio->bi_error) {
475b0321
N
464 if (repl)
465 /* Never record new bad blocks to replacement,
466 * just fail it.
467 */
468 md_error(rdev->mddev, rdev);
469 else {
470 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
471 if (!test_and_set_bit(WantReplacement, &rdev->flags))
472 set_bit(MD_RECOVERY_NEEDED,
473 &rdev->mddev->recovery);
475b0321
N
474 set_bit(R10BIO_WriteError, &r10_bio->state);
475 dec_rdev = 0;
476 }
749c55e9 477 } else {
1da177e4
LT
478 /*
479 * Set R10BIO_Uptodate in our master bio, so that
480 * we will return a good error code for to the higher
481 * levels even if IO on some other mirrored buffer fails.
482 *
483 * The 'master' represents the composite IO operation to
484 * user-side. So if something waits for IO, then it will
485 * wait for the 'master' bio.
486 */
749c55e9
N
487 sector_t first_bad;
488 int bad_sectors;
489
3056e3ae
AL
490 /*
491 * Do not set R10BIO_Uptodate if the current device is
492 * rebuilding or Faulty. This is because we cannot use
493 * such device for properly reading the data back (we could
494 * potentially use it, if the current write would have felt
495 * before rdev->recovery_offset, but for simplicity we don't
496 * check this here.
497 */
498 if (test_bit(In_sync, &rdev->flags) &&
499 !test_bit(Faulty, &rdev->flags))
500 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 501
749c55e9 502 /* Maybe we can clear some bad blocks. */
475b0321 503 if (is_badblock(rdev,
749c55e9
N
504 r10_bio->devs[slot].addr,
505 r10_bio->sectors,
506 &first_bad, &bad_sectors)) {
507 bio_put(bio);
475b0321
N
508 if (repl)
509 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510 else
511 r10_bio->devs[slot].bio = IO_MADE_GOOD;
749c55e9
N
512 dec_rdev = 0;
513 set_bit(R10BIO_MadeGood, &r10_bio->state);
514 }
515 }
516
1da177e4
LT
517 /*
518 *
519 * Let's see if all mirrored write operations have finished
520 * already.
521 */
19d5f834 522 one_write_done(r10_bio);
749c55e9 523 if (dec_rdev)
884162df 524 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
525}
526
1da177e4
LT
527/*
528 * RAID10 layout manager
25985edc 529 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
530 * parameters: near_copies and far_copies.
531 * near_copies * far_copies must be <= raid_disks.
532 * Normally one of these will be 1.
533 * If both are 1, we get raid0.
534 * If near_copies == raid_disks, we get raid1.
535 *
25985edc 536 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
537 * first chunk, followed by near_copies copies of the next chunk and
538 * so on.
539 * If far_copies > 1, then after 1/far_copies of the array has been assigned
540 * as described above, we start again with a device offset of near_copies.
541 * So we effectively have another copy of the whole array further down all
542 * the drives, but with blocks on different drives.
543 * With this layout, and block is never stored twice on the one device.
544 *
545 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 546 * on each device that it is on.
1da177e4
LT
547 *
548 * raid10_find_virt does the reverse mapping, from a device and a
549 * sector offset to a virtual address
550 */
551
f8c9e74f 552static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
1da177e4
LT
553{
554 int n,f;
555 sector_t sector;
556 sector_t chunk;
557 sector_t stripe;
558 int dev;
1da177e4 559 int slot = 0;
9a3152ab
JB
560 int last_far_set_start, last_far_set_size;
561
562 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563 last_far_set_start *= geo->far_set_size;
564
565 last_far_set_size = geo->far_set_size;
566 last_far_set_size += (geo->raid_disks % geo->far_set_size);
1da177e4
LT
567
568 /* now calculate first sector/dev */
5cf00fcd
N
569 chunk = r10bio->sector >> geo->chunk_shift;
570 sector = r10bio->sector & geo->chunk_mask;
1da177e4 571
5cf00fcd 572 chunk *= geo->near_copies;
1da177e4 573 stripe = chunk;
5cf00fcd
N
574 dev = sector_div(stripe, geo->raid_disks);
575 if (geo->far_offset)
576 stripe *= geo->far_copies;
1da177e4 577
5cf00fcd 578 sector += stripe << geo->chunk_shift;
1da177e4
LT
579
580 /* and calculate all the others */
5cf00fcd 581 for (n = 0; n < geo->near_copies; n++) {
1da177e4 582 int d = dev;
475901af 583 int set;
1da177e4 584 sector_t s = sector;
1da177e4 585 r10bio->devs[slot].devnum = d;
4c0ca26b 586 r10bio->devs[slot].addr = s;
1da177e4
LT
587 slot++;
588
5cf00fcd 589 for (f = 1; f < geo->far_copies; f++) {
475901af 590 set = d / geo->far_set_size;
5cf00fcd 591 d += geo->near_copies;
475901af 592
9a3152ab
JB
593 if ((geo->raid_disks % geo->far_set_size) &&
594 (d > last_far_set_start)) {
595 d -= last_far_set_start;
596 d %= last_far_set_size;
597 d += last_far_set_start;
598 } else {
599 d %= geo->far_set_size;
600 d += geo->far_set_size * set;
601 }
5cf00fcd 602 s += geo->stride;
1da177e4
LT
603 r10bio->devs[slot].devnum = d;
604 r10bio->devs[slot].addr = s;
605 slot++;
606 }
607 dev++;
5cf00fcd 608 if (dev >= geo->raid_disks) {
1da177e4 609 dev = 0;
5cf00fcd 610 sector += (geo->chunk_mask + 1);
1da177e4
LT
611 }
612 }
f8c9e74f
N
613}
614
615static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616{
617 struct geom *geo = &conf->geo;
618
619 if (conf->reshape_progress != MaxSector &&
620 ((r10bio->sector >= conf->reshape_progress) !=
621 conf->mddev->reshape_backwards)) {
622 set_bit(R10BIO_Previous, &r10bio->state);
623 geo = &conf->prev;
624 } else
625 clear_bit(R10BIO_Previous, &r10bio->state);
626
627 __raid10_find_phys(geo, r10bio);
1da177e4
LT
628}
629
e879a879 630static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
631{
632 sector_t offset, chunk, vchunk;
f8c9e74f
N
633 /* Never use conf->prev as this is only called during resync
634 * or recovery, so reshape isn't happening
635 */
5cf00fcd 636 struct geom *geo = &conf->geo;
475901af
JB
637 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638 int far_set_size = geo->far_set_size;
9a3152ab
JB
639 int last_far_set_start;
640
641 if (geo->raid_disks % geo->far_set_size) {
642 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643 last_far_set_start *= geo->far_set_size;
644
645 if (dev >= last_far_set_start) {
646 far_set_size = geo->far_set_size;
647 far_set_size += (geo->raid_disks % geo->far_set_size);
648 far_set_start = last_far_set_start;
649 }
650 }
1da177e4 651
5cf00fcd
N
652 offset = sector & geo->chunk_mask;
653 if (geo->far_offset) {
c93983bf 654 int fc;
5cf00fcd
N
655 chunk = sector >> geo->chunk_shift;
656 fc = sector_div(chunk, geo->far_copies);
657 dev -= fc * geo->near_copies;
475901af
JB
658 if (dev < far_set_start)
659 dev += far_set_size;
c93983bf 660 } else {
5cf00fcd
N
661 while (sector >= geo->stride) {
662 sector -= geo->stride;
475901af
JB
663 if (dev < (geo->near_copies + far_set_start))
664 dev += far_set_size - geo->near_copies;
c93983bf 665 else
5cf00fcd 666 dev -= geo->near_copies;
c93983bf 667 }
5cf00fcd 668 chunk = sector >> geo->chunk_shift;
c93983bf 669 }
5cf00fcd
N
670 vchunk = chunk * geo->raid_disks + dev;
671 sector_div(vchunk, geo->near_copies);
672 return (vchunk << geo->chunk_shift) + offset;
1da177e4
LT
673}
674
1da177e4
LT
675/*
676 * This routine returns the disk from which the requested read should
677 * be done. There is a per-array 'next expected sequential IO' sector
678 * number - if this matches on the next IO then we use the last disk.
679 * There is also a per-disk 'last know head position' sector that is
680 * maintained from IRQ contexts, both the normal and the resync IO
681 * completion handlers update this position correctly. If there is no
682 * perfect sequential match then we pick the disk whose head is closest.
683 *
684 * If there are 2 mirrors in the same 2 devices, performance degrades
685 * because position is mirror, not device based.
686 *
687 * The rdev for the device selected will have nr_pending incremented.
688 */
689
690/*
691 * FIXME: possibly should rethink readbalancing and do it differently
692 * depending on near_copies / far_copies geometry.
693 */
96c3fd1f
N
694static struct md_rdev *read_balance(struct r10conf *conf,
695 struct r10bio *r10_bio,
696 int *max_sectors)
1da177e4 697{
af3a2cd6 698 const sector_t this_sector = r10_bio->sector;
56d99121 699 int disk, slot;
856e08e2
N
700 int sectors = r10_bio->sectors;
701 int best_good_sectors;
56d99121 702 sector_t new_distance, best_dist;
3bbae04b 703 struct md_rdev *best_rdev, *rdev = NULL;
56d99121
N
704 int do_balance;
705 int best_slot;
5cf00fcd 706 struct geom *geo = &conf->geo;
1da177e4
LT
707
708 raid10_find_phys(conf, r10_bio);
709 rcu_read_lock();
56d99121 710retry:
856e08e2 711 sectors = r10_bio->sectors;
56d99121 712 best_slot = -1;
abbf098e 713 best_rdev = NULL;
56d99121 714 best_dist = MaxSector;
856e08e2 715 best_good_sectors = 0;
56d99121 716 do_balance = 1;
1da177e4
LT
717 /*
718 * Check if we can balance. We can balance on the whole
6cce3b23
N
719 * device if no resync is going on (recovery is ok), or below
720 * the resync window. We take the first readable disk when
721 * above the resync window.
1da177e4
LT
722 */
723 if (conf->mddev->recovery_cp < MaxSector
56d99121
N
724 && (this_sector + sectors >= conf->next_resync))
725 do_balance = 0;
1da177e4 726
56d99121 727 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
728 sector_t first_bad;
729 int bad_sectors;
730 sector_t dev_sector;
731
56d99121
N
732 if (r10_bio->devs[slot].bio == IO_BLOCKED)
733 continue;
1da177e4 734 disk = r10_bio->devs[slot].devnum;
abbf098e
N
735 rdev = rcu_dereference(conf->mirrors[disk].replacement);
736 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
737 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
738 rdev = rcu_dereference(conf->mirrors[disk].rdev);
050b6615 739 if (rdev == NULL ||
8ae12666 740 test_bit(Faulty, &rdev->flags))
abbf098e
N
741 continue;
742 if (!test_bit(In_sync, &rdev->flags) &&
743 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
744 continue;
745
856e08e2
N
746 dev_sector = r10_bio->devs[slot].addr;
747 if (is_badblock(rdev, dev_sector, sectors,
748 &first_bad, &bad_sectors)) {
749 if (best_dist < MaxSector)
750 /* Already have a better slot */
751 continue;
752 if (first_bad <= dev_sector) {
753 /* Cannot read here. If this is the
754 * 'primary' device, then we must not read
755 * beyond 'bad_sectors' from another device.
756 */
757 bad_sectors -= (dev_sector - first_bad);
758 if (!do_balance && sectors > bad_sectors)
759 sectors = bad_sectors;
760 if (best_good_sectors > sectors)
761 best_good_sectors = sectors;
762 } else {
763 sector_t good_sectors =
764 first_bad - dev_sector;
765 if (good_sectors > best_good_sectors) {
766 best_good_sectors = good_sectors;
767 best_slot = slot;
abbf098e 768 best_rdev = rdev;
856e08e2
N
769 }
770 if (!do_balance)
771 /* Must read from here */
772 break;
773 }
774 continue;
775 } else
776 best_good_sectors = sectors;
777
56d99121
N
778 if (!do_balance)
779 break;
1da177e4 780
22dfdf52
N
781 /* This optimisation is debatable, and completely destroys
782 * sequential read speed for 'far copies' arrays. So only
783 * keep it for 'near' arrays, and review those later.
784 */
5cf00fcd 785 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
1da177e4 786 break;
8ed3a195
KS
787
788 /* for far > 1 always use the lowest address */
5cf00fcd 789 if (geo->far_copies > 1)
56d99121 790 new_distance = r10_bio->devs[slot].addr;
8ed3a195 791 else
56d99121
N
792 new_distance = abs(r10_bio->devs[slot].addr -
793 conf->mirrors[disk].head_position);
794 if (new_distance < best_dist) {
795 best_dist = new_distance;
796 best_slot = slot;
abbf098e 797 best_rdev = rdev;
1da177e4
LT
798 }
799 }
abbf098e 800 if (slot >= conf->copies) {
56d99121 801 slot = best_slot;
abbf098e
N
802 rdev = best_rdev;
803 }
1da177e4 804
56d99121 805 if (slot >= 0) {
56d99121
N
806 atomic_inc(&rdev->nr_pending);
807 if (test_bit(Faulty, &rdev->flags)) {
808 /* Cannot risk returning a device that failed
809 * before we inc'ed nr_pending
810 */
811 rdev_dec_pending(rdev, conf->mddev);
812 goto retry;
813 }
814 r10_bio->read_slot = slot;
815 } else
96c3fd1f 816 rdev = NULL;
1da177e4 817 rcu_read_unlock();
856e08e2 818 *max_sectors = best_good_sectors;
1da177e4 819
96c3fd1f 820 return rdev;
1da177e4
LT
821}
822
5c675f83 823static int raid10_congested(struct mddev *mddev, int bits)
0d129228 824{
e879a879 825 struct r10conf *conf = mddev->private;
0d129228
N
826 int i, ret = 0;
827
4452226e 828 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
829 conf->pending_count >= max_queued_requests)
830 return 1;
831
0d129228 832 rcu_read_lock();
f8c9e74f
N
833 for (i = 0;
834 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
835 && ret == 0;
836 i++) {
3cb03002 837 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 838 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 839 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
840
841 ret |= bdi_congested(&q->backing_dev_info, bits);
842 }
843 }
844 rcu_read_unlock();
845 return ret;
846}
847
e879a879 848static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
849{
850 /* Any writes that have been queued but are awaiting
851 * bitmap updates get flushed here.
a35e63ef 852 */
a35e63ef
N
853 spin_lock_irq(&conf->device_lock);
854
855 if (conf->pending_bio_list.head) {
856 struct bio *bio;
857 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 858 conf->pending_count = 0;
a35e63ef
N
859 spin_unlock_irq(&conf->device_lock);
860 /* flush any pending bitmap writes to disk
861 * before proceeding w/ I/O */
862 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 863 wake_up(&conf->wait_barrier);
a35e63ef
N
864
865 while (bio) { /* submit pending writes */
866 struct bio *next = bio->bi_next;
867 bio->bi_next = NULL;
532a2a3f
SL
868 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
869 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
870 /* Just ignore it */
4246a0b6 871 bio_endio(bio);
532a2a3f
SL
872 else
873 generic_make_request(bio);
a35e63ef
N
874 bio = next;
875 }
a35e63ef
N
876 } else
877 spin_unlock_irq(&conf->device_lock);
a35e63ef 878}
7eaceacc 879
0a27ec96
N
880/* Barriers....
881 * Sometimes we need to suspend IO while we do something else,
882 * either some resync/recovery, or reconfigure the array.
883 * To do this we raise a 'barrier'.
884 * The 'barrier' is a counter that can be raised multiple times
885 * to count how many activities are happening which preclude
886 * normal IO.
887 * We can only raise the barrier if there is no pending IO.
888 * i.e. if nr_pending == 0.
889 * We choose only to raise the barrier if no-one is waiting for the
890 * barrier to go down. This means that as soon as an IO request
891 * is ready, no other operations which require a barrier will start
892 * until the IO request has had a chance.
893 *
894 * So: regular IO calls 'wait_barrier'. When that returns there
895 * is no backgroup IO happening, It must arrange to call
896 * allow_barrier when it has finished its IO.
897 * backgroup IO calls must call raise_barrier. Once that returns
898 * there is no normal IO happeing. It must arrange to call
899 * lower_barrier when the particular background IO completes.
1da177e4 900 */
1da177e4 901
e879a879 902static void raise_barrier(struct r10conf *conf, int force)
1da177e4 903{
6cce3b23 904 BUG_ON(force && !conf->barrier);
1da177e4 905 spin_lock_irq(&conf->resync_lock);
0a27ec96 906
6cce3b23
N
907 /* Wait until no block IO is waiting (unless 'force') */
908 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
eed8c02e 909 conf->resync_lock);
0a27ec96
N
910
911 /* block any new IO from starting */
912 conf->barrier++;
913
c3b328ac 914 /* Now wait for all pending IO to complete */
0a27ec96
N
915 wait_event_lock_irq(conf->wait_barrier,
916 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
eed8c02e 917 conf->resync_lock);
0a27ec96
N
918
919 spin_unlock_irq(&conf->resync_lock);
920}
921
e879a879 922static void lower_barrier(struct r10conf *conf)
0a27ec96
N
923{
924 unsigned long flags;
925 spin_lock_irqsave(&conf->resync_lock, flags);
926 conf->barrier--;
927 spin_unlock_irqrestore(&conf->resync_lock, flags);
928 wake_up(&conf->wait_barrier);
929}
930
e879a879 931static void wait_barrier(struct r10conf *conf)
0a27ec96
N
932{
933 spin_lock_irq(&conf->resync_lock);
934 if (conf->barrier) {
935 conf->nr_waiting++;
d6b42dcb
N
936 /* Wait for the barrier to drop.
937 * However if there are already pending
938 * requests (preventing the barrier from
939 * rising completely), and the
940 * pre-process bio queue isn't empty,
941 * then don't wait, as we need to empty
942 * that queue to get the nr_pending
943 * count down.
944 */
945 wait_event_lock_irq(conf->wait_barrier,
946 !conf->barrier ||
947 (conf->nr_pending &&
948 current->bio_list &&
949 !bio_list_empty(current->bio_list)),
eed8c02e 950 conf->resync_lock);
0a27ec96 951 conf->nr_waiting--;
1da177e4 952 }
0a27ec96 953 conf->nr_pending++;
1da177e4
LT
954 spin_unlock_irq(&conf->resync_lock);
955}
956
e879a879 957static void allow_barrier(struct r10conf *conf)
0a27ec96
N
958{
959 unsigned long flags;
960 spin_lock_irqsave(&conf->resync_lock, flags);
961 conf->nr_pending--;
962 spin_unlock_irqrestore(&conf->resync_lock, flags);
963 wake_up(&conf->wait_barrier);
964}
965
e2d59925 966static void freeze_array(struct r10conf *conf, int extra)
4443ae10
N
967{
968 /* stop syncio and normal IO and wait for everything to
f188593e 969 * go quiet.
4443ae10 970 * We increment barrier and nr_waiting, and then
e2d59925 971 * wait until nr_pending match nr_queued+extra
1c830532
N
972 * This is called in the context of one normal IO request
973 * that has failed. Thus any sync request that might be pending
974 * will be blocked by nr_pending, and we need to wait for
975 * pending IO requests to complete or be queued for re-try.
e2d59925 976 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
977 * must match the number of pending IOs (nr_pending) before
978 * we continue.
4443ae10
N
979 */
980 spin_lock_irq(&conf->resync_lock);
981 conf->barrier++;
982 conf->nr_waiting++;
eed8c02e 983 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 984 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
985 conf->resync_lock,
986 flush_pending_writes(conf));
c3b328ac 987
4443ae10
N
988 spin_unlock_irq(&conf->resync_lock);
989}
990
e879a879 991static void unfreeze_array(struct r10conf *conf)
4443ae10
N
992{
993 /* reverse the effect of the freeze */
994 spin_lock_irq(&conf->resync_lock);
995 conf->barrier--;
996 conf->nr_waiting--;
997 wake_up(&conf->wait_barrier);
998 spin_unlock_irq(&conf->resync_lock);
999}
1000
f8c9e74f
N
1001static sector_t choose_data_offset(struct r10bio *r10_bio,
1002 struct md_rdev *rdev)
1003{
1004 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1005 test_bit(R10BIO_Previous, &r10_bio->state))
1006 return rdev->data_offset;
1007 else
1008 return rdev->new_data_offset;
1009}
1010
57c67df4
N
1011struct raid10_plug_cb {
1012 struct blk_plug_cb cb;
1013 struct bio_list pending;
1014 int pending_cnt;
1015};
1016
1017static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1018{
1019 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1020 cb);
1021 struct mddev *mddev = plug->cb.data;
1022 struct r10conf *conf = mddev->private;
1023 struct bio *bio;
1024
874807a8 1025 if (from_schedule || current->bio_list) {
57c67df4
N
1026 spin_lock_irq(&conf->device_lock);
1027 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1028 conf->pending_count += plug->pending_cnt;
1029 spin_unlock_irq(&conf->device_lock);
ee0b0244 1030 wake_up(&conf->wait_barrier);
57c67df4
N
1031 md_wakeup_thread(mddev->thread);
1032 kfree(plug);
1033 return;
1034 }
1035
1036 /* we aren't scheduling, so we can do the write-out directly. */
1037 bio = bio_list_get(&plug->pending);
1038 bitmap_unplug(mddev->bitmap);
1039 wake_up(&conf->wait_barrier);
1040
1041 while (bio) { /* submit pending writes */
1042 struct bio *next = bio->bi_next;
1043 bio->bi_next = NULL;
32f9f570
SL
1044 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1045 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1046 /* Just ignore it */
4246a0b6 1047 bio_endio(bio);
32f9f570
SL
1048 else
1049 generic_make_request(bio);
57c67df4
N
1050 bio = next;
1051 }
1052 kfree(plug);
1053}
1054
20d0189b 1055static void __make_request(struct mddev *mddev, struct bio *bio)
1da177e4 1056{
e879a879 1057 struct r10conf *conf = mddev->private;
9f2c9d12 1058 struct r10bio *r10_bio;
1da177e4
LT
1059 struct bio *read_bio;
1060 int i;
a362357b 1061 const int rw = bio_data_dir(bio);
2c7d46ec 1062 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1063 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
532a2a3f
SL
1064 const unsigned long do_discard = (bio->bi_rw
1065 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 1066 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
6cce3b23 1067 unsigned long flags;
3cb03002 1068 struct md_rdev *blocked_rdev;
57c67df4
N
1069 struct blk_plug_cb *cb;
1070 struct raid10_plug_cb *plug = NULL;
d4432c23
N
1071 int sectors_handled;
1072 int max_sectors;
3ea7daa5 1073 int sectors;
1da177e4 1074
cc13b1d1
N
1075 /*
1076 * Register the new request and wait if the reconstruction
1077 * thread has put up a bar for new requests.
1078 * Continue immediately if no resync is active currently.
1079 */
1080 wait_barrier(conf);
1081
aa8b57aa 1082 sectors = bio_sectors(bio);
3ea7daa5 1083 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
4f024f37
KO
1084 bio->bi_iter.bi_sector < conf->reshape_progress &&
1085 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
3ea7daa5
N
1086 /* IO spans the reshape position. Need to wait for
1087 * reshape to pass
1088 */
1089 allow_barrier(conf);
1090 wait_event(conf->wait_barrier,
4f024f37
KO
1091 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1092 conf->reshape_progress >= bio->bi_iter.bi_sector +
1093 sectors);
3ea7daa5
N
1094 wait_barrier(conf);
1095 }
1096 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1097 bio_data_dir(bio) == WRITE &&
1098 (mddev->reshape_backwards
4f024f37
KO
1099 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1100 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1101 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1102 bio->bi_iter.bi_sector < conf->reshape_progress))) {
3ea7daa5
N
1103 /* Need to update reshape_position in metadata */
1104 mddev->reshape_position = conf->reshape_progress;
1105 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1106 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1107 md_wakeup_thread(mddev->thread);
1108 wait_event(mddev->sb_wait,
1109 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1110
1111 conf->reshape_safe = mddev->reshape_position;
1112 }
1113
1da177e4
LT
1114 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1115
1116 r10_bio->master_bio = bio;
3ea7daa5 1117 r10_bio->sectors = sectors;
1da177e4
LT
1118
1119 r10_bio->mddev = mddev;
4f024f37 1120 r10_bio->sector = bio->bi_iter.bi_sector;
6cce3b23 1121 r10_bio->state = 0;
1da177e4 1122
856e08e2
N
1123 /* We might need to issue multiple reads to different
1124 * devices if there are bad blocks around, so we keep
1125 * track of the number of reads in bio->bi_phys_segments.
1126 * If this is 0, there is only one r10_bio and no locking
1127 * will be needed when the request completes. If it is
1128 * non-zero, then it is the number of not-completed requests.
1129 */
1130 bio->bi_phys_segments = 0;
b7c44ed9 1131 bio_clear_flag(bio, BIO_SEG_VALID);
856e08e2 1132
a362357b 1133 if (rw == READ) {
1da177e4
LT
1134 /*
1135 * read balancing logic:
1136 */
96c3fd1f 1137 struct md_rdev *rdev;
856e08e2
N
1138 int slot;
1139
1140read_again:
96c3fd1f
N
1141 rdev = read_balance(conf, r10_bio, &max_sectors);
1142 if (!rdev) {
1da177e4 1143 raid_end_bio_io(r10_bio);
5a7bbad2 1144 return;
1da177e4 1145 }
96c3fd1f 1146 slot = r10_bio->read_slot;
1da177e4 1147
a167f663 1148 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1149 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1150 max_sectors);
1da177e4
LT
1151
1152 r10_bio->devs[slot].bio = read_bio;
abbf098e 1153 r10_bio->devs[slot].rdev = rdev;
1da177e4 1154
4f024f37 1155 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
f8c9e74f 1156 choose_data_offset(r10_bio, rdev);
96c3fd1f 1157 read_bio->bi_bdev = rdev->bdev;
1da177e4 1158 read_bio->bi_end_io = raid10_end_read_request;
7b6d91da 1159 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1160 read_bio->bi_private = r10_bio;
1161
856e08e2
N
1162 if (max_sectors < r10_bio->sectors) {
1163 /* Could not read all from this device, so we will
1164 * need another r10_bio.
1165 */
b50c259e 1166 sectors_handled = (r10_bio->sector + max_sectors
4f024f37 1167 - bio->bi_iter.bi_sector);
856e08e2
N
1168 r10_bio->sectors = max_sectors;
1169 spin_lock_irq(&conf->device_lock);
1170 if (bio->bi_phys_segments == 0)
1171 bio->bi_phys_segments = 2;
1172 else
1173 bio->bi_phys_segments++;
b50c259e 1174 spin_unlock_irq(&conf->device_lock);
856e08e2
N
1175 /* Cannot call generic_make_request directly
1176 * as that will be queued in __generic_make_request
1177 * and subsequent mempool_alloc might block
1178 * waiting for it. so hand bio over to raid10d.
1179 */
1180 reschedule_retry(r10_bio);
1181
1182 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1183
1184 r10_bio->master_bio = bio;
aa8b57aa 1185 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
856e08e2
N
1186 r10_bio->state = 0;
1187 r10_bio->mddev = mddev;
4f024f37
KO
1188 r10_bio->sector = bio->bi_iter.bi_sector +
1189 sectors_handled;
856e08e2
N
1190 goto read_again;
1191 } else
1192 generic_make_request(read_bio);
5a7bbad2 1193 return;
1da177e4
LT
1194 }
1195
1196 /*
1197 * WRITE:
1198 */
34db0cd6
N
1199 if (conf->pending_count >= max_queued_requests) {
1200 md_wakeup_thread(mddev->thread);
1201 wait_event(conf->wait_barrier,
1202 conf->pending_count < max_queued_requests);
1203 }
6bfe0b49 1204 /* first select target devices under rcu_lock and
1da177e4
LT
1205 * inc refcount on their rdev. Record them by setting
1206 * bios[x] to bio
d4432c23
N
1207 * If there are known/acknowledged bad blocks on any device
1208 * on which we have seen a write error, we want to avoid
1209 * writing to those blocks. This potentially requires several
1210 * writes to write around the bad blocks. Each set of writes
1211 * gets its own r10_bio with a set of bios attached. The number
1212 * of r10_bios is recored in bio->bi_phys_segments just as with
1213 * the read case.
1da177e4 1214 */
c3b328ac 1215
69335ef3 1216 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1217 raid10_find_phys(conf, r10_bio);
d4432c23 1218retry_write:
cb6969e8 1219 blocked_rdev = NULL;
1da177e4 1220 rcu_read_lock();
d4432c23
N
1221 max_sectors = r10_bio->sectors;
1222
1da177e4
LT
1223 for (i = 0; i < conf->copies; i++) {
1224 int d = r10_bio->devs[i].devnum;
3cb03002 1225 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
475b0321
N
1226 struct md_rdev *rrdev = rcu_dereference(
1227 conf->mirrors[d].replacement);
4ca40c2c
N
1228 if (rdev == rrdev)
1229 rrdev = NULL;
6bfe0b49
DW
1230 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1231 atomic_inc(&rdev->nr_pending);
1232 blocked_rdev = rdev;
1233 break;
1234 }
475b0321
N
1235 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1236 atomic_inc(&rrdev->nr_pending);
1237 blocked_rdev = rrdev;
1238 break;
1239 }
8ae12666 1240 if (rdev && (test_bit(Faulty, &rdev->flags)))
e7c0c3fa 1241 rdev = NULL;
8ae12666 1242 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
475b0321
N
1243 rrdev = NULL;
1244
d4432c23 1245 r10_bio->devs[i].bio = NULL;
475b0321 1246 r10_bio->devs[i].repl_bio = NULL;
e7c0c3fa
N
1247
1248 if (!rdev && !rrdev) {
6cce3b23 1249 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1250 continue;
1251 }
e7c0c3fa 1252 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
d4432c23
N
1253 sector_t first_bad;
1254 sector_t dev_sector = r10_bio->devs[i].addr;
1255 int bad_sectors;
1256 int is_bad;
1257
1258 is_bad = is_badblock(rdev, dev_sector,
1259 max_sectors,
1260 &first_bad, &bad_sectors);
1261 if (is_bad < 0) {
1262 /* Mustn't write here until the bad block
1263 * is acknowledged
1264 */
1265 atomic_inc(&rdev->nr_pending);
1266 set_bit(BlockedBadBlocks, &rdev->flags);
1267 blocked_rdev = rdev;
1268 break;
1269 }
1270 if (is_bad && first_bad <= dev_sector) {
1271 /* Cannot write here at all */
1272 bad_sectors -= (dev_sector - first_bad);
1273 if (bad_sectors < max_sectors)
1274 /* Mustn't write more than bad_sectors
1275 * to other devices yet
1276 */
1277 max_sectors = bad_sectors;
1278 /* We don't set R10BIO_Degraded as that
1279 * only applies if the disk is missing,
1280 * so it might be re-added, and we want to
1281 * know to recover this chunk.
1282 * In this case the device is here, and the
1283 * fact that this chunk is not in-sync is
1284 * recorded in the bad block log.
1285 */
1286 continue;
1287 }
1288 if (is_bad) {
1289 int good_sectors = first_bad - dev_sector;
1290 if (good_sectors < max_sectors)
1291 max_sectors = good_sectors;
1292 }
6cce3b23 1293 }
e7c0c3fa
N
1294 if (rdev) {
1295 r10_bio->devs[i].bio = bio;
1296 atomic_inc(&rdev->nr_pending);
1297 }
475b0321
N
1298 if (rrdev) {
1299 r10_bio->devs[i].repl_bio = bio;
1300 atomic_inc(&rrdev->nr_pending);
1301 }
1da177e4
LT
1302 }
1303 rcu_read_unlock();
1304
6bfe0b49
DW
1305 if (unlikely(blocked_rdev)) {
1306 /* Have to wait for this device to get unblocked, then retry */
1307 int j;
1308 int d;
1309
475b0321 1310 for (j = 0; j < i; j++) {
6bfe0b49
DW
1311 if (r10_bio->devs[j].bio) {
1312 d = r10_bio->devs[j].devnum;
1313 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1314 }
475b0321 1315 if (r10_bio->devs[j].repl_bio) {
4ca40c2c 1316 struct md_rdev *rdev;
475b0321 1317 d = r10_bio->devs[j].devnum;
4ca40c2c
N
1318 rdev = conf->mirrors[d].replacement;
1319 if (!rdev) {
1320 /* Race with remove_disk */
1321 smp_mb();
1322 rdev = conf->mirrors[d].rdev;
1323 }
1324 rdev_dec_pending(rdev, mddev);
475b0321
N
1325 }
1326 }
6bfe0b49
DW
1327 allow_barrier(conf);
1328 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1329 wait_barrier(conf);
1330 goto retry_write;
1331 }
1332
d4432c23
N
1333 if (max_sectors < r10_bio->sectors) {
1334 /* We are splitting this into multiple parts, so
1335 * we need to prepare for allocating another r10_bio.
1336 */
1337 r10_bio->sectors = max_sectors;
1338 spin_lock_irq(&conf->device_lock);
1339 if (bio->bi_phys_segments == 0)
1340 bio->bi_phys_segments = 2;
1341 else
1342 bio->bi_phys_segments++;
1343 spin_unlock_irq(&conf->device_lock);
1344 }
4f024f37
KO
1345 sectors_handled = r10_bio->sector + max_sectors -
1346 bio->bi_iter.bi_sector;
d4432c23 1347
4e78064f 1348 atomic_set(&r10_bio->remaining, 1);
d4432c23 1349 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1350
1da177e4
LT
1351 for (i = 0; i < conf->copies; i++) {
1352 struct bio *mbio;
1353 int d = r10_bio->devs[i].devnum;
e7c0c3fa
N
1354 if (r10_bio->devs[i].bio) {
1355 struct md_rdev *rdev = conf->mirrors[d].rdev;
1356 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1357 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1358 max_sectors);
e7c0c3fa
N
1359 r10_bio->devs[i].bio = mbio;
1360
4f024f37 1361 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
e7c0c3fa
N
1362 choose_data_offset(r10_bio,
1363 rdev));
1364 mbio->bi_bdev = rdev->bdev;
1365 mbio->bi_end_io = raid10_end_write_request;
c8dc9c65
JL
1366 mbio->bi_rw =
1367 WRITE | do_sync | do_fua | do_discard | do_same;
e7c0c3fa
N
1368 mbio->bi_private = r10_bio;
1369
1370 atomic_inc(&r10_bio->remaining);
1371
1372 cb = blk_check_plugged(raid10_unplug, mddev,
1373 sizeof(*plug));
1374 if (cb)
1375 plug = container_of(cb, struct raid10_plug_cb,
1376 cb);
1377 else
1378 plug = NULL;
1379 spin_lock_irqsave(&conf->device_lock, flags);
1380 if (plug) {
1381 bio_list_add(&plug->pending, mbio);
1382 plug->pending_cnt++;
1383 } else {
1384 bio_list_add(&conf->pending_bio_list, mbio);
1385 conf->pending_count++;
1386 }
1387 spin_unlock_irqrestore(&conf->device_lock, flags);
1388 if (!plug)
1389 md_wakeup_thread(mddev->thread);
1390 }
57c67df4 1391
e7c0c3fa
N
1392 if (r10_bio->devs[i].repl_bio) {
1393 struct md_rdev *rdev = conf->mirrors[d].replacement;
1394 if (rdev == NULL) {
1395 /* Replacement just got moved to main 'rdev' */
1396 smp_mb();
1397 rdev = conf->mirrors[d].rdev;
1398 }
1399 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1400 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1401 max_sectors);
e7c0c3fa
N
1402 r10_bio->devs[i].repl_bio = mbio;
1403
4f024f37 1404 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
e7c0c3fa
N
1405 choose_data_offset(
1406 r10_bio, rdev));
1407 mbio->bi_bdev = rdev->bdev;
1408 mbio->bi_end_io = raid10_end_write_request;
c8dc9c65
JL
1409 mbio->bi_rw =
1410 WRITE | do_sync | do_fua | do_discard | do_same;
e7c0c3fa
N
1411 mbio->bi_private = r10_bio;
1412
1413 atomic_inc(&r10_bio->remaining);
1414 spin_lock_irqsave(&conf->device_lock, flags);
57c67df4
N
1415 bio_list_add(&conf->pending_bio_list, mbio);
1416 conf->pending_count++;
e7c0c3fa
N
1417 spin_unlock_irqrestore(&conf->device_lock, flags);
1418 if (!mddev_check_plugged(mddev))
1419 md_wakeup_thread(mddev->thread);
57c67df4 1420 }
1da177e4
LT
1421 }
1422
079fa166
N
1423 /* Don't remove the bias on 'remaining' (one_write_done) until
1424 * after checking if we need to go around again.
1425 */
a35e63ef 1426
aa8b57aa 1427 if (sectors_handled < bio_sectors(bio)) {
079fa166 1428 one_write_done(r10_bio);
5e570289 1429 /* We need another r10_bio. It has already been counted
d4432c23
N
1430 * in bio->bi_phys_segments.
1431 */
1432 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1433
1434 r10_bio->master_bio = bio;
aa8b57aa 1435 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
d4432c23
N
1436
1437 r10_bio->mddev = mddev;
4f024f37 1438 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
d4432c23
N
1439 r10_bio->state = 0;
1440 goto retry_write;
1441 }
079fa166 1442 one_write_done(r10_bio);
20d0189b
KO
1443}
1444
1445static void make_request(struct mddev *mddev, struct bio *bio)
1446{
1447 struct r10conf *conf = mddev->private;
1448 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1449 int chunk_sects = chunk_mask + 1;
1450
1451 struct bio *split;
1452
1453 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1454 md_flush_request(mddev, bio);
1455 return;
1456 }
1457
1458 md_write_start(mddev, bio);
1459
20d0189b
KO
1460 do {
1461
1462 /*
1463 * If this request crosses a chunk boundary, we need to split
1464 * it.
1465 */
1466 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1467 bio_sectors(bio) > chunk_sects
1468 && (conf->geo.near_copies < conf->geo.raid_disks
1469 || conf->prev.near_copies <
1470 conf->prev.raid_disks))) {
1471 split = bio_split(bio, chunk_sects -
1472 (bio->bi_iter.bi_sector &
1473 (chunk_sects - 1)),
1474 GFP_NOIO, fs_bio_set);
1475 bio_chain(split, bio);
1476 } else {
1477 split = bio;
1478 }
1479
1480 __make_request(mddev, split);
1481 } while (split != bio);
079fa166
N
1482
1483 /* In case raid10d snuck in to freeze_array */
1484 wake_up(&conf->wait_barrier);
1da177e4
LT
1485}
1486
fd01b88c 1487static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1488{
e879a879 1489 struct r10conf *conf = mddev->private;
1da177e4
LT
1490 int i;
1491
5cf00fcd 1492 if (conf->geo.near_copies < conf->geo.raid_disks)
9d8f0363 1493 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
5cf00fcd
N
1494 if (conf->geo.near_copies > 1)
1495 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1496 if (conf->geo.far_copies > 1) {
1497 if (conf->geo.far_offset)
1498 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
c93983bf 1499 else
5cf00fcd 1500 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
8bce6d35
N
1501 if (conf->geo.far_set_size != conf->geo.raid_disks)
1502 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
c93983bf 1503 }
5cf00fcd
N
1504 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1505 conf->geo.raid_disks - mddev->degraded);
1506 for (i = 0; i < conf->geo.raid_disks; i++)
1da177e4
LT
1507 seq_printf(seq, "%s",
1508 conf->mirrors[i].rdev &&
b2d444d7 1509 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
1510 seq_printf(seq, "]");
1511}
1512
700c7213
N
1513/* check if there are enough drives for
1514 * every block to appear on atleast one.
1515 * Don't consider the device numbered 'ignore'
1516 * as we might be about to remove it.
1517 */
635f6416 1518static int _enough(struct r10conf *conf, int previous, int ignore)
700c7213
N
1519{
1520 int first = 0;
725d6e57 1521 int has_enough = 0;
635f6416
N
1522 int disks, ncopies;
1523 if (previous) {
1524 disks = conf->prev.raid_disks;
1525 ncopies = conf->prev.near_copies;
1526 } else {
1527 disks = conf->geo.raid_disks;
1528 ncopies = conf->geo.near_copies;
1529 }
700c7213 1530
725d6e57 1531 rcu_read_lock();
700c7213
N
1532 do {
1533 int n = conf->copies;
1534 int cnt = 0;
80b48124 1535 int this = first;
700c7213 1536 while (n--) {
725d6e57
N
1537 struct md_rdev *rdev;
1538 if (this != ignore &&
1539 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1540 test_bit(In_sync, &rdev->flags))
700c7213 1541 cnt++;
635f6416 1542 this = (this+1) % disks;
700c7213
N
1543 }
1544 if (cnt == 0)
725d6e57 1545 goto out;
635f6416 1546 first = (first + ncopies) % disks;
700c7213 1547 } while (first != 0);
725d6e57
N
1548 has_enough = 1;
1549out:
1550 rcu_read_unlock();
1551 return has_enough;
700c7213
N
1552}
1553
f8c9e74f
N
1554static int enough(struct r10conf *conf, int ignore)
1555{
635f6416
N
1556 /* when calling 'enough', both 'prev' and 'geo' must
1557 * be stable.
1558 * This is ensured if ->reconfig_mutex or ->device_lock
1559 * is held.
1560 */
1561 return _enough(conf, 0, ignore) &&
1562 _enough(conf, 1, ignore);
f8c9e74f
N
1563}
1564
fd01b88c 1565static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1566{
1567 char b[BDEVNAME_SIZE];
e879a879 1568 struct r10conf *conf = mddev->private;
635f6416 1569 unsigned long flags;
1da177e4
LT
1570
1571 /*
1572 * If it is not operational, then we have already marked it as dead
1573 * else if it is the last working disks, ignore the error, let the
1574 * next level up know.
1575 * else mark the drive as failed
1576 */
635f6416 1577 spin_lock_irqsave(&conf->device_lock, flags);
b2d444d7 1578 if (test_bit(In_sync, &rdev->flags)
635f6416 1579 && !enough(conf, rdev->raid_disk)) {
1da177e4
LT
1580 /*
1581 * Don't fail the drive, just return an IO error.
1da177e4 1582 */
635f6416 1583 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1584 return;
635f6416 1585 }
2446dba0 1586 if (test_and_clear_bit(In_sync, &rdev->flags))
1da177e4 1587 mddev->degraded++;
2446dba0
N
1588 /*
1589 * If recovery is running, make sure it aborts.
1590 */
1591 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
de393cde 1592 set_bit(Blocked, &rdev->flags);
b2d444d7 1593 set_bit(Faulty, &rdev->flags);
850b2b42 1594 set_bit(MD_CHANGE_DEVS, &mddev->flags);
95af587e 1595 set_bit(MD_CHANGE_PENDING, &mddev->flags);
635f6416 1596 spin_unlock_irqrestore(&conf->device_lock, flags);
067032bc
JP
1597 printk(KERN_ALERT
1598 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1599 "md/raid10:%s: Operation continuing on %d devices.\n",
128595ed 1600 mdname(mddev), bdevname(rdev->bdev, b),
5cf00fcd 1601 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1da177e4
LT
1602}
1603
e879a879 1604static void print_conf(struct r10conf *conf)
1da177e4
LT
1605{
1606 int i;
dc280d98 1607 struct raid10_info *tmp;
1da177e4 1608
128595ed 1609 printk(KERN_DEBUG "RAID10 conf printout:\n");
1da177e4 1610 if (!conf) {
128595ed 1611 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1612 return;
1613 }
5cf00fcd
N
1614 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1615 conf->geo.raid_disks);
1da177e4 1616
5cf00fcd 1617 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4
LT
1618 char b[BDEVNAME_SIZE];
1619 tmp = conf->mirrors + i;
1620 if (tmp->rdev)
128595ed 1621 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
1622 i, !test_bit(In_sync, &tmp->rdev->flags),
1623 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
1624 bdevname(tmp->rdev->bdev,b));
1625 }
1626}
1627
e879a879 1628static void close_sync(struct r10conf *conf)
1da177e4 1629{
0a27ec96
N
1630 wait_barrier(conf);
1631 allow_barrier(conf);
1da177e4
LT
1632
1633 mempool_destroy(conf->r10buf_pool);
1634 conf->r10buf_pool = NULL;
1635}
1636
fd01b88c 1637static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
1638{
1639 int i;
e879a879 1640 struct r10conf *conf = mddev->private;
dc280d98 1641 struct raid10_info *tmp;
6b965620
N
1642 int count = 0;
1643 unsigned long flags;
1da177e4
LT
1644
1645 /*
1646 * Find all non-in_sync disks within the RAID10 configuration
1647 * and mark them in_sync
1648 */
5cf00fcd 1649 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 1650 tmp = conf->mirrors + i;
4ca40c2c
N
1651 if (tmp->replacement
1652 && tmp->replacement->recovery_offset == MaxSector
1653 && !test_bit(Faulty, &tmp->replacement->flags)
1654 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1655 /* Replacement has just become active */
1656 if (!tmp->rdev
1657 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1658 count++;
1659 if (tmp->rdev) {
1660 /* Replaced device not technically faulty,
1661 * but we need to be sure it gets removed
1662 * and never re-added.
1663 */
1664 set_bit(Faulty, &tmp->rdev->flags);
1665 sysfs_notify_dirent_safe(
1666 tmp->rdev->sysfs_state);
1667 }
1668 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1669 } else if (tmp->rdev
61e4947c 1670 && tmp->rdev->recovery_offset == MaxSector
4ca40c2c
N
1671 && !test_bit(Faulty, &tmp->rdev->flags)
1672 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1673 count++;
2863b9eb 1674 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
1675 }
1676 }
6b965620
N
1677 spin_lock_irqsave(&conf->device_lock, flags);
1678 mddev->degraded -= count;
1679 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1680
1681 print_conf(conf);
6b965620 1682 return count;
1da177e4
LT
1683}
1684
fd01b88c 1685static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1686{
e879a879 1687 struct r10conf *conf = mddev->private;
199050ea 1688 int err = -EEXIST;
1da177e4 1689 int mirror;
6c2fce2e 1690 int first = 0;
5cf00fcd 1691 int last = conf->geo.raid_disks - 1;
1da177e4
LT
1692
1693 if (mddev->recovery_cp < MaxSector)
1694 /* only hot-add to in-sync arrays, as recovery is
1695 * very different from resync
1696 */
199050ea 1697 return -EBUSY;
635f6416 1698 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
199050ea 1699 return -EINVAL;
1da177e4 1700
a53a6c85 1701 if (rdev->raid_disk >= 0)
6c2fce2e 1702 first = last = rdev->raid_disk;
1da177e4 1703
2c4193df 1704 if (rdev->saved_raid_disk >= first &&
6cce3b23
N
1705 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1706 mirror = rdev->saved_raid_disk;
1707 else
6c2fce2e 1708 mirror = first;
2bb77736 1709 for ( ; mirror <= last ; mirror++) {
dc280d98 1710 struct raid10_info *p = &conf->mirrors[mirror];
2bb77736
N
1711 if (p->recovery_disabled == mddev->recovery_disabled)
1712 continue;
b7044d41
N
1713 if (p->rdev) {
1714 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1715 p->replacement != NULL)
1716 continue;
1717 clear_bit(In_sync, &rdev->flags);
1718 set_bit(Replacement, &rdev->flags);
1719 rdev->raid_disk = mirror;
1720 err = 0;
9092c02d
JB
1721 if (mddev->gendisk)
1722 disk_stack_limits(mddev->gendisk, rdev->bdev,
1723 rdev->data_offset << 9);
b7044d41
N
1724 conf->fullsync = 1;
1725 rcu_assign_pointer(p->replacement, rdev);
1726 break;
1727 }
1da177e4 1728
9092c02d
JB
1729 if (mddev->gendisk)
1730 disk_stack_limits(mddev->gendisk, rdev->bdev,
1731 rdev->data_offset << 9);
1da177e4 1732
2bb77736 1733 p->head_position = 0;
d890fa2b 1734 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
1735 rdev->raid_disk = mirror;
1736 err = 0;
1737 if (rdev->saved_raid_disk != mirror)
1738 conf->fullsync = 1;
1739 rcu_assign_pointer(p->rdev, rdev);
1740 break;
1741 }
c7bfced9 1742 mddev_suspend(mddev);
ac5e7113 1743 md_integrity_add_rdev(rdev, mddev);
c7bfced9 1744 mddev_resume(mddev);
ed30be07 1745 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
532a2a3f
SL
1746 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1747
1da177e4 1748 print_conf(conf);
199050ea 1749 return err;
1da177e4
LT
1750}
1751
b8321b68 1752static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1753{
e879a879 1754 struct r10conf *conf = mddev->private;
1da177e4 1755 int err = 0;
b8321b68 1756 int number = rdev->raid_disk;
c8ab903e 1757 struct md_rdev **rdevp;
dc280d98 1758 struct raid10_info *p = conf->mirrors + number;
1da177e4
LT
1759
1760 print_conf(conf);
c8ab903e
N
1761 if (rdev == p->rdev)
1762 rdevp = &p->rdev;
1763 else if (rdev == p->replacement)
1764 rdevp = &p->replacement;
1765 else
1766 return 0;
1767
1768 if (test_bit(In_sync, &rdev->flags) ||
1769 atomic_read(&rdev->nr_pending)) {
1770 err = -EBUSY;
1771 goto abort;
1772 }
1773 /* Only remove faulty devices if recovery
1774 * is not possible.
1775 */
1776 if (!test_bit(Faulty, &rdev->flags) &&
1777 mddev->recovery_disabled != p->recovery_disabled &&
4ca40c2c 1778 (!p->replacement || p->replacement == rdev) &&
63aced61 1779 number < conf->geo.raid_disks &&
c8ab903e
N
1780 enough(conf, -1)) {
1781 err = -EBUSY;
1782 goto abort;
1da177e4 1783 }
c8ab903e
N
1784 *rdevp = NULL;
1785 synchronize_rcu();
1786 if (atomic_read(&rdev->nr_pending)) {
1787 /* lost the race, try later */
1788 err = -EBUSY;
1789 *rdevp = rdev;
1790 goto abort;
4ca40c2c
N
1791 } else if (p->replacement) {
1792 /* We must have just cleared 'rdev' */
1793 p->rdev = p->replacement;
1794 clear_bit(Replacement, &p->replacement->flags);
1795 smp_mb(); /* Make sure other CPUs may see both as identical
1796 * but will never see neither -- if they are careful.
1797 */
1798 p->replacement = NULL;
1799 clear_bit(WantReplacement, &rdev->flags);
1800 } else
1801 /* We might have just remove the Replacement as faulty
1802 * Clear the flag just in case
1803 */
1804 clear_bit(WantReplacement, &rdev->flags);
1805
c8ab903e
N
1806 err = md_integrity_register(mddev);
1807
1da177e4
LT
1808abort:
1809
1810 print_conf(conf);
1811 return err;
1812}
1813
4246a0b6 1814static void end_sync_read(struct bio *bio)
1da177e4 1815{
9f2c9d12 1816 struct r10bio *r10_bio = bio->bi_private;
e879a879 1817 struct r10conf *conf = r10_bio->mddev->private;
778ca018 1818 int d;
1da177e4 1819
3ea7daa5
N
1820 if (bio == r10_bio->master_bio) {
1821 /* this is a reshape read */
1822 d = r10_bio->read_slot; /* really the read dev */
1823 } else
1824 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
0eb3ff12 1825
4246a0b6 1826 if (!bio->bi_error)
0eb3ff12 1827 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
1828 else
1829 /* The write handler will notice the lack of
1830 * R10BIO_Uptodate and record any errors etc
1831 */
4dbcdc75
N
1832 atomic_add(r10_bio->sectors,
1833 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
1834
1835 /* for reconstruct, we always reschedule after a read.
1836 * for resync, only after all reads
1837 */
73d5c38a 1838 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1839 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1840 atomic_dec_and_test(&r10_bio->remaining)) {
1841 /* we have read all the blocks,
1842 * do the comparison in process context in raid10d
1843 */
1844 reschedule_retry(r10_bio);
1845 }
1da177e4
LT
1846}
1847
9f2c9d12 1848static void end_sync_request(struct r10bio *r10_bio)
1da177e4 1849{
fd01b88c 1850 struct mddev *mddev = r10_bio->mddev;
dfc70645 1851
1da177e4
LT
1852 while (atomic_dec_and_test(&r10_bio->remaining)) {
1853 if (r10_bio->master_bio == NULL) {
1854 /* the primary of several recovery bios */
73d5c38a 1855 sector_t s = r10_bio->sectors;
1a0b7cd8
N
1856 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1857 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1858 reschedule_retry(r10_bio);
1859 else
1860 put_buf(r10_bio);
73d5c38a 1861 md_done_sync(mddev, s, 1);
1da177e4
LT
1862 break;
1863 } else {
9f2c9d12 1864 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
1865 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1866 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1867 reschedule_retry(r10_bio);
1868 else
1869 put_buf(r10_bio);
1da177e4
LT
1870 r10_bio = r10_bio2;
1871 }
1872 }
1da177e4
LT
1873}
1874
4246a0b6 1875static void end_sync_write(struct bio *bio)
5e570289 1876{
9f2c9d12 1877 struct r10bio *r10_bio = bio->bi_private;
fd01b88c 1878 struct mddev *mddev = r10_bio->mddev;
e879a879 1879 struct r10conf *conf = mddev->private;
5e570289
N
1880 int d;
1881 sector_t first_bad;
1882 int bad_sectors;
1883 int slot;
9ad1aefc 1884 int repl;
4ca40c2c 1885 struct md_rdev *rdev = NULL;
5e570289 1886
9ad1aefc
N
1887 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1888 if (repl)
1889 rdev = conf->mirrors[d].replacement;
547414d1 1890 else
9ad1aefc 1891 rdev = conf->mirrors[d].rdev;
5e570289 1892
4246a0b6 1893 if (bio->bi_error) {
9ad1aefc
N
1894 if (repl)
1895 md_error(mddev, rdev);
1896 else {
1897 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
1898 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1899 set_bit(MD_RECOVERY_NEEDED,
1900 &rdev->mddev->recovery);
9ad1aefc
N
1901 set_bit(R10BIO_WriteError, &r10_bio->state);
1902 }
1903 } else if (is_badblock(rdev,
5e570289
N
1904 r10_bio->devs[slot].addr,
1905 r10_bio->sectors,
1906 &first_bad, &bad_sectors))
1907 set_bit(R10BIO_MadeGood, &r10_bio->state);
1908
9ad1aefc 1909 rdev_dec_pending(rdev, mddev);
5e570289
N
1910
1911 end_sync_request(r10_bio);
1912}
1913
1da177e4
LT
1914/*
1915 * Note: sync and recover and handled very differently for raid10
1916 * This code is for resync.
1917 * For resync, we read through virtual addresses and read all blocks.
1918 * If there is any error, we schedule a write. The lowest numbered
1919 * drive is authoritative.
1920 * However requests come for physical address, so we need to map.
1921 * For every physical address there are raid_disks/copies virtual addresses,
1922 * which is always are least one, but is not necessarly an integer.
1923 * This means that a physical address can span multiple chunks, so we may
1924 * have to submit multiple io requests for a single sync request.
1925 */
1926/*
1927 * We check if all blocks are in-sync and only write to blocks that
1928 * aren't in sync
1929 */
9f2c9d12 1930static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 1931{
e879a879 1932 struct r10conf *conf = mddev->private;
1da177e4
LT
1933 int i, first;
1934 struct bio *tbio, *fbio;
f4380a91 1935 int vcnt;
1da177e4
LT
1936
1937 atomic_set(&r10_bio->remaining, 1);
1938
1939 /* find the first device with a block */
1940 for (i=0; i<conf->copies; i++)
4246a0b6 1941 if (!r10_bio->devs[i].bio->bi_error)
1da177e4
LT
1942 break;
1943
1944 if (i == conf->copies)
1945 goto done;
1946
1947 first = i;
1948 fbio = r10_bio->devs[i].bio;
1949
f4380a91 1950 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1da177e4 1951 /* now find blocks with errors */
0eb3ff12
N
1952 for (i=0 ; i < conf->copies ; i++) {
1953 int j, d;
1da177e4 1954
1da177e4 1955 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
1956
1957 if (tbio->bi_end_io != end_sync_read)
1958 continue;
1959 if (i == first)
1da177e4 1960 continue;
4246a0b6 1961 if (!r10_bio->devs[i].bio->bi_error) {
0eb3ff12
N
1962 /* We know that the bi_io_vec layout is the same for
1963 * both 'first' and 'i', so we just compare them.
1964 * All vec entries are PAGE_SIZE;
1965 */
7bb23c49
N
1966 int sectors = r10_bio->sectors;
1967 for (j = 0; j < vcnt; j++) {
1968 int len = PAGE_SIZE;
1969 if (sectors < (len / 512))
1970 len = sectors * 512;
0eb3ff12
N
1971 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1972 page_address(tbio->bi_io_vec[j].bv_page),
7bb23c49 1973 len))
0eb3ff12 1974 break;
7bb23c49
N
1975 sectors -= len/512;
1976 }
0eb3ff12
N
1977 if (j == vcnt)
1978 continue;
7f7583d4 1979 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
f84ee364
N
1980 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1981 /* Don't fix anything. */
1982 continue;
0eb3ff12 1983 }
f84ee364
N
1984 /* Ok, we need to write this bio, either to correct an
1985 * inconsistency or to correct an unreadable block.
1da177e4
LT
1986 * First we need to fixup bv_offset, bv_len and
1987 * bi_vecs, as the read request might have corrupted these
1988 */
8be185f2
KO
1989 bio_reset(tbio);
1990
1da177e4 1991 tbio->bi_vcnt = vcnt;
4f024f37 1992 tbio->bi_iter.bi_size = r10_bio->sectors << 9;
1da177e4
LT
1993 tbio->bi_rw = WRITE;
1994 tbio->bi_private = r10_bio;
4f024f37 1995 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1da177e4
LT
1996 tbio->bi_end_io = end_sync_write;
1997
c31df25f
KO
1998 bio_copy_data(tbio, fbio);
1999
1da177e4
LT
2000 d = r10_bio->devs[i].devnum;
2001 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2002 atomic_inc(&r10_bio->remaining);
aa8b57aa 2003 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
1da177e4 2004
4f024f37 2005 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
1da177e4
LT
2006 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2007 generic_make_request(tbio);
2008 }
2009
9ad1aefc
N
2010 /* Now write out to any replacement devices
2011 * that are active
2012 */
2013 for (i = 0; i < conf->copies; i++) {
c31df25f 2014 int d;
9ad1aefc
N
2015
2016 tbio = r10_bio->devs[i].repl_bio;
2017 if (!tbio || !tbio->bi_end_io)
2018 continue;
2019 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2020 && r10_bio->devs[i].bio != fbio)
c31df25f 2021 bio_copy_data(tbio, fbio);
9ad1aefc
N
2022 d = r10_bio->devs[i].devnum;
2023 atomic_inc(&r10_bio->remaining);
2024 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2025 bio_sectors(tbio));
9ad1aefc
N
2026 generic_make_request(tbio);
2027 }
2028
1da177e4
LT
2029done:
2030 if (atomic_dec_and_test(&r10_bio->remaining)) {
2031 md_done_sync(mddev, r10_bio->sectors, 1);
2032 put_buf(r10_bio);
2033 }
2034}
2035
2036/*
2037 * Now for the recovery code.
2038 * Recovery happens across physical sectors.
2039 * We recover all non-is_sync drives by finding the virtual address of
2040 * each, and then choose a working drive that also has that virt address.
2041 * There is a separate r10_bio for each non-in_sync drive.
2042 * Only the first two slots are in use. The first for reading,
2043 * The second for writing.
2044 *
2045 */
9f2c9d12 2046static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
2047{
2048 /* We got a read error during recovery.
2049 * We repeat the read in smaller page-sized sections.
2050 * If a read succeeds, write it to the new device or record
2051 * a bad block if we cannot.
2052 * If a read fails, record a bad block on both old and
2053 * new devices.
2054 */
fd01b88c 2055 struct mddev *mddev = r10_bio->mddev;
e879a879 2056 struct r10conf *conf = mddev->private;
5e570289
N
2057 struct bio *bio = r10_bio->devs[0].bio;
2058 sector_t sect = 0;
2059 int sectors = r10_bio->sectors;
2060 int idx = 0;
2061 int dr = r10_bio->devs[0].devnum;
2062 int dw = r10_bio->devs[1].devnum;
2063
2064 while (sectors) {
2065 int s = sectors;
3cb03002 2066 struct md_rdev *rdev;
5e570289
N
2067 sector_t addr;
2068 int ok;
2069
2070 if (s > (PAGE_SIZE>>9))
2071 s = PAGE_SIZE >> 9;
2072
2073 rdev = conf->mirrors[dr].rdev;
2074 addr = r10_bio->devs[0].addr + sect,
2075 ok = sync_page_io(rdev,
2076 addr,
2077 s << 9,
2078 bio->bi_io_vec[idx].bv_page,
2079 READ, false);
2080 if (ok) {
2081 rdev = conf->mirrors[dw].rdev;
2082 addr = r10_bio->devs[1].addr + sect;
2083 ok = sync_page_io(rdev,
2084 addr,
2085 s << 9,
2086 bio->bi_io_vec[idx].bv_page,
2087 WRITE, false);
b7044d41 2088 if (!ok) {
5e570289 2089 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2090 if (!test_and_set_bit(WantReplacement,
2091 &rdev->flags))
2092 set_bit(MD_RECOVERY_NEEDED,
2093 &rdev->mddev->recovery);
2094 }
5e570289
N
2095 }
2096 if (!ok) {
2097 /* We don't worry if we cannot set a bad block -
2098 * it really is bad so there is no loss in not
2099 * recording it yet
2100 */
2101 rdev_set_badblocks(rdev, addr, s, 0);
2102
2103 if (rdev != conf->mirrors[dw].rdev) {
2104 /* need bad block on destination too */
3cb03002 2105 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
2106 addr = r10_bio->devs[1].addr + sect;
2107 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2108 if (!ok) {
2109 /* just abort the recovery */
2110 printk(KERN_NOTICE
2111 "md/raid10:%s: recovery aborted"
2112 " due to read error\n",
2113 mdname(mddev));
2114
2115 conf->mirrors[dw].recovery_disabled
2116 = mddev->recovery_disabled;
2117 set_bit(MD_RECOVERY_INTR,
2118 &mddev->recovery);
2119 break;
2120 }
2121 }
2122 }
2123
2124 sectors -= s;
2125 sect += s;
2126 idx++;
2127 }
2128}
1da177e4 2129
9f2c9d12 2130static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2131{
e879a879 2132 struct r10conf *conf = mddev->private;
c65060ad 2133 int d;
24afd80d 2134 struct bio *wbio, *wbio2;
1da177e4 2135
5e570289
N
2136 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2137 fix_recovery_read_error(r10_bio);
2138 end_sync_request(r10_bio);
2139 return;
2140 }
2141
c65060ad
NK
2142 /*
2143 * share the pages with the first bio
1da177e4
LT
2144 * and submit the write request
2145 */
1da177e4 2146 d = r10_bio->devs[1].devnum;
24afd80d
N
2147 wbio = r10_bio->devs[1].bio;
2148 wbio2 = r10_bio->devs[1].repl_bio;
0eb25bb0
N
2149 /* Need to test wbio2->bi_end_io before we call
2150 * generic_make_request as if the former is NULL,
2151 * the latter is free to free wbio2.
2152 */
2153 if (wbio2 && !wbio2->bi_end_io)
2154 wbio2 = NULL;
24afd80d
N
2155 if (wbio->bi_end_io) {
2156 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
aa8b57aa 2157 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
24afd80d
N
2158 generic_make_request(wbio);
2159 }
0eb25bb0 2160 if (wbio2) {
24afd80d
N
2161 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2162 md_sync_acct(conf->mirrors[d].replacement->bdev,
aa8b57aa 2163 bio_sectors(wbio2));
24afd80d
N
2164 generic_make_request(wbio2);
2165 }
1da177e4
LT
2166}
2167
1e50915f
RB
2168/*
2169 * Used by fix_read_error() to decay the per rdev read_errors.
2170 * We halve the read error count for every hour that has elapsed
2171 * since the last recorded read error.
2172 *
2173 */
fd01b88c 2174static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f
RB
2175{
2176 struct timespec cur_time_mon;
2177 unsigned long hours_since_last;
2178 unsigned int read_errors = atomic_read(&rdev->read_errors);
2179
2180 ktime_get_ts(&cur_time_mon);
2181
2182 if (rdev->last_read_error.tv_sec == 0 &&
2183 rdev->last_read_error.tv_nsec == 0) {
2184 /* first time we've seen a read error */
2185 rdev->last_read_error = cur_time_mon;
2186 return;
2187 }
2188
2189 hours_since_last = (cur_time_mon.tv_sec -
2190 rdev->last_read_error.tv_sec) / 3600;
2191
2192 rdev->last_read_error = cur_time_mon;
2193
2194 /*
2195 * if hours_since_last is > the number of bits in read_errors
2196 * just set read errors to 0. We do this to avoid
2197 * overflowing the shift of read_errors by hours_since_last.
2198 */
2199 if (hours_since_last >= 8 * sizeof(read_errors))
2200 atomic_set(&rdev->read_errors, 0);
2201 else
2202 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2203}
2204
3cb03002 2205static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
58c54fcc
N
2206 int sectors, struct page *page, int rw)
2207{
2208 sector_t first_bad;
2209 int bad_sectors;
2210
2211 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2212 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2213 return -1;
2214 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2215 /* success */
2216 return 1;
b7044d41 2217 if (rw == WRITE) {
58c54fcc 2218 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2219 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2220 set_bit(MD_RECOVERY_NEEDED,
2221 &rdev->mddev->recovery);
2222 }
58c54fcc
N
2223 /* need to record an error - either for the block or the device */
2224 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2225 md_error(rdev->mddev, rdev);
2226 return 0;
2227}
2228
1da177e4
LT
2229/*
2230 * This is a kernel thread which:
2231 *
2232 * 1. Retries failed read operations on working mirrors.
2233 * 2. Updates the raid superblock when problems encounter.
6814d536 2234 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2235 */
2236
e879a879 2237static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
2238{
2239 int sect = 0; /* Offset from r10_bio->sector */
2240 int sectors = r10_bio->sectors;
3cb03002 2241 struct md_rdev*rdev;
1e50915f 2242 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 2243 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 2244
7c4e06ff
N
2245 /* still own a reference to this rdev, so it cannot
2246 * have been cleared recently.
2247 */
2248 rdev = conf->mirrors[d].rdev;
1e50915f 2249
7c4e06ff
N
2250 if (test_bit(Faulty, &rdev->flags))
2251 /* drive has already been failed, just ignore any
2252 more fix_read_error() attempts */
2253 return;
1e50915f 2254
7c4e06ff
N
2255 check_decay_read_errors(mddev, rdev);
2256 atomic_inc(&rdev->read_errors);
2257 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2258 char b[BDEVNAME_SIZE];
2259 bdevname(rdev->bdev, b);
1e50915f 2260
7c4e06ff
N
2261 printk(KERN_NOTICE
2262 "md/raid10:%s: %s: Raid device exceeded "
2263 "read_error threshold [cur %d:max %d]\n",
2264 mdname(mddev), b,
2265 atomic_read(&rdev->read_errors), max_read_errors);
2266 printk(KERN_NOTICE
2267 "md/raid10:%s: %s: Failing raid device\n",
2268 mdname(mddev), b);
2269 md_error(mddev, conf->mirrors[d].rdev);
fae8cc5e 2270 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
7c4e06ff 2271 return;
1e50915f 2272 }
1e50915f 2273
6814d536
N
2274 while(sectors) {
2275 int s = sectors;
2276 int sl = r10_bio->read_slot;
2277 int success = 0;
2278 int start;
2279
2280 if (s > (PAGE_SIZE>>9))
2281 s = PAGE_SIZE >> 9;
2282
2283 rcu_read_lock();
2284 do {
8dbed5ce
N
2285 sector_t first_bad;
2286 int bad_sectors;
2287
0544a21d 2288 d = r10_bio->devs[sl].devnum;
6814d536
N
2289 rdev = rcu_dereference(conf->mirrors[d].rdev);
2290 if (rdev &&
8dbed5ce
N
2291 test_bit(In_sync, &rdev->flags) &&
2292 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2293 &first_bad, &bad_sectors) == 0) {
6814d536
N
2294 atomic_inc(&rdev->nr_pending);
2295 rcu_read_unlock();
2b193363 2296 success = sync_page_io(rdev,
6814d536 2297 r10_bio->devs[sl].addr +
ccebd4c4 2298 sect,
6814d536 2299 s<<9,
ccebd4c4 2300 conf->tmppage, READ, false);
6814d536
N
2301 rdev_dec_pending(rdev, mddev);
2302 rcu_read_lock();
2303 if (success)
2304 break;
2305 }
2306 sl++;
2307 if (sl == conf->copies)
2308 sl = 0;
2309 } while (!success && sl != r10_bio->read_slot);
2310 rcu_read_unlock();
2311
2312 if (!success) {
58c54fcc
N
2313 /* Cannot read from anywhere, just mark the block
2314 * as bad on the first device to discourage future
2315 * reads.
2316 */
6814d536 2317 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
2318 rdev = conf->mirrors[dn].rdev;
2319
2320 if (!rdev_set_badblocks(
2321 rdev,
2322 r10_bio->devs[r10_bio->read_slot].addr
2323 + sect,
fae8cc5e 2324 s, 0)) {
58c54fcc 2325 md_error(mddev, rdev);
fae8cc5e
N
2326 r10_bio->devs[r10_bio->read_slot].bio
2327 = IO_BLOCKED;
2328 }
6814d536
N
2329 break;
2330 }
2331
2332 start = sl;
2333 /* write it back and re-read */
2334 rcu_read_lock();
2335 while (sl != r10_bio->read_slot) {
67b8dc4b 2336 char b[BDEVNAME_SIZE];
0544a21d 2337
6814d536
N
2338 if (sl==0)
2339 sl = conf->copies;
2340 sl--;
2341 d = r10_bio->devs[sl].devnum;
2342 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
2343 if (!rdev ||
2344 !test_bit(In_sync, &rdev->flags))
2345 continue;
2346
2347 atomic_inc(&rdev->nr_pending);
2348 rcu_read_unlock();
58c54fcc
N
2349 if (r10_sync_page_io(rdev,
2350 r10_bio->devs[sl].addr +
2351 sect,
055d3747 2352 s, conf->tmppage, WRITE)
1294b9c9
N
2353 == 0) {
2354 /* Well, this device is dead */
2355 printk(KERN_NOTICE
2356 "md/raid10:%s: read correction "
2357 "write failed"
2358 " (%d sectors at %llu on %s)\n",
2359 mdname(mddev), s,
2360 (unsigned long long)(
f8c9e74f
N
2361 sect +
2362 choose_data_offset(r10_bio,
2363 rdev)),
1294b9c9
N
2364 bdevname(rdev->bdev, b));
2365 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2366 "drive\n",
2367 mdname(mddev),
2368 bdevname(rdev->bdev, b));
6814d536 2369 }
1294b9c9
N
2370 rdev_dec_pending(rdev, mddev);
2371 rcu_read_lock();
6814d536
N
2372 }
2373 sl = start;
2374 while (sl != r10_bio->read_slot) {
1294b9c9 2375 char b[BDEVNAME_SIZE];
0544a21d 2376
6814d536
N
2377 if (sl==0)
2378 sl = conf->copies;
2379 sl--;
2380 d = r10_bio->devs[sl].devnum;
2381 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
2382 if (!rdev ||
2383 !test_bit(In_sync, &rdev->flags))
2384 continue;
6814d536 2385
1294b9c9
N
2386 atomic_inc(&rdev->nr_pending);
2387 rcu_read_unlock();
58c54fcc
N
2388 switch (r10_sync_page_io(rdev,
2389 r10_bio->devs[sl].addr +
2390 sect,
055d3747 2391 s, conf->tmppage,
58c54fcc
N
2392 READ)) {
2393 case 0:
1294b9c9
N
2394 /* Well, this device is dead */
2395 printk(KERN_NOTICE
2396 "md/raid10:%s: unable to read back "
2397 "corrected sectors"
2398 " (%d sectors at %llu on %s)\n",
2399 mdname(mddev), s,
2400 (unsigned long long)(
f8c9e74f
N
2401 sect +
2402 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2403 bdevname(rdev->bdev, b));
2404 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2405 "drive\n",
2406 mdname(mddev),
2407 bdevname(rdev->bdev, b));
58c54fcc
N
2408 break;
2409 case 1:
1294b9c9
N
2410 printk(KERN_INFO
2411 "md/raid10:%s: read error corrected"
2412 " (%d sectors at %llu on %s)\n",
2413 mdname(mddev), s,
2414 (unsigned long long)(
f8c9e74f
N
2415 sect +
2416 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2417 bdevname(rdev->bdev, b));
2418 atomic_add(s, &rdev->corrected_errors);
6814d536 2419 }
1294b9c9
N
2420
2421 rdev_dec_pending(rdev, mddev);
2422 rcu_read_lock();
6814d536
N
2423 }
2424 rcu_read_unlock();
2425
2426 sectors -= s;
2427 sect += s;
2428 }
2429}
2430
9f2c9d12 2431static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2432{
2433 struct bio *bio = r10_bio->master_bio;
fd01b88c 2434 struct mddev *mddev = r10_bio->mddev;
e879a879 2435 struct r10conf *conf = mddev->private;
3cb03002 2436 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2437 /* bio has the data to be written to slot 'i' where
2438 * we just recently had a write error.
2439 * We repeatedly clone the bio and trim down to one block,
2440 * then try the write. Where the write fails we record
2441 * a bad block.
2442 * It is conceivable that the bio doesn't exactly align with
2443 * blocks. We must handle this.
2444 *
2445 * We currently own a reference to the rdev.
2446 */
2447
2448 int block_sectors;
2449 sector_t sector;
2450 int sectors;
2451 int sect_to_write = r10_bio->sectors;
2452 int ok = 1;
2453
2454 if (rdev->badblocks.shift < 0)
2455 return 0;
2456
f04ebb0b
N
2457 block_sectors = roundup(1 << rdev->badblocks.shift,
2458 bdev_logical_block_size(rdev->bdev) >> 9);
bd870a16
N
2459 sector = r10_bio->sector;
2460 sectors = ((r10_bio->sector + block_sectors)
2461 & ~(sector_t)(block_sectors - 1))
2462 - sector;
2463
2464 while (sect_to_write) {
2465 struct bio *wbio;
2466 if (sectors > sect_to_write)
2467 sectors = sect_to_write;
2468 /* Write at 'sector' for 'sectors' */
2469 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37
KO
2470 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2471 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
f8c9e74f 2472 choose_data_offset(r10_bio, rdev) +
bd870a16
N
2473 (sector - r10_bio->sector));
2474 wbio->bi_bdev = rdev->bdev;
681ab469 2475 if (submit_bio_wait(WRITE, wbio) < 0)
bd870a16
N
2476 /* Failure! */
2477 ok = rdev_set_badblocks(rdev, sector,
2478 sectors, 0)
2479 && ok;
2480
2481 bio_put(wbio);
2482 sect_to_write -= sectors;
2483 sector += sectors;
2484 sectors = block_sectors;
2485 }
2486 return ok;
2487}
2488
9f2c9d12 2489static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2490{
2491 int slot = r10_bio->read_slot;
560f8e55 2492 struct bio *bio;
e879a879 2493 struct r10conf *conf = mddev->private;
abbf098e 2494 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2495 char b[BDEVNAME_SIZE];
2496 unsigned long do_sync;
856e08e2 2497 int max_sectors;
560f8e55
N
2498
2499 /* we got a read error. Maybe the drive is bad. Maybe just
2500 * the block and we can fix it.
2501 * We freeze all other IO, and try reading the block from
2502 * other devices. When we find one, we re-write
2503 * and check it that fixes the read error.
2504 * This is all done synchronously while the array is
2505 * frozen.
2506 */
fae8cc5e
N
2507 bio = r10_bio->devs[slot].bio;
2508 bdevname(bio->bi_bdev, b);
2509 bio_put(bio);
2510 r10_bio->devs[slot].bio = NULL;
2511
560f8e55 2512 if (mddev->ro == 0) {
e2d59925 2513 freeze_array(conf, 1);
560f8e55
N
2514 fix_read_error(conf, mddev, r10_bio);
2515 unfreeze_array(conf);
fae8cc5e
N
2516 } else
2517 r10_bio->devs[slot].bio = IO_BLOCKED;
2518
abbf098e 2519 rdev_dec_pending(rdev, mddev);
560f8e55 2520
7399c31b 2521read_more:
96c3fd1f
N
2522 rdev = read_balance(conf, r10_bio, &max_sectors);
2523 if (rdev == NULL) {
560f8e55
N
2524 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2525 " read error for block %llu\n",
7399c31b 2526 mdname(mddev), b,
560f8e55
N
2527 (unsigned long long)r10_bio->sector);
2528 raid_end_bio_io(r10_bio);
560f8e55
N
2529 return;
2530 }
2531
2532 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
560f8e55 2533 slot = r10_bio->read_slot;
560f8e55
N
2534 printk_ratelimited(
2535 KERN_ERR
055d3747 2536 "md/raid10:%s: %s: redirecting "
560f8e55
N
2537 "sector %llu to another mirror\n",
2538 mdname(mddev),
2539 bdevname(rdev->bdev, b),
2540 (unsigned long long)r10_bio->sector);
2541 bio = bio_clone_mddev(r10_bio->master_bio,
2542 GFP_NOIO, mddev);
4f024f37 2543 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
560f8e55 2544 r10_bio->devs[slot].bio = bio;
abbf098e 2545 r10_bio->devs[slot].rdev = rdev;
4f024f37 2546 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
f8c9e74f 2547 + choose_data_offset(r10_bio, rdev);
560f8e55
N
2548 bio->bi_bdev = rdev->bdev;
2549 bio->bi_rw = READ | do_sync;
2550 bio->bi_private = r10_bio;
2551 bio->bi_end_io = raid10_end_read_request;
7399c31b
N
2552 if (max_sectors < r10_bio->sectors) {
2553 /* Drat - have to split this up more */
2554 struct bio *mbio = r10_bio->master_bio;
2555 int sectors_handled =
2556 r10_bio->sector + max_sectors
4f024f37 2557 - mbio->bi_iter.bi_sector;
7399c31b
N
2558 r10_bio->sectors = max_sectors;
2559 spin_lock_irq(&conf->device_lock);
2560 if (mbio->bi_phys_segments == 0)
2561 mbio->bi_phys_segments = 2;
2562 else
2563 mbio->bi_phys_segments++;
2564 spin_unlock_irq(&conf->device_lock);
2565 generic_make_request(bio);
7399c31b
N
2566
2567 r10_bio = mempool_alloc(conf->r10bio_pool,
2568 GFP_NOIO);
2569 r10_bio->master_bio = mbio;
aa8b57aa 2570 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
7399c31b
N
2571 r10_bio->state = 0;
2572 set_bit(R10BIO_ReadError,
2573 &r10_bio->state);
2574 r10_bio->mddev = mddev;
4f024f37 2575 r10_bio->sector = mbio->bi_iter.bi_sector
7399c31b
N
2576 + sectors_handled;
2577
2578 goto read_more;
2579 } else
2580 generic_make_request(bio);
560f8e55
N
2581}
2582
e879a879 2583static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2584{
2585 /* Some sort of write request has finished and it
2586 * succeeded in writing where we thought there was a
2587 * bad block. So forget the bad block.
1a0b7cd8
N
2588 * Or possibly if failed and we need to record
2589 * a bad block.
749c55e9
N
2590 */
2591 int m;
3cb03002 2592 struct md_rdev *rdev;
749c55e9
N
2593
2594 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2595 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2596 for (m = 0; m < conf->copies; m++) {
2597 int dev = r10_bio->devs[m].devnum;
2598 rdev = conf->mirrors[dev].rdev;
2599 if (r10_bio->devs[m].bio == NULL)
2600 continue;
4246a0b6 2601 if (!r10_bio->devs[m].bio->bi_error) {
749c55e9
N
2602 rdev_clear_badblocks(
2603 rdev,
2604 r10_bio->devs[m].addr,
c6563a8c 2605 r10_bio->sectors, 0);
1a0b7cd8
N
2606 } else {
2607 if (!rdev_set_badblocks(
2608 rdev,
2609 r10_bio->devs[m].addr,
2610 r10_bio->sectors, 0))
2611 md_error(conf->mddev, rdev);
749c55e9 2612 }
9ad1aefc
N
2613 rdev = conf->mirrors[dev].replacement;
2614 if (r10_bio->devs[m].repl_bio == NULL)
2615 continue;
4246a0b6
CH
2616
2617 if (!r10_bio->devs[m].repl_bio->bi_error) {
9ad1aefc
N
2618 rdev_clear_badblocks(
2619 rdev,
2620 r10_bio->devs[m].addr,
c6563a8c 2621 r10_bio->sectors, 0);
9ad1aefc
N
2622 } else {
2623 if (!rdev_set_badblocks(
2624 rdev,
2625 r10_bio->devs[m].addr,
2626 r10_bio->sectors, 0))
2627 md_error(conf->mddev, rdev);
2628 }
1a0b7cd8 2629 }
749c55e9
N
2630 put_buf(r10_bio);
2631 } else {
95af587e 2632 bool fail = false;
bd870a16
N
2633 for (m = 0; m < conf->copies; m++) {
2634 int dev = r10_bio->devs[m].devnum;
2635 struct bio *bio = r10_bio->devs[m].bio;
2636 rdev = conf->mirrors[dev].rdev;
2637 if (bio == IO_MADE_GOOD) {
749c55e9
N
2638 rdev_clear_badblocks(
2639 rdev,
2640 r10_bio->devs[m].addr,
c6563a8c 2641 r10_bio->sectors, 0);
749c55e9 2642 rdev_dec_pending(rdev, conf->mddev);
4246a0b6 2643 } else if (bio != NULL && bio->bi_error) {
95af587e 2644 fail = true;
bd870a16
N
2645 if (!narrow_write_error(r10_bio, m)) {
2646 md_error(conf->mddev, rdev);
2647 set_bit(R10BIO_Degraded,
2648 &r10_bio->state);
2649 }
2650 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2651 }
475b0321
N
2652 bio = r10_bio->devs[m].repl_bio;
2653 rdev = conf->mirrors[dev].replacement;
4ca40c2c 2654 if (rdev && bio == IO_MADE_GOOD) {
475b0321
N
2655 rdev_clear_badblocks(
2656 rdev,
2657 r10_bio->devs[m].addr,
c6563a8c 2658 r10_bio->sectors, 0);
475b0321
N
2659 rdev_dec_pending(rdev, conf->mddev);
2660 }
bd870a16 2661 }
95af587e
N
2662 if (fail) {
2663 spin_lock_irq(&conf->device_lock);
2664 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2665 spin_unlock_irq(&conf->device_lock);
2666 md_wakeup_thread(conf->mddev->thread);
c340702c
N
2667 } else {
2668 if (test_bit(R10BIO_WriteError,
2669 &r10_bio->state))
2670 close_write(r10_bio);
95af587e 2671 raid_end_bio_io(r10_bio);
c340702c 2672 }
749c55e9
N
2673 }
2674}
2675
4ed8731d 2676static void raid10d(struct md_thread *thread)
1da177e4 2677{
4ed8731d 2678 struct mddev *mddev = thread->mddev;
9f2c9d12 2679 struct r10bio *r10_bio;
1da177e4 2680 unsigned long flags;
e879a879 2681 struct r10conf *conf = mddev->private;
1da177e4 2682 struct list_head *head = &conf->retry_list;
e1dfa0a2 2683 struct blk_plug plug;
1da177e4
LT
2684
2685 md_check_recovery(mddev);
1da177e4 2686
95af587e
N
2687 if (!list_empty_careful(&conf->bio_end_io_list) &&
2688 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2689 LIST_HEAD(tmp);
2690 spin_lock_irqsave(&conf->device_lock, flags);
2691 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2692 list_add(&tmp, &conf->bio_end_io_list);
2693 list_del_init(&conf->bio_end_io_list);
2694 }
2695 spin_unlock_irqrestore(&conf->device_lock, flags);
2696 while (!list_empty(&tmp)) {
a452744b
MP
2697 r10_bio = list_first_entry(&tmp, struct r10bio,
2698 retry_list);
95af587e 2699 list_del(&r10_bio->retry_list);
c340702c
N
2700 if (mddev->degraded)
2701 set_bit(R10BIO_Degraded, &r10_bio->state);
2702
2703 if (test_bit(R10BIO_WriteError,
2704 &r10_bio->state))
2705 close_write(r10_bio);
95af587e
N
2706 raid_end_bio_io(r10_bio);
2707 }
2708 }
2709
e1dfa0a2 2710 blk_start_plug(&plug);
1da177e4 2711 for (;;) {
6cce3b23 2712
0021b7bc 2713 flush_pending_writes(conf);
6cce3b23 2714
a35e63ef
N
2715 spin_lock_irqsave(&conf->device_lock, flags);
2716 if (list_empty(head)) {
2717 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2718 break;
a35e63ef 2719 }
9f2c9d12 2720 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 2721 list_del(head->prev);
4443ae10 2722 conf->nr_queued--;
1da177e4
LT
2723 spin_unlock_irqrestore(&conf->device_lock, flags);
2724
2725 mddev = r10_bio->mddev;
070ec55d 2726 conf = mddev->private;
bd870a16
N
2727 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2728 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9 2729 handle_write_completed(conf, r10_bio);
3ea7daa5
N
2730 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2731 reshape_request_write(mddev, r10_bio);
749c55e9 2732 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 2733 sync_request_write(mddev, r10_bio);
7eaceacc 2734 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 2735 recovery_request_write(mddev, r10_bio);
856e08e2 2736 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 2737 handle_read_error(mddev, r10_bio);
856e08e2
N
2738 else {
2739 /* just a partial read to be scheduled from a
2740 * separate context
2741 */
2742 int slot = r10_bio->read_slot;
2743 generic_make_request(r10_bio->devs[slot].bio);
2744 }
560f8e55 2745
1d9d5241 2746 cond_resched();
de393cde
N
2747 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2748 md_check_recovery(mddev);
1da177e4 2749 }
e1dfa0a2 2750 blk_finish_plug(&plug);
1da177e4
LT
2751}
2752
e879a879 2753static int init_resync(struct r10conf *conf)
1da177e4
LT
2754{
2755 int buffs;
69335ef3 2756 int i;
1da177e4
LT
2757
2758 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 2759 BUG_ON(conf->r10buf_pool);
69335ef3 2760 conf->have_replacement = 0;
5cf00fcd 2761 for (i = 0; i < conf->geo.raid_disks; i++)
69335ef3
N
2762 if (conf->mirrors[i].replacement)
2763 conf->have_replacement = 1;
1da177e4
LT
2764 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2765 if (!conf->r10buf_pool)
2766 return -ENOMEM;
2767 conf->next_resync = 0;
2768 return 0;
2769}
2770
2771/*
2772 * perform a "sync" on one "block"
2773 *
2774 * We need to make sure that no normal I/O request - particularly write
2775 * requests - conflict with active sync requests.
2776 *
2777 * This is achieved by tracking pending requests and a 'barrier' concept
2778 * that can be installed to exclude normal IO requests.
2779 *
2780 * Resync and recovery are handled very differently.
2781 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2782 *
2783 * For resync, we iterate over virtual addresses, read all copies,
2784 * and update if there are differences. If only one copy is live,
2785 * skip it.
2786 * For recovery, we iterate over physical addresses, read a good
2787 * value for each non-in_sync drive, and over-write.
2788 *
2789 * So, for recovery we may have several outstanding complex requests for a
2790 * given address, one for each out-of-sync device. We model this by allocating
2791 * a number of r10_bio structures, one for each out-of-sync device.
2792 * As we setup these structures, we collect all bio's together into a list
2793 * which we then process collectively to add pages, and then process again
2794 * to pass to generic_make_request.
2795 *
2796 * The r10_bio structures are linked using a borrowed master_bio pointer.
2797 * This link is counted in ->remaining. When the r10_bio that points to NULL
2798 * has its remaining count decremented to 0, the whole complex operation
2799 * is complete.
2800 *
2801 */
2802
fd01b88c 2803static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
09314799 2804 int *skipped)
1da177e4 2805{
e879a879 2806 struct r10conf *conf = mddev->private;
9f2c9d12 2807 struct r10bio *r10_bio;
1da177e4
LT
2808 struct bio *biolist = NULL, *bio;
2809 sector_t max_sector, nr_sectors;
1da177e4 2810 int i;
6cce3b23 2811 int max_sync;
57dab0bd 2812 sector_t sync_blocks;
1da177e4
LT
2813 sector_t sectors_skipped = 0;
2814 int chunks_skipped = 0;
5cf00fcd 2815 sector_t chunk_mask = conf->geo.chunk_mask;
1da177e4
LT
2816
2817 if (!conf->r10buf_pool)
2818 if (init_resync(conf))
57afd89f 2819 return 0;
1da177e4 2820
7e83ccbe
MW
2821 /*
2822 * Allow skipping a full rebuild for incremental assembly
2823 * of a clean array, like RAID1 does.
2824 */
2825 if (mddev->bitmap == NULL &&
2826 mddev->recovery_cp == MaxSector &&
13765120
N
2827 mddev->reshape_position == MaxSector &&
2828 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7e83ccbe 2829 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
13765120 2830 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7e83ccbe
MW
2831 conf->fullsync == 0) {
2832 *skipped = 1;
13765120 2833 return mddev->dev_sectors - sector_nr;
7e83ccbe
MW
2834 }
2835
1da177e4 2836 skipped:
58c0fed4 2837 max_sector = mddev->dev_sectors;
3ea7daa5
N
2838 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2839 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1da177e4
LT
2840 max_sector = mddev->resync_max_sectors;
2841 if (sector_nr >= max_sector) {
6cce3b23
N
2842 /* If we aborted, we need to abort the
2843 * sync on the 'current' bitmap chucks (there can
2844 * be several when recovering multiple devices).
2845 * as we may have started syncing it but not finished.
2846 * We can find the current address in
2847 * mddev->curr_resync, but for recovery,
2848 * we need to convert that to several
2849 * virtual addresses.
2850 */
3ea7daa5
N
2851 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2852 end_reshape(conf);
b3968552 2853 close_sync(conf);
3ea7daa5
N
2854 return 0;
2855 }
2856
6cce3b23
N
2857 if (mddev->curr_resync < max_sector) { /* aborted */
2858 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2859 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2860 &sync_blocks, 1);
5cf00fcd 2861 else for (i = 0; i < conf->geo.raid_disks; i++) {
6cce3b23
N
2862 sector_t sect =
2863 raid10_find_virt(conf, mddev->curr_resync, i);
2864 bitmap_end_sync(mddev->bitmap, sect,
2865 &sync_blocks, 1);
2866 }
9ad1aefc
N
2867 } else {
2868 /* completed sync */
2869 if ((!mddev->bitmap || conf->fullsync)
2870 && conf->have_replacement
2871 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2872 /* Completed a full sync so the replacements
2873 * are now fully recovered.
2874 */
5cf00fcd 2875 for (i = 0; i < conf->geo.raid_disks; i++)
9ad1aefc
N
2876 if (conf->mirrors[i].replacement)
2877 conf->mirrors[i].replacement
2878 ->recovery_offset
2879 = MaxSector;
2880 }
6cce3b23 2881 conf->fullsync = 0;
9ad1aefc 2882 }
6cce3b23 2883 bitmap_close_sync(mddev->bitmap);
1da177e4 2884 close_sync(conf);
57afd89f 2885 *skipped = 1;
1da177e4
LT
2886 return sectors_skipped;
2887 }
3ea7daa5
N
2888
2889 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2890 return reshape_request(mddev, sector_nr, skipped);
2891
5cf00fcd 2892 if (chunks_skipped >= conf->geo.raid_disks) {
1da177e4
LT
2893 /* if there has been nothing to do on any drive,
2894 * then there is nothing to do at all..
2895 */
57afd89f
N
2896 *skipped = 1;
2897 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
2898 }
2899
c6207277
N
2900 if (max_sector > mddev->resync_max)
2901 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2902
1da177e4
LT
2903 /* make sure whole request will fit in a chunk - if chunks
2904 * are meaningful
2905 */
5cf00fcd
N
2906 if (conf->geo.near_copies < conf->geo.raid_disks &&
2907 max_sector > (sector_nr | chunk_mask))
2908 max_sector = (sector_nr | chunk_mask) + 1;
1da177e4
LT
2909
2910 /* Again, very different code for resync and recovery.
2911 * Both must result in an r10bio with a list of bios that
2912 * have bi_end_io, bi_sector, bi_bdev set,
2913 * and bi_private set to the r10bio.
2914 * For recovery, we may actually create several r10bios
2915 * with 2 bios in each, that correspond to the bios in the main one.
2916 * In this case, the subordinate r10bios link back through a
2917 * borrowed master_bio pointer, and the counter in the master
2918 * includes a ref from each subordinate.
2919 */
2920 /* First, we decide what to do and set ->bi_end_io
2921 * To end_sync_read if we want to read, and
2922 * end_sync_write if we will want to write.
2923 */
2924
6cce3b23 2925 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
2926 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2927 /* recovery... the complicated one */
e875ecea 2928 int j;
1da177e4
LT
2929 r10_bio = NULL;
2930
5cf00fcd 2931 for (i = 0 ; i < conf->geo.raid_disks; i++) {
ab9d47e9 2932 int still_degraded;
9f2c9d12 2933 struct r10bio *rb2;
ab9d47e9
N
2934 sector_t sect;
2935 int must_sync;
e875ecea 2936 int any_working;
dc280d98 2937 struct raid10_info *mirror = &conf->mirrors[i];
24afd80d
N
2938
2939 if ((mirror->rdev == NULL ||
2940 test_bit(In_sync, &mirror->rdev->flags))
2941 &&
2942 (mirror->replacement == NULL ||
2943 test_bit(Faulty,
2944 &mirror->replacement->flags)))
ab9d47e9 2945 continue;
1da177e4 2946
ab9d47e9
N
2947 still_degraded = 0;
2948 /* want to reconstruct this device */
2949 rb2 = r10_bio;
2950 sect = raid10_find_virt(conf, sector_nr, i);
fc448a18
N
2951 if (sect >= mddev->resync_max_sectors) {
2952 /* last stripe is not complete - don't
2953 * try to recover this sector.
2954 */
2955 continue;
2956 }
24afd80d
N
2957 /* Unless we are doing a full sync, or a replacement
2958 * we only need to recover the block if it is set in
2959 * the bitmap
ab9d47e9
N
2960 */
2961 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2962 &sync_blocks, 1);
2963 if (sync_blocks < max_sync)
2964 max_sync = sync_blocks;
2965 if (!must_sync &&
24afd80d 2966 mirror->replacement == NULL &&
ab9d47e9
N
2967 !conf->fullsync) {
2968 /* yep, skip the sync_blocks here, but don't assume
2969 * that there will never be anything to do here
2970 */
2971 chunks_skipped = -1;
2972 continue;
2973 }
6cce3b23 2974
ab9d47e9 2975 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
cb8b12b5 2976 r10_bio->state = 0;
ab9d47e9
N
2977 raise_barrier(conf, rb2 != NULL);
2978 atomic_set(&r10_bio->remaining, 0);
18055569 2979
ab9d47e9
N
2980 r10_bio->master_bio = (struct bio*)rb2;
2981 if (rb2)
2982 atomic_inc(&rb2->remaining);
2983 r10_bio->mddev = mddev;
2984 set_bit(R10BIO_IsRecover, &r10_bio->state);
2985 r10_bio->sector = sect;
1da177e4 2986
ab9d47e9
N
2987 raid10_find_phys(conf, r10_bio);
2988
2989 /* Need to check if the array will still be
2990 * degraded
2991 */
5cf00fcd 2992 for (j = 0; j < conf->geo.raid_disks; j++)
ab9d47e9
N
2993 if (conf->mirrors[j].rdev == NULL ||
2994 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2995 still_degraded = 1;
87fc767b 2996 break;
1da177e4 2997 }
ab9d47e9
N
2998
2999 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3000 &sync_blocks, still_degraded);
3001
e875ecea 3002 any_working = 0;
ab9d47e9 3003 for (j=0; j<conf->copies;j++) {
e875ecea 3004 int k;
ab9d47e9 3005 int d = r10_bio->devs[j].devnum;
5e570289 3006 sector_t from_addr, to_addr;
3cb03002 3007 struct md_rdev *rdev;
40c356ce
N
3008 sector_t sector, first_bad;
3009 int bad_sectors;
ab9d47e9
N
3010 if (!conf->mirrors[d].rdev ||
3011 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3012 continue;
3013 /* This is where we read from */
e875ecea 3014 any_working = 1;
40c356ce
N
3015 rdev = conf->mirrors[d].rdev;
3016 sector = r10_bio->devs[j].addr;
3017
3018 if (is_badblock(rdev, sector, max_sync,
3019 &first_bad, &bad_sectors)) {
3020 if (first_bad > sector)
3021 max_sync = first_bad - sector;
3022 else {
3023 bad_sectors -= (sector
3024 - first_bad);
3025 if (max_sync > bad_sectors)
3026 max_sync = bad_sectors;
3027 continue;
3028 }
3029 }
ab9d47e9 3030 bio = r10_bio->devs[0].bio;
8be185f2 3031 bio_reset(bio);
ab9d47e9
N
3032 bio->bi_next = biolist;
3033 biolist = bio;
3034 bio->bi_private = r10_bio;
3035 bio->bi_end_io = end_sync_read;
3036 bio->bi_rw = READ;
5e570289 3037 from_addr = r10_bio->devs[j].addr;
4f024f37
KO
3038 bio->bi_iter.bi_sector = from_addr +
3039 rdev->data_offset;
24afd80d
N
3040 bio->bi_bdev = rdev->bdev;
3041 atomic_inc(&rdev->nr_pending);
3042 /* and we write to 'i' (if not in_sync) */
ab9d47e9
N
3043
3044 for (k=0; k<conf->copies; k++)
3045 if (r10_bio->devs[k].devnum == i)
3046 break;
3047 BUG_ON(k == conf->copies);
5e570289 3048 to_addr = r10_bio->devs[k].addr;
ab9d47e9 3049 r10_bio->devs[0].devnum = d;
5e570289 3050 r10_bio->devs[0].addr = from_addr;
ab9d47e9 3051 r10_bio->devs[1].devnum = i;
5e570289 3052 r10_bio->devs[1].addr = to_addr;
ab9d47e9 3053
24afd80d
N
3054 rdev = mirror->rdev;
3055 if (!test_bit(In_sync, &rdev->flags)) {
3056 bio = r10_bio->devs[1].bio;
8be185f2 3057 bio_reset(bio);
24afd80d
N
3058 bio->bi_next = biolist;
3059 biolist = bio;
3060 bio->bi_private = r10_bio;
3061 bio->bi_end_io = end_sync_write;
3062 bio->bi_rw = WRITE;
4f024f37 3063 bio->bi_iter.bi_sector = to_addr
24afd80d
N
3064 + rdev->data_offset;
3065 bio->bi_bdev = rdev->bdev;
3066 atomic_inc(&r10_bio->remaining);
3067 } else
3068 r10_bio->devs[1].bio->bi_end_io = NULL;
3069
3070 /* and maybe write to replacement */
3071 bio = r10_bio->devs[1].repl_bio;
3072 if (bio)
3073 bio->bi_end_io = NULL;
3074 rdev = mirror->replacement;
3075 /* Note: if rdev != NULL, then bio
3076 * cannot be NULL as r10buf_pool_alloc will
3077 * have allocated it.
3078 * So the second test here is pointless.
3079 * But it keeps semantic-checkers happy, and
3080 * this comment keeps human reviewers
3081 * happy.
3082 */
3083 if (rdev == NULL || bio == NULL ||
3084 test_bit(Faulty, &rdev->flags))
3085 break;
8be185f2 3086 bio_reset(bio);
24afd80d
N
3087 bio->bi_next = biolist;
3088 biolist = bio;
3089 bio->bi_private = r10_bio;
3090 bio->bi_end_io = end_sync_write;
3091 bio->bi_rw = WRITE;
4f024f37
KO
3092 bio->bi_iter.bi_sector = to_addr +
3093 rdev->data_offset;
24afd80d
N
3094 bio->bi_bdev = rdev->bdev;
3095 atomic_inc(&r10_bio->remaining);
ab9d47e9
N
3096 break;
3097 }
3098 if (j == conf->copies) {
e875ecea
N
3099 /* Cannot recover, so abort the recovery or
3100 * record a bad block */
e875ecea
N
3101 if (any_working) {
3102 /* problem is that there are bad blocks
3103 * on other device(s)
3104 */
3105 int k;
3106 for (k = 0; k < conf->copies; k++)
3107 if (r10_bio->devs[k].devnum == i)
3108 break;
24afd80d
N
3109 if (!test_bit(In_sync,
3110 &mirror->rdev->flags)
3111 && !rdev_set_badblocks(
3112 mirror->rdev,
3113 r10_bio->devs[k].addr,
3114 max_sync, 0))
3115 any_working = 0;
3116 if (mirror->replacement &&
3117 !rdev_set_badblocks(
3118 mirror->replacement,
e875ecea
N
3119 r10_bio->devs[k].addr,
3120 max_sync, 0))
3121 any_working = 0;
3122 }
3123 if (!any_working) {
3124 if (!test_and_set_bit(MD_RECOVERY_INTR,
3125 &mddev->recovery))
3126 printk(KERN_INFO "md/raid10:%s: insufficient "
3127 "working devices for recovery.\n",
3128 mdname(mddev));
24afd80d 3129 mirror->recovery_disabled
e875ecea
N
3130 = mddev->recovery_disabled;
3131 }
e8b84915
N
3132 put_buf(r10_bio);
3133 if (rb2)
3134 atomic_dec(&rb2->remaining);
3135 r10_bio = rb2;
ab9d47e9 3136 break;
1da177e4 3137 }
ab9d47e9 3138 }
1da177e4
LT
3139 if (biolist == NULL) {
3140 while (r10_bio) {
9f2c9d12
N
3141 struct r10bio *rb2 = r10_bio;
3142 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
3143 rb2->master_bio = NULL;
3144 put_buf(rb2);
3145 }
3146 goto giveup;
3147 }
3148 } else {
3149 /* resync. Schedule a read for every block at this virt offset */
3150 int count = 0;
6cce3b23 3151
c40f341f 3152 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
78200d45 3153
6cce3b23
N
3154 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3155 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
3156 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3157 &mddev->recovery)) {
6cce3b23
N
3158 /* We can skip this block */
3159 *skipped = 1;
3160 return sync_blocks + sectors_skipped;
3161 }
3162 if (sync_blocks < max_sync)
3163 max_sync = sync_blocks;
1da177e4 3164 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
cb8b12b5 3165 r10_bio->state = 0;
1da177e4 3166
1da177e4
LT
3167 r10_bio->mddev = mddev;
3168 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
3169 raise_barrier(conf, 0);
3170 conf->next_resync = sector_nr;
1da177e4
LT
3171
3172 r10_bio->master_bio = NULL;
3173 r10_bio->sector = sector_nr;
3174 set_bit(R10BIO_IsSync, &r10_bio->state);
3175 raid10_find_phys(conf, r10_bio);
5cf00fcd 3176 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
1da177e4 3177
5cf00fcd 3178 for (i = 0; i < conf->copies; i++) {
1da177e4 3179 int d = r10_bio->devs[i].devnum;
40c356ce
N
3180 sector_t first_bad, sector;
3181 int bad_sectors;
3182
9ad1aefc
N
3183 if (r10_bio->devs[i].repl_bio)
3184 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3185
1da177e4 3186 bio = r10_bio->devs[i].bio;
8be185f2 3187 bio_reset(bio);
4246a0b6 3188 bio->bi_error = -EIO;
1da177e4 3189 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 3190 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4 3191 continue;
40c356ce
N
3192 sector = r10_bio->devs[i].addr;
3193 if (is_badblock(conf->mirrors[d].rdev,
3194 sector, max_sync,
3195 &first_bad, &bad_sectors)) {
3196 if (first_bad > sector)
3197 max_sync = first_bad - sector;
3198 else {
3199 bad_sectors -= (sector - first_bad);
3200 if (max_sync > bad_sectors)
91502f09 3201 max_sync = bad_sectors;
40c356ce
N
3202 continue;
3203 }
3204 }
1da177e4
LT
3205 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3206 atomic_inc(&r10_bio->remaining);
3207 bio->bi_next = biolist;
3208 biolist = bio;
3209 bio->bi_private = r10_bio;
3210 bio->bi_end_io = end_sync_read;
802ba064 3211 bio->bi_rw = READ;
4f024f37 3212 bio->bi_iter.bi_sector = sector +
1da177e4
LT
3213 conf->mirrors[d].rdev->data_offset;
3214 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3215 count++;
9ad1aefc
N
3216
3217 if (conf->mirrors[d].replacement == NULL ||
3218 test_bit(Faulty,
3219 &conf->mirrors[d].replacement->flags))
3220 continue;
3221
3222 /* Need to set up for writing to the replacement */
3223 bio = r10_bio->devs[i].repl_bio;
8be185f2 3224 bio_reset(bio);
4246a0b6 3225 bio->bi_error = -EIO;
9ad1aefc
N
3226
3227 sector = r10_bio->devs[i].addr;
3228 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3229 bio->bi_next = biolist;
3230 biolist = bio;
3231 bio->bi_private = r10_bio;
3232 bio->bi_end_io = end_sync_write;
3233 bio->bi_rw = WRITE;
4f024f37 3234 bio->bi_iter.bi_sector = sector +
9ad1aefc
N
3235 conf->mirrors[d].replacement->data_offset;
3236 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3237 count++;
1da177e4
LT
3238 }
3239
3240 if (count < 2) {
3241 for (i=0; i<conf->copies; i++) {
3242 int d = r10_bio->devs[i].devnum;
3243 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
3244 rdev_dec_pending(conf->mirrors[d].rdev,
3245 mddev);
9ad1aefc
N
3246 if (r10_bio->devs[i].repl_bio &&
3247 r10_bio->devs[i].repl_bio->bi_end_io)
3248 rdev_dec_pending(
3249 conf->mirrors[d].replacement,
3250 mddev);
1da177e4
LT
3251 }
3252 put_buf(r10_bio);
3253 biolist = NULL;
3254 goto giveup;
3255 }
3256 }
3257
1da177e4 3258 nr_sectors = 0;
6cce3b23
N
3259 if (sector_nr + max_sync < max_sector)
3260 max_sector = sector_nr + max_sync;
1da177e4
LT
3261 do {
3262 struct page *page;
3263 int len = PAGE_SIZE;
1da177e4
LT
3264 if (sector_nr + (len>>9) > max_sector)
3265 len = (max_sector - sector_nr) << 9;
3266 if (len == 0)
3267 break;
3268 for (bio= biolist ; bio ; bio=bio->bi_next) {
ab9d47e9 3269 struct bio *bio2;
1da177e4 3270 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
ab9d47e9
N
3271 if (bio_add_page(bio, page, len, 0))
3272 continue;
3273
3274 /* stop here */
3275 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3276 for (bio2 = biolist;
3277 bio2 && bio2 != bio;
3278 bio2 = bio2->bi_next) {
3279 /* remove last page from this bio */
3280 bio2->bi_vcnt--;
4f024f37 3281 bio2->bi_iter.bi_size -= len;
b7c44ed9 3282 bio_clear_flag(bio2, BIO_SEG_VALID);
1da177e4 3283 }
ab9d47e9 3284 goto bio_full;
1da177e4
LT
3285 }
3286 nr_sectors += len>>9;
3287 sector_nr += len>>9;
3288 } while (biolist->bi_vcnt < RESYNC_PAGES);
3289 bio_full:
3290 r10_bio->sectors = nr_sectors;
3291
3292 while (biolist) {
3293 bio = biolist;
3294 biolist = biolist->bi_next;
3295
3296 bio->bi_next = NULL;
3297 r10_bio = bio->bi_private;
3298 r10_bio->sectors = nr_sectors;
3299
3300 if (bio->bi_end_io == end_sync_read) {
3301 md_sync_acct(bio->bi_bdev, nr_sectors);
4246a0b6 3302 bio->bi_error = 0;
1da177e4
LT
3303 generic_make_request(bio);
3304 }
3305 }
3306
57afd89f
N
3307 if (sectors_skipped)
3308 /* pretend they weren't skipped, it makes
3309 * no important difference in this case
3310 */
3311 md_done_sync(mddev, sectors_skipped, 1);
3312
1da177e4
LT
3313 return sectors_skipped + nr_sectors;
3314 giveup:
3315 /* There is nowhere to write, so all non-sync
e875ecea
N
3316 * drives must be failed or in resync, all drives
3317 * have a bad block, so try the next chunk...
1da177e4 3318 */
09b4068a
N
3319 if (sector_nr + max_sync < max_sector)
3320 max_sector = sector_nr + max_sync;
3321
3322 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
3323 chunks_skipped ++;
3324 sector_nr = max_sector;
1da177e4 3325 goto skipped;
1da177e4
LT
3326}
3327
80c3a6ce 3328static sector_t
fd01b88c 3329raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3330{
3331 sector_t size;
e879a879 3332 struct r10conf *conf = mddev->private;
80c3a6ce
DW
3333
3334 if (!raid_disks)
3ea7daa5
N
3335 raid_disks = min(conf->geo.raid_disks,
3336 conf->prev.raid_disks);
80c3a6ce 3337 if (!sectors)
dab8b292 3338 sectors = conf->dev_sectors;
80c3a6ce 3339
5cf00fcd
N
3340 size = sectors >> conf->geo.chunk_shift;
3341 sector_div(size, conf->geo.far_copies);
80c3a6ce 3342 size = size * raid_disks;
5cf00fcd 3343 sector_div(size, conf->geo.near_copies);
80c3a6ce 3344
5cf00fcd 3345 return size << conf->geo.chunk_shift;
80c3a6ce
DW
3346}
3347
6508fdbf
N
3348static void calc_sectors(struct r10conf *conf, sector_t size)
3349{
3350 /* Calculate the number of sectors-per-device that will
3351 * actually be used, and set conf->dev_sectors and
3352 * conf->stride
3353 */
3354
5cf00fcd
N
3355 size = size >> conf->geo.chunk_shift;
3356 sector_div(size, conf->geo.far_copies);
3357 size = size * conf->geo.raid_disks;
3358 sector_div(size, conf->geo.near_copies);
6508fdbf
N
3359 /* 'size' is now the number of chunks in the array */
3360 /* calculate "used chunks per device" */
3361 size = size * conf->copies;
3362
3363 /* We need to round up when dividing by raid_disks to
3364 * get the stride size.
3365 */
5cf00fcd 3366 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
6508fdbf 3367
5cf00fcd 3368 conf->dev_sectors = size << conf->geo.chunk_shift;
6508fdbf 3369
5cf00fcd
N
3370 if (conf->geo.far_offset)
3371 conf->geo.stride = 1 << conf->geo.chunk_shift;
6508fdbf 3372 else {
5cf00fcd
N
3373 sector_div(size, conf->geo.far_copies);
3374 conf->geo.stride = size << conf->geo.chunk_shift;
6508fdbf
N
3375 }
3376}
dab8b292 3377
deb200d0
N
3378enum geo_type {geo_new, geo_old, geo_start};
3379static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3380{
3381 int nc, fc, fo;
3382 int layout, chunk, disks;
3383 switch (new) {
3384 case geo_old:
3385 layout = mddev->layout;
3386 chunk = mddev->chunk_sectors;
3387 disks = mddev->raid_disks - mddev->delta_disks;
3388 break;
3389 case geo_new:
3390 layout = mddev->new_layout;
3391 chunk = mddev->new_chunk_sectors;
3392 disks = mddev->raid_disks;
3393 break;
3394 default: /* avoid 'may be unused' warnings */
3395 case geo_start: /* new when starting reshape - raid_disks not
3396 * updated yet. */
3397 layout = mddev->new_layout;
3398 chunk = mddev->new_chunk_sectors;
3399 disks = mddev->raid_disks + mddev->delta_disks;
3400 break;
3401 }
8bce6d35 3402 if (layout >> 19)
deb200d0
N
3403 return -1;
3404 if (chunk < (PAGE_SIZE >> 9) ||
3405 !is_power_of_2(chunk))
3406 return -2;
3407 nc = layout & 255;
3408 fc = (layout >> 8) & 255;
3409 fo = layout & (1<<16);
3410 geo->raid_disks = disks;
3411 geo->near_copies = nc;
3412 geo->far_copies = fc;
3413 geo->far_offset = fo;
8bce6d35
N
3414 switch (layout >> 17) {
3415 case 0: /* original layout. simple but not always optimal */
3416 geo->far_set_size = disks;
3417 break;
3418 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3419 * actually using this, but leave code here just in case.*/
3420 geo->far_set_size = disks/fc;
3421 WARN(geo->far_set_size < fc,
3422 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3423 break;
3424 case 2: /* "improved" layout fixed to match documentation */
3425 geo->far_set_size = fc * nc;
3426 break;
3427 default: /* Not a valid layout */
3428 return -1;
3429 }
deb200d0
N
3430 geo->chunk_mask = chunk - 1;
3431 geo->chunk_shift = ffz(~chunk);
3432 return nc*fc;
3433}
3434
e879a879 3435static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 3436{
e879a879 3437 struct r10conf *conf = NULL;
dab8b292 3438 int err = -EINVAL;
deb200d0
N
3439 struct geom geo;
3440 int copies;
3441
3442 copies = setup_geo(&geo, mddev, geo_new);
1da177e4 3443
deb200d0 3444 if (copies == -2) {
128595ed
N
3445 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3446 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3447 mdname(mddev), PAGE_SIZE);
dab8b292 3448 goto out;
1da177e4 3449 }
2604b703 3450
deb200d0 3451 if (copies < 2 || copies > mddev->raid_disks) {
128595ed 3452 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
f73ea873 3453 mdname(mddev), mddev->new_layout);
1da177e4
LT
3454 goto out;
3455 }
dab8b292
TM
3456
3457 err = -ENOMEM;
e879a879 3458 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 3459 if (!conf)
1da177e4 3460 goto out;
dab8b292 3461
3ea7daa5 3462 /* FIXME calc properly */
dc280d98 3463 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
78eaa0d4 3464 max(0,-mddev->delta_disks)),
dab8b292
TM
3465 GFP_KERNEL);
3466 if (!conf->mirrors)
3467 goto out;
4443ae10
N
3468
3469 conf->tmppage = alloc_page(GFP_KERNEL);
3470 if (!conf->tmppage)
dab8b292
TM
3471 goto out;
3472
deb200d0
N
3473 conf->geo = geo;
3474 conf->copies = copies;
dab8b292
TM
3475 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3476 r10bio_pool_free, conf);
3477 if (!conf->r10bio_pool)
3478 goto out;
3479
6508fdbf 3480 calc_sectors(conf, mddev->dev_sectors);
3ea7daa5
N
3481 if (mddev->reshape_position == MaxSector) {
3482 conf->prev = conf->geo;
3483 conf->reshape_progress = MaxSector;
3484 } else {
3485 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3486 err = -EINVAL;
3487 goto out;
3488 }
3489 conf->reshape_progress = mddev->reshape_position;
3490 if (conf->prev.far_offset)
3491 conf->prev.stride = 1 << conf->prev.chunk_shift;
3492 else
3493 /* far_copies must be 1 */
3494 conf->prev.stride = conf->dev_sectors;
3495 }
299b0685 3496 conf->reshape_safe = conf->reshape_progress;
e7e72bf6 3497 spin_lock_init(&conf->device_lock);
dab8b292 3498 INIT_LIST_HEAD(&conf->retry_list);
95af587e 3499 INIT_LIST_HEAD(&conf->bio_end_io_list);
dab8b292
TM
3500
3501 spin_lock_init(&conf->resync_lock);
3502 init_waitqueue_head(&conf->wait_barrier);
3503
0232605d 3504 conf->thread = md_register_thread(raid10d, mddev, "raid10");
dab8b292
TM
3505 if (!conf->thread)
3506 goto out;
3507
dab8b292
TM
3508 conf->mddev = mddev;
3509 return conf;
3510
3511 out:
3ea7daa5
N
3512 if (err == -ENOMEM)
3513 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3514 mdname(mddev));
dab8b292 3515 if (conf) {
644df1a8 3516 mempool_destroy(conf->r10bio_pool);
dab8b292
TM
3517 kfree(conf->mirrors);
3518 safe_put_page(conf->tmppage);
3519 kfree(conf);
3520 }
3521 return ERR_PTR(err);
3522}
3523
fd01b88c 3524static int run(struct mddev *mddev)
dab8b292 3525{
e879a879 3526 struct r10conf *conf;
dab8b292 3527 int i, disk_idx, chunk_size;
dc280d98 3528 struct raid10_info *disk;
3cb03002 3529 struct md_rdev *rdev;
dab8b292 3530 sector_t size;
3ea7daa5
N
3531 sector_t min_offset_diff = 0;
3532 int first = 1;
532a2a3f 3533 bool discard_supported = false;
dab8b292
TM
3534
3535 if (mddev->private == NULL) {
3536 conf = setup_conf(mddev);
3537 if (IS_ERR(conf))
3538 return PTR_ERR(conf);
3539 mddev->private = conf;
3540 }
3541 conf = mddev->private;
3542 if (!conf)
3543 goto out;
3544
dab8b292
TM
3545 mddev->thread = conf->thread;
3546 conf->thread = NULL;
3547
8f6c2e4b 3548 chunk_size = mddev->chunk_sectors << 9;
cc4d1efd 3549 if (mddev->queue) {
532a2a3f
SL
3550 blk_queue_max_discard_sectors(mddev->queue,
3551 mddev->chunk_sectors);
5026d7a9 3552 blk_queue_max_write_same_sectors(mddev->queue, 0);
cc4d1efd
JB
3553 blk_queue_io_min(mddev->queue, chunk_size);
3554 if (conf->geo.raid_disks % conf->geo.near_copies)
3555 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3556 else
3557 blk_queue_io_opt(mddev->queue, chunk_size *
3558 (conf->geo.raid_disks / conf->geo.near_copies));
3559 }
8f6c2e4b 3560
dafb20fa 3561 rdev_for_each(rdev, mddev) {
3ea7daa5 3562 long long diff;
aba336bd 3563 struct request_queue *q;
34b343cf 3564
1da177e4 3565 disk_idx = rdev->raid_disk;
f8c9e74f
N
3566 if (disk_idx < 0)
3567 continue;
3568 if (disk_idx >= conf->geo.raid_disks &&
3569 disk_idx >= conf->prev.raid_disks)
1da177e4
LT
3570 continue;
3571 disk = conf->mirrors + disk_idx;
3572
56a2559b
N
3573 if (test_bit(Replacement, &rdev->flags)) {
3574 if (disk->replacement)
3575 goto out_free_conf;
3576 disk->replacement = rdev;
3577 } else {
3578 if (disk->rdev)
3579 goto out_free_conf;
3580 disk->rdev = rdev;
3581 }
aba336bd 3582 q = bdev_get_queue(rdev->bdev);
3ea7daa5
N
3583 diff = (rdev->new_data_offset - rdev->data_offset);
3584 if (!mddev->reshape_backwards)
3585 diff = -diff;
3586 if (diff < 0)
3587 diff = 0;
3588 if (first || diff < min_offset_diff)
3589 min_offset_diff = diff;
56a2559b 3590
cc4d1efd
JB
3591 if (mddev->gendisk)
3592 disk_stack_limits(mddev->gendisk, rdev->bdev,
3593 rdev->data_offset << 9);
1da177e4
LT
3594
3595 disk->head_position = 0;
532a2a3f
SL
3596
3597 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3598 discard_supported = true;
1da177e4 3599 }
3ea7daa5 3600
ed30be07
JB
3601 if (mddev->queue) {
3602 if (discard_supported)
3603 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3604 mddev->queue);
3605 else
3606 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3607 mddev->queue);
3608 }
6d508242 3609 /* need to check that every block has at least one working mirror */
700c7213 3610 if (!enough(conf, -1)) {
128595ed 3611 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
6d508242 3612 mdname(mddev));
1da177e4
LT
3613 goto out_free_conf;
3614 }
3615
3ea7daa5
N
3616 if (conf->reshape_progress != MaxSector) {
3617 /* must ensure that shape change is supported */
3618 if (conf->geo.far_copies != 1 &&
3619 conf->geo.far_offset == 0)
3620 goto out_free_conf;
3621 if (conf->prev.far_copies != 1 &&
78eaa0d4 3622 conf->prev.far_offset == 0)
3ea7daa5
N
3623 goto out_free_conf;
3624 }
3625
1da177e4 3626 mddev->degraded = 0;
f8c9e74f
N
3627 for (i = 0;
3628 i < conf->geo.raid_disks
3629 || i < conf->prev.raid_disks;
3630 i++) {
1da177e4
LT
3631
3632 disk = conf->mirrors + i;
3633
56a2559b
N
3634 if (!disk->rdev && disk->replacement) {
3635 /* The replacement is all we have - use it */
3636 disk->rdev = disk->replacement;
3637 disk->replacement = NULL;
3638 clear_bit(Replacement, &disk->rdev->flags);
3639 }
3640
5fd6c1dc 3641 if (!disk->rdev ||
2e333e89 3642 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
3643 disk->head_position = 0;
3644 mddev->degraded++;
0b59bb64
N
3645 if (disk->rdev &&
3646 disk->rdev->saved_raid_disk < 0)
8c2e870a 3647 conf->fullsync = 1;
1da177e4 3648 }
d890fa2b 3649 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
3650 }
3651
8c6ac868 3652 if (mddev->recovery_cp != MaxSector)
128595ed 3653 printk(KERN_NOTICE "md/raid10:%s: not clean"
8c6ac868
AN
3654 " -- starting background reconstruction\n",
3655 mdname(mddev));
1da177e4 3656 printk(KERN_INFO
128595ed 3657 "md/raid10:%s: active with %d out of %d devices\n",
5cf00fcd
N
3658 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3659 conf->geo.raid_disks);
1da177e4
LT
3660 /*
3661 * Ok, everything is just fine now
3662 */
dab8b292
TM
3663 mddev->dev_sectors = conf->dev_sectors;
3664 size = raid10_size(mddev, 0, 0);
3665 md_set_array_sectors(mddev, size);
3666 mddev->resync_max_sectors = size;
1da177e4 3667
cc4d1efd 3668 if (mddev->queue) {
5cf00fcd 3669 int stripe = conf->geo.raid_disks *
9d8f0363 3670 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
cc4d1efd
JB
3671
3672 /* Calculate max read-ahead size.
3673 * We need to readahead at least twice a whole stripe....
3674 * maybe...
3675 */
5cf00fcd 3676 stripe /= conf->geo.near_copies;
3ea7daa5
N
3677 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3678 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
1da177e4
LT
3679 }
3680
a91a2785
MP
3681 if (md_integrity_register(mddev))
3682 goto out_free_conf;
3683
3ea7daa5
N
3684 if (conf->reshape_progress != MaxSector) {
3685 unsigned long before_length, after_length;
3686
3687 before_length = ((1 << conf->prev.chunk_shift) *
3688 conf->prev.far_copies);
3689 after_length = ((1 << conf->geo.chunk_shift) *
3690 conf->geo.far_copies);
3691
3692 if (max(before_length, after_length) > min_offset_diff) {
3693 /* This cannot work */
3694 printk("md/raid10: offset difference not enough to continue reshape\n");
3695 goto out_free_conf;
3696 }
3697 conf->offset_diff = min_offset_diff;
3698
3ea7daa5
N
3699 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3700 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3701 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3702 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3703 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3704 "reshape");
3705 }
3706
1da177e4
LT
3707 return 0;
3708
3709out_free_conf:
01f96c0a 3710 md_unregister_thread(&mddev->thread);
644df1a8 3711 mempool_destroy(conf->r10bio_pool);
1345b1d8 3712 safe_put_page(conf->tmppage);
990a8baf 3713 kfree(conf->mirrors);
1da177e4
LT
3714 kfree(conf);
3715 mddev->private = NULL;
3716out:
3717 return -EIO;
3718}
3719
afa0f557 3720static void raid10_free(struct mddev *mddev, void *priv)
1da177e4 3721{
afa0f557 3722 struct r10conf *conf = priv;
1da177e4 3723
644df1a8 3724 mempool_destroy(conf->r10bio_pool);
0fea7ed8 3725 safe_put_page(conf->tmppage);
990a8baf 3726 kfree(conf->mirrors);
c4796e21
N
3727 kfree(conf->mirrors_old);
3728 kfree(conf->mirrors_new);
1da177e4 3729 kfree(conf);
1da177e4
LT
3730}
3731
fd01b88c 3732static void raid10_quiesce(struct mddev *mddev, int state)
6cce3b23 3733{
e879a879 3734 struct r10conf *conf = mddev->private;
6cce3b23
N
3735
3736 switch(state) {
3737 case 1:
3738 raise_barrier(conf, 0);
3739 break;
3740 case 0:
3741 lower_barrier(conf);
3742 break;
3743 }
6cce3b23 3744}
1da177e4 3745
006a09a0
N
3746static int raid10_resize(struct mddev *mddev, sector_t sectors)
3747{
3748 /* Resize of 'far' arrays is not supported.
3749 * For 'near' and 'offset' arrays we can set the
3750 * number of sectors used to be an appropriate multiple
3751 * of the chunk size.
3752 * For 'offset', this is far_copies*chunksize.
3753 * For 'near' the multiplier is the LCM of
3754 * near_copies and raid_disks.
3755 * So if far_copies > 1 && !far_offset, fail.
3756 * Else find LCM(raid_disks, near_copy)*far_copies and
3757 * multiply by chunk_size. Then round to this number.
3758 * This is mostly done by raid10_size()
3759 */
3760 struct r10conf *conf = mddev->private;
3761 sector_t oldsize, size;
3762
f8c9e74f
N
3763 if (mddev->reshape_position != MaxSector)
3764 return -EBUSY;
3765
5cf00fcd 3766 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
006a09a0
N
3767 return -EINVAL;
3768
3769 oldsize = raid10_size(mddev, 0, 0);
3770 size = raid10_size(mddev, sectors, 0);
a4a6125a
N
3771 if (mddev->external_size &&
3772 mddev->array_sectors > size)
006a09a0 3773 return -EINVAL;
a4a6125a
N
3774 if (mddev->bitmap) {
3775 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3776 if (ret)
3777 return ret;
3778 }
3779 md_set_array_sectors(mddev, size);
006a09a0
N
3780 set_capacity(mddev->gendisk, mddev->array_sectors);
3781 revalidate_disk(mddev->gendisk);
3782 if (sectors > mddev->dev_sectors &&
3783 mddev->recovery_cp > oldsize) {
3784 mddev->recovery_cp = oldsize;
3785 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3786 }
6508fdbf
N
3787 calc_sectors(conf, sectors);
3788 mddev->dev_sectors = conf->dev_sectors;
006a09a0
N
3789 mddev->resync_max_sectors = size;
3790 return 0;
3791}
3792
53a6ab4d 3793static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
dab8b292 3794{
3cb03002 3795 struct md_rdev *rdev;
e879a879 3796 struct r10conf *conf;
dab8b292
TM
3797
3798 if (mddev->degraded > 0) {
128595ed
N
3799 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3800 mdname(mddev));
dab8b292
TM
3801 return ERR_PTR(-EINVAL);
3802 }
53a6ab4d 3803 sector_div(size, devs);
dab8b292 3804
dab8b292
TM
3805 /* Set new parameters */
3806 mddev->new_level = 10;
3807 /* new layout: far_copies = 1, near_copies = 2 */
3808 mddev->new_layout = (1<<8) + 2;
3809 mddev->new_chunk_sectors = mddev->chunk_sectors;
3810 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
3811 mddev->raid_disks *= 2;
3812 /* make sure it will be not marked as dirty */
3813 mddev->recovery_cp = MaxSector;
53a6ab4d 3814 mddev->dev_sectors = size;
dab8b292
TM
3815
3816 conf = setup_conf(mddev);
02214dc5 3817 if (!IS_ERR(conf)) {
dafb20fa 3818 rdev_for_each(rdev, mddev)
53a6ab4d 3819 if (rdev->raid_disk >= 0) {
e93f68a1 3820 rdev->new_raid_disk = rdev->raid_disk * 2;
53a6ab4d
N
3821 rdev->sectors = size;
3822 }
02214dc5
KW
3823 conf->barrier = 1;
3824 }
3825
dab8b292
TM
3826 return conf;
3827}
3828
fd01b88c 3829static void *raid10_takeover(struct mddev *mddev)
dab8b292 3830{
e373ab10 3831 struct r0conf *raid0_conf;
dab8b292
TM
3832
3833 /* raid10 can take over:
3834 * raid0 - providing it has only two drives
3835 */
3836 if (mddev->level == 0) {
3837 /* for raid0 takeover only one zone is supported */
e373ab10
N
3838 raid0_conf = mddev->private;
3839 if (raid0_conf->nr_strip_zones > 1) {
128595ed
N
3840 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3841 " with more than one zone.\n",
3842 mdname(mddev));
dab8b292
TM
3843 return ERR_PTR(-EINVAL);
3844 }
53a6ab4d
N
3845 return raid10_takeover_raid0(mddev,
3846 raid0_conf->strip_zone->zone_end,
3847 raid0_conf->strip_zone->nb_dev);
dab8b292
TM
3848 }
3849 return ERR_PTR(-EINVAL);
3850}
3851
3ea7daa5
N
3852static int raid10_check_reshape(struct mddev *mddev)
3853{
3854 /* Called when there is a request to change
3855 * - layout (to ->new_layout)
3856 * - chunk size (to ->new_chunk_sectors)
3857 * - raid_disks (by delta_disks)
3858 * or when trying to restart a reshape that was ongoing.
3859 *
3860 * We need to validate the request and possibly allocate
3861 * space if that might be an issue later.
3862 *
3863 * Currently we reject any reshape of a 'far' mode array,
3864 * allow chunk size to change if new is generally acceptable,
3865 * allow raid_disks to increase, and allow
3866 * a switch between 'near' mode and 'offset' mode.
3867 */
3868 struct r10conf *conf = mddev->private;
3869 struct geom geo;
3870
3871 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3872 return -EINVAL;
3873
3874 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3875 /* mustn't change number of copies */
3876 return -EINVAL;
3877 if (geo.far_copies > 1 && !geo.far_offset)
3878 /* Cannot switch to 'far' mode */
3879 return -EINVAL;
3880
3881 if (mddev->array_sectors & geo.chunk_mask)
3882 /* not factor of array size */
3883 return -EINVAL;
3884
3ea7daa5
N
3885 if (!enough(conf, -1))
3886 return -EINVAL;
3887
3888 kfree(conf->mirrors_new);
3889 conf->mirrors_new = NULL;
3890 if (mddev->delta_disks > 0) {
3891 /* allocate new 'mirrors' list */
3892 conf->mirrors_new = kzalloc(
dc280d98 3893 sizeof(struct raid10_info)
3ea7daa5
N
3894 *(mddev->raid_disks +
3895 mddev->delta_disks),
3896 GFP_KERNEL);
3897 if (!conf->mirrors_new)
3898 return -ENOMEM;
3899 }
3900 return 0;
3901}
3902
3903/*
3904 * Need to check if array has failed when deciding whether to:
3905 * - start an array
3906 * - remove non-faulty devices
3907 * - add a spare
3908 * - allow a reshape
3909 * This determination is simple when no reshape is happening.
3910 * However if there is a reshape, we need to carefully check
3911 * both the before and after sections.
3912 * This is because some failed devices may only affect one
3913 * of the two sections, and some non-in_sync devices may
3914 * be insync in the section most affected by failed devices.
3915 */
3916static int calc_degraded(struct r10conf *conf)
3917{
3918 int degraded, degraded2;
3919 int i;
3920
3921 rcu_read_lock();
3922 degraded = 0;
3923 /* 'prev' section first */
3924 for (i = 0; i < conf->prev.raid_disks; i++) {
3925 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3926 if (!rdev || test_bit(Faulty, &rdev->flags))
3927 degraded++;
3928 else if (!test_bit(In_sync, &rdev->flags))
3929 /* When we can reduce the number of devices in
3930 * an array, this might not contribute to
3931 * 'degraded'. It does now.
3932 */
3933 degraded++;
3934 }
3935 rcu_read_unlock();
3936 if (conf->geo.raid_disks == conf->prev.raid_disks)
3937 return degraded;
3938 rcu_read_lock();
3939 degraded2 = 0;
3940 for (i = 0; i < conf->geo.raid_disks; i++) {
3941 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3942 if (!rdev || test_bit(Faulty, &rdev->flags))
3943 degraded2++;
3944 else if (!test_bit(In_sync, &rdev->flags)) {
3945 /* If reshape is increasing the number of devices,
3946 * this section has already been recovered, so
3947 * it doesn't contribute to degraded.
3948 * else it does.
3949 */
3950 if (conf->geo.raid_disks <= conf->prev.raid_disks)
3951 degraded2++;
3952 }
3953 }
3954 rcu_read_unlock();
3955 if (degraded2 > degraded)
3956 return degraded2;
3957 return degraded;
3958}
3959
3960static int raid10_start_reshape(struct mddev *mddev)
3961{
3962 /* A 'reshape' has been requested. This commits
3963 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3964 * This also checks if there are enough spares and adds them
3965 * to the array.
3966 * We currently require enough spares to make the final
3967 * array non-degraded. We also require that the difference
3968 * between old and new data_offset - on each device - is
3969 * enough that we never risk over-writing.
3970 */
3971
3972 unsigned long before_length, after_length;
3973 sector_t min_offset_diff = 0;
3974 int first = 1;
3975 struct geom new;
3976 struct r10conf *conf = mddev->private;
3977 struct md_rdev *rdev;
3978 int spares = 0;
bb63a701 3979 int ret;
3ea7daa5
N
3980
3981 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3982 return -EBUSY;
3983
3984 if (setup_geo(&new, mddev, geo_start) != conf->copies)
3985 return -EINVAL;
3986
3987 before_length = ((1 << conf->prev.chunk_shift) *
3988 conf->prev.far_copies);
3989 after_length = ((1 << conf->geo.chunk_shift) *
3990 conf->geo.far_copies);
3991
3992 rdev_for_each(rdev, mddev) {
3993 if (!test_bit(In_sync, &rdev->flags)
3994 && !test_bit(Faulty, &rdev->flags))
3995 spares++;
3996 if (rdev->raid_disk >= 0) {
3997 long long diff = (rdev->new_data_offset
3998 - rdev->data_offset);
3999 if (!mddev->reshape_backwards)
4000 diff = -diff;
4001 if (diff < 0)
4002 diff = 0;
4003 if (first || diff < min_offset_diff)
4004 min_offset_diff = diff;
4005 }
4006 }
4007
4008 if (max(before_length, after_length) > min_offset_diff)
4009 return -EINVAL;
4010
4011 if (spares < mddev->delta_disks)
4012 return -EINVAL;
4013
4014 conf->offset_diff = min_offset_diff;
4015 spin_lock_irq(&conf->device_lock);
4016 if (conf->mirrors_new) {
4017 memcpy(conf->mirrors_new, conf->mirrors,
dc280d98 4018 sizeof(struct raid10_info)*conf->prev.raid_disks);
3ea7daa5 4019 smp_mb();
c4796e21 4020 kfree(conf->mirrors_old);
3ea7daa5
N
4021 conf->mirrors_old = conf->mirrors;
4022 conf->mirrors = conf->mirrors_new;
4023 conf->mirrors_new = NULL;
4024 }
4025 setup_geo(&conf->geo, mddev, geo_start);
4026 smp_mb();
4027 if (mddev->reshape_backwards) {
4028 sector_t size = raid10_size(mddev, 0, 0);
4029 if (size < mddev->array_sectors) {
4030 spin_unlock_irq(&conf->device_lock);
4031 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4032 mdname(mddev));
4033 return -EINVAL;
4034 }
4035 mddev->resync_max_sectors = size;
4036 conf->reshape_progress = size;
4037 } else
4038 conf->reshape_progress = 0;
299b0685 4039 conf->reshape_safe = conf->reshape_progress;
3ea7daa5
N
4040 spin_unlock_irq(&conf->device_lock);
4041
bb63a701
N
4042 if (mddev->delta_disks && mddev->bitmap) {
4043 ret = bitmap_resize(mddev->bitmap,
4044 raid10_size(mddev, 0,
4045 conf->geo.raid_disks),
4046 0, 0);
4047 if (ret)
4048 goto abort;
4049 }
3ea7daa5
N
4050 if (mddev->delta_disks > 0) {
4051 rdev_for_each(rdev, mddev)
4052 if (rdev->raid_disk < 0 &&
4053 !test_bit(Faulty, &rdev->flags)) {
4054 if (raid10_add_disk(mddev, rdev) == 0) {
4055 if (rdev->raid_disk >=
4056 conf->prev.raid_disks)
4057 set_bit(In_sync, &rdev->flags);
4058 else
4059 rdev->recovery_offset = 0;
4060
4061 if (sysfs_link_rdev(mddev, rdev))
4062 /* Failure here is OK */;
4063 }
4064 } else if (rdev->raid_disk >= conf->prev.raid_disks
4065 && !test_bit(Faulty, &rdev->flags)) {
4066 /* This is a spare that was manually added */
4067 set_bit(In_sync, &rdev->flags);
4068 }
4069 }
4070 /* When a reshape changes the number of devices,
4071 * ->degraded is measured against the larger of the
4072 * pre and post numbers.
4073 */
4074 spin_lock_irq(&conf->device_lock);
4075 mddev->degraded = calc_degraded(conf);
4076 spin_unlock_irq(&conf->device_lock);
4077 mddev->raid_disks = conf->geo.raid_disks;
4078 mddev->reshape_position = conf->reshape_progress;
4079 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4080
4081 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4082 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
ea358cd0 4083 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
3ea7daa5
N
4084 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4085 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4086
4087 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4088 "reshape");
4089 if (!mddev->sync_thread) {
bb63a701
N
4090 ret = -EAGAIN;
4091 goto abort;
3ea7daa5
N
4092 }
4093 conf->reshape_checkpoint = jiffies;
4094 md_wakeup_thread(mddev->sync_thread);
4095 md_new_event(mddev);
4096 return 0;
bb63a701
N
4097
4098abort:
4099 mddev->recovery = 0;
4100 spin_lock_irq(&conf->device_lock);
4101 conf->geo = conf->prev;
4102 mddev->raid_disks = conf->geo.raid_disks;
4103 rdev_for_each(rdev, mddev)
4104 rdev->new_data_offset = rdev->data_offset;
4105 smp_wmb();
4106 conf->reshape_progress = MaxSector;
299b0685 4107 conf->reshape_safe = MaxSector;
bb63a701
N
4108 mddev->reshape_position = MaxSector;
4109 spin_unlock_irq(&conf->device_lock);
4110 return ret;
3ea7daa5
N
4111}
4112
4113/* Calculate the last device-address that could contain
4114 * any block from the chunk that includes the array-address 's'
4115 * and report the next address.
4116 * i.e. the address returned will be chunk-aligned and after
4117 * any data that is in the chunk containing 's'.
4118 */
4119static sector_t last_dev_address(sector_t s, struct geom *geo)
4120{
4121 s = (s | geo->chunk_mask) + 1;
4122 s >>= geo->chunk_shift;
4123 s *= geo->near_copies;
4124 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4125 s *= geo->far_copies;
4126 s <<= geo->chunk_shift;
4127 return s;
4128}
4129
4130/* Calculate the first device-address that could contain
4131 * any block from the chunk that includes the array-address 's'.
4132 * This too will be the start of a chunk
4133 */
4134static sector_t first_dev_address(sector_t s, struct geom *geo)
4135{
4136 s >>= geo->chunk_shift;
4137 s *= geo->near_copies;
4138 sector_div(s, geo->raid_disks);
4139 s *= geo->far_copies;
4140 s <<= geo->chunk_shift;
4141 return s;
4142}
4143
4144static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4145 int *skipped)
4146{
4147 /* We simply copy at most one chunk (smallest of old and new)
4148 * at a time, possibly less if that exceeds RESYNC_PAGES,
4149 * or we hit a bad block or something.
4150 * This might mean we pause for normal IO in the middle of
02ec5026 4151 * a chunk, but that is not a problem as mddev->reshape_position
3ea7daa5
N
4152 * can record any location.
4153 *
4154 * If we will want to write to a location that isn't
4155 * yet recorded as 'safe' (i.e. in metadata on disk) then
4156 * we need to flush all reshape requests and update the metadata.
4157 *
4158 * When reshaping forwards (e.g. to more devices), we interpret
4159 * 'safe' as the earliest block which might not have been copied
4160 * down yet. We divide this by previous stripe size and multiply
4161 * by previous stripe length to get lowest device offset that we
4162 * cannot write to yet.
4163 * We interpret 'sector_nr' as an address that we want to write to.
4164 * From this we use last_device_address() to find where we might
4165 * write to, and first_device_address on the 'safe' position.
4166 * If this 'next' write position is after the 'safe' position,
4167 * we must update the metadata to increase the 'safe' position.
4168 *
4169 * When reshaping backwards, we round in the opposite direction
4170 * and perform the reverse test: next write position must not be
4171 * less than current safe position.
4172 *
4173 * In all this the minimum difference in data offsets
4174 * (conf->offset_diff - always positive) allows a bit of slack,
02ec5026 4175 * so next can be after 'safe', but not by more than offset_diff
3ea7daa5
N
4176 *
4177 * We need to prepare all the bios here before we start any IO
4178 * to ensure the size we choose is acceptable to all devices.
4179 * The means one for each copy for write-out and an extra one for
4180 * read-in.
4181 * We store the read-in bio in ->master_bio and the others in
4182 * ->devs[x].bio and ->devs[x].repl_bio.
4183 */
4184 struct r10conf *conf = mddev->private;
4185 struct r10bio *r10_bio;
4186 sector_t next, safe, last;
4187 int max_sectors;
4188 int nr_sectors;
4189 int s;
4190 struct md_rdev *rdev;
4191 int need_flush = 0;
4192 struct bio *blist;
4193 struct bio *bio, *read_bio;
4194 int sectors_done = 0;
4195
4196 if (sector_nr == 0) {
4197 /* If restarting in the middle, skip the initial sectors */
4198 if (mddev->reshape_backwards &&
4199 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4200 sector_nr = (raid10_size(mddev, 0, 0)
4201 - conf->reshape_progress);
4202 } else if (!mddev->reshape_backwards &&
4203 conf->reshape_progress > 0)
4204 sector_nr = conf->reshape_progress;
4205 if (sector_nr) {
4206 mddev->curr_resync_completed = sector_nr;
4207 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4208 *skipped = 1;
4209 return sector_nr;
4210 }
4211 }
4212
4213 /* We don't use sector_nr to track where we are up to
4214 * as that doesn't work well for ->reshape_backwards.
4215 * So just use ->reshape_progress.
4216 */
4217 if (mddev->reshape_backwards) {
4218 /* 'next' is the earliest device address that we might
4219 * write to for this chunk in the new layout
4220 */
4221 next = first_dev_address(conf->reshape_progress - 1,
4222 &conf->geo);
4223
4224 /* 'safe' is the last device address that we might read from
4225 * in the old layout after a restart
4226 */
4227 safe = last_dev_address(conf->reshape_safe - 1,
4228 &conf->prev);
4229
4230 if (next + conf->offset_diff < safe)
4231 need_flush = 1;
4232
4233 last = conf->reshape_progress - 1;
4234 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4235 & conf->prev.chunk_mask);
4236 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4237 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4238 } else {
4239 /* 'next' is after the last device address that we
4240 * might write to for this chunk in the new layout
4241 */
4242 next = last_dev_address(conf->reshape_progress, &conf->geo);
4243
4244 /* 'safe' is the earliest device address that we might
4245 * read from in the old layout after a restart
4246 */
4247 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4248
4249 /* Need to update metadata if 'next' might be beyond 'safe'
4250 * as that would possibly corrupt data
4251 */
4252 if (next > safe + conf->offset_diff)
4253 need_flush = 1;
4254
4255 sector_nr = conf->reshape_progress;
4256 last = sector_nr | (conf->geo.chunk_mask
4257 & conf->prev.chunk_mask);
4258
4259 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4260 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4261 }
4262
4263 if (need_flush ||
4264 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4265 /* Need to update reshape_position in metadata */
4266 wait_barrier(conf);
4267 mddev->reshape_position = conf->reshape_progress;
4268 if (mddev->reshape_backwards)
4269 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4270 - conf->reshape_progress;
4271 else
4272 mddev->curr_resync_completed = conf->reshape_progress;
4273 conf->reshape_checkpoint = jiffies;
4274 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4275 md_wakeup_thread(mddev->thread);
4276 wait_event(mddev->sb_wait, mddev->flags == 0 ||
c91abf5a
N
4277 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4278 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4279 allow_barrier(conf);
4280 return sectors_done;
4281 }
3ea7daa5
N
4282 conf->reshape_safe = mddev->reshape_position;
4283 allow_barrier(conf);
4284 }
4285
4286read_more:
4287 /* Now schedule reads for blocks from sector_nr to last */
4288 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
cb8b12b5 4289 r10_bio->state = 0;
3ea7daa5
N
4290 raise_barrier(conf, sectors_done != 0);
4291 atomic_set(&r10_bio->remaining, 0);
4292 r10_bio->mddev = mddev;
4293 r10_bio->sector = sector_nr;
4294 set_bit(R10BIO_IsReshape, &r10_bio->state);
4295 r10_bio->sectors = last - sector_nr + 1;
4296 rdev = read_balance(conf, r10_bio, &max_sectors);
4297 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4298
4299 if (!rdev) {
4300 /* Cannot read from here, so need to record bad blocks
4301 * on all the target devices.
4302 */
4303 // FIXME
e337aead 4304 mempool_free(r10_bio, conf->r10buf_pool);
3ea7daa5
N
4305 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4306 return sectors_done;
4307 }
4308
4309 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4310
4311 read_bio->bi_bdev = rdev->bdev;
4f024f37 4312 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
3ea7daa5
N
4313 + rdev->data_offset);
4314 read_bio->bi_private = r10_bio;
4315 read_bio->bi_end_io = end_sync_read;
4316 read_bio->bi_rw = READ;
ce0b0a46 4317 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4246a0b6 4318 read_bio->bi_error = 0;
3ea7daa5 4319 read_bio->bi_vcnt = 0;
4f024f37 4320 read_bio->bi_iter.bi_size = 0;
3ea7daa5
N
4321 r10_bio->master_bio = read_bio;
4322 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4323
4324 /* Now find the locations in the new layout */
4325 __raid10_find_phys(&conf->geo, r10_bio);
4326
4327 blist = read_bio;
4328 read_bio->bi_next = NULL;
4329
4330 for (s = 0; s < conf->copies*2; s++) {
4331 struct bio *b;
4332 int d = r10_bio->devs[s/2].devnum;
4333 struct md_rdev *rdev2;
4334 if (s&1) {
4335 rdev2 = conf->mirrors[d].replacement;
4336 b = r10_bio->devs[s/2].repl_bio;
4337 } else {
4338 rdev2 = conf->mirrors[d].rdev;
4339 b = r10_bio->devs[s/2].bio;
4340 }
4341 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4342 continue;
8be185f2
KO
4343
4344 bio_reset(b);
3ea7daa5 4345 b->bi_bdev = rdev2->bdev;
4f024f37
KO
4346 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4347 rdev2->new_data_offset;
3ea7daa5
N
4348 b->bi_private = r10_bio;
4349 b->bi_end_io = end_reshape_write;
4350 b->bi_rw = WRITE;
3ea7daa5 4351 b->bi_next = blist;
3ea7daa5
N
4352 blist = b;
4353 }
4354
4355 /* Now add as many pages as possible to all of these bios. */
4356
4357 nr_sectors = 0;
4358 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4359 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4360 int len = (max_sectors - s) << 9;
4361 if (len > PAGE_SIZE)
4362 len = PAGE_SIZE;
4363 for (bio = blist; bio ; bio = bio->bi_next) {
4364 struct bio *bio2;
4365 if (bio_add_page(bio, page, len, 0))
4366 continue;
4367
4368 /* Didn't fit, must stop */
4369 for (bio2 = blist;
4370 bio2 && bio2 != bio;
4371 bio2 = bio2->bi_next) {
4372 /* Remove last page from this bio */
4373 bio2->bi_vcnt--;
4f024f37 4374 bio2->bi_iter.bi_size -= len;
b7c44ed9 4375 bio_clear_flag(bio2, BIO_SEG_VALID);
3ea7daa5
N
4376 }
4377 goto bio_full;
4378 }
4379 sector_nr += len >> 9;
4380 nr_sectors += len >> 9;
4381 }
4382bio_full:
4383 r10_bio->sectors = nr_sectors;
4384
4385 /* Now submit the read */
4386 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4387 atomic_inc(&r10_bio->remaining);
4388 read_bio->bi_next = NULL;
4389 generic_make_request(read_bio);
4390 sector_nr += nr_sectors;
4391 sectors_done += nr_sectors;
4392 if (sector_nr <= last)
4393 goto read_more;
4394
4395 /* Now that we have done the whole section we can
4396 * update reshape_progress
4397 */
4398 if (mddev->reshape_backwards)
4399 conf->reshape_progress -= sectors_done;
4400 else
4401 conf->reshape_progress += sectors_done;
4402
4403 return sectors_done;
4404}
4405
4406static void end_reshape_request(struct r10bio *r10_bio);
4407static int handle_reshape_read_error(struct mddev *mddev,
4408 struct r10bio *r10_bio);
4409static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4410{
4411 /* Reshape read completed. Hopefully we have a block
4412 * to write out.
4413 * If we got a read error then we do sync 1-page reads from
4414 * elsewhere until we find the data - or give up.
4415 */
4416 struct r10conf *conf = mddev->private;
4417 int s;
4418
4419 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4420 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4421 /* Reshape has been aborted */
4422 md_done_sync(mddev, r10_bio->sectors, 0);
4423 return;
4424 }
4425
4426 /* We definitely have the data in the pages, schedule the
4427 * writes.
4428 */
4429 atomic_set(&r10_bio->remaining, 1);
4430 for (s = 0; s < conf->copies*2; s++) {
4431 struct bio *b;
4432 int d = r10_bio->devs[s/2].devnum;
4433 struct md_rdev *rdev;
4434 if (s&1) {
4435 rdev = conf->mirrors[d].replacement;
4436 b = r10_bio->devs[s/2].repl_bio;
4437 } else {
4438 rdev = conf->mirrors[d].rdev;
4439 b = r10_bio->devs[s/2].bio;
4440 }
4441 if (!rdev || test_bit(Faulty, &rdev->flags))
4442 continue;
4443 atomic_inc(&rdev->nr_pending);
4444 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4445 atomic_inc(&r10_bio->remaining);
4446 b->bi_next = NULL;
4447 generic_make_request(b);
4448 }
4449 end_reshape_request(r10_bio);
4450}
4451
4452static void end_reshape(struct r10conf *conf)
4453{
4454 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4455 return;
4456
4457 spin_lock_irq(&conf->device_lock);
4458 conf->prev = conf->geo;
4459 md_finish_reshape(conf->mddev);
4460 smp_wmb();
4461 conf->reshape_progress = MaxSector;
299b0685 4462 conf->reshape_safe = MaxSector;
3ea7daa5
N
4463 spin_unlock_irq(&conf->device_lock);
4464
4465 /* read-ahead size must cover two whole stripes, which is
4466 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4467 */
4468 if (conf->mddev->queue) {
4469 int stripe = conf->geo.raid_disks *
4470 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4471 stripe /= conf->geo.near_copies;
4472 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4473 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4474 }
4475 conf->fullsync = 0;
4476}
4477
3ea7daa5
N
4478static int handle_reshape_read_error(struct mddev *mddev,
4479 struct r10bio *r10_bio)
4480{
4481 /* Use sync reads to get the blocks from somewhere else */
4482 int sectors = r10_bio->sectors;
3ea7daa5 4483 struct r10conf *conf = mddev->private;
e0ee7785
N
4484 struct {
4485 struct r10bio r10_bio;
4486 struct r10dev devs[conf->copies];
4487 } on_stack;
4488 struct r10bio *r10b = &on_stack.r10_bio;
3ea7daa5
N
4489 int slot = 0;
4490 int idx = 0;
4491 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4492
e0ee7785
N
4493 r10b->sector = r10_bio->sector;
4494 __raid10_find_phys(&conf->prev, r10b);
3ea7daa5
N
4495
4496 while (sectors) {
4497 int s = sectors;
4498 int success = 0;
4499 int first_slot = slot;
4500
4501 if (s > (PAGE_SIZE >> 9))
4502 s = PAGE_SIZE >> 9;
4503
4504 while (!success) {
e0ee7785 4505 int d = r10b->devs[slot].devnum;
3ea7daa5
N
4506 struct md_rdev *rdev = conf->mirrors[d].rdev;
4507 sector_t addr;
4508 if (rdev == NULL ||
4509 test_bit(Faulty, &rdev->flags) ||
4510 !test_bit(In_sync, &rdev->flags))
4511 goto failed;
4512
e0ee7785 4513 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
3ea7daa5
N
4514 success = sync_page_io(rdev,
4515 addr,
4516 s << 9,
4517 bvec[idx].bv_page,
4518 READ, false);
4519 if (success)
4520 break;
4521 failed:
4522 slot++;
4523 if (slot >= conf->copies)
4524 slot = 0;
4525 if (slot == first_slot)
4526 break;
4527 }
4528 if (!success) {
4529 /* couldn't read this block, must give up */
4530 set_bit(MD_RECOVERY_INTR,
4531 &mddev->recovery);
4532 return -EIO;
4533 }
4534 sectors -= s;
4535 idx++;
4536 }
4537 return 0;
4538}
4539
4246a0b6 4540static void end_reshape_write(struct bio *bio)
3ea7daa5 4541{
3ea7daa5
N
4542 struct r10bio *r10_bio = bio->bi_private;
4543 struct mddev *mddev = r10_bio->mddev;
4544 struct r10conf *conf = mddev->private;
4545 int d;
4546 int slot;
4547 int repl;
4548 struct md_rdev *rdev = NULL;
4549
4550 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4551 if (repl)
4552 rdev = conf->mirrors[d].replacement;
4553 if (!rdev) {
4554 smp_mb();
4555 rdev = conf->mirrors[d].rdev;
4556 }
4557
4246a0b6 4558 if (bio->bi_error) {
3ea7daa5
N
4559 /* FIXME should record badblock */
4560 md_error(mddev, rdev);
4561 }
4562
4563 rdev_dec_pending(rdev, mddev);
4564 end_reshape_request(r10_bio);
4565}
4566
4567static void end_reshape_request(struct r10bio *r10_bio)
4568{
4569 if (!atomic_dec_and_test(&r10_bio->remaining))
4570 return;
4571 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4572 bio_put(r10_bio->master_bio);
4573 put_buf(r10_bio);
4574}
4575
4576static void raid10_finish_reshape(struct mddev *mddev)
4577{
4578 struct r10conf *conf = mddev->private;
4579
4580 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4581 return;
4582
4583 if (mddev->delta_disks > 0) {
4584 sector_t size = raid10_size(mddev, 0, 0);
4585 md_set_array_sectors(mddev, size);
4586 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4587 mddev->recovery_cp = mddev->resync_max_sectors;
4588 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4589 }
4590 mddev->resync_max_sectors = size;
4591 set_capacity(mddev->gendisk, mddev->array_sectors);
4592 revalidate_disk(mddev->gendisk);
63aced61
N
4593 } else {
4594 int d;
4595 for (d = conf->geo.raid_disks ;
4596 d < conf->geo.raid_disks - mddev->delta_disks;
4597 d++) {
4598 struct md_rdev *rdev = conf->mirrors[d].rdev;
4599 if (rdev)
4600 clear_bit(In_sync, &rdev->flags);
4601 rdev = conf->mirrors[d].replacement;
4602 if (rdev)
4603 clear_bit(In_sync, &rdev->flags);
4604 }
3ea7daa5
N
4605 }
4606 mddev->layout = mddev->new_layout;
4607 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4608 mddev->reshape_position = MaxSector;
4609 mddev->delta_disks = 0;
4610 mddev->reshape_backwards = 0;
4611}
4612
84fc4b56 4613static struct md_personality raid10_personality =
1da177e4
LT
4614{
4615 .name = "raid10",
2604b703 4616 .level = 10,
1da177e4
LT
4617 .owner = THIS_MODULE,
4618 .make_request = make_request,
4619 .run = run,
afa0f557 4620 .free = raid10_free,
1da177e4
LT
4621 .status = status,
4622 .error_handler = error,
4623 .hot_add_disk = raid10_add_disk,
4624 .hot_remove_disk= raid10_remove_disk,
4625 .spare_active = raid10_spare_active,
4626 .sync_request = sync_request,
6cce3b23 4627 .quiesce = raid10_quiesce,
80c3a6ce 4628 .size = raid10_size,
006a09a0 4629 .resize = raid10_resize,
dab8b292 4630 .takeover = raid10_takeover,
3ea7daa5
N
4631 .check_reshape = raid10_check_reshape,
4632 .start_reshape = raid10_start_reshape,
4633 .finish_reshape = raid10_finish_reshape,
5c675f83 4634 .congested = raid10_congested,
1da177e4
LT
4635};
4636
4637static int __init raid_init(void)
4638{
2604b703 4639 return register_md_personality(&raid10_personality);
1da177e4
LT
4640}
4641
4642static void raid_exit(void)
4643{
2604b703 4644 unregister_md_personality(&raid10_personality);
1da177e4
LT
4645}
4646
4647module_init(raid_init);
4648module_exit(raid_exit);
4649MODULE_LICENSE("GPL");
0efb9e61 4650MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 4651MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 4652MODULE_ALIAS("md-raid10");
2604b703 4653MODULE_ALIAS("md-level-10");
34db0cd6
N
4654
4655module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 1.078417 seconds and 5 git commands to generate.