Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[deliverable/linux.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
056075c7 24#include <linux/module.h>
bff61975 25#include <linux/seq_file.h>
8bda470e 26#include <linux/ratelimit.h>
3ea7daa5 27#include <linux/kthread.h>
43b2e5d8 28#include "md.h"
ef740c37 29#include "raid10.h"
dab8b292 30#include "raid0.h"
ef740c37 31#include "bitmap.h"
1da177e4
LT
32
33/*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
c93983bf 40 * far_offset (stored in bit 16 of layout )
1da177e4
LT
41 *
42 * The data to be stored is divided into chunks using chunksize.
43 * Each device is divided into far_copies sections.
44 * In each section, chunks are laid out in a style similar to raid0, but
45 * near_copies copies of each chunk is stored (each on a different drive).
46 * The starting device for each section is offset near_copies from the starting
47 * device of the previous section.
c93983bf 48 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
1da177e4
LT
49 * drive.
50 * near_copies and far_copies must be at least one, and their product is at most
51 * raid_disks.
c93983bf
N
52 *
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of be very far apart
55 * on disk, there are adjacent stripes.
1da177e4
LT
56 */
57
58/*
59 * Number of guaranteed r10bios in case of extreme VM load:
60 */
61#define NR_RAID10_BIOS 256
62
34db0cd6
N
63/* When there are this many requests queue to be written by
64 * the raid10 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
68
e879a879
N
69static void allow_barrier(struct r10conf *conf);
70static void lower_barrier(struct r10conf *conf);
fae8cc5e 71static int enough(struct r10conf *conf, int ignore);
3ea7daa5
N
72static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
73 int *skipped);
74static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
75static void end_reshape_write(struct bio *bio, int error);
76static void end_reshape(struct r10conf *conf);
0a27ec96 77
dd0fc66f 78static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 79{
e879a879 80 struct r10conf *conf = data;
9f2c9d12 81 int size = offsetof(struct r10bio, devs[conf->copies]);
1da177e4 82
69335ef3
N
83 /* allocate a r10bio with room for raid_disks entries in the
84 * bios array */
7eaceacc 85 return kzalloc(size, gfp_flags);
1da177e4
LT
86}
87
88static void r10bio_pool_free(void *r10_bio, void *data)
89{
90 kfree(r10_bio);
91}
92
0310fa21 93/* Maximum size of each resync request */
1da177e4 94#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 95#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
96/* amount of memory to reserve for resync requests */
97#define RESYNC_WINDOW (1024*1024)
98/* maximum number of concurrent requests, memory permitting */
99#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
100
101/*
102 * When performing a resync, we need to read and compare, so
103 * we need as many pages are there are copies.
104 * When performing a recovery, we need 2 bios, one for read,
105 * one for write (we recover only one drive per r10buf)
106 *
107 */
dd0fc66f 108static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 109{
e879a879 110 struct r10conf *conf = data;
1da177e4 111 struct page *page;
9f2c9d12 112 struct r10bio *r10_bio;
1da177e4
LT
113 struct bio *bio;
114 int i, j;
115 int nalloc;
116
117 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 118 if (!r10_bio)
1da177e4 119 return NULL;
1da177e4 120
3ea7daa5
N
121 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
122 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
1da177e4
LT
123 nalloc = conf->copies; /* resync */
124 else
125 nalloc = 2; /* recovery */
126
127 /*
128 * Allocate bios.
129 */
130 for (j = nalloc ; j-- ; ) {
6746557f 131 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
132 if (!bio)
133 goto out_free_bio;
134 r10_bio->devs[j].bio = bio;
69335ef3
N
135 if (!conf->have_replacement)
136 continue;
137 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
138 if (!bio)
139 goto out_free_bio;
140 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
141 }
142 /*
143 * Allocate RESYNC_PAGES data pages and attach them
144 * where needed.
145 */
146 for (j = 0 ; j < nalloc; j++) {
69335ef3 147 struct bio *rbio = r10_bio->devs[j].repl_bio;
1da177e4
LT
148 bio = r10_bio->devs[j].bio;
149 for (i = 0; i < RESYNC_PAGES; i++) {
3ea7daa5
N
150 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
151 &conf->mddev->recovery)) {
152 /* we can share bv_page's during recovery
153 * and reshape */
c65060ad
NK
154 struct bio *rbio = r10_bio->devs[0].bio;
155 page = rbio->bi_io_vec[i].bv_page;
156 get_page(page);
157 } else
158 page = alloc_page(gfp_flags);
1da177e4
LT
159 if (unlikely(!page))
160 goto out_free_pages;
161
162 bio->bi_io_vec[i].bv_page = page;
69335ef3
N
163 if (rbio)
164 rbio->bi_io_vec[i].bv_page = page;
1da177e4
LT
165 }
166 }
167
168 return r10_bio;
169
170out_free_pages:
171 for ( ; i > 0 ; i--)
1345b1d8 172 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
173 while (j--)
174 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 175 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
5fdd2cf8 176 j = 0;
1da177e4 177out_free_bio:
5fdd2cf8 178 for ( ; j < nalloc; j++) {
179 if (r10_bio->devs[j].bio)
180 bio_put(r10_bio->devs[j].bio);
69335ef3
N
181 if (r10_bio->devs[j].repl_bio)
182 bio_put(r10_bio->devs[j].repl_bio);
183 }
1da177e4
LT
184 r10bio_pool_free(r10_bio, conf);
185 return NULL;
186}
187
188static void r10buf_pool_free(void *__r10_bio, void *data)
189{
190 int i;
e879a879 191 struct r10conf *conf = data;
9f2c9d12 192 struct r10bio *r10bio = __r10_bio;
1da177e4
LT
193 int j;
194
195 for (j=0; j < conf->copies; j++) {
196 struct bio *bio = r10bio->devs[j].bio;
197 if (bio) {
198 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 199 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
200 bio->bi_io_vec[i].bv_page = NULL;
201 }
202 bio_put(bio);
203 }
69335ef3
N
204 bio = r10bio->devs[j].repl_bio;
205 if (bio)
206 bio_put(bio);
1da177e4
LT
207 }
208 r10bio_pool_free(r10bio, conf);
209}
210
e879a879 211static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
212{
213 int i;
214
215 for (i = 0; i < conf->copies; i++) {
216 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 217 if (!BIO_SPECIAL(*bio))
1da177e4
LT
218 bio_put(*bio);
219 *bio = NULL;
69335ef3
N
220 bio = &r10_bio->devs[i].repl_bio;
221 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
222 bio_put(*bio);
223 *bio = NULL;
1da177e4
LT
224 }
225}
226
9f2c9d12 227static void free_r10bio(struct r10bio *r10_bio)
1da177e4 228{
e879a879 229 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 230
1da177e4
LT
231 put_all_bios(conf, r10_bio);
232 mempool_free(r10_bio, conf->r10bio_pool);
233}
234
9f2c9d12 235static void put_buf(struct r10bio *r10_bio)
1da177e4 236{
e879a879 237 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
238
239 mempool_free(r10_bio, conf->r10buf_pool);
240
0a27ec96 241 lower_barrier(conf);
1da177e4
LT
242}
243
9f2c9d12 244static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
245{
246 unsigned long flags;
fd01b88c 247 struct mddev *mddev = r10_bio->mddev;
e879a879 248 struct r10conf *conf = mddev->private;
1da177e4
LT
249
250 spin_lock_irqsave(&conf->device_lock, flags);
251 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 252 conf->nr_queued ++;
1da177e4
LT
253 spin_unlock_irqrestore(&conf->device_lock, flags);
254
388667be
AJ
255 /* wake up frozen array... */
256 wake_up(&conf->wait_barrier);
257
1da177e4
LT
258 md_wakeup_thread(mddev->thread);
259}
260
261/*
262 * raid_end_bio_io() is called when we have finished servicing a mirrored
263 * operation and are ready to return a success/failure code to the buffer
264 * cache layer.
265 */
9f2c9d12 266static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
267{
268 struct bio *bio = r10_bio->master_bio;
856e08e2 269 int done;
e879a879 270 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 271
856e08e2
N
272 if (bio->bi_phys_segments) {
273 unsigned long flags;
274 spin_lock_irqsave(&conf->device_lock, flags);
275 bio->bi_phys_segments--;
276 done = (bio->bi_phys_segments == 0);
277 spin_unlock_irqrestore(&conf->device_lock, flags);
278 } else
279 done = 1;
280 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
281 clear_bit(BIO_UPTODATE, &bio->bi_flags);
282 if (done) {
283 bio_endio(bio, 0);
284 /*
285 * Wake up any possible resync thread that waits for the device
286 * to go idle.
287 */
288 allow_barrier(conf);
289 }
1da177e4
LT
290 free_r10bio(r10_bio);
291}
292
293/*
294 * Update disk head position estimator based on IRQ completion info.
295 */
9f2c9d12 296static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 297{
e879a879 298 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
299
300 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
301 r10_bio->devs[slot].addr + (r10_bio->sectors);
302}
303
778ca018
NK
304/*
305 * Find the disk number which triggered given bio
306 */
e879a879 307static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 308 struct bio *bio, int *slotp, int *replp)
778ca018
NK
309{
310 int slot;
69335ef3 311 int repl = 0;
778ca018 312
69335ef3 313 for (slot = 0; slot < conf->copies; slot++) {
778ca018
NK
314 if (r10_bio->devs[slot].bio == bio)
315 break;
69335ef3
N
316 if (r10_bio->devs[slot].repl_bio == bio) {
317 repl = 1;
318 break;
319 }
320 }
778ca018
NK
321
322 BUG_ON(slot == conf->copies);
323 update_head_pos(slot, r10_bio);
324
749c55e9
N
325 if (slotp)
326 *slotp = slot;
69335ef3
N
327 if (replp)
328 *replp = repl;
778ca018
NK
329 return r10_bio->devs[slot].devnum;
330}
331
6712ecf8 332static void raid10_end_read_request(struct bio *bio, int error)
1da177e4
LT
333{
334 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 335 struct r10bio *r10_bio = bio->bi_private;
1da177e4 336 int slot, dev;
abbf098e 337 struct md_rdev *rdev;
e879a879 338 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 339
1da177e4
LT
340
341 slot = r10_bio->read_slot;
342 dev = r10_bio->devs[slot].devnum;
abbf098e 343 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
344 /*
345 * this branch is our 'one mirror IO has finished' event handler:
346 */
4443ae10
N
347 update_head_pos(slot, r10_bio);
348
349 if (uptodate) {
1da177e4
LT
350 /*
351 * Set R10BIO_Uptodate in our master bio, so that
352 * we will return a good error code to the higher
353 * levels even if IO on some other mirrored buffer fails.
354 *
355 * The 'master' represents the composite IO operation to
356 * user-side. So if something waits for IO, then it will
357 * wait for the 'master' bio.
358 */
359 set_bit(R10BIO_Uptodate, &r10_bio->state);
fae8cc5e
N
360 } else {
361 /* If all other devices that store this block have
362 * failed, we want to return the error upwards rather
363 * than fail the last device. Here we redefine
364 * "uptodate" to mean "Don't want to retry"
365 */
366 unsigned long flags;
367 spin_lock_irqsave(&conf->device_lock, flags);
368 if (!enough(conf, rdev->raid_disk))
369 uptodate = 1;
370 spin_unlock_irqrestore(&conf->device_lock, flags);
371 }
372 if (uptodate) {
1da177e4 373 raid_end_bio_io(r10_bio);
abbf098e 374 rdev_dec_pending(rdev, conf->mddev);
4443ae10 375 } else {
1da177e4 376 /*
7c4e06ff 377 * oops, read error - keep the refcount on the rdev
1da177e4
LT
378 */
379 char b[BDEVNAME_SIZE];
8bda470e
CD
380 printk_ratelimited(KERN_ERR
381 "md/raid10:%s: %s: rescheduling sector %llu\n",
382 mdname(conf->mddev),
abbf098e 383 bdevname(rdev->bdev, b),
8bda470e 384 (unsigned long long)r10_bio->sector);
856e08e2 385 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
386 reschedule_retry(r10_bio);
387 }
1da177e4
LT
388}
389
9f2c9d12 390static void close_write(struct r10bio *r10_bio)
bd870a16
N
391{
392 /* clear the bitmap if all writes complete successfully */
393 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
394 r10_bio->sectors,
395 !test_bit(R10BIO_Degraded, &r10_bio->state),
396 0);
397 md_write_end(r10_bio->mddev);
398}
399
9f2c9d12 400static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
401{
402 if (atomic_dec_and_test(&r10_bio->remaining)) {
403 if (test_bit(R10BIO_WriteError, &r10_bio->state))
404 reschedule_retry(r10_bio);
405 else {
406 close_write(r10_bio);
407 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
408 reschedule_retry(r10_bio);
409 else
410 raid_end_bio_io(r10_bio);
411 }
412 }
413}
414
6712ecf8 415static void raid10_end_write_request(struct bio *bio, int error)
1da177e4
LT
416{
417 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 418 struct r10bio *r10_bio = bio->bi_private;
778ca018 419 int dev;
749c55e9 420 int dec_rdev = 1;
e879a879 421 struct r10conf *conf = r10_bio->mddev->private;
475b0321 422 int slot, repl;
4ca40c2c 423 struct md_rdev *rdev = NULL;
1da177e4 424
475b0321 425 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1da177e4 426
475b0321
N
427 if (repl)
428 rdev = conf->mirrors[dev].replacement;
4ca40c2c
N
429 if (!rdev) {
430 smp_rmb();
431 repl = 0;
475b0321 432 rdev = conf->mirrors[dev].rdev;
4ca40c2c 433 }
1da177e4
LT
434 /*
435 * this branch is our 'one mirror IO has finished' event handler:
436 */
6cce3b23 437 if (!uptodate) {
475b0321
N
438 if (repl)
439 /* Never record new bad blocks to replacement,
440 * just fail it.
441 */
442 md_error(rdev->mddev, rdev);
443 else {
444 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
445 if (!test_and_set_bit(WantReplacement, &rdev->flags))
446 set_bit(MD_RECOVERY_NEEDED,
447 &rdev->mddev->recovery);
475b0321
N
448 set_bit(R10BIO_WriteError, &r10_bio->state);
449 dec_rdev = 0;
450 }
749c55e9 451 } else {
1da177e4
LT
452 /*
453 * Set R10BIO_Uptodate in our master bio, so that
454 * we will return a good error code for to the higher
455 * levels even if IO on some other mirrored buffer fails.
456 *
457 * The 'master' represents the composite IO operation to
458 * user-side. So if something waits for IO, then it will
459 * wait for the 'master' bio.
460 */
749c55e9
N
461 sector_t first_bad;
462 int bad_sectors;
463
1da177e4
LT
464 set_bit(R10BIO_Uptodate, &r10_bio->state);
465
749c55e9 466 /* Maybe we can clear some bad blocks. */
475b0321 467 if (is_badblock(rdev,
749c55e9
N
468 r10_bio->devs[slot].addr,
469 r10_bio->sectors,
470 &first_bad, &bad_sectors)) {
471 bio_put(bio);
475b0321
N
472 if (repl)
473 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
474 else
475 r10_bio->devs[slot].bio = IO_MADE_GOOD;
749c55e9
N
476 dec_rdev = 0;
477 set_bit(R10BIO_MadeGood, &r10_bio->state);
478 }
479 }
480
1da177e4
LT
481 /*
482 *
483 * Let's see if all mirrored write operations have finished
484 * already.
485 */
19d5f834 486 one_write_done(r10_bio);
749c55e9
N
487 if (dec_rdev)
488 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
1da177e4
LT
489}
490
1da177e4
LT
491/*
492 * RAID10 layout manager
25985edc 493 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
494 * parameters: near_copies and far_copies.
495 * near_copies * far_copies must be <= raid_disks.
496 * Normally one of these will be 1.
497 * If both are 1, we get raid0.
498 * If near_copies == raid_disks, we get raid1.
499 *
25985edc 500 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
501 * first chunk, followed by near_copies copies of the next chunk and
502 * so on.
503 * If far_copies > 1, then after 1/far_copies of the array has been assigned
504 * as described above, we start again with a device offset of near_copies.
505 * So we effectively have another copy of the whole array further down all
506 * the drives, but with blocks on different drives.
507 * With this layout, and block is never stored twice on the one device.
508 *
509 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 510 * on each device that it is on.
1da177e4
LT
511 *
512 * raid10_find_virt does the reverse mapping, from a device and a
513 * sector offset to a virtual address
514 */
515
f8c9e74f 516static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
1da177e4
LT
517{
518 int n,f;
519 sector_t sector;
520 sector_t chunk;
521 sector_t stripe;
522 int dev;
1da177e4
LT
523 int slot = 0;
524
525 /* now calculate first sector/dev */
5cf00fcd
N
526 chunk = r10bio->sector >> geo->chunk_shift;
527 sector = r10bio->sector & geo->chunk_mask;
1da177e4 528
5cf00fcd 529 chunk *= geo->near_copies;
1da177e4 530 stripe = chunk;
5cf00fcd
N
531 dev = sector_div(stripe, geo->raid_disks);
532 if (geo->far_offset)
533 stripe *= geo->far_copies;
1da177e4 534
5cf00fcd 535 sector += stripe << geo->chunk_shift;
1da177e4
LT
536
537 /* and calculate all the others */
5cf00fcd 538 for (n = 0; n < geo->near_copies; n++) {
1da177e4
LT
539 int d = dev;
540 sector_t s = sector;
541 r10bio->devs[slot].addr = sector;
542 r10bio->devs[slot].devnum = d;
543 slot++;
544
5cf00fcd
N
545 for (f = 1; f < geo->far_copies; f++) {
546 d += geo->near_copies;
547 if (d >= geo->raid_disks)
548 d -= geo->raid_disks;
549 s += geo->stride;
1da177e4
LT
550 r10bio->devs[slot].devnum = d;
551 r10bio->devs[slot].addr = s;
552 slot++;
553 }
554 dev++;
5cf00fcd 555 if (dev >= geo->raid_disks) {
1da177e4 556 dev = 0;
5cf00fcd 557 sector += (geo->chunk_mask + 1);
1da177e4
LT
558 }
559 }
f8c9e74f
N
560}
561
562static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
563{
564 struct geom *geo = &conf->geo;
565
566 if (conf->reshape_progress != MaxSector &&
567 ((r10bio->sector >= conf->reshape_progress) !=
568 conf->mddev->reshape_backwards)) {
569 set_bit(R10BIO_Previous, &r10bio->state);
570 geo = &conf->prev;
571 } else
572 clear_bit(R10BIO_Previous, &r10bio->state);
573
574 __raid10_find_phys(geo, r10bio);
1da177e4
LT
575}
576
e879a879 577static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
578{
579 sector_t offset, chunk, vchunk;
f8c9e74f
N
580 /* Never use conf->prev as this is only called during resync
581 * or recovery, so reshape isn't happening
582 */
5cf00fcd 583 struct geom *geo = &conf->geo;
1da177e4 584
5cf00fcd
N
585 offset = sector & geo->chunk_mask;
586 if (geo->far_offset) {
c93983bf 587 int fc;
5cf00fcd
N
588 chunk = sector >> geo->chunk_shift;
589 fc = sector_div(chunk, geo->far_copies);
590 dev -= fc * geo->near_copies;
c93983bf 591 if (dev < 0)
5cf00fcd 592 dev += geo->raid_disks;
c93983bf 593 } else {
5cf00fcd
N
594 while (sector >= geo->stride) {
595 sector -= geo->stride;
596 if (dev < geo->near_copies)
597 dev += geo->raid_disks - geo->near_copies;
c93983bf 598 else
5cf00fcd 599 dev -= geo->near_copies;
c93983bf 600 }
5cf00fcd 601 chunk = sector >> geo->chunk_shift;
c93983bf 602 }
5cf00fcd
N
603 vchunk = chunk * geo->raid_disks + dev;
604 sector_div(vchunk, geo->near_copies);
605 return (vchunk << geo->chunk_shift) + offset;
1da177e4
LT
606}
607
608/**
609 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
610 * @q: request queue
cc371e66 611 * @bvm: properties of new bio
1da177e4
LT
612 * @biovec: the request that could be merged to it.
613 *
614 * Return amount of bytes we can accept at this offset
050b6615
N
615 * This requires checking for end-of-chunk if near_copies != raid_disks,
616 * and for subordinate merge_bvec_fns if merge_check_needed.
1da177e4 617 */
cc371e66
AK
618static int raid10_mergeable_bvec(struct request_queue *q,
619 struct bvec_merge_data *bvm,
620 struct bio_vec *biovec)
1da177e4 621{
fd01b88c 622 struct mddev *mddev = q->queuedata;
050b6615 623 struct r10conf *conf = mddev->private;
cc371e66 624 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
1da177e4 625 int max;
3ea7daa5 626 unsigned int chunk_sectors;
cc371e66 627 unsigned int bio_sectors = bvm->bi_size >> 9;
5cf00fcd 628 struct geom *geo = &conf->geo;
1da177e4 629
3ea7daa5 630 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
f8c9e74f
N
631 if (conf->reshape_progress != MaxSector &&
632 ((sector >= conf->reshape_progress) !=
633 conf->mddev->reshape_backwards))
634 geo = &conf->prev;
635
5cf00fcd 636 if (geo->near_copies < geo->raid_disks) {
050b6615
N
637 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
638 + bio_sectors)) << 9;
639 if (max < 0)
640 /* bio_add cannot handle a negative return */
641 max = 0;
642 if (max <= biovec->bv_len && bio_sectors == 0)
643 return biovec->bv_len;
644 } else
645 max = biovec->bv_len;
646
647 if (mddev->merge_check_needed) {
648 struct r10bio r10_bio;
649 int s;
f8c9e74f
N
650 if (conf->reshape_progress != MaxSector) {
651 /* Cannot give any guidance during reshape */
652 if (max <= biovec->bv_len && bio_sectors == 0)
653 return biovec->bv_len;
654 return 0;
655 }
050b6615
N
656 r10_bio.sector = sector;
657 raid10_find_phys(conf, &r10_bio);
658 rcu_read_lock();
659 for (s = 0; s < conf->copies; s++) {
660 int disk = r10_bio.devs[s].devnum;
661 struct md_rdev *rdev = rcu_dereference(
662 conf->mirrors[disk].rdev);
663 if (rdev && !test_bit(Faulty, &rdev->flags)) {
664 struct request_queue *q =
665 bdev_get_queue(rdev->bdev);
666 if (q->merge_bvec_fn) {
667 bvm->bi_sector = r10_bio.devs[s].addr
668 + rdev->data_offset;
669 bvm->bi_bdev = rdev->bdev;
670 max = min(max, q->merge_bvec_fn(
671 q, bvm, biovec));
672 }
673 }
674 rdev = rcu_dereference(conf->mirrors[disk].replacement);
675 if (rdev && !test_bit(Faulty, &rdev->flags)) {
676 struct request_queue *q =
677 bdev_get_queue(rdev->bdev);
678 if (q->merge_bvec_fn) {
679 bvm->bi_sector = r10_bio.devs[s].addr
680 + rdev->data_offset;
681 bvm->bi_bdev = rdev->bdev;
682 max = min(max, q->merge_bvec_fn(
683 q, bvm, biovec));
684 }
685 }
686 }
687 rcu_read_unlock();
688 }
689 return max;
1da177e4
LT
690}
691
692/*
693 * This routine returns the disk from which the requested read should
694 * be done. There is a per-array 'next expected sequential IO' sector
695 * number - if this matches on the next IO then we use the last disk.
696 * There is also a per-disk 'last know head position' sector that is
697 * maintained from IRQ contexts, both the normal and the resync IO
698 * completion handlers update this position correctly. If there is no
699 * perfect sequential match then we pick the disk whose head is closest.
700 *
701 * If there are 2 mirrors in the same 2 devices, performance degrades
702 * because position is mirror, not device based.
703 *
704 * The rdev for the device selected will have nr_pending incremented.
705 */
706
707/*
708 * FIXME: possibly should rethink readbalancing and do it differently
709 * depending on near_copies / far_copies geometry.
710 */
96c3fd1f
N
711static struct md_rdev *read_balance(struct r10conf *conf,
712 struct r10bio *r10_bio,
713 int *max_sectors)
1da177e4 714{
af3a2cd6 715 const sector_t this_sector = r10_bio->sector;
56d99121 716 int disk, slot;
856e08e2
N
717 int sectors = r10_bio->sectors;
718 int best_good_sectors;
56d99121 719 sector_t new_distance, best_dist;
abbf098e 720 struct md_rdev *rdev, *best_rdev;
56d99121
N
721 int do_balance;
722 int best_slot;
5cf00fcd 723 struct geom *geo = &conf->geo;
1da177e4
LT
724
725 raid10_find_phys(conf, r10_bio);
726 rcu_read_lock();
56d99121 727retry:
856e08e2 728 sectors = r10_bio->sectors;
56d99121 729 best_slot = -1;
abbf098e 730 best_rdev = NULL;
56d99121 731 best_dist = MaxSector;
856e08e2 732 best_good_sectors = 0;
56d99121 733 do_balance = 1;
1da177e4
LT
734 /*
735 * Check if we can balance. We can balance on the whole
6cce3b23
N
736 * device if no resync is going on (recovery is ok), or below
737 * the resync window. We take the first readable disk when
738 * above the resync window.
1da177e4
LT
739 */
740 if (conf->mddev->recovery_cp < MaxSector
56d99121
N
741 && (this_sector + sectors >= conf->next_resync))
742 do_balance = 0;
1da177e4 743
56d99121 744 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
745 sector_t first_bad;
746 int bad_sectors;
747 sector_t dev_sector;
748
56d99121
N
749 if (r10_bio->devs[slot].bio == IO_BLOCKED)
750 continue;
1da177e4 751 disk = r10_bio->devs[slot].devnum;
abbf098e
N
752 rdev = rcu_dereference(conf->mirrors[disk].replacement);
753 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
050b6615 754 test_bit(Unmerged, &rdev->flags) ||
abbf098e
N
755 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
756 rdev = rcu_dereference(conf->mirrors[disk].rdev);
050b6615
N
757 if (rdev == NULL ||
758 test_bit(Faulty, &rdev->flags) ||
759 test_bit(Unmerged, &rdev->flags))
abbf098e
N
760 continue;
761 if (!test_bit(In_sync, &rdev->flags) &&
762 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
763 continue;
764
856e08e2
N
765 dev_sector = r10_bio->devs[slot].addr;
766 if (is_badblock(rdev, dev_sector, sectors,
767 &first_bad, &bad_sectors)) {
768 if (best_dist < MaxSector)
769 /* Already have a better slot */
770 continue;
771 if (first_bad <= dev_sector) {
772 /* Cannot read here. If this is the
773 * 'primary' device, then we must not read
774 * beyond 'bad_sectors' from another device.
775 */
776 bad_sectors -= (dev_sector - first_bad);
777 if (!do_balance && sectors > bad_sectors)
778 sectors = bad_sectors;
779 if (best_good_sectors > sectors)
780 best_good_sectors = sectors;
781 } else {
782 sector_t good_sectors =
783 first_bad - dev_sector;
784 if (good_sectors > best_good_sectors) {
785 best_good_sectors = good_sectors;
786 best_slot = slot;
abbf098e 787 best_rdev = rdev;
856e08e2
N
788 }
789 if (!do_balance)
790 /* Must read from here */
791 break;
792 }
793 continue;
794 } else
795 best_good_sectors = sectors;
796
56d99121
N
797 if (!do_balance)
798 break;
1da177e4 799
22dfdf52
N
800 /* This optimisation is debatable, and completely destroys
801 * sequential read speed for 'far copies' arrays. So only
802 * keep it for 'near' arrays, and review those later.
803 */
5cf00fcd 804 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
1da177e4 805 break;
8ed3a195
KS
806
807 /* for far > 1 always use the lowest address */
5cf00fcd 808 if (geo->far_copies > 1)
56d99121 809 new_distance = r10_bio->devs[slot].addr;
8ed3a195 810 else
56d99121
N
811 new_distance = abs(r10_bio->devs[slot].addr -
812 conf->mirrors[disk].head_position);
813 if (new_distance < best_dist) {
814 best_dist = new_distance;
815 best_slot = slot;
abbf098e 816 best_rdev = rdev;
1da177e4
LT
817 }
818 }
abbf098e 819 if (slot >= conf->copies) {
56d99121 820 slot = best_slot;
abbf098e
N
821 rdev = best_rdev;
822 }
1da177e4 823
56d99121 824 if (slot >= 0) {
56d99121
N
825 atomic_inc(&rdev->nr_pending);
826 if (test_bit(Faulty, &rdev->flags)) {
827 /* Cannot risk returning a device that failed
828 * before we inc'ed nr_pending
829 */
830 rdev_dec_pending(rdev, conf->mddev);
831 goto retry;
832 }
833 r10_bio->read_slot = slot;
834 } else
96c3fd1f 835 rdev = NULL;
1da177e4 836 rcu_read_unlock();
856e08e2 837 *max_sectors = best_good_sectors;
1da177e4 838
96c3fd1f 839 return rdev;
1da177e4
LT
840}
841
0d129228
N
842static int raid10_congested(void *data, int bits)
843{
fd01b88c 844 struct mddev *mddev = data;
e879a879 845 struct r10conf *conf = mddev->private;
0d129228
N
846 int i, ret = 0;
847
34db0cd6
N
848 if ((bits & (1 << BDI_async_congested)) &&
849 conf->pending_count >= max_queued_requests)
850 return 1;
851
3fa841d7
N
852 if (mddev_congested(mddev, bits))
853 return 1;
0d129228 854 rcu_read_lock();
f8c9e74f
N
855 for (i = 0;
856 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
857 && ret == 0;
858 i++) {
3cb03002 859 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 860 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 861 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
862
863 ret |= bdi_congested(&q->backing_dev_info, bits);
864 }
865 }
866 rcu_read_unlock();
867 return ret;
868}
869
e879a879 870static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
871{
872 /* Any writes that have been queued but are awaiting
873 * bitmap updates get flushed here.
a35e63ef 874 */
a35e63ef
N
875 spin_lock_irq(&conf->device_lock);
876
877 if (conf->pending_bio_list.head) {
878 struct bio *bio;
879 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 880 conf->pending_count = 0;
a35e63ef
N
881 spin_unlock_irq(&conf->device_lock);
882 /* flush any pending bitmap writes to disk
883 * before proceeding w/ I/O */
884 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 885 wake_up(&conf->wait_barrier);
a35e63ef
N
886
887 while (bio) { /* submit pending writes */
888 struct bio *next = bio->bi_next;
889 bio->bi_next = NULL;
890 generic_make_request(bio);
891 bio = next;
892 }
a35e63ef
N
893 } else
894 spin_unlock_irq(&conf->device_lock);
a35e63ef 895}
7eaceacc 896
0a27ec96
N
897/* Barriers....
898 * Sometimes we need to suspend IO while we do something else,
899 * either some resync/recovery, or reconfigure the array.
900 * To do this we raise a 'barrier'.
901 * The 'barrier' is a counter that can be raised multiple times
902 * to count how many activities are happening which preclude
903 * normal IO.
904 * We can only raise the barrier if there is no pending IO.
905 * i.e. if nr_pending == 0.
906 * We choose only to raise the barrier if no-one is waiting for the
907 * barrier to go down. This means that as soon as an IO request
908 * is ready, no other operations which require a barrier will start
909 * until the IO request has had a chance.
910 *
911 * So: regular IO calls 'wait_barrier'. When that returns there
912 * is no backgroup IO happening, It must arrange to call
913 * allow_barrier when it has finished its IO.
914 * backgroup IO calls must call raise_barrier. Once that returns
915 * there is no normal IO happeing. It must arrange to call
916 * lower_barrier when the particular background IO completes.
1da177e4 917 */
1da177e4 918
e879a879 919static void raise_barrier(struct r10conf *conf, int force)
1da177e4 920{
6cce3b23 921 BUG_ON(force && !conf->barrier);
1da177e4 922 spin_lock_irq(&conf->resync_lock);
0a27ec96 923
6cce3b23
N
924 /* Wait until no block IO is waiting (unless 'force') */
925 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
c3b328ac 926 conf->resync_lock, );
0a27ec96
N
927
928 /* block any new IO from starting */
929 conf->barrier++;
930
c3b328ac 931 /* Now wait for all pending IO to complete */
0a27ec96
N
932 wait_event_lock_irq(conf->wait_barrier,
933 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
c3b328ac 934 conf->resync_lock, );
0a27ec96
N
935
936 spin_unlock_irq(&conf->resync_lock);
937}
938
e879a879 939static void lower_barrier(struct r10conf *conf)
0a27ec96
N
940{
941 unsigned long flags;
942 spin_lock_irqsave(&conf->resync_lock, flags);
943 conf->barrier--;
944 spin_unlock_irqrestore(&conf->resync_lock, flags);
945 wake_up(&conf->wait_barrier);
946}
947
e879a879 948static void wait_barrier(struct r10conf *conf)
0a27ec96
N
949{
950 spin_lock_irq(&conf->resync_lock);
951 if (conf->barrier) {
952 conf->nr_waiting++;
d6b42dcb
N
953 /* Wait for the barrier to drop.
954 * However if there are already pending
955 * requests (preventing the barrier from
956 * rising completely), and the
957 * pre-process bio queue isn't empty,
958 * then don't wait, as we need to empty
959 * that queue to get the nr_pending
960 * count down.
961 */
962 wait_event_lock_irq(conf->wait_barrier,
963 !conf->barrier ||
964 (conf->nr_pending &&
965 current->bio_list &&
966 !bio_list_empty(current->bio_list)),
0a27ec96 967 conf->resync_lock,
d6b42dcb 968 );
0a27ec96 969 conf->nr_waiting--;
1da177e4 970 }
0a27ec96 971 conf->nr_pending++;
1da177e4
LT
972 spin_unlock_irq(&conf->resync_lock);
973}
974
e879a879 975static void allow_barrier(struct r10conf *conf)
0a27ec96
N
976{
977 unsigned long flags;
978 spin_lock_irqsave(&conf->resync_lock, flags);
979 conf->nr_pending--;
980 spin_unlock_irqrestore(&conf->resync_lock, flags);
981 wake_up(&conf->wait_barrier);
982}
983
e879a879 984static void freeze_array(struct r10conf *conf)
4443ae10
N
985{
986 /* stop syncio and normal IO and wait for everything to
f188593e 987 * go quiet.
4443ae10 988 * We increment barrier and nr_waiting, and then
1c830532
N
989 * wait until nr_pending match nr_queued+1
990 * This is called in the context of one normal IO request
991 * that has failed. Thus any sync request that might be pending
992 * will be blocked by nr_pending, and we need to wait for
993 * pending IO requests to complete or be queued for re-try.
994 * Thus the number queued (nr_queued) plus this request (1)
995 * must match the number of pending IOs (nr_pending) before
996 * we continue.
4443ae10
N
997 */
998 spin_lock_irq(&conf->resync_lock);
999 conf->barrier++;
1000 conf->nr_waiting++;
1001 wait_event_lock_irq(conf->wait_barrier,
1c830532 1002 conf->nr_pending == conf->nr_queued+1,
4443ae10 1003 conf->resync_lock,
c3b328ac
N
1004 flush_pending_writes(conf));
1005
4443ae10
N
1006 spin_unlock_irq(&conf->resync_lock);
1007}
1008
e879a879 1009static void unfreeze_array(struct r10conf *conf)
4443ae10
N
1010{
1011 /* reverse the effect of the freeze */
1012 spin_lock_irq(&conf->resync_lock);
1013 conf->barrier--;
1014 conf->nr_waiting--;
1015 wake_up(&conf->wait_barrier);
1016 spin_unlock_irq(&conf->resync_lock);
1017}
1018
f8c9e74f
N
1019static sector_t choose_data_offset(struct r10bio *r10_bio,
1020 struct md_rdev *rdev)
1021{
1022 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1023 test_bit(R10BIO_Previous, &r10_bio->state))
1024 return rdev->data_offset;
1025 else
1026 return rdev->new_data_offset;
1027}
1028
b4fdcb02 1029static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 1030{
e879a879 1031 struct r10conf *conf = mddev->private;
9f2c9d12 1032 struct r10bio *r10_bio;
1da177e4
LT
1033 struct bio *read_bio;
1034 int i;
f8c9e74f 1035 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
5cf00fcd 1036 int chunk_sects = chunk_mask + 1;
a362357b 1037 const int rw = bio_data_dir(bio);
2c7d46ec 1038 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1039 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
6cce3b23 1040 unsigned long flags;
3cb03002 1041 struct md_rdev *blocked_rdev;
d4432c23
N
1042 int sectors_handled;
1043 int max_sectors;
3ea7daa5 1044 int sectors;
1da177e4 1045
e9c7469b
TH
1046 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1047 md_flush_request(mddev, bio);
5a7bbad2 1048 return;
e5dcdd80
N
1049 }
1050
1da177e4
LT
1051 /* If this request crosses a chunk boundary, we need to
1052 * split it. This will only happen for 1 PAGE (or less) requests.
1053 */
5cf00fcd
N
1054 if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1055 > chunk_sects
f8c9e74f
N
1056 && (conf->geo.near_copies < conf->geo.raid_disks
1057 || conf->prev.near_copies < conf->prev.raid_disks))) {
1da177e4
LT
1058 struct bio_pair *bp;
1059 /* Sanity check -- queue functions should prevent this happening */
1060 if (bio->bi_vcnt != 1 ||
1061 bio->bi_idx != 0)
1062 goto bad_map;
1063 /* This is a one page bio that upper layers
1064 * refuse to split for us, so we need to split it.
1065 */
6feef531 1066 bp = bio_split(bio,
1da177e4 1067 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
51e9ac77
N
1068
1069 /* Each of these 'make_request' calls will call 'wait_barrier'.
1070 * If the first succeeds but the second blocks due to the resync
1071 * thread raising the barrier, we will deadlock because the
1072 * IO to the underlying device will be queued in generic_make_request
1073 * and will never complete, so will never reduce nr_pending.
1074 * So increment nr_waiting here so no new raise_barriers will
1075 * succeed, and so the second wait_barrier cannot block.
1076 */
1077 spin_lock_irq(&conf->resync_lock);
1078 conf->nr_waiting++;
1079 spin_unlock_irq(&conf->resync_lock);
1080
5a7bbad2
CH
1081 make_request(mddev, &bp->bio1);
1082 make_request(mddev, &bp->bio2);
1da177e4 1083
51e9ac77
N
1084 spin_lock_irq(&conf->resync_lock);
1085 conf->nr_waiting--;
1086 wake_up(&conf->wait_barrier);
1087 spin_unlock_irq(&conf->resync_lock);
1088
1da177e4 1089 bio_pair_release(bp);
5a7bbad2 1090 return;
1da177e4 1091 bad_map:
128595ed
N
1092 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1093 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1da177e4
LT
1094 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1095
6712ecf8 1096 bio_io_error(bio);
5a7bbad2 1097 return;
1da177e4
LT
1098 }
1099
3d310eb7 1100 md_write_start(mddev, bio);
06d91a5f 1101
1da177e4
LT
1102 /*
1103 * Register the new request and wait if the reconstruction
1104 * thread has put up a bar for new requests.
1105 * Continue immediately if no resync is active currently.
1106 */
0a27ec96 1107 wait_barrier(conf);
1da177e4 1108
3ea7daa5
N
1109 sectors = bio->bi_size >> 9;
1110 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1111 bio->bi_sector < conf->reshape_progress &&
1112 bio->bi_sector + sectors > conf->reshape_progress) {
1113 /* IO spans the reshape position. Need to wait for
1114 * reshape to pass
1115 */
1116 allow_barrier(conf);
1117 wait_event(conf->wait_barrier,
1118 conf->reshape_progress <= bio->bi_sector ||
1119 conf->reshape_progress >= bio->bi_sector + sectors);
1120 wait_barrier(conf);
1121 }
1122 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1123 bio_data_dir(bio) == WRITE &&
1124 (mddev->reshape_backwards
1125 ? (bio->bi_sector < conf->reshape_safe &&
1126 bio->bi_sector + sectors > conf->reshape_progress)
1127 : (bio->bi_sector + sectors > conf->reshape_safe &&
1128 bio->bi_sector < conf->reshape_progress))) {
1129 /* Need to update reshape_position in metadata */
1130 mddev->reshape_position = conf->reshape_progress;
1131 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1132 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1133 md_wakeup_thread(mddev->thread);
1134 wait_event(mddev->sb_wait,
1135 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1136
1137 conf->reshape_safe = mddev->reshape_position;
1138 }
1139
1da177e4
LT
1140 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1141
1142 r10_bio->master_bio = bio;
3ea7daa5 1143 r10_bio->sectors = sectors;
1da177e4
LT
1144
1145 r10_bio->mddev = mddev;
1146 r10_bio->sector = bio->bi_sector;
6cce3b23 1147 r10_bio->state = 0;
1da177e4 1148
856e08e2
N
1149 /* We might need to issue multiple reads to different
1150 * devices if there are bad blocks around, so we keep
1151 * track of the number of reads in bio->bi_phys_segments.
1152 * If this is 0, there is only one r10_bio and no locking
1153 * will be needed when the request completes. If it is
1154 * non-zero, then it is the number of not-completed requests.
1155 */
1156 bio->bi_phys_segments = 0;
1157 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1158
a362357b 1159 if (rw == READ) {
1da177e4
LT
1160 /*
1161 * read balancing logic:
1162 */
96c3fd1f 1163 struct md_rdev *rdev;
856e08e2
N
1164 int slot;
1165
1166read_again:
96c3fd1f
N
1167 rdev = read_balance(conf, r10_bio, &max_sectors);
1168 if (!rdev) {
1da177e4 1169 raid_end_bio_io(r10_bio);
5a7bbad2 1170 return;
1da177e4 1171 }
96c3fd1f 1172 slot = r10_bio->read_slot;
1da177e4 1173
a167f663 1174 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
856e08e2
N
1175 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1176 max_sectors);
1da177e4
LT
1177
1178 r10_bio->devs[slot].bio = read_bio;
abbf098e 1179 r10_bio->devs[slot].rdev = rdev;
1da177e4
LT
1180
1181 read_bio->bi_sector = r10_bio->devs[slot].addr +
f8c9e74f 1182 choose_data_offset(r10_bio, rdev);
96c3fd1f 1183 read_bio->bi_bdev = rdev->bdev;
1da177e4 1184 read_bio->bi_end_io = raid10_end_read_request;
7b6d91da 1185 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1186 read_bio->bi_private = r10_bio;
1187
856e08e2
N
1188 if (max_sectors < r10_bio->sectors) {
1189 /* Could not read all from this device, so we will
1190 * need another r10_bio.
1191 */
856e08e2
N
1192 sectors_handled = (r10_bio->sectors + max_sectors
1193 - bio->bi_sector);
1194 r10_bio->sectors = max_sectors;
1195 spin_lock_irq(&conf->device_lock);
1196 if (bio->bi_phys_segments == 0)
1197 bio->bi_phys_segments = 2;
1198 else
1199 bio->bi_phys_segments++;
1200 spin_unlock(&conf->device_lock);
1201 /* Cannot call generic_make_request directly
1202 * as that will be queued in __generic_make_request
1203 * and subsequent mempool_alloc might block
1204 * waiting for it. so hand bio over to raid10d.
1205 */
1206 reschedule_retry(r10_bio);
1207
1208 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1209
1210 r10_bio->master_bio = bio;
1211 r10_bio->sectors = ((bio->bi_size >> 9)
1212 - sectors_handled);
1213 r10_bio->state = 0;
1214 r10_bio->mddev = mddev;
1215 r10_bio->sector = bio->bi_sector + sectors_handled;
1216 goto read_again;
1217 } else
1218 generic_make_request(read_bio);
5a7bbad2 1219 return;
1da177e4
LT
1220 }
1221
1222 /*
1223 * WRITE:
1224 */
34db0cd6
N
1225 if (conf->pending_count >= max_queued_requests) {
1226 md_wakeup_thread(mddev->thread);
1227 wait_event(conf->wait_barrier,
1228 conf->pending_count < max_queued_requests);
1229 }
6bfe0b49 1230 /* first select target devices under rcu_lock and
1da177e4
LT
1231 * inc refcount on their rdev. Record them by setting
1232 * bios[x] to bio
d4432c23
N
1233 * If there are known/acknowledged bad blocks on any device
1234 * on which we have seen a write error, we want to avoid
1235 * writing to those blocks. This potentially requires several
1236 * writes to write around the bad blocks. Each set of writes
1237 * gets its own r10_bio with a set of bios attached. The number
1238 * of r10_bios is recored in bio->bi_phys_segments just as with
1239 * the read case.
1da177e4 1240 */
c3b328ac 1241
69335ef3 1242 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1243 raid10_find_phys(conf, r10_bio);
d4432c23 1244retry_write:
cb6969e8 1245 blocked_rdev = NULL;
1da177e4 1246 rcu_read_lock();
d4432c23
N
1247 max_sectors = r10_bio->sectors;
1248
1da177e4
LT
1249 for (i = 0; i < conf->copies; i++) {
1250 int d = r10_bio->devs[i].devnum;
3cb03002 1251 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
475b0321
N
1252 struct md_rdev *rrdev = rcu_dereference(
1253 conf->mirrors[d].replacement);
4ca40c2c
N
1254 if (rdev == rrdev)
1255 rrdev = NULL;
6bfe0b49
DW
1256 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1257 atomic_inc(&rdev->nr_pending);
1258 blocked_rdev = rdev;
1259 break;
1260 }
475b0321
N
1261 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1262 atomic_inc(&rrdev->nr_pending);
1263 blocked_rdev = rrdev;
1264 break;
1265 }
050b6615
N
1266 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1267 || test_bit(Unmerged, &rrdev->flags)))
475b0321
N
1268 rrdev = NULL;
1269
d4432c23 1270 r10_bio->devs[i].bio = NULL;
475b0321 1271 r10_bio->devs[i].repl_bio = NULL;
050b6615
N
1272 if (!rdev || test_bit(Faulty, &rdev->flags) ||
1273 test_bit(Unmerged, &rdev->flags)) {
6cce3b23 1274 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1275 continue;
1276 }
1277 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1278 sector_t first_bad;
1279 sector_t dev_sector = r10_bio->devs[i].addr;
1280 int bad_sectors;
1281 int is_bad;
1282
1283 is_bad = is_badblock(rdev, dev_sector,
1284 max_sectors,
1285 &first_bad, &bad_sectors);
1286 if (is_bad < 0) {
1287 /* Mustn't write here until the bad block
1288 * is acknowledged
1289 */
1290 atomic_inc(&rdev->nr_pending);
1291 set_bit(BlockedBadBlocks, &rdev->flags);
1292 blocked_rdev = rdev;
1293 break;
1294 }
1295 if (is_bad && first_bad <= dev_sector) {
1296 /* Cannot write here at all */
1297 bad_sectors -= (dev_sector - first_bad);
1298 if (bad_sectors < max_sectors)
1299 /* Mustn't write more than bad_sectors
1300 * to other devices yet
1301 */
1302 max_sectors = bad_sectors;
1303 /* We don't set R10BIO_Degraded as that
1304 * only applies if the disk is missing,
1305 * so it might be re-added, and we want to
1306 * know to recover this chunk.
1307 * In this case the device is here, and the
1308 * fact that this chunk is not in-sync is
1309 * recorded in the bad block log.
1310 */
1311 continue;
1312 }
1313 if (is_bad) {
1314 int good_sectors = first_bad - dev_sector;
1315 if (good_sectors < max_sectors)
1316 max_sectors = good_sectors;
1317 }
6cce3b23 1318 }
d4432c23
N
1319 r10_bio->devs[i].bio = bio;
1320 atomic_inc(&rdev->nr_pending);
475b0321
N
1321 if (rrdev) {
1322 r10_bio->devs[i].repl_bio = bio;
1323 atomic_inc(&rrdev->nr_pending);
1324 }
1da177e4
LT
1325 }
1326 rcu_read_unlock();
1327
6bfe0b49
DW
1328 if (unlikely(blocked_rdev)) {
1329 /* Have to wait for this device to get unblocked, then retry */
1330 int j;
1331 int d;
1332
475b0321 1333 for (j = 0; j < i; j++) {
6bfe0b49
DW
1334 if (r10_bio->devs[j].bio) {
1335 d = r10_bio->devs[j].devnum;
1336 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1337 }
475b0321 1338 if (r10_bio->devs[j].repl_bio) {
4ca40c2c 1339 struct md_rdev *rdev;
475b0321 1340 d = r10_bio->devs[j].devnum;
4ca40c2c
N
1341 rdev = conf->mirrors[d].replacement;
1342 if (!rdev) {
1343 /* Race with remove_disk */
1344 smp_mb();
1345 rdev = conf->mirrors[d].rdev;
1346 }
1347 rdev_dec_pending(rdev, mddev);
475b0321
N
1348 }
1349 }
6bfe0b49
DW
1350 allow_barrier(conf);
1351 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1352 wait_barrier(conf);
1353 goto retry_write;
1354 }
1355
d4432c23
N
1356 if (max_sectors < r10_bio->sectors) {
1357 /* We are splitting this into multiple parts, so
1358 * we need to prepare for allocating another r10_bio.
1359 */
1360 r10_bio->sectors = max_sectors;
1361 spin_lock_irq(&conf->device_lock);
1362 if (bio->bi_phys_segments == 0)
1363 bio->bi_phys_segments = 2;
1364 else
1365 bio->bi_phys_segments++;
1366 spin_unlock_irq(&conf->device_lock);
1367 }
1368 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1369
4e78064f 1370 atomic_set(&r10_bio->remaining, 1);
d4432c23 1371 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1372
1da177e4
LT
1373 for (i = 0; i < conf->copies; i++) {
1374 struct bio *mbio;
1375 int d = r10_bio->devs[i].devnum;
1376 if (!r10_bio->devs[i].bio)
1377 continue;
1378
a167f663 1379 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d4432c23
N
1380 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1381 max_sectors);
1da177e4
LT
1382 r10_bio->devs[i].bio = mbio;
1383
d4432c23 1384 mbio->bi_sector = (r10_bio->devs[i].addr+
f8c9e74f
N
1385 choose_data_offset(r10_bio,
1386 conf->mirrors[d].rdev));
1da177e4
LT
1387 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1388 mbio->bi_end_io = raid10_end_write_request;
e9c7469b 1389 mbio->bi_rw = WRITE | do_sync | do_fua;
1da177e4
LT
1390 mbio->bi_private = r10_bio;
1391
1392 atomic_inc(&r10_bio->remaining);
4e78064f
N
1393 spin_lock_irqsave(&conf->device_lock, flags);
1394 bio_list_add(&conf->pending_bio_list, mbio);
34db0cd6 1395 conf->pending_count++;
4e78064f 1396 spin_unlock_irqrestore(&conf->device_lock, flags);
10684112 1397 if (!mddev_check_plugged(mddev))
b357f04a 1398 md_wakeup_thread(mddev->thread);
475b0321
N
1399
1400 if (!r10_bio->devs[i].repl_bio)
1401 continue;
1402
1403 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1404 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1405 max_sectors);
1406 r10_bio->devs[i].repl_bio = mbio;
1407
4ca40c2c
N
1408 /* We are actively writing to the original device
1409 * so it cannot disappear, so the replacement cannot
1410 * become NULL here
1411 */
f8c9e74f
N
1412 mbio->bi_sector = (r10_bio->devs[i].addr +
1413 choose_data_offset(
1414 r10_bio,
1415 conf->mirrors[d].replacement));
475b0321
N
1416 mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1417 mbio->bi_end_io = raid10_end_write_request;
1418 mbio->bi_rw = WRITE | do_sync | do_fua;
1419 mbio->bi_private = r10_bio;
1420
1421 atomic_inc(&r10_bio->remaining);
1422 spin_lock_irqsave(&conf->device_lock, flags);
1423 bio_list_add(&conf->pending_bio_list, mbio);
1424 conf->pending_count++;
1425 spin_unlock_irqrestore(&conf->device_lock, flags);
b357f04a
N
1426 if (!mddev_check_plugged(mddev))
1427 md_wakeup_thread(mddev->thread);
1da177e4
LT
1428 }
1429
079fa166
N
1430 /* Don't remove the bias on 'remaining' (one_write_done) until
1431 * after checking if we need to go around again.
1432 */
a35e63ef 1433
d4432c23 1434 if (sectors_handled < (bio->bi_size >> 9)) {
079fa166 1435 one_write_done(r10_bio);
5e570289 1436 /* We need another r10_bio. It has already been counted
d4432c23
N
1437 * in bio->bi_phys_segments.
1438 */
1439 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1440
1441 r10_bio->master_bio = bio;
1442 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1443
1444 r10_bio->mddev = mddev;
1445 r10_bio->sector = bio->bi_sector + sectors_handled;
1446 r10_bio->state = 0;
1447 goto retry_write;
1448 }
079fa166
N
1449 one_write_done(r10_bio);
1450
1451 /* In case raid10d snuck in to freeze_array */
1452 wake_up(&conf->wait_barrier);
1da177e4
LT
1453}
1454
fd01b88c 1455static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1456{
e879a879 1457 struct r10conf *conf = mddev->private;
1da177e4
LT
1458 int i;
1459
5cf00fcd 1460 if (conf->geo.near_copies < conf->geo.raid_disks)
9d8f0363 1461 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
5cf00fcd
N
1462 if (conf->geo.near_copies > 1)
1463 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1464 if (conf->geo.far_copies > 1) {
1465 if (conf->geo.far_offset)
1466 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
c93983bf 1467 else
5cf00fcd 1468 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
c93983bf 1469 }
5cf00fcd
N
1470 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1471 conf->geo.raid_disks - mddev->degraded);
1472 for (i = 0; i < conf->geo.raid_disks; i++)
1da177e4
LT
1473 seq_printf(seq, "%s",
1474 conf->mirrors[i].rdev &&
b2d444d7 1475 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
1476 seq_printf(seq, "]");
1477}
1478
700c7213
N
1479/* check if there are enough drives for
1480 * every block to appear on atleast one.
1481 * Don't consider the device numbered 'ignore'
1482 * as we might be about to remove it.
1483 */
f8c9e74f 1484static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
700c7213
N
1485{
1486 int first = 0;
1487
1488 do {
1489 int n = conf->copies;
1490 int cnt = 0;
1491 while (n--) {
1492 if (conf->mirrors[first].rdev &&
1493 first != ignore)
1494 cnt++;
f8c9e74f 1495 first = (first+1) % geo->raid_disks;
700c7213
N
1496 }
1497 if (cnt == 0)
1498 return 0;
1499 } while (first != 0);
1500 return 1;
1501}
1502
f8c9e74f
N
1503static int enough(struct r10conf *conf, int ignore)
1504{
1505 return _enough(conf, &conf->geo, ignore) &&
1506 _enough(conf, &conf->prev, ignore);
1507}
1508
fd01b88c 1509static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1510{
1511 char b[BDEVNAME_SIZE];
e879a879 1512 struct r10conf *conf = mddev->private;
1da177e4
LT
1513
1514 /*
1515 * If it is not operational, then we have already marked it as dead
1516 * else if it is the last working disks, ignore the error, let the
1517 * next level up know.
1518 * else mark the drive as failed
1519 */
b2d444d7 1520 if (test_bit(In_sync, &rdev->flags)
700c7213 1521 && !enough(conf, rdev->raid_disk))
1da177e4
LT
1522 /*
1523 * Don't fail the drive, just return an IO error.
1da177e4
LT
1524 */
1525 return;
c04be0aa
N
1526 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1527 unsigned long flags;
1528 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1529 mddev->degraded++;
c04be0aa 1530 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1531 /*
1532 * if recovery is running, make sure it aborts.
1533 */
dfc70645 1534 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1535 }
de393cde 1536 set_bit(Blocked, &rdev->flags);
b2d444d7 1537 set_bit(Faulty, &rdev->flags);
850b2b42 1538 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1539 printk(KERN_ALERT
1540 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1541 "md/raid10:%s: Operation continuing on %d devices.\n",
128595ed 1542 mdname(mddev), bdevname(rdev->bdev, b),
5cf00fcd 1543 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1da177e4
LT
1544}
1545
e879a879 1546static void print_conf(struct r10conf *conf)
1da177e4
LT
1547{
1548 int i;
0f6d02d5 1549 struct mirror_info *tmp;
1da177e4 1550
128595ed 1551 printk(KERN_DEBUG "RAID10 conf printout:\n");
1da177e4 1552 if (!conf) {
128595ed 1553 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1554 return;
1555 }
5cf00fcd
N
1556 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1557 conf->geo.raid_disks);
1da177e4 1558
5cf00fcd 1559 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4
LT
1560 char b[BDEVNAME_SIZE];
1561 tmp = conf->mirrors + i;
1562 if (tmp->rdev)
128595ed 1563 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
1564 i, !test_bit(In_sync, &tmp->rdev->flags),
1565 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
1566 bdevname(tmp->rdev->bdev,b));
1567 }
1568}
1569
e879a879 1570static void close_sync(struct r10conf *conf)
1da177e4 1571{
0a27ec96
N
1572 wait_barrier(conf);
1573 allow_barrier(conf);
1da177e4
LT
1574
1575 mempool_destroy(conf->r10buf_pool);
1576 conf->r10buf_pool = NULL;
1577}
1578
fd01b88c 1579static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
1580{
1581 int i;
e879a879 1582 struct r10conf *conf = mddev->private;
0f6d02d5 1583 struct mirror_info *tmp;
6b965620
N
1584 int count = 0;
1585 unsigned long flags;
1da177e4
LT
1586
1587 /*
1588 * Find all non-in_sync disks within the RAID10 configuration
1589 * and mark them in_sync
1590 */
5cf00fcd 1591 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 1592 tmp = conf->mirrors + i;
4ca40c2c
N
1593 if (tmp->replacement
1594 && tmp->replacement->recovery_offset == MaxSector
1595 && !test_bit(Faulty, &tmp->replacement->flags)
1596 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1597 /* Replacement has just become active */
1598 if (!tmp->rdev
1599 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1600 count++;
1601 if (tmp->rdev) {
1602 /* Replaced device not technically faulty,
1603 * but we need to be sure it gets removed
1604 * and never re-added.
1605 */
1606 set_bit(Faulty, &tmp->rdev->flags);
1607 sysfs_notify_dirent_safe(
1608 tmp->rdev->sysfs_state);
1609 }
1610 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1611 } else if (tmp->rdev
1612 && !test_bit(Faulty, &tmp->rdev->flags)
1613 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1614 count++;
e6ffbcb6 1615 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1da177e4
LT
1616 }
1617 }
6b965620
N
1618 spin_lock_irqsave(&conf->device_lock, flags);
1619 mddev->degraded -= count;
1620 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1621
1622 print_conf(conf);
6b965620 1623 return count;
1da177e4
LT
1624}
1625
1626
fd01b88c 1627static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1628{
e879a879 1629 struct r10conf *conf = mddev->private;
199050ea 1630 int err = -EEXIST;
1da177e4 1631 int mirror;
6c2fce2e 1632 int first = 0;
5cf00fcd 1633 int last = conf->geo.raid_disks - 1;
050b6615 1634 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4
LT
1635
1636 if (mddev->recovery_cp < MaxSector)
1637 /* only hot-add to in-sync arrays, as recovery is
1638 * very different from resync
1639 */
199050ea 1640 return -EBUSY;
f8c9e74f 1641 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
199050ea 1642 return -EINVAL;
1da177e4 1643
a53a6c85 1644 if (rdev->raid_disk >= 0)
6c2fce2e 1645 first = last = rdev->raid_disk;
1da177e4 1646
050b6615
N
1647 if (q->merge_bvec_fn) {
1648 set_bit(Unmerged, &rdev->flags);
1649 mddev->merge_check_needed = 1;
1650 }
1651
2c4193df 1652 if (rdev->saved_raid_disk >= first &&
6cce3b23
N
1653 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1654 mirror = rdev->saved_raid_disk;
1655 else
6c2fce2e 1656 mirror = first;
2bb77736 1657 for ( ; mirror <= last ; mirror++) {
0f6d02d5 1658 struct mirror_info *p = &conf->mirrors[mirror];
2bb77736
N
1659 if (p->recovery_disabled == mddev->recovery_disabled)
1660 continue;
b7044d41
N
1661 if (p->rdev) {
1662 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1663 p->replacement != NULL)
1664 continue;
1665 clear_bit(In_sync, &rdev->flags);
1666 set_bit(Replacement, &rdev->flags);
1667 rdev->raid_disk = mirror;
1668 err = 0;
1669 disk_stack_limits(mddev->gendisk, rdev->bdev,
1670 rdev->data_offset << 9);
b7044d41
N
1671 conf->fullsync = 1;
1672 rcu_assign_pointer(p->replacement, rdev);
1673 break;
1674 }
1da177e4 1675
2bb77736
N
1676 disk_stack_limits(mddev->gendisk, rdev->bdev,
1677 rdev->data_offset << 9);
1da177e4 1678
2bb77736 1679 p->head_position = 0;
d890fa2b 1680 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
1681 rdev->raid_disk = mirror;
1682 err = 0;
1683 if (rdev->saved_raid_disk != mirror)
1684 conf->fullsync = 1;
1685 rcu_assign_pointer(p->rdev, rdev);
1686 break;
1687 }
050b6615
N
1688 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1689 /* Some requests might not have seen this new
1690 * merge_bvec_fn. We must wait for them to complete
1691 * before merging the device fully.
1692 * First we make sure any code which has tested
1693 * our function has submitted the request, then
1694 * we wait for all outstanding requests to complete.
1695 */
1696 synchronize_sched();
1697 raise_barrier(conf, 0);
1698 lower_barrier(conf);
1699 clear_bit(Unmerged, &rdev->flags);
1700 }
ac5e7113 1701 md_integrity_add_rdev(rdev, mddev);
1da177e4 1702 print_conf(conf);
199050ea 1703 return err;
1da177e4
LT
1704}
1705
b8321b68 1706static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1707{
e879a879 1708 struct r10conf *conf = mddev->private;
1da177e4 1709 int err = 0;
b8321b68 1710 int number = rdev->raid_disk;
c8ab903e
N
1711 struct md_rdev **rdevp;
1712 struct mirror_info *p = conf->mirrors + number;
1da177e4
LT
1713
1714 print_conf(conf);
c8ab903e
N
1715 if (rdev == p->rdev)
1716 rdevp = &p->rdev;
1717 else if (rdev == p->replacement)
1718 rdevp = &p->replacement;
1719 else
1720 return 0;
1721
1722 if (test_bit(In_sync, &rdev->flags) ||
1723 atomic_read(&rdev->nr_pending)) {
1724 err = -EBUSY;
1725 goto abort;
1726 }
1727 /* Only remove faulty devices if recovery
1728 * is not possible.
1729 */
1730 if (!test_bit(Faulty, &rdev->flags) &&
1731 mddev->recovery_disabled != p->recovery_disabled &&
4ca40c2c 1732 (!p->replacement || p->replacement == rdev) &&
63aced61 1733 number < conf->geo.raid_disks &&
c8ab903e
N
1734 enough(conf, -1)) {
1735 err = -EBUSY;
1736 goto abort;
1da177e4 1737 }
c8ab903e
N
1738 *rdevp = NULL;
1739 synchronize_rcu();
1740 if (atomic_read(&rdev->nr_pending)) {
1741 /* lost the race, try later */
1742 err = -EBUSY;
1743 *rdevp = rdev;
1744 goto abort;
4ca40c2c
N
1745 } else if (p->replacement) {
1746 /* We must have just cleared 'rdev' */
1747 p->rdev = p->replacement;
1748 clear_bit(Replacement, &p->replacement->flags);
1749 smp_mb(); /* Make sure other CPUs may see both as identical
1750 * but will never see neither -- if they are careful.
1751 */
1752 p->replacement = NULL;
1753 clear_bit(WantReplacement, &rdev->flags);
1754 } else
1755 /* We might have just remove the Replacement as faulty
1756 * Clear the flag just in case
1757 */
1758 clear_bit(WantReplacement, &rdev->flags);
1759
c8ab903e
N
1760 err = md_integrity_register(mddev);
1761
1da177e4
LT
1762abort:
1763
1764 print_conf(conf);
1765 return err;
1766}
1767
1768
6712ecf8 1769static void end_sync_read(struct bio *bio, int error)
1da177e4 1770{
9f2c9d12 1771 struct r10bio *r10_bio = bio->bi_private;
e879a879 1772 struct r10conf *conf = r10_bio->mddev->private;
778ca018 1773 int d;
1da177e4 1774
3ea7daa5
N
1775 if (bio == r10_bio->master_bio) {
1776 /* this is a reshape read */
1777 d = r10_bio->read_slot; /* really the read dev */
1778 } else
1779 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
0eb3ff12
N
1780
1781 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1782 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
1783 else
1784 /* The write handler will notice the lack of
1785 * R10BIO_Uptodate and record any errors etc
1786 */
4dbcdc75
N
1787 atomic_add(r10_bio->sectors,
1788 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
1789
1790 /* for reconstruct, we always reschedule after a read.
1791 * for resync, only after all reads
1792 */
73d5c38a 1793 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1794 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1795 atomic_dec_and_test(&r10_bio->remaining)) {
1796 /* we have read all the blocks,
1797 * do the comparison in process context in raid10d
1798 */
1799 reschedule_retry(r10_bio);
1800 }
1da177e4
LT
1801}
1802
9f2c9d12 1803static void end_sync_request(struct r10bio *r10_bio)
1da177e4 1804{
fd01b88c 1805 struct mddev *mddev = r10_bio->mddev;
dfc70645 1806
1da177e4
LT
1807 while (atomic_dec_and_test(&r10_bio->remaining)) {
1808 if (r10_bio->master_bio == NULL) {
1809 /* the primary of several recovery bios */
73d5c38a 1810 sector_t s = r10_bio->sectors;
1a0b7cd8
N
1811 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1812 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1813 reschedule_retry(r10_bio);
1814 else
1815 put_buf(r10_bio);
73d5c38a 1816 md_done_sync(mddev, s, 1);
1da177e4
LT
1817 break;
1818 } else {
9f2c9d12 1819 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
1820 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1821 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1822 reschedule_retry(r10_bio);
1823 else
1824 put_buf(r10_bio);
1da177e4
LT
1825 r10_bio = r10_bio2;
1826 }
1827 }
1da177e4
LT
1828}
1829
5e570289
N
1830static void end_sync_write(struct bio *bio, int error)
1831{
1832 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1833 struct r10bio *r10_bio = bio->bi_private;
fd01b88c 1834 struct mddev *mddev = r10_bio->mddev;
e879a879 1835 struct r10conf *conf = mddev->private;
5e570289
N
1836 int d;
1837 sector_t first_bad;
1838 int bad_sectors;
1839 int slot;
9ad1aefc 1840 int repl;
4ca40c2c 1841 struct md_rdev *rdev = NULL;
5e570289 1842
9ad1aefc
N
1843 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1844 if (repl)
1845 rdev = conf->mirrors[d].replacement;
547414d1 1846 else
9ad1aefc 1847 rdev = conf->mirrors[d].rdev;
5e570289
N
1848
1849 if (!uptodate) {
9ad1aefc
N
1850 if (repl)
1851 md_error(mddev, rdev);
1852 else {
1853 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
1854 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1855 set_bit(MD_RECOVERY_NEEDED,
1856 &rdev->mddev->recovery);
9ad1aefc
N
1857 set_bit(R10BIO_WriteError, &r10_bio->state);
1858 }
1859 } else if (is_badblock(rdev,
5e570289
N
1860 r10_bio->devs[slot].addr,
1861 r10_bio->sectors,
1862 &first_bad, &bad_sectors))
1863 set_bit(R10BIO_MadeGood, &r10_bio->state);
1864
9ad1aefc 1865 rdev_dec_pending(rdev, mddev);
5e570289
N
1866
1867 end_sync_request(r10_bio);
1868}
1869
1da177e4
LT
1870/*
1871 * Note: sync and recover and handled very differently for raid10
1872 * This code is for resync.
1873 * For resync, we read through virtual addresses and read all blocks.
1874 * If there is any error, we schedule a write. The lowest numbered
1875 * drive is authoritative.
1876 * However requests come for physical address, so we need to map.
1877 * For every physical address there are raid_disks/copies virtual addresses,
1878 * which is always are least one, but is not necessarly an integer.
1879 * This means that a physical address can span multiple chunks, so we may
1880 * have to submit multiple io requests for a single sync request.
1881 */
1882/*
1883 * We check if all blocks are in-sync and only write to blocks that
1884 * aren't in sync
1885 */
9f2c9d12 1886static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 1887{
e879a879 1888 struct r10conf *conf = mddev->private;
1da177e4
LT
1889 int i, first;
1890 struct bio *tbio, *fbio;
f4380a91 1891 int vcnt;
1da177e4
LT
1892
1893 atomic_set(&r10_bio->remaining, 1);
1894
1895 /* find the first device with a block */
1896 for (i=0; i<conf->copies; i++)
1897 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1898 break;
1899
1900 if (i == conf->copies)
1901 goto done;
1902
1903 first = i;
1904 fbio = r10_bio->devs[i].bio;
1905
f4380a91 1906 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1da177e4 1907 /* now find blocks with errors */
0eb3ff12
N
1908 for (i=0 ; i < conf->copies ; i++) {
1909 int j, d;
1da177e4 1910
1da177e4 1911 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
1912
1913 if (tbio->bi_end_io != end_sync_read)
1914 continue;
1915 if (i == first)
1da177e4 1916 continue;
0eb3ff12
N
1917 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1918 /* We know that the bi_io_vec layout is the same for
1919 * both 'first' and 'i', so we just compare them.
1920 * All vec entries are PAGE_SIZE;
1921 */
1922 for (j = 0; j < vcnt; j++)
1923 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1924 page_address(tbio->bi_io_vec[j].bv_page),
5020ad7d 1925 fbio->bi_io_vec[j].bv_len))
0eb3ff12
N
1926 break;
1927 if (j == vcnt)
1928 continue;
1929 mddev->resync_mismatches += r10_bio->sectors;
f84ee364
N
1930 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1931 /* Don't fix anything. */
1932 continue;
0eb3ff12 1933 }
f84ee364
N
1934 /* Ok, we need to write this bio, either to correct an
1935 * inconsistency or to correct an unreadable block.
1da177e4
LT
1936 * First we need to fixup bv_offset, bv_len and
1937 * bi_vecs, as the read request might have corrupted these
1938 */
1939 tbio->bi_vcnt = vcnt;
1940 tbio->bi_size = r10_bio->sectors << 9;
1941 tbio->bi_idx = 0;
1942 tbio->bi_phys_segments = 0;
1da177e4
LT
1943 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1944 tbio->bi_flags |= 1 << BIO_UPTODATE;
1945 tbio->bi_next = NULL;
1946 tbio->bi_rw = WRITE;
1947 tbio->bi_private = r10_bio;
1948 tbio->bi_sector = r10_bio->devs[i].addr;
1949
1950 for (j=0; j < vcnt ; j++) {
1951 tbio->bi_io_vec[j].bv_offset = 0;
1952 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1953
1954 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1955 page_address(fbio->bi_io_vec[j].bv_page),
1956 PAGE_SIZE);
1957 }
1958 tbio->bi_end_io = end_sync_write;
1959
1960 d = r10_bio->devs[i].devnum;
1961 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1962 atomic_inc(&r10_bio->remaining);
1963 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1964
1965 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1966 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1967 generic_make_request(tbio);
1968 }
1969
9ad1aefc
N
1970 /* Now write out to any replacement devices
1971 * that are active
1972 */
1973 for (i = 0; i < conf->copies; i++) {
1974 int j, d;
9ad1aefc
N
1975
1976 tbio = r10_bio->devs[i].repl_bio;
1977 if (!tbio || !tbio->bi_end_io)
1978 continue;
1979 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
1980 && r10_bio->devs[i].bio != fbio)
1981 for (j = 0; j < vcnt; j++)
1982 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1983 page_address(fbio->bi_io_vec[j].bv_page),
1984 PAGE_SIZE);
1985 d = r10_bio->devs[i].devnum;
1986 atomic_inc(&r10_bio->remaining);
1987 md_sync_acct(conf->mirrors[d].replacement->bdev,
1988 tbio->bi_size >> 9);
1989 generic_make_request(tbio);
1990 }
1991
1da177e4
LT
1992done:
1993 if (atomic_dec_and_test(&r10_bio->remaining)) {
1994 md_done_sync(mddev, r10_bio->sectors, 1);
1995 put_buf(r10_bio);
1996 }
1997}
1998
1999/*
2000 * Now for the recovery code.
2001 * Recovery happens across physical sectors.
2002 * We recover all non-is_sync drives by finding the virtual address of
2003 * each, and then choose a working drive that also has that virt address.
2004 * There is a separate r10_bio for each non-in_sync drive.
2005 * Only the first two slots are in use. The first for reading,
2006 * The second for writing.
2007 *
2008 */
9f2c9d12 2009static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
2010{
2011 /* We got a read error during recovery.
2012 * We repeat the read in smaller page-sized sections.
2013 * If a read succeeds, write it to the new device or record
2014 * a bad block if we cannot.
2015 * If a read fails, record a bad block on both old and
2016 * new devices.
2017 */
fd01b88c 2018 struct mddev *mddev = r10_bio->mddev;
e879a879 2019 struct r10conf *conf = mddev->private;
5e570289
N
2020 struct bio *bio = r10_bio->devs[0].bio;
2021 sector_t sect = 0;
2022 int sectors = r10_bio->sectors;
2023 int idx = 0;
2024 int dr = r10_bio->devs[0].devnum;
2025 int dw = r10_bio->devs[1].devnum;
2026
2027 while (sectors) {
2028 int s = sectors;
3cb03002 2029 struct md_rdev *rdev;
5e570289
N
2030 sector_t addr;
2031 int ok;
2032
2033 if (s > (PAGE_SIZE>>9))
2034 s = PAGE_SIZE >> 9;
2035
2036 rdev = conf->mirrors[dr].rdev;
2037 addr = r10_bio->devs[0].addr + sect,
2038 ok = sync_page_io(rdev,
2039 addr,
2040 s << 9,
2041 bio->bi_io_vec[idx].bv_page,
2042 READ, false);
2043 if (ok) {
2044 rdev = conf->mirrors[dw].rdev;
2045 addr = r10_bio->devs[1].addr + sect;
2046 ok = sync_page_io(rdev,
2047 addr,
2048 s << 9,
2049 bio->bi_io_vec[idx].bv_page,
2050 WRITE, false);
b7044d41 2051 if (!ok) {
5e570289 2052 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2053 if (!test_and_set_bit(WantReplacement,
2054 &rdev->flags))
2055 set_bit(MD_RECOVERY_NEEDED,
2056 &rdev->mddev->recovery);
2057 }
5e570289
N
2058 }
2059 if (!ok) {
2060 /* We don't worry if we cannot set a bad block -
2061 * it really is bad so there is no loss in not
2062 * recording it yet
2063 */
2064 rdev_set_badblocks(rdev, addr, s, 0);
2065
2066 if (rdev != conf->mirrors[dw].rdev) {
2067 /* need bad block on destination too */
3cb03002 2068 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
2069 addr = r10_bio->devs[1].addr + sect;
2070 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2071 if (!ok) {
2072 /* just abort the recovery */
2073 printk(KERN_NOTICE
2074 "md/raid10:%s: recovery aborted"
2075 " due to read error\n",
2076 mdname(mddev));
2077
2078 conf->mirrors[dw].recovery_disabled
2079 = mddev->recovery_disabled;
2080 set_bit(MD_RECOVERY_INTR,
2081 &mddev->recovery);
2082 break;
2083 }
2084 }
2085 }
2086
2087 sectors -= s;
2088 sect += s;
2089 idx++;
2090 }
2091}
1da177e4 2092
9f2c9d12 2093static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2094{
e879a879 2095 struct r10conf *conf = mddev->private;
c65060ad 2096 int d;
24afd80d 2097 struct bio *wbio, *wbio2;
1da177e4 2098
5e570289
N
2099 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2100 fix_recovery_read_error(r10_bio);
2101 end_sync_request(r10_bio);
2102 return;
2103 }
2104
c65060ad
NK
2105 /*
2106 * share the pages with the first bio
1da177e4
LT
2107 * and submit the write request
2108 */
1da177e4 2109 d = r10_bio->devs[1].devnum;
24afd80d
N
2110 wbio = r10_bio->devs[1].bio;
2111 wbio2 = r10_bio->devs[1].repl_bio;
2112 if (wbio->bi_end_io) {
2113 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2114 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2115 generic_make_request(wbio);
2116 }
2117 if (wbio2 && wbio2->bi_end_io) {
2118 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2119 md_sync_acct(conf->mirrors[d].replacement->bdev,
2120 wbio2->bi_size >> 9);
2121 generic_make_request(wbio2);
2122 }
1da177e4
LT
2123}
2124
2125
1e50915f
RB
2126/*
2127 * Used by fix_read_error() to decay the per rdev read_errors.
2128 * We halve the read error count for every hour that has elapsed
2129 * since the last recorded read error.
2130 *
2131 */
fd01b88c 2132static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f
RB
2133{
2134 struct timespec cur_time_mon;
2135 unsigned long hours_since_last;
2136 unsigned int read_errors = atomic_read(&rdev->read_errors);
2137
2138 ktime_get_ts(&cur_time_mon);
2139
2140 if (rdev->last_read_error.tv_sec == 0 &&
2141 rdev->last_read_error.tv_nsec == 0) {
2142 /* first time we've seen a read error */
2143 rdev->last_read_error = cur_time_mon;
2144 return;
2145 }
2146
2147 hours_since_last = (cur_time_mon.tv_sec -
2148 rdev->last_read_error.tv_sec) / 3600;
2149
2150 rdev->last_read_error = cur_time_mon;
2151
2152 /*
2153 * if hours_since_last is > the number of bits in read_errors
2154 * just set read errors to 0. We do this to avoid
2155 * overflowing the shift of read_errors by hours_since_last.
2156 */
2157 if (hours_since_last >= 8 * sizeof(read_errors))
2158 atomic_set(&rdev->read_errors, 0);
2159 else
2160 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2161}
2162
3cb03002 2163static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
58c54fcc
N
2164 int sectors, struct page *page, int rw)
2165{
2166 sector_t first_bad;
2167 int bad_sectors;
2168
2169 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2170 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2171 return -1;
2172 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2173 /* success */
2174 return 1;
b7044d41 2175 if (rw == WRITE) {
58c54fcc 2176 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2177 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2178 set_bit(MD_RECOVERY_NEEDED,
2179 &rdev->mddev->recovery);
2180 }
58c54fcc
N
2181 /* need to record an error - either for the block or the device */
2182 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2183 md_error(rdev->mddev, rdev);
2184 return 0;
2185}
2186
1da177e4
LT
2187/*
2188 * This is a kernel thread which:
2189 *
2190 * 1. Retries failed read operations on working mirrors.
2191 * 2. Updates the raid superblock when problems encounter.
6814d536 2192 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2193 */
2194
e879a879 2195static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
2196{
2197 int sect = 0; /* Offset from r10_bio->sector */
2198 int sectors = r10_bio->sectors;
3cb03002 2199 struct md_rdev*rdev;
1e50915f 2200 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 2201 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 2202
7c4e06ff
N
2203 /* still own a reference to this rdev, so it cannot
2204 * have been cleared recently.
2205 */
2206 rdev = conf->mirrors[d].rdev;
1e50915f 2207
7c4e06ff
N
2208 if (test_bit(Faulty, &rdev->flags))
2209 /* drive has already been failed, just ignore any
2210 more fix_read_error() attempts */
2211 return;
1e50915f 2212
7c4e06ff
N
2213 check_decay_read_errors(mddev, rdev);
2214 atomic_inc(&rdev->read_errors);
2215 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2216 char b[BDEVNAME_SIZE];
2217 bdevname(rdev->bdev, b);
1e50915f 2218
7c4e06ff
N
2219 printk(KERN_NOTICE
2220 "md/raid10:%s: %s: Raid device exceeded "
2221 "read_error threshold [cur %d:max %d]\n",
2222 mdname(mddev), b,
2223 atomic_read(&rdev->read_errors), max_read_errors);
2224 printk(KERN_NOTICE
2225 "md/raid10:%s: %s: Failing raid device\n",
2226 mdname(mddev), b);
2227 md_error(mddev, conf->mirrors[d].rdev);
fae8cc5e 2228 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
7c4e06ff 2229 return;
1e50915f 2230 }
1e50915f 2231
6814d536
N
2232 while(sectors) {
2233 int s = sectors;
2234 int sl = r10_bio->read_slot;
2235 int success = 0;
2236 int start;
2237
2238 if (s > (PAGE_SIZE>>9))
2239 s = PAGE_SIZE >> 9;
2240
2241 rcu_read_lock();
2242 do {
8dbed5ce
N
2243 sector_t first_bad;
2244 int bad_sectors;
2245
0544a21d 2246 d = r10_bio->devs[sl].devnum;
6814d536
N
2247 rdev = rcu_dereference(conf->mirrors[d].rdev);
2248 if (rdev &&
050b6615 2249 !test_bit(Unmerged, &rdev->flags) &&
8dbed5ce
N
2250 test_bit(In_sync, &rdev->flags) &&
2251 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2252 &first_bad, &bad_sectors) == 0) {
6814d536
N
2253 atomic_inc(&rdev->nr_pending);
2254 rcu_read_unlock();
2b193363 2255 success = sync_page_io(rdev,
6814d536 2256 r10_bio->devs[sl].addr +
ccebd4c4 2257 sect,
6814d536 2258 s<<9,
ccebd4c4 2259 conf->tmppage, READ, false);
6814d536
N
2260 rdev_dec_pending(rdev, mddev);
2261 rcu_read_lock();
2262 if (success)
2263 break;
2264 }
2265 sl++;
2266 if (sl == conf->copies)
2267 sl = 0;
2268 } while (!success && sl != r10_bio->read_slot);
2269 rcu_read_unlock();
2270
2271 if (!success) {
58c54fcc
N
2272 /* Cannot read from anywhere, just mark the block
2273 * as bad on the first device to discourage future
2274 * reads.
2275 */
6814d536 2276 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
2277 rdev = conf->mirrors[dn].rdev;
2278
2279 if (!rdev_set_badblocks(
2280 rdev,
2281 r10_bio->devs[r10_bio->read_slot].addr
2282 + sect,
fae8cc5e 2283 s, 0)) {
58c54fcc 2284 md_error(mddev, rdev);
fae8cc5e
N
2285 r10_bio->devs[r10_bio->read_slot].bio
2286 = IO_BLOCKED;
2287 }
6814d536
N
2288 break;
2289 }
2290
2291 start = sl;
2292 /* write it back and re-read */
2293 rcu_read_lock();
2294 while (sl != r10_bio->read_slot) {
67b8dc4b 2295 char b[BDEVNAME_SIZE];
0544a21d 2296
6814d536
N
2297 if (sl==0)
2298 sl = conf->copies;
2299 sl--;
2300 d = r10_bio->devs[sl].devnum;
2301 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2302 if (!rdev ||
050b6615 2303 test_bit(Unmerged, &rdev->flags) ||
1294b9c9
N
2304 !test_bit(In_sync, &rdev->flags))
2305 continue;
2306
2307 atomic_inc(&rdev->nr_pending);
2308 rcu_read_unlock();
58c54fcc
N
2309 if (r10_sync_page_io(rdev,
2310 r10_bio->devs[sl].addr +
2311 sect,
055d3747 2312 s, conf->tmppage, WRITE)
1294b9c9
N
2313 == 0) {
2314 /* Well, this device is dead */
2315 printk(KERN_NOTICE
2316 "md/raid10:%s: read correction "
2317 "write failed"
2318 " (%d sectors at %llu on %s)\n",
2319 mdname(mddev), s,
2320 (unsigned long long)(
f8c9e74f
N
2321 sect +
2322 choose_data_offset(r10_bio,
2323 rdev)),
1294b9c9
N
2324 bdevname(rdev->bdev, b));
2325 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2326 "drive\n",
2327 mdname(mddev),
2328 bdevname(rdev->bdev, b));
6814d536 2329 }
1294b9c9
N
2330 rdev_dec_pending(rdev, mddev);
2331 rcu_read_lock();
6814d536
N
2332 }
2333 sl = start;
2334 while (sl != r10_bio->read_slot) {
1294b9c9 2335 char b[BDEVNAME_SIZE];
0544a21d 2336
6814d536
N
2337 if (sl==0)
2338 sl = conf->copies;
2339 sl--;
2340 d = r10_bio->devs[sl].devnum;
2341 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
2342 if (!rdev ||
2343 !test_bit(In_sync, &rdev->flags))
2344 continue;
6814d536 2345
1294b9c9
N
2346 atomic_inc(&rdev->nr_pending);
2347 rcu_read_unlock();
58c54fcc
N
2348 switch (r10_sync_page_io(rdev,
2349 r10_bio->devs[sl].addr +
2350 sect,
055d3747 2351 s, conf->tmppage,
58c54fcc
N
2352 READ)) {
2353 case 0:
1294b9c9
N
2354 /* Well, this device is dead */
2355 printk(KERN_NOTICE
2356 "md/raid10:%s: unable to read back "
2357 "corrected sectors"
2358 " (%d sectors at %llu on %s)\n",
2359 mdname(mddev), s,
2360 (unsigned long long)(
f8c9e74f
N
2361 sect +
2362 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2363 bdevname(rdev->bdev, b));
2364 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2365 "drive\n",
2366 mdname(mddev),
2367 bdevname(rdev->bdev, b));
58c54fcc
N
2368 break;
2369 case 1:
1294b9c9
N
2370 printk(KERN_INFO
2371 "md/raid10:%s: read error corrected"
2372 " (%d sectors at %llu on %s)\n",
2373 mdname(mddev), s,
2374 (unsigned long long)(
f8c9e74f
N
2375 sect +
2376 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2377 bdevname(rdev->bdev, b));
2378 atomic_add(s, &rdev->corrected_errors);
6814d536 2379 }
1294b9c9
N
2380
2381 rdev_dec_pending(rdev, mddev);
2382 rcu_read_lock();
6814d536
N
2383 }
2384 rcu_read_unlock();
2385
2386 sectors -= s;
2387 sect += s;
2388 }
2389}
2390
bd870a16
N
2391static void bi_complete(struct bio *bio, int error)
2392{
2393 complete((struct completion *)bio->bi_private);
2394}
2395
2396static int submit_bio_wait(int rw, struct bio *bio)
2397{
2398 struct completion event;
2399 rw |= REQ_SYNC;
2400
2401 init_completion(&event);
2402 bio->bi_private = &event;
2403 bio->bi_end_io = bi_complete;
2404 submit_bio(rw, bio);
2405 wait_for_completion(&event);
2406
2407 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2408}
2409
9f2c9d12 2410static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2411{
2412 struct bio *bio = r10_bio->master_bio;
fd01b88c 2413 struct mddev *mddev = r10_bio->mddev;
e879a879 2414 struct r10conf *conf = mddev->private;
3cb03002 2415 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2416 /* bio has the data to be written to slot 'i' where
2417 * we just recently had a write error.
2418 * We repeatedly clone the bio and trim down to one block,
2419 * then try the write. Where the write fails we record
2420 * a bad block.
2421 * It is conceivable that the bio doesn't exactly align with
2422 * blocks. We must handle this.
2423 *
2424 * We currently own a reference to the rdev.
2425 */
2426
2427 int block_sectors;
2428 sector_t sector;
2429 int sectors;
2430 int sect_to_write = r10_bio->sectors;
2431 int ok = 1;
2432
2433 if (rdev->badblocks.shift < 0)
2434 return 0;
2435
2436 block_sectors = 1 << rdev->badblocks.shift;
2437 sector = r10_bio->sector;
2438 sectors = ((r10_bio->sector + block_sectors)
2439 & ~(sector_t)(block_sectors - 1))
2440 - sector;
2441
2442 while (sect_to_write) {
2443 struct bio *wbio;
2444 if (sectors > sect_to_write)
2445 sectors = sect_to_write;
2446 /* Write at 'sector' for 'sectors' */
2447 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2448 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2449 wbio->bi_sector = (r10_bio->devs[i].addr+
f8c9e74f 2450 choose_data_offset(r10_bio, rdev) +
bd870a16
N
2451 (sector - r10_bio->sector));
2452 wbio->bi_bdev = rdev->bdev;
2453 if (submit_bio_wait(WRITE, wbio) == 0)
2454 /* Failure! */
2455 ok = rdev_set_badblocks(rdev, sector,
2456 sectors, 0)
2457 && ok;
2458
2459 bio_put(wbio);
2460 sect_to_write -= sectors;
2461 sector += sectors;
2462 sectors = block_sectors;
2463 }
2464 return ok;
2465}
2466
9f2c9d12 2467static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2468{
2469 int slot = r10_bio->read_slot;
560f8e55 2470 struct bio *bio;
e879a879 2471 struct r10conf *conf = mddev->private;
abbf098e 2472 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2473 char b[BDEVNAME_SIZE];
2474 unsigned long do_sync;
856e08e2 2475 int max_sectors;
560f8e55
N
2476
2477 /* we got a read error. Maybe the drive is bad. Maybe just
2478 * the block and we can fix it.
2479 * We freeze all other IO, and try reading the block from
2480 * other devices. When we find one, we re-write
2481 * and check it that fixes the read error.
2482 * This is all done synchronously while the array is
2483 * frozen.
2484 */
fae8cc5e
N
2485 bio = r10_bio->devs[slot].bio;
2486 bdevname(bio->bi_bdev, b);
2487 bio_put(bio);
2488 r10_bio->devs[slot].bio = NULL;
2489
560f8e55
N
2490 if (mddev->ro == 0) {
2491 freeze_array(conf);
2492 fix_read_error(conf, mddev, r10_bio);
2493 unfreeze_array(conf);
fae8cc5e
N
2494 } else
2495 r10_bio->devs[slot].bio = IO_BLOCKED;
2496
abbf098e 2497 rdev_dec_pending(rdev, mddev);
560f8e55 2498
7399c31b 2499read_more:
96c3fd1f
N
2500 rdev = read_balance(conf, r10_bio, &max_sectors);
2501 if (rdev == NULL) {
560f8e55
N
2502 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2503 " read error for block %llu\n",
7399c31b 2504 mdname(mddev), b,
560f8e55
N
2505 (unsigned long long)r10_bio->sector);
2506 raid_end_bio_io(r10_bio);
560f8e55
N
2507 return;
2508 }
2509
2510 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
560f8e55 2511 slot = r10_bio->read_slot;
560f8e55
N
2512 printk_ratelimited(
2513 KERN_ERR
055d3747 2514 "md/raid10:%s: %s: redirecting "
560f8e55
N
2515 "sector %llu to another mirror\n",
2516 mdname(mddev),
2517 bdevname(rdev->bdev, b),
2518 (unsigned long long)r10_bio->sector);
2519 bio = bio_clone_mddev(r10_bio->master_bio,
2520 GFP_NOIO, mddev);
7399c31b
N
2521 md_trim_bio(bio,
2522 r10_bio->sector - bio->bi_sector,
2523 max_sectors);
560f8e55 2524 r10_bio->devs[slot].bio = bio;
abbf098e 2525 r10_bio->devs[slot].rdev = rdev;
560f8e55 2526 bio->bi_sector = r10_bio->devs[slot].addr
f8c9e74f 2527 + choose_data_offset(r10_bio, rdev);
560f8e55
N
2528 bio->bi_bdev = rdev->bdev;
2529 bio->bi_rw = READ | do_sync;
2530 bio->bi_private = r10_bio;
2531 bio->bi_end_io = raid10_end_read_request;
7399c31b
N
2532 if (max_sectors < r10_bio->sectors) {
2533 /* Drat - have to split this up more */
2534 struct bio *mbio = r10_bio->master_bio;
2535 int sectors_handled =
2536 r10_bio->sector + max_sectors
2537 - mbio->bi_sector;
2538 r10_bio->sectors = max_sectors;
2539 spin_lock_irq(&conf->device_lock);
2540 if (mbio->bi_phys_segments == 0)
2541 mbio->bi_phys_segments = 2;
2542 else
2543 mbio->bi_phys_segments++;
2544 spin_unlock_irq(&conf->device_lock);
2545 generic_make_request(bio);
7399c31b
N
2546
2547 r10_bio = mempool_alloc(conf->r10bio_pool,
2548 GFP_NOIO);
2549 r10_bio->master_bio = mbio;
2550 r10_bio->sectors = (mbio->bi_size >> 9)
2551 - sectors_handled;
2552 r10_bio->state = 0;
2553 set_bit(R10BIO_ReadError,
2554 &r10_bio->state);
2555 r10_bio->mddev = mddev;
2556 r10_bio->sector = mbio->bi_sector
2557 + sectors_handled;
2558
2559 goto read_more;
2560 } else
2561 generic_make_request(bio);
560f8e55
N
2562}
2563
e879a879 2564static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2565{
2566 /* Some sort of write request has finished and it
2567 * succeeded in writing where we thought there was a
2568 * bad block. So forget the bad block.
1a0b7cd8
N
2569 * Or possibly if failed and we need to record
2570 * a bad block.
749c55e9
N
2571 */
2572 int m;
3cb03002 2573 struct md_rdev *rdev;
749c55e9
N
2574
2575 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2576 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2577 for (m = 0; m < conf->copies; m++) {
2578 int dev = r10_bio->devs[m].devnum;
2579 rdev = conf->mirrors[dev].rdev;
2580 if (r10_bio->devs[m].bio == NULL)
2581 continue;
2582 if (test_bit(BIO_UPTODATE,
749c55e9 2583 &r10_bio->devs[m].bio->bi_flags)) {
749c55e9
N
2584 rdev_clear_badblocks(
2585 rdev,
2586 r10_bio->devs[m].addr,
c6563a8c 2587 r10_bio->sectors, 0);
1a0b7cd8
N
2588 } else {
2589 if (!rdev_set_badblocks(
2590 rdev,
2591 r10_bio->devs[m].addr,
2592 r10_bio->sectors, 0))
2593 md_error(conf->mddev, rdev);
749c55e9 2594 }
9ad1aefc
N
2595 rdev = conf->mirrors[dev].replacement;
2596 if (r10_bio->devs[m].repl_bio == NULL)
2597 continue;
2598 if (test_bit(BIO_UPTODATE,
2599 &r10_bio->devs[m].repl_bio->bi_flags)) {
2600 rdev_clear_badblocks(
2601 rdev,
2602 r10_bio->devs[m].addr,
c6563a8c 2603 r10_bio->sectors, 0);
9ad1aefc
N
2604 } else {
2605 if (!rdev_set_badblocks(
2606 rdev,
2607 r10_bio->devs[m].addr,
2608 r10_bio->sectors, 0))
2609 md_error(conf->mddev, rdev);
2610 }
1a0b7cd8 2611 }
749c55e9
N
2612 put_buf(r10_bio);
2613 } else {
bd870a16
N
2614 for (m = 0; m < conf->copies; m++) {
2615 int dev = r10_bio->devs[m].devnum;
2616 struct bio *bio = r10_bio->devs[m].bio;
2617 rdev = conf->mirrors[dev].rdev;
2618 if (bio == IO_MADE_GOOD) {
749c55e9
N
2619 rdev_clear_badblocks(
2620 rdev,
2621 r10_bio->devs[m].addr,
c6563a8c 2622 r10_bio->sectors, 0);
749c55e9 2623 rdev_dec_pending(rdev, conf->mddev);
bd870a16
N
2624 } else if (bio != NULL &&
2625 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2626 if (!narrow_write_error(r10_bio, m)) {
2627 md_error(conf->mddev, rdev);
2628 set_bit(R10BIO_Degraded,
2629 &r10_bio->state);
2630 }
2631 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2632 }
475b0321
N
2633 bio = r10_bio->devs[m].repl_bio;
2634 rdev = conf->mirrors[dev].replacement;
4ca40c2c 2635 if (rdev && bio == IO_MADE_GOOD) {
475b0321
N
2636 rdev_clear_badblocks(
2637 rdev,
2638 r10_bio->devs[m].addr,
c6563a8c 2639 r10_bio->sectors, 0);
475b0321
N
2640 rdev_dec_pending(rdev, conf->mddev);
2641 }
bd870a16
N
2642 }
2643 if (test_bit(R10BIO_WriteError,
2644 &r10_bio->state))
2645 close_write(r10_bio);
749c55e9
N
2646 raid_end_bio_io(r10_bio);
2647 }
2648}
2649
fd01b88c 2650static void raid10d(struct mddev *mddev)
1da177e4 2651{
9f2c9d12 2652 struct r10bio *r10_bio;
1da177e4 2653 unsigned long flags;
e879a879 2654 struct r10conf *conf = mddev->private;
1da177e4 2655 struct list_head *head = &conf->retry_list;
e1dfa0a2 2656 struct blk_plug plug;
1da177e4
LT
2657
2658 md_check_recovery(mddev);
1da177e4 2659
e1dfa0a2 2660 blk_start_plug(&plug);
1da177e4 2661 for (;;) {
6cce3b23 2662
b357f04a
N
2663 if (atomic_read(&mddev->plug_cnt) == 0)
2664 flush_pending_writes(conf);
6cce3b23 2665
a35e63ef
N
2666 spin_lock_irqsave(&conf->device_lock, flags);
2667 if (list_empty(head)) {
2668 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2669 break;
a35e63ef 2670 }
9f2c9d12 2671 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 2672 list_del(head->prev);
4443ae10 2673 conf->nr_queued--;
1da177e4
LT
2674 spin_unlock_irqrestore(&conf->device_lock, flags);
2675
2676 mddev = r10_bio->mddev;
070ec55d 2677 conf = mddev->private;
bd870a16
N
2678 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2679 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9 2680 handle_write_completed(conf, r10_bio);
3ea7daa5
N
2681 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2682 reshape_request_write(mddev, r10_bio);
749c55e9 2683 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 2684 sync_request_write(mddev, r10_bio);
7eaceacc 2685 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 2686 recovery_request_write(mddev, r10_bio);
856e08e2 2687 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 2688 handle_read_error(mddev, r10_bio);
856e08e2
N
2689 else {
2690 /* just a partial read to be scheduled from a
2691 * separate context
2692 */
2693 int slot = r10_bio->read_slot;
2694 generic_make_request(r10_bio->devs[slot].bio);
2695 }
560f8e55 2696
1d9d5241 2697 cond_resched();
de393cde
N
2698 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2699 md_check_recovery(mddev);
1da177e4 2700 }
e1dfa0a2 2701 blk_finish_plug(&plug);
1da177e4
LT
2702}
2703
2704
e879a879 2705static int init_resync(struct r10conf *conf)
1da177e4
LT
2706{
2707 int buffs;
69335ef3 2708 int i;
1da177e4
LT
2709
2710 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 2711 BUG_ON(conf->r10buf_pool);
69335ef3 2712 conf->have_replacement = 0;
5cf00fcd 2713 for (i = 0; i < conf->geo.raid_disks; i++)
69335ef3
N
2714 if (conf->mirrors[i].replacement)
2715 conf->have_replacement = 1;
1da177e4
LT
2716 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2717 if (!conf->r10buf_pool)
2718 return -ENOMEM;
2719 conf->next_resync = 0;
2720 return 0;
2721}
2722
2723/*
2724 * perform a "sync" on one "block"
2725 *
2726 * We need to make sure that no normal I/O request - particularly write
2727 * requests - conflict with active sync requests.
2728 *
2729 * This is achieved by tracking pending requests and a 'barrier' concept
2730 * that can be installed to exclude normal IO requests.
2731 *
2732 * Resync and recovery are handled very differently.
2733 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2734 *
2735 * For resync, we iterate over virtual addresses, read all copies,
2736 * and update if there are differences. If only one copy is live,
2737 * skip it.
2738 * For recovery, we iterate over physical addresses, read a good
2739 * value for each non-in_sync drive, and over-write.
2740 *
2741 * So, for recovery we may have several outstanding complex requests for a
2742 * given address, one for each out-of-sync device. We model this by allocating
2743 * a number of r10_bio structures, one for each out-of-sync device.
2744 * As we setup these structures, we collect all bio's together into a list
2745 * which we then process collectively to add pages, and then process again
2746 * to pass to generic_make_request.
2747 *
2748 * The r10_bio structures are linked using a borrowed master_bio pointer.
2749 * This link is counted in ->remaining. When the r10_bio that points to NULL
2750 * has its remaining count decremented to 0, the whole complex operation
2751 * is complete.
2752 *
2753 */
2754
fd01b88c 2755static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
ab9d47e9 2756 int *skipped, int go_faster)
1da177e4 2757{
e879a879 2758 struct r10conf *conf = mddev->private;
9f2c9d12 2759 struct r10bio *r10_bio;
1da177e4
LT
2760 struct bio *biolist = NULL, *bio;
2761 sector_t max_sector, nr_sectors;
1da177e4 2762 int i;
6cce3b23 2763 int max_sync;
57dab0bd 2764 sector_t sync_blocks;
1da177e4
LT
2765 sector_t sectors_skipped = 0;
2766 int chunks_skipped = 0;
5cf00fcd 2767 sector_t chunk_mask = conf->geo.chunk_mask;
1da177e4
LT
2768
2769 if (!conf->r10buf_pool)
2770 if (init_resync(conf))
57afd89f 2771 return 0;
1da177e4
LT
2772
2773 skipped:
58c0fed4 2774 max_sector = mddev->dev_sectors;
3ea7daa5
N
2775 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2776 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1da177e4
LT
2777 max_sector = mddev->resync_max_sectors;
2778 if (sector_nr >= max_sector) {
6cce3b23
N
2779 /* If we aborted, we need to abort the
2780 * sync on the 'current' bitmap chucks (there can
2781 * be several when recovering multiple devices).
2782 * as we may have started syncing it but not finished.
2783 * We can find the current address in
2784 * mddev->curr_resync, but for recovery,
2785 * we need to convert that to several
2786 * virtual addresses.
2787 */
3ea7daa5
N
2788 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2789 end_reshape(conf);
2790 return 0;
2791 }
2792
6cce3b23
N
2793 if (mddev->curr_resync < max_sector) { /* aborted */
2794 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2795 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2796 &sync_blocks, 1);
5cf00fcd 2797 else for (i = 0; i < conf->geo.raid_disks; i++) {
6cce3b23
N
2798 sector_t sect =
2799 raid10_find_virt(conf, mddev->curr_resync, i);
2800 bitmap_end_sync(mddev->bitmap, sect,
2801 &sync_blocks, 1);
2802 }
9ad1aefc
N
2803 } else {
2804 /* completed sync */
2805 if ((!mddev->bitmap || conf->fullsync)
2806 && conf->have_replacement
2807 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2808 /* Completed a full sync so the replacements
2809 * are now fully recovered.
2810 */
5cf00fcd 2811 for (i = 0; i < conf->geo.raid_disks; i++)
9ad1aefc
N
2812 if (conf->mirrors[i].replacement)
2813 conf->mirrors[i].replacement
2814 ->recovery_offset
2815 = MaxSector;
2816 }
6cce3b23 2817 conf->fullsync = 0;
9ad1aefc 2818 }
6cce3b23 2819 bitmap_close_sync(mddev->bitmap);
1da177e4 2820 close_sync(conf);
57afd89f 2821 *skipped = 1;
1da177e4
LT
2822 return sectors_skipped;
2823 }
3ea7daa5
N
2824
2825 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2826 return reshape_request(mddev, sector_nr, skipped);
2827
5cf00fcd 2828 if (chunks_skipped >= conf->geo.raid_disks) {
1da177e4
LT
2829 /* if there has been nothing to do on any drive,
2830 * then there is nothing to do at all..
2831 */
57afd89f
N
2832 *skipped = 1;
2833 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
2834 }
2835
c6207277
N
2836 if (max_sector > mddev->resync_max)
2837 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2838
1da177e4
LT
2839 /* make sure whole request will fit in a chunk - if chunks
2840 * are meaningful
2841 */
5cf00fcd
N
2842 if (conf->geo.near_copies < conf->geo.raid_disks &&
2843 max_sector > (sector_nr | chunk_mask))
2844 max_sector = (sector_nr | chunk_mask) + 1;
1da177e4
LT
2845 /*
2846 * If there is non-resync activity waiting for us then
2847 * put in a delay to throttle resync.
2848 */
0a27ec96 2849 if (!go_faster && conf->nr_waiting)
1da177e4 2850 msleep_interruptible(1000);
1da177e4
LT
2851
2852 /* Again, very different code for resync and recovery.
2853 * Both must result in an r10bio with a list of bios that
2854 * have bi_end_io, bi_sector, bi_bdev set,
2855 * and bi_private set to the r10bio.
2856 * For recovery, we may actually create several r10bios
2857 * with 2 bios in each, that correspond to the bios in the main one.
2858 * In this case, the subordinate r10bios link back through a
2859 * borrowed master_bio pointer, and the counter in the master
2860 * includes a ref from each subordinate.
2861 */
2862 /* First, we decide what to do and set ->bi_end_io
2863 * To end_sync_read if we want to read, and
2864 * end_sync_write if we will want to write.
2865 */
2866
6cce3b23 2867 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
2868 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2869 /* recovery... the complicated one */
e875ecea 2870 int j;
1da177e4
LT
2871 r10_bio = NULL;
2872
5cf00fcd 2873 for (i = 0 ; i < conf->geo.raid_disks; i++) {
ab9d47e9 2874 int still_degraded;
9f2c9d12 2875 struct r10bio *rb2;
ab9d47e9
N
2876 sector_t sect;
2877 int must_sync;
e875ecea 2878 int any_working;
24afd80d
N
2879 struct mirror_info *mirror = &conf->mirrors[i];
2880
2881 if ((mirror->rdev == NULL ||
2882 test_bit(In_sync, &mirror->rdev->flags))
2883 &&
2884 (mirror->replacement == NULL ||
2885 test_bit(Faulty,
2886 &mirror->replacement->flags)))
ab9d47e9 2887 continue;
1da177e4 2888
ab9d47e9
N
2889 still_degraded = 0;
2890 /* want to reconstruct this device */
2891 rb2 = r10_bio;
2892 sect = raid10_find_virt(conf, sector_nr, i);
fc448a18
N
2893 if (sect >= mddev->resync_max_sectors) {
2894 /* last stripe is not complete - don't
2895 * try to recover this sector.
2896 */
2897 continue;
2898 }
24afd80d
N
2899 /* Unless we are doing a full sync, or a replacement
2900 * we only need to recover the block if it is set in
2901 * the bitmap
ab9d47e9
N
2902 */
2903 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2904 &sync_blocks, 1);
2905 if (sync_blocks < max_sync)
2906 max_sync = sync_blocks;
2907 if (!must_sync &&
24afd80d 2908 mirror->replacement == NULL &&
ab9d47e9
N
2909 !conf->fullsync) {
2910 /* yep, skip the sync_blocks here, but don't assume
2911 * that there will never be anything to do here
2912 */
2913 chunks_skipped = -1;
2914 continue;
2915 }
6cce3b23 2916
ab9d47e9
N
2917 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2918 raise_barrier(conf, rb2 != NULL);
2919 atomic_set(&r10_bio->remaining, 0);
18055569 2920
ab9d47e9
N
2921 r10_bio->master_bio = (struct bio*)rb2;
2922 if (rb2)
2923 atomic_inc(&rb2->remaining);
2924 r10_bio->mddev = mddev;
2925 set_bit(R10BIO_IsRecover, &r10_bio->state);
2926 r10_bio->sector = sect;
1da177e4 2927
ab9d47e9
N
2928 raid10_find_phys(conf, r10_bio);
2929
2930 /* Need to check if the array will still be
2931 * degraded
2932 */
5cf00fcd 2933 for (j = 0; j < conf->geo.raid_disks; j++)
ab9d47e9
N
2934 if (conf->mirrors[j].rdev == NULL ||
2935 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2936 still_degraded = 1;
87fc767b 2937 break;
1da177e4 2938 }
ab9d47e9
N
2939
2940 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2941 &sync_blocks, still_degraded);
2942
e875ecea 2943 any_working = 0;
ab9d47e9 2944 for (j=0; j<conf->copies;j++) {
e875ecea 2945 int k;
ab9d47e9 2946 int d = r10_bio->devs[j].devnum;
5e570289 2947 sector_t from_addr, to_addr;
3cb03002 2948 struct md_rdev *rdev;
40c356ce
N
2949 sector_t sector, first_bad;
2950 int bad_sectors;
ab9d47e9
N
2951 if (!conf->mirrors[d].rdev ||
2952 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2953 continue;
2954 /* This is where we read from */
e875ecea 2955 any_working = 1;
40c356ce
N
2956 rdev = conf->mirrors[d].rdev;
2957 sector = r10_bio->devs[j].addr;
2958
2959 if (is_badblock(rdev, sector, max_sync,
2960 &first_bad, &bad_sectors)) {
2961 if (first_bad > sector)
2962 max_sync = first_bad - sector;
2963 else {
2964 bad_sectors -= (sector
2965 - first_bad);
2966 if (max_sync > bad_sectors)
2967 max_sync = bad_sectors;
2968 continue;
2969 }
2970 }
ab9d47e9
N
2971 bio = r10_bio->devs[0].bio;
2972 bio->bi_next = biolist;
2973 biolist = bio;
2974 bio->bi_private = r10_bio;
2975 bio->bi_end_io = end_sync_read;
2976 bio->bi_rw = READ;
5e570289 2977 from_addr = r10_bio->devs[j].addr;
24afd80d
N
2978 bio->bi_sector = from_addr + rdev->data_offset;
2979 bio->bi_bdev = rdev->bdev;
2980 atomic_inc(&rdev->nr_pending);
2981 /* and we write to 'i' (if not in_sync) */
ab9d47e9
N
2982
2983 for (k=0; k<conf->copies; k++)
2984 if (r10_bio->devs[k].devnum == i)
2985 break;
2986 BUG_ON(k == conf->copies);
5e570289 2987 to_addr = r10_bio->devs[k].addr;
ab9d47e9 2988 r10_bio->devs[0].devnum = d;
5e570289 2989 r10_bio->devs[0].addr = from_addr;
ab9d47e9 2990 r10_bio->devs[1].devnum = i;
5e570289 2991 r10_bio->devs[1].addr = to_addr;
ab9d47e9 2992
24afd80d
N
2993 rdev = mirror->rdev;
2994 if (!test_bit(In_sync, &rdev->flags)) {
2995 bio = r10_bio->devs[1].bio;
2996 bio->bi_next = biolist;
2997 biolist = bio;
2998 bio->bi_private = r10_bio;
2999 bio->bi_end_io = end_sync_write;
3000 bio->bi_rw = WRITE;
3001 bio->bi_sector = to_addr
3002 + rdev->data_offset;
3003 bio->bi_bdev = rdev->bdev;
3004 atomic_inc(&r10_bio->remaining);
3005 } else
3006 r10_bio->devs[1].bio->bi_end_io = NULL;
3007
3008 /* and maybe write to replacement */
3009 bio = r10_bio->devs[1].repl_bio;
3010 if (bio)
3011 bio->bi_end_io = NULL;
3012 rdev = mirror->replacement;
3013 /* Note: if rdev != NULL, then bio
3014 * cannot be NULL as r10buf_pool_alloc will
3015 * have allocated it.
3016 * So the second test here is pointless.
3017 * But it keeps semantic-checkers happy, and
3018 * this comment keeps human reviewers
3019 * happy.
3020 */
3021 if (rdev == NULL || bio == NULL ||
3022 test_bit(Faulty, &rdev->flags))
3023 break;
3024 bio->bi_next = biolist;
3025 biolist = bio;
3026 bio->bi_private = r10_bio;
3027 bio->bi_end_io = end_sync_write;
3028 bio->bi_rw = WRITE;
3029 bio->bi_sector = to_addr + rdev->data_offset;
3030 bio->bi_bdev = rdev->bdev;
3031 atomic_inc(&r10_bio->remaining);
ab9d47e9
N
3032 break;
3033 }
3034 if (j == conf->copies) {
e875ecea
N
3035 /* Cannot recover, so abort the recovery or
3036 * record a bad block */
ab9d47e9
N
3037 put_buf(r10_bio);
3038 if (rb2)
3039 atomic_dec(&rb2->remaining);
3040 r10_bio = rb2;
e875ecea
N
3041 if (any_working) {
3042 /* problem is that there are bad blocks
3043 * on other device(s)
3044 */
3045 int k;
3046 for (k = 0; k < conf->copies; k++)
3047 if (r10_bio->devs[k].devnum == i)
3048 break;
24afd80d
N
3049 if (!test_bit(In_sync,
3050 &mirror->rdev->flags)
3051 && !rdev_set_badblocks(
3052 mirror->rdev,
3053 r10_bio->devs[k].addr,
3054 max_sync, 0))
3055 any_working = 0;
3056 if (mirror->replacement &&
3057 !rdev_set_badblocks(
3058 mirror->replacement,
e875ecea
N
3059 r10_bio->devs[k].addr,
3060 max_sync, 0))
3061 any_working = 0;
3062 }
3063 if (!any_working) {
3064 if (!test_and_set_bit(MD_RECOVERY_INTR,
3065 &mddev->recovery))
3066 printk(KERN_INFO "md/raid10:%s: insufficient "
3067 "working devices for recovery.\n",
3068 mdname(mddev));
24afd80d 3069 mirror->recovery_disabled
e875ecea
N
3070 = mddev->recovery_disabled;
3071 }
ab9d47e9 3072 break;
1da177e4 3073 }
ab9d47e9 3074 }
1da177e4
LT
3075 if (biolist == NULL) {
3076 while (r10_bio) {
9f2c9d12
N
3077 struct r10bio *rb2 = r10_bio;
3078 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
3079 rb2->master_bio = NULL;
3080 put_buf(rb2);
3081 }
3082 goto giveup;
3083 }
3084 } else {
3085 /* resync. Schedule a read for every block at this virt offset */
3086 int count = 0;
6cce3b23 3087
78200d45
N
3088 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3089
6cce3b23
N
3090 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3091 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
3092 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3093 &mddev->recovery)) {
6cce3b23
N
3094 /* We can skip this block */
3095 *skipped = 1;
3096 return sync_blocks + sectors_skipped;
3097 }
3098 if (sync_blocks < max_sync)
3099 max_sync = sync_blocks;
1da177e4
LT
3100 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3101
1da177e4
LT
3102 r10_bio->mddev = mddev;
3103 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
3104 raise_barrier(conf, 0);
3105 conf->next_resync = sector_nr;
1da177e4
LT
3106
3107 r10_bio->master_bio = NULL;
3108 r10_bio->sector = sector_nr;
3109 set_bit(R10BIO_IsSync, &r10_bio->state);
3110 raid10_find_phys(conf, r10_bio);
5cf00fcd 3111 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
1da177e4 3112
5cf00fcd 3113 for (i = 0; i < conf->copies; i++) {
1da177e4 3114 int d = r10_bio->devs[i].devnum;
40c356ce
N
3115 sector_t first_bad, sector;
3116 int bad_sectors;
3117
9ad1aefc
N
3118 if (r10_bio->devs[i].repl_bio)
3119 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3120
1da177e4
LT
3121 bio = r10_bio->devs[i].bio;
3122 bio->bi_end_io = NULL;
af03b8e4 3123 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4 3124 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 3125 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4 3126 continue;
40c356ce
N
3127 sector = r10_bio->devs[i].addr;
3128 if (is_badblock(conf->mirrors[d].rdev,
3129 sector, max_sync,
3130 &first_bad, &bad_sectors)) {
3131 if (first_bad > sector)
3132 max_sync = first_bad - sector;
3133 else {
3134 bad_sectors -= (sector - first_bad);
3135 if (max_sync > bad_sectors)
3136 max_sync = max_sync;
3137 continue;
3138 }
3139 }
1da177e4
LT
3140 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3141 atomic_inc(&r10_bio->remaining);
3142 bio->bi_next = biolist;
3143 biolist = bio;
3144 bio->bi_private = r10_bio;
3145 bio->bi_end_io = end_sync_read;
802ba064 3146 bio->bi_rw = READ;
40c356ce 3147 bio->bi_sector = sector +
1da177e4
LT
3148 conf->mirrors[d].rdev->data_offset;
3149 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3150 count++;
9ad1aefc
N
3151
3152 if (conf->mirrors[d].replacement == NULL ||
3153 test_bit(Faulty,
3154 &conf->mirrors[d].replacement->flags))
3155 continue;
3156
3157 /* Need to set up for writing to the replacement */
3158 bio = r10_bio->devs[i].repl_bio;
3159 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3160
3161 sector = r10_bio->devs[i].addr;
3162 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3163 bio->bi_next = biolist;
3164 biolist = bio;
3165 bio->bi_private = r10_bio;
3166 bio->bi_end_io = end_sync_write;
3167 bio->bi_rw = WRITE;
3168 bio->bi_sector = sector +
3169 conf->mirrors[d].replacement->data_offset;
3170 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3171 count++;
1da177e4
LT
3172 }
3173
3174 if (count < 2) {
3175 for (i=0; i<conf->copies; i++) {
3176 int d = r10_bio->devs[i].devnum;
3177 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
3178 rdev_dec_pending(conf->mirrors[d].rdev,
3179 mddev);
9ad1aefc
N
3180 if (r10_bio->devs[i].repl_bio &&
3181 r10_bio->devs[i].repl_bio->bi_end_io)
3182 rdev_dec_pending(
3183 conf->mirrors[d].replacement,
3184 mddev);
1da177e4
LT
3185 }
3186 put_buf(r10_bio);
3187 biolist = NULL;
3188 goto giveup;
3189 }
3190 }
3191
3192 for (bio = biolist; bio ; bio=bio->bi_next) {
3193
3194 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3195 if (bio->bi_end_io)
3196 bio->bi_flags |= 1 << BIO_UPTODATE;
3197 bio->bi_vcnt = 0;
3198 bio->bi_idx = 0;
3199 bio->bi_phys_segments = 0;
1da177e4
LT
3200 bio->bi_size = 0;
3201 }
3202
3203 nr_sectors = 0;
6cce3b23
N
3204 if (sector_nr + max_sync < max_sector)
3205 max_sector = sector_nr + max_sync;
1da177e4
LT
3206 do {
3207 struct page *page;
3208 int len = PAGE_SIZE;
1da177e4
LT
3209 if (sector_nr + (len>>9) > max_sector)
3210 len = (max_sector - sector_nr) << 9;
3211 if (len == 0)
3212 break;
3213 for (bio= biolist ; bio ; bio=bio->bi_next) {
ab9d47e9 3214 struct bio *bio2;
1da177e4 3215 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
ab9d47e9
N
3216 if (bio_add_page(bio, page, len, 0))
3217 continue;
3218
3219 /* stop here */
3220 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3221 for (bio2 = biolist;
3222 bio2 && bio2 != bio;
3223 bio2 = bio2->bi_next) {
3224 /* remove last page from this bio */
3225 bio2->bi_vcnt--;
3226 bio2->bi_size -= len;
3227 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1da177e4 3228 }
ab9d47e9 3229 goto bio_full;
1da177e4
LT
3230 }
3231 nr_sectors += len>>9;
3232 sector_nr += len>>9;
3233 } while (biolist->bi_vcnt < RESYNC_PAGES);
3234 bio_full:
3235 r10_bio->sectors = nr_sectors;
3236
3237 while (biolist) {
3238 bio = biolist;
3239 biolist = biolist->bi_next;
3240
3241 bio->bi_next = NULL;
3242 r10_bio = bio->bi_private;
3243 r10_bio->sectors = nr_sectors;
3244
3245 if (bio->bi_end_io == end_sync_read) {
3246 md_sync_acct(bio->bi_bdev, nr_sectors);
3247 generic_make_request(bio);
3248 }
3249 }
3250
57afd89f
N
3251 if (sectors_skipped)
3252 /* pretend they weren't skipped, it makes
3253 * no important difference in this case
3254 */
3255 md_done_sync(mddev, sectors_skipped, 1);
3256
1da177e4
LT
3257 return sectors_skipped + nr_sectors;
3258 giveup:
3259 /* There is nowhere to write, so all non-sync
e875ecea
N
3260 * drives must be failed or in resync, all drives
3261 * have a bad block, so try the next chunk...
1da177e4 3262 */
09b4068a
N
3263 if (sector_nr + max_sync < max_sector)
3264 max_sector = sector_nr + max_sync;
3265
3266 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
3267 chunks_skipped ++;
3268 sector_nr = max_sector;
1da177e4 3269 goto skipped;
1da177e4
LT
3270}
3271
80c3a6ce 3272static sector_t
fd01b88c 3273raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3274{
3275 sector_t size;
e879a879 3276 struct r10conf *conf = mddev->private;
80c3a6ce
DW
3277
3278 if (!raid_disks)
3ea7daa5
N
3279 raid_disks = min(conf->geo.raid_disks,
3280 conf->prev.raid_disks);
80c3a6ce 3281 if (!sectors)
dab8b292 3282 sectors = conf->dev_sectors;
80c3a6ce 3283
5cf00fcd
N
3284 size = sectors >> conf->geo.chunk_shift;
3285 sector_div(size, conf->geo.far_copies);
80c3a6ce 3286 size = size * raid_disks;
5cf00fcd 3287 sector_div(size, conf->geo.near_copies);
80c3a6ce 3288
5cf00fcd 3289 return size << conf->geo.chunk_shift;
80c3a6ce
DW
3290}
3291
6508fdbf
N
3292static void calc_sectors(struct r10conf *conf, sector_t size)
3293{
3294 /* Calculate the number of sectors-per-device that will
3295 * actually be used, and set conf->dev_sectors and
3296 * conf->stride
3297 */
3298
5cf00fcd
N
3299 size = size >> conf->geo.chunk_shift;
3300 sector_div(size, conf->geo.far_copies);
3301 size = size * conf->geo.raid_disks;
3302 sector_div(size, conf->geo.near_copies);
6508fdbf
N
3303 /* 'size' is now the number of chunks in the array */
3304 /* calculate "used chunks per device" */
3305 size = size * conf->copies;
3306
3307 /* We need to round up when dividing by raid_disks to
3308 * get the stride size.
3309 */
5cf00fcd 3310 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
6508fdbf 3311
5cf00fcd 3312 conf->dev_sectors = size << conf->geo.chunk_shift;
6508fdbf 3313
5cf00fcd
N
3314 if (conf->geo.far_offset)
3315 conf->geo.stride = 1 << conf->geo.chunk_shift;
6508fdbf 3316 else {
5cf00fcd
N
3317 sector_div(size, conf->geo.far_copies);
3318 conf->geo.stride = size << conf->geo.chunk_shift;
6508fdbf
N
3319 }
3320}
dab8b292 3321
deb200d0
N
3322enum geo_type {geo_new, geo_old, geo_start};
3323static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3324{
3325 int nc, fc, fo;
3326 int layout, chunk, disks;
3327 switch (new) {
3328 case geo_old:
3329 layout = mddev->layout;
3330 chunk = mddev->chunk_sectors;
3331 disks = mddev->raid_disks - mddev->delta_disks;
3332 break;
3333 case geo_new:
3334 layout = mddev->new_layout;
3335 chunk = mddev->new_chunk_sectors;
3336 disks = mddev->raid_disks;
3337 break;
3338 default: /* avoid 'may be unused' warnings */
3339 case geo_start: /* new when starting reshape - raid_disks not
3340 * updated yet. */
3341 layout = mddev->new_layout;
3342 chunk = mddev->new_chunk_sectors;
3343 disks = mddev->raid_disks + mddev->delta_disks;
3344 break;
3345 }
3346 if (layout >> 17)
3347 return -1;
3348 if (chunk < (PAGE_SIZE >> 9) ||
3349 !is_power_of_2(chunk))
3350 return -2;
3351 nc = layout & 255;
3352 fc = (layout >> 8) & 255;
3353 fo = layout & (1<<16);
3354 geo->raid_disks = disks;
3355 geo->near_copies = nc;
3356 geo->far_copies = fc;
3357 geo->far_offset = fo;
3358 geo->chunk_mask = chunk - 1;
3359 geo->chunk_shift = ffz(~chunk);
3360 return nc*fc;
3361}
3362
e879a879 3363static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 3364{
e879a879 3365 struct r10conf *conf = NULL;
dab8b292 3366 int err = -EINVAL;
deb200d0
N
3367 struct geom geo;
3368 int copies;
3369
3370 copies = setup_geo(&geo, mddev, geo_new);
1da177e4 3371
deb200d0 3372 if (copies == -2) {
128595ed
N
3373 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3374 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3375 mdname(mddev), PAGE_SIZE);
dab8b292 3376 goto out;
1da177e4 3377 }
2604b703 3378
deb200d0 3379 if (copies < 2 || copies > mddev->raid_disks) {
128595ed 3380 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
f73ea873 3381 mdname(mddev), mddev->new_layout);
1da177e4
LT
3382 goto out;
3383 }
dab8b292
TM
3384
3385 err = -ENOMEM;
e879a879 3386 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 3387 if (!conf)
1da177e4 3388 goto out;
dab8b292 3389
3ea7daa5
N
3390 /* FIXME calc properly */
3391 conf->mirrors = kzalloc(sizeof(struct mirror_info)*(mddev->raid_disks +
3392 max(0,mddev->delta_disks)),
dab8b292
TM
3393 GFP_KERNEL);
3394 if (!conf->mirrors)
3395 goto out;
4443ae10
N
3396
3397 conf->tmppage = alloc_page(GFP_KERNEL);
3398 if (!conf->tmppage)
dab8b292
TM
3399 goto out;
3400
deb200d0
N
3401 conf->geo = geo;
3402 conf->copies = copies;
dab8b292
TM
3403 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3404 r10bio_pool_free, conf);
3405 if (!conf->r10bio_pool)
3406 goto out;
3407
6508fdbf 3408 calc_sectors(conf, mddev->dev_sectors);
3ea7daa5
N
3409 if (mddev->reshape_position == MaxSector) {
3410 conf->prev = conf->geo;
3411 conf->reshape_progress = MaxSector;
3412 } else {
3413 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3414 err = -EINVAL;
3415 goto out;
3416 }
3417 conf->reshape_progress = mddev->reshape_position;
3418 if (conf->prev.far_offset)
3419 conf->prev.stride = 1 << conf->prev.chunk_shift;
3420 else
3421 /* far_copies must be 1 */
3422 conf->prev.stride = conf->dev_sectors;
3423 }
e7e72bf6 3424 spin_lock_init(&conf->device_lock);
dab8b292
TM
3425 INIT_LIST_HEAD(&conf->retry_list);
3426
3427 spin_lock_init(&conf->resync_lock);
3428 init_waitqueue_head(&conf->wait_barrier);
3429
0232605d 3430 conf->thread = md_register_thread(raid10d, mddev, "raid10");
dab8b292
TM
3431 if (!conf->thread)
3432 goto out;
3433
dab8b292
TM
3434 conf->mddev = mddev;
3435 return conf;
3436
3437 out:
3ea7daa5
N
3438 if (err == -ENOMEM)
3439 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3440 mdname(mddev));
dab8b292
TM
3441 if (conf) {
3442 if (conf->r10bio_pool)
3443 mempool_destroy(conf->r10bio_pool);
3444 kfree(conf->mirrors);
3445 safe_put_page(conf->tmppage);
3446 kfree(conf);
3447 }
3448 return ERR_PTR(err);
3449}
3450
fd01b88c 3451static int run(struct mddev *mddev)
dab8b292 3452{
e879a879 3453 struct r10conf *conf;
dab8b292 3454 int i, disk_idx, chunk_size;
0f6d02d5 3455 struct mirror_info *disk;
3cb03002 3456 struct md_rdev *rdev;
dab8b292 3457 sector_t size;
3ea7daa5
N
3458 sector_t min_offset_diff = 0;
3459 int first = 1;
dab8b292
TM
3460
3461 if (mddev->private == NULL) {
3462 conf = setup_conf(mddev);
3463 if (IS_ERR(conf))
3464 return PTR_ERR(conf);
3465 mddev->private = conf;
3466 }
3467 conf = mddev->private;
3468 if (!conf)
3469 goto out;
3470
dab8b292
TM
3471 mddev->thread = conf->thread;
3472 conf->thread = NULL;
3473
8f6c2e4b
MP
3474 chunk_size = mddev->chunk_sectors << 9;
3475 blk_queue_io_min(mddev->queue, chunk_size);
5cf00fcd
N
3476 if (conf->geo.raid_disks % conf->geo.near_copies)
3477 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
8f6c2e4b
MP
3478 else
3479 blk_queue_io_opt(mddev->queue, chunk_size *
5cf00fcd 3480 (conf->geo.raid_disks / conf->geo.near_copies));
8f6c2e4b 3481
dafb20fa 3482 rdev_for_each(rdev, mddev) {
3ea7daa5 3483 long long diff;
aba336bd 3484 struct request_queue *q;
34b343cf 3485
1da177e4 3486 disk_idx = rdev->raid_disk;
f8c9e74f
N
3487 if (disk_idx < 0)
3488 continue;
3489 if (disk_idx >= conf->geo.raid_disks &&
3490 disk_idx >= conf->prev.raid_disks)
1da177e4
LT
3491 continue;
3492 disk = conf->mirrors + disk_idx;
3493
56a2559b
N
3494 if (test_bit(Replacement, &rdev->flags)) {
3495 if (disk->replacement)
3496 goto out_free_conf;
3497 disk->replacement = rdev;
3498 } else {
3499 if (disk->rdev)
3500 goto out_free_conf;
3501 disk->rdev = rdev;
3502 }
aba336bd
N
3503 q = bdev_get_queue(rdev->bdev);
3504 if (q->merge_bvec_fn)
3505 mddev->merge_check_needed = 1;
3ea7daa5
N
3506 diff = (rdev->new_data_offset - rdev->data_offset);
3507 if (!mddev->reshape_backwards)
3508 diff = -diff;
3509 if (diff < 0)
3510 diff = 0;
3511 if (first || diff < min_offset_diff)
3512 min_offset_diff = diff;
56a2559b 3513
8f6c2e4b
MP
3514 disk_stack_limits(mddev->gendisk, rdev->bdev,
3515 rdev->data_offset << 9);
1da177e4
LT
3516
3517 disk->head_position = 0;
1da177e4 3518 }
3ea7daa5 3519
6d508242 3520 /* need to check that every block has at least one working mirror */
700c7213 3521 if (!enough(conf, -1)) {
128595ed 3522 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
6d508242 3523 mdname(mddev));
1da177e4
LT
3524 goto out_free_conf;
3525 }
3526
3ea7daa5
N
3527 if (conf->reshape_progress != MaxSector) {
3528 /* must ensure that shape change is supported */
3529 if (conf->geo.far_copies != 1 &&
3530 conf->geo.far_offset == 0)
3531 goto out_free_conf;
3532 if (conf->prev.far_copies != 1 &&
3533 conf->geo.far_offset == 0)
3534 goto out_free_conf;
3535 }
3536
1da177e4 3537 mddev->degraded = 0;
f8c9e74f
N
3538 for (i = 0;
3539 i < conf->geo.raid_disks
3540 || i < conf->prev.raid_disks;
3541 i++) {
1da177e4
LT
3542
3543 disk = conf->mirrors + i;
3544
56a2559b
N
3545 if (!disk->rdev && disk->replacement) {
3546 /* The replacement is all we have - use it */
3547 disk->rdev = disk->replacement;
3548 disk->replacement = NULL;
3549 clear_bit(Replacement, &disk->rdev->flags);
3550 }
3551
5fd6c1dc 3552 if (!disk->rdev ||
2e333e89 3553 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
3554 disk->head_position = 0;
3555 mddev->degraded++;
8c2e870a
NB
3556 if (disk->rdev)
3557 conf->fullsync = 1;
1da177e4 3558 }
d890fa2b 3559 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
3560 }
3561
8c6ac868 3562 if (mddev->recovery_cp != MaxSector)
128595ed 3563 printk(KERN_NOTICE "md/raid10:%s: not clean"
8c6ac868
AN
3564 " -- starting background reconstruction\n",
3565 mdname(mddev));
1da177e4 3566 printk(KERN_INFO
128595ed 3567 "md/raid10:%s: active with %d out of %d devices\n",
5cf00fcd
N
3568 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3569 conf->geo.raid_disks);
1da177e4
LT
3570 /*
3571 * Ok, everything is just fine now
3572 */
dab8b292
TM
3573 mddev->dev_sectors = conf->dev_sectors;
3574 size = raid10_size(mddev, 0, 0);
3575 md_set_array_sectors(mddev, size);
3576 mddev->resync_max_sectors = size;
1da177e4 3577
0d129228
N
3578 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3579 mddev->queue->backing_dev_info.congested_data = mddev;
7a5febe9 3580
1da177e4
LT
3581 /* Calculate max read-ahead size.
3582 * We need to readahead at least twice a whole stripe....
3583 * maybe...
3584 */
3585 {
5cf00fcd 3586 int stripe = conf->geo.raid_disks *
9d8f0363 3587 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5cf00fcd 3588 stripe /= conf->geo.near_copies;
3ea7daa5
N
3589 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3590 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
1da177e4
LT
3591 }
3592
050b6615 3593 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
a91a2785
MP
3594
3595 if (md_integrity_register(mddev))
3596 goto out_free_conf;
3597
3ea7daa5
N
3598 if (conf->reshape_progress != MaxSector) {
3599 unsigned long before_length, after_length;
3600
3601 before_length = ((1 << conf->prev.chunk_shift) *
3602 conf->prev.far_copies);
3603 after_length = ((1 << conf->geo.chunk_shift) *
3604 conf->geo.far_copies);
3605
3606 if (max(before_length, after_length) > min_offset_diff) {
3607 /* This cannot work */
3608 printk("md/raid10: offset difference not enough to continue reshape\n");
3609 goto out_free_conf;
3610 }
3611 conf->offset_diff = min_offset_diff;
3612
3613 conf->reshape_safe = conf->reshape_progress;
3614 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3615 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3616 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3617 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3618 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3619 "reshape");
3620 }
3621
1da177e4
LT
3622 return 0;
3623
3624out_free_conf:
01f96c0a 3625 md_unregister_thread(&mddev->thread);
1da177e4
LT
3626 if (conf->r10bio_pool)
3627 mempool_destroy(conf->r10bio_pool);
1345b1d8 3628 safe_put_page(conf->tmppage);
990a8baf 3629 kfree(conf->mirrors);
1da177e4
LT
3630 kfree(conf);
3631 mddev->private = NULL;
3632out:
3633 return -EIO;
3634}
3635
fd01b88c 3636static int stop(struct mddev *mddev)
1da177e4 3637{
e879a879 3638 struct r10conf *conf = mddev->private;
1da177e4 3639
409c57f3
N
3640 raise_barrier(conf, 0);
3641 lower_barrier(conf);
3642
01f96c0a 3643 md_unregister_thread(&mddev->thread);
1da177e4
LT
3644 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3645 if (conf->r10bio_pool)
3646 mempool_destroy(conf->r10bio_pool);
990a8baf 3647 kfree(conf->mirrors);
1da177e4
LT
3648 kfree(conf);
3649 mddev->private = NULL;
3650 return 0;
3651}
3652
fd01b88c 3653static void raid10_quiesce(struct mddev *mddev, int state)
6cce3b23 3654{
e879a879 3655 struct r10conf *conf = mddev->private;
6cce3b23
N
3656
3657 switch(state) {
3658 case 1:
3659 raise_barrier(conf, 0);
3660 break;
3661 case 0:
3662 lower_barrier(conf);
3663 break;
3664 }
6cce3b23 3665}
1da177e4 3666
006a09a0
N
3667static int raid10_resize(struct mddev *mddev, sector_t sectors)
3668{
3669 /* Resize of 'far' arrays is not supported.
3670 * For 'near' and 'offset' arrays we can set the
3671 * number of sectors used to be an appropriate multiple
3672 * of the chunk size.
3673 * For 'offset', this is far_copies*chunksize.
3674 * For 'near' the multiplier is the LCM of
3675 * near_copies and raid_disks.
3676 * So if far_copies > 1 && !far_offset, fail.
3677 * Else find LCM(raid_disks, near_copy)*far_copies and
3678 * multiply by chunk_size. Then round to this number.
3679 * This is mostly done by raid10_size()
3680 */
3681 struct r10conf *conf = mddev->private;
3682 sector_t oldsize, size;
3683
f8c9e74f
N
3684 if (mddev->reshape_position != MaxSector)
3685 return -EBUSY;
3686
5cf00fcd 3687 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
006a09a0
N
3688 return -EINVAL;
3689
3690 oldsize = raid10_size(mddev, 0, 0);
3691 size = raid10_size(mddev, sectors, 0);
a4a6125a
N
3692 if (mddev->external_size &&
3693 mddev->array_sectors > size)
006a09a0 3694 return -EINVAL;
a4a6125a
N
3695 if (mddev->bitmap) {
3696 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3697 if (ret)
3698 return ret;
3699 }
3700 md_set_array_sectors(mddev, size);
006a09a0
N
3701 set_capacity(mddev->gendisk, mddev->array_sectors);
3702 revalidate_disk(mddev->gendisk);
3703 if (sectors > mddev->dev_sectors &&
3704 mddev->recovery_cp > oldsize) {
3705 mddev->recovery_cp = oldsize;
3706 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3707 }
6508fdbf
N
3708 calc_sectors(conf, sectors);
3709 mddev->dev_sectors = conf->dev_sectors;
006a09a0
N
3710 mddev->resync_max_sectors = size;
3711 return 0;
3712}
3713
fd01b88c 3714static void *raid10_takeover_raid0(struct mddev *mddev)
dab8b292 3715{
3cb03002 3716 struct md_rdev *rdev;
e879a879 3717 struct r10conf *conf;
dab8b292
TM
3718
3719 if (mddev->degraded > 0) {
128595ed
N
3720 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3721 mdname(mddev));
dab8b292
TM
3722 return ERR_PTR(-EINVAL);
3723 }
3724
dab8b292
TM
3725 /* Set new parameters */
3726 mddev->new_level = 10;
3727 /* new layout: far_copies = 1, near_copies = 2 */
3728 mddev->new_layout = (1<<8) + 2;
3729 mddev->new_chunk_sectors = mddev->chunk_sectors;
3730 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
3731 mddev->raid_disks *= 2;
3732 /* make sure it will be not marked as dirty */
3733 mddev->recovery_cp = MaxSector;
3734
3735 conf = setup_conf(mddev);
02214dc5 3736 if (!IS_ERR(conf)) {
dafb20fa 3737 rdev_for_each(rdev, mddev)
e93f68a1
N
3738 if (rdev->raid_disk >= 0)
3739 rdev->new_raid_disk = rdev->raid_disk * 2;
02214dc5
KW
3740 conf->barrier = 1;
3741 }
3742
dab8b292
TM
3743 return conf;
3744}
3745
fd01b88c 3746static void *raid10_takeover(struct mddev *mddev)
dab8b292 3747{
e373ab10 3748 struct r0conf *raid0_conf;
dab8b292
TM
3749
3750 /* raid10 can take over:
3751 * raid0 - providing it has only two drives
3752 */
3753 if (mddev->level == 0) {
3754 /* for raid0 takeover only one zone is supported */
e373ab10
N
3755 raid0_conf = mddev->private;
3756 if (raid0_conf->nr_strip_zones > 1) {
128595ed
N
3757 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3758 " with more than one zone.\n",
3759 mdname(mddev));
dab8b292
TM
3760 return ERR_PTR(-EINVAL);
3761 }
3762 return raid10_takeover_raid0(mddev);
3763 }
3764 return ERR_PTR(-EINVAL);
3765}
3766
3ea7daa5
N
3767static int raid10_check_reshape(struct mddev *mddev)
3768{
3769 /* Called when there is a request to change
3770 * - layout (to ->new_layout)
3771 * - chunk size (to ->new_chunk_sectors)
3772 * - raid_disks (by delta_disks)
3773 * or when trying to restart a reshape that was ongoing.
3774 *
3775 * We need to validate the request and possibly allocate
3776 * space if that might be an issue later.
3777 *
3778 * Currently we reject any reshape of a 'far' mode array,
3779 * allow chunk size to change if new is generally acceptable,
3780 * allow raid_disks to increase, and allow
3781 * a switch between 'near' mode and 'offset' mode.
3782 */
3783 struct r10conf *conf = mddev->private;
3784 struct geom geo;
3785
3786 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3787 return -EINVAL;
3788
3789 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3790 /* mustn't change number of copies */
3791 return -EINVAL;
3792 if (geo.far_copies > 1 && !geo.far_offset)
3793 /* Cannot switch to 'far' mode */
3794 return -EINVAL;
3795
3796 if (mddev->array_sectors & geo.chunk_mask)
3797 /* not factor of array size */
3798 return -EINVAL;
3799
3ea7daa5
N
3800 if (!enough(conf, -1))
3801 return -EINVAL;
3802
3803 kfree(conf->mirrors_new);
3804 conf->mirrors_new = NULL;
3805 if (mddev->delta_disks > 0) {
3806 /* allocate new 'mirrors' list */
3807 conf->mirrors_new = kzalloc(
3808 sizeof(struct mirror_info)
3809 *(mddev->raid_disks +
3810 mddev->delta_disks),
3811 GFP_KERNEL);
3812 if (!conf->mirrors_new)
3813 return -ENOMEM;
3814 }
3815 return 0;
3816}
3817
3818/*
3819 * Need to check if array has failed when deciding whether to:
3820 * - start an array
3821 * - remove non-faulty devices
3822 * - add a spare
3823 * - allow a reshape
3824 * This determination is simple when no reshape is happening.
3825 * However if there is a reshape, we need to carefully check
3826 * both the before and after sections.
3827 * This is because some failed devices may only affect one
3828 * of the two sections, and some non-in_sync devices may
3829 * be insync in the section most affected by failed devices.
3830 */
3831static int calc_degraded(struct r10conf *conf)
3832{
3833 int degraded, degraded2;
3834 int i;
3835
3836 rcu_read_lock();
3837 degraded = 0;
3838 /* 'prev' section first */
3839 for (i = 0; i < conf->prev.raid_disks; i++) {
3840 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3841 if (!rdev || test_bit(Faulty, &rdev->flags))
3842 degraded++;
3843 else if (!test_bit(In_sync, &rdev->flags))
3844 /* When we can reduce the number of devices in
3845 * an array, this might not contribute to
3846 * 'degraded'. It does now.
3847 */
3848 degraded++;
3849 }
3850 rcu_read_unlock();
3851 if (conf->geo.raid_disks == conf->prev.raid_disks)
3852 return degraded;
3853 rcu_read_lock();
3854 degraded2 = 0;
3855 for (i = 0; i < conf->geo.raid_disks; i++) {
3856 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3857 if (!rdev || test_bit(Faulty, &rdev->flags))
3858 degraded2++;
3859 else if (!test_bit(In_sync, &rdev->flags)) {
3860 /* If reshape is increasing the number of devices,
3861 * this section has already been recovered, so
3862 * it doesn't contribute to degraded.
3863 * else it does.
3864 */
3865 if (conf->geo.raid_disks <= conf->prev.raid_disks)
3866 degraded2++;
3867 }
3868 }
3869 rcu_read_unlock();
3870 if (degraded2 > degraded)
3871 return degraded2;
3872 return degraded;
3873}
3874
3875static int raid10_start_reshape(struct mddev *mddev)
3876{
3877 /* A 'reshape' has been requested. This commits
3878 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3879 * This also checks if there are enough spares and adds them
3880 * to the array.
3881 * We currently require enough spares to make the final
3882 * array non-degraded. We also require that the difference
3883 * between old and new data_offset - on each device - is
3884 * enough that we never risk over-writing.
3885 */
3886
3887 unsigned long before_length, after_length;
3888 sector_t min_offset_diff = 0;
3889 int first = 1;
3890 struct geom new;
3891 struct r10conf *conf = mddev->private;
3892 struct md_rdev *rdev;
3893 int spares = 0;
bb63a701 3894 int ret;
3ea7daa5
N
3895
3896 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3897 return -EBUSY;
3898
3899 if (setup_geo(&new, mddev, geo_start) != conf->copies)
3900 return -EINVAL;
3901
3902 before_length = ((1 << conf->prev.chunk_shift) *
3903 conf->prev.far_copies);
3904 after_length = ((1 << conf->geo.chunk_shift) *
3905 conf->geo.far_copies);
3906
3907 rdev_for_each(rdev, mddev) {
3908 if (!test_bit(In_sync, &rdev->flags)
3909 && !test_bit(Faulty, &rdev->flags))
3910 spares++;
3911 if (rdev->raid_disk >= 0) {
3912 long long diff = (rdev->new_data_offset
3913 - rdev->data_offset);
3914 if (!mddev->reshape_backwards)
3915 diff = -diff;
3916 if (diff < 0)
3917 diff = 0;
3918 if (first || diff < min_offset_diff)
3919 min_offset_diff = diff;
3920 }
3921 }
3922
3923 if (max(before_length, after_length) > min_offset_diff)
3924 return -EINVAL;
3925
3926 if (spares < mddev->delta_disks)
3927 return -EINVAL;
3928
3929 conf->offset_diff = min_offset_diff;
3930 spin_lock_irq(&conf->device_lock);
3931 if (conf->mirrors_new) {
3932 memcpy(conf->mirrors_new, conf->mirrors,
3933 sizeof(struct mirror_info)*conf->prev.raid_disks);
3934 smp_mb();
3935 kfree(conf->mirrors_old); /* FIXME and elsewhere */
3936 conf->mirrors_old = conf->mirrors;
3937 conf->mirrors = conf->mirrors_new;
3938 conf->mirrors_new = NULL;
3939 }
3940 setup_geo(&conf->geo, mddev, geo_start);
3941 smp_mb();
3942 if (mddev->reshape_backwards) {
3943 sector_t size = raid10_size(mddev, 0, 0);
3944 if (size < mddev->array_sectors) {
3945 spin_unlock_irq(&conf->device_lock);
3946 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
3947 mdname(mddev));
3948 return -EINVAL;
3949 }
3950 mddev->resync_max_sectors = size;
3951 conf->reshape_progress = size;
3952 } else
3953 conf->reshape_progress = 0;
3954 spin_unlock_irq(&conf->device_lock);
3955
bb63a701
N
3956 if (mddev->delta_disks && mddev->bitmap) {
3957 ret = bitmap_resize(mddev->bitmap,
3958 raid10_size(mddev, 0,
3959 conf->geo.raid_disks),
3960 0, 0);
3961 if (ret)
3962 goto abort;
3963 }
3ea7daa5
N
3964 if (mddev->delta_disks > 0) {
3965 rdev_for_each(rdev, mddev)
3966 if (rdev->raid_disk < 0 &&
3967 !test_bit(Faulty, &rdev->flags)) {
3968 if (raid10_add_disk(mddev, rdev) == 0) {
3969 if (rdev->raid_disk >=
3970 conf->prev.raid_disks)
3971 set_bit(In_sync, &rdev->flags);
3972 else
3973 rdev->recovery_offset = 0;
3974
3975 if (sysfs_link_rdev(mddev, rdev))
3976 /* Failure here is OK */;
3977 }
3978 } else if (rdev->raid_disk >= conf->prev.raid_disks
3979 && !test_bit(Faulty, &rdev->flags)) {
3980 /* This is a spare that was manually added */
3981 set_bit(In_sync, &rdev->flags);
3982 }
3983 }
3984 /* When a reshape changes the number of devices,
3985 * ->degraded is measured against the larger of the
3986 * pre and post numbers.
3987 */
3988 spin_lock_irq(&conf->device_lock);
3989 mddev->degraded = calc_degraded(conf);
3990 spin_unlock_irq(&conf->device_lock);
3991 mddev->raid_disks = conf->geo.raid_disks;
3992 mddev->reshape_position = conf->reshape_progress;
3993 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3994
3995 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3996 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3997 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3998 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3999
4000 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4001 "reshape");
4002 if (!mddev->sync_thread) {
bb63a701
N
4003 ret = -EAGAIN;
4004 goto abort;
3ea7daa5
N
4005 }
4006 conf->reshape_checkpoint = jiffies;
4007 md_wakeup_thread(mddev->sync_thread);
4008 md_new_event(mddev);
4009 return 0;
bb63a701
N
4010
4011abort:
4012 mddev->recovery = 0;
4013 spin_lock_irq(&conf->device_lock);
4014 conf->geo = conf->prev;
4015 mddev->raid_disks = conf->geo.raid_disks;
4016 rdev_for_each(rdev, mddev)
4017 rdev->new_data_offset = rdev->data_offset;
4018 smp_wmb();
4019 conf->reshape_progress = MaxSector;
4020 mddev->reshape_position = MaxSector;
4021 spin_unlock_irq(&conf->device_lock);
4022 return ret;
3ea7daa5
N
4023}
4024
4025/* Calculate the last device-address that could contain
4026 * any block from the chunk that includes the array-address 's'
4027 * and report the next address.
4028 * i.e. the address returned will be chunk-aligned and after
4029 * any data that is in the chunk containing 's'.
4030 */
4031static sector_t last_dev_address(sector_t s, struct geom *geo)
4032{
4033 s = (s | geo->chunk_mask) + 1;
4034 s >>= geo->chunk_shift;
4035 s *= geo->near_copies;
4036 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4037 s *= geo->far_copies;
4038 s <<= geo->chunk_shift;
4039 return s;
4040}
4041
4042/* Calculate the first device-address that could contain
4043 * any block from the chunk that includes the array-address 's'.
4044 * This too will be the start of a chunk
4045 */
4046static sector_t first_dev_address(sector_t s, struct geom *geo)
4047{
4048 s >>= geo->chunk_shift;
4049 s *= geo->near_copies;
4050 sector_div(s, geo->raid_disks);
4051 s *= geo->far_copies;
4052 s <<= geo->chunk_shift;
4053 return s;
4054}
4055
4056static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4057 int *skipped)
4058{
4059 /* We simply copy at most one chunk (smallest of old and new)
4060 * at a time, possibly less if that exceeds RESYNC_PAGES,
4061 * or we hit a bad block or something.
4062 * This might mean we pause for normal IO in the middle of
4063 * a chunk, but that is not a problem was mddev->reshape_position
4064 * can record any location.
4065 *
4066 * If we will want to write to a location that isn't
4067 * yet recorded as 'safe' (i.e. in metadata on disk) then
4068 * we need to flush all reshape requests and update the metadata.
4069 *
4070 * When reshaping forwards (e.g. to more devices), we interpret
4071 * 'safe' as the earliest block which might not have been copied
4072 * down yet. We divide this by previous stripe size and multiply
4073 * by previous stripe length to get lowest device offset that we
4074 * cannot write to yet.
4075 * We interpret 'sector_nr' as an address that we want to write to.
4076 * From this we use last_device_address() to find where we might
4077 * write to, and first_device_address on the 'safe' position.
4078 * If this 'next' write position is after the 'safe' position,
4079 * we must update the metadata to increase the 'safe' position.
4080 *
4081 * When reshaping backwards, we round in the opposite direction
4082 * and perform the reverse test: next write position must not be
4083 * less than current safe position.
4084 *
4085 * In all this the minimum difference in data offsets
4086 * (conf->offset_diff - always positive) allows a bit of slack,
4087 * so next can be after 'safe', but not by more than offset_disk
4088 *
4089 * We need to prepare all the bios here before we start any IO
4090 * to ensure the size we choose is acceptable to all devices.
4091 * The means one for each copy for write-out and an extra one for
4092 * read-in.
4093 * We store the read-in bio in ->master_bio and the others in
4094 * ->devs[x].bio and ->devs[x].repl_bio.
4095 */
4096 struct r10conf *conf = mddev->private;
4097 struct r10bio *r10_bio;
4098 sector_t next, safe, last;
4099 int max_sectors;
4100 int nr_sectors;
4101 int s;
4102 struct md_rdev *rdev;
4103 int need_flush = 0;
4104 struct bio *blist;
4105 struct bio *bio, *read_bio;
4106 int sectors_done = 0;
4107
4108 if (sector_nr == 0) {
4109 /* If restarting in the middle, skip the initial sectors */
4110 if (mddev->reshape_backwards &&
4111 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4112 sector_nr = (raid10_size(mddev, 0, 0)
4113 - conf->reshape_progress);
4114 } else if (!mddev->reshape_backwards &&
4115 conf->reshape_progress > 0)
4116 sector_nr = conf->reshape_progress;
4117 if (sector_nr) {
4118 mddev->curr_resync_completed = sector_nr;
4119 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4120 *skipped = 1;
4121 return sector_nr;
4122 }
4123 }
4124
4125 /* We don't use sector_nr to track where we are up to
4126 * as that doesn't work well for ->reshape_backwards.
4127 * So just use ->reshape_progress.
4128 */
4129 if (mddev->reshape_backwards) {
4130 /* 'next' is the earliest device address that we might
4131 * write to for this chunk in the new layout
4132 */
4133 next = first_dev_address(conf->reshape_progress - 1,
4134 &conf->geo);
4135
4136 /* 'safe' is the last device address that we might read from
4137 * in the old layout after a restart
4138 */
4139 safe = last_dev_address(conf->reshape_safe - 1,
4140 &conf->prev);
4141
4142 if (next + conf->offset_diff < safe)
4143 need_flush = 1;
4144
4145 last = conf->reshape_progress - 1;
4146 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4147 & conf->prev.chunk_mask);
4148 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4149 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4150 } else {
4151 /* 'next' is after the last device address that we
4152 * might write to for this chunk in the new layout
4153 */
4154 next = last_dev_address(conf->reshape_progress, &conf->geo);
4155
4156 /* 'safe' is the earliest device address that we might
4157 * read from in the old layout after a restart
4158 */
4159 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4160
4161 /* Need to update metadata if 'next' might be beyond 'safe'
4162 * as that would possibly corrupt data
4163 */
4164 if (next > safe + conf->offset_diff)
4165 need_flush = 1;
4166
4167 sector_nr = conf->reshape_progress;
4168 last = sector_nr | (conf->geo.chunk_mask
4169 & conf->prev.chunk_mask);
4170
4171 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4172 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4173 }
4174
4175 if (need_flush ||
4176 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4177 /* Need to update reshape_position in metadata */
4178 wait_barrier(conf);
4179 mddev->reshape_position = conf->reshape_progress;
4180 if (mddev->reshape_backwards)
4181 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4182 - conf->reshape_progress;
4183 else
4184 mddev->curr_resync_completed = conf->reshape_progress;
4185 conf->reshape_checkpoint = jiffies;
4186 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4187 md_wakeup_thread(mddev->thread);
4188 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4189 kthread_should_stop());
4190 conf->reshape_safe = mddev->reshape_position;
4191 allow_barrier(conf);
4192 }
4193
4194read_more:
4195 /* Now schedule reads for blocks from sector_nr to last */
4196 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4197 raise_barrier(conf, sectors_done != 0);
4198 atomic_set(&r10_bio->remaining, 0);
4199 r10_bio->mddev = mddev;
4200 r10_bio->sector = sector_nr;
4201 set_bit(R10BIO_IsReshape, &r10_bio->state);
4202 r10_bio->sectors = last - sector_nr + 1;
4203 rdev = read_balance(conf, r10_bio, &max_sectors);
4204 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4205
4206 if (!rdev) {
4207 /* Cannot read from here, so need to record bad blocks
4208 * on all the target devices.
4209 */
4210 // FIXME
4211 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4212 return sectors_done;
4213 }
4214
4215 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4216
4217 read_bio->bi_bdev = rdev->bdev;
4218 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4219 + rdev->data_offset);
4220 read_bio->bi_private = r10_bio;
4221 read_bio->bi_end_io = end_sync_read;
4222 read_bio->bi_rw = READ;
4223 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4224 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4225 read_bio->bi_vcnt = 0;
4226 read_bio->bi_idx = 0;
4227 read_bio->bi_size = 0;
4228 r10_bio->master_bio = read_bio;
4229 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4230
4231 /* Now find the locations in the new layout */
4232 __raid10_find_phys(&conf->geo, r10_bio);
4233
4234 blist = read_bio;
4235 read_bio->bi_next = NULL;
4236
4237 for (s = 0; s < conf->copies*2; s++) {
4238 struct bio *b;
4239 int d = r10_bio->devs[s/2].devnum;
4240 struct md_rdev *rdev2;
4241 if (s&1) {
4242 rdev2 = conf->mirrors[d].replacement;
4243 b = r10_bio->devs[s/2].repl_bio;
4244 } else {
4245 rdev2 = conf->mirrors[d].rdev;
4246 b = r10_bio->devs[s/2].bio;
4247 }
4248 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4249 continue;
4250 b->bi_bdev = rdev2->bdev;
4251 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4252 b->bi_private = r10_bio;
4253 b->bi_end_io = end_reshape_write;
4254 b->bi_rw = WRITE;
4255 b->bi_flags &= ~(BIO_POOL_MASK - 1);
4256 b->bi_flags |= 1 << BIO_UPTODATE;
4257 b->bi_next = blist;
4258 b->bi_vcnt = 0;
4259 b->bi_idx = 0;
4260 b->bi_size = 0;
4261 blist = b;
4262 }
4263
4264 /* Now add as many pages as possible to all of these bios. */
4265
4266 nr_sectors = 0;
4267 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4268 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4269 int len = (max_sectors - s) << 9;
4270 if (len > PAGE_SIZE)
4271 len = PAGE_SIZE;
4272 for (bio = blist; bio ; bio = bio->bi_next) {
4273 struct bio *bio2;
4274 if (bio_add_page(bio, page, len, 0))
4275 continue;
4276
4277 /* Didn't fit, must stop */
4278 for (bio2 = blist;
4279 bio2 && bio2 != bio;
4280 bio2 = bio2->bi_next) {
4281 /* Remove last page from this bio */
4282 bio2->bi_vcnt--;
4283 bio2->bi_size -= len;
4284 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4285 }
4286 goto bio_full;
4287 }
4288 sector_nr += len >> 9;
4289 nr_sectors += len >> 9;
4290 }
4291bio_full:
4292 r10_bio->sectors = nr_sectors;
4293
4294 /* Now submit the read */
4295 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4296 atomic_inc(&r10_bio->remaining);
4297 read_bio->bi_next = NULL;
4298 generic_make_request(read_bio);
4299 sector_nr += nr_sectors;
4300 sectors_done += nr_sectors;
4301 if (sector_nr <= last)
4302 goto read_more;
4303
4304 /* Now that we have done the whole section we can
4305 * update reshape_progress
4306 */
4307 if (mddev->reshape_backwards)
4308 conf->reshape_progress -= sectors_done;
4309 else
4310 conf->reshape_progress += sectors_done;
4311
4312 return sectors_done;
4313}
4314
4315static void end_reshape_request(struct r10bio *r10_bio);
4316static int handle_reshape_read_error(struct mddev *mddev,
4317 struct r10bio *r10_bio);
4318static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4319{
4320 /* Reshape read completed. Hopefully we have a block
4321 * to write out.
4322 * If we got a read error then we do sync 1-page reads from
4323 * elsewhere until we find the data - or give up.
4324 */
4325 struct r10conf *conf = mddev->private;
4326 int s;
4327
4328 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4329 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4330 /* Reshape has been aborted */
4331 md_done_sync(mddev, r10_bio->sectors, 0);
4332 return;
4333 }
4334
4335 /* We definitely have the data in the pages, schedule the
4336 * writes.
4337 */
4338 atomic_set(&r10_bio->remaining, 1);
4339 for (s = 0; s < conf->copies*2; s++) {
4340 struct bio *b;
4341 int d = r10_bio->devs[s/2].devnum;
4342 struct md_rdev *rdev;
4343 if (s&1) {
4344 rdev = conf->mirrors[d].replacement;
4345 b = r10_bio->devs[s/2].repl_bio;
4346 } else {
4347 rdev = conf->mirrors[d].rdev;
4348 b = r10_bio->devs[s/2].bio;
4349 }
4350 if (!rdev || test_bit(Faulty, &rdev->flags))
4351 continue;
4352 atomic_inc(&rdev->nr_pending);
4353 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4354 atomic_inc(&r10_bio->remaining);
4355 b->bi_next = NULL;
4356 generic_make_request(b);
4357 }
4358 end_reshape_request(r10_bio);
4359}
4360
4361static void end_reshape(struct r10conf *conf)
4362{
4363 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4364 return;
4365
4366 spin_lock_irq(&conf->device_lock);
4367 conf->prev = conf->geo;
4368 md_finish_reshape(conf->mddev);
4369 smp_wmb();
4370 conf->reshape_progress = MaxSector;
4371 spin_unlock_irq(&conf->device_lock);
4372
4373 /* read-ahead size must cover two whole stripes, which is
4374 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4375 */
4376 if (conf->mddev->queue) {
4377 int stripe = conf->geo.raid_disks *
4378 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4379 stripe /= conf->geo.near_copies;
4380 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4381 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4382 }
4383 conf->fullsync = 0;
4384}
4385
4386
4387static int handle_reshape_read_error(struct mddev *mddev,
4388 struct r10bio *r10_bio)
4389{
4390 /* Use sync reads to get the blocks from somewhere else */
4391 int sectors = r10_bio->sectors;
4392 struct r10bio r10b;
4393 struct r10conf *conf = mddev->private;
4394 int slot = 0;
4395 int idx = 0;
4396 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4397
4398 r10b.sector = r10_bio->sector;
4399 __raid10_find_phys(&conf->prev, &r10b);
4400
4401 while (sectors) {
4402 int s = sectors;
4403 int success = 0;
4404 int first_slot = slot;
4405
4406 if (s > (PAGE_SIZE >> 9))
4407 s = PAGE_SIZE >> 9;
4408
4409 while (!success) {
4410 int d = r10b.devs[slot].devnum;
4411 struct md_rdev *rdev = conf->mirrors[d].rdev;
4412 sector_t addr;
4413 if (rdev == NULL ||
4414 test_bit(Faulty, &rdev->flags) ||
4415 !test_bit(In_sync, &rdev->flags))
4416 goto failed;
4417
4418 addr = r10b.devs[slot].addr + idx * PAGE_SIZE;
4419 success = sync_page_io(rdev,
4420 addr,
4421 s << 9,
4422 bvec[idx].bv_page,
4423 READ, false);
4424 if (success)
4425 break;
4426 failed:
4427 slot++;
4428 if (slot >= conf->copies)
4429 slot = 0;
4430 if (slot == first_slot)
4431 break;
4432 }
4433 if (!success) {
4434 /* couldn't read this block, must give up */
4435 set_bit(MD_RECOVERY_INTR,
4436 &mddev->recovery);
4437 return -EIO;
4438 }
4439 sectors -= s;
4440 idx++;
4441 }
4442 return 0;
4443}
4444
4445static void end_reshape_write(struct bio *bio, int error)
4446{
4447 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4448 struct r10bio *r10_bio = bio->bi_private;
4449 struct mddev *mddev = r10_bio->mddev;
4450 struct r10conf *conf = mddev->private;
4451 int d;
4452 int slot;
4453 int repl;
4454 struct md_rdev *rdev = NULL;
4455
4456 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4457 if (repl)
4458 rdev = conf->mirrors[d].replacement;
4459 if (!rdev) {
4460 smp_mb();
4461 rdev = conf->mirrors[d].rdev;
4462 }
4463
4464 if (!uptodate) {
4465 /* FIXME should record badblock */
4466 md_error(mddev, rdev);
4467 }
4468
4469 rdev_dec_pending(rdev, mddev);
4470 end_reshape_request(r10_bio);
4471}
4472
4473static void end_reshape_request(struct r10bio *r10_bio)
4474{
4475 if (!atomic_dec_and_test(&r10_bio->remaining))
4476 return;
4477 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4478 bio_put(r10_bio->master_bio);
4479 put_buf(r10_bio);
4480}
4481
4482static void raid10_finish_reshape(struct mddev *mddev)
4483{
4484 struct r10conf *conf = mddev->private;
4485
4486 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4487 return;
4488
4489 if (mddev->delta_disks > 0) {
4490 sector_t size = raid10_size(mddev, 0, 0);
4491 md_set_array_sectors(mddev, size);
4492 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4493 mddev->recovery_cp = mddev->resync_max_sectors;
4494 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4495 }
4496 mddev->resync_max_sectors = size;
4497 set_capacity(mddev->gendisk, mddev->array_sectors);
4498 revalidate_disk(mddev->gendisk);
63aced61
N
4499 } else {
4500 int d;
4501 for (d = conf->geo.raid_disks ;
4502 d < conf->geo.raid_disks - mddev->delta_disks;
4503 d++) {
4504 struct md_rdev *rdev = conf->mirrors[d].rdev;
4505 if (rdev)
4506 clear_bit(In_sync, &rdev->flags);
4507 rdev = conf->mirrors[d].replacement;
4508 if (rdev)
4509 clear_bit(In_sync, &rdev->flags);
4510 }
3ea7daa5
N
4511 }
4512 mddev->layout = mddev->new_layout;
4513 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4514 mddev->reshape_position = MaxSector;
4515 mddev->delta_disks = 0;
4516 mddev->reshape_backwards = 0;
4517}
4518
84fc4b56 4519static struct md_personality raid10_personality =
1da177e4
LT
4520{
4521 .name = "raid10",
2604b703 4522 .level = 10,
1da177e4
LT
4523 .owner = THIS_MODULE,
4524 .make_request = make_request,
4525 .run = run,
4526 .stop = stop,
4527 .status = status,
4528 .error_handler = error,
4529 .hot_add_disk = raid10_add_disk,
4530 .hot_remove_disk= raid10_remove_disk,
4531 .spare_active = raid10_spare_active,
4532 .sync_request = sync_request,
6cce3b23 4533 .quiesce = raid10_quiesce,
80c3a6ce 4534 .size = raid10_size,
006a09a0 4535 .resize = raid10_resize,
dab8b292 4536 .takeover = raid10_takeover,
3ea7daa5
N
4537 .check_reshape = raid10_check_reshape,
4538 .start_reshape = raid10_start_reshape,
4539 .finish_reshape = raid10_finish_reshape,
1da177e4
LT
4540};
4541
4542static int __init raid_init(void)
4543{
2604b703 4544 return register_md_personality(&raid10_personality);
1da177e4
LT
4545}
4546
4547static void raid_exit(void)
4548{
2604b703 4549 unregister_md_personality(&raid10_personality);
1da177e4
LT
4550}
4551
4552module_init(raid_init);
4553module_exit(raid_exit);
4554MODULE_LICENSE("GPL");
0efb9e61 4555MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 4556MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 4557MODULE_ALIAS("md-raid10");
2604b703 4558MODULE_ALIAS("md-level-10");
34db0cd6
N
4559
4560module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.893184 seconds and 5 git commands to generate.