dm persistent data: add bitset
[deliverable/linux.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
a9add5d9
N
56#include <trace/events/block.h>
57
43b2e5d8 58#include "md.h"
bff61975 59#include "raid5.h"
54071b38 60#include "raid0.h"
ef740c37 61#include "bitmap.h"
72626685 62
1da177e4
LT
63/*
64 * Stripe cache
65 */
66
67#define NR_STRIPES 256
68#define STRIPE_SIZE PAGE_SIZE
69#define STRIPE_SHIFT (PAGE_SHIFT - 9)
70#define STRIPE_SECTORS (STRIPE_SIZE>>9)
71#define IO_THRESHOLD 1
8b3e6cdc 72#define BYPASS_THRESHOLD 1
fccddba0 73#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
74#define HASH_MASK (NR_HASH - 1)
75
d1688a6d 76static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
77{
78 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
79 return &conf->stripe_hashtbl[hash];
80}
1da177e4
LT
81
82/* bio's attached to a stripe+device for I/O are linked together in bi_sector
83 * order without overlap. There may be several bio's per stripe+device, and
84 * a bio could span several devices.
85 * When walking this list for a particular stripe+device, we must never proceed
86 * beyond a bio that extends past this device, as the next bio might no longer
87 * be valid.
db298e19 88 * This function is used to determine the 'next' bio in the list, given the sector
1da177e4
LT
89 * of the current stripe+device
90 */
db298e19
N
91static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
92{
93 int sectors = bio->bi_size >> 9;
94 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
95 return bio->bi_next;
96 else
97 return NULL;
98}
1da177e4 99
960e739d 100/*
5b99c2ff
JA
101 * We maintain a biased count of active stripes in the bottom 16 bits of
102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d 103 */
e7836bd6 104static inline int raid5_bi_processed_stripes(struct bio *bio)
960e739d 105{
e7836bd6
SL
106 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
107 return (atomic_read(segments) >> 16) & 0xffff;
960e739d
JA
108}
109
e7836bd6 110static inline int raid5_dec_bi_active_stripes(struct bio *bio)
960e739d 111{
e7836bd6
SL
112 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
113 return atomic_sub_return(1, segments) & 0xffff;
960e739d
JA
114}
115
e7836bd6 116static inline void raid5_inc_bi_active_stripes(struct bio *bio)
960e739d 117{
e7836bd6
SL
118 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
119 atomic_inc(segments);
960e739d
JA
120}
121
e7836bd6
SL
122static inline void raid5_set_bi_processed_stripes(struct bio *bio,
123 unsigned int cnt)
960e739d 124{
e7836bd6
SL
125 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
126 int old, new;
960e739d 127
e7836bd6
SL
128 do {
129 old = atomic_read(segments);
130 new = (old & 0xffff) | (cnt << 16);
131 } while (atomic_cmpxchg(segments, old, new) != old);
960e739d
JA
132}
133
e7836bd6 134static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
960e739d 135{
e7836bd6
SL
136 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
137 atomic_set(segments, cnt);
960e739d
JA
138}
139
d0dabf7e
N
140/* Find first data disk in a raid6 stripe */
141static inline int raid6_d0(struct stripe_head *sh)
142{
67cc2b81
N
143 if (sh->ddf_layout)
144 /* ddf always start from first device */
145 return 0;
146 /* md starts just after Q block */
d0dabf7e
N
147 if (sh->qd_idx == sh->disks - 1)
148 return 0;
149 else
150 return sh->qd_idx + 1;
151}
16a53ecc
N
152static inline int raid6_next_disk(int disk, int raid_disks)
153{
154 disk++;
155 return (disk < raid_disks) ? disk : 0;
156}
a4456856 157
d0dabf7e
N
158/* When walking through the disks in a raid5, starting at raid6_d0,
159 * We need to map each disk to a 'slot', where the data disks are slot
160 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
161 * is raid_disks-1. This help does that mapping.
162 */
67cc2b81
N
163static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
164 int *count, int syndrome_disks)
d0dabf7e 165{
6629542e 166 int slot = *count;
67cc2b81 167
e4424fee 168 if (sh->ddf_layout)
6629542e 169 (*count)++;
d0dabf7e 170 if (idx == sh->pd_idx)
67cc2b81 171 return syndrome_disks;
d0dabf7e 172 if (idx == sh->qd_idx)
67cc2b81 173 return syndrome_disks + 1;
e4424fee 174 if (!sh->ddf_layout)
6629542e 175 (*count)++;
d0dabf7e
N
176 return slot;
177}
178
a4456856
DW
179static void return_io(struct bio *return_bi)
180{
181 struct bio *bi = return_bi;
182 while (bi) {
a4456856
DW
183
184 return_bi = bi->bi_next;
185 bi->bi_next = NULL;
186 bi->bi_size = 0;
0e13fe23 187 bio_endio(bi, 0);
a4456856
DW
188 bi = return_bi;
189 }
190}
191
d1688a6d 192static void print_raid5_conf (struct r5conf *conf);
1da177e4 193
600aa109
DW
194static int stripe_operations_active(struct stripe_head *sh)
195{
196 return sh->check_state || sh->reconstruct_state ||
197 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
198 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
199}
200
4eb788df 201static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
1da177e4 202{
4eb788df
SL
203 BUG_ON(!list_empty(&sh->lru));
204 BUG_ON(atomic_read(&conf->active_stripes)==0);
205 if (test_bit(STRIPE_HANDLE, &sh->state)) {
206 if (test_bit(STRIPE_DELAYED, &sh->state) &&
207 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
208 list_add_tail(&sh->lru, &conf->delayed_list);
209 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
210 sh->bm_seq - conf->seq_write > 0)
211 list_add_tail(&sh->lru, &conf->bitmap_list);
212 else {
213 clear_bit(STRIPE_DELAYED, &sh->state);
214 clear_bit(STRIPE_BIT_DELAY, &sh->state);
215 list_add_tail(&sh->lru, &conf->handle_list);
216 }
217 md_wakeup_thread(conf->mddev->thread);
218 } else {
219 BUG_ON(stripe_operations_active(sh));
220 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
221 if (atomic_dec_return(&conf->preread_active_stripes)
222 < IO_THRESHOLD)
223 md_wakeup_thread(conf->mddev->thread);
224 atomic_dec(&conf->active_stripes);
225 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
226 list_add_tail(&sh->lru, &conf->inactive_list);
227 wake_up(&conf->wait_for_stripe);
228 if (conf->retry_read_aligned)
229 md_wakeup_thread(conf->mddev->thread);
1da177e4
LT
230 }
231 }
232}
d0dabf7e 233
4eb788df
SL
234static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
235{
236 if (atomic_dec_and_test(&sh->count))
237 do_release_stripe(conf, sh);
238}
239
1da177e4
LT
240static void release_stripe(struct stripe_head *sh)
241{
d1688a6d 242 struct r5conf *conf = sh->raid_conf;
1da177e4 243 unsigned long flags;
16a53ecc 244
4eb788df
SL
245 local_irq_save(flags);
246 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
247 do_release_stripe(conf, sh);
248 spin_unlock(&conf->device_lock);
249 }
250 local_irq_restore(flags);
1da177e4
LT
251}
252
fccddba0 253static inline void remove_hash(struct stripe_head *sh)
1da177e4 254{
45b4233c
DW
255 pr_debug("remove_hash(), stripe %llu\n",
256 (unsigned long long)sh->sector);
1da177e4 257
fccddba0 258 hlist_del_init(&sh->hash);
1da177e4
LT
259}
260
d1688a6d 261static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 262{
fccddba0 263 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 264
45b4233c
DW
265 pr_debug("insert_hash(), stripe %llu\n",
266 (unsigned long long)sh->sector);
1da177e4 267
fccddba0 268 hlist_add_head(&sh->hash, hp);
1da177e4
LT
269}
270
271
272/* find an idle stripe, make sure it is unhashed, and return it. */
d1688a6d 273static struct stripe_head *get_free_stripe(struct r5conf *conf)
1da177e4
LT
274{
275 struct stripe_head *sh = NULL;
276 struct list_head *first;
277
1da177e4
LT
278 if (list_empty(&conf->inactive_list))
279 goto out;
280 first = conf->inactive_list.next;
281 sh = list_entry(first, struct stripe_head, lru);
282 list_del_init(first);
283 remove_hash(sh);
284 atomic_inc(&conf->active_stripes);
285out:
286 return sh;
287}
288
e4e11e38 289static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
290{
291 struct page *p;
292 int i;
e4e11e38 293 int num = sh->raid_conf->pool_size;
1da177e4 294
e4e11e38 295 for (i = 0; i < num ; i++) {
1da177e4
LT
296 p = sh->dev[i].page;
297 if (!p)
298 continue;
299 sh->dev[i].page = NULL;
2d1f3b5d 300 put_page(p);
1da177e4
LT
301 }
302}
303
e4e11e38 304static int grow_buffers(struct stripe_head *sh)
1da177e4
LT
305{
306 int i;
e4e11e38 307 int num = sh->raid_conf->pool_size;
1da177e4 308
e4e11e38 309 for (i = 0; i < num; i++) {
1da177e4
LT
310 struct page *page;
311
312 if (!(page = alloc_page(GFP_KERNEL))) {
313 return 1;
314 }
315 sh->dev[i].page = page;
316 }
317 return 0;
318}
319
784052ec 320static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 321static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 322 struct stripe_head *sh);
1da177e4 323
b5663ba4 324static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 325{
d1688a6d 326 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 327 int i;
1da177e4 328
78bafebd
ES
329 BUG_ON(atomic_read(&sh->count) != 0);
330 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 331 BUG_ON(stripe_operations_active(sh));
d84e0f10 332
45b4233c 333 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
334 (unsigned long long)sh->sector);
335
336 remove_hash(sh);
16a53ecc 337
86b42c71 338 sh->generation = conf->generation - previous;
b5663ba4 339 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 340 sh->sector = sector;
911d4ee8 341 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
342 sh->state = 0;
343
7ecaa1e6
N
344
345 for (i = sh->disks; i--; ) {
1da177e4
LT
346 struct r5dev *dev = &sh->dev[i];
347
d84e0f10 348 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 349 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 350 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 351 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 352 dev->read, dev->towrite, dev->written,
1da177e4 353 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 354 WARN_ON(1);
1da177e4
LT
355 }
356 dev->flags = 0;
784052ec 357 raid5_build_block(sh, i, previous);
1da177e4
LT
358 }
359 insert_hash(conf, sh);
360}
361
d1688a6d 362static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 363 short generation)
1da177e4
LT
364{
365 struct stripe_head *sh;
366
45b4233c 367 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
b67bfe0d 368 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
86b42c71 369 if (sh->sector == sector && sh->generation == generation)
1da177e4 370 return sh;
45b4233c 371 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
372 return NULL;
373}
374
674806d6
N
375/*
376 * Need to check if array has failed when deciding whether to:
377 * - start an array
378 * - remove non-faulty devices
379 * - add a spare
380 * - allow a reshape
381 * This determination is simple when no reshape is happening.
382 * However if there is a reshape, we need to carefully check
383 * both the before and after sections.
384 * This is because some failed devices may only affect one
385 * of the two sections, and some non-in_sync devices may
386 * be insync in the section most affected by failed devices.
387 */
908f4fbd 388static int calc_degraded(struct r5conf *conf)
674806d6 389{
908f4fbd 390 int degraded, degraded2;
674806d6 391 int i;
674806d6
N
392
393 rcu_read_lock();
394 degraded = 0;
395 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 396 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
397 if (rdev && test_bit(Faulty, &rdev->flags))
398 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
399 if (!rdev || test_bit(Faulty, &rdev->flags))
400 degraded++;
401 else if (test_bit(In_sync, &rdev->flags))
402 ;
403 else
404 /* not in-sync or faulty.
405 * If the reshape increases the number of devices,
406 * this is being recovered by the reshape, so
407 * this 'previous' section is not in_sync.
408 * If the number of devices is being reduced however,
409 * the device can only be part of the array if
410 * we are reverting a reshape, so this section will
411 * be in-sync.
412 */
413 if (conf->raid_disks >= conf->previous_raid_disks)
414 degraded++;
415 }
416 rcu_read_unlock();
908f4fbd
N
417 if (conf->raid_disks == conf->previous_raid_disks)
418 return degraded;
674806d6 419 rcu_read_lock();
908f4fbd 420 degraded2 = 0;
674806d6 421 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 422 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
423 if (rdev && test_bit(Faulty, &rdev->flags))
424 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 425 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 426 degraded2++;
674806d6
N
427 else if (test_bit(In_sync, &rdev->flags))
428 ;
429 else
430 /* not in-sync or faulty.
431 * If reshape increases the number of devices, this
432 * section has already been recovered, else it
433 * almost certainly hasn't.
434 */
435 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 436 degraded2++;
674806d6
N
437 }
438 rcu_read_unlock();
908f4fbd
N
439 if (degraded2 > degraded)
440 return degraded2;
441 return degraded;
442}
443
444static int has_failed(struct r5conf *conf)
445{
446 int degraded;
447
448 if (conf->mddev->reshape_position == MaxSector)
449 return conf->mddev->degraded > conf->max_degraded;
450
451 degraded = calc_degraded(conf);
674806d6
N
452 if (degraded > conf->max_degraded)
453 return 1;
454 return 0;
455}
456
b5663ba4 457static struct stripe_head *
d1688a6d 458get_active_stripe(struct r5conf *conf, sector_t sector,
a8c906ca 459 int previous, int noblock, int noquiesce)
1da177e4
LT
460{
461 struct stripe_head *sh;
462
45b4233c 463 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
464
465 spin_lock_irq(&conf->device_lock);
466
467 do {
72626685 468 wait_event_lock_irq(conf->wait_for_stripe,
a8c906ca 469 conf->quiesce == 0 || noquiesce,
eed8c02e 470 conf->device_lock);
86b42c71 471 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
472 if (!sh) {
473 if (!conf->inactive_blocked)
474 sh = get_free_stripe(conf);
475 if (noblock && sh == NULL)
476 break;
477 if (!sh) {
478 conf->inactive_blocked = 1;
479 wait_event_lock_irq(conf->wait_for_stripe,
480 !list_empty(&conf->inactive_list) &&
5036805b
N
481 (atomic_read(&conf->active_stripes)
482 < (conf->max_nr_stripes *3/4)
1da177e4 483 || !conf->inactive_blocked),
eed8c02e 484 conf->device_lock);
1da177e4
LT
485 conf->inactive_blocked = 0;
486 } else
b5663ba4 487 init_stripe(sh, sector, previous);
1da177e4
LT
488 } else {
489 if (atomic_read(&sh->count)) {
ab69ae12 490 BUG_ON(!list_empty(&sh->lru)
8811b596
SL
491 && !test_bit(STRIPE_EXPANDING, &sh->state)
492 && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
1da177e4
LT
493 } else {
494 if (!test_bit(STRIPE_HANDLE, &sh->state))
495 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
496 if (list_empty(&sh->lru) &&
497 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
498 BUG();
499 list_del_init(&sh->lru);
1da177e4
LT
500 }
501 }
502 } while (sh == NULL);
503
504 if (sh)
505 atomic_inc(&sh->count);
506
507 spin_unlock_irq(&conf->device_lock);
508 return sh;
509}
510
05616be5
N
511/* Determine if 'data_offset' or 'new_data_offset' should be used
512 * in this stripe_head.
513 */
514static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
515{
516 sector_t progress = conf->reshape_progress;
517 /* Need a memory barrier to make sure we see the value
518 * of conf->generation, or ->data_offset that was set before
519 * reshape_progress was updated.
520 */
521 smp_rmb();
522 if (progress == MaxSector)
523 return 0;
524 if (sh->generation == conf->generation - 1)
525 return 0;
526 /* We are in a reshape, and this is a new-generation stripe,
527 * so use new_data_offset.
528 */
529 return 1;
530}
531
6712ecf8
N
532static void
533raid5_end_read_request(struct bio *bi, int error);
534static void
535raid5_end_write_request(struct bio *bi, int error);
91c00924 536
c4e5ac0a 537static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 538{
d1688a6d 539 struct r5conf *conf = sh->raid_conf;
91c00924
DW
540 int i, disks = sh->disks;
541
542 might_sleep();
543
544 for (i = disks; i--; ) {
545 int rw;
9a3e1101 546 int replace_only = 0;
977df362
N
547 struct bio *bi, *rbi;
548 struct md_rdev *rdev, *rrdev = NULL;
e9c7469b
TH
549 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
550 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
551 rw = WRITE_FUA;
552 else
553 rw = WRITE;
9e444768 554 if (test_bit(R5_Discard, &sh->dev[i].flags))
620125f2 555 rw |= REQ_DISCARD;
e9c7469b 556 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924 557 rw = READ;
9a3e1101
N
558 else if (test_and_clear_bit(R5_WantReplace,
559 &sh->dev[i].flags)) {
560 rw = WRITE;
561 replace_only = 1;
562 } else
91c00924 563 continue;
bc0934f0
SL
564 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
565 rw |= REQ_SYNC;
91c00924
DW
566
567 bi = &sh->dev[i].req;
977df362 568 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924
DW
569
570 bi->bi_rw = rw;
977df362
N
571 rbi->bi_rw = rw;
572 if (rw & WRITE) {
91c00924 573 bi->bi_end_io = raid5_end_write_request;
977df362
N
574 rbi->bi_end_io = raid5_end_write_request;
575 } else
91c00924
DW
576 bi->bi_end_io = raid5_end_read_request;
577
578 rcu_read_lock();
9a3e1101 579 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
580 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
581 rdev = rcu_dereference(conf->disks[i].rdev);
582 if (!rdev) {
583 rdev = rrdev;
584 rrdev = NULL;
585 }
9a3e1101
N
586 if (rw & WRITE) {
587 if (replace_only)
588 rdev = NULL;
dd054fce
N
589 if (rdev == rrdev)
590 /* We raced and saw duplicates */
591 rrdev = NULL;
9a3e1101 592 } else {
dd054fce 593 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
9a3e1101
N
594 rdev = rrdev;
595 rrdev = NULL;
596 }
977df362 597
91c00924
DW
598 if (rdev && test_bit(Faulty, &rdev->flags))
599 rdev = NULL;
600 if (rdev)
601 atomic_inc(&rdev->nr_pending);
977df362
N
602 if (rrdev && test_bit(Faulty, &rrdev->flags))
603 rrdev = NULL;
604 if (rrdev)
605 atomic_inc(&rrdev->nr_pending);
91c00924
DW
606 rcu_read_unlock();
607
73e92e51 608 /* We have already checked bad blocks for reads. Now
977df362
N
609 * need to check for writes. We never accept write errors
610 * on the replacement, so we don't to check rrdev.
73e92e51
N
611 */
612 while ((rw & WRITE) && rdev &&
613 test_bit(WriteErrorSeen, &rdev->flags)) {
614 sector_t first_bad;
615 int bad_sectors;
616 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
617 &first_bad, &bad_sectors);
618 if (!bad)
619 break;
620
621 if (bad < 0) {
622 set_bit(BlockedBadBlocks, &rdev->flags);
623 if (!conf->mddev->external &&
624 conf->mddev->flags) {
625 /* It is very unlikely, but we might
626 * still need to write out the
627 * bad block log - better give it
628 * a chance*/
629 md_check_recovery(conf->mddev);
630 }
1850753d 631 /*
632 * Because md_wait_for_blocked_rdev
633 * will dec nr_pending, we must
634 * increment it first.
635 */
636 atomic_inc(&rdev->nr_pending);
73e92e51
N
637 md_wait_for_blocked_rdev(rdev, conf->mddev);
638 } else {
639 /* Acknowledged bad block - skip the write */
640 rdev_dec_pending(rdev, conf->mddev);
641 rdev = NULL;
642 }
643 }
644
91c00924 645 if (rdev) {
9a3e1101
N
646 if (s->syncing || s->expanding || s->expanded
647 || s->replacing)
91c00924
DW
648 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
649
2b7497f0
DW
650 set_bit(STRIPE_IO_STARTED, &sh->state);
651
91c00924
DW
652 bi->bi_bdev = rdev->bdev;
653 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 654 __func__, (unsigned long long)sh->sector,
91c00924
DW
655 bi->bi_rw, i);
656 atomic_inc(&sh->count);
05616be5
N
657 if (use_new_offset(conf, sh))
658 bi->bi_sector = (sh->sector
659 + rdev->new_data_offset);
660 else
661 bi->bi_sector = (sh->sector
662 + rdev->data_offset);
3f9e7c14 663 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
664 bi->bi_rw |= REQ_FLUSH;
665
91c00924 666 bi->bi_flags = 1 << BIO_UPTODATE;
91c00924 667 bi->bi_idx = 0;
91c00924
DW
668 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
669 bi->bi_io_vec[0].bv_offset = 0;
670 bi->bi_size = STRIPE_SIZE;
671 bi->bi_next = NULL;
977df362
N
672 if (rrdev)
673 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
a9add5d9
N
674 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
675 bi, disk_devt(conf->mddev->gendisk),
676 sh->dev[i].sector);
91c00924 677 generic_make_request(bi);
977df362
N
678 }
679 if (rrdev) {
9a3e1101
N
680 if (s->syncing || s->expanding || s->expanded
681 || s->replacing)
977df362
N
682 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
683
684 set_bit(STRIPE_IO_STARTED, &sh->state);
685
686 rbi->bi_bdev = rrdev->bdev;
687 pr_debug("%s: for %llu schedule op %ld on "
688 "replacement disc %d\n",
689 __func__, (unsigned long long)sh->sector,
690 rbi->bi_rw, i);
691 atomic_inc(&sh->count);
05616be5
N
692 if (use_new_offset(conf, sh))
693 rbi->bi_sector = (sh->sector
694 + rrdev->new_data_offset);
695 else
696 rbi->bi_sector = (sh->sector
697 + rrdev->data_offset);
977df362
N
698 rbi->bi_flags = 1 << BIO_UPTODATE;
699 rbi->bi_idx = 0;
700 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
701 rbi->bi_io_vec[0].bv_offset = 0;
702 rbi->bi_size = STRIPE_SIZE;
703 rbi->bi_next = NULL;
a9add5d9
N
704 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
705 rbi, disk_devt(conf->mddev->gendisk),
706 sh->dev[i].sector);
977df362
N
707 generic_make_request(rbi);
708 }
709 if (!rdev && !rrdev) {
b062962e 710 if (rw & WRITE)
91c00924
DW
711 set_bit(STRIPE_DEGRADED, &sh->state);
712 pr_debug("skip op %ld on disc %d for sector %llu\n",
713 bi->bi_rw, i, (unsigned long long)sh->sector);
714 clear_bit(R5_LOCKED, &sh->dev[i].flags);
715 set_bit(STRIPE_HANDLE, &sh->state);
716 }
717 }
718}
719
720static struct dma_async_tx_descriptor *
721async_copy_data(int frombio, struct bio *bio, struct page *page,
722 sector_t sector, struct dma_async_tx_descriptor *tx)
723{
724 struct bio_vec *bvl;
725 struct page *bio_page;
726 int i;
727 int page_offset;
a08abd8c 728 struct async_submit_ctl submit;
0403e382 729 enum async_tx_flags flags = 0;
91c00924
DW
730
731 if (bio->bi_sector >= sector)
732 page_offset = (signed)(bio->bi_sector - sector) * 512;
733 else
734 page_offset = (signed)(sector - bio->bi_sector) * -512;
a08abd8c 735
0403e382
DW
736 if (frombio)
737 flags |= ASYNC_TX_FENCE;
738 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
739
91c00924 740 bio_for_each_segment(bvl, bio, i) {
fcde9075 741 int len = bvl->bv_len;
91c00924
DW
742 int clen;
743 int b_offset = 0;
744
745 if (page_offset < 0) {
746 b_offset = -page_offset;
747 page_offset += b_offset;
748 len -= b_offset;
749 }
750
751 if (len > 0 && page_offset + len > STRIPE_SIZE)
752 clen = STRIPE_SIZE - page_offset;
753 else
754 clen = len;
755
756 if (clen > 0) {
fcde9075
NK
757 b_offset += bvl->bv_offset;
758 bio_page = bvl->bv_page;
91c00924
DW
759 if (frombio)
760 tx = async_memcpy(page, bio_page, page_offset,
a08abd8c 761 b_offset, clen, &submit);
91c00924
DW
762 else
763 tx = async_memcpy(bio_page, page, b_offset,
a08abd8c 764 page_offset, clen, &submit);
91c00924 765 }
a08abd8c
DW
766 /* chain the operations */
767 submit.depend_tx = tx;
768
91c00924
DW
769 if (clen < len) /* hit end of page */
770 break;
771 page_offset += len;
772 }
773
774 return tx;
775}
776
777static void ops_complete_biofill(void *stripe_head_ref)
778{
779 struct stripe_head *sh = stripe_head_ref;
780 struct bio *return_bi = NULL;
e4d84909 781 int i;
91c00924 782
e46b272b 783 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
784 (unsigned long long)sh->sector);
785
786 /* clear completed biofills */
787 for (i = sh->disks; i--; ) {
788 struct r5dev *dev = &sh->dev[i];
91c00924
DW
789
790 /* acknowledge completion of a biofill operation */
e4d84909
DW
791 /* and check if we need to reply to a read request,
792 * new R5_Wantfill requests are held off until
83de75cc 793 * !STRIPE_BIOFILL_RUN
e4d84909
DW
794 */
795 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 796 struct bio *rbi, *rbi2;
91c00924 797
91c00924
DW
798 BUG_ON(!dev->read);
799 rbi = dev->read;
800 dev->read = NULL;
801 while (rbi && rbi->bi_sector <
802 dev->sector + STRIPE_SECTORS) {
803 rbi2 = r5_next_bio(rbi, dev->sector);
e7836bd6 804 if (!raid5_dec_bi_active_stripes(rbi)) {
91c00924
DW
805 rbi->bi_next = return_bi;
806 return_bi = rbi;
807 }
91c00924
DW
808 rbi = rbi2;
809 }
810 }
811 }
83de75cc 812 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
813
814 return_io(return_bi);
815
e4d84909 816 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
817 release_stripe(sh);
818}
819
820static void ops_run_biofill(struct stripe_head *sh)
821{
822 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 823 struct async_submit_ctl submit;
91c00924
DW
824 int i;
825
e46b272b 826 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
827 (unsigned long long)sh->sector);
828
829 for (i = sh->disks; i--; ) {
830 struct r5dev *dev = &sh->dev[i];
831 if (test_bit(R5_Wantfill, &dev->flags)) {
832 struct bio *rbi;
b17459c0 833 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
834 dev->read = rbi = dev->toread;
835 dev->toread = NULL;
b17459c0 836 spin_unlock_irq(&sh->stripe_lock);
91c00924
DW
837 while (rbi && rbi->bi_sector <
838 dev->sector + STRIPE_SECTORS) {
839 tx = async_copy_data(0, rbi, dev->page,
840 dev->sector, tx);
841 rbi = r5_next_bio(rbi, dev->sector);
842 }
843 }
844 }
845
846 atomic_inc(&sh->count);
a08abd8c
DW
847 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
848 async_trigger_callback(&submit);
91c00924
DW
849}
850
4e7d2c0a 851static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 852{
4e7d2c0a 853 struct r5dev *tgt;
91c00924 854
4e7d2c0a
DW
855 if (target < 0)
856 return;
91c00924 857
4e7d2c0a 858 tgt = &sh->dev[target];
91c00924
DW
859 set_bit(R5_UPTODATE, &tgt->flags);
860 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
861 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
862}
863
ac6b53b6 864static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
865{
866 struct stripe_head *sh = stripe_head_ref;
91c00924 867
e46b272b 868 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
869 (unsigned long long)sh->sector);
870
ac6b53b6 871 /* mark the computed target(s) as uptodate */
4e7d2c0a 872 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 873 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 874
ecc65c9b
DW
875 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
876 if (sh->check_state == check_state_compute_run)
877 sh->check_state = check_state_compute_result;
91c00924
DW
878 set_bit(STRIPE_HANDLE, &sh->state);
879 release_stripe(sh);
880}
881
d6f38f31
DW
882/* return a pointer to the address conversion region of the scribble buffer */
883static addr_conv_t *to_addr_conv(struct stripe_head *sh,
884 struct raid5_percpu *percpu)
885{
886 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
887}
888
889static struct dma_async_tx_descriptor *
890ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 891{
91c00924 892 int disks = sh->disks;
d6f38f31 893 struct page **xor_srcs = percpu->scribble;
91c00924
DW
894 int target = sh->ops.target;
895 struct r5dev *tgt = &sh->dev[target];
896 struct page *xor_dest = tgt->page;
897 int count = 0;
898 struct dma_async_tx_descriptor *tx;
a08abd8c 899 struct async_submit_ctl submit;
91c00924
DW
900 int i;
901
902 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 903 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
904 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
905
906 for (i = disks; i--; )
907 if (i != target)
908 xor_srcs[count++] = sh->dev[i].page;
909
910 atomic_inc(&sh->count);
911
0403e382 912 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
ac6b53b6 913 ops_complete_compute, sh, to_addr_conv(sh, percpu));
91c00924 914 if (unlikely(count == 1))
a08abd8c 915 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 916 else
a08abd8c 917 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 918
91c00924
DW
919 return tx;
920}
921
ac6b53b6
DW
922/* set_syndrome_sources - populate source buffers for gen_syndrome
923 * @srcs - (struct page *) array of size sh->disks
924 * @sh - stripe_head to parse
925 *
926 * Populates srcs in proper layout order for the stripe and returns the
927 * 'count' of sources to be used in a call to async_gen_syndrome. The P
928 * destination buffer is recorded in srcs[count] and the Q destination
929 * is recorded in srcs[count+1]].
930 */
931static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
932{
933 int disks = sh->disks;
934 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
935 int d0_idx = raid6_d0(sh);
936 int count;
937 int i;
938
939 for (i = 0; i < disks; i++)
5dd33c9a 940 srcs[i] = NULL;
ac6b53b6
DW
941
942 count = 0;
943 i = d0_idx;
944 do {
945 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
946
947 srcs[slot] = sh->dev[i].page;
948 i = raid6_next_disk(i, disks);
949 } while (i != d0_idx);
ac6b53b6 950
e4424fee 951 return syndrome_disks;
ac6b53b6
DW
952}
953
954static struct dma_async_tx_descriptor *
955ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
956{
957 int disks = sh->disks;
958 struct page **blocks = percpu->scribble;
959 int target;
960 int qd_idx = sh->qd_idx;
961 struct dma_async_tx_descriptor *tx;
962 struct async_submit_ctl submit;
963 struct r5dev *tgt;
964 struct page *dest;
965 int i;
966 int count;
967
968 if (sh->ops.target < 0)
969 target = sh->ops.target2;
970 else if (sh->ops.target2 < 0)
971 target = sh->ops.target;
91c00924 972 else
ac6b53b6
DW
973 /* we should only have one valid target */
974 BUG();
975 BUG_ON(target < 0);
976 pr_debug("%s: stripe %llu block: %d\n",
977 __func__, (unsigned long long)sh->sector, target);
978
979 tgt = &sh->dev[target];
980 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
981 dest = tgt->page;
982
983 atomic_inc(&sh->count);
984
985 if (target == qd_idx) {
986 count = set_syndrome_sources(blocks, sh);
987 blocks[count] = NULL; /* regenerating p is not necessary */
988 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
989 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
990 ops_complete_compute, sh,
ac6b53b6
DW
991 to_addr_conv(sh, percpu));
992 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
993 } else {
994 /* Compute any data- or p-drive using XOR */
995 count = 0;
996 for (i = disks; i-- ; ) {
997 if (i == target || i == qd_idx)
998 continue;
999 blocks[count++] = sh->dev[i].page;
1000 }
1001
0403e382
DW
1002 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1003 NULL, ops_complete_compute, sh,
ac6b53b6
DW
1004 to_addr_conv(sh, percpu));
1005 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1006 }
91c00924 1007
91c00924
DW
1008 return tx;
1009}
1010
ac6b53b6
DW
1011static struct dma_async_tx_descriptor *
1012ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1013{
1014 int i, count, disks = sh->disks;
1015 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1016 int d0_idx = raid6_d0(sh);
1017 int faila = -1, failb = -1;
1018 int target = sh->ops.target;
1019 int target2 = sh->ops.target2;
1020 struct r5dev *tgt = &sh->dev[target];
1021 struct r5dev *tgt2 = &sh->dev[target2];
1022 struct dma_async_tx_descriptor *tx;
1023 struct page **blocks = percpu->scribble;
1024 struct async_submit_ctl submit;
1025
1026 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1027 __func__, (unsigned long long)sh->sector, target, target2);
1028 BUG_ON(target < 0 || target2 < 0);
1029 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1030 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1031
6c910a78 1032 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1033 * slot number conversion for 'faila' and 'failb'
1034 */
1035 for (i = 0; i < disks ; i++)
5dd33c9a 1036 blocks[i] = NULL;
ac6b53b6
DW
1037 count = 0;
1038 i = d0_idx;
1039 do {
1040 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1041
1042 blocks[slot] = sh->dev[i].page;
1043
1044 if (i == target)
1045 faila = slot;
1046 if (i == target2)
1047 failb = slot;
1048 i = raid6_next_disk(i, disks);
1049 } while (i != d0_idx);
ac6b53b6
DW
1050
1051 BUG_ON(faila == failb);
1052 if (failb < faila)
1053 swap(faila, failb);
1054 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1055 __func__, (unsigned long long)sh->sector, faila, failb);
1056
1057 atomic_inc(&sh->count);
1058
1059 if (failb == syndrome_disks+1) {
1060 /* Q disk is one of the missing disks */
1061 if (faila == syndrome_disks) {
1062 /* Missing P+Q, just recompute */
0403e382
DW
1063 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1064 ops_complete_compute, sh,
1065 to_addr_conv(sh, percpu));
e4424fee 1066 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1067 STRIPE_SIZE, &submit);
1068 } else {
1069 struct page *dest;
1070 int data_target;
1071 int qd_idx = sh->qd_idx;
1072
1073 /* Missing D+Q: recompute D from P, then recompute Q */
1074 if (target == qd_idx)
1075 data_target = target2;
1076 else
1077 data_target = target;
1078
1079 count = 0;
1080 for (i = disks; i-- ; ) {
1081 if (i == data_target || i == qd_idx)
1082 continue;
1083 blocks[count++] = sh->dev[i].page;
1084 }
1085 dest = sh->dev[data_target].page;
0403e382
DW
1086 init_async_submit(&submit,
1087 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1088 NULL, NULL, NULL,
1089 to_addr_conv(sh, percpu));
ac6b53b6
DW
1090 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1091 &submit);
1092
1093 count = set_syndrome_sources(blocks, sh);
0403e382
DW
1094 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1095 ops_complete_compute, sh,
1096 to_addr_conv(sh, percpu));
ac6b53b6
DW
1097 return async_gen_syndrome(blocks, 0, count+2,
1098 STRIPE_SIZE, &submit);
1099 }
ac6b53b6 1100 } else {
6c910a78
DW
1101 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1102 ops_complete_compute, sh,
1103 to_addr_conv(sh, percpu));
1104 if (failb == syndrome_disks) {
1105 /* We're missing D+P. */
1106 return async_raid6_datap_recov(syndrome_disks+2,
1107 STRIPE_SIZE, faila,
1108 blocks, &submit);
1109 } else {
1110 /* We're missing D+D. */
1111 return async_raid6_2data_recov(syndrome_disks+2,
1112 STRIPE_SIZE, faila, failb,
1113 blocks, &submit);
1114 }
ac6b53b6
DW
1115 }
1116}
1117
1118
91c00924
DW
1119static void ops_complete_prexor(void *stripe_head_ref)
1120{
1121 struct stripe_head *sh = stripe_head_ref;
1122
e46b272b 1123 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1124 (unsigned long long)sh->sector);
91c00924
DW
1125}
1126
1127static struct dma_async_tx_descriptor *
d6f38f31
DW
1128ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1129 struct dma_async_tx_descriptor *tx)
91c00924 1130{
91c00924 1131 int disks = sh->disks;
d6f38f31 1132 struct page **xor_srcs = percpu->scribble;
91c00924 1133 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1134 struct async_submit_ctl submit;
91c00924
DW
1135
1136 /* existing parity data subtracted */
1137 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1138
e46b272b 1139 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1140 (unsigned long long)sh->sector);
1141
1142 for (i = disks; i--; ) {
1143 struct r5dev *dev = &sh->dev[i];
1144 /* Only process blocks that are known to be uptodate */
d8ee0728 1145 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1146 xor_srcs[count++] = dev->page;
1147 }
1148
0403e382 1149 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
d6f38f31 1150 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
a08abd8c 1151 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1152
1153 return tx;
1154}
1155
1156static struct dma_async_tx_descriptor *
d8ee0728 1157ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1158{
1159 int disks = sh->disks;
d8ee0728 1160 int i;
91c00924 1161
e46b272b 1162 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1163 (unsigned long long)sh->sector);
1164
1165 for (i = disks; i--; ) {
1166 struct r5dev *dev = &sh->dev[i];
1167 struct bio *chosen;
91c00924 1168
d8ee0728 1169 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
1170 struct bio *wbi;
1171
b17459c0 1172 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1173 chosen = dev->towrite;
1174 dev->towrite = NULL;
1175 BUG_ON(dev->written);
1176 wbi = dev->written = chosen;
b17459c0 1177 spin_unlock_irq(&sh->stripe_lock);
91c00924
DW
1178
1179 while (wbi && wbi->bi_sector <
1180 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1181 if (wbi->bi_rw & REQ_FUA)
1182 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1183 if (wbi->bi_rw & REQ_SYNC)
1184 set_bit(R5_SyncIO, &dev->flags);
9e444768 1185 if (wbi->bi_rw & REQ_DISCARD)
620125f2 1186 set_bit(R5_Discard, &dev->flags);
9e444768 1187 else
620125f2
SL
1188 tx = async_copy_data(1, wbi, dev->page,
1189 dev->sector, tx);
91c00924
DW
1190 wbi = r5_next_bio(wbi, dev->sector);
1191 }
1192 }
1193 }
1194
1195 return tx;
1196}
1197
ac6b53b6 1198static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1199{
1200 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1201 int disks = sh->disks;
1202 int pd_idx = sh->pd_idx;
1203 int qd_idx = sh->qd_idx;
1204 int i;
9e444768 1205 bool fua = false, sync = false, discard = false;
91c00924 1206
e46b272b 1207 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1208 (unsigned long long)sh->sector);
1209
bc0934f0 1210 for (i = disks; i--; ) {
e9c7469b 1211 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1212 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1213 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1214 }
e9c7469b 1215
91c00924
DW
1216 for (i = disks; i--; ) {
1217 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1218
e9c7469b 1219 if (dev->written || i == pd_idx || i == qd_idx) {
9e444768
SL
1220 if (!discard)
1221 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1222 if (fua)
1223 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1224 if (sync)
1225 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1226 }
91c00924
DW
1227 }
1228
d8ee0728
DW
1229 if (sh->reconstruct_state == reconstruct_state_drain_run)
1230 sh->reconstruct_state = reconstruct_state_drain_result;
1231 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1232 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1233 else {
1234 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1235 sh->reconstruct_state = reconstruct_state_result;
1236 }
91c00924
DW
1237
1238 set_bit(STRIPE_HANDLE, &sh->state);
1239 release_stripe(sh);
1240}
1241
1242static void
ac6b53b6
DW
1243ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1244 struct dma_async_tx_descriptor *tx)
91c00924 1245{
91c00924 1246 int disks = sh->disks;
d6f38f31 1247 struct page **xor_srcs = percpu->scribble;
a08abd8c 1248 struct async_submit_ctl submit;
91c00924
DW
1249 int count = 0, pd_idx = sh->pd_idx, i;
1250 struct page *xor_dest;
d8ee0728 1251 int prexor = 0;
91c00924 1252 unsigned long flags;
91c00924 1253
e46b272b 1254 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1255 (unsigned long long)sh->sector);
1256
620125f2
SL
1257 for (i = 0; i < sh->disks; i++) {
1258 if (pd_idx == i)
1259 continue;
1260 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1261 break;
1262 }
1263 if (i >= sh->disks) {
1264 atomic_inc(&sh->count);
620125f2
SL
1265 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1266 ops_complete_reconstruct(sh);
1267 return;
1268 }
91c00924
DW
1269 /* check if prexor is active which means only process blocks
1270 * that are part of a read-modify-write (written)
1271 */
d8ee0728
DW
1272 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1273 prexor = 1;
91c00924
DW
1274 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1275 for (i = disks; i--; ) {
1276 struct r5dev *dev = &sh->dev[i];
1277 if (dev->written)
1278 xor_srcs[count++] = dev->page;
1279 }
1280 } else {
1281 xor_dest = sh->dev[pd_idx].page;
1282 for (i = disks; i--; ) {
1283 struct r5dev *dev = &sh->dev[i];
1284 if (i != pd_idx)
1285 xor_srcs[count++] = dev->page;
1286 }
1287 }
1288
91c00924
DW
1289 /* 1/ if we prexor'd then the dest is reused as a source
1290 * 2/ if we did not prexor then we are redoing the parity
1291 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1292 * for the synchronous xor case
1293 */
88ba2aa5 1294 flags = ASYNC_TX_ACK |
91c00924
DW
1295 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1296
1297 atomic_inc(&sh->count);
1298
ac6b53b6 1299 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
d6f38f31 1300 to_addr_conv(sh, percpu));
a08abd8c
DW
1301 if (unlikely(count == 1))
1302 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1303 else
1304 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1305}
1306
ac6b53b6
DW
1307static void
1308ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1309 struct dma_async_tx_descriptor *tx)
1310{
1311 struct async_submit_ctl submit;
1312 struct page **blocks = percpu->scribble;
620125f2 1313 int count, i;
ac6b53b6
DW
1314
1315 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1316
620125f2
SL
1317 for (i = 0; i < sh->disks; i++) {
1318 if (sh->pd_idx == i || sh->qd_idx == i)
1319 continue;
1320 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1321 break;
1322 }
1323 if (i >= sh->disks) {
1324 atomic_inc(&sh->count);
620125f2
SL
1325 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1326 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1327 ops_complete_reconstruct(sh);
1328 return;
1329 }
1330
ac6b53b6
DW
1331 count = set_syndrome_sources(blocks, sh);
1332
1333 atomic_inc(&sh->count);
1334
1335 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1336 sh, to_addr_conv(sh, percpu));
1337 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
91c00924
DW
1338}
1339
1340static void ops_complete_check(void *stripe_head_ref)
1341{
1342 struct stripe_head *sh = stripe_head_ref;
91c00924 1343
e46b272b 1344 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1345 (unsigned long long)sh->sector);
1346
ecc65c9b 1347 sh->check_state = check_state_check_result;
91c00924
DW
1348 set_bit(STRIPE_HANDLE, &sh->state);
1349 release_stripe(sh);
1350}
1351
ac6b53b6 1352static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1353{
91c00924 1354 int disks = sh->disks;
ac6b53b6
DW
1355 int pd_idx = sh->pd_idx;
1356 int qd_idx = sh->qd_idx;
1357 struct page *xor_dest;
d6f38f31 1358 struct page **xor_srcs = percpu->scribble;
91c00924 1359 struct dma_async_tx_descriptor *tx;
a08abd8c 1360 struct async_submit_ctl submit;
ac6b53b6
DW
1361 int count;
1362 int i;
91c00924 1363
e46b272b 1364 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1365 (unsigned long long)sh->sector);
1366
ac6b53b6
DW
1367 count = 0;
1368 xor_dest = sh->dev[pd_idx].page;
1369 xor_srcs[count++] = xor_dest;
91c00924 1370 for (i = disks; i--; ) {
ac6b53b6
DW
1371 if (i == pd_idx || i == qd_idx)
1372 continue;
1373 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1374 }
1375
d6f38f31
DW
1376 init_async_submit(&submit, 0, NULL, NULL, NULL,
1377 to_addr_conv(sh, percpu));
099f53cb 1378 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1379 &sh->ops.zero_sum_result, &submit);
91c00924 1380
91c00924 1381 atomic_inc(&sh->count);
a08abd8c
DW
1382 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1383 tx = async_trigger_callback(&submit);
91c00924
DW
1384}
1385
ac6b53b6
DW
1386static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1387{
1388 struct page **srcs = percpu->scribble;
1389 struct async_submit_ctl submit;
1390 int count;
1391
1392 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1393 (unsigned long long)sh->sector, checkp);
1394
1395 count = set_syndrome_sources(srcs, sh);
1396 if (!checkp)
1397 srcs[count] = NULL;
91c00924 1398
91c00924 1399 atomic_inc(&sh->count);
ac6b53b6
DW
1400 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1401 sh, to_addr_conv(sh, percpu));
1402 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1403 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1404}
1405
417b8d4a 1406static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1407{
1408 int overlap_clear = 0, i, disks = sh->disks;
1409 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1410 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1411 int level = conf->level;
d6f38f31
DW
1412 struct raid5_percpu *percpu;
1413 unsigned long cpu;
91c00924 1414
d6f38f31
DW
1415 cpu = get_cpu();
1416 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1417 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1418 ops_run_biofill(sh);
1419 overlap_clear++;
1420 }
1421
7b3a871e 1422 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1423 if (level < 6)
1424 tx = ops_run_compute5(sh, percpu);
1425 else {
1426 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1427 tx = ops_run_compute6_1(sh, percpu);
1428 else
1429 tx = ops_run_compute6_2(sh, percpu);
1430 }
1431 /* terminate the chain if reconstruct is not set to be run */
1432 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1433 async_tx_ack(tx);
1434 }
91c00924 1435
600aa109 1436 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
d6f38f31 1437 tx = ops_run_prexor(sh, percpu, tx);
91c00924 1438
600aa109 1439 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1440 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1441 overlap_clear++;
1442 }
1443
ac6b53b6
DW
1444 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1445 if (level < 6)
1446 ops_run_reconstruct5(sh, percpu, tx);
1447 else
1448 ops_run_reconstruct6(sh, percpu, tx);
1449 }
91c00924 1450
ac6b53b6
DW
1451 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1452 if (sh->check_state == check_state_run)
1453 ops_run_check_p(sh, percpu);
1454 else if (sh->check_state == check_state_run_q)
1455 ops_run_check_pq(sh, percpu, 0);
1456 else if (sh->check_state == check_state_run_pq)
1457 ops_run_check_pq(sh, percpu, 1);
1458 else
1459 BUG();
1460 }
91c00924 1461
91c00924
DW
1462 if (overlap_clear)
1463 for (i = disks; i--; ) {
1464 struct r5dev *dev = &sh->dev[i];
1465 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1466 wake_up(&sh->raid_conf->wait_for_overlap);
1467 }
d6f38f31 1468 put_cpu();
91c00924
DW
1469}
1470
417b8d4a
DW
1471#ifdef CONFIG_MULTICORE_RAID456
1472static void async_run_ops(void *param, async_cookie_t cookie)
1473{
1474 struct stripe_head *sh = param;
1475 unsigned long ops_request = sh->ops.request;
1476
1477 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1478 wake_up(&sh->ops.wait_for_ops);
1479
1480 __raid_run_ops(sh, ops_request);
1481 release_stripe(sh);
1482}
1483
1484static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1485{
1486 /* since handle_stripe can be called outside of raid5d context
1487 * we need to ensure sh->ops.request is de-staged before another
1488 * request arrives
1489 */
1490 wait_event(sh->ops.wait_for_ops,
1491 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1492 sh->ops.request = ops_request;
1493
1494 atomic_inc(&sh->count);
1495 async_schedule(async_run_ops, sh);
1496}
1497#else
1498#define raid_run_ops __raid_run_ops
1499#endif
1500
d1688a6d 1501static int grow_one_stripe(struct r5conf *conf)
1da177e4
LT
1502{
1503 struct stripe_head *sh;
6ce32846 1504 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
3f294f4f
N
1505 if (!sh)
1506 return 0;
6ce32846 1507
3f294f4f 1508 sh->raid_conf = conf;
417b8d4a
DW
1509 #ifdef CONFIG_MULTICORE_RAID456
1510 init_waitqueue_head(&sh->ops.wait_for_ops);
1511 #endif
3f294f4f 1512
b17459c0
SL
1513 spin_lock_init(&sh->stripe_lock);
1514
e4e11e38
N
1515 if (grow_buffers(sh)) {
1516 shrink_buffers(sh);
3f294f4f
N
1517 kmem_cache_free(conf->slab_cache, sh);
1518 return 0;
1519 }
1520 /* we just created an active stripe so... */
1521 atomic_set(&sh->count, 1);
1522 atomic_inc(&conf->active_stripes);
1523 INIT_LIST_HEAD(&sh->lru);
1524 release_stripe(sh);
1525 return 1;
1526}
1527
d1688a6d 1528static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 1529{
e18b890b 1530 struct kmem_cache *sc;
5e5e3e78 1531 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 1532
f4be6b43
N
1533 if (conf->mddev->gendisk)
1534 sprintf(conf->cache_name[0],
1535 "raid%d-%s", conf->level, mdname(conf->mddev));
1536 else
1537 sprintf(conf->cache_name[0],
1538 "raid%d-%p", conf->level, conf->mddev);
1539 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1540
ad01c9e3
N
1541 conf->active_name = 0;
1542 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 1543 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 1544 0, 0, NULL);
1da177e4
LT
1545 if (!sc)
1546 return 1;
1547 conf->slab_cache = sc;
ad01c9e3 1548 conf->pool_size = devs;
16a53ecc 1549 while (num--)
3f294f4f 1550 if (!grow_one_stripe(conf))
1da177e4 1551 return 1;
1da177e4
LT
1552 return 0;
1553}
29269553 1554
d6f38f31
DW
1555/**
1556 * scribble_len - return the required size of the scribble region
1557 * @num - total number of disks in the array
1558 *
1559 * The size must be enough to contain:
1560 * 1/ a struct page pointer for each device in the array +2
1561 * 2/ room to convert each entry in (1) to its corresponding dma
1562 * (dma_map_page()) or page (page_address()) address.
1563 *
1564 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1565 * calculate over all devices (not just the data blocks), using zeros in place
1566 * of the P and Q blocks.
1567 */
1568static size_t scribble_len(int num)
1569{
1570 size_t len;
1571
1572 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1573
1574 return len;
1575}
1576
d1688a6d 1577static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
1578{
1579 /* Make all the stripes able to hold 'newsize' devices.
1580 * New slots in each stripe get 'page' set to a new page.
1581 *
1582 * This happens in stages:
1583 * 1/ create a new kmem_cache and allocate the required number of
1584 * stripe_heads.
83f0d77a 1585 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
1586 * to the new stripe_heads. This will have the side effect of
1587 * freezing the array as once all stripe_heads have been collected,
1588 * no IO will be possible. Old stripe heads are freed once their
1589 * pages have been transferred over, and the old kmem_cache is
1590 * freed when all stripes are done.
1591 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1592 * we simple return a failre status - no need to clean anything up.
1593 * 4/ allocate new pages for the new slots in the new stripe_heads.
1594 * If this fails, we don't bother trying the shrink the
1595 * stripe_heads down again, we just leave them as they are.
1596 * As each stripe_head is processed the new one is released into
1597 * active service.
1598 *
1599 * Once step2 is started, we cannot afford to wait for a write,
1600 * so we use GFP_NOIO allocations.
1601 */
1602 struct stripe_head *osh, *nsh;
1603 LIST_HEAD(newstripes);
1604 struct disk_info *ndisks;
d6f38f31 1605 unsigned long cpu;
b5470dc5 1606 int err;
e18b890b 1607 struct kmem_cache *sc;
ad01c9e3
N
1608 int i;
1609
1610 if (newsize <= conf->pool_size)
1611 return 0; /* never bother to shrink */
1612
b5470dc5
DW
1613 err = md_allow_write(conf->mddev);
1614 if (err)
1615 return err;
2a2275d6 1616
ad01c9e3
N
1617 /* Step 1 */
1618 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1619 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 1620 0, 0, NULL);
ad01c9e3
N
1621 if (!sc)
1622 return -ENOMEM;
1623
1624 for (i = conf->max_nr_stripes; i; i--) {
6ce32846 1625 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
ad01c9e3
N
1626 if (!nsh)
1627 break;
1628
ad01c9e3 1629 nsh->raid_conf = conf;
417b8d4a
DW
1630 #ifdef CONFIG_MULTICORE_RAID456
1631 init_waitqueue_head(&nsh->ops.wait_for_ops);
1632 #endif
cb13ff69 1633 spin_lock_init(&nsh->stripe_lock);
ad01c9e3
N
1634
1635 list_add(&nsh->lru, &newstripes);
1636 }
1637 if (i) {
1638 /* didn't get enough, give up */
1639 while (!list_empty(&newstripes)) {
1640 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1641 list_del(&nsh->lru);
1642 kmem_cache_free(sc, nsh);
1643 }
1644 kmem_cache_destroy(sc);
1645 return -ENOMEM;
1646 }
1647 /* Step 2 - Must use GFP_NOIO now.
1648 * OK, we have enough stripes, start collecting inactive
1649 * stripes and copying them over
1650 */
1651 list_for_each_entry(nsh, &newstripes, lru) {
1652 spin_lock_irq(&conf->device_lock);
1653 wait_event_lock_irq(conf->wait_for_stripe,
1654 !list_empty(&conf->inactive_list),
eed8c02e 1655 conf->device_lock);
ad01c9e3
N
1656 osh = get_free_stripe(conf);
1657 spin_unlock_irq(&conf->device_lock);
1658 atomic_set(&nsh->count, 1);
1659 for(i=0; i<conf->pool_size; i++)
1660 nsh->dev[i].page = osh->dev[i].page;
1661 for( ; i<newsize; i++)
1662 nsh->dev[i].page = NULL;
1663 kmem_cache_free(conf->slab_cache, osh);
1664 }
1665 kmem_cache_destroy(conf->slab_cache);
1666
1667 /* Step 3.
1668 * At this point, we are holding all the stripes so the array
1669 * is completely stalled, so now is a good time to resize
d6f38f31 1670 * conf->disks and the scribble region
ad01c9e3
N
1671 */
1672 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1673 if (ndisks) {
1674 for (i=0; i<conf->raid_disks; i++)
1675 ndisks[i] = conf->disks[i];
1676 kfree(conf->disks);
1677 conf->disks = ndisks;
1678 } else
1679 err = -ENOMEM;
1680
d6f38f31
DW
1681 get_online_cpus();
1682 conf->scribble_len = scribble_len(newsize);
1683 for_each_present_cpu(cpu) {
1684 struct raid5_percpu *percpu;
1685 void *scribble;
1686
1687 percpu = per_cpu_ptr(conf->percpu, cpu);
1688 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1689
1690 if (scribble) {
1691 kfree(percpu->scribble);
1692 percpu->scribble = scribble;
1693 } else {
1694 err = -ENOMEM;
1695 break;
1696 }
1697 }
1698 put_online_cpus();
1699
ad01c9e3
N
1700 /* Step 4, return new stripes to service */
1701 while(!list_empty(&newstripes)) {
1702 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1703 list_del_init(&nsh->lru);
d6f38f31 1704
ad01c9e3
N
1705 for (i=conf->raid_disks; i < newsize; i++)
1706 if (nsh->dev[i].page == NULL) {
1707 struct page *p = alloc_page(GFP_NOIO);
1708 nsh->dev[i].page = p;
1709 if (!p)
1710 err = -ENOMEM;
1711 }
1712 release_stripe(nsh);
1713 }
1714 /* critical section pass, GFP_NOIO no longer needed */
1715
1716 conf->slab_cache = sc;
1717 conf->active_name = 1-conf->active_name;
1718 conf->pool_size = newsize;
1719 return err;
1720}
1da177e4 1721
d1688a6d 1722static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
1723{
1724 struct stripe_head *sh;
1725
3f294f4f
N
1726 spin_lock_irq(&conf->device_lock);
1727 sh = get_free_stripe(conf);
1728 spin_unlock_irq(&conf->device_lock);
1729 if (!sh)
1730 return 0;
78bafebd 1731 BUG_ON(atomic_read(&sh->count));
e4e11e38 1732 shrink_buffers(sh);
3f294f4f
N
1733 kmem_cache_free(conf->slab_cache, sh);
1734 atomic_dec(&conf->active_stripes);
1735 return 1;
1736}
1737
d1688a6d 1738static void shrink_stripes(struct r5conf *conf)
3f294f4f
N
1739{
1740 while (drop_one_stripe(conf))
1741 ;
1742
29fc7e3e
N
1743 if (conf->slab_cache)
1744 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1745 conf->slab_cache = NULL;
1746}
1747
6712ecf8 1748static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1749{
99c0fb5f 1750 struct stripe_head *sh = bi->bi_private;
d1688a6d 1751 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 1752 int disks = sh->disks, i;
1da177e4 1753 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432 1754 char b[BDEVNAME_SIZE];
dd054fce 1755 struct md_rdev *rdev = NULL;
05616be5 1756 sector_t s;
1da177e4
LT
1757
1758 for (i=0 ; i<disks; i++)
1759 if (bi == &sh->dev[i].req)
1760 break;
1761
45b4233c
DW
1762 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1763 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1764 uptodate);
1765 if (i == disks) {
1766 BUG();
6712ecf8 1767 return;
1da177e4 1768 }
14a75d3e 1769 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
1770 /* If replacement finished while this request was outstanding,
1771 * 'replacement' might be NULL already.
1772 * In that case it moved down to 'rdev'.
1773 * rdev is not removed until all requests are finished.
1774 */
14a75d3e 1775 rdev = conf->disks[i].replacement;
dd054fce 1776 if (!rdev)
14a75d3e 1777 rdev = conf->disks[i].rdev;
1da177e4 1778
05616be5
N
1779 if (use_new_offset(conf, sh))
1780 s = sh->sector + rdev->new_data_offset;
1781 else
1782 s = sh->sector + rdev->data_offset;
1da177e4 1783 if (uptodate) {
1da177e4 1784 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1785 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
1786 /* Note that this cannot happen on a
1787 * replacement device. We just fail those on
1788 * any error
1789 */
8bda470e
CD
1790 printk_ratelimited(
1791 KERN_INFO
1792 "md/raid:%s: read error corrected"
1793 " (%lu sectors at %llu on %s)\n",
1794 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 1795 (unsigned long long)s,
8bda470e 1796 bdevname(rdev->bdev, b));
ddd5115f 1797 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
1798 clear_bit(R5_ReadError, &sh->dev[i].flags);
1799 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 1800 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1801 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1802
14a75d3e
N
1803 if (atomic_read(&rdev->read_errors))
1804 atomic_set(&rdev->read_errors, 0);
1da177e4 1805 } else {
14a75d3e 1806 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 1807 int retry = 0;
2e8ac303 1808 int set_bad = 0;
d6950432 1809
1da177e4 1810 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1811 atomic_inc(&rdev->read_errors);
14a75d3e
N
1812 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1813 printk_ratelimited(
1814 KERN_WARNING
1815 "md/raid:%s: read error on replacement device "
1816 "(sector %llu on %s).\n",
1817 mdname(conf->mddev),
05616be5 1818 (unsigned long long)s,
14a75d3e 1819 bdn);
2e8ac303 1820 else if (conf->mddev->degraded >= conf->max_degraded) {
1821 set_bad = 1;
8bda470e
CD
1822 printk_ratelimited(
1823 KERN_WARNING
1824 "md/raid:%s: read error not correctable "
1825 "(sector %llu on %s).\n",
1826 mdname(conf->mddev),
05616be5 1827 (unsigned long long)s,
8bda470e 1828 bdn);
2e8ac303 1829 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 1830 /* Oh, no!!! */
2e8ac303 1831 set_bad = 1;
8bda470e
CD
1832 printk_ratelimited(
1833 KERN_WARNING
1834 "md/raid:%s: read error NOT corrected!! "
1835 "(sector %llu on %s).\n",
1836 mdname(conf->mddev),
05616be5 1837 (unsigned long long)s,
8bda470e 1838 bdn);
2e8ac303 1839 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 1840 > conf->max_nr_stripes)
14f8d26b 1841 printk(KERN_WARNING
0c55e022 1842 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 1843 mdname(conf->mddev), bdn);
ba22dcbf
N
1844 else
1845 retry = 1;
1846 if (retry)
3f9e7c14 1847 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1848 set_bit(R5_ReadError, &sh->dev[i].flags);
1849 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1850 } else
1851 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 1852 else {
4e5314b5
N
1853 clear_bit(R5_ReadError, &sh->dev[i].flags);
1854 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 1855 if (!(set_bad
1856 && test_bit(In_sync, &rdev->flags)
1857 && rdev_set_badblocks(
1858 rdev, sh->sector, STRIPE_SECTORS, 0)))
1859 md_error(conf->mddev, rdev);
ba22dcbf 1860 }
1da177e4 1861 }
14a75d3e 1862 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
1863 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1864 set_bit(STRIPE_HANDLE, &sh->state);
1865 release_stripe(sh);
1da177e4
LT
1866}
1867
d710e138 1868static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 1869{
99c0fb5f 1870 struct stripe_head *sh = bi->bi_private;
d1688a6d 1871 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 1872 int disks = sh->disks, i;
977df362 1873 struct md_rdev *uninitialized_var(rdev);
1da177e4 1874 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
b84db560
N
1875 sector_t first_bad;
1876 int bad_sectors;
977df362 1877 int replacement = 0;
1da177e4 1878
977df362
N
1879 for (i = 0 ; i < disks; i++) {
1880 if (bi == &sh->dev[i].req) {
1881 rdev = conf->disks[i].rdev;
1da177e4 1882 break;
977df362
N
1883 }
1884 if (bi == &sh->dev[i].rreq) {
1885 rdev = conf->disks[i].replacement;
dd054fce
N
1886 if (rdev)
1887 replacement = 1;
1888 else
1889 /* rdev was removed and 'replacement'
1890 * replaced it. rdev is not removed
1891 * until all requests are finished.
1892 */
1893 rdev = conf->disks[i].rdev;
977df362
N
1894 break;
1895 }
1896 }
45b4233c 1897 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1898 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1899 uptodate);
1900 if (i == disks) {
1901 BUG();
6712ecf8 1902 return;
1da177e4
LT
1903 }
1904
977df362
N
1905 if (replacement) {
1906 if (!uptodate)
1907 md_error(conf->mddev, rdev);
1908 else if (is_badblock(rdev, sh->sector,
1909 STRIPE_SECTORS,
1910 &first_bad, &bad_sectors))
1911 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1912 } else {
1913 if (!uptodate) {
1914 set_bit(WriteErrorSeen, &rdev->flags);
1915 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
1916 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1917 set_bit(MD_RECOVERY_NEEDED,
1918 &rdev->mddev->recovery);
977df362
N
1919 } else if (is_badblock(rdev, sh->sector,
1920 STRIPE_SECTORS,
1921 &first_bad, &bad_sectors))
1922 set_bit(R5_MadeGood, &sh->dev[i].flags);
1923 }
1924 rdev_dec_pending(rdev, conf->mddev);
1da177e4 1925
977df362
N
1926 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1927 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 1928 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1929 release_stripe(sh);
1da177e4
LT
1930}
1931
784052ec 1932static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 1933
784052ec 1934static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1935{
1936 struct r5dev *dev = &sh->dev[i];
1937
1938 bio_init(&dev->req);
1939 dev->req.bi_io_vec = &dev->vec;
1940 dev->req.bi_vcnt++;
1941 dev->req.bi_max_vecs++;
1da177e4 1942 dev->req.bi_private = sh;
995c4275 1943 dev->vec.bv_page = dev->page;
1da177e4 1944
977df362
N
1945 bio_init(&dev->rreq);
1946 dev->rreq.bi_io_vec = &dev->rvec;
1947 dev->rreq.bi_vcnt++;
1948 dev->rreq.bi_max_vecs++;
1949 dev->rreq.bi_private = sh;
1950 dev->rvec.bv_page = dev->page;
1951
1da177e4 1952 dev->flags = 0;
784052ec 1953 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
1954}
1955
fd01b88c 1956static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1957{
1958 char b[BDEVNAME_SIZE];
d1688a6d 1959 struct r5conf *conf = mddev->private;
908f4fbd 1960 unsigned long flags;
0c55e022 1961 pr_debug("raid456: error called\n");
1da177e4 1962
908f4fbd
N
1963 spin_lock_irqsave(&conf->device_lock, flags);
1964 clear_bit(In_sync, &rdev->flags);
1965 mddev->degraded = calc_degraded(conf);
1966 spin_unlock_irqrestore(&conf->device_lock, flags);
1967 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1968
de393cde 1969 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
1970 set_bit(Faulty, &rdev->flags);
1971 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1972 printk(KERN_ALERT
1973 "md/raid:%s: Disk failure on %s, disabling device.\n"
1974 "md/raid:%s: Operation continuing on %d devices.\n",
1975 mdname(mddev),
1976 bdevname(rdev->bdev, b),
1977 mdname(mddev),
1978 conf->raid_disks - mddev->degraded);
16a53ecc 1979}
1da177e4
LT
1980
1981/*
1982 * Input: a 'big' sector number,
1983 * Output: index of the data and parity disk, and the sector # in them.
1984 */
d1688a6d 1985static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
911d4ee8
N
1986 int previous, int *dd_idx,
1987 struct stripe_head *sh)
1da177e4 1988{
6e3b96ed 1989 sector_t stripe, stripe2;
35f2a591 1990 sector_t chunk_number;
1da177e4 1991 unsigned int chunk_offset;
911d4ee8 1992 int pd_idx, qd_idx;
67cc2b81 1993 int ddf_layout = 0;
1da177e4 1994 sector_t new_sector;
e183eaed
N
1995 int algorithm = previous ? conf->prev_algo
1996 : conf->algorithm;
09c9e5fa
AN
1997 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1998 : conf->chunk_sectors;
112bf897
N
1999 int raid_disks = previous ? conf->previous_raid_disks
2000 : conf->raid_disks;
2001 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
2002
2003 /* First compute the information on this sector */
2004
2005 /*
2006 * Compute the chunk number and the sector offset inside the chunk
2007 */
2008 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2009 chunk_number = r_sector;
1da177e4
LT
2010
2011 /*
2012 * Compute the stripe number
2013 */
35f2a591
N
2014 stripe = chunk_number;
2015 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 2016 stripe2 = stripe;
1da177e4
LT
2017 /*
2018 * Select the parity disk based on the user selected algorithm.
2019 */
84789554 2020 pd_idx = qd_idx = -1;
16a53ecc
N
2021 switch(conf->level) {
2022 case 4:
911d4ee8 2023 pd_idx = data_disks;
16a53ecc
N
2024 break;
2025 case 5:
e183eaed 2026 switch (algorithm) {
1da177e4 2027 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2028 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2029 if (*dd_idx >= pd_idx)
1da177e4
LT
2030 (*dd_idx)++;
2031 break;
2032 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2033 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2034 if (*dd_idx >= pd_idx)
1da177e4
LT
2035 (*dd_idx)++;
2036 break;
2037 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2038 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2039 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2040 break;
2041 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2042 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2043 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2044 break;
99c0fb5f
N
2045 case ALGORITHM_PARITY_0:
2046 pd_idx = 0;
2047 (*dd_idx)++;
2048 break;
2049 case ALGORITHM_PARITY_N:
2050 pd_idx = data_disks;
2051 break;
1da177e4 2052 default:
99c0fb5f 2053 BUG();
16a53ecc
N
2054 }
2055 break;
2056 case 6:
2057
e183eaed 2058 switch (algorithm) {
16a53ecc 2059 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2060 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2061 qd_idx = pd_idx + 1;
2062 if (pd_idx == raid_disks-1) {
99c0fb5f 2063 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2064 qd_idx = 0;
2065 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2066 (*dd_idx) += 2; /* D D P Q D */
2067 break;
2068 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2069 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2070 qd_idx = pd_idx + 1;
2071 if (pd_idx == raid_disks-1) {
99c0fb5f 2072 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2073 qd_idx = 0;
2074 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2075 (*dd_idx) += 2; /* D D P Q D */
2076 break;
2077 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2078 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2079 qd_idx = (pd_idx + 1) % raid_disks;
2080 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2081 break;
2082 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2083 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2084 qd_idx = (pd_idx + 1) % raid_disks;
2085 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2086 break;
99c0fb5f
N
2087
2088 case ALGORITHM_PARITY_0:
2089 pd_idx = 0;
2090 qd_idx = 1;
2091 (*dd_idx) += 2;
2092 break;
2093 case ALGORITHM_PARITY_N:
2094 pd_idx = data_disks;
2095 qd_idx = data_disks + 1;
2096 break;
2097
2098 case ALGORITHM_ROTATING_ZERO_RESTART:
2099 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2100 * of blocks for computing Q is different.
2101 */
6e3b96ed 2102 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2103 qd_idx = pd_idx + 1;
2104 if (pd_idx == raid_disks-1) {
2105 (*dd_idx)++; /* Q D D D P */
2106 qd_idx = 0;
2107 } else if (*dd_idx >= pd_idx)
2108 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2109 ddf_layout = 1;
99c0fb5f
N
2110 break;
2111
2112 case ALGORITHM_ROTATING_N_RESTART:
2113 /* Same a left_asymmetric, by first stripe is
2114 * D D D P Q rather than
2115 * Q D D D P
2116 */
6e3b96ed
N
2117 stripe2 += 1;
2118 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2119 qd_idx = pd_idx + 1;
2120 if (pd_idx == raid_disks-1) {
2121 (*dd_idx)++; /* Q D D D P */
2122 qd_idx = 0;
2123 } else if (*dd_idx >= pd_idx)
2124 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2125 ddf_layout = 1;
99c0fb5f
N
2126 break;
2127
2128 case ALGORITHM_ROTATING_N_CONTINUE:
2129 /* Same as left_symmetric but Q is before P */
6e3b96ed 2130 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2131 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2132 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2133 ddf_layout = 1;
99c0fb5f
N
2134 break;
2135
2136 case ALGORITHM_LEFT_ASYMMETRIC_6:
2137 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2138 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2139 if (*dd_idx >= pd_idx)
2140 (*dd_idx)++;
2141 qd_idx = raid_disks - 1;
2142 break;
2143
2144 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2145 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2146 if (*dd_idx >= pd_idx)
2147 (*dd_idx)++;
2148 qd_idx = raid_disks - 1;
2149 break;
2150
2151 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2152 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2153 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2154 qd_idx = raid_disks - 1;
2155 break;
2156
2157 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2158 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2159 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2160 qd_idx = raid_disks - 1;
2161 break;
2162
2163 case ALGORITHM_PARITY_0_6:
2164 pd_idx = 0;
2165 (*dd_idx)++;
2166 qd_idx = raid_disks - 1;
2167 break;
2168
16a53ecc 2169 default:
99c0fb5f 2170 BUG();
16a53ecc
N
2171 }
2172 break;
1da177e4
LT
2173 }
2174
911d4ee8
N
2175 if (sh) {
2176 sh->pd_idx = pd_idx;
2177 sh->qd_idx = qd_idx;
67cc2b81 2178 sh->ddf_layout = ddf_layout;
911d4ee8 2179 }
1da177e4
LT
2180 /*
2181 * Finally, compute the new sector number
2182 */
2183 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2184 return new_sector;
2185}
2186
2187
784052ec 2188static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2189{
d1688a6d 2190 struct r5conf *conf = sh->raid_conf;
b875e531
N
2191 int raid_disks = sh->disks;
2192 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2193 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2194 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2195 : conf->chunk_sectors;
e183eaed
N
2196 int algorithm = previous ? conf->prev_algo
2197 : conf->algorithm;
1da177e4
LT
2198 sector_t stripe;
2199 int chunk_offset;
35f2a591
N
2200 sector_t chunk_number;
2201 int dummy1, dd_idx = i;
1da177e4 2202 sector_t r_sector;
911d4ee8 2203 struct stripe_head sh2;
1da177e4 2204
16a53ecc 2205
1da177e4
LT
2206 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2207 stripe = new_sector;
1da177e4 2208
16a53ecc
N
2209 if (i == sh->pd_idx)
2210 return 0;
2211 switch(conf->level) {
2212 case 4: break;
2213 case 5:
e183eaed 2214 switch (algorithm) {
1da177e4
LT
2215 case ALGORITHM_LEFT_ASYMMETRIC:
2216 case ALGORITHM_RIGHT_ASYMMETRIC:
2217 if (i > sh->pd_idx)
2218 i--;
2219 break;
2220 case ALGORITHM_LEFT_SYMMETRIC:
2221 case ALGORITHM_RIGHT_SYMMETRIC:
2222 if (i < sh->pd_idx)
2223 i += raid_disks;
2224 i -= (sh->pd_idx + 1);
2225 break;
99c0fb5f
N
2226 case ALGORITHM_PARITY_0:
2227 i -= 1;
2228 break;
2229 case ALGORITHM_PARITY_N:
2230 break;
1da177e4 2231 default:
99c0fb5f 2232 BUG();
16a53ecc
N
2233 }
2234 break;
2235 case 6:
d0dabf7e 2236 if (i == sh->qd_idx)
16a53ecc 2237 return 0; /* It is the Q disk */
e183eaed 2238 switch (algorithm) {
16a53ecc
N
2239 case ALGORITHM_LEFT_ASYMMETRIC:
2240 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2241 case ALGORITHM_ROTATING_ZERO_RESTART:
2242 case ALGORITHM_ROTATING_N_RESTART:
2243 if (sh->pd_idx == raid_disks-1)
2244 i--; /* Q D D D P */
16a53ecc
N
2245 else if (i > sh->pd_idx)
2246 i -= 2; /* D D P Q D */
2247 break;
2248 case ALGORITHM_LEFT_SYMMETRIC:
2249 case ALGORITHM_RIGHT_SYMMETRIC:
2250 if (sh->pd_idx == raid_disks-1)
2251 i--; /* Q D D D P */
2252 else {
2253 /* D D P Q D */
2254 if (i < sh->pd_idx)
2255 i += raid_disks;
2256 i -= (sh->pd_idx + 2);
2257 }
2258 break;
99c0fb5f
N
2259 case ALGORITHM_PARITY_0:
2260 i -= 2;
2261 break;
2262 case ALGORITHM_PARITY_N:
2263 break;
2264 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2265 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2266 if (sh->pd_idx == 0)
2267 i--; /* P D D D Q */
e4424fee
N
2268 else {
2269 /* D D Q P D */
2270 if (i < sh->pd_idx)
2271 i += raid_disks;
2272 i -= (sh->pd_idx + 1);
2273 }
99c0fb5f
N
2274 break;
2275 case ALGORITHM_LEFT_ASYMMETRIC_6:
2276 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2277 if (i > sh->pd_idx)
2278 i--;
2279 break;
2280 case ALGORITHM_LEFT_SYMMETRIC_6:
2281 case ALGORITHM_RIGHT_SYMMETRIC_6:
2282 if (i < sh->pd_idx)
2283 i += data_disks + 1;
2284 i -= (sh->pd_idx + 1);
2285 break;
2286 case ALGORITHM_PARITY_0_6:
2287 i -= 1;
2288 break;
16a53ecc 2289 default:
99c0fb5f 2290 BUG();
16a53ecc
N
2291 }
2292 break;
1da177e4
LT
2293 }
2294
2295 chunk_number = stripe * data_disks + i;
35f2a591 2296 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2297
112bf897 2298 check = raid5_compute_sector(conf, r_sector,
784052ec 2299 previous, &dummy1, &sh2);
911d4ee8
N
2300 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2301 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2302 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2303 mdname(conf->mddev));
1da177e4
LT
2304 return 0;
2305 }
2306 return r_sector;
2307}
2308
2309
600aa109 2310static void
c0f7bddb 2311schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2312 int rcw, int expand)
e33129d8
DW
2313{
2314 int i, pd_idx = sh->pd_idx, disks = sh->disks;
d1688a6d 2315 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2316 int level = conf->level;
e33129d8
DW
2317
2318 if (rcw) {
2319 /* if we are not expanding this is a proper write request, and
2320 * there will be bios with new data to be drained into the
2321 * stripe cache
2322 */
2323 if (!expand) {
600aa109
DW
2324 sh->reconstruct_state = reconstruct_state_drain_run;
2325 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2326 } else
2327 sh->reconstruct_state = reconstruct_state_run;
16a53ecc 2328
ac6b53b6 2329 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2330
2331 for (i = disks; i--; ) {
2332 struct r5dev *dev = &sh->dev[i];
2333
2334 if (dev->towrite) {
2335 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2336 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2337 if (!expand)
2338 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2339 s->locked++;
e33129d8
DW
2340 }
2341 }
c0f7bddb 2342 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2343 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2344 atomic_inc(&conf->pending_full_writes);
e33129d8 2345 } else {
c0f7bddb 2346 BUG_ON(level == 6);
e33129d8
DW
2347 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2348 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2349
d8ee0728 2350 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
600aa109
DW
2351 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2352 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
ac6b53b6 2353 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2354
2355 for (i = disks; i--; ) {
2356 struct r5dev *dev = &sh->dev[i];
2357 if (i == pd_idx)
2358 continue;
2359
e33129d8
DW
2360 if (dev->towrite &&
2361 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2362 test_bit(R5_Wantcompute, &dev->flags))) {
2363 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2364 set_bit(R5_LOCKED, &dev->flags);
2365 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2366 s->locked++;
e33129d8
DW
2367 }
2368 }
2369 }
2370
c0f7bddb 2371 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2372 * are in flight
2373 */
2374 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2375 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2376 s->locked++;
e33129d8 2377
c0f7bddb
YT
2378 if (level == 6) {
2379 int qd_idx = sh->qd_idx;
2380 struct r5dev *dev = &sh->dev[qd_idx];
2381
2382 set_bit(R5_LOCKED, &dev->flags);
2383 clear_bit(R5_UPTODATE, &dev->flags);
2384 s->locked++;
2385 }
2386
600aa109 2387 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2388 __func__, (unsigned long long)sh->sector,
600aa109 2389 s->locked, s->ops_request);
e33129d8 2390}
16a53ecc 2391
1da177e4
LT
2392/*
2393 * Each stripe/dev can have one or more bion attached.
16a53ecc 2394 * toread/towrite point to the first in a chain.
1da177e4
LT
2395 * The bi_next chain must be in order.
2396 */
2397static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2398{
2399 struct bio **bip;
d1688a6d 2400 struct r5conf *conf = sh->raid_conf;
72626685 2401 int firstwrite=0;
1da177e4 2402
cbe47ec5 2403 pr_debug("adding bi b#%llu to stripe s#%llu\n",
1da177e4
LT
2404 (unsigned long long)bi->bi_sector,
2405 (unsigned long long)sh->sector);
2406
b17459c0
SL
2407 /*
2408 * If several bio share a stripe. The bio bi_phys_segments acts as a
2409 * reference count to avoid race. The reference count should already be
2410 * increased before this function is called (for example, in
2411 * make_request()), so other bio sharing this stripe will not free the
2412 * stripe. If a stripe is owned by one stripe, the stripe lock will
2413 * protect it.
2414 */
2415 spin_lock_irq(&sh->stripe_lock);
72626685 2416 if (forwrite) {
1da177e4 2417 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 2418 if (*bip == NULL)
72626685
N
2419 firstwrite = 1;
2420 } else
1da177e4
LT
2421 bip = &sh->dev[dd_idx].toread;
2422 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2423 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2424 goto overlap;
2425 bip = & (*bip)->bi_next;
2426 }
2427 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2428 goto overlap;
2429
78bafebd 2430 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2431 if (*bip)
2432 bi->bi_next = *bip;
2433 *bip = bi;
e7836bd6 2434 raid5_inc_bi_active_stripes(bi);
72626685 2435
1da177e4
LT
2436 if (forwrite) {
2437 /* check if page is covered */
2438 sector_t sector = sh->dev[dd_idx].sector;
2439 for (bi=sh->dev[dd_idx].towrite;
2440 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2441 bi && bi->bi_sector <= sector;
2442 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2443 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2444 sector = bi->bi_sector + (bi->bi_size>>9);
2445 }
2446 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2447 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2448 }
cbe47ec5
N
2449
2450 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2451 (unsigned long long)(*bip)->bi_sector,
2452 (unsigned long long)sh->sector, dd_idx);
b97390ae 2453 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
2454
2455 if (conf->mddev->bitmap && firstwrite) {
2456 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2457 STRIPE_SECTORS, 0);
2458 sh->bm_seq = conf->seq_flush+1;
2459 set_bit(STRIPE_BIT_DELAY, &sh->state);
2460 }
1da177e4
LT
2461 return 1;
2462
2463 overlap:
2464 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 2465 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
2466 return 0;
2467}
2468
d1688a6d 2469static void end_reshape(struct r5conf *conf);
29269553 2470
d1688a6d 2471static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 2472 struct stripe_head *sh)
ccfcc3c1 2473{
784052ec 2474 int sectors_per_chunk =
09c9e5fa 2475 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 2476 int dd_idx;
2d2063ce 2477 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2478 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2479
112bf897
N
2480 raid5_compute_sector(conf,
2481 stripe * (disks - conf->max_degraded)
b875e531 2482 *sectors_per_chunk + chunk_offset,
112bf897 2483 previous,
911d4ee8 2484 &dd_idx, sh);
ccfcc3c1
N
2485}
2486
a4456856 2487static void
d1688a6d 2488handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
2489 struct stripe_head_state *s, int disks,
2490 struct bio **return_bi)
2491{
2492 int i;
2493 for (i = disks; i--; ) {
2494 struct bio *bi;
2495 int bitmap_end = 0;
2496
2497 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 2498 struct md_rdev *rdev;
a4456856
DW
2499 rcu_read_lock();
2500 rdev = rcu_dereference(conf->disks[i].rdev);
2501 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
2502 atomic_inc(&rdev->nr_pending);
2503 else
2504 rdev = NULL;
a4456856 2505 rcu_read_unlock();
7f0da59b
N
2506 if (rdev) {
2507 if (!rdev_set_badblocks(
2508 rdev,
2509 sh->sector,
2510 STRIPE_SECTORS, 0))
2511 md_error(conf->mddev, rdev);
2512 rdev_dec_pending(rdev, conf->mddev);
2513 }
a4456856 2514 }
b17459c0 2515 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
2516 /* fail all writes first */
2517 bi = sh->dev[i].towrite;
2518 sh->dev[i].towrite = NULL;
b17459c0 2519 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 2520 if (bi)
a4456856 2521 bitmap_end = 1;
a4456856
DW
2522
2523 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2524 wake_up(&conf->wait_for_overlap);
2525
2526 while (bi && bi->bi_sector <
2527 sh->dev[i].sector + STRIPE_SECTORS) {
2528 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2529 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 2530 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
2531 md_write_end(conf->mddev);
2532 bi->bi_next = *return_bi;
2533 *return_bi = bi;
2534 }
2535 bi = nextbi;
2536 }
7eaf7e8e
SL
2537 if (bitmap_end)
2538 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2539 STRIPE_SECTORS, 0, 0);
2540 bitmap_end = 0;
a4456856
DW
2541 /* and fail all 'written' */
2542 bi = sh->dev[i].written;
2543 sh->dev[i].written = NULL;
2544 if (bi) bitmap_end = 1;
2545 while (bi && bi->bi_sector <
2546 sh->dev[i].sector + STRIPE_SECTORS) {
2547 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2548 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 2549 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
2550 md_write_end(conf->mddev);
2551 bi->bi_next = *return_bi;
2552 *return_bi = bi;
2553 }
2554 bi = bi2;
2555 }
2556
b5e98d65
DW
2557 /* fail any reads if this device is non-operational and
2558 * the data has not reached the cache yet.
2559 */
2560 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2561 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2562 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 2563 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
2564 bi = sh->dev[i].toread;
2565 sh->dev[i].toread = NULL;
143c4d05 2566 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
2567 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2568 wake_up(&conf->wait_for_overlap);
a4456856
DW
2569 while (bi && bi->bi_sector <
2570 sh->dev[i].sector + STRIPE_SECTORS) {
2571 struct bio *nextbi =
2572 r5_next_bio(bi, sh->dev[i].sector);
2573 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 2574 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
2575 bi->bi_next = *return_bi;
2576 *return_bi = bi;
2577 }
2578 bi = nextbi;
2579 }
2580 }
a4456856
DW
2581 if (bitmap_end)
2582 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2583 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
2584 /* If we were in the middle of a write the parity block might
2585 * still be locked - so just clear all R5_LOCKED flags
2586 */
2587 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856
DW
2588 }
2589
8b3e6cdc
DW
2590 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2591 if (atomic_dec_and_test(&conf->pending_full_writes))
2592 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2593}
2594
7f0da59b 2595static void
d1688a6d 2596handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
2597 struct stripe_head_state *s)
2598{
2599 int abort = 0;
2600 int i;
2601
7f0da59b
N
2602 clear_bit(STRIPE_SYNCING, &sh->state);
2603 s->syncing = 0;
9a3e1101 2604 s->replacing = 0;
7f0da59b 2605 /* There is nothing more to do for sync/check/repair.
18b9837e
N
2606 * Don't even need to abort as that is handled elsewhere
2607 * if needed, and not always wanted e.g. if there is a known
2608 * bad block here.
9a3e1101 2609 * For recover/replace we need to record a bad block on all
7f0da59b
N
2610 * non-sync devices, or abort the recovery
2611 */
18b9837e
N
2612 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2613 /* During recovery devices cannot be removed, so
2614 * locking and refcounting of rdevs is not needed
2615 */
2616 for (i = 0; i < conf->raid_disks; i++) {
2617 struct md_rdev *rdev = conf->disks[i].rdev;
2618 if (rdev
2619 && !test_bit(Faulty, &rdev->flags)
2620 && !test_bit(In_sync, &rdev->flags)
2621 && !rdev_set_badblocks(rdev, sh->sector,
2622 STRIPE_SECTORS, 0))
2623 abort = 1;
2624 rdev = conf->disks[i].replacement;
2625 if (rdev
2626 && !test_bit(Faulty, &rdev->flags)
2627 && !test_bit(In_sync, &rdev->flags)
2628 && !rdev_set_badblocks(rdev, sh->sector,
2629 STRIPE_SECTORS, 0))
2630 abort = 1;
2631 }
2632 if (abort)
2633 conf->recovery_disabled =
2634 conf->mddev->recovery_disabled;
7f0da59b 2635 }
18b9837e 2636 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
2637}
2638
9a3e1101
N
2639static int want_replace(struct stripe_head *sh, int disk_idx)
2640{
2641 struct md_rdev *rdev;
2642 int rv = 0;
2643 /* Doing recovery so rcu locking not required */
2644 rdev = sh->raid_conf->disks[disk_idx].replacement;
2645 if (rdev
2646 && !test_bit(Faulty, &rdev->flags)
2647 && !test_bit(In_sync, &rdev->flags)
2648 && (rdev->recovery_offset <= sh->sector
2649 || rdev->mddev->recovery_cp <= sh->sector))
2650 rv = 1;
2651
2652 return rv;
2653}
2654
93b3dbce 2655/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
2656 * to be read or computed to satisfy a request.
2657 *
2658 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 2659 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 2660 */
93b3dbce
N
2661static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2662 int disk_idx, int disks)
a4456856 2663{
5599becc 2664 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
2665 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2666 &sh->dev[s->failed_num[1]] };
5599becc 2667
93b3dbce 2668 /* is the data in this block needed, and can we get it? */
5599becc
YT
2669 if (!test_bit(R5_LOCKED, &dev->flags) &&
2670 !test_bit(R5_UPTODATE, &dev->flags) &&
2671 (dev->toread ||
2672 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2673 s->syncing || s->expanding ||
9a3e1101 2674 (s->replacing && want_replace(sh, disk_idx)) ||
5d35e09c
N
2675 (s->failed >= 1 && fdev[0]->toread) ||
2676 (s->failed >= 2 && fdev[1]->toread) ||
93b3dbce
N
2677 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2678 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2679 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
5599becc
YT
2680 /* we would like to get this block, possibly by computing it,
2681 * otherwise read it if the backing disk is insync
2682 */
2683 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2684 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2685 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
2686 (s->failed && (disk_idx == s->failed_num[0] ||
2687 disk_idx == s->failed_num[1]))) {
5599becc
YT
2688 /* have disk failed, and we're requested to fetch it;
2689 * do compute it
a4456856 2690 */
5599becc
YT
2691 pr_debug("Computing stripe %llu block %d\n",
2692 (unsigned long long)sh->sector, disk_idx);
2693 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2694 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2695 set_bit(R5_Wantcompute, &dev->flags);
2696 sh->ops.target = disk_idx;
2697 sh->ops.target2 = -1; /* no 2nd target */
2698 s->req_compute = 1;
93b3dbce
N
2699 /* Careful: from this point on 'uptodate' is in the eye
2700 * of raid_run_ops which services 'compute' operations
2701 * before writes. R5_Wantcompute flags a block that will
2702 * be R5_UPTODATE by the time it is needed for a
2703 * subsequent operation.
2704 */
5599becc
YT
2705 s->uptodate++;
2706 return 1;
2707 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2708 /* Computing 2-failure is *very* expensive; only
2709 * do it if failed >= 2
2710 */
2711 int other;
2712 for (other = disks; other--; ) {
2713 if (other == disk_idx)
2714 continue;
2715 if (!test_bit(R5_UPTODATE,
2716 &sh->dev[other].flags))
2717 break;
a4456856 2718 }
5599becc
YT
2719 BUG_ON(other < 0);
2720 pr_debug("Computing stripe %llu blocks %d,%d\n",
2721 (unsigned long long)sh->sector,
2722 disk_idx, other);
2723 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2724 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2725 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2726 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2727 sh->ops.target = disk_idx;
2728 sh->ops.target2 = other;
2729 s->uptodate += 2;
2730 s->req_compute = 1;
2731 return 1;
2732 } else if (test_bit(R5_Insync, &dev->flags)) {
2733 set_bit(R5_LOCKED, &dev->flags);
2734 set_bit(R5_Wantread, &dev->flags);
2735 s->locked++;
2736 pr_debug("Reading block %d (sync=%d)\n",
2737 disk_idx, s->syncing);
a4456856
DW
2738 }
2739 }
5599becc
YT
2740
2741 return 0;
2742}
2743
2744/**
93b3dbce 2745 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 2746 */
93b3dbce
N
2747static void handle_stripe_fill(struct stripe_head *sh,
2748 struct stripe_head_state *s,
2749 int disks)
5599becc
YT
2750{
2751 int i;
2752
2753 /* look for blocks to read/compute, skip this if a compute
2754 * is already in flight, or if the stripe contents are in the
2755 * midst of changing due to a write
2756 */
2757 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2758 !sh->reconstruct_state)
2759 for (i = disks; i--; )
93b3dbce 2760 if (fetch_block(sh, s, i, disks))
5599becc 2761 break;
a4456856
DW
2762 set_bit(STRIPE_HANDLE, &sh->state);
2763}
2764
2765
1fe797e6 2766/* handle_stripe_clean_event
a4456856
DW
2767 * any written block on an uptodate or failed drive can be returned.
2768 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2769 * never LOCKED, so we don't need to test 'failed' directly.
2770 */
d1688a6d 2771static void handle_stripe_clean_event(struct r5conf *conf,
a4456856
DW
2772 struct stripe_head *sh, int disks, struct bio **return_bi)
2773{
2774 int i;
2775 struct r5dev *dev;
2776
2777 for (i = disks; i--; )
2778 if (sh->dev[i].written) {
2779 dev = &sh->dev[i];
2780 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 2781 (test_bit(R5_UPTODATE, &dev->flags) ||
ca64cae9 2782 test_bit(R5_Discard, &dev->flags))) {
a4456856
DW
2783 /* We can return any write requests */
2784 struct bio *wbi, *wbi2;
45b4233c 2785 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
2786 if (test_and_clear_bit(R5_Discard, &dev->flags))
2787 clear_bit(R5_UPTODATE, &dev->flags);
a4456856
DW
2788 wbi = dev->written;
2789 dev->written = NULL;
2790 while (wbi && wbi->bi_sector <
2791 dev->sector + STRIPE_SECTORS) {
2792 wbi2 = r5_next_bio(wbi, dev->sector);
e7836bd6 2793 if (!raid5_dec_bi_active_stripes(wbi)) {
a4456856
DW
2794 md_write_end(conf->mddev);
2795 wbi->bi_next = *return_bi;
2796 *return_bi = wbi;
2797 }
2798 wbi = wbi2;
2799 }
7eaf7e8e
SL
2800 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2801 STRIPE_SECTORS,
a4456856 2802 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 2803 0);
a4456856 2804 }
ca64cae9
N
2805 } else if (test_bit(R5_Discard, &sh->dev[i].flags))
2806 clear_bit(R5_Discard, &sh->dev[i].flags);
8b3e6cdc
DW
2807
2808 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2809 if (atomic_dec_and_test(&conf->pending_full_writes))
2810 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2811}
2812
d1688a6d 2813static void handle_stripe_dirtying(struct r5conf *conf,
c8ac1803
N
2814 struct stripe_head *sh,
2815 struct stripe_head_state *s,
2816 int disks)
a4456856
DW
2817{
2818 int rmw = 0, rcw = 0, i;
a7854487
AL
2819 sector_t recovery_cp = conf->mddev->recovery_cp;
2820
2821 /* RAID6 requires 'rcw' in current implementation.
2822 * Otherwise, check whether resync is now happening or should start.
2823 * If yes, then the array is dirty (after unclean shutdown or
2824 * initial creation), so parity in some stripes might be inconsistent.
2825 * In this case, we need to always do reconstruct-write, to ensure
2826 * that in case of drive failure or read-error correction, we
2827 * generate correct data from the parity.
2828 */
2829 if (conf->max_degraded == 2 ||
2830 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2831 /* Calculate the real rcw later - for now make it
c8ac1803
N
2832 * look like rcw is cheaper
2833 */
2834 rcw = 1; rmw = 2;
a7854487
AL
2835 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2836 conf->max_degraded, (unsigned long long)recovery_cp,
2837 (unsigned long long)sh->sector);
c8ac1803 2838 } else for (i = disks; i--; ) {
a4456856
DW
2839 /* would I have to read this buffer for read_modify_write */
2840 struct r5dev *dev = &sh->dev[i];
2841 if ((dev->towrite || i == sh->pd_idx) &&
2842 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2843 !(test_bit(R5_UPTODATE, &dev->flags) ||
2844 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2845 if (test_bit(R5_Insync, &dev->flags))
2846 rmw++;
2847 else
2848 rmw += 2*disks; /* cannot read it */
2849 }
2850 /* Would I have to read this buffer for reconstruct_write */
2851 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2852 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2853 !(test_bit(R5_UPTODATE, &dev->flags) ||
2854 test_bit(R5_Wantcompute, &dev->flags))) {
2855 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2856 else
2857 rcw += 2*disks;
2858 }
2859 }
45b4233c 2860 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2861 (unsigned long long)sh->sector, rmw, rcw);
2862 set_bit(STRIPE_HANDLE, &sh->state);
a9add5d9 2863 if (rmw < rcw && rmw > 0) {
a4456856 2864 /* prefer read-modify-write, but need to get some data */
a9add5d9
N
2865 blk_add_trace_msg(conf->mddev->queue, "raid5 rmw %llu %d",
2866 (unsigned long long)sh->sector, rmw);
a4456856
DW
2867 for (i = disks; i--; ) {
2868 struct r5dev *dev = &sh->dev[i];
2869 if ((dev->towrite || i == sh->pd_idx) &&
2870 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2871 !(test_bit(R5_UPTODATE, &dev->flags) ||
2872 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2873 test_bit(R5_Insync, &dev->flags)) {
2874 if (
2875 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2876 pr_debug("Read_old block "
a9add5d9 2877 "%d for r-m-w\n", i);
a4456856
DW
2878 set_bit(R5_LOCKED, &dev->flags);
2879 set_bit(R5_Wantread, &dev->flags);
2880 s->locked++;
2881 } else {
2882 set_bit(STRIPE_DELAYED, &sh->state);
2883 set_bit(STRIPE_HANDLE, &sh->state);
2884 }
2885 }
2886 }
a9add5d9 2887 }
c8ac1803 2888 if (rcw <= rmw && rcw > 0) {
a4456856 2889 /* want reconstruct write, but need to get some data */
a9add5d9 2890 int qread =0;
c8ac1803 2891 rcw = 0;
a4456856
DW
2892 for (i = disks; i--; ) {
2893 struct r5dev *dev = &sh->dev[i];
2894 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 2895 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 2896 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 2897 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
2898 test_bit(R5_Wantcompute, &dev->flags))) {
2899 rcw++;
2900 if (!test_bit(R5_Insync, &dev->flags))
2901 continue; /* it's a failed drive */
a4456856
DW
2902 if (
2903 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2904 pr_debug("Read_old block "
a4456856
DW
2905 "%d for Reconstruct\n", i);
2906 set_bit(R5_LOCKED, &dev->flags);
2907 set_bit(R5_Wantread, &dev->flags);
2908 s->locked++;
a9add5d9 2909 qread++;
a4456856
DW
2910 } else {
2911 set_bit(STRIPE_DELAYED, &sh->state);
2912 set_bit(STRIPE_HANDLE, &sh->state);
2913 }
2914 }
2915 }
a9add5d9
N
2916 if (rcw)
2917 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
2918 (unsigned long long)sh->sector,
2919 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 2920 }
a4456856
DW
2921 /* now if nothing is locked, and if we have enough data,
2922 * we can start a write request
2923 */
f38e1219
DW
2924 /* since handle_stripe can be called at any time we need to handle the
2925 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
2926 * subsequent call wants to start a write request. raid_run_ops only
2927 * handles the case where compute block and reconstruct are requested
f38e1219
DW
2928 * simultaneously. If this is not the case then new writes need to be
2929 * held off until the compute completes.
2930 */
976ea8d4
DW
2931 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2932 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2933 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 2934 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
2935}
2936
d1688a6d 2937static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
2938 struct stripe_head_state *s, int disks)
2939{
ecc65c9b 2940 struct r5dev *dev = NULL;
bd2ab670 2941
a4456856 2942 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2943
ecc65c9b
DW
2944 switch (sh->check_state) {
2945 case check_state_idle:
2946 /* start a new check operation if there are no failures */
bd2ab670 2947 if (s->failed == 0) {
bd2ab670 2948 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
2949 sh->check_state = check_state_run;
2950 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 2951 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 2952 s->uptodate--;
ecc65c9b 2953 break;
bd2ab670 2954 }
f2b3b44d 2955 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
2956 /* fall through */
2957 case check_state_compute_result:
2958 sh->check_state = check_state_idle;
2959 if (!dev)
2960 dev = &sh->dev[sh->pd_idx];
2961
2962 /* check that a write has not made the stripe insync */
2963 if (test_bit(STRIPE_INSYNC, &sh->state))
2964 break;
c8894419 2965
a4456856 2966 /* either failed parity check, or recovery is happening */
a4456856
DW
2967 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2968 BUG_ON(s->uptodate != disks);
2969
2970 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 2971 s->locked++;
a4456856 2972 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2973
a4456856 2974 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 2975 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
2976 break;
2977 case check_state_run:
2978 break; /* we will be called again upon completion */
2979 case check_state_check_result:
2980 sh->check_state = check_state_idle;
2981
2982 /* if a failure occurred during the check operation, leave
2983 * STRIPE_INSYNC not set and let the stripe be handled again
2984 */
2985 if (s->failed)
2986 break;
2987
2988 /* handle a successful check operation, if parity is correct
2989 * we are done. Otherwise update the mismatch count and repair
2990 * parity if !MD_RECOVERY_CHECK
2991 */
ad283ea4 2992 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
2993 /* parity is correct (on disc,
2994 * not in buffer any more)
2995 */
2996 set_bit(STRIPE_INSYNC, &sh->state);
2997 else {
7f7583d4 2998 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
ecc65c9b
DW
2999 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3000 /* don't try to repair!! */
3001 set_bit(STRIPE_INSYNC, &sh->state);
3002 else {
3003 sh->check_state = check_state_compute_run;
976ea8d4 3004 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
3005 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3006 set_bit(R5_Wantcompute,
3007 &sh->dev[sh->pd_idx].flags);
3008 sh->ops.target = sh->pd_idx;
ac6b53b6 3009 sh->ops.target2 = -1;
ecc65c9b
DW
3010 s->uptodate++;
3011 }
3012 }
3013 break;
3014 case check_state_compute_run:
3015 break;
3016 default:
3017 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3018 __func__, sh->check_state,
3019 (unsigned long long) sh->sector);
3020 BUG();
a4456856
DW
3021 }
3022}
3023
3024
d1688a6d 3025static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 3026 struct stripe_head_state *s,
f2b3b44d 3027 int disks)
a4456856 3028{
a4456856 3029 int pd_idx = sh->pd_idx;
34e04e87 3030 int qd_idx = sh->qd_idx;
d82dfee0 3031 struct r5dev *dev;
a4456856
DW
3032
3033 set_bit(STRIPE_HANDLE, &sh->state);
3034
3035 BUG_ON(s->failed > 2);
d82dfee0 3036
a4456856
DW
3037 /* Want to check and possibly repair P and Q.
3038 * However there could be one 'failed' device, in which
3039 * case we can only check one of them, possibly using the
3040 * other to generate missing data
3041 */
3042
d82dfee0
DW
3043 switch (sh->check_state) {
3044 case check_state_idle:
3045 /* start a new check operation if there are < 2 failures */
f2b3b44d 3046 if (s->failed == s->q_failed) {
d82dfee0 3047 /* The only possible failed device holds Q, so it
a4456856
DW
3048 * makes sense to check P (If anything else were failed,
3049 * we would have used P to recreate it).
3050 */
d82dfee0 3051 sh->check_state = check_state_run;
a4456856 3052 }
f2b3b44d 3053 if (!s->q_failed && s->failed < 2) {
d82dfee0 3054 /* Q is not failed, and we didn't use it to generate
a4456856
DW
3055 * anything, so it makes sense to check it
3056 */
d82dfee0
DW
3057 if (sh->check_state == check_state_run)
3058 sh->check_state = check_state_run_pq;
3059 else
3060 sh->check_state = check_state_run_q;
a4456856 3061 }
a4456856 3062
d82dfee0
DW
3063 /* discard potentially stale zero_sum_result */
3064 sh->ops.zero_sum_result = 0;
a4456856 3065
d82dfee0
DW
3066 if (sh->check_state == check_state_run) {
3067 /* async_xor_zero_sum destroys the contents of P */
3068 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3069 s->uptodate--;
a4456856 3070 }
d82dfee0
DW
3071 if (sh->check_state >= check_state_run &&
3072 sh->check_state <= check_state_run_pq) {
3073 /* async_syndrome_zero_sum preserves P and Q, so
3074 * no need to mark them !uptodate here
3075 */
3076 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3077 break;
a4456856
DW
3078 }
3079
d82dfee0
DW
3080 /* we have 2-disk failure */
3081 BUG_ON(s->failed != 2);
3082 /* fall through */
3083 case check_state_compute_result:
3084 sh->check_state = check_state_idle;
a4456856 3085
d82dfee0
DW
3086 /* check that a write has not made the stripe insync */
3087 if (test_bit(STRIPE_INSYNC, &sh->state))
3088 break;
a4456856
DW
3089
3090 /* now write out any block on a failed drive,
d82dfee0 3091 * or P or Q if they were recomputed
a4456856 3092 */
d82dfee0 3093 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 3094 if (s->failed == 2) {
f2b3b44d 3095 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
3096 s->locked++;
3097 set_bit(R5_LOCKED, &dev->flags);
3098 set_bit(R5_Wantwrite, &dev->flags);
3099 }
3100 if (s->failed >= 1) {
f2b3b44d 3101 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
3102 s->locked++;
3103 set_bit(R5_LOCKED, &dev->flags);
3104 set_bit(R5_Wantwrite, &dev->flags);
3105 }
d82dfee0 3106 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
3107 dev = &sh->dev[pd_idx];
3108 s->locked++;
3109 set_bit(R5_LOCKED, &dev->flags);
3110 set_bit(R5_Wantwrite, &dev->flags);
3111 }
d82dfee0 3112 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
3113 dev = &sh->dev[qd_idx];
3114 s->locked++;
3115 set_bit(R5_LOCKED, &dev->flags);
3116 set_bit(R5_Wantwrite, &dev->flags);
3117 }
3118 clear_bit(STRIPE_DEGRADED, &sh->state);
3119
3120 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
3121 break;
3122 case check_state_run:
3123 case check_state_run_q:
3124 case check_state_run_pq:
3125 break; /* we will be called again upon completion */
3126 case check_state_check_result:
3127 sh->check_state = check_state_idle;
3128
3129 /* handle a successful check operation, if parity is correct
3130 * we are done. Otherwise update the mismatch count and repair
3131 * parity if !MD_RECOVERY_CHECK
3132 */
3133 if (sh->ops.zero_sum_result == 0) {
3134 /* both parities are correct */
3135 if (!s->failed)
3136 set_bit(STRIPE_INSYNC, &sh->state);
3137 else {
3138 /* in contrast to the raid5 case we can validate
3139 * parity, but still have a failure to write
3140 * back
3141 */
3142 sh->check_state = check_state_compute_result;
3143 /* Returning at this point means that we may go
3144 * off and bring p and/or q uptodate again so
3145 * we make sure to check zero_sum_result again
3146 * to verify if p or q need writeback
3147 */
3148 }
3149 } else {
7f7583d4 3150 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
d82dfee0
DW
3151 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3152 /* don't try to repair!! */
3153 set_bit(STRIPE_INSYNC, &sh->state);
3154 else {
3155 int *target = &sh->ops.target;
3156
3157 sh->ops.target = -1;
3158 sh->ops.target2 = -1;
3159 sh->check_state = check_state_compute_run;
3160 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3161 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3162 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3163 set_bit(R5_Wantcompute,
3164 &sh->dev[pd_idx].flags);
3165 *target = pd_idx;
3166 target = &sh->ops.target2;
3167 s->uptodate++;
3168 }
3169 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3170 set_bit(R5_Wantcompute,
3171 &sh->dev[qd_idx].flags);
3172 *target = qd_idx;
3173 s->uptodate++;
3174 }
3175 }
3176 }
3177 break;
3178 case check_state_compute_run:
3179 break;
3180 default:
3181 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3182 __func__, sh->check_state,
3183 (unsigned long long) sh->sector);
3184 BUG();
a4456856
DW
3185 }
3186}
3187
d1688a6d 3188static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
3189{
3190 int i;
3191
3192 /* We have read all the blocks in this stripe and now we need to
3193 * copy some of them into a target stripe for expand.
3194 */
f0a50d37 3195 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
3196 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3197 for (i = 0; i < sh->disks; i++)
34e04e87 3198 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 3199 int dd_idx, j;
a4456856 3200 struct stripe_head *sh2;
a08abd8c 3201 struct async_submit_ctl submit;
a4456856 3202
784052ec 3203 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
3204 sector_t s = raid5_compute_sector(conf, bn, 0,
3205 &dd_idx, NULL);
a8c906ca 3206 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
3207 if (sh2 == NULL)
3208 /* so far only the early blocks of this stripe
3209 * have been requested. When later blocks
3210 * get requested, we will try again
3211 */
3212 continue;
3213 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3214 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3215 /* must have already done this block */
3216 release_stripe(sh2);
3217 continue;
3218 }
f0a50d37
DW
3219
3220 /* place all the copies on one channel */
a08abd8c 3221 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 3222 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 3223 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 3224 &submit);
f0a50d37 3225
a4456856
DW
3226 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3227 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3228 for (j = 0; j < conf->raid_disks; j++)
3229 if (j != sh2->pd_idx &&
86c374ba 3230 j != sh2->qd_idx &&
a4456856
DW
3231 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3232 break;
3233 if (j == conf->raid_disks) {
3234 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3235 set_bit(STRIPE_HANDLE, &sh2->state);
3236 }
3237 release_stripe(sh2);
f0a50d37 3238
a4456856 3239 }
a2e08551 3240 /* done submitting copies, wait for them to complete */
749586b7 3241 async_tx_quiesce(&tx);
a4456856 3242}
1da177e4
LT
3243
3244/*
3245 * handle_stripe - do things to a stripe.
3246 *
9a3e1101
N
3247 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3248 * state of various bits to see what needs to be done.
1da177e4 3249 * Possible results:
9a3e1101
N
3250 * return some read requests which now have data
3251 * return some write requests which are safely on storage
1da177e4
LT
3252 * schedule a read on some buffers
3253 * schedule a write of some buffers
3254 * return confirmation of parity correctness
3255 *
1da177e4 3256 */
a4456856 3257
acfe726b 3258static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 3259{
d1688a6d 3260 struct r5conf *conf = sh->raid_conf;
f416885e 3261 int disks = sh->disks;
474af965
N
3262 struct r5dev *dev;
3263 int i;
9a3e1101 3264 int do_recovery = 0;
1da177e4 3265
acfe726b
N
3266 memset(s, 0, sizeof(*s));
3267
acfe726b
N
3268 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3269 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3270 s->failed_num[0] = -1;
3271 s->failed_num[1] = -1;
1da177e4 3272
acfe726b 3273 /* Now to look around and see what can be done */
1da177e4 3274 rcu_read_lock();
16a53ecc 3275 for (i=disks; i--; ) {
3cb03002 3276 struct md_rdev *rdev;
31c176ec
N
3277 sector_t first_bad;
3278 int bad_sectors;
3279 int is_bad = 0;
acfe726b 3280
16a53ecc 3281 dev = &sh->dev[i];
1da177e4 3282
45b4233c 3283 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
3284 i, dev->flags,
3285 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
3286 /* maybe we can reply to a read
3287 *
3288 * new wantfill requests are only permitted while
3289 * ops_complete_biofill is guaranteed to be inactive
3290 */
3291 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3292 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3293 set_bit(R5_Wantfill, &dev->flags);
1da177e4 3294
16a53ecc 3295 /* now count some things */
cc94015a
N
3296 if (test_bit(R5_LOCKED, &dev->flags))
3297 s->locked++;
3298 if (test_bit(R5_UPTODATE, &dev->flags))
3299 s->uptodate++;
2d6e4ecc 3300 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
3301 s->compute++;
3302 BUG_ON(s->compute > 2);
2d6e4ecc 3303 }
1da177e4 3304
acfe726b 3305 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 3306 s->to_fill++;
acfe726b 3307 else if (dev->toread)
cc94015a 3308 s->to_read++;
16a53ecc 3309 if (dev->towrite) {
cc94015a 3310 s->to_write++;
16a53ecc 3311 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 3312 s->non_overwrite++;
16a53ecc 3313 }
a4456856 3314 if (dev->written)
cc94015a 3315 s->written++;
14a75d3e
N
3316 /* Prefer to use the replacement for reads, but only
3317 * if it is recovered enough and has no bad blocks.
3318 */
3319 rdev = rcu_dereference(conf->disks[i].replacement);
3320 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3321 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3322 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3323 &first_bad, &bad_sectors))
3324 set_bit(R5_ReadRepl, &dev->flags);
3325 else {
9a3e1101
N
3326 if (rdev)
3327 set_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
3328 rdev = rcu_dereference(conf->disks[i].rdev);
3329 clear_bit(R5_ReadRepl, &dev->flags);
3330 }
9283d8c5
N
3331 if (rdev && test_bit(Faulty, &rdev->flags))
3332 rdev = NULL;
31c176ec
N
3333 if (rdev) {
3334 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3335 &first_bad, &bad_sectors);
3336 if (s->blocked_rdev == NULL
3337 && (test_bit(Blocked, &rdev->flags)
3338 || is_bad < 0)) {
3339 if (is_bad < 0)
3340 set_bit(BlockedBadBlocks,
3341 &rdev->flags);
3342 s->blocked_rdev = rdev;
3343 atomic_inc(&rdev->nr_pending);
3344 }
6bfe0b49 3345 }
415e72d0
N
3346 clear_bit(R5_Insync, &dev->flags);
3347 if (!rdev)
3348 /* Not in-sync */;
31c176ec
N
3349 else if (is_bad) {
3350 /* also not in-sync */
18b9837e
N
3351 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3352 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
3353 /* treat as in-sync, but with a read error
3354 * which we can now try to correct
3355 */
3356 set_bit(R5_Insync, &dev->flags);
3357 set_bit(R5_ReadError, &dev->flags);
3358 }
3359 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 3360 set_bit(R5_Insync, &dev->flags);
30d7a483 3361 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 3362 /* in sync if before recovery_offset */
30d7a483
N
3363 set_bit(R5_Insync, &dev->flags);
3364 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3365 test_bit(R5_Expanded, &dev->flags))
3366 /* If we've reshaped into here, we assume it is Insync.
3367 * We will shortly update recovery_offset to make
3368 * it official.
3369 */
3370 set_bit(R5_Insync, &dev->flags);
3371
5d8c71f9 3372 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
3373 /* This flag does not apply to '.replacement'
3374 * only to .rdev, so make sure to check that*/
3375 struct md_rdev *rdev2 = rcu_dereference(
3376 conf->disks[i].rdev);
3377 if (rdev2 == rdev)
3378 clear_bit(R5_Insync, &dev->flags);
3379 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 3380 s->handle_bad_blocks = 1;
14a75d3e 3381 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
3382 } else
3383 clear_bit(R5_WriteError, &dev->flags);
3384 }
5d8c71f9 3385 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
3386 /* This flag does not apply to '.replacement'
3387 * only to .rdev, so make sure to check that*/
3388 struct md_rdev *rdev2 = rcu_dereference(
3389 conf->disks[i].rdev);
3390 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 3391 s->handle_bad_blocks = 1;
14a75d3e 3392 atomic_inc(&rdev2->nr_pending);
b84db560
N
3393 } else
3394 clear_bit(R5_MadeGood, &dev->flags);
3395 }
977df362
N
3396 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3397 struct md_rdev *rdev2 = rcu_dereference(
3398 conf->disks[i].replacement);
3399 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3400 s->handle_bad_blocks = 1;
3401 atomic_inc(&rdev2->nr_pending);
3402 } else
3403 clear_bit(R5_MadeGoodRepl, &dev->flags);
3404 }
415e72d0 3405 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
3406 /* The ReadError flag will just be confusing now */
3407 clear_bit(R5_ReadError, &dev->flags);
3408 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3409 }
415e72d0
N
3410 if (test_bit(R5_ReadError, &dev->flags))
3411 clear_bit(R5_Insync, &dev->flags);
3412 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
3413 if (s->failed < 2)
3414 s->failed_num[s->failed] = i;
3415 s->failed++;
9a3e1101
N
3416 if (rdev && !test_bit(Faulty, &rdev->flags))
3417 do_recovery = 1;
415e72d0 3418 }
1da177e4 3419 }
9a3e1101
N
3420 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3421 /* If there is a failed device being replaced,
3422 * we must be recovering.
3423 * else if we are after recovery_cp, we must be syncing
c6d2e084 3424 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
3425 * else we can only be replacing
3426 * sync and recovery both need to read all devices, and so
3427 * use the same flag.
3428 */
3429 if (do_recovery ||
c6d2e084 3430 sh->sector >= conf->mddev->recovery_cp ||
3431 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
3432 s->syncing = 1;
3433 else
3434 s->replacing = 1;
3435 }
1da177e4 3436 rcu_read_unlock();
cc94015a
N
3437}
3438
3439static void handle_stripe(struct stripe_head *sh)
3440{
3441 struct stripe_head_state s;
d1688a6d 3442 struct r5conf *conf = sh->raid_conf;
3687c061 3443 int i;
84789554
N
3444 int prexor;
3445 int disks = sh->disks;
474af965 3446 struct r5dev *pdev, *qdev;
cc94015a
N
3447
3448 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 3449 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
3450 /* already being handled, ensure it gets handled
3451 * again when current action finishes */
3452 set_bit(STRIPE_HANDLE, &sh->state);
3453 return;
3454 }
3455
3456 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3457 set_bit(STRIPE_SYNCING, &sh->state);
3458 clear_bit(STRIPE_INSYNC, &sh->state);
3459 }
3460 clear_bit(STRIPE_DELAYED, &sh->state);
3461
3462 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3463 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3464 (unsigned long long)sh->sector, sh->state,
3465 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3466 sh->check_state, sh->reconstruct_state);
3687c061 3467
acfe726b 3468 analyse_stripe(sh, &s);
c5a31000 3469
bc2607f3
N
3470 if (s.handle_bad_blocks) {
3471 set_bit(STRIPE_HANDLE, &sh->state);
3472 goto finish;
3473 }
3474
474af965
N
3475 if (unlikely(s.blocked_rdev)) {
3476 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 3477 s.replacing || s.to_write || s.written) {
474af965
N
3478 set_bit(STRIPE_HANDLE, &sh->state);
3479 goto finish;
3480 }
3481 /* There is nothing for the blocked_rdev to block */
3482 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3483 s.blocked_rdev = NULL;
3484 }
3485
3486 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3487 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3488 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3489 }
3490
3491 pr_debug("locked=%d uptodate=%d to_read=%d"
3492 " to_write=%d failed=%d failed_num=%d,%d\n",
3493 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3494 s.failed_num[0], s.failed_num[1]);
3495 /* check if the array has lost more than max_degraded devices and,
3496 * if so, some requests might need to be failed.
3497 */
9a3f530f
N
3498 if (s.failed > conf->max_degraded) {
3499 sh->check_state = 0;
3500 sh->reconstruct_state = 0;
3501 if (s.to_read+s.to_write+s.written)
3502 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
9a3e1101 3503 if (s.syncing + s.replacing)
9a3f530f
N
3504 handle_failed_sync(conf, sh, &s);
3505 }
474af965 3506
84789554
N
3507 /* Now we check to see if any write operations have recently
3508 * completed
3509 */
3510 prexor = 0;
3511 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3512 prexor = 1;
3513 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3514 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3515 sh->reconstruct_state = reconstruct_state_idle;
3516
3517 /* All the 'written' buffers and the parity block are ready to
3518 * be written back to disk
3519 */
9e444768
SL
3520 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3521 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 3522 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
3523 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3524 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
3525 for (i = disks; i--; ) {
3526 struct r5dev *dev = &sh->dev[i];
3527 if (test_bit(R5_LOCKED, &dev->flags) &&
3528 (i == sh->pd_idx || i == sh->qd_idx ||
3529 dev->written)) {
3530 pr_debug("Writing block %d\n", i);
3531 set_bit(R5_Wantwrite, &dev->flags);
3532 if (prexor)
3533 continue;
3534 if (!test_bit(R5_Insync, &dev->flags) ||
3535 ((i == sh->pd_idx || i == sh->qd_idx) &&
3536 s.failed == 0))
3537 set_bit(STRIPE_INSYNC, &sh->state);
3538 }
3539 }
3540 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3541 s.dec_preread_active = 1;
3542 }
3543
ef5b7c69
N
3544 /*
3545 * might be able to return some write requests if the parity blocks
3546 * are safe, or on a failed drive
3547 */
3548 pdev = &sh->dev[sh->pd_idx];
3549 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3550 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3551 qdev = &sh->dev[sh->qd_idx];
3552 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3553 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3554 || conf->level < 6;
3555
3556 if (s.written &&
3557 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3558 && !test_bit(R5_LOCKED, &pdev->flags)
3559 && (test_bit(R5_UPTODATE, &pdev->flags) ||
3560 test_bit(R5_Discard, &pdev->flags))))) &&
3561 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3562 && !test_bit(R5_LOCKED, &qdev->flags)
3563 && (test_bit(R5_UPTODATE, &qdev->flags) ||
3564 test_bit(R5_Discard, &qdev->flags))))))
3565 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3566
3567 /* Now we might consider reading some blocks, either to check/generate
3568 * parity, or to satisfy requests
3569 * or to load a block that is being partially written.
3570 */
3571 if (s.to_read || s.non_overwrite
3572 || (conf->level == 6 && s.to_write && s.failed)
3573 || (s.syncing && (s.uptodate + s.compute < disks))
3574 || s.replacing
3575 || s.expanding)
3576 handle_stripe_fill(sh, &s, disks);
3577
84789554
N
3578 /* Now to consider new write requests and what else, if anything
3579 * should be read. We do not handle new writes when:
3580 * 1/ A 'write' operation (copy+xor) is already in flight.
3581 * 2/ A 'check' operation is in flight, as it may clobber the parity
3582 * block.
3583 */
3584 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3585 handle_stripe_dirtying(conf, sh, &s, disks);
3586
3587 /* maybe we need to check and possibly fix the parity for this stripe
3588 * Any reads will already have been scheduled, so we just see if enough
3589 * data is available. The parity check is held off while parity
3590 * dependent operations are in flight.
3591 */
3592 if (sh->check_state ||
3593 (s.syncing && s.locked == 0 &&
3594 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3595 !test_bit(STRIPE_INSYNC, &sh->state))) {
3596 if (conf->level == 6)
3597 handle_parity_checks6(conf, sh, &s, disks);
3598 else
3599 handle_parity_checks5(conf, sh, &s, disks);
3600 }
c5a31000 3601
9a3e1101
N
3602 if (s.replacing && s.locked == 0
3603 && !test_bit(STRIPE_INSYNC, &sh->state)) {
3604 /* Write out to replacement devices where possible */
3605 for (i = 0; i < conf->raid_disks; i++)
3606 if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3607 test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3608 set_bit(R5_WantReplace, &sh->dev[i].flags);
3609 set_bit(R5_LOCKED, &sh->dev[i].flags);
3610 s.locked++;
3611 }
3612 set_bit(STRIPE_INSYNC, &sh->state);
3613 }
3614 if ((s.syncing || s.replacing) && s.locked == 0 &&
3615 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
3616 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3617 clear_bit(STRIPE_SYNCING, &sh->state);
3618 }
3619
3620 /* If the failed drives are just a ReadError, then we might need
3621 * to progress the repair/check process
3622 */
3623 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3624 for (i = 0; i < s.failed; i++) {
3625 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3626 if (test_bit(R5_ReadError, &dev->flags)
3627 && !test_bit(R5_LOCKED, &dev->flags)
3628 && test_bit(R5_UPTODATE, &dev->flags)
3629 ) {
3630 if (!test_bit(R5_ReWrite, &dev->flags)) {
3631 set_bit(R5_Wantwrite, &dev->flags);
3632 set_bit(R5_ReWrite, &dev->flags);
3633 set_bit(R5_LOCKED, &dev->flags);
3634 s.locked++;
3635 } else {
3636 /* let's read it back */
3637 set_bit(R5_Wantread, &dev->flags);
3638 set_bit(R5_LOCKED, &dev->flags);
3639 s.locked++;
3640 }
3641 }
3642 }
3643
3644
3687c061
N
3645 /* Finish reconstruct operations initiated by the expansion process */
3646 if (sh->reconstruct_state == reconstruct_state_result) {
3647 struct stripe_head *sh_src
3648 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3649 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3650 /* sh cannot be written until sh_src has been read.
3651 * so arrange for sh to be delayed a little
3652 */
3653 set_bit(STRIPE_DELAYED, &sh->state);
3654 set_bit(STRIPE_HANDLE, &sh->state);
3655 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3656 &sh_src->state))
3657 atomic_inc(&conf->preread_active_stripes);
3658 release_stripe(sh_src);
3659 goto finish;
3660 }
3661 if (sh_src)
3662 release_stripe(sh_src);
3663
3664 sh->reconstruct_state = reconstruct_state_idle;
3665 clear_bit(STRIPE_EXPANDING, &sh->state);
3666 for (i = conf->raid_disks; i--; ) {
3667 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3668 set_bit(R5_LOCKED, &sh->dev[i].flags);
3669 s.locked++;
3670 }
3671 }
f416885e 3672
3687c061
N
3673 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3674 !sh->reconstruct_state) {
3675 /* Need to write out all blocks after computing parity */
3676 sh->disks = conf->raid_disks;
3677 stripe_set_idx(sh->sector, conf, 0, sh);
3678 schedule_reconstruction(sh, &s, 1, 1);
3679 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3680 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3681 atomic_dec(&conf->reshape_stripes);
3682 wake_up(&conf->wait_for_overlap);
3683 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3684 }
3685
3686 if (s.expanding && s.locked == 0 &&
3687 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3688 handle_stripe_expansion(conf, sh);
16a53ecc 3689
3687c061 3690finish:
6bfe0b49 3691 /* wait for this device to become unblocked */
5f066c63
N
3692 if (unlikely(s.blocked_rdev)) {
3693 if (conf->mddev->external)
3694 md_wait_for_blocked_rdev(s.blocked_rdev,
3695 conf->mddev);
3696 else
3697 /* Internal metadata will immediately
3698 * be written by raid5d, so we don't
3699 * need to wait here.
3700 */
3701 rdev_dec_pending(s.blocked_rdev,
3702 conf->mddev);
3703 }
6bfe0b49 3704
bc2607f3
N
3705 if (s.handle_bad_blocks)
3706 for (i = disks; i--; ) {
3cb03002 3707 struct md_rdev *rdev;
bc2607f3
N
3708 struct r5dev *dev = &sh->dev[i];
3709 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3710 /* We own a safe reference to the rdev */
3711 rdev = conf->disks[i].rdev;
3712 if (!rdev_set_badblocks(rdev, sh->sector,
3713 STRIPE_SECTORS, 0))
3714 md_error(conf->mddev, rdev);
3715 rdev_dec_pending(rdev, conf->mddev);
3716 }
b84db560
N
3717 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3718 rdev = conf->disks[i].rdev;
3719 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 3720 STRIPE_SECTORS, 0);
b84db560
N
3721 rdev_dec_pending(rdev, conf->mddev);
3722 }
977df362
N
3723 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3724 rdev = conf->disks[i].replacement;
dd054fce
N
3725 if (!rdev)
3726 /* rdev have been moved down */
3727 rdev = conf->disks[i].rdev;
977df362 3728 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 3729 STRIPE_SECTORS, 0);
977df362
N
3730 rdev_dec_pending(rdev, conf->mddev);
3731 }
bc2607f3
N
3732 }
3733
6c0069c0
YT
3734 if (s.ops_request)
3735 raid_run_ops(sh, s.ops_request);
3736
f0e43bcd 3737 ops_run_io(sh, &s);
16a53ecc 3738
c5709ef6 3739 if (s.dec_preread_active) {
729a1866 3740 /* We delay this until after ops_run_io so that if make_request
e9c7469b 3741 * is waiting on a flush, it won't continue until the writes
729a1866
N
3742 * have actually been submitted.
3743 */
3744 atomic_dec(&conf->preread_active_stripes);
3745 if (atomic_read(&conf->preread_active_stripes) <
3746 IO_THRESHOLD)
3747 md_wakeup_thread(conf->mddev->thread);
3748 }
3749
c5709ef6 3750 return_io(s.return_bi);
16a53ecc 3751
257a4b42 3752 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
3753}
3754
d1688a6d 3755static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
3756{
3757 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3758 while (!list_empty(&conf->delayed_list)) {
3759 struct list_head *l = conf->delayed_list.next;
3760 struct stripe_head *sh;
3761 sh = list_entry(l, struct stripe_head, lru);
3762 list_del_init(l);
3763 clear_bit(STRIPE_DELAYED, &sh->state);
3764 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3765 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3766 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3767 }
482c0834 3768 }
16a53ecc
N
3769}
3770
d1688a6d 3771static void activate_bit_delay(struct r5conf *conf)
16a53ecc
N
3772{
3773 /* device_lock is held */
3774 struct list_head head;
3775 list_add(&head, &conf->bitmap_list);
3776 list_del_init(&conf->bitmap_list);
3777 while (!list_empty(&head)) {
3778 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3779 list_del_init(&sh->lru);
3780 atomic_inc(&sh->count);
3781 __release_stripe(conf, sh);
3782 }
3783}
3784
fd01b88c 3785int md_raid5_congested(struct mddev *mddev, int bits)
f022b2fd 3786{
d1688a6d 3787 struct r5conf *conf = mddev->private;
f022b2fd
N
3788
3789 /* No difference between reads and writes. Just check
3790 * how busy the stripe_cache is
3791 */
3fa841d7 3792
f022b2fd
N
3793 if (conf->inactive_blocked)
3794 return 1;
3795 if (conf->quiesce)
3796 return 1;
3797 if (list_empty_careful(&conf->inactive_list))
3798 return 1;
3799
3800 return 0;
3801}
11d8a6e3
N
3802EXPORT_SYMBOL_GPL(md_raid5_congested);
3803
3804static int raid5_congested(void *data, int bits)
3805{
fd01b88c 3806 struct mddev *mddev = data;
11d8a6e3
N
3807
3808 return mddev_congested(mddev, bits) ||
3809 md_raid5_congested(mddev, bits);
3810}
f022b2fd 3811
23032a0e
RBJ
3812/* We want read requests to align with chunks where possible,
3813 * but write requests don't need to.
3814 */
cc371e66
AK
3815static int raid5_mergeable_bvec(struct request_queue *q,
3816 struct bvec_merge_data *bvm,
3817 struct bio_vec *biovec)
23032a0e 3818{
fd01b88c 3819 struct mddev *mddev = q->queuedata;
cc371e66 3820 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 3821 int max;
9d8f0363 3822 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 3823 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 3824
cc371e66 3825 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
3826 return biovec->bv_len; /* always allow writes to be mergeable */
3827
664e7c41
AN
3828 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3829 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
3830 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3831 if (max < 0) max = 0;
3832 if (max <= biovec->bv_len && bio_sectors == 0)
3833 return biovec->bv_len;
3834 else
3835 return max;
3836}
3837
f679623f 3838
fd01b88c 3839static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f
RBJ
3840{
3841 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 3842 unsigned int chunk_sectors = mddev->chunk_sectors;
f679623f
RBJ
3843 unsigned int bio_sectors = bio->bi_size >> 9;
3844
664e7c41
AN
3845 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3846 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
3847 return chunk_sectors >=
3848 ((sector & (chunk_sectors - 1)) + bio_sectors);
3849}
3850
46031f9a
RBJ
3851/*
3852 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3853 * later sampled by raid5d.
3854 */
d1688a6d 3855static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
3856{
3857 unsigned long flags;
3858
3859 spin_lock_irqsave(&conf->device_lock, flags);
3860
3861 bi->bi_next = conf->retry_read_aligned_list;
3862 conf->retry_read_aligned_list = bi;
3863
3864 spin_unlock_irqrestore(&conf->device_lock, flags);
3865 md_wakeup_thread(conf->mddev->thread);
3866}
3867
3868
d1688a6d 3869static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
3870{
3871 struct bio *bi;
3872
3873 bi = conf->retry_read_aligned;
3874 if (bi) {
3875 conf->retry_read_aligned = NULL;
3876 return bi;
3877 }
3878 bi = conf->retry_read_aligned_list;
3879 if(bi) {
387bb173 3880 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 3881 bi->bi_next = NULL;
960e739d
JA
3882 /*
3883 * this sets the active strip count to 1 and the processed
3884 * strip count to zero (upper 8 bits)
3885 */
e7836bd6 3886 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
46031f9a
RBJ
3887 }
3888
3889 return bi;
3890}
3891
3892
f679623f
RBJ
3893/*
3894 * The "raid5_align_endio" should check if the read succeeded and if it
3895 * did, call bio_endio on the original bio (having bio_put the new bio
3896 * first).
3897 * If the read failed..
3898 */
6712ecf8 3899static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3900{
3901 struct bio* raid_bi = bi->bi_private;
fd01b88c 3902 struct mddev *mddev;
d1688a6d 3903 struct r5conf *conf;
46031f9a 3904 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3cb03002 3905 struct md_rdev *rdev;
46031f9a 3906
f679623f 3907 bio_put(bi);
46031f9a 3908
46031f9a
RBJ
3909 rdev = (void*)raid_bi->bi_next;
3910 raid_bi->bi_next = NULL;
2b7f2228
N
3911 mddev = rdev->mddev;
3912 conf = mddev->private;
46031f9a
RBJ
3913
3914 rdev_dec_pending(rdev, conf->mddev);
3915
3916 if (!error && uptodate) {
6712ecf8 3917 bio_endio(raid_bi, 0);
46031f9a
RBJ
3918 if (atomic_dec_and_test(&conf->active_aligned_reads))
3919 wake_up(&conf->wait_for_stripe);
6712ecf8 3920 return;
46031f9a
RBJ
3921 }
3922
3923
45b4233c 3924 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3925
3926 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3927}
3928
387bb173
NB
3929static int bio_fits_rdev(struct bio *bi)
3930{
165125e1 3931 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 3932
ae03bf63 3933 if ((bi->bi_size>>9) > queue_max_sectors(q))
387bb173
NB
3934 return 0;
3935 blk_recount_segments(q, bi);
8a78362c 3936 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
3937 return 0;
3938
3939 if (q->merge_bvec_fn)
3940 /* it's too hard to apply the merge_bvec_fn at this stage,
3941 * just just give up
3942 */
3943 return 0;
3944
3945 return 1;
3946}
3947
3948
fd01b88c 3949static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
f679623f 3950{
d1688a6d 3951 struct r5conf *conf = mddev->private;
8553fe7e 3952 int dd_idx;
f679623f 3953 struct bio* align_bi;
3cb03002 3954 struct md_rdev *rdev;
671488cc 3955 sector_t end_sector;
f679623f
RBJ
3956
3957 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3958 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3959 return 0;
3960 }
3961 /*
a167f663 3962 * use bio_clone_mddev to make a copy of the bio
f679623f 3963 */
a167f663 3964 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
3965 if (!align_bi)
3966 return 0;
3967 /*
3968 * set bi_end_io to a new function, and set bi_private to the
3969 * original bio.
3970 */
3971 align_bi->bi_end_io = raid5_align_endio;
3972 align_bi->bi_private = raid_bio;
3973 /*
3974 * compute position
3975 */
112bf897
N
3976 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3977 0,
911d4ee8 3978 &dd_idx, NULL);
f679623f 3979
671488cc 3980 end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
f679623f 3981 rcu_read_lock();
671488cc
N
3982 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3983 if (!rdev || test_bit(Faulty, &rdev->flags) ||
3984 rdev->recovery_offset < end_sector) {
3985 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3986 if (rdev &&
3987 (test_bit(Faulty, &rdev->flags) ||
3988 !(test_bit(In_sync, &rdev->flags) ||
3989 rdev->recovery_offset >= end_sector)))
3990 rdev = NULL;
3991 }
3992 if (rdev) {
31c176ec
N
3993 sector_t first_bad;
3994 int bad_sectors;
3995
f679623f
RBJ
3996 atomic_inc(&rdev->nr_pending);
3997 rcu_read_unlock();
46031f9a
RBJ
3998 raid_bio->bi_next = (void*)rdev;
3999 align_bi->bi_bdev = rdev->bdev;
4000 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
46031f9a 4001
31c176ec
N
4002 if (!bio_fits_rdev(align_bi) ||
4003 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
4004 &first_bad, &bad_sectors)) {
4005 /* too big in some way, or has a known bad block */
387bb173
NB
4006 bio_put(align_bi);
4007 rdev_dec_pending(rdev, mddev);
4008 return 0;
4009 }
4010
6c0544e2 4011 /* No reshape active, so we can trust rdev->data_offset */
4012 align_bi->bi_sector += rdev->data_offset;
4013
46031f9a
RBJ
4014 spin_lock_irq(&conf->device_lock);
4015 wait_event_lock_irq(conf->wait_for_stripe,
4016 conf->quiesce == 0,
eed8c02e 4017 conf->device_lock);
46031f9a
RBJ
4018 atomic_inc(&conf->active_aligned_reads);
4019 spin_unlock_irq(&conf->device_lock);
4020
a9add5d9
N
4021 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4022 align_bi, disk_devt(mddev->gendisk),
4023 raid_bio->bi_sector);
f679623f
RBJ
4024 generic_make_request(align_bi);
4025 return 1;
4026 } else {
4027 rcu_read_unlock();
46031f9a 4028 bio_put(align_bi);
f679623f
RBJ
4029 return 0;
4030 }
4031}
4032
8b3e6cdc
DW
4033/* __get_priority_stripe - get the next stripe to process
4034 *
4035 * Full stripe writes are allowed to pass preread active stripes up until
4036 * the bypass_threshold is exceeded. In general the bypass_count
4037 * increments when the handle_list is handled before the hold_list; however, it
4038 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4039 * stripe with in flight i/o. The bypass_count will be reset when the
4040 * head of the hold_list has changed, i.e. the head was promoted to the
4041 * handle_list.
4042 */
d1688a6d 4043static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
8b3e6cdc
DW
4044{
4045 struct stripe_head *sh;
4046
4047 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4048 __func__,
4049 list_empty(&conf->handle_list) ? "empty" : "busy",
4050 list_empty(&conf->hold_list) ? "empty" : "busy",
4051 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4052
4053 if (!list_empty(&conf->handle_list)) {
4054 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
4055
4056 if (list_empty(&conf->hold_list))
4057 conf->bypass_count = 0;
4058 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4059 if (conf->hold_list.next == conf->last_hold)
4060 conf->bypass_count++;
4061 else {
4062 conf->last_hold = conf->hold_list.next;
4063 conf->bypass_count -= conf->bypass_threshold;
4064 if (conf->bypass_count < 0)
4065 conf->bypass_count = 0;
4066 }
4067 }
4068 } else if (!list_empty(&conf->hold_list) &&
4069 ((conf->bypass_threshold &&
4070 conf->bypass_count > conf->bypass_threshold) ||
4071 atomic_read(&conf->pending_full_writes) == 0)) {
4072 sh = list_entry(conf->hold_list.next,
4073 typeof(*sh), lru);
4074 conf->bypass_count -= conf->bypass_threshold;
4075 if (conf->bypass_count < 0)
4076 conf->bypass_count = 0;
4077 } else
4078 return NULL;
4079
4080 list_del_init(&sh->lru);
4081 atomic_inc(&sh->count);
4082 BUG_ON(atomic_read(&sh->count) != 1);
4083 return sh;
4084}
f679623f 4085
8811b596
SL
4086struct raid5_plug_cb {
4087 struct blk_plug_cb cb;
4088 struct list_head list;
4089};
4090
4091static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4092{
4093 struct raid5_plug_cb *cb = container_of(
4094 blk_cb, struct raid5_plug_cb, cb);
4095 struct stripe_head *sh;
4096 struct mddev *mddev = cb->cb.data;
4097 struct r5conf *conf = mddev->private;
a9add5d9 4098 int cnt = 0;
8811b596
SL
4099
4100 if (cb->list.next && !list_empty(&cb->list)) {
4101 spin_lock_irq(&conf->device_lock);
4102 while (!list_empty(&cb->list)) {
4103 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4104 list_del_init(&sh->lru);
4105 /*
4106 * avoid race release_stripe_plug() sees
4107 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4108 * is still in our list
4109 */
4110 smp_mb__before_clear_bit();
4111 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4112 __release_stripe(conf, sh);
a9add5d9 4113 cnt++;
8811b596
SL
4114 }
4115 spin_unlock_irq(&conf->device_lock);
4116 }
a9add5d9 4117 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
4118 kfree(cb);
4119}
4120
4121static void release_stripe_plug(struct mddev *mddev,
4122 struct stripe_head *sh)
4123{
4124 struct blk_plug_cb *blk_cb = blk_check_plugged(
4125 raid5_unplug, mddev,
4126 sizeof(struct raid5_plug_cb));
4127 struct raid5_plug_cb *cb;
4128
4129 if (!blk_cb) {
4130 release_stripe(sh);
4131 return;
4132 }
4133
4134 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4135
4136 if (cb->list.next == NULL)
4137 INIT_LIST_HEAD(&cb->list);
4138
4139 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4140 list_add_tail(&sh->lru, &cb->list);
4141 else
4142 release_stripe(sh);
4143}
4144
620125f2
SL
4145static void make_discard_request(struct mddev *mddev, struct bio *bi)
4146{
4147 struct r5conf *conf = mddev->private;
4148 sector_t logical_sector, last_sector;
4149 struct stripe_head *sh;
4150 int remaining;
4151 int stripe_sectors;
4152
4153 if (mddev->reshape_position != MaxSector)
4154 /* Skip discard while reshape is happening */
4155 return;
4156
4157 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4158 last_sector = bi->bi_sector + (bi->bi_size>>9);
4159
4160 bi->bi_next = NULL;
4161 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4162
4163 stripe_sectors = conf->chunk_sectors *
4164 (conf->raid_disks - conf->max_degraded);
4165 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4166 stripe_sectors);
4167 sector_div(last_sector, stripe_sectors);
4168
4169 logical_sector *= conf->chunk_sectors;
4170 last_sector *= conf->chunk_sectors;
4171
4172 for (; logical_sector < last_sector;
4173 logical_sector += STRIPE_SECTORS) {
4174 DEFINE_WAIT(w);
4175 int d;
4176 again:
4177 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4178 prepare_to_wait(&conf->wait_for_overlap, &w,
4179 TASK_UNINTERRUPTIBLE);
4180 spin_lock_irq(&sh->stripe_lock);
4181 for (d = 0; d < conf->raid_disks; d++) {
4182 if (d == sh->pd_idx || d == sh->qd_idx)
4183 continue;
4184 if (sh->dev[d].towrite || sh->dev[d].toread) {
4185 set_bit(R5_Overlap, &sh->dev[d].flags);
4186 spin_unlock_irq(&sh->stripe_lock);
4187 release_stripe(sh);
4188 schedule();
4189 goto again;
4190 }
4191 }
4192 finish_wait(&conf->wait_for_overlap, &w);
4193 for (d = 0; d < conf->raid_disks; d++) {
4194 if (d == sh->pd_idx || d == sh->qd_idx)
4195 continue;
4196 sh->dev[d].towrite = bi;
4197 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4198 raid5_inc_bi_active_stripes(bi);
4199 }
4200 spin_unlock_irq(&sh->stripe_lock);
4201 if (conf->mddev->bitmap) {
4202 for (d = 0;
4203 d < conf->raid_disks - conf->max_degraded;
4204 d++)
4205 bitmap_startwrite(mddev->bitmap,
4206 sh->sector,
4207 STRIPE_SECTORS,
4208 0);
4209 sh->bm_seq = conf->seq_flush + 1;
4210 set_bit(STRIPE_BIT_DELAY, &sh->state);
4211 }
4212
4213 set_bit(STRIPE_HANDLE, &sh->state);
4214 clear_bit(STRIPE_DELAYED, &sh->state);
4215 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4216 atomic_inc(&conf->preread_active_stripes);
4217 release_stripe_plug(mddev, sh);
4218 }
4219
4220 remaining = raid5_dec_bi_active_stripes(bi);
4221 if (remaining == 0) {
4222 md_write_end(mddev);
4223 bio_endio(bi, 0);
4224 }
4225}
4226
b4fdcb02 4227static void make_request(struct mddev *mddev, struct bio * bi)
1da177e4 4228{
d1688a6d 4229 struct r5conf *conf = mddev->private;
911d4ee8 4230 int dd_idx;
1da177e4
LT
4231 sector_t new_sector;
4232 sector_t logical_sector, last_sector;
4233 struct stripe_head *sh;
a362357b 4234 const int rw = bio_data_dir(bi);
49077326 4235 int remaining;
1da177e4 4236
e9c7469b
TH
4237 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4238 md_flush_request(mddev, bi);
5a7bbad2 4239 return;
e5dcdd80
N
4240 }
4241
3d310eb7 4242 md_write_start(mddev, bi);
06d91a5f 4243
802ba064 4244 if (rw == READ &&
52488615 4245 mddev->reshape_position == MaxSector &&
21a52c6d 4246 chunk_aligned_read(mddev,bi))
5a7bbad2 4247 return;
52488615 4248
620125f2
SL
4249 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4250 make_discard_request(mddev, bi);
4251 return;
4252 }
4253
1da177e4
LT
4254 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4255 last_sector = bi->bi_sector + (bi->bi_size>>9);
4256 bi->bi_next = NULL;
4257 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 4258
1da177e4
LT
4259 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4260 DEFINE_WAIT(w);
b5663ba4 4261 int previous;
b578d55f 4262
7ecaa1e6 4263 retry:
b5663ba4 4264 previous = 0;
b578d55f 4265 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
b0f9ec04 4266 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 4267 /* spinlock is needed as reshape_progress may be
df8e7f76
N
4268 * 64bit on a 32bit platform, and so it might be
4269 * possible to see a half-updated value
aeb878b0 4270 * Of course reshape_progress could change after
df8e7f76
N
4271 * the lock is dropped, so once we get a reference
4272 * to the stripe that we think it is, we will have
4273 * to check again.
4274 */
7ecaa1e6 4275 spin_lock_irq(&conf->device_lock);
2c810cdd 4276 if (mddev->reshape_backwards
fef9c61f
N
4277 ? logical_sector < conf->reshape_progress
4278 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
4279 previous = 1;
4280 } else {
2c810cdd 4281 if (mddev->reshape_backwards
fef9c61f
N
4282 ? logical_sector < conf->reshape_safe
4283 : logical_sector >= conf->reshape_safe) {
b578d55f
N
4284 spin_unlock_irq(&conf->device_lock);
4285 schedule();
4286 goto retry;
4287 }
4288 }
7ecaa1e6
N
4289 spin_unlock_irq(&conf->device_lock);
4290 }
16a53ecc 4291
112bf897
N
4292 new_sector = raid5_compute_sector(conf, logical_sector,
4293 previous,
911d4ee8 4294 &dd_idx, NULL);
0c55e022 4295 pr_debug("raid456: make_request, sector %llu logical %llu\n",
1da177e4
LT
4296 (unsigned long long)new_sector,
4297 (unsigned long long)logical_sector);
4298
b5663ba4 4299 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 4300 (bi->bi_rw&RWA_MASK), 0);
1da177e4 4301 if (sh) {
b0f9ec04 4302 if (unlikely(previous)) {
7ecaa1e6 4303 /* expansion might have moved on while waiting for a
df8e7f76
N
4304 * stripe, so we must do the range check again.
4305 * Expansion could still move past after this
4306 * test, but as we are holding a reference to
4307 * 'sh', we know that if that happens,
4308 * STRIPE_EXPANDING will get set and the expansion
4309 * won't proceed until we finish with the stripe.
7ecaa1e6
N
4310 */
4311 int must_retry = 0;
4312 spin_lock_irq(&conf->device_lock);
2c810cdd 4313 if (mddev->reshape_backwards
b0f9ec04
N
4314 ? logical_sector >= conf->reshape_progress
4315 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
4316 /* mismatch, need to try again */
4317 must_retry = 1;
4318 spin_unlock_irq(&conf->device_lock);
4319 if (must_retry) {
4320 release_stripe(sh);
7a3ab908 4321 schedule();
7ecaa1e6
N
4322 goto retry;
4323 }
4324 }
e62e58a5 4325
ffd96e35 4326 if (rw == WRITE &&
a5c308d4 4327 logical_sector >= mddev->suspend_lo &&
e464eafd
N
4328 logical_sector < mddev->suspend_hi) {
4329 release_stripe(sh);
e62e58a5
N
4330 /* As the suspend_* range is controlled by
4331 * userspace, we want an interruptible
4332 * wait.
4333 */
4334 flush_signals(current);
4335 prepare_to_wait(&conf->wait_for_overlap,
4336 &w, TASK_INTERRUPTIBLE);
4337 if (logical_sector >= mddev->suspend_lo &&
4338 logical_sector < mddev->suspend_hi)
4339 schedule();
e464eafd
N
4340 goto retry;
4341 }
7ecaa1e6
N
4342
4343 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
ffd96e35 4344 !add_stripe_bio(sh, bi, dd_idx, rw)) {
7ecaa1e6
N
4345 /* Stripe is busy expanding or
4346 * add failed due to overlap. Flush everything
1da177e4
LT
4347 * and wait a while
4348 */
482c0834 4349 md_wakeup_thread(mddev->thread);
1da177e4
LT
4350 release_stripe(sh);
4351 schedule();
4352 goto retry;
4353 }
4354 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
4355 set_bit(STRIPE_HANDLE, &sh->state);
4356 clear_bit(STRIPE_DELAYED, &sh->state);
a852d7b8 4357 if ((bi->bi_rw & REQ_SYNC) &&
729a1866
N
4358 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4359 atomic_inc(&conf->preread_active_stripes);
8811b596 4360 release_stripe_plug(mddev, sh);
1da177e4
LT
4361 } else {
4362 /* cannot get stripe for read-ahead, just give-up */
4363 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4364 finish_wait(&conf->wait_for_overlap, &w);
4365 break;
4366 }
1da177e4 4367 }
7c13edc8 4368
e7836bd6 4369 remaining = raid5_dec_bi_active_stripes(bi);
f6344757 4370 if (remaining == 0) {
1da177e4 4371
16a53ecc 4372 if ( rw == WRITE )
1da177e4 4373 md_write_end(mddev);
6712ecf8 4374
0e13fe23 4375 bio_endio(bi, 0);
1da177e4 4376 }
1da177e4
LT
4377}
4378
fd01b88c 4379static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 4380
fd01b88c 4381static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 4382{
52c03291
N
4383 /* reshaping is quite different to recovery/resync so it is
4384 * handled quite separately ... here.
4385 *
4386 * On each call to sync_request, we gather one chunk worth of
4387 * destination stripes and flag them as expanding.
4388 * Then we find all the source stripes and request reads.
4389 * As the reads complete, handle_stripe will copy the data
4390 * into the destination stripe and release that stripe.
4391 */
d1688a6d 4392 struct r5conf *conf = mddev->private;
1da177e4 4393 struct stripe_head *sh;
ccfcc3c1 4394 sector_t first_sector, last_sector;
f416885e
N
4395 int raid_disks = conf->previous_raid_disks;
4396 int data_disks = raid_disks - conf->max_degraded;
4397 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
4398 int i;
4399 int dd_idx;
c8f517c4 4400 sector_t writepos, readpos, safepos;
ec32a2bd 4401 sector_t stripe_addr;
7a661381 4402 int reshape_sectors;
ab69ae12 4403 struct list_head stripes;
52c03291 4404
fef9c61f
N
4405 if (sector_nr == 0) {
4406 /* If restarting in the middle, skip the initial sectors */
2c810cdd 4407 if (mddev->reshape_backwards &&
fef9c61f
N
4408 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4409 sector_nr = raid5_size(mddev, 0, 0)
4410 - conf->reshape_progress;
2c810cdd 4411 } else if (!mddev->reshape_backwards &&
fef9c61f
N
4412 conf->reshape_progress > 0)
4413 sector_nr = conf->reshape_progress;
f416885e 4414 sector_div(sector_nr, new_data_disks);
fef9c61f 4415 if (sector_nr) {
8dee7211
N
4416 mddev->curr_resync_completed = sector_nr;
4417 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
4418 *skipped = 1;
4419 return sector_nr;
4420 }
52c03291
N
4421 }
4422
7a661381
N
4423 /* We need to process a full chunk at a time.
4424 * If old and new chunk sizes differ, we need to process the
4425 * largest of these
4426 */
664e7c41
AN
4427 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4428 reshape_sectors = mddev->new_chunk_sectors;
7a661381 4429 else
9d8f0363 4430 reshape_sectors = mddev->chunk_sectors;
7a661381 4431
b5254dd5
N
4432 /* We update the metadata at least every 10 seconds, or when
4433 * the data about to be copied would over-write the source of
4434 * the data at the front of the range. i.e. one new_stripe
4435 * along from reshape_progress new_maps to after where
4436 * reshape_safe old_maps to
52c03291 4437 */
fef9c61f 4438 writepos = conf->reshape_progress;
f416885e 4439 sector_div(writepos, new_data_disks);
c8f517c4
N
4440 readpos = conf->reshape_progress;
4441 sector_div(readpos, data_disks);
fef9c61f 4442 safepos = conf->reshape_safe;
f416885e 4443 sector_div(safepos, data_disks);
2c810cdd 4444 if (mddev->reshape_backwards) {
ed37d83e 4445 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 4446 readpos += reshape_sectors;
7a661381 4447 safepos += reshape_sectors;
fef9c61f 4448 } else {
7a661381 4449 writepos += reshape_sectors;
ed37d83e
N
4450 readpos -= min_t(sector_t, reshape_sectors, readpos);
4451 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 4452 }
52c03291 4453
b5254dd5
N
4454 /* Having calculated the 'writepos' possibly use it
4455 * to set 'stripe_addr' which is where we will write to.
4456 */
4457 if (mddev->reshape_backwards) {
4458 BUG_ON(conf->reshape_progress == 0);
4459 stripe_addr = writepos;
4460 BUG_ON((mddev->dev_sectors &
4461 ~((sector_t)reshape_sectors - 1))
4462 - reshape_sectors - stripe_addr
4463 != sector_nr);
4464 } else {
4465 BUG_ON(writepos != sector_nr + reshape_sectors);
4466 stripe_addr = sector_nr;
4467 }
4468
c8f517c4
N
4469 /* 'writepos' is the most advanced device address we might write.
4470 * 'readpos' is the least advanced device address we might read.
4471 * 'safepos' is the least address recorded in the metadata as having
4472 * been reshaped.
b5254dd5
N
4473 * If there is a min_offset_diff, these are adjusted either by
4474 * increasing the safepos/readpos if diff is negative, or
4475 * increasing writepos if diff is positive.
4476 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
4477 * ensure safety in the face of a crash - that must be done by userspace
4478 * making a backup of the data. So in that case there is no particular
4479 * rush to update metadata.
4480 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4481 * update the metadata to advance 'safepos' to match 'readpos' so that
4482 * we can be safe in the event of a crash.
4483 * So we insist on updating metadata if safepos is behind writepos and
4484 * readpos is beyond writepos.
4485 * In any case, update the metadata every 10 seconds.
4486 * Maybe that number should be configurable, but I'm not sure it is
4487 * worth it.... maybe it could be a multiple of safemode_delay???
4488 */
b5254dd5
N
4489 if (conf->min_offset_diff < 0) {
4490 safepos += -conf->min_offset_diff;
4491 readpos += -conf->min_offset_diff;
4492 } else
4493 writepos += conf->min_offset_diff;
4494
2c810cdd 4495 if ((mddev->reshape_backwards
c8f517c4
N
4496 ? (safepos > writepos && readpos < writepos)
4497 : (safepos < writepos && readpos > writepos)) ||
4498 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
4499 /* Cannot proceed until we've updated the superblock... */
4500 wait_event(conf->wait_for_overlap,
4501 atomic_read(&conf->reshape_stripes)==0);
fef9c61f 4502 mddev->reshape_position = conf->reshape_progress;
75d3da43 4503 mddev->curr_resync_completed = sector_nr;
c8f517c4 4504 conf->reshape_checkpoint = jiffies;
850b2b42 4505 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 4506 md_wakeup_thread(mddev->thread);
850b2b42 4507 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
4508 kthread_should_stop());
4509 spin_lock_irq(&conf->device_lock);
fef9c61f 4510 conf->reshape_safe = mddev->reshape_position;
52c03291
N
4511 spin_unlock_irq(&conf->device_lock);
4512 wake_up(&conf->wait_for_overlap);
acb180b0 4513 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
4514 }
4515
ab69ae12 4516 INIT_LIST_HEAD(&stripes);
7a661381 4517 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 4518 int j;
a9f326eb 4519 int skipped_disk = 0;
a8c906ca 4520 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
4521 set_bit(STRIPE_EXPANDING, &sh->state);
4522 atomic_inc(&conf->reshape_stripes);
4523 /* If any of this stripe is beyond the end of the old
4524 * array, then we need to zero those blocks
4525 */
4526 for (j=sh->disks; j--;) {
4527 sector_t s;
4528 if (j == sh->pd_idx)
4529 continue;
f416885e 4530 if (conf->level == 6 &&
d0dabf7e 4531 j == sh->qd_idx)
f416885e 4532 continue;
784052ec 4533 s = compute_blocknr(sh, j, 0);
b522adcd 4534 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 4535 skipped_disk = 1;
52c03291
N
4536 continue;
4537 }
4538 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4539 set_bit(R5_Expanded, &sh->dev[j].flags);
4540 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4541 }
a9f326eb 4542 if (!skipped_disk) {
52c03291
N
4543 set_bit(STRIPE_EXPAND_READY, &sh->state);
4544 set_bit(STRIPE_HANDLE, &sh->state);
4545 }
ab69ae12 4546 list_add(&sh->lru, &stripes);
52c03291
N
4547 }
4548 spin_lock_irq(&conf->device_lock);
2c810cdd 4549 if (mddev->reshape_backwards)
7a661381 4550 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 4551 else
7a661381 4552 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
4553 spin_unlock_irq(&conf->device_lock);
4554 /* Ok, those stripe are ready. We can start scheduling
4555 * reads on the source stripes.
4556 * The source stripes are determined by mapping the first and last
4557 * block on the destination stripes.
4558 */
52c03291 4559 first_sector =
ec32a2bd 4560 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 4561 1, &dd_idx, NULL);
52c03291 4562 last_sector =
0e6e0271 4563 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 4564 * new_data_disks - 1),
911d4ee8 4565 1, &dd_idx, NULL);
58c0fed4
AN
4566 if (last_sector >= mddev->dev_sectors)
4567 last_sector = mddev->dev_sectors - 1;
52c03291 4568 while (first_sector <= last_sector) {
a8c906ca 4569 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
4570 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4571 set_bit(STRIPE_HANDLE, &sh->state);
4572 release_stripe(sh);
4573 first_sector += STRIPE_SECTORS;
4574 }
ab69ae12
N
4575 /* Now that the sources are clearly marked, we can release
4576 * the destination stripes
4577 */
4578 while (!list_empty(&stripes)) {
4579 sh = list_entry(stripes.next, struct stripe_head, lru);
4580 list_del_init(&sh->lru);
4581 release_stripe(sh);
4582 }
c6207277
N
4583 /* If this takes us to the resync_max point where we have to pause,
4584 * then we need to write out the superblock.
4585 */
7a661381 4586 sector_nr += reshape_sectors;
c03f6a19
N
4587 if ((sector_nr - mddev->curr_resync_completed) * 2
4588 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
4589 /* Cannot proceed until we've updated the superblock... */
4590 wait_event(conf->wait_for_overlap,
4591 atomic_read(&conf->reshape_stripes) == 0);
fef9c61f 4592 mddev->reshape_position = conf->reshape_progress;
75d3da43 4593 mddev->curr_resync_completed = sector_nr;
c8f517c4 4594 conf->reshape_checkpoint = jiffies;
c6207277
N
4595 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4596 md_wakeup_thread(mddev->thread);
4597 wait_event(mddev->sb_wait,
4598 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4599 || kthread_should_stop());
4600 spin_lock_irq(&conf->device_lock);
fef9c61f 4601 conf->reshape_safe = mddev->reshape_position;
c6207277
N
4602 spin_unlock_irq(&conf->device_lock);
4603 wake_up(&conf->wait_for_overlap);
acb180b0 4604 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 4605 }
7a661381 4606 return reshape_sectors;
52c03291
N
4607}
4608
4609/* FIXME go_faster isn't used */
fd01b88c 4610static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
52c03291 4611{
d1688a6d 4612 struct r5conf *conf = mddev->private;
52c03291 4613 struct stripe_head *sh;
58c0fed4 4614 sector_t max_sector = mddev->dev_sectors;
57dab0bd 4615 sector_t sync_blocks;
16a53ecc
N
4616 int still_degraded = 0;
4617 int i;
1da177e4 4618
72626685 4619 if (sector_nr >= max_sector) {
1da177e4 4620 /* just being told to finish up .. nothing much to do */
cea9c228 4621
29269553
N
4622 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4623 end_reshape(conf);
4624 return 0;
4625 }
72626685
N
4626
4627 if (mddev->curr_resync < max_sector) /* aborted */
4628 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4629 &sync_blocks, 1);
16a53ecc 4630 else /* completed sync */
72626685
N
4631 conf->fullsync = 0;
4632 bitmap_close_sync(mddev->bitmap);
4633
1da177e4
LT
4634 return 0;
4635 }
ccfcc3c1 4636
64bd660b
N
4637 /* Allow raid5_quiesce to complete */
4638 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4639
52c03291
N
4640 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4641 return reshape_request(mddev, sector_nr, skipped);
f6705578 4642
c6207277
N
4643 /* No need to check resync_max as we never do more than one
4644 * stripe, and as resync_max will always be on a chunk boundary,
4645 * if the check in md_do_sync didn't fire, there is no chance
4646 * of overstepping resync_max here
4647 */
4648
16a53ecc 4649 /* if there is too many failed drives and we are trying
1da177e4
LT
4650 * to resync, then assert that we are finished, because there is
4651 * nothing we can do.
4652 */
3285edf1 4653 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 4654 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 4655 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 4656 *skipped = 1;
1da177e4
LT
4657 return rv;
4658 }
72626685 4659 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 4660 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
4661 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4662 /* we can skip this block, and probably more */
4663 sync_blocks /= STRIPE_SECTORS;
4664 *skipped = 1;
4665 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4666 }
1da177e4 4667
b47490c9
N
4668 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4669
a8c906ca 4670 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 4671 if (sh == NULL) {
a8c906ca 4672 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 4673 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 4674 * is trying to get access
1da177e4 4675 */
66c006a5 4676 schedule_timeout_uninterruptible(1);
1da177e4 4677 }
16a53ecc
N
4678 /* Need to check if array will still be degraded after recovery/resync
4679 * We don't need to check the 'failed' flag as when that gets set,
4680 * recovery aborts.
4681 */
f001a70c 4682 for (i = 0; i < conf->raid_disks; i++)
16a53ecc
N
4683 if (conf->disks[i].rdev == NULL)
4684 still_degraded = 1;
4685
4686 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4687
83206d66 4688 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
1da177e4 4689
1442577b 4690 handle_stripe(sh);
1da177e4
LT
4691 release_stripe(sh);
4692
4693 return STRIPE_SECTORS;
4694}
4695
d1688a6d 4696static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
4697{
4698 /* We may not be able to submit a whole bio at once as there
4699 * may not be enough stripe_heads available.
4700 * We cannot pre-allocate enough stripe_heads as we may need
4701 * more than exist in the cache (if we allow ever large chunks).
4702 * So we do one stripe head at a time and record in
4703 * ->bi_hw_segments how many have been done.
4704 *
4705 * We *know* that this entire raid_bio is in one chunk, so
4706 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4707 */
4708 struct stripe_head *sh;
911d4ee8 4709 int dd_idx;
46031f9a
RBJ
4710 sector_t sector, logical_sector, last_sector;
4711 int scnt = 0;
4712 int remaining;
4713 int handled = 0;
4714
4715 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
112bf897 4716 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 4717 0, &dd_idx, NULL);
46031f9a
RBJ
4718 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4719
4720 for (; logical_sector < last_sector;
387bb173
NB
4721 logical_sector += STRIPE_SECTORS,
4722 sector += STRIPE_SECTORS,
4723 scnt++) {
46031f9a 4724
e7836bd6 4725 if (scnt < raid5_bi_processed_stripes(raid_bio))
46031f9a
RBJ
4726 /* already done this stripe */
4727 continue;
4728
a8c906ca 4729 sh = get_active_stripe(conf, sector, 0, 1, 0);
46031f9a
RBJ
4730
4731 if (!sh) {
4732 /* failed to get a stripe - must wait */
e7836bd6 4733 raid5_set_bi_processed_stripes(raid_bio, scnt);
46031f9a
RBJ
4734 conf->retry_read_aligned = raid_bio;
4735 return handled;
4736 }
4737
387bb173
NB
4738 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4739 release_stripe(sh);
e7836bd6 4740 raid5_set_bi_processed_stripes(raid_bio, scnt);
387bb173
NB
4741 conf->retry_read_aligned = raid_bio;
4742 return handled;
4743 }
4744
3f9e7c14 4745 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 4746 handle_stripe(sh);
46031f9a
RBJ
4747 release_stripe(sh);
4748 handled++;
4749 }
e7836bd6 4750 remaining = raid5_dec_bi_active_stripes(raid_bio);
3a366e61 4751 if (remaining == 0)
0e13fe23 4752 bio_endio(raid_bio, 0);
46031f9a
RBJ
4753 if (atomic_dec_and_test(&conf->active_aligned_reads))
4754 wake_up(&conf->wait_for_stripe);
4755 return handled;
4756}
4757
46a06401
SL
4758#define MAX_STRIPE_BATCH 8
4759static int handle_active_stripes(struct r5conf *conf)
4760{
4761 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4762 int i, batch_size = 0;
4763
4764 while (batch_size < MAX_STRIPE_BATCH &&
4765 (sh = __get_priority_stripe(conf)) != NULL)
4766 batch[batch_size++] = sh;
4767
4768 if (batch_size == 0)
4769 return batch_size;
4770 spin_unlock_irq(&conf->device_lock);
4771
4772 for (i = 0; i < batch_size; i++)
4773 handle_stripe(batch[i]);
4774
4775 cond_resched();
4776
4777 spin_lock_irq(&conf->device_lock);
4778 for (i = 0; i < batch_size; i++)
4779 __release_stripe(conf, batch[i]);
4780 return batch_size;
4781}
46031f9a 4782
1da177e4
LT
4783/*
4784 * This is our raid5 kernel thread.
4785 *
4786 * We scan the hash table for stripes which can be handled now.
4787 * During the scan, completed stripes are saved for us by the interrupt
4788 * handler, so that they will not have to wait for our next wakeup.
4789 */
4ed8731d 4790static void raid5d(struct md_thread *thread)
1da177e4 4791{
4ed8731d 4792 struct mddev *mddev = thread->mddev;
d1688a6d 4793 struct r5conf *conf = mddev->private;
1da177e4 4794 int handled;
e1dfa0a2 4795 struct blk_plug plug;
1da177e4 4796
45b4233c 4797 pr_debug("+++ raid5d active\n");
1da177e4
LT
4798
4799 md_check_recovery(mddev);
1da177e4 4800
e1dfa0a2 4801 blk_start_plug(&plug);
1da177e4
LT
4802 handled = 0;
4803 spin_lock_irq(&conf->device_lock);
4804 while (1) {
46031f9a 4805 struct bio *bio;
46a06401 4806 int batch_size;
1da177e4 4807
0021b7bc 4808 if (
7c13edc8
N
4809 !list_empty(&conf->bitmap_list)) {
4810 /* Now is a good time to flush some bitmap updates */
4811 conf->seq_flush++;
700e432d 4812 spin_unlock_irq(&conf->device_lock);
72626685 4813 bitmap_unplug(mddev->bitmap);
700e432d 4814 spin_lock_irq(&conf->device_lock);
7c13edc8 4815 conf->seq_write = conf->seq_flush;
72626685
N
4816 activate_bit_delay(conf);
4817 }
0021b7bc 4818 raid5_activate_delayed(conf);
72626685 4819
46031f9a
RBJ
4820 while ((bio = remove_bio_from_retry(conf))) {
4821 int ok;
4822 spin_unlock_irq(&conf->device_lock);
4823 ok = retry_aligned_read(conf, bio);
4824 spin_lock_irq(&conf->device_lock);
4825 if (!ok)
4826 break;
4827 handled++;
4828 }
4829
46a06401
SL
4830 batch_size = handle_active_stripes(conf);
4831 if (!batch_size)
1da177e4 4832 break;
46a06401 4833 handled += batch_size;
1da177e4 4834
46a06401
SL
4835 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4836 spin_unlock_irq(&conf->device_lock);
de393cde 4837 md_check_recovery(mddev);
46a06401
SL
4838 spin_lock_irq(&conf->device_lock);
4839 }
1da177e4 4840 }
45b4233c 4841 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
4842
4843 spin_unlock_irq(&conf->device_lock);
4844
c9f21aaf 4845 async_tx_issue_pending_all();
e1dfa0a2 4846 blk_finish_plug(&plug);
1da177e4 4847
45b4233c 4848 pr_debug("--- raid5d inactive\n");
1da177e4
LT
4849}
4850
3f294f4f 4851static ssize_t
fd01b88c 4852raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 4853{
d1688a6d 4854 struct r5conf *conf = mddev->private;
96de1e66
N
4855 if (conf)
4856 return sprintf(page, "%d\n", conf->max_nr_stripes);
4857 else
4858 return 0;
3f294f4f
N
4859}
4860
c41d4ac4 4861int
fd01b88c 4862raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 4863{
d1688a6d 4864 struct r5conf *conf = mddev->private;
b5470dc5
DW
4865 int err;
4866
c41d4ac4 4867 if (size <= 16 || size > 32768)
3f294f4f 4868 return -EINVAL;
c41d4ac4 4869 while (size < conf->max_nr_stripes) {
3f294f4f
N
4870 if (drop_one_stripe(conf))
4871 conf->max_nr_stripes--;
4872 else
4873 break;
4874 }
b5470dc5
DW
4875 err = md_allow_write(mddev);
4876 if (err)
4877 return err;
c41d4ac4 4878 while (size > conf->max_nr_stripes) {
3f294f4f
N
4879 if (grow_one_stripe(conf))
4880 conf->max_nr_stripes++;
4881 else break;
4882 }
c41d4ac4
N
4883 return 0;
4884}
4885EXPORT_SYMBOL(raid5_set_cache_size);
4886
4887static ssize_t
fd01b88c 4888raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 4889{
d1688a6d 4890 struct r5conf *conf = mddev->private;
c41d4ac4
N
4891 unsigned long new;
4892 int err;
4893
4894 if (len >= PAGE_SIZE)
4895 return -EINVAL;
4896 if (!conf)
4897 return -ENODEV;
4898
4899 if (strict_strtoul(page, 10, &new))
4900 return -EINVAL;
4901 err = raid5_set_cache_size(mddev, new);
4902 if (err)
4903 return err;
3f294f4f
N
4904 return len;
4905}
007583c9 4906
96de1e66
N
4907static struct md_sysfs_entry
4908raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4909 raid5_show_stripe_cache_size,
4910 raid5_store_stripe_cache_size);
3f294f4f 4911
8b3e6cdc 4912static ssize_t
fd01b88c 4913raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 4914{
d1688a6d 4915 struct r5conf *conf = mddev->private;
8b3e6cdc
DW
4916 if (conf)
4917 return sprintf(page, "%d\n", conf->bypass_threshold);
4918 else
4919 return 0;
4920}
4921
4922static ssize_t
fd01b88c 4923raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 4924{
d1688a6d 4925 struct r5conf *conf = mddev->private;
4ef197d8 4926 unsigned long new;
8b3e6cdc
DW
4927 if (len >= PAGE_SIZE)
4928 return -EINVAL;
4929 if (!conf)
4930 return -ENODEV;
4931
4ef197d8 4932 if (strict_strtoul(page, 10, &new))
8b3e6cdc 4933 return -EINVAL;
4ef197d8 4934 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
4935 return -EINVAL;
4936 conf->bypass_threshold = new;
4937 return len;
4938}
4939
4940static struct md_sysfs_entry
4941raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4942 S_IRUGO | S_IWUSR,
4943 raid5_show_preread_threshold,
4944 raid5_store_preread_threshold);
4945
3f294f4f 4946static ssize_t
fd01b88c 4947stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 4948{
d1688a6d 4949 struct r5conf *conf = mddev->private;
96de1e66
N
4950 if (conf)
4951 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4952 else
4953 return 0;
3f294f4f
N
4954}
4955
96de1e66
N
4956static struct md_sysfs_entry
4957raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4958
007583c9 4959static struct attribute *raid5_attrs[] = {
3f294f4f
N
4960 &raid5_stripecache_size.attr,
4961 &raid5_stripecache_active.attr,
8b3e6cdc 4962 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4963 NULL,
4964};
007583c9
N
4965static struct attribute_group raid5_attrs_group = {
4966 .name = NULL,
4967 .attrs = raid5_attrs,
3f294f4f
N
4968};
4969
80c3a6ce 4970static sector_t
fd01b88c 4971raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 4972{
d1688a6d 4973 struct r5conf *conf = mddev->private;
80c3a6ce
DW
4974
4975 if (!sectors)
4976 sectors = mddev->dev_sectors;
5e5e3e78 4977 if (!raid_disks)
7ec05478 4978 /* size is defined by the smallest of previous and new size */
5e5e3e78 4979 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 4980
9d8f0363 4981 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 4982 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
4983 return sectors * (raid_disks - conf->max_degraded);
4984}
4985
d1688a6d 4986static void raid5_free_percpu(struct r5conf *conf)
36d1c647
DW
4987{
4988 struct raid5_percpu *percpu;
4989 unsigned long cpu;
4990
4991 if (!conf->percpu)
4992 return;
4993
4994 get_online_cpus();
4995 for_each_possible_cpu(cpu) {
4996 percpu = per_cpu_ptr(conf->percpu, cpu);
4997 safe_put_page(percpu->spare_page);
d6f38f31 4998 kfree(percpu->scribble);
36d1c647
DW
4999 }
5000#ifdef CONFIG_HOTPLUG_CPU
5001 unregister_cpu_notifier(&conf->cpu_notify);
5002#endif
5003 put_online_cpus();
5004
5005 free_percpu(conf->percpu);
5006}
5007
d1688a6d 5008static void free_conf(struct r5conf *conf)
95fc17aa
DW
5009{
5010 shrink_stripes(conf);
36d1c647 5011 raid5_free_percpu(conf);
95fc17aa
DW
5012 kfree(conf->disks);
5013 kfree(conf->stripe_hashtbl);
5014 kfree(conf);
5015}
5016
36d1c647
DW
5017#ifdef CONFIG_HOTPLUG_CPU
5018static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5019 void *hcpu)
5020{
d1688a6d 5021 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
36d1c647
DW
5022 long cpu = (long)hcpu;
5023 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5024
5025 switch (action) {
5026 case CPU_UP_PREPARE:
5027 case CPU_UP_PREPARE_FROZEN:
d6f38f31 5028 if (conf->level == 6 && !percpu->spare_page)
36d1c647 5029 percpu->spare_page = alloc_page(GFP_KERNEL);
d6f38f31
DW
5030 if (!percpu->scribble)
5031 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5032
5033 if (!percpu->scribble ||
5034 (conf->level == 6 && !percpu->spare_page)) {
5035 safe_put_page(percpu->spare_page);
5036 kfree(percpu->scribble);
36d1c647
DW
5037 pr_err("%s: failed memory allocation for cpu%ld\n",
5038 __func__, cpu);
55af6bb5 5039 return notifier_from_errno(-ENOMEM);
36d1c647
DW
5040 }
5041 break;
5042 case CPU_DEAD:
5043 case CPU_DEAD_FROZEN:
5044 safe_put_page(percpu->spare_page);
d6f38f31 5045 kfree(percpu->scribble);
36d1c647 5046 percpu->spare_page = NULL;
d6f38f31 5047 percpu->scribble = NULL;
36d1c647
DW
5048 break;
5049 default:
5050 break;
5051 }
5052 return NOTIFY_OK;
5053}
5054#endif
5055
d1688a6d 5056static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647
DW
5057{
5058 unsigned long cpu;
5059 struct page *spare_page;
a29d8b8e 5060 struct raid5_percpu __percpu *allcpus;
d6f38f31 5061 void *scribble;
36d1c647
DW
5062 int err;
5063
36d1c647
DW
5064 allcpus = alloc_percpu(struct raid5_percpu);
5065 if (!allcpus)
5066 return -ENOMEM;
5067 conf->percpu = allcpus;
5068
5069 get_online_cpus();
5070 err = 0;
5071 for_each_present_cpu(cpu) {
d6f38f31
DW
5072 if (conf->level == 6) {
5073 spare_page = alloc_page(GFP_KERNEL);
5074 if (!spare_page) {
5075 err = -ENOMEM;
5076 break;
5077 }
5078 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5079 }
5e5e3e78 5080 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
d6f38f31 5081 if (!scribble) {
36d1c647
DW
5082 err = -ENOMEM;
5083 break;
5084 }
d6f38f31 5085 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
36d1c647
DW
5086 }
5087#ifdef CONFIG_HOTPLUG_CPU
5088 conf->cpu_notify.notifier_call = raid456_cpu_notify;
5089 conf->cpu_notify.priority = 0;
5090 if (err == 0)
5091 err = register_cpu_notifier(&conf->cpu_notify);
5092#endif
5093 put_online_cpus();
5094
5095 return err;
5096}
5097
d1688a6d 5098static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 5099{
d1688a6d 5100 struct r5conf *conf;
5e5e3e78 5101 int raid_disk, memory, max_disks;
3cb03002 5102 struct md_rdev *rdev;
1da177e4 5103 struct disk_info *disk;
0232605d 5104 char pers_name[6];
1da177e4 5105
91adb564
N
5106 if (mddev->new_level != 5
5107 && mddev->new_level != 4
5108 && mddev->new_level != 6) {
0c55e022 5109 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
5110 mdname(mddev), mddev->new_level);
5111 return ERR_PTR(-EIO);
1da177e4 5112 }
91adb564
N
5113 if ((mddev->new_level == 5
5114 && !algorithm_valid_raid5(mddev->new_layout)) ||
5115 (mddev->new_level == 6
5116 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 5117 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
5118 mdname(mddev), mddev->new_layout);
5119 return ERR_PTR(-EIO);
99c0fb5f 5120 }
91adb564 5121 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 5122 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
5123 mdname(mddev), mddev->raid_disks);
5124 return ERR_PTR(-EINVAL);
4bbf3771
N
5125 }
5126
664e7c41
AN
5127 if (!mddev->new_chunk_sectors ||
5128 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5129 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
5130 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5131 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 5132 return ERR_PTR(-EINVAL);
f6705578
N
5133 }
5134
d1688a6d 5135 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 5136 if (conf == NULL)
1da177e4 5137 goto abort;
f5efd45a
DW
5138 spin_lock_init(&conf->device_lock);
5139 init_waitqueue_head(&conf->wait_for_stripe);
5140 init_waitqueue_head(&conf->wait_for_overlap);
5141 INIT_LIST_HEAD(&conf->handle_list);
5142 INIT_LIST_HEAD(&conf->hold_list);
5143 INIT_LIST_HEAD(&conf->delayed_list);
5144 INIT_LIST_HEAD(&conf->bitmap_list);
5145 INIT_LIST_HEAD(&conf->inactive_list);
5146 atomic_set(&conf->active_stripes, 0);
5147 atomic_set(&conf->preread_active_stripes, 0);
5148 atomic_set(&conf->active_aligned_reads, 0);
5149 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 5150 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
5151
5152 conf->raid_disks = mddev->raid_disks;
5153 if (mddev->reshape_position == MaxSector)
5154 conf->previous_raid_disks = mddev->raid_disks;
5155 else
f6705578 5156 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78
N
5157 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5158 conf->scribble_len = scribble_len(max_disks);
f6705578 5159
5e5e3e78 5160 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
5161 GFP_KERNEL);
5162 if (!conf->disks)
5163 goto abort;
9ffae0cf 5164
1da177e4
LT
5165 conf->mddev = mddev;
5166
fccddba0 5167 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 5168 goto abort;
1da177e4 5169
36d1c647
DW
5170 conf->level = mddev->new_level;
5171 if (raid5_alloc_percpu(conf) != 0)
5172 goto abort;
5173
0c55e022 5174 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 5175
dafb20fa 5176 rdev_for_each(rdev, mddev) {
1da177e4 5177 raid_disk = rdev->raid_disk;
5e5e3e78 5178 if (raid_disk >= max_disks
1da177e4
LT
5179 || raid_disk < 0)
5180 continue;
5181 disk = conf->disks + raid_disk;
5182
17045f52
N
5183 if (test_bit(Replacement, &rdev->flags)) {
5184 if (disk->replacement)
5185 goto abort;
5186 disk->replacement = rdev;
5187 } else {
5188 if (disk->rdev)
5189 goto abort;
5190 disk->rdev = rdev;
5191 }
1da177e4 5192
b2d444d7 5193 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 5194 char b[BDEVNAME_SIZE];
0c55e022
N
5195 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5196 " disk %d\n",
5197 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 5198 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
5199 /* Cannot rely on bitmap to complete recovery */
5200 conf->fullsync = 1;
1da177e4
LT
5201 }
5202
09c9e5fa 5203 conf->chunk_sectors = mddev->new_chunk_sectors;
91adb564 5204 conf->level = mddev->new_level;
16a53ecc
N
5205 if (conf->level == 6)
5206 conf->max_degraded = 2;
5207 else
5208 conf->max_degraded = 1;
91adb564 5209 conf->algorithm = mddev->new_layout;
1da177e4 5210 conf->max_nr_stripes = NR_STRIPES;
fef9c61f 5211 conf->reshape_progress = mddev->reshape_position;
e183eaed 5212 if (conf->reshape_progress != MaxSector) {
09c9e5fa 5213 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
5214 conf->prev_algo = mddev->layout;
5215 }
1da177e4 5216
91adb564 5217 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 5218 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
91adb564
N
5219 if (grow_stripes(conf, conf->max_nr_stripes)) {
5220 printk(KERN_ERR
0c55e022
N
5221 "md/raid:%s: couldn't allocate %dkB for buffers\n",
5222 mdname(mddev), memory);
91adb564
N
5223 goto abort;
5224 } else
0c55e022
N
5225 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5226 mdname(mddev), memory);
1da177e4 5227
0232605d
N
5228 sprintf(pers_name, "raid%d", mddev->new_level);
5229 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564
N
5230 if (!conf->thread) {
5231 printk(KERN_ERR
0c55e022 5232 "md/raid:%s: couldn't allocate thread.\n",
91adb564 5233 mdname(mddev));
16a53ecc
N
5234 goto abort;
5235 }
91adb564
N
5236
5237 return conf;
5238
5239 abort:
5240 if (conf) {
95fc17aa 5241 free_conf(conf);
91adb564
N
5242 return ERR_PTR(-EIO);
5243 } else
5244 return ERR_PTR(-ENOMEM);
5245}
5246
c148ffdc
N
5247
5248static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5249{
5250 switch (algo) {
5251 case ALGORITHM_PARITY_0:
5252 if (raid_disk < max_degraded)
5253 return 1;
5254 break;
5255 case ALGORITHM_PARITY_N:
5256 if (raid_disk >= raid_disks - max_degraded)
5257 return 1;
5258 break;
5259 case ALGORITHM_PARITY_0_6:
5260 if (raid_disk == 0 ||
5261 raid_disk == raid_disks - 1)
5262 return 1;
5263 break;
5264 case ALGORITHM_LEFT_ASYMMETRIC_6:
5265 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5266 case ALGORITHM_LEFT_SYMMETRIC_6:
5267 case ALGORITHM_RIGHT_SYMMETRIC_6:
5268 if (raid_disk == raid_disks - 1)
5269 return 1;
5270 }
5271 return 0;
5272}
5273
fd01b88c 5274static int run(struct mddev *mddev)
91adb564 5275{
d1688a6d 5276 struct r5conf *conf;
9f7c2220 5277 int working_disks = 0;
c148ffdc 5278 int dirty_parity_disks = 0;
3cb03002 5279 struct md_rdev *rdev;
c148ffdc 5280 sector_t reshape_offset = 0;
17045f52 5281 int i;
b5254dd5
N
5282 long long min_offset_diff = 0;
5283 int first = 1;
91adb564 5284
8c6ac868 5285 if (mddev->recovery_cp != MaxSector)
0c55e022 5286 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
5287 " -- starting background reconstruction\n",
5288 mdname(mddev));
b5254dd5
N
5289
5290 rdev_for_each(rdev, mddev) {
5291 long long diff;
5292 if (rdev->raid_disk < 0)
5293 continue;
5294 diff = (rdev->new_data_offset - rdev->data_offset);
5295 if (first) {
5296 min_offset_diff = diff;
5297 first = 0;
5298 } else if (mddev->reshape_backwards &&
5299 diff < min_offset_diff)
5300 min_offset_diff = diff;
5301 else if (!mddev->reshape_backwards &&
5302 diff > min_offset_diff)
5303 min_offset_diff = diff;
5304 }
5305
91adb564
N
5306 if (mddev->reshape_position != MaxSector) {
5307 /* Check that we can continue the reshape.
b5254dd5
N
5308 * Difficulties arise if the stripe we would write to
5309 * next is at or after the stripe we would read from next.
5310 * For a reshape that changes the number of devices, this
5311 * is only possible for a very short time, and mdadm makes
5312 * sure that time appears to have past before assembling
5313 * the array. So we fail if that time hasn't passed.
5314 * For a reshape that keeps the number of devices the same
5315 * mdadm must be monitoring the reshape can keeping the
5316 * critical areas read-only and backed up. It will start
5317 * the array in read-only mode, so we check for that.
91adb564
N
5318 */
5319 sector_t here_new, here_old;
5320 int old_disks;
18b00334 5321 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 5322
88ce4930 5323 if (mddev->new_level != mddev->level) {
0c55e022 5324 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
5325 "required - aborting.\n",
5326 mdname(mddev));
5327 return -EINVAL;
5328 }
91adb564
N
5329 old_disks = mddev->raid_disks - mddev->delta_disks;
5330 /* reshape_position must be on a new-stripe boundary, and one
5331 * further up in new geometry must map after here in old
5332 * geometry.
5333 */
5334 here_new = mddev->reshape_position;
664e7c41 5335 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 5336 (mddev->raid_disks - max_degraded))) {
0c55e022
N
5337 printk(KERN_ERR "md/raid:%s: reshape_position not "
5338 "on a stripe boundary\n", mdname(mddev));
91adb564
N
5339 return -EINVAL;
5340 }
c148ffdc 5341 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
5342 /* here_new is the stripe we will write to */
5343 here_old = mddev->reshape_position;
9d8f0363 5344 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
5345 (old_disks-max_degraded));
5346 /* here_old is the first stripe that we might need to read
5347 * from */
67ac6011 5348 if (mddev->delta_disks == 0) {
b5254dd5
N
5349 if ((here_new * mddev->new_chunk_sectors !=
5350 here_old * mddev->chunk_sectors)) {
5351 printk(KERN_ERR "md/raid:%s: reshape position is"
5352 " confused - aborting\n", mdname(mddev));
5353 return -EINVAL;
5354 }
67ac6011 5355 /* We cannot be sure it is safe to start an in-place
b5254dd5 5356 * reshape. It is only safe if user-space is monitoring
67ac6011
N
5357 * and taking constant backups.
5358 * mdadm always starts a situation like this in
5359 * readonly mode so it can take control before
5360 * allowing any writes. So just check for that.
5361 */
b5254dd5
N
5362 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5363 abs(min_offset_diff) >= mddev->new_chunk_sectors)
5364 /* not really in-place - so OK */;
5365 else if (mddev->ro == 0) {
5366 printk(KERN_ERR "md/raid:%s: in-place reshape "
5367 "must be started in read-only mode "
5368 "- aborting\n",
0c55e022 5369 mdname(mddev));
67ac6011
N
5370 return -EINVAL;
5371 }
2c810cdd 5372 } else if (mddev->reshape_backwards
b5254dd5 5373 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
67ac6011
N
5374 here_old * mddev->chunk_sectors)
5375 : (here_new * mddev->new_chunk_sectors >=
b5254dd5 5376 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
91adb564 5377 /* Reading from the same stripe as writing to - bad */
0c55e022
N
5378 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5379 "auto-recovery - aborting.\n",
5380 mdname(mddev));
91adb564
N
5381 return -EINVAL;
5382 }
0c55e022
N
5383 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5384 mdname(mddev));
91adb564
N
5385 /* OK, we should be able to continue; */
5386 } else {
5387 BUG_ON(mddev->level != mddev->new_level);
5388 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 5389 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 5390 BUG_ON(mddev->delta_disks != 0);
1da177e4 5391 }
91adb564 5392
245f46c2
N
5393 if (mddev->private == NULL)
5394 conf = setup_conf(mddev);
5395 else
5396 conf = mddev->private;
5397
91adb564
N
5398 if (IS_ERR(conf))
5399 return PTR_ERR(conf);
5400
b5254dd5 5401 conf->min_offset_diff = min_offset_diff;
91adb564
N
5402 mddev->thread = conf->thread;
5403 conf->thread = NULL;
5404 mddev->private = conf;
5405
17045f52
N
5406 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5407 i++) {
5408 rdev = conf->disks[i].rdev;
5409 if (!rdev && conf->disks[i].replacement) {
5410 /* The replacement is all we have yet */
5411 rdev = conf->disks[i].replacement;
5412 conf->disks[i].replacement = NULL;
5413 clear_bit(Replacement, &rdev->flags);
5414 conf->disks[i].rdev = rdev;
5415 }
5416 if (!rdev)
c148ffdc 5417 continue;
17045f52
N
5418 if (conf->disks[i].replacement &&
5419 conf->reshape_progress != MaxSector) {
5420 /* replacements and reshape simply do not mix. */
5421 printk(KERN_ERR "md: cannot handle concurrent "
5422 "replacement and reshape.\n");
5423 goto abort;
5424 }
2f115882 5425 if (test_bit(In_sync, &rdev->flags)) {
91adb564 5426 working_disks++;
2f115882
N
5427 continue;
5428 }
c148ffdc
N
5429 /* This disc is not fully in-sync. However if it
5430 * just stored parity (beyond the recovery_offset),
5431 * when we don't need to be concerned about the
5432 * array being dirty.
5433 * When reshape goes 'backwards', we never have
5434 * partially completed devices, so we only need
5435 * to worry about reshape going forwards.
5436 */
5437 /* Hack because v0.91 doesn't store recovery_offset properly. */
5438 if (mddev->major_version == 0 &&
5439 mddev->minor_version > 90)
5440 rdev->recovery_offset = reshape_offset;
5441
c148ffdc
N
5442 if (rdev->recovery_offset < reshape_offset) {
5443 /* We need to check old and new layout */
5444 if (!only_parity(rdev->raid_disk,
5445 conf->algorithm,
5446 conf->raid_disks,
5447 conf->max_degraded))
5448 continue;
5449 }
5450 if (!only_parity(rdev->raid_disk,
5451 conf->prev_algo,
5452 conf->previous_raid_disks,
5453 conf->max_degraded))
5454 continue;
5455 dirty_parity_disks++;
5456 }
91adb564 5457
17045f52
N
5458 /*
5459 * 0 for a fully functional array, 1 or 2 for a degraded array.
5460 */
908f4fbd 5461 mddev->degraded = calc_degraded(conf);
91adb564 5462
674806d6 5463 if (has_failed(conf)) {
0c55e022 5464 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 5465 " (%d/%d failed)\n",
02c2de8c 5466 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
5467 goto abort;
5468 }
5469
91adb564 5470 /* device size must be a multiple of chunk size */
9d8f0363 5471 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
5472 mddev->resync_max_sectors = mddev->dev_sectors;
5473
c148ffdc 5474 if (mddev->degraded > dirty_parity_disks &&
1da177e4 5475 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
5476 if (mddev->ok_start_degraded)
5477 printk(KERN_WARNING
0c55e022
N
5478 "md/raid:%s: starting dirty degraded array"
5479 " - data corruption possible.\n",
6ff8d8ec
N
5480 mdname(mddev));
5481 else {
5482 printk(KERN_ERR
0c55e022 5483 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
5484 mdname(mddev));
5485 goto abort;
5486 }
1da177e4
LT
5487 }
5488
1da177e4 5489 if (mddev->degraded == 0)
0c55e022
N
5490 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5491 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
5492 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5493 mddev->new_layout);
1da177e4 5494 else
0c55e022
N
5495 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5496 " out of %d devices, algorithm %d\n",
5497 mdname(mddev), conf->level,
5498 mddev->raid_disks - mddev->degraded,
5499 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
5500
5501 print_raid5_conf(conf);
5502
fef9c61f 5503 if (conf->reshape_progress != MaxSector) {
fef9c61f 5504 conf->reshape_safe = conf->reshape_progress;
f6705578
N
5505 atomic_set(&conf->reshape_stripes, 0);
5506 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5507 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5508 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5509 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5510 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5511 "reshape");
f6705578
N
5512 }
5513
1da177e4
LT
5514
5515 /* Ok, everything is just fine now */
a64c876f
N
5516 if (mddev->to_remove == &raid5_attrs_group)
5517 mddev->to_remove = NULL;
00bcb4ac
N
5518 else if (mddev->kobj.sd &&
5519 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 5520 printk(KERN_WARNING
4a5add49 5521 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 5522 mdname(mddev));
4a5add49 5523 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 5524
4a5add49 5525 if (mddev->queue) {
9f7c2220 5526 int chunk_size;
620125f2 5527 bool discard_supported = true;
4a5add49
N
5528 /* read-ahead size must cover two whole stripes, which
5529 * is 2 * (datadisks) * chunksize where 'n' is the
5530 * number of raid devices
5531 */
5532 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5533 int stripe = data_disks *
5534 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5535 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5536 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 5537
4a5add49 5538 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
f022b2fd 5539
11d8a6e3
N
5540 mddev->queue->backing_dev_info.congested_data = mddev;
5541 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
7a5febe9 5542
9f7c2220
N
5543 chunk_size = mddev->chunk_sectors << 9;
5544 blk_queue_io_min(mddev->queue, chunk_size);
5545 blk_queue_io_opt(mddev->queue, chunk_size *
5546 (conf->raid_disks - conf->max_degraded));
620125f2
SL
5547 /*
5548 * We can only discard a whole stripe. It doesn't make sense to
5549 * discard data disk but write parity disk
5550 */
5551 stripe = stripe * PAGE_SIZE;
4ac6875e
N
5552 /* Round up to power of 2, as discard handling
5553 * currently assumes that */
5554 while ((stripe-1) & stripe)
5555 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
5556 mddev->queue->limits.discard_alignment = stripe;
5557 mddev->queue->limits.discard_granularity = stripe;
5558 /*
5559 * unaligned part of discard request will be ignored, so can't
5560 * guarantee discard_zerors_data
5561 */
5562 mddev->queue->limits.discard_zeroes_data = 0;
8f6c2e4b 5563
05616be5 5564 rdev_for_each(rdev, mddev) {
9f7c2220
N
5565 disk_stack_limits(mddev->gendisk, rdev->bdev,
5566 rdev->data_offset << 9);
05616be5
N
5567 disk_stack_limits(mddev->gendisk, rdev->bdev,
5568 rdev->new_data_offset << 9);
620125f2
SL
5569 /*
5570 * discard_zeroes_data is required, otherwise data
5571 * could be lost. Consider a scenario: discard a stripe
5572 * (the stripe could be inconsistent if
5573 * discard_zeroes_data is 0); write one disk of the
5574 * stripe (the stripe could be inconsistent again
5575 * depending on which disks are used to calculate
5576 * parity); the disk is broken; The stripe data of this
5577 * disk is lost.
5578 */
5579 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5580 !bdev_get_queue(rdev->bdev)->
5581 limits.discard_zeroes_data)
5582 discard_supported = false;
05616be5 5583 }
620125f2
SL
5584
5585 if (discard_supported &&
5586 mddev->queue->limits.max_discard_sectors >= stripe &&
5587 mddev->queue->limits.discard_granularity >= stripe)
5588 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5589 mddev->queue);
5590 else
5591 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5592 mddev->queue);
9f7c2220 5593 }
23032a0e 5594
1da177e4
LT
5595 return 0;
5596abort:
01f96c0a 5597 md_unregister_thread(&mddev->thread);
e4f869d9
N
5598 print_raid5_conf(conf);
5599 free_conf(conf);
1da177e4 5600 mddev->private = NULL;
0c55e022 5601 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
5602 return -EIO;
5603}
5604
fd01b88c 5605static int stop(struct mddev *mddev)
1da177e4 5606{
d1688a6d 5607 struct r5conf *conf = mddev->private;
1da177e4 5608
01f96c0a 5609 md_unregister_thread(&mddev->thread);
11d8a6e3
N
5610 if (mddev->queue)
5611 mddev->queue->backing_dev_info.congested_fn = NULL;
95fc17aa 5612 free_conf(conf);
a64c876f
N
5613 mddev->private = NULL;
5614 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
5615 return 0;
5616}
5617
fd01b88c 5618static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 5619{
d1688a6d 5620 struct r5conf *conf = mddev->private;
1da177e4
LT
5621 int i;
5622
9d8f0363
AN
5623 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5624 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 5625 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
5626 for (i = 0; i < conf->raid_disks; i++)
5627 seq_printf (seq, "%s",
5628 conf->disks[i].rdev &&
b2d444d7 5629 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 5630 seq_printf (seq, "]");
1da177e4
LT
5631}
5632
d1688a6d 5633static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
5634{
5635 int i;
5636 struct disk_info *tmp;
5637
0c55e022 5638 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
5639 if (!conf) {
5640 printk("(conf==NULL)\n");
5641 return;
5642 }
0c55e022
N
5643 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5644 conf->raid_disks,
5645 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
5646
5647 for (i = 0; i < conf->raid_disks; i++) {
5648 char b[BDEVNAME_SIZE];
5649 tmp = conf->disks + i;
5650 if (tmp->rdev)
0c55e022
N
5651 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5652 i, !test_bit(Faulty, &tmp->rdev->flags),
5653 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
5654 }
5655}
5656
fd01b88c 5657static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
5658{
5659 int i;
d1688a6d 5660 struct r5conf *conf = mddev->private;
1da177e4 5661 struct disk_info *tmp;
6b965620
N
5662 int count = 0;
5663 unsigned long flags;
1da177e4
LT
5664
5665 for (i = 0; i < conf->raid_disks; i++) {
5666 tmp = conf->disks + i;
dd054fce
N
5667 if (tmp->replacement
5668 && tmp->replacement->recovery_offset == MaxSector
5669 && !test_bit(Faulty, &tmp->replacement->flags)
5670 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5671 /* Replacement has just become active. */
5672 if (!tmp->rdev
5673 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5674 count++;
5675 if (tmp->rdev) {
5676 /* Replaced device not technically faulty,
5677 * but we need to be sure it gets removed
5678 * and never re-added.
5679 */
5680 set_bit(Faulty, &tmp->rdev->flags);
5681 sysfs_notify_dirent_safe(
5682 tmp->rdev->sysfs_state);
5683 }
5684 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5685 } else if (tmp->rdev
70fffd0b 5686 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 5687 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 5688 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 5689 count++;
43c73ca4 5690 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
5691 }
5692 }
6b965620 5693 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 5694 mddev->degraded = calc_degraded(conf);
6b965620 5695 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 5696 print_raid5_conf(conf);
6b965620 5697 return count;
1da177e4
LT
5698}
5699
b8321b68 5700static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 5701{
d1688a6d 5702 struct r5conf *conf = mddev->private;
1da177e4 5703 int err = 0;
b8321b68 5704 int number = rdev->raid_disk;
657e3e4d 5705 struct md_rdev **rdevp;
1da177e4
LT
5706 struct disk_info *p = conf->disks + number;
5707
5708 print_raid5_conf(conf);
657e3e4d
N
5709 if (rdev == p->rdev)
5710 rdevp = &p->rdev;
5711 else if (rdev == p->replacement)
5712 rdevp = &p->replacement;
5713 else
5714 return 0;
5715
5716 if (number >= conf->raid_disks &&
5717 conf->reshape_progress == MaxSector)
5718 clear_bit(In_sync, &rdev->flags);
5719
5720 if (test_bit(In_sync, &rdev->flags) ||
5721 atomic_read(&rdev->nr_pending)) {
5722 err = -EBUSY;
5723 goto abort;
5724 }
5725 /* Only remove non-faulty devices if recovery
5726 * isn't possible.
5727 */
5728 if (!test_bit(Faulty, &rdev->flags) &&
5729 mddev->recovery_disabled != conf->recovery_disabled &&
5730 !has_failed(conf) &&
dd054fce 5731 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
5732 number < conf->raid_disks) {
5733 err = -EBUSY;
5734 goto abort;
5735 }
5736 *rdevp = NULL;
5737 synchronize_rcu();
5738 if (atomic_read(&rdev->nr_pending)) {
5739 /* lost the race, try later */
5740 err = -EBUSY;
5741 *rdevp = rdev;
dd054fce
N
5742 } else if (p->replacement) {
5743 /* We must have just cleared 'rdev' */
5744 p->rdev = p->replacement;
5745 clear_bit(Replacement, &p->replacement->flags);
5746 smp_mb(); /* Make sure other CPUs may see both as identical
5747 * but will never see neither - if they are careful
5748 */
5749 p->replacement = NULL;
5750 clear_bit(WantReplacement, &rdev->flags);
5751 } else
5752 /* We might have just removed the Replacement as faulty-
5753 * clear the bit just in case
5754 */
5755 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
5756abort:
5757
5758 print_raid5_conf(conf);
5759 return err;
5760}
5761
fd01b88c 5762static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 5763{
d1688a6d 5764 struct r5conf *conf = mddev->private;
199050ea 5765 int err = -EEXIST;
1da177e4
LT
5766 int disk;
5767 struct disk_info *p;
6c2fce2e
NB
5768 int first = 0;
5769 int last = conf->raid_disks - 1;
1da177e4 5770
7f0da59b
N
5771 if (mddev->recovery_disabled == conf->recovery_disabled)
5772 return -EBUSY;
5773
dc10c643 5774 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 5775 /* no point adding a device */
199050ea 5776 return -EINVAL;
1da177e4 5777
6c2fce2e
NB
5778 if (rdev->raid_disk >= 0)
5779 first = last = rdev->raid_disk;
1da177e4
LT
5780
5781 /*
16a53ecc
N
5782 * find the disk ... but prefer rdev->saved_raid_disk
5783 * if possible.
1da177e4 5784 */
16a53ecc 5785 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 5786 rdev->saved_raid_disk >= first &&
16a53ecc 5787 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
5788 first = rdev->saved_raid_disk;
5789
5790 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
5791 p = conf->disks + disk;
5792 if (p->rdev == NULL) {
b2d444d7 5793 clear_bit(In_sync, &rdev->flags);
1da177e4 5794 rdev->raid_disk = disk;
199050ea 5795 err = 0;
72626685
N
5796 if (rdev->saved_raid_disk != disk)
5797 conf->fullsync = 1;
d6065f7b 5798 rcu_assign_pointer(p->rdev, rdev);
5cfb22a1 5799 goto out;
1da177e4 5800 }
5cfb22a1
N
5801 }
5802 for (disk = first; disk <= last; disk++) {
5803 p = conf->disks + disk;
7bfec5f3
N
5804 if (test_bit(WantReplacement, &p->rdev->flags) &&
5805 p->replacement == NULL) {
5806 clear_bit(In_sync, &rdev->flags);
5807 set_bit(Replacement, &rdev->flags);
5808 rdev->raid_disk = disk;
5809 err = 0;
5810 conf->fullsync = 1;
5811 rcu_assign_pointer(p->replacement, rdev);
5812 break;
5813 }
5814 }
5cfb22a1 5815out:
1da177e4 5816 print_raid5_conf(conf);
199050ea 5817 return err;
1da177e4
LT
5818}
5819
fd01b88c 5820static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
5821{
5822 /* no resync is happening, and there is enough space
5823 * on all devices, so we can resize.
5824 * We need to make sure resync covers any new space.
5825 * If the array is shrinking we should possibly wait until
5826 * any io in the removed space completes, but it hardly seems
5827 * worth it.
5828 */
a4a6125a 5829 sector_t newsize;
9d8f0363 5830 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
a4a6125a
N
5831 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5832 if (mddev->external_size &&
5833 mddev->array_sectors > newsize)
b522adcd 5834 return -EINVAL;
a4a6125a
N
5835 if (mddev->bitmap) {
5836 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5837 if (ret)
5838 return ret;
5839 }
5840 md_set_array_sectors(mddev, newsize);
f233ea5c 5841 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5842 revalidate_disk(mddev->gendisk);
b098636c
N
5843 if (sectors > mddev->dev_sectors &&
5844 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 5845 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
5846 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5847 }
58c0fed4 5848 mddev->dev_sectors = sectors;
4b5c7ae8 5849 mddev->resync_max_sectors = sectors;
1da177e4
LT
5850 return 0;
5851}
5852
fd01b88c 5853static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
5854{
5855 /* Can only proceed if there are plenty of stripe_heads.
5856 * We need a minimum of one full stripe,, and for sensible progress
5857 * it is best to have about 4 times that.
5858 * If we require 4 times, then the default 256 4K stripe_heads will
5859 * allow for chunk sizes up to 256K, which is probably OK.
5860 * If the chunk size is greater, user-space should request more
5861 * stripe_heads first.
5862 */
d1688a6d 5863 struct r5conf *conf = mddev->private;
01ee22b4
N
5864 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5865 > conf->max_nr_stripes ||
5866 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5867 > conf->max_nr_stripes) {
0c55e022
N
5868 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5869 mdname(mddev),
01ee22b4
N
5870 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5871 / STRIPE_SIZE)*4);
5872 return 0;
5873 }
5874 return 1;
5875}
5876
fd01b88c 5877static int check_reshape(struct mddev *mddev)
29269553 5878{
d1688a6d 5879 struct r5conf *conf = mddev->private;
29269553 5880
88ce4930
N
5881 if (mddev->delta_disks == 0 &&
5882 mddev->new_layout == mddev->layout &&
664e7c41 5883 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 5884 return 0; /* nothing to do */
674806d6 5885 if (has_failed(conf))
ec32a2bd
N
5886 return -EINVAL;
5887 if (mddev->delta_disks < 0) {
5888 /* We might be able to shrink, but the devices must
5889 * be made bigger first.
5890 * For raid6, 4 is the minimum size.
5891 * Otherwise 2 is the minimum
5892 */
5893 int min = 2;
5894 if (mddev->level == 6)
5895 min = 4;
5896 if (mddev->raid_disks + mddev->delta_disks < min)
5897 return -EINVAL;
5898 }
29269553 5899
01ee22b4 5900 if (!check_stripe_cache(mddev))
29269553 5901 return -ENOSPC;
29269553 5902
e56108d6
N
5903 return resize_stripes(conf, (conf->previous_raid_disks
5904 + mddev->delta_disks));
63c70c4f
N
5905}
5906
fd01b88c 5907static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 5908{
d1688a6d 5909 struct r5conf *conf = mddev->private;
3cb03002 5910 struct md_rdev *rdev;
63c70c4f 5911 int spares = 0;
c04be0aa 5912 unsigned long flags;
63c70c4f 5913
f416885e 5914 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
5915 return -EBUSY;
5916
01ee22b4
N
5917 if (!check_stripe_cache(mddev))
5918 return -ENOSPC;
5919
30b67645
N
5920 if (has_failed(conf))
5921 return -EINVAL;
5922
c6563a8c 5923 rdev_for_each(rdev, mddev) {
469518a3
N
5924 if (!test_bit(In_sync, &rdev->flags)
5925 && !test_bit(Faulty, &rdev->flags))
29269553 5926 spares++;
c6563a8c 5927 }
63c70c4f 5928
f416885e 5929 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
5930 /* Not enough devices even to make a degraded array
5931 * of that size
5932 */
5933 return -EINVAL;
5934
ec32a2bd
N
5935 /* Refuse to reduce size of the array. Any reductions in
5936 * array size must be through explicit setting of array_size
5937 * attribute.
5938 */
5939 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5940 < mddev->array_sectors) {
0c55e022 5941 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
5942 "before number of disks\n", mdname(mddev));
5943 return -EINVAL;
5944 }
5945
f6705578 5946 atomic_set(&conf->reshape_stripes, 0);
29269553
N
5947 spin_lock_irq(&conf->device_lock);
5948 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 5949 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
5950 conf->prev_chunk_sectors = conf->chunk_sectors;
5951 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
5952 conf->prev_algo = conf->algorithm;
5953 conf->algorithm = mddev->new_layout;
05616be5
N
5954 conf->generation++;
5955 /* Code that selects data_offset needs to see the generation update
5956 * if reshape_progress has been set - so a memory barrier needed.
5957 */
5958 smp_mb();
2c810cdd 5959 if (mddev->reshape_backwards)
fef9c61f
N
5960 conf->reshape_progress = raid5_size(mddev, 0, 0);
5961 else
5962 conf->reshape_progress = 0;
5963 conf->reshape_safe = conf->reshape_progress;
29269553
N
5964 spin_unlock_irq(&conf->device_lock);
5965
5966 /* Add some new drives, as many as will fit.
5967 * We know there are enough to make the newly sized array work.
3424bf6a
N
5968 * Don't add devices if we are reducing the number of
5969 * devices in the array. This is because it is not possible
5970 * to correctly record the "partially reconstructed" state of
5971 * such devices during the reshape and confusion could result.
29269553 5972 */
87a8dec9 5973 if (mddev->delta_disks >= 0) {
dafb20fa 5974 rdev_for_each(rdev, mddev)
87a8dec9
N
5975 if (rdev->raid_disk < 0 &&
5976 !test_bit(Faulty, &rdev->flags)) {
5977 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 5978 if (rdev->raid_disk
9d4c7d87 5979 >= conf->previous_raid_disks)
87a8dec9 5980 set_bit(In_sync, &rdev->flags);
9d4c7d87 5981 else
87a8dec9 5982 rdev->recovery_offset = 0;
36fad858
NK
5983
5984 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 5985 /* Failure here is OK */;
50da0840 5986 }
87a8dec9
N
5987 } else if (rdev->raid_disk >= conf->previous_raid_disks
5988 && !test_bit(Faulty, &rdev->flags)) {
5989 /* This is a spare that was manually added */
5990 set_bit(In_sync, &rdev->flags);
87a8dec9 5991 }
29269553 5992
87a8dec9
N
5993 /* When a reshape changes the number of devices,
5994 * ->degraded is measured against the larger of the
5995 * pre and post number of devices.
5996 */
ec32a2bd 5997 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 5998 mddev->degraded = calc_degraded(conf);
ec32a2bd
N
5999 spin_unlock_irqrestore(&conf->device_lock, flags);
6000 }
63c70c4f 6001 mddev->raid_disks = conf->raid_disks;
e516402c 6002 mddev->reshape_position = conf->reshape_progress;
850b2b42 6003 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 6004
29269553
N
6005 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6006 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6007 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6008 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6009 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 6010 "reshape");
29269553
N
6011 if (!mddev->sync_thread) {
6012 mddev->recovery = 0;
6013 spin_lock_irq(&conf->device_lock);
6014 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
05616be5
N
6015 rdev_for_each(rdev, mddev)
6016 rdev->new_data_offset = rdev->data_offset;
6017 smp_wmb();
fef9c61f 6018 conf->reshape_progress = MaxSector;
1e3fa9bd 6019 mddev->reshape_position = MaxSector;
29269553
N
6020 spin_unlock_irq(&conf->device_lock);
6021 return -EAGAIN;
6022 }
c8f517c4 6023 conf->reshape_checkpoint = jiffies;
29269553
N
6024 md_wakeup_thread(mddev->sync_thread);
6025 md_new_event(mddev);
6026 return 0;
6027}
29269553 6028
ec32a2bd
N
6029/* This is called from the reshape thread and should make any
6030 * changes needed in 'conf'
6031 */
d1688a6d 6032static void end_reshape(struct r5conf *conf)
29269553 6033{
29269553 6034
f6705578 6035 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 6036 struct md_rdev *rdev;
f6705578 6037
f6705578 6038 spin_lock_irq(&conf->device_lock);
cea9c228 6039 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
6040 rdev_for_each(rdev, conf->mddev)
6041 rdev->data_offset = rdev->new_data_offset;
6042 smp_wmb();
fef9c61f 6043 conf->reshape_progress = MaxSector;
f6705578 6044 spin_unlock_irq(&conf->device_lock);
b0f9ec04 6045 wake_up(&conf->wait_for_overlap);
16a53ecc
N
6046
6047 /* read-ahead size must cover two whole stripes, which is
6048 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6049 */
4a5add49 6050 if (conf->mddev->queue) {
cea9c228 6051 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 6052 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 6053 / PAGE_SIZE);
16a53ecc
N
6054 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6055 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6056 }
29269553 6057 }
29269553
N
6058}
6059
ec32a2bd
N
6060/* This is called from the raid5d thread with mddev_lock held.
6061 * It makes config changes to the device.
6062 */
fd01b88c 6063static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 6064{
d1688a6d 6065 struct r5conf *conf = mddev->private;
cea9c228
N
6066
6067 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6068
ec32a2bd
N
6069 if (mddev->delta_disks > 0) {
6070 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6071 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 6072 revalidate_disk(mddev->gendisk);
ec32a2bd
N
6073 } else {
6074 int d;
908f4fbd
N
6075 spin_lock_irq(&conf->device_lock);
6076 mddev->degraded = calc_degraded(conf);
6077 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
6078 for (d = conf->raid_disks ;
6079 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 6080 d++) {
3cb03002 6081 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
6082 if (rdev)
6083 clear_bit(In_sync, &rdev->flags);
6084 rdev = conf->disks[d].replacement;
6085 if (rdev)
6086 clear_bit(In_sync, &rdev->flags);
1a67dde0 6087 }
cea9c228 6088 }
88ce4930 6089 mddev->layout = conf->algorithm;
09c9e5fa 6090 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
6091 mddev->reshape_position = MaxSector;
6092 mddev->delta_disks = 0;
2c810cdd 6093 mddev->reshape_backwards = 0;
cea9c228
N
6094 }
6095}
6096
fd01b88c 6097static void raid5_quiesce(struct mddev *mddev, int state)
72626685 6098{
d1688a6d 6099 struct r5conf *conf = mddev->private;
72626685
N
6100
6101 switch(state) {
e464eafd
N
6102 case 2: /* resume for a suspend */
6103 wake_up(&conf->wait_for_overlap);
6104 break;
6105
72626685
N
6106 case 1: /* stop all writes */
6107 spin_lock_irq(&conf->device_lock);
64bd660b
N
6108 /* '2' tells resync/reshape to pause so that all
6109 * active stripes can drain
6110 */
6111 conf->quiesce = 2;
72626685 6112 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
6113 atomic_read(&conf->active_stripes) == 0 &&
6114 atomic_read(&conf->active_aligned_reads) == 0,
eed8c02e 6115 conf->device_lock);
64bd660b 6116 conf->quiesce = 1;
72626685 6117 spin_unlock_irq(&conf->device_lock);
64bd660b
N
6118 /* allow reshape to continue */
6119 wake_up(&conf->wait_for_overlap);
72626685
N
6120 break;
6121
6122 case 0: /* re-enable writes */
6123 spin_lock_irq(&conf->device_lock);
6124 conf->quiesce = 0;
6125 wake_up(&conf->wait_for_stripe);
e464eafd 6126 wake_up(&conf->wait_for_overlap);
72626685
N
6127 spin_unlock_irq(&conf->device_lock);
6128 break;
6129 }
72626685 6130}
b15c2e57 6131
d562b0c4 6132
fd01b88c 6133static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 6134{
e373ab10 6135 struct r0conf *raid0_conf = mddev->private;
d76c8420 6136 sector_t sectors;
54071b38 6137
f1b29bca 6138 /* for raid0 takeover only one zone is supported */
e373ab10 6139 if (raid0_conf->nr_strip_zones > 1) {
0c55e022
N
6140 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6141 mdname(mddev));
f1b29bca
DW
6142 return ERR_PTR(-EINVAL);
6143 }
6144
e373ab10
N
6145 sectors = raid0_conf->strip_zone[0].zone_end;
6146 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 6147 mddev->dev_sectors = sectors;
f1b29bca 6148 mddev->new_level = level;
54071b38
TM
6149 mddev->new_layout = ALGORITHM_PARITY_N;
6150 mddev->new_chunk_sectors = mddev->chunk_sectors;
6151 mddev->raid_disks += 1;
6152 mddev->delta_disks = 1;
6153 /* make sure it will be not marked as dirty */
6154 mddev->recovery_cp = MaxSector;
6155
6156 return setup_conf(mddev);
6157}
6158
6159
fd01b88c 6160static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
6161{
6162 int chunksect;
6163
6164 if (mddev->raid_disks != 2 ||
6165 mddev->degraded > 1)
6166 return ERR_PTR(-EINVAL);
6167
6168 /* Should check if there are write-behind devices? */
6169
6170 chunksect = 64*2; /* 64K by default */
6171
6172 /* The array must be an exact multiple of chunksize */
6173 while (chunksect && (mddev->array_sectors & (chunksect-1)))
6174 chunksect >>= 1;
6175
6176 if ((chunksect<<9) < STRIPE_SIZE)
6177 /* array size does not allow a suitable chunk size */
6178 return ERR_PTR(-EINVAL);
6179
6180 mddev->new_level = 5;
6181 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 6182 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
6183
6184 return setup_conf(mddev);
6185}
6186
fd01b88c 6187static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
6188{
6189 int new_layout;
6190
6191 switch (mddev->layout) {
6192 case ALGORITHM_LEFT_ASYMMETRIC_6:
6193 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6194 break;
6195 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6196 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6197 break;
6198 case ALGORITHM_LEFT_SYMMETRIC_6:
6199 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6200 break;
6201 case ALGORITHM_RIGHT_SYMMETRIC_6:
6202 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6203 break;
6204 case ALGORITHM_PARITY_0_6:
6205 new_layout = ALGORITHM_PARITY_0;
6206 break;
6207 case ALGORITHM_PARITY_N:
6208 new_layout = ALGORITHM_PARITY_N;
6209 break;
6210 default:
6211 return ERR_PTR(-EINVAL);
6212 }
6213 mddev->new_level = 5;
6214 mddev->new_layout = new_layout;
6215 mddev->delta_disks = -1;
6216 mddev->raid_disks -= 1;
6217 return setup_conf(mddev);
6218}
6219
d562b0c4 6220
fd01b88c 6221static int raid5_check_reshape(struct mddev *mddev)
b3546035 6222{
88ce4930
N
6223 /* For a 2-drive array, the layout and chunk size can be changed
6224 * immediately as not restriping is needed.
6225 * For larger arrays we record the new value - after validation
6226 * to be used by a reshape pass.
b3546035 6227 */
d1688a6d 6228 struct r5conf *conf = mddev->private;
597a711b 6229 int new_chunk = mddev->new_chunk_sectors;
b3546035 6230
597a711b 6231 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
6232 return -EINVAL;
6233 if (new_chunk > 0) {
0ba459d2 6234 if (!is_power_of_2(new_chunk))
b3546035 6235 return -EINVAL;
597a711b 6236 if (new_chunk < (PAGE_SIZE>>9))
b3546035 6237 return -EINVAL;
597a711b 6238 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
6239 /* not factor of array size */
6240 return -EINVAL;
6241 }
6242
6243 /* They look valid */
6244
88ce4930 6245 if (mddev->raid_disks == 2) {
597a711b
N
6246 /* can make the change immediately */
6247 if (mddev->new_layout >= 0) {
6248 conf->algorithm = mddev->new_layout;
6249 mddev->layout = mddev->new_layout;
88ce4930
N
6250 }
6251 if (new_chunk > 0) {
597a711b
N
6252 conf->chunk_sectors = new_chunk ;
6253 mddev->chunk_sectors = new_chunk;
88ce4930
N
6254 }
6255 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6256 md_wakeup_thread(mddev->thread);
b3546035 6257 }
50ac168a 6258 return check_reshape(mddev);
88ce4930
N
6259}
6260
fd01b88c 6261static int raid6_check_reshape(struct mddev *mddev)
88ce4930 6262{
597a711b 6263 int new_chunk = mddev->new_chunk_sectors;
50ac168a 6264
597a711b 6265 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 6266 return -EINVAL;
b3546035 6267 if (new_chunk > 0) {
0ba459d2 6268 if (!is_power_of_2(new_chunk))
88ce4930 6269 return -EINVAL;
597a711b 6270 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 6271 return -EINVAL;
597a711b 6272 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
6273 /* not factor of array size */
6274 return -EINVAL;
b3546035 6275 }
88ce4930
N
6276
6277 /* They look valid */
50ac168a 6278 return check_reshape(mddev);
b3546035
N
6279}
6280
fd01b88c 6281static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
6282{
6283 /* raid5 can take over:
f1b29bca 6284 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
6285 * raid1 - if there are two drives. We need to know the chunk size
6286 * raid4 - trivial - just use a raid4 layout.
6287 * raid6 - Providing it is a *_6 layout
d562b0c4 6288 */
f1b29bca
DW
6289 if (mddev->level == 0)
6290 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
6291 if (mddev->level == 1)
6292 return raid5_takeover_raid1(mddev);
e9d4758f
N
6293 if (mddev->level == 4) {
6294 mddev->new_layout = ALGORITHM_PARITY_N;
6295 mddev->new_level = 5;
6296 return setup_conf(mddev);
6297 }
fc9739c6
N
6298 if (mddev->level == 6)
6299 return raid5_takeover_raid6(mddev);
d562b0c4
N
6300
6301 return ERR_PTR(-EINVAL);
6302}
6303
fd01b88c 6304static void *raid4_takeover(struct mddev *mddev)
a78d38a1 6305{
f1b29bca
DW
6306 /* raid4 can take over:
6307 * raid0 - if there is only one strip zone
6308 * raid5 - if layout is right
a78d38a1 6309 */
f1b29bca
DW
6310 if (mddev->level == 0)
6311 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
6312 if (mddev->level == 5 &&
6313 mddev->layout == ALGORITHM_PARITY_N) {
6314 mddev->new_layout = 0;
6315 mddev->new_level = 4;
6316 return setup_conf(mddev);
6317 }
6318 return ERR_PTR(-EINVAL);
6319}
d562b0c4 6320
84fc4b56 6321static struct md_personality raid5_personality;
245f46c2 6322
fd01b88c 6323static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
6324{
6325 /* Currently can only take over a raid5. We map the
6326 * personality to an equivalent raid6 personality
6327 * with the Q block at the end.
6328 */
6329 int new_layout;
6330
6331 if (mddev->pers != &raid5_personality)
6332 return ERR_PTR(-EINVAL);
6333 if (mddev->degraded > 1)
6334 return ERR_PTR(-EINVAL);
6335 if (mddev->raid_disks > 253)
6336 return ERR_PTR(-EINVAL);
6337 if (mddev->raid_disks < 3)
6338 return ERR_PTR(-EINVAL);
6339
6340 switch (mddev->layout) {
6341 case ALGORITHM_LEFT_ASYMMETRIC:
6342 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6343 break;
6344 case ALGORITHM_RIGHT_ASYMMETRIC:
6345 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6346 break;
6347 case ALGORITHM_LEFT_SYMMETRIC:
6348 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6349 break;
6350 case ALGORITHM_RIGHT_SYMMETRIC:
6351 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6352 break;
6353 case ALGORITHM_PARITY_0:
6354 new_layout = ALGORITHM_PARITY_0_6;
6355 break;
6356 case ALGORITHM_PARITY_N:
6357 new_layout = ALGORITHM_PARITY_N;
6358 break;
6359 default:
6360 return ERR_PTR(-EINVAL);
6361 }
6362 mddev->new_level = 6;
6363 mddev->new_layout = new_layout;
6364 mddev->delta_disks = 1;
6365 mddev->raid_disks += 1;
6366 return setup_conf(mddev);
6367}
6368
6369
84fc4b56 6370static struct md_personality raid6_personality =
16a53ecc
N
6371{
6372 .name = "raid6",
6373 .level = 6,
6374 .owner = THIS_MODULE,
6375 .make_request = make_request,
6376 .run = run,
6377 .stop = stop,
6378 .status = status,
6379 .error_handler = error,
6380 .hot_add_disk = raid5_add_disk,
6381 .hot_remove_disk= raid5_remove_disk,
6382 .spare_active = raid5_spare_active,
6383 .sync_request = sync_request,
6384 .resize = raid5_resize,
80c3a6ce 6385 .size = raid5_size,
50ac168a 6386 .check_reshape = raid6_check_reshape,
f416885e 6387 .start_reshape = raid5_start_reshape,
cea9c228 6388 .finish_reshape = raid5_finish_reshape,
16a53ecc 6389 .quiesce = raid5_quiesce,
245f46c2 6390 .takeover = raid6_takeover,
16a53ecc 6391};
84fc4b56 6392static struct md_personality raid5_personality =
1da177e4
LT
6393{
6394 .name = "raid5",
2604b703 6395 .level = 5,
1da177e4
LT
6396 .owner = THIS_MODULE,
6397 .make_request = make_request,
6398 .run = run,
6399 .stop = stop,
6400 .status = status,
6401 .error_handler = error,
6402 .hot_add_disk = raid5_add_disk,
6403 .hot_remove_disk= raid5_remove_disk,
6404 .spare_active = raid5_spare_active,
6405 .sync_request = sync_request,
6406 .resize = raid5_resize,
80c3a6ce 6407 .size = raid5_size,
63c70c4f
N
6408 .check_reshape = raid5_check_reshape,
6409 .start_reshape = raid5_start_reshape,
cea9c228 6410 .finish_reshape = raid5_finish_reshape,
72626685 6411 .quiesce = raid5_quiesce,
d562b0c4 6412 .takeover = raid5_takeover,
1da177e4
LT
6413};
6414
84fc4b56 6415static struct md_personality raid4_personality =
1da177e4 6416{
2604b703
N
6417 .name = "raid4",
6418 .level = 4,
6419 .owner = THIS_MODULE,
6420 .make_request = make_request,
6421 .run = run,
6422 .stop = stop,
6423 .status = status,
6424 .error_handler = error,
6425 .hot_add_disk = raid5_add_disk,
6426 .hot_remove_disk= raid5_remove_disk,
6427 .spare_active = raid5_spare_active,
6428 .sync_request = sync_request,
6429 .resize = raid5_resize,
80c3a6ce 6430 .size = raid5_size,
3d37890b
N
6431 .check_reshape = raid5_check_reshape,
6432 .start_reshape = raid5_start_reshape,
cea9c228 6433 .finish_reshape = raid5_finish_reshape,
2604b703 6434 .quiesce = raid5_quiesce,
a78d38a1 6435 .takeover = raid4_takeover,
2604b703
N
6436};
6437
6438static int __init raid5_init(void)
6439{
16a53ecc 6440 register_md_personality(&raid6_personality);
2604b703
N
6441 register_md_personality(&raid5_personality);
6442 register_md_personality(&raid4_personality);
6443 return 0;
1da177e4
LT
6444}
6445
2604b703 6446static void raid5_exit(void)
1da177e4 6447{
16a53ecc 6448 unregister_md_personality(&raid6_personality);
2604b703
N
6449 unregister_md_personality(&raid5_personality);
6450 unregister_md_personality(&raid4_personality);
1da177e4
LT
6451}
6452
6453module_init(raid5_init);
6454module_exit(raid5_exit);
6455MODULE_LICENSE("GPL");
0efb9e61 6456MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 6457MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
6458MODULE_ALIAS("md-raid5");
6459MODULE_ALIAS("md-raid4");
2604b703
N
6460MODULE_ALIAS("md-level-5");
6461MODULE_ALIAS("md-level-4");
16a53ecc
N
6462MODULE_ALIAS("md-personality-8"); /* RAID6 */
6463MODULE_ALIAS("md-raid6");
6464MODULE_ALIAS("md-level-6");
6465
6466/* This used to be two separate modules, they were: */
6467MODULE_ALIAS("raid5");
6468MODULE_ALIAS("raid6");
This page took 1.281617 seconds and 5 git commands to generate.