md: kill STRIPE_OP_MOD_DMA in raid5 offload
[deliverable/linux.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
1da177e4
LT
46#include <linux/module.h>
47#include <linux/slab.h>
1da177e4
LT
48#include <linux/highmem.h>
49#include <linux/bitops.h>
f6705578 50#include <linux/kthread.h>
1da177e4 51#include <asm/atomic.h>
16a53ecc 52#include "raid6.h"
1da177e4 53
72626685 54#include <linux/raid/bitmap.h>
91c00924 55#include <linux/async_tx.h>
72626685 56
1da177e4
LT
57/*
58 * Stripe cache
59 */
60
61#define NR_STRIPES 256
62#define STRIPE_SIZE PAGE_SIZE
63#define STRIPE_SHIFT (PAGE_SHIFT - 9)
64#define STRIPE_SECTORS (STRIPE_SIZE>>9)
65#define IO_THRESHOLD 1
8b3e6cdc 66#define BYPASS_THRESHOLD 1
fccddba0 67#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
68#define HASH_MASK (NR_HASH - 1)
69
fccddba0 70#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
71
72/* bio's attached to a stripe+device for I/O are linked together in bi_sector
73 * order without overlap. There may be several bio's per stripe+device, and
74 * a bio could span several devices.
75 * When walking this list for a particular stripe+device, we must never proceed
76 * beyond a bio that extends past this device, as the next bio might no longer
77 * be valid.
78 * This macro is used to determine the 'next' bio in the list, given the sector
79 * of the current stripe+device
80 */
81#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82/*
83 * The following can be used to debug the driver
84 */
1da177e4
LT
85#define RAID5_PARANOIA 1
86#if RAID5_PARANOIA && defined(CONFIG_SMP)
87# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88#else
89# define CHECK_DEVLOCK()
90#endif
91
45b4233c 92#ifdef DEBUG
1da177e4
LT
93#define inline
94#define __inline__
95#endif
96
6be9d494
BS
97#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98
16a53ecc
N
99#if !RAID6_USE_EMPTY_ZERO_PAGE
100/* In .bss so it's zeroed */
101const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
102#endif
103
104static inline int raid6_next_disk(int disk, int raid_disks)
105{
106 disk++;
107 return (disk < raid_disks) ? disk : 0;
108}
a4456856
DW
109
110static void return_io(struct bio *return_bi)
111{
112 struct bio *bi = return_bi;
113 while (bi) {
a4456856
DW
114
115 return_bi = bi->bi_next;
116 bi->bi_next = NULL;
117 bi->bi_size = 0;
0e13fe23 118 bio_endio(bi, 0);
a4456856
DW
119 bi = return_bi;
120 }
121}
122
1da177e4
LT
123static void print_raid5_conf (raid5_conf_t *conf);
124
858119e1 125static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
126{
127 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
128 BUG_ON(!list_empty(&sh->lru));
129 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 130 if (test_bit(STRIPE_HANDLE, &sh->state)) {
7c785b7a 131 if (test_bit(STRIPE_DELAYED, &sh->state)) {
1da177e4 132 list_add_tail(&sh->lru, &conf->delayed_list);
7c785b7a
N
133 blk_plug_device(conf->mddev->queue);
134 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
ae3c20cc 135 sh->bm_seq - conf->seq_write > 0) {
72626685 136 list_add_tail(&sh->lru, &conf->bitmap_list);
7c785b7a
N
137 blk_plug_device(conf->mddev->queue);
138 } else {
72626685 139 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 140 list_add_tail(&sh->lru, &conf->handle_list);
72626685 141 }
1da177e4
LT
142 md_wakeup_thread(conf->mddev->thread);
143 } else {
d84e0f10 144 BUG_ON(sh->ops.pending);
1da177e4
LT
145 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
146 atomic_dec(&conf->preread_active_stripes);
147 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
148 md_wakeup_thread(conf->mddev->thread);
149 }
1da177e4 150 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
151 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
152 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 153 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
154 if (conf->retry_read_aligned)
155 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 156 }
1da177e4
LT
157 }
158 }
159}
160static void release_stripe(struct stripe_head *sh)
161{
162 raid5_conf_t *conf = sh->raid_conf;
163 unsigned long flags;
16a53ecc 164
1da177e4
LT
165 spin_lock_irqsave(&conf->device_lock, flags);
166 __release_stripe(conf, sh);
167 spin_unlock_irqrestore(&conf->device_lock, flags);
168}
169
fccddba0 170static inline void remove_hash(struct stripe_head *sh)
1da177e4 171{
45b4233c
DW
172 pr_debug("remove_hash(), stripe %llu\n",
173 (unsigned long long)sh->sector);
1da177e4 174
fccddba0 175 hlist_del_init(&sh->hash);
1da177e4
LT
176}
177
16a53ecc 178static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 179{
fccddba0 180 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 181
45b4233c
DW
182 pr_debug("insert_hash(), stripe %llu\n",
183 (unsigned long long)sh->sector);
1da177e4
LT
184
185 CHECK_DEVLOCK();
fccddba0 186 hlist_add_head(&sh->hash, hp);
1da177e4
LT
187}
188
189
190/* find an idle stripe, make sure it is unhashed, and return it. */
191static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
192{
193 struct stripe_head *sh = NULL;
194 struct list_head *first;
195
196 CHECK_DEVLOCK();
197 if (list_empty(&conf->inactive_list))
198 goto out;
199 first = conf->inactive_list.next;
200 sh = list_entry(first, struct stripe_head, lru);
201 list_del_init(first);
202 remove_hash(sh);
203 atomic_inc(&conf->active_stripes);
204out:
205 return sh;
206}
207
208static void shrink_buffers(struct stripe_head *sh, int num)
209{
210 struct page *p;
211 int i;
212
213 for (i=0; i<num ; i++) {
214 p = sh->dev[i].page;
215 if (!p)
216 continue;
217 sh->dev[i].page = NULL;
2d1f3b5d 218 put_page(p);
1da177e4
LT
219 }
220}
221
222static int grow_buffers(struct stripe_head *sh, int num)
223{
224 int i;
225
226 for (i=0; i<num; i++) {
227 struct page *page;
228
229 if (!(page = alloc_page(GFP_KERNEL))) {
230 return 1;
231 }
232 sh->dev[i].page = page;
233 }
234 return 0;
235}
236
237static void raid5_build_block (struct stripe_head *sh, int i);
238
7ecaa1e6 239static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
1da177e4
LT
240{
241 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 242 int i;
1da177e4 243
78bafebd
ES
244 BUG_ON(atomic_read(&sh->count) != 0);
245 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
d84e0f10
DW
246 BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
247
1da177e4 248 CHECK_DEVLOCK();
45b4233c 249 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
250 (unsigned long long)sh->sector);
251
252 remove_hash(sh);
16a53ecc 253
1da177e4
LT
254 sh->sector = sector;
255 sh->pd_idx = pd_idx;
256 sh->state = 0;
257
7ecaa1e6
N
258 sh->disks = disks;
259
260 for (i = sh->disks; i--; ) {
1da177e4
LT
261 struct r5dev *dev = &sh->dev[i];
262
d84e0f10 263 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 264 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 265 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 266 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 267 dev->read, dev->towrite, dev->written,
1da177e4
LT
268 test_bit(R5_LOCKED, &dev->flags));
269 BUG();
270 }
271 dev->flags = 0;
272 raid5_build_block(sh, i);
273 }
274 insert_hash(conf, sh);
275}
276
7ecaa1e6 277static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
1da177e4
LT
278{
279 struct stripe_head *sh;
fccddba0 280 struct hlist_node *hn;
1da177e4
LT
281
282 CHECK_DEVLOCK();
45b4233c 283 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 284 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
7ecaa1e6 285 if (sh->sector == sector && sh->disks == disks)
1da177e4 286 return sh;
45b4233c 287 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
288 return NULL;
289}
290
291static void unplug_slaves(mddev_t *mddev);
165125e1 292static void raid5_unplug_device(struct request_queue *q);
1da177e4 293
7ecaa1e6
N
294static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
295 int pd_idx, int noblock)
1da177e4
LT
296{
297 struct stripe_head *sh;
298
45b4233c 299 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
300
301 spin_lock_irq(&conf->device_lock);
302
303 do {
72626685
N
304 wait_event_lock_irq(conf->wait_for_stripe,
305 conf->quiesce == 0,
306 conf->device_lock, /* nothing */);
7ecaa1e6 307 sh = __find_stripe(conf, sector, disks);
1da177e4
LT
308 if (!sh) {
309 if (!conf->inactive_blocked)
310 sh = get_free_stripe(conf);
311 if (noblock && sh == NULL)
312 break;
313 if (!sh) {
314 conf->inactive_blocked = 1;
315 wait_event_lock_irq(conf->wait_for_stripe,
316 !list_empty(&conf->inactive_list) &&
5036805b
N
317 (atomic_read(&conf->active_stripes)
318 < (conf->max_nr_stripes *3/4)
1da177e4
LT
319 || !conf->inactive_blocked),
320 conf->device_lock,
f4370781 321 raid5_unplug_device(conf->mddev->queue)
1da177e4
LT
322 );
323 conf->inactive_blocked = 0;
324 } else
7ecaa1e6 325 init_stripe(sh, sector, pd_idx, disks);
1da177e4
LT
326 } else {
327 if (atomic_read(&sh->count)) {
78bafebd 328 BUG_ON(!list_empty(&sh->lru));
1da177e4
LT
329 } else {
330 if (!test_bit(STRIPE_HANDLE, &sh->state))
331 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
332 if (list_empty(&sh->lru) &&
333 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
334 BUG();
335 list_del_init(&sh->lru);
1da177e4
LT
336 }
337 }
338 } while (sh == NULL);
339
340 if (sh)
341 atomic_inc(&sh->count);
342
343 spin_unlock_irq(&conf->device_lock);
344 return sh;
345}
346
d84e0f10
DW
347/* test_and_ack_op() ensures that we only dequeue an operation once */
348#define test_and_ack_op(op, pend) \
349do { \
350 if (test_bit(op, &sh->ops.pending) && \
351 !test_bit(op, &sh->ops.complete)) { \
352 if (test_and_set_bit(op, &sh->ops.ack)) \
353 clear_bit(op, &pend); \
354 else \
355 ack++; \
356 } else \
357 clear_bit(op, &pend); \
358} while (0)
359
360/* find new work to run, do not resubmit work that is already
361 * in flight
362 */
363static unsigned long get_stripe_work(struct stripe_head *sh)
364{
365 unsigned long pending;
366 int ack = 0;
367
368 pending = sh->ops.pending;
369
370 test_and_ack_op(STRIPE_OP_BIOFILL, pending);
371 test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
372 test_and_ack_op(STRIPE_OP_PREXOR, pending);
373 test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
374 test_and_ack_op(STRIPE_OP_POSTXOR, pending);
375 test_and_ack_op(STRIPE_OP_CHECK, pending);
376 if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
377 ack++;
378
379 sh->ops.count -= ack;
4ae3f847
DW
380 if (unlikely(sh->ops.count < 0)) {
381 printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
382 "ops.complete: %#lx\n", pending, sh->ops.pending,
383 sh->ops.ack, sh->ops.complete);
384 BUG();
385 }
d84e0f10
DW
386
387 return pending;
388}
389
6712ecf8
N
390static void
391raid5_end_read_request(struct bio *bi, int error);
392static void
393raid5_end_write_request(struct bio *bi, int error);
91c00924
DW
394
395static void ops_run_io(struct stripe_head *sh)
396{
397 raid5_conf_t *conf = sh->raid_conf;
398 int i, disks = sh->disks;
399
400 might_sleep();
401
8b3e6cdc 402 set_bit(STRIPE_IO_STARTED, &sh->state);
91c00924
DW
403 for (i = disks; i--; ) {
404 int rw;
405 struct bio *bi;
406 mdk_rdev_t *rdev;
407 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
408 rw = WRITE;
409 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
410 rw = READ;
411 else
412 continue;
413
414 bi = &sh->dev[i].req;
415
416 bi->bi_rw = rw;
417 if (rw == WRITE)
418 bi->bi_end_io = raid5_end_write_request;
419 else
420 bi->bi_end_io = raid5_end_read_request;
421
422 rcu_read_lock();
423 rdev = rcu_dereference(conf->disks[i].rdev);
424 if (rdev && test_bit(Faulty, &rdev->flags))
425 rdev = NULL;
426 if (rdev)
427 atomic_inc(&rdev->nr_pending);
428 rcu_read_unlock();
429
430 if (rdev) {
431 if (test_bit(STRIPE_SYNCING, &sh->state) ||
432 test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
433 test_bit(STRIPE_EXPAND_READY, &sh->state))
434 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
435
436 bi->bi_bdev = rdev->bdev;
437 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 438 __func__, (unsigned long long)sh->sector,
91c00924
DW
439 bi->bi_rw, i);
440 atomic_inc(&sh->count);
441 bi->bi_sector = sh->sector + rdev->data_offset;
442 bi->bi_flags = 1 << BIO_UPTODATE;
443 bi->bi_vcnt = 1;
444 bi->bi_max_vecs = 1;
445 bi->bi_idx = 0;
446 bi->bi_io_vec = &sh->dev[i].vec;
447 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
448 bi->bi_io_vec[0].bv_offset = 0;
449 bi->bi_size = STRIPE_SIZE;
450 bi->bi_next = NULL;
451 if (rw == WRITE &&
452 test_bit(R5_ReWrite, &sh->dev[i].flags))
453 atomic_add(STRIPE_SECTORS,
454 &rdev->corrected_errors);
455 generic_make_request(bi);
456 } else {
457 if (rw == WRITE)
458 set_bit(STRIPE_DEGRADED, &sh->state);
459 pr_debug("skip op %ld on disc %d for sector %llu\n",
460 bi->bi_rw, i, (unsigned long long)sh->sector);
461 clear_bit(R5_LOCKED, &sh->dev[i].flags);
462 set_bit(STRIPE_HANDLE, &sh->state);
463 }
464 }
465}
466
467static struct dma_async_tx_descriptor *
468async_copy_data(int frombio, struct bio *bio, struct page *page,
469 sector_t sector, struct dma_async_tx_descriptor *tx)
470{
471 struct bio_vec *bvl;
472 struct page *bio_page;
473 int i;
474 int page_offset;
475
476 if (bio->bi_sector >= sector)
477 page_offset = (signed)(bio->bi_sector - sector) * 512;
478 else
479 page_offset = (signed)(sector - bio->bi_sector) * -512;
480 bio_for_each_segment(bvl, bio, i) {
481 int len = bio_iovec_idx(bio, i)->bv_len;
482 int clen;
483 int b_offset = 0;
484
485 if (page_offset < 0) {
486 b_offset = -page_offset;
487 page_offset += b_offset;
488 len -= b_offset;
489 }
490
491 if (len > 0 && page_offset + len > STRIPE_SIZE)
492 clen = STRIPE_SIZE - page_offset;
493 else
494 clen = len;
495
496 if (clen > 0) {
497 b_offset += bio_iovec_idx(bio, i)->bv_offset;
498 bio_page = bio_iovec_idx(bio, i)->bv_page;
499 if (frombio)
500 tx = async_memcpy(page, bio_page, page_offset,
501 b_offset, clen,
eb0645a8 502 ASYNC_TX_DEP_ACK,
91c00924
DW
503 tx, NULL, NULL);
504 else
505 tx = async_memcpy(bio_page, page, b_offset,
506 page_offset, clen,
eb0645a8 507 ASYNC_TX_DEP_ACK,
91c00924
DW
508 tx, NULL, NULL);
509 }
510 if (clen < len) /* hit end of page */
511 break;
512 page_offset += len;
513 }
514
515 return tx;
516}
517
518static void ops_complete_biofill(void *stripe_head_ref)
519{
520 struct stripe_head *sh = stripe_head_ref;
521 struct bio *return_bi = NULL;
522 raid5_conf_t *conf = sh->raid_conf;
e4d84909 523 int i;
91c00924 524
e46b272b 525 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
526 (unsigned long long)sh->sector);
527
528 /* clear completed biofills */
529 for (i = sh->disks; i--; ) {
530 struct r5dev *dev = &sh->dev[i];
91c00924
DW
531
532 /* acknowledge completion of a biofill operation */
e4d84909
DW
533 /* and check if we need to reply to a read request,
534 * new R5_Wantfill requests are held off until
535 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
536 */
537 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 538 struct bio *rbi, *rbi2;
91c00924
DW
539
540 /* The access to dev->read is outside of the
541 * spin_lock_irq(&conf->device_lock), but is protected
542 * by the STRIPE_OP_BIOFILL pending bit
543 */
544 BUG_ON(!dev->read);
545 rbi = dev->read;
546 dev->read = NULL;
547 while (rbi && rbi->bi_sector <
548 dev->sector + STRIPE_SECTORS) {
549 rbi2 = r5_next_bio(rbi, dev->sector);
550 spin_lock_irq(&conf->device_lock);
551 if (--rbi->bi_phys_segments == 0) {
552 rbi->bi_next = return_bi;
553 return_bi = rbi;
554 }
555 spin_unlock_irq(&conf->device_lock);
556 rbi = rbi2;
557 }
558 }
559 }
4ae3f847 560 set_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
91c00924
DW
561
562 return_io(return_bi);
563
e4d84909 564 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
565 release_stripe(sh);
566}
567
568static void ops_run_biofill(struct stripe_head *sh)
569{
570 struct dma_async_tx_descriptor *tx = NULL;
571 raid5_conf_t *conf = sh->raid_conf;
572 int i;
573
e46b272b 574 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
575 (unsigned long long)sh->sector);
576
577 for (i = sh->disks; i--; ) {
578 struct r5dev *dev = &sh->dev[i];
579 if (test_bit(R5_Wantfill, &dev->flags)) {
580 struct bio *rbi;
581 spin_lock_irq(&conf->device_lock);
582 dev->read = rbi = dev->toread;
583 dev->toread = NULL;
584 spin_unlock_irq(&conf->device_lock);
585 while (rbi && rbi->bi_sector <
586 dev->sector + STRIPE_SECTORS) {
587 tx = async_copy_data(0, rbi, dev->page,
588 dev->sector, tx);
589 rbi = r5_next_bio(rbi, dev->sector);
590 }
591 }
592 }
593
594 atomic_inc(&sh->count);
595 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
596 ops_complete_biofill, sh);
597}
598
599static void ops_complete_compute5(void *stripe_head_ref)
600{
601 struct stripe_head *sh = stripe_head_ref;
602 int target = sh->ops.target;
603 struct r5dev *tgt = &sh->dev[target];
604
e46b272b 605 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
606 (unsigned long long)sh->sector);
607
608 set_bit(R5_UPTODATE, &tgt->flags);
609 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
610 clear_bit(R5_Wantcompute, &tgt->flags);
611 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
612 set_bit(STRIPE_HANDLE, &sh->state);
613 release_stripe(sh);
614}
615
616static struct dma_async_tx_descriptor *
617ops_run_compute5(struct stripe_head *sh, unsigned long pending)
618{
619 /* kernel stack size limits the total number of disks */
620 int disks = sh->disks;
621 struct page *xor_srcs[disks];
622 int target = sh->ops.target;
623 struct r5dev *tgt = &sh->dev[target];
624 struct page *xor_dest = tgt->page;
625 int count = 0;
626 struct dma_async_tx_descriptor *tx;
627 int i;
628
629 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 630 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
631 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
632
633 for (i = disks; i--; )
634 if (i != target)
635 xor_srcs[count++] = sh->dev[i].page;
636
637 atomic_inc(&sh->count);
638
639 if (unlikely(count == 1))
640 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
641 0, NULL, ops_complete_compute5, sh);
642 else
643 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
644 ASYNC_TX_XOR_ZERO_DST, NULL,
645 ops_complete_compute5, sh);
646
647 /* ack now if postxor is not set to be run */
648 if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
649 async_tx_ack(tx);
650
651 return tx;
652}
653
654static void ops_complete_prexor(void *stripe_head_ref)
655{
656 struct stripe_head *sh = stripe_head_ref;
657
e46b272b 658 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
659 (unsigned long long)sh->sector);
660
661 set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
662}
663
664static struct dma_async_tx_descriptor *
665ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
666{
667 /* kernel stack size limits the total number of disks */
668 int disks = sh->disks;
669 struct page *xor_srcs[disks];
670 int count = 0, pd_idx = sh->pd_idx, i;
671
672 /* existing parity data subtracted */
673 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
674
e46b272b 675 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
676 (unsigned long long)sh->sector);
677
678 for (i = disks; i--; ) {
679 struct r5dev *dev = &sh->dev[i];
680 /* Only process blocks that are known to be uptodate */
681 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
682 xor_srcs[count++] = dev->page;
683 }
684
685 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
686 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
687 ops_complete_prexor, sh);
688
689 return tx;
690}
691
692static struct dma_async_tx_descriptor *
6c55be8b
DW
693ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
694 unsigned long pending)
91c00924
DW
695{
696 int disks = sh->disks;
697 int pd_idx = sh->pd_idx, i;
698
699 /* check if prexor is active which means only process blocks
700 * that are part of a read-modify-write (Wantprexor)
701 */
6c55be8b 702 int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
91c00924 703
e46b272b 704 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
705 (unsigned long long)sh->sector);
706
707 for (i = disks; i--; ) {
708 struct r5dev *dev = &sh->dev[i];
709 struct bio *chosen;
710 int towrite;
711
712 towrite = 0;
713 if (prexor) { /* rmw */
714 if (dev->towrite &&
715 test_bit(R5_Wantprexor, &dev->flags))
716 towrite = 1;
717 } else { /* rcw */
718 if (i != pd_idx && dev->towrite &&
719 test_bit(R5_LOCKED, &dev->flags))
720 towrite = 1;
721 }
722
723 if (towrite) {
724 struct bio *wbi;
725
726 spin_lock(&sh->lock);
727 chosen = dev->towrite;
728 dev->towrite = NULL;
729 BUG_ON(dev->written);
730 wbi = dev->written = chosen;
731 spin_unlock(&sh->lock);
732
733 while (wbi && wbi->bi_sector <
734 dev->sector + STRIPE_SECTORS) {
735 tx = async_copy_data(1, wbi, dev->page,
736 dev->sector, tx);
737 wbi = r5_next_bio(wbi, dev->sector);
738 }
739 }
740 }
741
742 return tx;
743}
744
745static void ops_complete_postxor(void *stripe_head_ref)
746{
747 struct stripe_head *sh = stripe_head_ref;
748
e46b272b 749 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
750 (unsigned long long)sh->sector);
751
752 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
753 set_bit(STRIPE_HANDLE, &sh->state);
754 release_stripe(sh);
755}
756
757static void ops_complete_write(void *stripe_head_ref)
758{
759 struct stripe_head *sh = stripe_head_ref;
760 int disks = sh->disks, i, pd_idx = sh->pd_idx;
761
e46b272b 762 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
763 (unsigned long long)sh->sector);
764
765 for (i = disks; i--; ) {
766 struct r5dev *dev = &sh->dev[i];
767 if (dev->written || i == pd_idx)
768 set_bit(R5_UPTODATE, &dev->flags);
769 }
770
771 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
772 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
773
774 set_bit(STRIPE_HANDLE, &sh->state);
775 release_stripe(sh);
776}
777
778static void
6c55be8b
DW
779ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
780 unsigned long pending)
91c00924
DW
781{
782 /* kernel stack size limits the total number of disks */
783 int disks = sh->disks;
784 struct page *xor_srcs[disks];
785
786 int count = 0, pd_idx = sh->pd_idx, i;
787 struct page *xor_dest;
6c55be8b 788 int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
91c00924
DW
789 unsigned long flags;
790 dma_async_tx_callback callback;
791
e46b272b 792 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
793 (unsigned long long)sh->sector);
794
795 /* check if prexor is active which means only process blocks
796 * that are part of a read-modify-write (written)
797 */
798 if (prexor) {
799 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
800 for (i = disks; i--; ) {
801 struct r5dev *dev = &sh->dev[i];
802 if (dev->written)
803 xor_srcs[count++] = dev->page;
804 }
805 } else {
806 xor_dest = sh->dev[pd_idx].page;
807 for (i = disks; i--; ) {
808 struct r5dev *dev = &sh->dev[i];
809 if (i != pd_idx)
810 xor_srcs[count++] = dev->page;
811 }
812 }
813
814 /* check whether this postxor is part of a write */
6c55be8b 815 callback = test_bit(STRIPE_OP_BIODRAIN, &pending) ?
91c00924
DW
816 ops_complete_write : ops_complete_postxor;
817
818 /* 1/ if we prexor'd then the dest is reused as a source
819 * 2/ if we did not prexor then we are redoing the parity
820 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
821 * for the synchronous xor case
822 */
823 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
824 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
825
826 atomic_inc(&sh->count);
827
828 if (unlikely(count == 1)) {
829 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
830 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
831 flags, tx, callback, sh);
832 } else
833 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
834 flags, tx, callback, sh);
835}
836
837static void ops_complete_check(void *stripe_head_ref)
838{
839 struct stripe_head *sh = stripe_head_ref;
91c00924 840
e46b272b 841 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
842 (unsigned long long)sh->sector);
843
91c00924
DW
844 set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
845 set_bit(STRIPE_HANDLE, &sh->state);
846 release_stripe(sh);
847}
848
849static void ops_run_check(struct stripe_head *sh)
850{
851 /* kernel stack size limits the total number of disks */
852 int disks = sh->disks;
853 struct page *xor_srcs[disks];
854 struct dma_async_tx_descriptor *tx;
855
856 int count = 0, pd_idx = sh->pd_idx, i;
857 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
858
e46b272b 859 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
860 (unsigned long long)sh->sector);
861
862 for (i = disks; i--; ) {
863 struct r5dev *dev = &sh->dev[i];
864 if (i != pd_idx)
865 xor_srcs[count++] = dev->page;
866 }
867
868 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
869 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
870
91c00924
DW
871 atomic_inc(&sh->count);
872 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
873 ops_complete_check, sh);
874}
875
876static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
877{
878 int overlap_clear = 0, i, disks = sh->disks;
879 struct dma_async_tx_descriptor *tx = NULL;
880
881 if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
882 ops_run_biofill(sh);
883 overlap_clear++;
884 }
885
886 if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
887 tx = ops_run_compute5(sh, pending);
888
889 if (test_bit(STRIPE_OP_PREXOR, &pending))
890 tx = ops_run_prexor(sh, tx);
891
892 if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
6c55be8b 893 tx = ops_run_biodrain(sh, tx, pending);
91c00924
DW
894 overlap_clear++;
895 }
896
897 if (test_bit(STRIPE_OP_POSTXOR, &pending))
6c55be8b 898 ops_run_postxor(sh, tx, pending);
91c00924
DW
899
900 if (test_bit(STRIPE_OP_CHECK, &pending))
901 ops_run_check(sh);
902
903 if (test_bit(STRIPE_OP_IO, &pending))
904 ops_run_io(sh);
905
906 if (overlap_clear)
907 for (i = disks; i--; ) {
908 struct r5dev *dev = &sh->dev[i];
909 if (test_and_clear_bit(R5_Overlap, &dev->flags))
910 wake_up(&sh->raid_conf->wait_for_overlap);
911 }
912}
913
3f294f4f 914static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
915{
916 struct stripe_head *sh;
3f294f4f
N
917 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
918 if (!sh)
919 return 0;
920 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
921 sh->raid_conf = conf;
922 spin_lock_init(&sh->lock);
923
924 if (grow_buffers(sh, conf->raid_disks)) {
925 shrink_buffers(sh, conf->raid_disks);
926 kmem_cache_free(conf->slab_cache, sh);
927 return 0;
928 }
7ecaa1e6 929 sh->disks = conf->raid_disks;
3f294f4f
N
930 /* we just created an active stripe so... */
931 atomic_set(&sh->count, 1);
932 atomic_inc(&conf->active_stripes);
933 INIT_LIST_HEAD(&sh->lru);
934 release_stripe(sh);
935 return 1;
936}
937
938static int grow_stripes(raid5_conf_t *conf, int num)
939{
e18b890b 940 struct kmem_cache *sc;
1da177e4
LT
941 int devs = conf->raid_disks;
942
42b9bebe
N
943 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
944 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
ad01c9e3
N
945 conf->active_name = 0;
946 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 947 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 948 0, 0, NULL);
1da177e4
LT
949 if (!sc)
950 return 1;
951 conf->slab_cache = sc;
ad01c9e3 952 conf->pool_size = devs;
16a53ecc 953 while (num--)
3f294f4f 954 if (!grow_one_stripe(conf))
1da177e4 955 return 1;
1da177e4
LT
956 return 0;
957}
29269553
N
958
959#ifdef CONFIG_MD_RAID5_RESHAPE
ad01c9e3
N
960static int resize_stripes(raid5_conf_t *conf, int newsize)
961{
962 /* Make all the stripes able to hold 'newsize' devices.
963 * New slots in each stripe get 'page' set to a new page.
964 *
965 * This happens in stages:
966 * 1/ create a new kmem_cache and allocate the required number of
967 * stripe_heads.
968 * 2/ gather all the old stripe_heads and tranfer the pages across
969 * to the new stripe_heads. This will have the side effect of
970 * freezing the array as once all stripe_heads have been collected,
971 * no IO will be possible. Old stripe heads are freed once their
972 * pages have been transferred over, and the old kmem_cache is
973 * freed when all stripes are done.
974 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
975 * we simple return a failre status - no need to clean anything up.
976 * 4/ allocate new pages for the new slots in the new stripe_heads.
977 * If this fails, we don't bother trying the shrink the
978 * stripe_heads down again, we just leave them as they are.
979 * As each stripe_head is processed the new one is released into
980 * active service.
981 *
982 * Once step2 is started, we cannot afford to wait for a write,
983 * so we use GFP_NOIO allocations.
984 */
985 struct stripe_head *osh, *nsh;
986 LIST_HEAD(newstripes);
987 struct disk_info *ndisks;
988 int err = 0;
e18b890b 989 struct kmem_cache *sc;
ad01c9e3
N
990 int i;
991
992 if (newsize <= conf->pool_size)
993 return 0; /* never bother to shrink */
994
2a2275d6
N
995 md_allow_write(conf->mddev);
996
ad01c9e3
N
997 /* Step 1 */
998 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
999 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 1000 0, 0, NULL);
ad01c9e3
N
1001 if (!sc)
1002 return -ENOMEM;
1003
1004 for (i = conf->max_nr_stripes; i; i--) {
1005 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1006 if (!nsh)
1007 break;
1008
1009 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1010
1011 nsh->raid_conf = conf;
1012 spin_lock_init(&nsh->lock);
1013
1014 list_add(&nsh->lru, &newstripes);
1015 }
1016 if (i) {
1017 /* didn't get enough, give up */
1018 while (!list_empty(&newstripes)) {
1019 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1020 list_del(&nsh->lru);
1021 kmem_cache_free(sc, nsh);
1022 }
1023 kmem_cache_destroy(sc);
1024 return -ENOMEM;
1025 }
1026 /* Step 2 - Must use GFP_NOIO now.
1027 * OK, we have enough stripes, start collecting inactive
1028 * stripes and copying them over
1029 */
1030 list_for_each_entry(nsh, &newstripes, lru) {
1031 spin_lock_irq(&conf->device_lock);
1032 wait_event_lock_irq(conf->wait_for_stripe,
1033 !list_empty(&conf->inactive_list),
1034 conf->device_lock,
b3b46be3 1035 unplug_slaves(conf->mddev)
ad01c9e3
N
1036 );
1037 osh = get_free_stripe(conf);
1038 spin_unlock_irq(&conf->device_lock);
1039 atomic_set(&nsh->count, 1);
1040 for(i=0; i<conf->pool_size; i++)
1041 nsh->dev[i].page = osh->dev[i].page;
1042 for( ; i<newsize; i++)
1043 nsh->dev[i].page = NULL;
1044 kmem_cache_free(conf->slab_cache, osh);
1045 }
1046 kmem_cache_destroy(conf->slab_cache);
1047
1048 /* Step 3.
1049 * At this point, we are holding all the stripes so the array
1050 * is completely stalled, so now is a good time to resize
1051 * conf->disks.
1052 */
1053 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1054 if (ndisks) {
1055 for (i=0; i<conf->raid_disks; i++)
1056 ndisks[i] = conf->disks[i];
1057 kfree(conf->disks);
1058 conf->disks = ndisks;
1059 } else
1060 err = -ENOMEM;
1061
1062 /* Step 4, return new stripes to service */
1063 while(!list_empty(&newstripes)) {
1064 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1065 list_del_init(&nsh->lru);
1066 for (i=conf->raid_disks; i < newsize; i++)
1067 if (nsh->dev[i].page == NULL) {
1068 struct page *p = alloc_page(GFP_NOIO);
1069 nsh->dev[i].page = p;
1070 if (!p)
1071 err = -ENOMEM;
1072 }
1073 release_stripe(nsh);
1074 }
1075 /* critical section pass, GFP_NOIO no longer needed */
1076
1077 conf->slab_cache = sc;
1078 conf->active_name = 1-conf->active_name;
1079 conf->pool_size = newsize;
1080 return err;
1081}
29269553 1082#endif
1da177e4 1083
3f294f4f 1084static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1085{
1086 struct stripe_head *sh;
1087
3f294f4f
N
1088 spin_lock_irq(&conf->device_lock);
1089 sh = get_free_stripe(conf);
1090 spin_unlock_irq(&conf->device_lock);
1091 if (!sh)
1092 return 0;
78bafebd 1093 BUG_ON(atomic_read(&sh->count));
ad01c9e3 1094 shrink_buffers(sh, conf->pool_size);
3f294f4f
N
1095 kmem_cache_free(conf->slab_cache, sh);
1096 atomic_dec(&conf->active_stripes);
1097 return 1;
1098}
1099
1100static void shrink_stripes(raid5_conf_t *conf)
1101{
1102 while (drop_one_stripe(conf))
1103 ;
1104
29fc7e3e
N
1105 if (conf->slab_cache)
1106 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1107 conf->slab_cache = NULL;
1108}
1109
6712ecf8 1110static void raid5_end_read_request(struct bio * bi, int error)
1da177e4
LT
1111{
1112 struct stripe_head *sh = bi->bi_private;
1113 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1114 int disks = sh->disks, i;
1da177e4 1115 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432
N
1116 char b[BDEVNAME_SIZE];
1117 mdk_rdev_t *rdev;
1da177e4 1118
1da177e4
LT
1119
1120 for (i=0 ; i<disks; i++)
1121 if (bi == &sh->dev[i].req)
1122 break;
1123
45b4233c
DW
1124 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1125 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1126 uptodate);
1127 if (i == disks) {
1128 BUG();
6712ecf8 1129 return;
1da177e4
LT
1130 }
1131
1132 if (uptodate) {
1da177e4 1133 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1134 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432 1135 rdev = conf->disks[i].rdev;
6be9d494
BS
1136 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1137 " (%lu sectors at %llu on %s)\n",
1138 mdname(conf->mddev), STRIPE_SECTORS,
1139 (unsigned long long)(sh->sector
1140 + rdev->data_offset),
1141 bdevname(rdev->bdev, b));
4e5314b5
N
1142 clear_bit(R5_ReadError, &sh->dev[i].flags);
1143 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1144 }
ba22dcbf
N
1145 if (atomic_read(&conf->disks[i].rdev->read_errors))
1146 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 1147 } else {
d6950432 1148 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 1149 int retry = 0;
d6950432
N
1150 rdev = conf->disks[i].rdev;
1151
1da177e4 1152 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1153 atomic_inc(&rdev->read_errors);
ba22dcbf 1154 if (conf->mddev->degraded)
6be9d494
BS
1155 printk_rl(KERN_WARNING
1156 "raid5:%s: read error not correctable "
1157 "(sector %llu on %s).\n",
1158 mdname(conf->mddev),
1159 (unsigned long long)(sh->sector
1160 + rdev->data_offset),
1161 bdn);
ba22dcbf 1162 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1163 /* Oh, no!!! */
6be9d494
BS
1164 printk_rl(KERN_WARNING
1165 "raid5:%s: read error NOT corrected!! "
1166 "(sector %llu on %s).\n",
1167 mdname(conf->mddev),
1168 (unsigned long long)(sh->sector
1169 + rdev->data_offset),
1170 bdn);
d6950432 1171 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1172 > conf->max_nr_stripes)
14f8d26b 1173 printk(KERN_WARNING
d6950432
N
1174 "raid5:%s: Too many read errors, failing device %s.\n",
1175 mdname(conf->mddev), bdn);
ba22dcbf
N
1176 else
1177 retry = 1;
1178 if (retry)
1179 set_bit(R5_ReadError, &sh->dev[i].flags);
1180 else {
4e5314b5
N
1181 clear_bit(R5_ReadError, &sh->dev[i].flags);
1182 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1183 md_error(conf->mddev, rdev);
ba22dcbf 1184 }
1da177e4
LT
1185 }
1186 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1da177e4
LT
1187 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1188 set_bit(STRIPE_HANDLE, &sh->state);
1189 release_stripe(sh);
1da177e4
LT
1190}
1191
6712ecf8 1192static void raid5_end_write_request (struct bio *bi, int error)
1da177e4
LT
1193{
1194 struct stripe_head *sh = bi->bi_private;
1195 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1196 int disks = sh->disks, i;
1da177e4
LT
1197 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1198
1da177e4
LT
1199 for (i=0 ; i<disks; i++)
1200 if (bi == &sh->dev[i].req)
1201 break;
1202
45b4233c 1203 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1204 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1205 uptodate);
1206 if (i == disks) {
1207 BUG();
6712ecf8 1208 return;
1da177e4
LT
1209 }
1210
1da177e4
LT
1211 if (!uptodate)
1212 md_error(conf->mddev, conf->disks[i].rdev);
1213
1214 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1215
1216 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1217 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1218 release_stripe(sh);
1da177e4
LT
1219}
1220
1221
1222static sector_t compute_blocknr(struct stripe_head *sh, int i);
1223
1224static void raid5_build_block (struct stripe_head *sh, int i)
1225{
1226 struct r5dev *dev = &sh->dev[i];
1227
1228 bio_init(&dev->req);
1229 dev->req.bi_io_vec = &dev->vec;
1230 dev->req.bi_vcnt++;
1231 dev->req.bi_max_vecs++;
1232 dev->vec.bv_page = dev->page;
1233 dev->vec.bv_len = STRIPE_SIZE;
1234 dev->vec.bv_offset = 0;
1235
1236 dev->req.bi_sector = sh->sector;
1237 dev->req.bi_private = sh;
1238
1239 dev->flags = 0;
16a53ecc 1240 dev->sector = compute_blocknr(sh, i);
1da177e4
LT
1241}
1242
1243static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1244{
1245 char b[BDEVNAME_SIZE];
1246 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
45b4233c 1247 pr_debug("raid5: error called\n");
1da177e4 1248
b2d444d7 1249 if (!test_bit(Faulty, &rdev->flags)) {
850b2b42 1250 set_bit(MD_CHANGE_DEVS, &mddev->flags);
c04be0aa
N
1251 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1252 unsigned long flags;
1253 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1254 mddev->degraded++;
c04be0aa 1255 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1256 /*
1257 * if recovery was running, make sure it aborts.
1258 */
dfc70645 1259 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1260 }
b2d444d7 1261 set_bit(Faulty, &rdev->flags);
1da177e4 1262 printk (KERN_ALERT
d7a420c9
NA
1263 "raid5: Disk failure on %s, disabling device.\n"
1264 "raid5: Operation continuing on %d devices.\n",
02c2de8c 1265 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1da177e4 1266 }
16a53ecc 1267}
1da177e4
LT
1268
1269/*
1270 * Input: a 'big' sector number,
1271 * Output: index of the data and parity disk, and the sector # in them.
1272 */
1273static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1274 unsigned int data_disks, unsigned int * dd_idx,
1275 unsigned int * pd_idx, raid5_conf_t *conf)
1276{
1277 long stripe;
1278 unsigned long chunk_number;
1279 unsigned int chunk_offset;
1280 sector_t new_sector;
1281 int sectors_per_chunk = conf->chunk_size >> 9;
1282
1283 /* First compute the information on this sector */
1284
1285 /*
1286 * Compute the chunk number and the sector offset inside the chunk
1287 */
1288 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1289 chunk_number = r_sector;
1290 BUG_ON(r_sector != chunk_number);
1291
1292 /*
1293 * Compute the stripe number
1294 */
1295 stripe = chunk_number / data_disks;
1296
1297 /*
1298 * Compute the data disk and parity disk indexes inside the stripe
1299 */
1300 *dd_idx = chunk_number % data_disks;
1301
1302 /*
1303 * Select the parity disk based on the user selected algorithm.
1304 */
16a53ecc
N
1305 switch(conf->level) {
1306 case 4:
1da177e4 1307 *pd_idx = data_disks;
16a53ecc
N
1308 break;
1309 case 5:
1310 switch (conf->algorithm) {
1da177e4
LT
1311 case ALGORITHM_LEFT_ASYMMETRIC:
1312 *pd_idx = data_disks - stripe % raid_disks;
1313 if (*dd_idx >= *pd_idx)
1314 (*dd_idx)++;
1315 break;
1316 case ALGORITHM_RIGHT_ASYMMETRIC:
1317 *pd_idx = stripe % raid_disks;
1318 if (*dd_idx >= *pd_idx)
1319 (*dd_idx)++;
1320 break;
1321 case ALGORITHM_LEFT_SYMMETRIC:
1322 *pd_idx = data_disks - stripe % raid_disks;
1323 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1324 break;
1325 case ALGORITHM_RIGHT_SYMMETRIC:
1326 *pd_idx = stripe % raid_disks;
1327 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1328 break;
1329 default:
14f8d26b 1330 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1da177e4 1331 conf->algorithm);
16a53ecc
N
1332 }
1333 break;
1334 case 6:
1335
1336 /**** FIX THIS ****/
1337 switch (conf->algorithm) {
1338 case ALGORITHM_LEFT_ASYMMETRIC:
1339 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1340 if (*pd_idx == raid_disks-1)
1341 (*dd_idx)++; /* Q D D D P */
1342 else if (*dd_idx >= *pd_idx)
1343 (*dd_idx) += 2; /* D D P Q D */
1344 break;
1345 case ALGORITHM_RIGHT_ASYMMETRIC:
1346 *pd_idx = stripe % raid_disks;
1347 if (*pd_idx == raid_disks-1)
1348 (*dd_idx)++; /* Q D D D P */
1349 else if (*dd_idx >= *pd_idx)
1350 (*dd_idx) += 2; /* D D P Q D */
1351 break;
1352 case ALGORITHM_LEFT_SYMMETRIC:
1353 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1354 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1355 break;
1356 case ALGORITHM_RIGHT_SYMMETRIC:
1357 *pd_idx = stripe % raid_disks;
1358 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1359 break;
1360 default:
1361 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1362 conf->algorithm);
1363 }
1364 break;
1da177e4
LT
1365 }
1366
1367 /*
1368 * Finally, compute the new sector number
1369 */
1370 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1371 return new_sector;
1372}
1373
1374
1375static sector_t compute_blocknr(struct stripe_head *sh, int i)
1376{
1377 raid5_conf_t *conf = sh->raid_conf;
b875e531
N
1378 int raid_disks = sh->disks;
1379 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1380 sector_t new_sector = sh->sector, check;
1381 int sectors_per_chunk = conf->chunk_size >> 9;
1382 sector_t stripe;
1383 int chunk_offset;
1384 int chunk_number, dummy1, dummy2, dd_idx = i;
1385 sector_t r_sector;
1386
16a53ecc 1387
1da177e4
LT
1388 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1389 stripe = new_sector;
1390 BUG_ON(new_sector != stripe);
1391
16a53ecc
N
1392 if (i == sh->pd_idx)
1393 return 0;
1394 switch(conf->level) {
1395 case 4: break;
1396 case 5:
1397 switch (conf->algorithm) {
1da177e4
LT
1398 case ALGORITHM_LEFT_ASYMMETRIC:
1399 case ALGORITHM_RIGHT_ASYMMETRIC:
1400 if (i > sh->pd_idx)
1401 i--;
1402 break;
1403 case ALGORITHM_LEFT_SYMMETRIC:
1404 case ALGORITHM_RIGHT_SYMMETRIC:
1405 if (i < sh->pd_idx)
1406 i += raid_disks;
1407 i -= (sh->pd_idx + 1);
1408 break;
1409 default:
14f8d26b 1410 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
16a53ecc
N
1411 conf->algorithm);
1412 }
1413 break;
1414 case 6:
16a53ecc
N
1415 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1416 return 0; /* It is the Q disk */
1417 switch (conf->algorithm) {
1418 case ALGORITHM_LEFT_ASYMMETRIC:
1419 case ALGORITHM_RIGHT_ASYMMETRIC:
1420 if (sh->pd_idx == raid_disks-1)
1421 i--; /* Q D D D P */
1422 else if (i > sh->pd_idx)
1423 i -= 2; /* D D P Q D */
1424 break;
1425 case ALGORITHM_LEFT_SYMMETRIC:
1426 case ALGORITHM_RIGHT_SYMMETRIC:
1427 if (sh->pd_idx == raid_disks-1)
1428 i--; /* Q D D D P */
1429 else {
1430 /* D D P Q D */
1431 if (i < sh->pd_idx)
1432 i += raid_disks;
1433 i -= (sh->pd_idx + 2);
1434 }
1435 break;
1436 default:
1437 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1da177e4 1438 conf->algorithm);
16a53ecc
N
1439 }
1440 break;
1da177e4
LT
1441 }
1442
1443 chunk_number = stripe * data_disks + i;
1444 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1445
1446 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1447 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
14f8d26b 1448 printk(KERN_ERR "compute_blocknr: map not correct\n");
1da177e4
LT
1449 return 0;
1450 }
1451 return r_sector;
1452}
1453
1454
1455
1456/*
16a53ecc
N
1457 * Copy data between a page in the stripe cache, and one or more bion
1458 * The page could align with the middle of the bio, or there could be
1459 * several bion, each with several bio_vecs, which cover part of the page
1460 * Multiple bion are linked together on bi_next. There may be extras
1461 * at the end of this list. We ignore them.
1da177e4
LT
1462 */
1463static void copy_data(int frombio, struct bio *bio,
1464 struct page *page,
1465 sector_t sector)
1466{
1467 char *pa = page_address(page);
1468 struct bio_vec *bvl;
1469 int i;
1470 int page_offset;
1471
1472 if (bio->bi_sector >= sector)
1473 page_offset = (signed)(bio->bi_sector - sector) * 512;
1474 else
1475 page_offset = (signed)(sector - bio->bi_sector) * -512;
1476 bio_for_each_segment(bvl, bio, i) {
1477 int len = bio_iovec_idx(bio,i)->bv_len;
1478 int clen;
1479 int b_offset = 0;
1480
1481 if (page_offset < 0) {
1482 b_offset = -page_offset;
1483 page_offset += b_offset;
1484 len -= b_offset;
1485 }
1486
1487 if (len > 0 && page_offset + len > STRIPE_SIZE)
1488 clen = STRIPE_SIZE - page_offset;
1489 else clen = len;
16a53ecc 1490
1da177e4
LT
1491 if (clen > 0) {
1492 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1493 if (frombio)
1494 memcpy(pa+page_offset, ba+b_offset, clen);
1495 else
1496 memcpy(ba+b_offset, pa+page_offset, clen);
1497 __bio_kunmap_atomic(ba, KM_USER0);
1498 }
1499 if (clen < len) /* hit end of page */
1500 break;
1501 page_offset += len;
1502 }
1503}
1504
9bc89cd8
DW
1505#define check_xor() do { \
1506 if (count == MAX_XOR_BLOCKS) { \
1507 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1508 count = 0; \
1509 } \
1da177e4
LT
1510 } while(0)
1511
16a53ecc
N
1512static void compute_parity6(struct stripe_head *sh, int method)
1513{
1514 raid6_conf_t *conf = sh->raid_conf;
f416885e 1515 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
16a53ecc
N
1516 struct bio *chosen;
1517 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1518 void *ptrs[disks];
1519
1520 qd_idx = raid6_next_disk(pd_idx, disks);
1521 d0_idx = raid6_next_disk(qd_idx, disks);
1522
45b4233c 1523 pr_debug("compute_parity, stripe %llu, method %d\n",
16a53ecc
N
1524 (unsigned long long)sh->sector, method);
1525
1526 switch(method) {
1527 case READ_MODIFY_WRITE:
1528 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1529 case RECONSTRUCT_WRITE:
1530 for (i= disks; i-- ;)
1531 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1532 chosen = sh->dev[i].towrite;
1533 sh->dev[i].towrite = NULL;
1534
1535 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1536 wake_up(&conf->wait_for_overlap);
1537
52e5f9d1 1538 BUG_ON(sh->dev[i].written);
16a53ecc
N
1539 sh->dev[i].written = chosen;
1540 }
1541 break;
1542 case CHECK_PARITY:
1543 BUG(); /* Not implemented yet */
1544 }
1545
1546 for (i = disks; i--;)
1547 if (sh->dev[i].written) {
1548 sector_t sector = sh->dev[i].sector;
1549 struct bio *wbi = sh->dev[i].written;
1550 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1551 copy_data(1, wbi, sh->dev[i].page, sector);
1552 wbi = r5_next_bio(wbi, sector);
1553 }
1554
1555 set_bit(R5_LOCKED, &sh->dev[i].flags);
1556 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1557 }
1558
1559// switch(method) {
1560// case RECONSTRUCT_WRITE:
1561// case CHECK_PARITY:
1562// case UPDATE_PARITY:
1563 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1564 /* FIX: Is this ordering of drives even remotely optimal? */
1565 count = 0;
1566 i = d0_idx;
1567 do {
1568 ptrs[count++] = page_address(sh->dev[i].page);
1569 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1570 printk("block %d/%d not uptodate on parity calc\n", i,count);
1571 i = raid6_next_disk(i, disks);
1572 } while ( i != d0_idx );
1573// break;
1574// }
1575
1576 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1577
1578 switch(method) {
1579 case RECONSTRUCT_WRITE:
1580 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1581 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1582 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1583 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1584 break;
1585 case UPDATE_PARITY:
1586 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1587 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1588 break;
1589 }
1590}
1591
1592
1593/* Compute one missing block */
1594static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1595{
f416885e 1596 int i, count, disks = sh->disks;
9bc89cd8 1597 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
16a53ecc
N
1598 int pd_idx = sh->pd_idx;
1599 int qd_idx = raid6_next_disk(pd_idx, disks);
1600
45b4233c 1601 pr_debug("compute_block_1, stripe %llu, idx %d\n",
16a53ecc
N
1602 (unsigned long long)sh->sector, dd_idx);
1603
1604 if ( dd_idx == qd_idx ) {
1605 /* We're actually computing the Q drive */
1606 compute_parity6(sh, UPDATE_PARITY);
1607 } else {
9bc89cd8
DW
1608 dest = page_address(sh->dev[dd_idx].page);
1609 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1610 count = 0;
16a53ecc
N
1611 for (i = disks ; i--; ) {
1612 if (i == dd_idx || i == qd_idx)
1613 continue;
1614 p = page_address(sh->dev[i].page);
1615 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1616 ptr[count++] = p;
1617 else
1618 printk("compute_block() %d, stripe %llu, %d"
1619 " not present\n", dd_idx,
1620 (unsigned long long)sh->sector, i);
1621
1622 check_xor();
1623 }
9bc89cd8
DW
1624 if (count)
1625 xor_blocks(count, STRIPE_SIZE, dest, ptr);
16a53ecc
N
1626 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1627 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1628 }
1629}
1630
1631/* Compute two missing blocks */
1632static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1633{
f416885e 1634 int i, count, disks = sh->disks;
16a53ecc
N
1635 int pd_idx = sh->pd_idx;
1636 int qd_idx = raid6_next_disk(pd_idx, disks);
1637 int d0_idx = raid6_next_disk(qd_idx, disks);
1638 int faila, failb;
1639
1640 /* faila and failb are disk numbers relative to d0_idx */
1641 /* pd_idx become disks-2 and qd_idx become disks-1 */
1642 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1643 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1644
1645 BUG_ON(faila == failb);
1646 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1647
45b4233c 1648 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
16a53ecc
N
1649 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1650
1651 if ( failb == disks-1 ) {
1652 /* Q disk is one of the missing disks */
1653 if ( faila == disks-2 ) {
1654 /* Missing P+Q, just recompute */
1655 compute_parity6(sh, UPDATE_PARITY);
1656 return;
1657 } else {
1658 /* We're missing D+Q; recompute D from P */
1659 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1660 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1661 return;
1662 }
1663 }
1664
1665 /* We're missing D+P or D+D; build pointer table */
1666 {
1667 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1668 void *ptrs[disks];
1669
1670 count = 0;
1671 i = d0_idx;
1672 do {
1673 ptrs[count++] = page_address(sh->dev[i].page);
1674 i = raid6_next_disk(i, disks);
1675 if (i != dd_idx1 && i != dd_idx2 &&
1676 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1677 printk("compute_2 with missing block %d/%d\n", count, i);
1678 } while ( i != d0_idx );
1679
1680 if ( failb == disks-2 ) {
1681 /* We're missing D+P. */
1682 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1683 } else {
1684 /* We're missing D+D. */
1685 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1686 }
1687
1688 /* Both the above update both missing blocks */
1689 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1690 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1691 }
1692}
1693
e33129d8
DW
1694static int
1695handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1696{
1697 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1698 int locked = 0;
1699
1700 if (rcw) {
1701 /* if we are not expanding this is a proper write request, and
1702 * there will be bios with new data to be drained into the
1703 * stripe cache
1704 */
1705 if (!expand) {
1706 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1707 sh->ops.count++;
1708 }
16a53ecc 1709
e33129d8
DW
1710 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1711 sh->ops.count++;
1712
1713 for (i = disks; i--; ) {
1714 struct r5dev *dev = &sh->dev[i];
1715
1716 if (dev->towrite) {
1717 set_bit(R5_LOCKED, &dev->flags);
1718 if (!expand)
1719 clear_bit(R5_UPTODATE, &dev->flags);
1720 locked++;
1721 }
1722 }
8b3e6cdc
DW
1723 if (locked + 1 == disks)
1724 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1725 atomic_inc(&sh->raid_conf->pending_full_writes);
e33129d8
DW
1726 } else {
1727 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1728 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1729
1730 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1731 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1732 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1733
1734 sh->ops.count += 3;
1735
1736 for (i = disks; i--; ) {
1737 struct r5dev *dev = &sh->dev[i];
1738 if (i == pd_idx)
1739 continue;
1740
1741 /* For a read-modify write there may be blocks that are
1742 * locked for reading while others are ready to be
1743 * written so we distinguish these blocks by the
1744 * R5_Wantprexor bit
1745 */
1746 if (dev->towrite &&
1747 (test_bit(R5_UPTODATE, &dev->flags) ||
1748 test_bit(R5_Wantcompute, &dev->flags))) {
1749 set_bit(R5_Wantprexor, &dev->flags);
1750 set_bit(R5_LOCKED, &dev->flags);
1751 clear_bit(R5_UPTODATE, &dev->flags);
1752 locked++;
1753 }
1754 }
1755 }
1756
1757 /* keep the parity disk locked while asynchronous operations
1758 * are in flight
1759 */
1760 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1761 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1762 locked++;
1763
1764 pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
e46b272b 1765 __func__, (unsigned long long)sh->sector,
e33129d8
DW
1766 locked, sh->ops.pending);
1767
1768 return locked;
1769}
16a53ecc 1770
1da177e4
LT
1771/*
1772 * Each stripe/dev can have one or more bion attached.
16a53ecc 1773 * toread/towrite point to the first in a chain.
1da177e4
LT
1774 * The bi_next chain must be in order.
1775 */
1776static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1777{
1778 struct bio **bip;
1779 raid5_conf_t *conf = sh->raid_conf;
72626685 1780 int firstwrite=0;
1da177e4 1781
45b4233c 1782 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1da177e4
LT
1783 (unsigned long long)bi->bi_sector,
1784 (unsigned long long)sh->sector);
1785
1786
1787 spin_lock(&sh->lock);
1788 spin_lock_irq(&conf->device_lock);
72626685 1789 if (forwrite) {
1da177e4 1790 bip = &sh->dev[dd_idx].towrite;
72626685
N
1791 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1792 firstwrite = 1;
1793 } else
1da177e4
LT
1794 bip = &sh->dev[dd_idx].toread;
1795 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1796 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1797 goto overlap;
1798 bip = & (*bip)->bi_next;
1799 }
1800 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1801 goto overlap;
1802
78bafebd 1803 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
1804 if (*bip)
1805 bi->bi_next = *bip;
1806 *bip = bi;
1807 bi->bi_phys_segments ++;
1808 spin_unlock_irq(&conf->device_lock);
1809 spin_unlock(&sh->lock);
1810
45b4233c 1811 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1da177e4
LT
1812 (unsigned long long)bi->bi_sector,
1813 (unsigned long long)sh->sector, dd_idx);
1814
72626685 1815 if (conf->mddev->bitmap && firstwrite) {
72626685
N
1816 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1817 STRIPE_SECTORS, 0);
ae3c20cc 1818 sh->bm_seq = conf->seq_flush+1;
72626685
N
1819 set_bit(STRIPE_BIT_DELAY, &sh->state);
1820 }
1821
1da177e4
LT
1822 if (forwrite) {
1823 /* check if page is covered */
1824 sector_t sector = sh->dev[dd_idx].sector;
1825 for (bi=sh->dev[dd_idx].towrite;
1826 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1827 bi && bi->bi_sector <= sector;
1828 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1829 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1830 sector = bi->bi_sector + (bi->bi_size>>9);
1831 }
1832 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1833 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1834 }
1835 return 1;
1836
1837 overlap:
1838 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1839 spin_unlock_irq(&conf->device_lock);
1840 spin_unlock(&sh->lock);
1841 return 0;
1842}
1843
29269553
N
1844static void end_reshape(raid5_conf_t *conf);
1845
16a53ecc
N
1846static int page_is_zero(struct page *p)
1847{
1848 char *a = page_address(p);
1849 return ((*(u32*)a) == 0 &&
1850 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1851}
1852
ccfcc3c1
N
1853static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1854{
1855 int sectors_per_chunk = conf->chunk_size >> 9;
ccfcc3c1 1856 int pd_idx, dd_idx;
2d2063ce
CQH
1857 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1858
b875e531
N
1859 raid5_compute_sector(stripe * (disks - conf->max_degraded)
1860 *sectors_per_chunk + chunk_offset,
1861 disks, disks - conf->max_degraded,
1862 &dd_idx, &pd_idx, conf);
ccfcc3c1
N
1863 return pd_idx;
1864}
1865
a4456856
DW
1866static void
1867handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1868 struct stripe_head_state *s, int disks,
1869 struct bio **return_bi)
1870{
1871 int i;
1872 for (i = disks; i--; ) {
1873 struct bio *bi;
1874 int bitmap_end = 0;
1875
1876 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1877 mdk_rdev_t *rdev;
1878 rcu_read_lock();
1879 rdev = rcu_dereference(conf->disks[i].rdev);
1880 if (rdev && test_bit(In_sync, &rdev->flags))
1881 /* multiple read failures in one stripe */
1882 md_error(conf->mddev, rdev);
1883 rcu_read_unlock();
1884 }
1885 spin_lock_irq(&conf->device_lock);
1886 /* fail all writes first */
1887 bi = sh->dev[i].towrite;
1888 sh->dev[i].towrite = NULL;
1889 if (bi) {
1890 s->to_write--;
1891 bitmap_end = 1;
1892 }
1893
1894 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1895 wake_up(&conf->wait_for_overlap);
1896
1897 while (bi && bi->bi_sector <
1898 sh->dev[i].sector + STRIPE_SECTORS) {
1899 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1900 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1901 if (--bi->bi_phys_segments == 0) {
1902 md_write_end(conf->mddev);
1903 bi->bi_next = *return_bi;
1904 *return_bi = bi;
1905 }
1906 bi = nextbi;
1907 }
1908 /* and fail all 'written' */
1909 bi = sh->dev[i].written;
1910 sh->dev[i].written = NULL;
1911 if (bi) bitmap_end = 1;
1912 while (bi && bi->bi_sector <
1913 sh->dev[i].sector + STRIPE_SECTORS) {
1914 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1915 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1916 if (--bi->bi_phys_segments == 0) {
1917 md_write_end(conf->mddev);
1918 bi->bi_next = *return_bi;
1919 *return_bi = bi;
1920 }
1921 bi = bi2;
1922 }
1923
b5e98d65
DW
1924 /* fail any reads if this device is non-operational and
1925 * the data has not reached the cache yet.
1926 */
1927 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1928 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1929 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
1930 bi = sh->dev[i].toread;
1931 sh->dev[i].toread = NULL;
1932 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1933 wake_up(&conf->wait_for_overlap);
1934 if (bi) s->to_read--;
1935 while (bi && bi->bi_sector <
1936 sh->dev[i].sector + STRIPE_SECTORS) {
1937 struct bio *nextbi =
1938 r5_next_bio(bi, sh->dev[i].sector);
1939 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1940 if (--bi->bi_phys_segments == 0) {
1941 bi->bi_next = *return_bi;
1942 *return_bi = bi;
1943 }
1944 bi = nextbi;
1945 }
1946 }
1947 spin_unlock_irq(&conf->device_lock);
1948 if (bitmap_end)
1949 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1950 STRIPE_SECTORS, 0, 0);
1951 }
1952
8b3e6cdc
DW
1953 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1954 if (atomic_dec_and_test(&conf->pending_full_writes))
1955 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
1956}
1957
f38e1219
DW
1958/* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1959 * to process
1960 */
1961static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1962 struct stripe_head_state *s, int disk_idx, int disks)
1963{
1964 struct r5dev *dev = &sh->dev[disk_idx];
1965 struct r5dev *failed_dev = &sh->dev[s->failed_num];
1966
1967 /* don't schedule compute operations or reads on the parity block while
1968 * a check is in flight
1969 */
1970 if ((disk_idx == sh->pd_idx) &&
1971 test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1972 return ~0;
1973
1974 /* is the data in this block needed, and can we get it? */
1975 if (!test_bit(R5_LOCKED, &dev->flags) &&
1976 !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1977 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1978 s->syncing || s->expanding || (s->failed &&
1979 (failed_dev->toread || (failed_dev->towrite &&
1980 !test_bit(R5_OVERWRITE, &failed_dev->flags)
1981 ))))) {
1982 /* 1/ We would like to get this block, possibly by computing it,
1983 * but we might not be able to.
1984 *
1985 * 2/ Since parity check operations potentially make the parity
1986 * block !uptodate it will need to be refreshed before any
1987 * compute operations on data disks are scheduled.
1988 *
1989 * 3/ We hold off parity block re-reads until check operations
1990 * have quiesced.
1991 */
1992 if ((s->uptodate == disks - 1) &&
c337869d 1993 (s->failed && disk_idx == s->failed_num) &&
f38e1219
DW
1994 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
1995 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
1996 set_bit(R5_Wantcompute, &dev->flags);
1997 sh->ops.target = disk_idx;
1998 s->req_compute = 1;
1999 sh->ops.count++;
2000 /* Careful: from this point on 'uptodate' is in the eye
2001 * of raid5_run_ops which services 'compute' operations
2002 * before writes. R5_Wantcompute flags a block that will
2003 * be R5_UPTODATE by the time it is needed for a
2004 * subsequent operation.
2005 */
2006 s->uptodate++;
2007 return 0; /* uptodate + compute == disks */
2008 } else if ((s->uptodate < disks - 1) &&
2009 test_bit(R5_Insync, &dev->flags)) {
2010 /* Note: we hold off compute operations while checks are
2011 * in flight, but we still prefer 'compute' over 'read'
2012 * hence we only read if (uptodate < * disks-1)
2013 */
2014 set_bit(R5_LOCKED, &dev->flags);
2015 set_bit(R5_Wantread, &dev->flags);
2016 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2017 sh->ops.count++;
2018 s->locked++;
2019 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2020 s->syncing);
2021 }
2022 }
2023
2024 return ~0;
2025}
2026
a4456856
DW
2027static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2028 struct stripe_head_state *s, int disks)
2029{
2030 int i;
f38e1219
DW
2031
2032 /* Clear completed compute operations. Parity recovery
2033 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2034 * later on in this routine
2035 */
2036 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2037 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2038 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2039 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2040 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2041 }
2042
2043 /* look for blocks to read/compute, skip this if a compute
2044 * is already in flight, or if the stripe contents are in the
2045 * midst of changing due to a write
2046 */
2047 if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2048 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2049 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2050 for (i = disks; i--; )
2051 if (__handle_issuing_new_read_requests5(
2052 sh, s, i, disks) == 0)
2053 break;
a4456856
DW
2054 }
2055 set_bit(STRIPE_HANDLE, &sh->state);
2056}
2057
2058static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2059 struct stripe_head_state *s, struct r6_state *r6s,
2060 int disks)
2061{
2062 int i;
2063 for (i = disks; i--; ) {
2064 struct r5dev *dev = &sh->dev[i];
2065 if (!test_bit(R5_LOCKED, &dev->flags) &&
2066 !test_bit(R5_UPTODATE, &dev->flags) &&
2067 (dev->toread || (dev->towrite &&
2068 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2069 s->syncing || s->expanding ||
2070 (s->failed >= 1 &&
2071 (sh->dev[r6s->failed_num[0]].toread ||
2072 s->to_write)) ||
2073 (s->failed >= 2 &&
2074 (sh->dev[r6s->failed_num[1]].toread ||
2075 s->to_write)))) {
2076 /* we would like to get this block, possibly
2077 * by computing it, but we might not be able to
2078 */
c337869d
DW
2079 if ((s->uptodate == disks - 1) &&
2080 (s->failed && (i == r6s->failed_num[0] ||
2081 i == r6s->failed_num[1]))) {
45b4233c 2082 pr_debug("Computing stripe %llu block %d\n",
a4456856
DW
2083 (unsigned long long)sh->sector, i);
2084 compute_block_1(sh, i, 0);
2085 s->uptodate++;
2086 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2087 /* Computing 2-failure is *very* expensive; only
2088 * do it if failed >= 2
2089 */
2090 int other;
2091 for (other = disks; other--; ) {
2092 if (other == i)
2093 continue;
2094 if (!test_bit(R5_UPTODATE,
2095 &sh->dev[other].flags))
2096 break;
2097 }
2098 BUG_ON(other < 0);
45b4233c 2099 pr_debug("Computing stripe %llu blocks %d,%d\n",
a4456856
DW
2100 (unsigned long long)sh->sector,
2101 i, other);
2102 compute_block_2(sh, i, other);
2103 s->uptodate += 2;
2104 } else if (test_bit(R5_Insync, &dev->flags)) {
2105 set_bit(R5_LOCKED, &dev->flags);
2106 set_bit(R5_Wantread, &dev->flags);
2107 s->locked++;
45b4233c 2108 pr_debug("Reading block %d (sync=%d)\n",
a4456856
DW
2109 i, s->syncing);
2110 }
2111 }
2112 }
2113 set_bit(STRIPE_HANDLE, &sh->state);
2114}
2115
2116
2117/* handle_completed_write_requests
2118 * any written block on an uptodate or failed drive can be returned.
2119 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2120 * never LOCKED, so we don't need to test 'failed' directly.
2121 */
2122static void handle_completed_write_requests(raid5_conf_t *conf,
2123 struct stripe_head *sh, int disks, struct bio **return_bi)
2124{
2125 int i;
2126 struct r5dev *dev;
2127
2128 for (i = disks; i--; )
2129 if (sh->dev[i].written) {
2130 dev = &sh->dev[i];
2131 if (!test_bit(R5_LOCKED, &dev->flags) &&
2132 test_bit(R5_UPTODATE, &dev->flags)) {
2133 /* We can return any write requests */
2134 struct bio *wbi, *wbi2;
2135 int bitmap_end = 0;
45b4233c 2136 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2137 spin_lock_irq(&conf->device_lock);
2138 wbi = dev->written;
2139 dev->written = NULL;
2140 while (wbi && wbi->bi_sector <
2141 dev->sector + STRIPE_SECTORS) {
2142 wbi2 = r5_next_bio(wbi, dev->sector);
2143 if (--wbi->bi_phys_segments == 0) {
2144 md_write_end(conf->mddev);
2145 wbi->bi_next = *return_bi;
2146 *return_bi = wbi;
2147 }
2148 wbi = wbi2;
2149 }
2150 if (dev->towrite == NULL)
2151 bitmap_end = 1;
2152 spin_unlock_irq(&conf->device_lock);
2153 if (bitmap_end)
2154 bitmap_endwrite(conf->mddev->bitmap,
2155 sh->sector,
2156 STRIPE_SECTORS,
2157 !test_bit(STRIPE_DEGRADED, &sh->state),
2158 0);
2159 }
2160 }
8b3e6cdc
DW
2161
2162 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2163 if (atomic_dec_and_test(&conf->pending_full_writes))
2164 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2165}
2166
2167static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2168 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2169{
2170 int rmw = 0, rcw = 0, i;
2171 for (i = disks; i--; ) {
2172 /* would I have to read this buffer for read_modify_write */
2173 struct r5dev *dev = &sh->dev[i];
2174 if ((dev->towrite || i == sh->pd_idx) &&
2175 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2176 !(test_bit(R5_UPTODATE, &dev->flags) ||
2177 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2178 if (test_bit(R5_Insync, &dev->flags))
2179 rmw++;
2180 else
2181 rmw += 2*disks; /* cannot read it */
2182 }
2183 /* Would I have to read this buffer for reconstruct_write */
2184 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2185 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2186 !(test_bit(R5_UPTODATE, &dev->flags) ||
2187 test_bit(R5_Wantcompute, &dev->flags))) {
2188 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2189 else
2190 rcw += 2*disks;
2191 }
2192 }
45b4233c 2193 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2194 (unsigned long long)sh->sector, rmw, rcw);
2195 set_bit(STRIPE_HANDLE, &sh->state);
2196 if (rmw < rcw && rmw > 0)
2197 /* prefer read-modify-write, but need to get some data */
2198 for (i = disks; i--; ) {
2199 struct r5dev *dev = &sh->dev[i];
2200 if ((dev->towrite || i == sh->pd_idx) &&
2201 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2202 !(test_bit(R5_UPTODATE, &dev->flags) ||
2203 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2204 test_bit(R5_Insync, &dev->flags)) {
2205 if (
2206 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2207 pr_debug("Read_old block "
a4456856
DW
2208 "%d for r-m-w\n", i);
2209 set_bit(R5_LOCKED, &dev->flags);
2210 set_bit(R5_Wantread, &dev->flags);
830ea016
DW
2211 if (!test_and_set_bit(
2212 STRIPE_OP_IO, &sh->ops.pending))
2213 sh->ops.count++;
a4456856
DW
2214 s->locked++;
2215 } else {
2216 set_bit(STRIPE_DELAYED, &sh->state);
2217 set_bit(STRIPE_HANDLE, &sh->state);
2218 }
2219 }
2220 }
2221 if (rcw <= rmw && rcw > 0)
2222 /* want reconstruct write, but need to get some data */
2223 for (i = disks; i--; ) {
2224 struct r5dev *dev = &sh->dev[i];
2225 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2226 i != sh->pd_idx &&
2227 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2228 !(test_bit(R5_UPTODATE, &dev->flags) ||
2229 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2230 test_bit(R5_Insync, &dev->flags)) {
2231 if (
2232 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2233 pr_debug("Read_old block "
a4456856
DW
2234 "%d for Reconstruct\n", i);
2235 set_bit(R5_LOCKED, &dev->flags);
2236 set_bit(R5_Wantread, &dev->flags);
830ea016
DW
2237 if (!test_and_set_bit(
2238 STRIPE_OP_IO, &sh->ops.pending))
2239 sh->ops.count++;
a4456856
DW
2240 s->locked++;
2241 } else {
2242 set_bit(STRIPE_DELAYED, &sh->state);
2243 set_bit(STRIPE_HANDLE, &sh->state);
2244 }
2245 }
2246 }
2247 /* now if nothing is locked, and if we have enough data,
2248 * we can start a write request
2249 */
f38e1219
DW
2250 /* since handle_stripe can be called at any time we need to handle the
2251 * case where a compute block operation has been submitted and then a
2252 * subsequent call wants to start a write request. raid5_run_ops only
2253 * handles the case where compute block and postxor are requested
2254 * simultaneously. If this is not the case then new writes need to be
2255 * held off until the compute completes.
2256 */
2257 if ((s->req_compute ||
2258 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2259 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2260 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
e33129d8 2261 s->locked += handle_write_operations5(sh, rcw == 0, 0);
a4456856
DW
2262}
2263
2264static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2265 struct stripe_head *sh, struct stripe_head_state *s,
2266 struct r6_state *r6s, int disks)
2267{
2268 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2269 int qd_idx = r6s->qd_idx;
2270 for (i = disks; i--; ) {
2271 struct r5dev *dev = &sh->dev[i];
2272 /* Would I have to read this buffer for reconstruct_write */
2273 if (!test_bit(R5_OVERWRITE, &dev->flags)
2274 && i != pd_idx && i != qd_idx
2275 && (!test_bit(R5_LOCKED, &dev->flags)
2276 ) &&
2277 !test_bit(R5_UPTODATE, &dev->flags)) {
2278 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2279 else {
45b4233c 2280 pr_debug("raid6: must_compute: "
a4456856
DW
2281 "disk %d flags=%#lx\n", i, dev->flags);
2282 must_compute++;
2283 }
2284 }
2285 }
45b4233c 2286 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
a4456856
DW
2287 (unsigned long long)sh->sector, rcw, must_compute);
2288 set_bit(STRIPE_HANDLE, &sh->state);
2289
2290 if (rcw > 0)
2291 /* want reconstruct write, but need to get some data */
2292 for (i = disks; i--; ) {
2293 struct r5dev *dev = &sh->dev[i];
2294 if (!test_bit(R5_OVERWRITE, &dev->flags)
2295 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2296 && !test_bit(R5_LOCKED, &dev->flags) &&
2297 !test_bit(R5_UPTODATE, &dev->flags) &&
2298 test_bit(R5_Insync, &dev->flags)) {
2299 if (
2300 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2301 pr_debug("Read_old stripe %llu "
a4456856
DW
2302 "block %d for Reconstruct\n",
2303 (unsigned long long)sh->sector, i);
2304 set_bit(R5_LOCKED, &dev->flags);
2305 set_bit(R5_Wantread, &dev->flags);
2306 s->locked++;
2307 } else {
45b4233c 2308 pr_debug("Request delayed stripe %llu "
a4456856
DW
2309 "block %d for Reconstruct\n",
2310 (unsigned long long)sh->sector, i);
2311 set_bit(STRIPE_DELAYED, &sh->state);
2312 set_bit(STRIPE_HANDLE, &sh->state);
2313 }
2314 }
2315 }
2316 /* now if nothing is locked, and if we have enough data, we can start a
2317 * write request
2318 */
2319 if (s->locked == 0 && rcw == 0 &&
2320 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2321 if (must_compute > 0) {
2322 /* We have failed blocks and need to compute them */
2323 switch (s->failed) {
2324 case 0:
2325 BUG();
2326 case 1:
2327 compute_block_1(sh, r6s->failed_num[0], 0);
2328 break;
2329 case 2:
2330 compute_block_2(sh, r6s->failed_num[0],
2331 r6s->failed_num[1]);
2332 break;
2333 default: /* This request should have been failed? */
2334 BUG();
2335 }
2336 }
2337
45b4233c 2338 pr_debug("Computing parity for stripe %llu\n",
a4456856
DW
2339 (unsigned long long)sh->sector);
2340 compute_parity6(sh, RECONSTRUCT_WRITE);
2341 /* now every locked buffer is ready to be written */
2342 for (i = disks; i--; )
2343 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
45b4233c 2344 pr_debug("Writing stripe %llu block %d\n",
a4456856
DW
2345 (unsigned long long)sh->sector, i);
2346 s->locked++;
2347 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2348 }
8b3e6cdc
DW
2349 if (s->locked == disks)
2350 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2351 atomic_inc(&conf->pending_full_writes);
a4456856
DW
2352 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2353 set_bit(STRIPE_INSYNC, &sh->state);
2354
2355 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2356 atomic_dec(&conf->preread_active_stripes);
2357 if (atomic_read(&conf->preread_active_stripes) <
2358 IO_THRESHOLD)
2359 md_wakeup_thread(conf->mddev->thread);
2360 }
2361 }
2362}
2363
2364static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2365 struct stripe_head_state *s, int disks)
2366{
bd2ab670
DW
2367 int canceled_check = 0;
2368
a4456856 2369 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2370
bd2ab670
DW
2371 /* complete a check operation */
2372 if (test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
c8894419
DW
2373 clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2374 clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
bd2ab670 2375 if (s->failed == 0) {
e89f8962
DW
2376 if (sh->ops.zero_sum_result == 0)
2377 /* parity is correct (on disc,
2378 * not in buffer any more)
2379 */
a4456856
DW
2380 set_bit(STRIPE_INSYNC, &sh->state);
2381 else {
e89f8962
DW
2382 conf->mddev->resync_mismatches +=
2383 STRIPE_SECTORS;
2384 if (test_bit(
2385 MD_RECOVERY_CHECK, &conf->mddev->recovery))
2386 /* don't try to repair!! */
2387 set_bit(STRIPE_INSYNC, &sh->state);
2388 else {
2389 set_bit(STRIPE_OP_COMPUTE_BLK,
2390 &sh->ops.pending);
2391 set_bit(STRIPE_OP_MOD_REPAIR_PD,
2392 &sh->ops.pending);
2393 set_bit(R5_Wantcompute,
2394 &sh->dev[sh->pd_idx].flags);
2395 sh->ops.target = sh->pd_idx;
2396 sh->ops.count++;
2397 s->uptodate++;
2398 }
a4456856 2399 }
bd2ab670
DW
2400 } else
2401 canceled_check = 1; /* STRIPE_INSYNC is not set */
a4456856 2402 }
e89f8962 2403
bd2ab670
DW
2404 /* start a new check operation if there are no failures, the stripe is
2405 * not insync, and a repair is not in flight
2406 */
2407 if (s->failed == 0 &&
2408 !test_bit(STRIPE_INSYNC, &sh->state) &&
2409 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2410 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2411 BUG_ON(s->uptodate != disks);
2412 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2413 sh->ops.count++;
2414 s->uptodate--;
2415 }
2416 }
2417
c8894419
DW
2418 /* check if we can clear a parity disk reconstruct */
2419 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2420 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2421
2422 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2423 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2424 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2425 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2426 }
2427
2428
e89f8962 2429 /* Wait for check parity and compute block operations to complete
bd2ab670
DW
2430 * before write-back. If a failure occurred while the check operation
2431 * was in flight we need to cycle this stripe through handle_stripe
2432 * since the parity block may not be uptodate
e89f8962 2433 */
bd2ab670
DW
2434 if (!canceled_check && !test_bit(STRIPE_INSYNC, &sh->state) &&
2435 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2436 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
a4456856
DW
2437 struct r5dev *dev;
2438 /* either failed parity check, or recovery is happening */
2439 if (s->failed == 0)
2440 s->failed_num = sh->pd_idx;
2441 dev = &sh->dev[s->failed_num];
2442 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2443 BUG_ON(s->uptodate != disks);
2444
2445 set_bit(R5_LOCKED, &dev->flags);
2446 set_bit(R5_Wantwrite, &dev->flags);
830ea016
DW
2447 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2448 sh->ops.count++;
2449
a4456856
DW
2450 clear_bit(STRIPE_DEGRADED, &sh->state);
2451 s->locked++;
2452 set_bit(STRIPE_INSYNC, &sh->state);
2453 }
2454}
2455
2456
2457static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2458 struct stripe_head_state *s,
2459 struct r6_state *r6s, struct page *tmp_page,
2460 int disks)
2461{
2462 int update_p = 0, update_q = 0;
2463 struct r5dev *dev;
2464 int pd_idx = sh->pd_idx;
2465 int qd_idx = r6s->qd_idx;
2466
2467 set_bit(STRIPE_HANDLE, &sh->state);
2468
2469 BUG_ON(s->failed > 2);
2470 BUG_ON(s->uptodate < disks);
2471 /* Want to check and possibly repair P and Q.
2472 * However there could be one 'failed' device, in which
2473 * case we can only check one of them, possibly using the
2474 * other to generate missing data
2475 */
2476
2477 /* If !tmp_page, we cannot do the calculations,
2478 * but as we have set STRIPE_HANDLE, we will soon be called
2479 * by stripe_handle with a tmp_page - just wait until then.
2480 */
2481 if (tmp_page) {
2482 if (s->failed == r6s->q_failed) {
2483 /* The only possible failed device holds 'Q', so it
2484 * makes sense to check P (If anything else were failed,
2485 * we would have used P to recreate it).
2486 */
2487 compute_block_1(sh, pd_idx, 1);
2488 if (!page_is_zero(sh->dev[pd_idx].page)) {
2489 compute_block_1(sh, pd_idx, 0);
2490 update_p = 1;
2491 }
2492 }
2493 if (!r6s->q_failed && s->failed < 2) {
2494 /* q is not failed, and we didn't use it to generate
2495 * anything, so it makes sense to check it
2496 */
2497 memcpy(page_address(tmp_page),
2498 page_address(sh->dev[qd_idx].page),
2499 STRIPE_SIZE);
2500 compute_parity6(sh, UPDATE_PARITY);
2501 if (memcmp(page_address(tmp_page),
2502 page_address(sh->dev[qd_idx].page),
2503 STRIPE_SIZE) != 0) {
2504 clear_bit(STRIPE_INSYNC, &sh->state);
2505 update_q = 1;
2506 }
2507 }
2508 if (update_p || update_q) {
2509 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2510 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2511 /* don't try to repair!! */
2512 update_p = update_q = 0;
2513 }
2514
2515 /* now write out any block on a failed drive,
2516 * or P or Q if they need it
2517 */
2518
2519 if (s->failed == 2) {
2520 dev = &sh->dev[r6s->failed_num[1]];
2521 s->locked++;
2522 set_bit(R5_LOCKED, &dev->flags);
2523 set_bit(R5_Wantwrite, &dev->flags);
2524 }
2525 if (s->failed >= 1) {
2526 dev = &sh->dev[r6s->failed_num[0]];
2527 s->locked++;
2528 set_bit(R5_LOCKED, &dev->flags);
2529 set_bit(R5_Wantwrite, &dev->flags);
2530 }
2531
2532 if (update_p) {
2533 dev = &sh->dev[pd_idx];
2534 s->locked++;
2535 set_bit(R5_LOCKED, &dev->flags);
2536 set_bit(R5_Wantwrite, &dev->flags);
2537 }
2538 if (update_q) {
2539 dev = &sh->dev[qd_idx];
2540 s->locked++;
2541 set_bit(R5_LOCKED, &dev->flags);
2542 set_bit(R5_Wantwrite, &dev->flags);
2543 }
2544 clear_bit(STRIPE_DEGRADED, &sh->state);
2545
2546 set_bit(STRIPE_INSYNC, &sh->state);
2547 }
2548}
2549
2550static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2551 struct r6_state *r6s)
2552{
2553 int i;
2554
2555 /* We have read all the blocks in this stripe and now we need to
2556 * copy some of them into a target stripe for expand.
2557 */
f0a50d37 2558 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
2559 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2560 for (i = 0; i < sh->disks; i++)
a2e08551 2561 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
a4456856
DW
2562 int dd_idx, pd_idx, j;
2563 struct stripe_head *sh2;
2564
2565 sector_t bn = compute_blocknr(sh, i);
2566 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2567 conf->raid_disks -
2568 conf->max_degraded, &dd_idx,
2569 &pd_idx, conf);
2570 sh2 = get_active_stripe(conf, s, conf->raid_disks,
2571 pd_idx, 1);
2572 if (sh2 == NULL)
2573 /* so far only the early blocks of this stripe
2574 * have been requested. When later blocks
2575 * get requested, we will try again
2576 */
2577 continue;
2578 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2579 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2580 /* must have already done this block */
2581 release_stripe(sh2);
2582 continue;
2583 }
f0a50d37
DW
2584
2585 /* place all the copies on one channel */
2586 tx = async_memcpy(sh2->dev[dd_idx].page,
2587 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2588 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2589
a4456856
DW
2590 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2591 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2592 for (j = 0; j < conf->raid_disks; j++)
2593 if (j != sh2->pd_idx &&
a2e08551
N
2594 (!r6s || j != raid6_next_disk(sh2->pd_idx,
2595 sh2->disks)) &&
a4456856
DW
2596 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2597 break;
2598 if (j == conf->raid_disks) {
2599 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2600 set_bit(STRIPE_HANDLE, &sh2->state);
2601 }
2602 release_stripe(sh2);
f0a50d37 2603
a4456856 2604 }
a2e08551
N
2605 /* done submitting copies, wait for them to complete */
2606 if (tx) {
2607 async_tx_ack(tx);
2608 dma_wait_for_async_tx(tx);
2609 }
a4456856 2610}
1da177e4 2611
6bfe0b49 2612
1da177e4
LT
2613/*
2614 * handle_stripe - do things to a stripe.
2615 *
2616 * We lock the stripe and then examine the state of various bits
2617 * to see what needs to be done.
2618 * Possible results:
2619 * return some read request which now have data
2620 * return some write requests which are safely on disc
2621 * schedule a read on some buffers
2622 * schedule a write of some buffers
2623 * return confirmation of parity correctness
2624 *
1da177e4
LT
2625 * buffers are taken off read_list or write_list, and bh_cache buffers
2626 * get BH_Lock set before the stripe lock is released.
2627 *
2628 */
a4456856 2629
16a53ecc 2630static void handle_stripe5(struct stripe_head *sh)
1da177e4
LT
2631{
2632 raid5_conf_t *conf = sh->raid_conf;
a4456856
DW
2633 int disks = sh->disks, i;
2634 struct bio *return_bi = NULL;
2635 struct stripe_head_state s;
1da177e4 2636 struct r5dev *dev;
d84e0f10 2637 unsigned long pending = 0;
6bfe0b49 2638 mdk_rdev_t *blocked_rdev = NULL;
e0a115e5 2639 int prexor;
1da177e4 2640
a4456856 2641 memset(&s, 0, sizeof(s));
d84e0f10
DW
2642 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2643 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2644 atomic_read(&sh->count), sh->pd_idx,
2645 sh->ops.pending, sh->ops.ack, sh->ops.complete);
1da177e4
LT
2646
2647 spin_lock(&sh->lock);
2648 clear_bit(STRIPE_HANDLE, &sh->state);
2649 clear_bit(STRIPE_DELAYED, &sh->state);
2650
a4456856
DW
2651 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2652 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2653 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
1da177e4
LT
2654 /* Now to look around and see what can be done */
2655
def6ae26
NB
2656 /* clean-up completed biofill operations */
2657 if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) {
2658 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
2659 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
2660 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
2661 }
2662
9910f16a 2663 rcu_read_lock();
1da177e4
LT
2664 for (i=disks; i--; ) {
2665 mdk_rdev_t *rdev;
a4456856 2666 struct r5dev *dev = &sh->dev[i];
1da177e4 2667 clear_bit(R5_Insync, &dev->flags);
1da177e4 2668
b5e98d65
DW
2669 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2670 "written %p\n", i, dev->flags, dev->toread, dev->read,
2671 dev->towrite, dev->written);
2672
2673 /* maybe we can request a biofill operation
2674 *
2675 * new wantfill requests are only permitted while
2676 * STRIPE_OP_BIOFILL is clear
2677 */
2678 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2679 !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2680 set_bit(R5_Wantfill, &dev->flags);
1da177e4
LT
2681
2682 /* now count some things */
a4456856
DW
2683 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2684 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
f38e1219 2685 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
1da177e4 2686
b5e98d65
DW
2687 if (test_bit(R5_Wantfill, &dev->flags))
2688 s.to_fill++;
2689 else if (dev->toread)
a4456856 2690 s.to_read++;
1da177e4 2691 if (dev->towrite) {
a4456856 2692 s.to_write++;
1da177e4 2693 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 2694 s.non_overwrite++;
1da177e4 2695 }
a4456856
DW
2696 if (dev->written)
2697 s.written++;
9910f16a 2698 rdev = rcu_dereference(conf->disks[i].rdev);
6bfe0b49
DW
2699 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2700 blocked_rdev = rdev;
2701 atomic_inc(&rdev->nr_pending);
2702 break;
2703 }
b2d444d7 2704 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
14f8d26b 2705 /* The ReadError flag will just be confusing now */
4e5314b5
N
2706 clear_bit(R5_ReadError, &dev->flags);
2707 clear_bit(R5_ReWrite, &dev->flags);
2708 }
b2d444d7 2709 if (!rdev || !test_bit(In_sync, &rdev->flags)
4e5314b5 2710 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
2711 s.failed++;
2712 s.failed_num = i;
1da177e4
LT
2713 } else
2714 set_bit(R5_Insync, &dev->flags);
2715 }
9910f16a 2716 rcu_read_unlock();
b5e98d65 2717
6bfe0b49
DW
2718 if (unlikely(blocked_rdev)) {
2719 set_bit(STRIPE_HANDLE, &sh->state);
2720 goto unlock;
2721 }
2722
b5e98d65
DW
2723 if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2724 sh->ops.count++;
2725
45b4233c 2726 pr_debug("locked=%d uptodate=%d to_read=%d"
1da177e4 2727 " to_write=%d failed=%d failed_num=%d\n",
a4456856
DW
2728 s.locked, s.uptodate, s.to_read, s.to_write,
2729 s.failed, s.failed_num);
1da177e4
LT
2730 /* check if the array has lost two devices and, if so, some requests might
2731 * need to be failed
2732 */
a4456856
DW
2733 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2734 handle_requests_to_failed_array(conf, sh, &s, disks,
2735 &return_bi);
2736 if (s.failed > 1 && s.syncing) {
1da177e4
LT
2737 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2738 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 2739 s.syncing = 0;
1da177e4
LT
2740 }
2741
2742 /* might be able to return some write requests if the parity block
2743 * is safe, or on a failed drive
2744 */
2745 dev = &sh->dev[sh->pd_idx];
a4456856
DW
2746 if ( s.written &&
2747 ((test_bit(R5_Insync, &dev->flags) &&
2748 !test_bit(R5_LOCKED, &dev->flags) &&
2749 test_bit(R5_UPTODATE, &dev->flags)) ||
2750 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2751 handle_completed_write_requests(conf, sh, disks, &return_bi);
1da177e4
LT
2752
2753 /* Now we might consider reading some blocks, either to check/generate
2754 * parity, or to satisfy requests
2755 * or to load a block that is being partially written.
2756 */
a4456856 2757 if (s.to_read || s.non_overwrite ||
f38e1219
DW
2758 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2759 test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
a4456856 2760 handle_issuing_new_read_requests5(sh, &s, disks);
1da177e4 2761
e33129d8
DW
2762 /* Now we check to see if any write operations have recently
2763 * completed
2764 */
2765
2766 /* leave prexor set until postxor is done, allows us to distinguish
2767 * a rmw from a rcw during biodrain
2768 */
e0a115e5 2769 prexor = 0;
e33129d8
DW
2770 if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2771 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2772
e0a115e5 2773 prexor = 1;
e33129d8
DW
2774 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2775 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2776 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2777
2778 for (i = disks; i--; )
2779 clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2780 }
2781
2782 /* if only POSTXOR is set then this is an 'expand' postxor */
2783 if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2784 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2785
2786 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2787 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2788 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2789
2790 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2791 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2792 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2793
2794 /* All the 'written' buffers and the parity block are ready to
2795 * be written back to disk
2796 */
2797 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2798 for (i = disks; i--; ) {
2799 dev = &sh->dev[i];
2800 if (test_bit(R5_LOCKED, &dev->flags) &&
2801 (i == sh->pd_idx || dev->written)) {
2802 pr_debug("Writing block %d\n", i);
2803 set_bit(R5_Wantwrite, &dev->flags);
2804 if (!test_and_set_bit(
2805 STRIPE_OP_IO, &sh->ops.pending))
2806 sh->ops.count++;
e0a115e5
DW
2807 if (prexor)
2808 continue;
e33129d8
DW
2809 if (!test_bit(R5_Insync, &dev->flags) ||
2810 (i == sh->pd_idx && s.failed == 0))
2811 set_bit(STRIPE_INSYNC, &sh->state);
2812 }
2813 }
2814 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2815 atomic_dec(&conf->preread_active_stripes);
2816 if (atomic_read(&conf->preread_active_stripes) <
2817 IO_THRESHOLD)
2818 md_wakeup_thread(conf->mddev->thread);
2819 }
2820 }
2821
2822 /* Now to consider new write requests and what else, if anything
2823 * should be read. We do not handle new writes when:
2824 * 1/ A 'write' operation (copy+xor) is already in flight.
2825 * 2/ A 'check' operation is in flight, as it may clobber the parity
2826 * block.
2827 */
2828 if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2829 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
a4456856 2830 handle_issuing_new_write_requests5(conf, sh, &s, disks);
1da177e4
LT
2831
2832 /* maybe we need to check and possibly fix the parity for this stripe
e89f8962
DW
2833 * Any reads will already have been scheduled, so we just see if enough
2834 * data is available. The parity check is held off while parity
2835 * dependent operations are in flight.
1da177e4 2836 */
e89f8962
DW
2837 if ((s.syncing && s.locked == 0 &&
2838 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2839 !test_bit(STRIPE_INSYNC, &sh->state)) ||
2840 test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2841 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
a4456856 2842 handle_parity_checks5(conf, sh, &s, disks);
e89f8962 2843
a4456856 2844 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1da177e4
LT
2845 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2846 clear_bit(STRIPE_SYNCING, &sh->state);
2847 }
4e5314b5
N
2848
2849 /* If the failed drive is just a ReadError, then we might need to progress
2850 * the repair/check process
2851 */
a4456856
DW
2852 if (s.failed == 1 && !conf->mddev->ro &&
2853 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2854 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2855 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
4e5314b5 2856 ) {
a4456856 2857 dev = &sh->dev[s.failed_num];
4e5314b5
N
2858 if (!test_bit(R5_ReWrite, &dev->flags)) {
2859 set_bit(R5_Wantwrite, &dev->flags);
830ea016
DW
2860 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2861 sh->ops.count++;
4e5314b5
N
2862 set_bit(R5_ReWrite, &dev->flags);
2863 set_bit(R5_LOCKED, &dev->flags);
a4456856 2864 s.locked++;
4e5314b5
N
2865 } else {
2866 /* let's read it back */
2867 set_bit(R5_Wantread, &dev->flags);
830ea016
DW
2868 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2869 sh->ops.count++;
4e5314b5 2870 set_bit(R5_LOCKED, &dev->flags);
a4456856 2871 s.locked++;
4e5314b5
N
2872 }
2873 }
2874
f0a50d37
DW
2875 /* Finish postxor operations initiated by the expansion
2876 * process
2877 */
2878 if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2879 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2880
2881 clear_bit(STRIPE_EXPANDING, &sh->state);
2882
2883 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2884 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2885 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2886
a4456856 2887 for (i = conf->raid_disks; i--; ) {
ccfcc3c1 2888 set_bit(R5_Wantwrite, &sh->dev[i].flags);
efe31143
NB
2889 set_bit(R5_LOCKED, &dev->flags);
2890 s.locked++;
f0a50d37
DW
2891 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2892 sh->ops.count++;
ccfcc3c1 2893 }
f0a50d37
DW
2894 }
2895
2896 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2897 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2898 /* Need to write out all blocks after computing parity */
2899 sh->disks = conf->raid_disks;
2900 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2901 conf->raid_disks);
a2e08551 2902 s.locked += handle_write_operations5(sh, 1, 1);
f0a50d37 2903 } else if (s.expanded &&
efe31143 2904 s.locked == 0 &&
f0a50d37 2905 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
ccfcc3c1 2906 clear_bit(STRIPE_EXPAND_READY, &sh->state);
f6705578 2907 atomic_dec(&conf->reshape_stripes);
ccfcc3c1
N
2908 wake_up(&conf->wait_for_overlap);
2909 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2910 }
2911
0f94e87c
DW
2912 if (s.expanding && s.locked == 0 &&
2913 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
a4456856 2914 handle_stripe_expansion(conf, sh, NULL);
ccfcc3c1 2915
d84e0f10
DW
2916 if (sh->ops.count)
2917 pending = get_stripe_work(sh);
2918
6bfe0b49 2919 unlock:
1da177e4
LT
2920 spin_unlock(&sh->lock);
2921
6bfe0b49
DW
2922 /* wait for this device to become unblocked */
2923 if (unlikely(blocked_rdev))
2924 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2925
d84e0f10
DW
2926 if (pending)
2927 raid5_run_ops(sh, pending);
2928
a4456856 2929 return_io(return_bi);
1da177e4 2930
1da177e4
LT
2931}
2932
16a53ecc 2933static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1da177e4 2934{
16a53ecc 2935 raid6_conf_t *conf = sh->raid_conf;
f416885e 2936 int disks = sh->disks;
a4456856
DW
2937 struct bio *return_bi = NULL;
2938 int i, pd_idx = sh->pd_idx;
2939 struct stripe_head_state s;
2940 struct r6_state r6s;
16a53ecc 2941 struct r5dev *dev, *pdev, *qdev;
6bfe0b49 2942 mdk_rdev_t *blocked_rdev = NULL;
1da177e4 2943
a4456856 2944 r6s.qd_idx = raid6_next_disk(pd_idx, disks);
45b4233c 2945 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
a4456856
DW
2946 "pd_idx=%d, qd_idx=%d\n",
2947 (unsigned long long)sh->sector, sh->state,
2948 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2949 memset(&s, 0, sizeof(s));
72626685 2950
16a53ecc
N
2951 spin_lock(&sh->lock);
2952 clear_bit(STRIPE_HANDLE, &sh->state);
2953 clear_bit(STRIPE_DELAYED, &sh->state);
2954
a4456856
DW
2955 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2956 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2957 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
16a53ecc 2958 /* Now to look around and see what can be done */
1da177e4
LT
2959
2960 rcu_read_lock();
16a53ecc
N
2961 for (i=disks; i--; ) {
2962 mdk_rdev_t *rdev;
2963 dev = &sh->dev[i];
2964 clear_bit(R5_Insync, &dev->flags);
1da177e4 2965
45b4233c 2966 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
16a53ecc
N
2967 i, dev->flags, dev->toread, dev->towrite, dev->written);
2968 /* maybe we can reply to a read */
2969 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2970 struct bio *rbi, *rbi2;
45b4233c 2971 pr_debug("Return read for disc %d\n", i);
16a53ecc
N
2972 spin_lock_irq(&conf->device_lock);
2973 rbi = dev->toread;
2974 dev->toread = NULL;
2975 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2976 wake_up(&conf->wait_for_overlap);
2977 spin_unlock_irq(&conf->device_lock);
2978 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2979 copy_data(0, rbi, dev->page, dev->sector);
2980 rbi2 = r5_next_bio(rbi, dev->sector);
2981 spin_lock_irq(&conf->device_lock);
2982 if (--rbi->bi_phys_segments == 0) {
2983 rbi->bi_next = return_bi;
2984 return_bi = rbi;
2985 }
2986 spin_unlock_irq(&conf->device_lock);
2987 rbi = rbi2;
2988 }
2989 }
1da177e4 2990
16a53ecc 2991 /* now count some things */
a4456856
DW
2992 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2993 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
1da177e4 2994
16a53ecc 2995
a4456856
DW
2996 if (dev->toread)
2997 s.to_read++;
16a53ecc 2998 if (dev->towrite) {
a4456856 2999 s.to_write++;
16a53ecc 3000 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 3001 s.non_overwrite++;
16a53ecc 3002 }
a4456856
DW
3003 if (dev->written)
3004 s.written++;
16a53ecc 3005 rdev = rcu_dereference(conf->disks[i].rdev);
6bfe0b49
DW
3006 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3007 blocked_rdev = rdev;
3008 atomic_inc(&rdev->nr_pending);
3009 break;
3010 }
16a53ecc
N
3011 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3012 /* The ReadError flag will just be confusing now */
3013 clear_bit(R5_ReadError, &dev->flags);
3014 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3015 }
16a53ecc
N
3016 if (!rdev || !test_bit(In_sync, &rdev->flags)
3017 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
3018 if (s.failed < 2)
3019 r6s.failed_num[s.failed] = i;
3020 s.failed++;
16a53ecc
N
3021 } else
3022 set_bit(R5_Insync, &dev->flags);
1da177e4
LT
3023 }
3024 rcu_read_unlock();
6bfe0b49
DW
3025
3026 if (unlikely(blocked_rdev)) {
3027 set_bit(STRIPE_HANDLE, &sh->state);
3028 goto unlock;
3029 }
45b4233c 3030 pr_debug("locked=%d uptodate=%d to_read=%d"
16a53ecc 3031 " to_write=%d failed=%d failed_num=%d,%d\n",
a4456856
DW
3032 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3033 r6s.failed_num[0], r6s.failed_num[1]);
3034 /* check if the array has lost >2 devices and, if so, some requests
3035 * might need to be failed
16a53ecc 3036 */
a4456856
DW
3037 if (s.failed > 2 && s.to_read+s.to_write+s.written)
3038 handle_requests_to_failed_array(conf, sh, &s, disks,
3039 &return_bi);
3040 if (s.failed > 2 && s.syncing) {
16a53ecc
N
3041 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3042 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 3043 s.syncing = 0;
16a53ecc
N
3044 }
3045
3046 /*
3047 * might be able to return some write requests if the parity blocks
3048 * are safe, or on a failed drive
3049 */
3050 pdev = &sh->dev[pd_idx];
a4456856
DW
3051 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3052 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3053 qdev = &sh->dev[r6s.qd_idx];
3054 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
3055 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
3056
3057 if ( s.written &&
3058 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
16a53ecc 3059 && !test_bit(R5_LOCKED, &pdev->flags)
a4456856
DW
3060 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3061 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
16a53ecc 3062 && !test_bit(R5_LOCKED, &qdev->flags)
a4456856
DW
3063 && test_bit(R5_UPTODATE, &qdev->flags)))))
3064 handle_completed_write_requests(conf, sh, disks, &return_bi);
16a53ecc
N
3065
3066 /* Now we might consider reading some blocks, either to check/generate
3067 * parity, or to satisfy requests
3068 * or to load a block that is being partially written.
3069 */
a4456856
DW
3070 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3071 (s.syncing && (s.uptodate < disks)) || s.expanding)
3072 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
16a53ecc
N
3073
3074 /* now to consider writing and what else, if anything should be read */
a4456856
DW
3075 if (s.to_write)
3076 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
16a53ecc
N
3077
3078 /* maybe we need to check and possibly fix the parity for this stripe
a4456856
DW
3079 * Any reads will already have been scheduled, so we just see if enough
3080 * data is available
16a53ecc 3081 */
a4456856
DW
3082 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3083 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
16a53ecc 3084
a4456856 3085 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
16a53ecc
N
3086 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3087 clear_bit(STRIPE_SYNCING, &sh->state);
3088 }
3089
3090 /* If the failed drives are just a ReadError, then we might need
3091 * to progress the repair/check process
3092 */
a4456856
DW
3093 if (s.failed <= 2 && !conf->mddev->ro)
3094 for (i = 0; i < s.failed; i++) {
3095 dev = &sh->dev[r6s.failed_num[i]];
16a53ecc
N
3096 if (test_bit(R5_ReadError, &dev->flags)
3097 && !test_bit(R5_LOCKED, &dev->flags)
3098 && test_bit(R5_UPTODATE, &dev->flags)
3099 ) {
3100 if (!test_bit(R5_ReWrite, &dev->flags)) {
3101 set_bit(R5_Wantwrite, &dev->flags);
3102 set_bit(R5_ReWrite, &dev->flags);
3103 set_bit(R5_LOCKED, &dev->flags);
3104 } else {
3105 /* let's read it back */
3106 set_bit(R5_Wantread, &dev->flags);
3107 set_bit(R5_LOCKED, &dev->flags);
3108 }
3109 }
3110 }
f416885e 3111
a4456856 3112 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
f416885e
N
3113 /* Need to write out all blocks after computing P&Q */
3114 sh->disks = conf->raid_disks;
3115 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3116 conf->raid_disks);
3117 compute_parity6(sh, RECONSTRUCT_WRITE);
3118 for (i = conf->raid_disks ; i-- ; ) {
3119 set_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3120 s.locked++;
f416885e
N
3121 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3122 }
3123 clear_bit(STRIPE_EXPANDING, &sh->state);
a4456856 3124 } else if (s.expanded) {
f416885e
N
3125 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3126 atomic_dec(&conf->reshape_stripes);
3127 wake_up(&conf->wait_for_overlap);
3128 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3129 }
3130
0f94e87c
DW
3131 if (s.expanding && s.locked == 0 &&
3132 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
a4456856 3133 handle_stripe_expansion(conf, sh, &r6s);
f416885e 3134
6bfe0b49 3135 unlock:
16a53ecc
N
3136 spin_unlock(&sh->lock);
3137
6bfe0b49
DW
3138 /* wait for this device to become unblocked */
3139 if (unlikely(blocked_rdev))
3140 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3141
a4456856 3142 return_io(return_bi);
16a53ecc 3143
16a53ecc
N
3144 for (i=disks; i-- ;) {
3145 int rw;
3146 struct bio *bi;
3147 mdk_rdev_t *rdev;
3148 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
802ba064 3149 rw = WRITE;
16a53ecc 3150 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
802ba064 3151 rw = READ;
16a53ecc
N
3152 else
3153 continue;
3154
8b3e6cdc
DW
3155 set_bit(STRIPE_IO_STARTED, &sh->state);
3156
16a53ecc
N
3157 bi = &sh->dev[i].req;
3158
3159 bi->bi_rw = rw;
802ba064 3160 if (rw == WRITE)
16a53ecc
N
3161 bi->bi_end_io = raid5_end_write_request;
3162 else
3163 bi->bi_end_io = raid5_end_read_request;
3164
3165 rcu_read_lock();
3166 rdev = rcu_dereference(conf->disks[i].rdev);
3167 if (rdev && test_bit(Faulty, &rdev->flags))
3168 rdev = NULL;
3169 if (rdev)
3170 atomic_inc(&rdev->nr_pending);
3171 rcu_read_unlock();
3172
3173 if (rdev) {
a4456856 3174 if (s.syncing || s.expanding || s.expanded)
16a53ecc
N
3175 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3176
3177 bi->bi_bdev = rdev->bdev;
45b4233c 3178 pr_debug("for %llu schedule op %ld on disc %d\n",
16a53ecc
N
3179 (unsigned long long)sh->sector, bi->bi_rw, i);
3180 atomic_inc(&sh->count);
3181 bi->bi_sector = sh->sector + rdev->data_offset;
3182 bi->bi_flags = 1 << BIO_UPTODATE;
3183 bi->bi_vcnt = 1;
3184 bi->bi_max_vecs = 1;
3185 bi->bi_idx = 0;
3186 bi->bi_io_vec = &sh->dev[i].vec;
3187 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3188 bi->bi_io_vec[0].bv_offset = 0;
3189 bi->bi_size = STRIPE_SIZE;
3190 bi->bi_next = NULL;
3191 if (rw == WRITE &&
3192 test_bit(R5_ReWrite, &sh->dev[i].flags))
3193 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3194 generic_make_request(bi);
3195 } else {
802ba064 3196 if (rw == WRITE)
16a53ecc 3197 set_bit(STRIPE_DEGRADED, &sh->state);
45b4233c 3198 pr_debug("skip op %ld on disc %d for sector %llu\n",
16a53ecc
N
3199 bi->bi_rw, i, (unsigned long long)sh->sector);
3200 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3201 set_bit(STRIPE_HANDLE, &sh->state);
3202 }
3203 }
3204}
3205
3206static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3207{
3208 if (sh->raid_conf->level == 6)
3209 handle_stripe6(sh, tmp_page);
3210 else
3211 handle_stripe5(sh);
3212}
3213
3214
3215
3216static void raid5_activate_delayed(raid5_conf_t *conf)
3217{
3218 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3219 while (!list_empty(&conf->delayed_list)) {
3220 struct list_head *l = conf->delayed_list.next;
3221 struct stripe_head *sh;
3222 sh = list_entry(l, struct stripe_head, lru);
3223 list_del_init(l);
3224 clear_bit(STRIPE_DELAYED, &sh->state);
3225 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3226 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3227 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3228 }
6ed3003c
N
3229 } else
3230 blk_plug_device(conf->mddev->queue);
16a53ecc
N
3231}
3232
3233static void activate_bit_delay(raid5_conf_t *conf)
3234{
3235 /* device_lock is held */
3236 struct list_head head;
3237 list_add(&head, &conf->bitmap_list);
3238 list_del_init(&conf->bitmap_list);
3239 while (!list_empty(&head)) {
3240 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3241 list_del_init(&sh->lru);
3242 atomic_inc(&sh->count);
3243 __release_stripe(conf, sh);
3244 }
3245}
3246
3247static void unplug_slaves(mddev_t *mddev)
3248{
3249 raid5_conf_t *conf = mddev_to_conf(mddev);
3250 int i;
3251
3252 rcu_read_lock();
3253 for (i=0; i<mddev->raid_disks; i++) {
3254 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3255 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 3256 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
16a53ecc
N
3257
3258 atomic_inc(&rdev->nr_pending);
3259 rcu_read_unlock();
3260
2ad8b1ef 3261 blk_unplug(r_queue);
16a53ecc
N
3262
3263 rdev_dec_pending(rdev, mddev);
3264 rcu_read_lock();
3265 }
3266 }
3267 rcu_read_unlock();
3268}
3269
165125e1 3270static void raid5_unplug_device(struct request_queue *q)
16a53ecc
N
3271{
3272 mddev_t *mddev = q->queuedata;
3273 raid5_conf_t *conf = mddev_to_conf(mddev);
3274 unsigned long flags;
3275
3276 spin_lock_irqsave(&conf->device_lock, flags);
3277
3278 if (blk_remove_plug(q)) {
3279 conf->seq_flush++;
3280 raid5_activate_delayed(conf);
72626685 3281 }
1da177e4
LT
3282 md_wakeup_thread(mddev->thread);
3283
3284 spin_unlock_irqrestore(&conf->device_lock, flags);
3285
3286 unplug_slaves(mddev);
3287}
3288
f022b2fd
N
3289static int raid5_congested(void *data, int bits)
3290{
3291 mddev_t *mddev = data;
3292 raid5_conf_t *conf = mddev_to_conf(mddev);
3293
3294 /* No difference between reads and writes. Just check
3295 * how busy the stripe_cache is
3296 */
3297 if (conf->inactive_blocked)
3298 return 1;
3299 if (conf->quiesce)
3300 return 1;
3301 if (list_empty_careful(&conf->inactive_list))
3302 return 1;
3303
3304 return 0;
3305}
3306
23032a0e
RBJ
3307/* We want read requests to align with chunks where possible,
3308 * but write requests don't need to.
3309 */
165125e1 3310static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
23032a0e
RBJ
3311{
3312 mddev_t *mddev = q->queuedata;
3313 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3314 int max;
3315 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3316 unsigned int bio_sectors = bio->bi_size >> 9;
3317
802ba064 3318 if (bio_data_dir(bio) == WRITE)
23032a0e
RBJ
3319 return biovec->bv_len; /* always allow writes to be mergeable */
3320
3321 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3322 if (max < 0) max = 0;
3323 if (max <= biovec->bv_len && bio_sectors == 0)
3324 return biovec->bv_len;
3325 else
3326 return max;
3327}
3328
f679623f
RBJ
3329
3330static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3331{
3332 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3333 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3334 unsigned int bio_sectors = bio->bi_size >> 9;
3335
3336 return chunk_sectors >=
3337 ((sector & (chunk_sectors - 1)) + bio_sectors);
3338}
3339
46031f9a
RBJ
3340/*
3341 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3342 * later sampled by raid5d.
3343 */
3344static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3345{
3346 unsigned long flags;
3347
3348 spin_lock_irqsave(&conf->device_lock, flags);
3349
3350 bi->bi_next = conf->retry_read_aligned_list;
3351 conf->retry_read_aligned_list = bi;
3352
3353 spin_unlock_irqrestore(&conf->device_lock, flags);
3354 md_wakeup_thread(conf->mddev->thread);
3355}
3356
3357
3358static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3359{
3360 struct bio *bi;
3361
3362 bi = conf->retry_read_aligned;
3363 if (bi) {
3364 conf->retry_read_aligned = NULL;
3365 return bi;
3366 }
3367 bi = conf->retry_read_aligned_list;
3368 if(bi) {
387bb173 3369 conf->retry_read_aligned_list = bi->bi_next;
46031f9a
RBJ
3370 bi->bi_next = NULL;
3371 bi->bi_phys_segments = 1; /* biased count of active stripes */
3372 bi->bi_hw_segments = 0; /* count of processed stripes */
3373 }
3374
3375 return bi;
3376}
3377
3378
f679623f
RBJ
3379/*
3380 * The "raid5_align_endio" should check if the read succeeded and if it
3381 * did, call bio_endio on the original bio (having bio_put the new bio
3382 * first).
3383 * If the read failed..
3384 */
6712ecf8 3385static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3386{
3387 struct bio* raid_bi = bi->bi_private;
46031f9a
RBJ
3388 mddev_t *mddev;
3389 raid5_conf_t *conf;
3390 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3391 mdk_rdev_t *rdev;
3392
f679623f 3393 bio_put(bi);
46031f9a
RBJ
3394
3395 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3396 conf = mddev_to_conf(mddev);
3397 rdev = (void*)raid_bi->bi_next;
3398 raid_bi->bi_next = NULL;
3399
3400 rdev_dec_pending(rdev, conf->mddev);
3401
3402 if (!error && uptodate) {
6712ecf8 3403 bio_endio(raid_bi, 0);
46031f9a
RBJ
3404 if (atomic_dec_and_test(&conf->active_aligned_reads))
3405 wake_up(&conf->wait_for_stripe);
6712ecf8 3406 return;
46031f9a
RBJ
3407 }
3408
3409
45b4233c 3410 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3411
3412 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3413}
3414
387bb173
NB
3415static int bio_fits_rdev(struct bio *bi)
3416{
165125e1 3417 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173
NB
3418
3419 if ((bi->bi_size>>9) > q->max_sectors)
3420 return 0;
3421 blk_recount_segments(q, bi);
3422 if (bi->bi_phys_segments > q->max_phys_segments ||
3423 bi->bi_hw_segments > q->max_hw_segments)
3424 return 0;
3425
3426 if (q->merge_bvec_fn)
3427 /* it's too hard to apply the merge_bvec_fn at this stage,
3428 * just just give up
3429 */
3430 return 0;
3431
3432 return 1;
3433}
3434
3435
165125e1 3436static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
f679623f
RBJ
3437{
3438 mddev_t *mddev = q->queuedata;
3439 raid5_conf_t *conf = mddev_to_conf(mddev);
3440 const unsigned int raid_disks = conf->raid_disks;
46031f9a 3441 const unsigned int data_disks = raid_disks - conf->max_degraded;
f679623f
RBJ
3442 unsigned int dd_idx, pd_idx;
3443 struct bio* align_bi;
3444 mdk_rdev_t *rdev;
3445
3446 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3447 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3448 return 0;
3449 }
3450 /*
3451 * use bio_clone to make a copy of the bio
3452 */
3453 align_bi = bio_clone(raid_bio, GFP_NOIO);
3454 if (!align_bi)
3455 return 0;
3456 /*
3457 * set bi_end_io to a new function, and set bi_private to the
3458 * original bio.
3459 */
3460 align_bi->bi_end_io = raid5_align_endio;
3461 align_bi->bi_private = raid_bio;
3462 /*
3463 * compute position
3464 */
3465 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
3466 raid_disks,
3467 data_disks,
3468 &dd_idx,
3469 &pd_idx,
3470 conf);
3471
3472 rcu_read_lock();
3473 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3474 if (rdev && test_bit(In_sync, &rdev->flags)) {
f679623f
RBJ
3475 atomic_inc(&rdev->nr_pending);
3476 rcu_read_unlock();
46031f9a
RBJ
3477 raid_bio->bi_next = (void*)rdev;
3478 align_bi->bi_bdev = rdev->bdev;
3479 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3480 align_bi->bi_sector += rdev->data_offset;
3481
387bb173
NB
3482 if (!bio_fits_rdev(align_bi)) {
3483 /* too big in some way */
3484 bio_put(align_bi);
3485 rdev_dec_pending(rdev, mddev);
3486 return 0;
3487 }
3488
46031f9a
RBJ
3489 spin_lock_irq(&conf->device_lock);
3490 wait_event_lock_irq(conf->wait_for_stripe,
3491 conf->quiesce == 0,
3492 conf->device_lock, /* nothing */);
3493 atomic_inc(&conf->active_aligned_reads);
3494 spin_unlock_irq(&conf->device_lock);
3495
f679623f
RBJ
3496 generic_make_request(align_bi);
3497 return 1;
3498 } else {
3499 rcu_read_unlock();
46031f9a 3500 bio_put(align_bi);
f679623f
RBJ
3501 return 0;
3502 }
3503}
3504
8b3e6cdc
DW
3505/* __get_priority_stripe - get the next stripe to process
3506 *
3507 * Full stripe writes are allowed to pass preread active stripes up until
3508 * the bypass_threshold is exceeded. In general the bypass_count
3509 * increments when the handle_list is handled before the hold_list; however, it
3510 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3511 * stripe with in flight i/o. The bypass_count will be reset when the
3512 * head of the hold_list has changed, i.e. the head was promoted to the
3513 * handle_list.
3514 */
3515static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3516{
3517 struct stripe_head *sh;
3518
3519 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3520 __func__,
3521 list_empty(&conf->handle_list) ? "empty" : "busy",
3522 list_empty(&conf->hold_list) ? "empty" : "busy",
3523 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3524
3525 if (!list_empty(&conf->handle_list)) {
3526 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3527
3528 if (list_empty(&conf->hold_list))
3529 conf->bypass_count = 0;
3530 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3531 if (conf->hold_list.next == conf->last_hold)
3532 conf->bypass_count++;
3533 else {
3534 conf->last_hold = conf->hold_list.next;
3535 conf->bypass_count -= conf->bypass_threshold;
3536 if (conf->bypass_count < 0)
3537 conf->bypass_count = 0;
3538 }
3539 }
3540 } else if (!list_empty(&conf->hold_list) &&
3541 ((conf->bypass_threshold &&
3542 conf->bypass_count > conf->bypass_threshold) ||
3543 atomic_read(&conf->pending_full_writes) == 0)) {
3544 sh = list_entry(conf->hold_list.next,
3545 typeof(*sh), lru);
3546 conf->bypass_count -= conf->bypass_threshold;
3547 if (conf->bypass_count < 0)
3548 conf->bypass_count = 0;
3549 } else
3550 return NULL;
3551
3552 list_del_init(&sh->lru);
3553 atomic_inc(&sh->count);
3554 BUG_ON(atomic_read(&sh->count) != 1);
3555 return sh;
3556}
f679623f 3557
165125e1 3558static int make_request(struct request_queue *q, struct bio * bi)
1da177e4
LT
3559{
3560 mddev_t *mddev = q->queuedata;
3561 raid5_conf_t *conf = mddev_to_conf(mddev);
1da177e4
LT
3562 unsigned int dd_idx, pd_idx;
3563 sector_t new_sector;
3564 sector_t logical_sector, last_sector;
3565 struct stripe_head *sh;
a362357b 3566 const int rw = bio_data_dir(bi);
f6344757 3567 int remaining;
1da177e4 3568
e5dcdd80 3569 if (unlikely(bio_barrier(bi))) {
6712ecf8 3570 bio_endio(bi, -EOPNOTSUPP);
e5dcdd80
N
3571 return 0;
3572 }
3573
3d310eb7 3574 md_write_start(mddev, bi);
06d91a5f 3575
a362357b
JA
3576 disk_stat_inc(mddev->gendisk, ios[rw]);
3577 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
1da177e4 3578
802ba064 3579 if (rw == READ &&
52488615
RBJ
3580 mddev->reshape_position == MaxSector &&
3581 chunk_aligned_read(q,bi))
3582 return 0;
3583
1da177e4
LT
3584 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3585 last_sector = bi->bi_sector + (bi->bi_size>>9);
3586 bi->bi_next = NULL;
3587 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3588
1da177e4
LT
3589 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3590 DEFINE_WAIT(w);
16a53ecc 3591 int disks, data_disks;
b578d55f 3592
7ecaa1e6 3593 retry:
b578d55f 3594 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
7ecaa1e6
N
3595 if (likely(conf->expand_progress == MaxSector))
3596 disks = conf->raid_disks;
3597 else {
df8e7f76
N
3598 /* spinlock is needed as expand_progress may be
3599 * 64bit on a 32bit platform, and so it might be
3600 * possible to see a half-updated value
3601 * Ofcourse expand_progress could change after
3602 * the lock is dropped, so once we get a reference
3603 * to the stripe that we think it is, we will have
3604 * to check again.
3605 */
7ecaa1e6
N
3606 spin_lock_irq(&conf->device_lock);
3607 disks = conf->raid_disks;
3608 if (logical_sector >= conf->expand_progress)
3609 disks = conf->previous_raid_disks;
b578d55f
N
3610 else {
3611 if (logical_sector >= conf->expand_lo) {
3612 spin_unlock_irq(&conf->device_lock);
3613 schedule();
3614 goto retry;
3615 }
3616 }
7ecaa1e6
N
3617 spin_unlock_irq(&conf->device_lock);
3618 }
16a53ecc
N
3619 data_disks = disks - conf->max_degraded;
3620
3621 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
7ecaa1e6 3622 &dd_idx, &pd_idx, conf);
45b4233c 3623 pr_debug("raid5: make_request, sector %llu logical %llu\n",
1da177e4
LT
3624 (unsigned long long)new_sector,
3625 (unsigned long long)logical_sector);
3626
7ecaa1e6 3627 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
1da177e4 3628 if (sh) {
7ecaa1e6
N
3629 if (unlikely(conf->expand_progress != MaxSector)) {
3630 /* expansion might have moved on while waiting for a
df8e7f76
N
3631 * stripe, so we must do the range check again.
3632 * Expansion could still move past after this
3633 * test, but as we are holding a reference to
3634 * 'sh', we know that if that happens,
3635 * STRIPE_EXPANDING will get set and the expansion
3636 * won't proceed until we finish with the stripe.
7ecaa1e6
N
3637 */
3638 int must_retry = 0;
3639 spin_lock_irq(&conf->device_lock);
3640 if (logical_sector < conf->expand_progress &&
3641 disks == conf->previous_raid_disks)
3642 /* mismatch, need to try again */
3643 must_retry = 1;
3644 spin_unlock_irq(&conf->device_lock);
3645 if (must_retry) {
3646 release_stripe(sh);
3647 goto retry;
3648 }
3649 }
e464eafd
N
3650 /* FIXME what if we get a false positive because these
3651 * are being updated.
3652 */
3653 if (logical_sector >= mddev->suspend_lo &&
3654 logical_sector < mddev->suspend_hi) {
3655 release_stripe(sh);
3656 schedule();
3657 goto retry;
3658 }
7ecaa1e6
N
3659
3660 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3661 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3662 /* Stripe is busy expanding or
3663 * add failed due to overlap. Flush everything
1da177e4
LT
3664 * and wait a while
3665 */
3666 raid5_unplug_device(mddev->queue);
3667 release_stripe(sh);
3668 schedule();
3669 goto retry;
3670 }
3671 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
3672 set_bit(STRIPE_HANDLE, &sh->state);
3673 clear_bit(STRIPE_DELAYED, &sh->state);
1da177e4 3674 release_stripe(sh);
1da177e4
LT
3675 } else {
3676 /* cannot get stripe for read-ahead, just give-up */
3677 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3678 finish_wait(&conf->wait_for_overlap, &w);
3679 break;
3680 }
3681
3682 }
3683 spin_lock_irq(&conf->device_lock);
f6344757
N
3684 remaining = --bi->bi_phys_segments;
3685 spin_unlock_irq(&conf->device_lock);
3686 if (remaining == 0) {
1da177e4 3687
16a53ecc 3688 if ( rw == WRITE )
1da177e4 3689 md_write_end(mddev);
6712ecf8 3690
0e13fe23 3691 bio_endio(bi, 0);
1da177e4 3692 }
1da177e4
LT
3693 return 0;
3694}
3695
52c03291 3696static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 3697{
52c03291
N
3698 /* reshaping is quite different to recovery/resync so it is
3699 * handled quite separately ... here.
3700 *
3701 * On each call to sync_request, we gather one chunk worth of
3702 * destination stripes and flag them as expanding.
3703 * Then we find all the source stripes and request reads.
3704 * As the reads complete, handle_stripe will copy the data
3705 * into the destination stripe and release that stripe.
3706 */
1da177e4
LT
3707 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3708 struct stripe_head *sh;
ccfcc3c1
N
3709 int pd_idx;
3710 sector_t first_sector, last_sector;
f416885e
N
3711 int raid_disks = conf->previous_raid_disks;
3712 int data_disks = raid_disks - conf->max_degraded;
3713 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
3714 int i;
3715 int dd_idx;
3716 sector_t writepos, safepos, gap;
3717
3718 if (sector_nr == 0 &&
3719 conf->expand_progress != 0) {
3720 /* restarting in the middle, skip the initial sectors */
3721 sector_nr = conf->expand_progress;
f416885e 3722 sector_div(sector_nr, new_data_disks);
52c03291
N
3723 *skipped = 1;
3724 return sector_nr;
3725 }
3726
3727 /* we update the metadata when there is more than 3Meg
3728 * in the block range (that is rather arbitrary, should
3729 * probably be time based) or when the data about to be
3730 * copied would over-write the source of the data at
3731 * the front of the range.
3732 * i.e. one new_stripe forward from expand_progress new_maps
3733 * to after where expand_lo old_maps to
3734 */
3735 writepos = conf->expand_progress +
f416885e
N
3736 conf->chunk_size/512*(new_data_disks);
3737 sector_div(writepos, new_data_disks);
52c03291 3738 safepos = conf->expand_lo;
f416885e 3739 sector_div(safepos, data_disks);
52c03291
N
3740 gap = conf->expand_progress - conf->expand_lo;
3741
3742 if (writepos >= safepos ||
f416885e 3743 gap > (new_data_disks)*3000*2 /*3Meg*/) {
52c03291
N
3744 /* Cannot proceed until we've updated the superblock... */
3745 wait_event(conf->wait_for_overlap,
3746 atomic_read(&conf->reshape_stripes)==0);
3747 mddev->reshape_position = conf->expand_progress;
850b2b42 3748 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 3749 md_wakeup_thread(mddev->thread);
850b2b42 3750 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
3751 kthread_should_stop());
3752 spin_lock_irq(&conf->device_lock);
3753 conf->expand_lo = mddev->reshape_position;
3754 spin_unlock_irq(&conf->device_lock);
3755 wake_up(&conf->wait_for_overlap);
3756 }
3757
3758 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3759 int j;
3760 int skipped = 0;
3761 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3762 sh = get_active_stripe(conf, sector_nr+i,
3763 conf->raid_disks, pd_idx, 0);
3764 set_bit(STRIPE_EXPANDING, &sh->state);
3765 atomic_inc(&conf->reshape_stripes);
3766 /* If any of this stripe is beyond the end of the old
3767 * array, then we need to zero those blocks
3768 */
3769 for (j=sh->disks; j--;) {
3770 sector_t s;
3771 if (j == sh->pd_idx)
3772 continue;
f416885e
N
3773 if (conf->level == 6 &&
3774 j == raid6_next_disk(sh->pd_idx, sh->disks))
3775 continue;
52c03291
N
3776 s = compute_blocknr(sh, j);
3777 if (s < (mddev->array_size<<1)) {
3778 skipped = 1;
3779 continue;
3780 }
3781 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3782 set_bit(R5_Expanded, &sh->dev[j].flags);
3783 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3784 }
3785 if (!skipped) {
3786 set_bit(STRIPE_EXPAND_READY, &sh->state);
3787 set_bit(STRIPE_HANDLE, &sh->state);
3788 }
3789 release_stripe(sh);
3790 }
3791 spin_lock_irq(&conf->device_lock);
6d3baf2e 3792 conf->expand_progress = (sector_nr + i) * new_data_disks;
52c03291
N
3793 spin_unlock_irq(&conf->device_lock);
3794 /* Ok, those stripe are ready. We can start scheduling
3795 * reads on the source stripes.
3796 * The source stripes are determined by mapping the first and last
3797 * block on the destination stripes.
3798 */
52c03291 3799 first_sector =
f416885e 3800 raid5_compute_sector(sector_nr*(new_data_disks),
52c03291
N
3801 raid_disks, data_disks,
3802 &dd_idx, &pd_idx, conf);
3803 last_sector =
3804 raid5_compute_sector((sector_nr+conf->chunk_size/512)
f416885e 3805 *(new_data_disks) -1,
52c03291
N
3806 raid_disks, data_disks,
3807 &dd_idx, &pd_idx, conf);
3808 if (last_sector >= (mddev->size<<1))
3809 last_sector = (mddev->size<<1)-1;
3810 while (first_sector <= last_sector) {
f416885e
N
3811 pd_idx = stripe_to_pdidx(first_sector, conf,
3812 conf->previous_raid_disks);
52c03291
N
3813 sh = get_active_stripe(conf, first_sector,
3814 conf->previous_raid_disks, pd_idx, 0);
3815 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3816 set_bit(STRIPE_HANDLE, &sh->state);
3817 release_stripe(sh);
3818 first_sector += STRIPE_SECTORS;
3819 }
c6207277
N
3820 /* If this takes us to the resync_max point where we have to pause,
3821 * then we need to write out the superblock.
3822 */
3823 sector_nr += conf->chunk_size>>9;
3824 if (sector_nr >= mddev->resync_max) {
3825 /* Cannot proceed until we've updated the superblock... */
3826 wait_event(conf->wait_for_overlap,
3827 atomic_read(&conf->reshape_stripes) == 0);
3828 mddev->reshape_position = conf->expand_progress;
3829 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3830 md_wakeup_thread(mddev->thread);
3831 wait_event(mddev->sb_wait,
3832 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3833 || kthread_should_stop());
3834 spin_lock_irq(&conf->device_lock);
3835 conf->expand_lo = mddev->reshape_position;
3836 spin_unlock_irq(&conf->device_lock);
3837 wake_up(&conf->wait_for_overlap);
3838 }
52c03291
N
3839 return conf->chunk_size>>9;
3840}
3841
3842/* FIXME go_faster isn't used */
3843static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3844{
3845 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3846 struct stripe_head *sh;
3847 int pd_idx;
1da177e4 3848 int raid_disks = conf->raid_disks;
72626685
N
3849 sector_t max_sector = mddev->size << 1;
3850 int sync_blocks;
16a53ecc
N
3851 int still_degraded = 0;
3852 int i;
1da177e4 3853
72626685 3854 if (sector_nr >= max_sector) {
1da177e4
LT
3855 /* just being told to finish up .. nothing much to do */
3856 unplug_slaves(mddev);
29269553
N
3857 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3858 end_reshape(conf);
3859 return 0;
3860 }
72626685
N
3861
3862 if (mddev->curr_resync < max_sector) /* aborted */
3863 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3864 &sync_blocks, 1);
16a53ecc 3865 else /* completed sync */
72626685
N
3866 conf->fullsync = 0;
3867 bitmap_close_sync(mddev->bitmap);
3868
1da177e4
LT
3869 return 0;
3870 }
ccfcc3c1 3871
52c03291
N
3872 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3873 return reshape_request(mddev, sector_nr, skipped);
f6705578 3874
c6207277
N
3875 /* No need to check resync_max as we never do more than one
3876 * stripe, and as resync_max will always be on a chunk boundary,
3877 * if the check in md_do_sync didn't fire, there is no chance
3878 * of overstepping resync_max here
3879 */
3880
16a53ecc 3881 /* if there is too many failed drives and we are trying
1da177e4
LT
3882 * to resync, then assert that we are finished, because there is
3883 * nothing we can do.
3884 */
3285edf1 3885 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 3886 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
57afd89f
N
3887 sector_t rv = (mddev->size << 1) - sector_nr;
3888 *skipped = 1;
1da177e4
LT
3889 return rv;
3890 }
72626685 3891 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 3892 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
3893 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3894 /* we can skip this block, and probably more */
3895 sync_blocks /= STRIPE_SECTORS;
3896 *skipped = 1;
3897 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3898 }
1da177e4 3899
b47490c9
N
3900
3901 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3902
ccfcc3c1 3903 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
7ecaa1e6 3904 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
1da177e4 3905 if (sh == NULL) {
7ecaa1e6 3906 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
1da177e4 3907 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 3908 * is trying to get access
1da177e4 3909 */
66c006a5 3910 schedule_timeout_uninterruptible(1);
1da177e4 3911 }
16a53ecc
N
3912 /* Need to check if array will still be degraded after recovery/resync
3913 * We don't need to check the 'failed' flag as when that gets set,
3914 * recovery aborts.
3915 */
3916 for (i=0; i<mddev->raid_disks; i++)
3917 if (conf->disks[i].rdev == NULL)
3918 still_degraded = 1;
3919
3920 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3921
3922 spin_lock(&sh->lock);
1da177e4
LT
3923 set_bit(STRIPE_SYNCING, &sh->state);
3924 clear_bit(STRIPE_INSYNC, &sh->state);
3925 spin_unlock(&sh->lock);
3926
16a53ecc 3927 handle_stripe(sh, NULL);
1da177e4
LT
3928 release_stripe(sh);
3929
3930 return STRIPE_SECTORS;
3931}
3932
46031f9a
RBJ
3933static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3934{
3935 /* We may not be able to submit a whole bio at once as there
3936 * may not be enough stripe_heads available.
3937 * We cannot pre-allocate enough stripe_heads as we may need
3938 * more than exist in the cache (if we allow ever large chunks).
3939 * So we do one stripe head at a time and record in
3940 * ->bi_hw_segments how many have been done.
3941 *
3942 * We *know* that this entire raid_bio is in one chunk, so
3943 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3944 */
3945 struct stripe_head *sh;
3946 int dd_idx, pd_idx;
3947 sector_t sector, logical_sector, last_sector;
3948 int scnt = 0;
3949 int remaining;
3950 int handled = 0;
3951
3952 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3953 sector = raid5_compute_sector( logical_sector,
3954 conf->raid_disks,
3955 conf->raid_disks - conf->max_degraded,
3956 &dd_idx,
3957 &pd_idx,
3958 conf);
3959 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3960
3961 for (; logical_sector < last_sector;
387bb173
NB
3962 logical_sector += STRIPE_SECTORS,
3963 sector += STRIPE_SECTORS,
3964 scnt++) {
46031f9a
RBJ
3965
3966 if (scnt < raid_bio->bi_hw_segments)
3967 /* already done this stripe */
3968 continue;
3969
3970 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3971
3972 if (!sh) {
3973 /* failed to get a stripe - must wait */
3974 raid_bio->bi_hw_segments = scnt;
3975 conf->retry_read_aligned = raid_bio;
3976 return handled;
3977 }
3978
3979 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
387bb173
NB
3980 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3981 release_stripe(sh);
3982 raid_bio->bi_hw_segments = scnt;
3983 conf->retry_read_aligned = raid_bio;
3984 return handled;
3985 }
3986
46031f9a
RBJ
3987 handle_stripe(sh, NULL);
3988 release_stripe(sh);
3989 handled++;
3990 }
3991 spin_lock_irq(&conf->device_lock);
3992 remaining = --raid_bio->bi_phys_segments;
3993 spin_unlock_irq(&conf->device_lock);
0e13fe23
NB
3994 if (remaining == 0)
3995 bio_endio(raid_bio, 0);
46031f9a
RBJ
3996 if (atomic_dec_and_test(&conf->active_aligned_reads))
3997 wake_up(&conf->wait_for_stripe);
3998 return handled;
3999}
4000
4001
4002
1da177e4
LT
4003/*
4004 * This is our raid5 kernel thread.
4005 *
4006 * We scan the hash table for stripes which can be handled now.
4007 * During the scan, completed stripes are saved for us by the interrupt
4008 * handler, so that they will not have to wait for our next wakeup.
4009 */
6ed3003c 4010static void raid5d(mddev_t *mddev)
1da177e4
LT
4011{
4012 struct stripe_head *sh;
4013 raid5_conf_t *conf = mddev_to_conf(mddev);
4014 int handled;
4015
45b4233c 4016 pr_debug("+++ raid5d active\n");
1da177e4
LT
4017
4018 md_check_recovery(mddev);
1da177e4
LT
4019
4020 handled = 0;
4021 spin_lock_irq(&conf->device_lock);
4022 while (1) {
46031f9a 4023 struct bio *bio;
1da177e4 4024
ae3c20cc 4025 if (conf->seq_flush != conf->seq_write) {
72626685 4026 int seq = conf->seq_flush;
700e432d 4027 spin_unlock_irq(&conf->device_lock);
72626685 4028 bitmap_unplug(mddev->bitmap);
700e432d 4029 spin_lock_irq(&conf->device_lock);
72626685
N
4030 conf->seq_write = seq;
4031 activate_bit_delay(conf);
4032 }
4033
46031f9a
RBJ
4034 while ((bio = remove_bio_from_retry(conf))) {
4035 int ok;
4036 spin_unlock_irq(&conf->device_lock);
4037 ok = retry_aligned_read(conf, bio);
4038 spin_lock_irq(&conf->device_lock);
4039 if (!ok)
4040 break;
4041 handled++;
4042 }
4043
8b3e6cdc
DW
4044 sh = __get_priority_stripe(conf);
4045
4046 if (!sh) {
d84e0f10 4047 async_tx_issue_pending_all();
1da177e4 4048 break;
d84e0f10 4049 }
1da177e4
LT
4050 spin_unlock_irq(&conf->device_lock);
4051
4052 handled++;
16a53ecc 4053 handle_stripe(sh, conf->spare_page);
1da177e4
LT
4054 release_stripe(sh);
4055
4056 spin_lock_irq(&conf->device_lock);
4057 }
45b4233c 4058 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
4059
4060 spin_unlock_irq(&conf->device_lock);
4061
4062 unplug_slaves(mddev);
4063
45b4233c 4064 pr_debug("--- raid5d inactive\n");
1da177e4
LT
4065}
4066
3f294f4f 4067static ssize_t
007583c9 4068raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 4069{
007583c9 4070 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
4071 if (conf)
4072 return sprintf(page, "%d\n", conf->max_nr_stripes);
4073 else
4074 return 0;
3f294f4f
N
4075}
4076
4077static ssize_t
007583c9 4078raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3f294f4f 4079{
007583c9 4080 raid5_conf_t *conf = mddev_to_conf(mddev);
4ef197d8 4081 unsigned long new;
3f294f4f
N
4082 if (len >= PAGE_SIZE)
4083 return -EINVAL;
96de1e66
N
4084 if (!conf)
4085 return -ENODEV;
3f294f4f 4086
4ef197d8 4087 if (strict_strtoul(page, 10, &new))
3f294f4f
N
4088 return -EINVAL;
4089 if (new <= 16 || new > 32768)
4090 return -EINVAL;
4091 while (new < conf->max_nr_stripes) {
4092 if (drop_one_stripe(conf))
4093 conf->max_nr_stripes--;
4094 else
4095 break;
4096 }
2a2275d6 4097 md_allow_write(mddev);
3f294f4f
N
4098 while (new > conf->max_nr_stripes) {
4099 if (grow_one_stripe(conf))
4100 conf->max_nr_stripes++;
4101 else break;
4102 }
4103 return len;
4104}
007583c9 4105
96de1e66
N
4106static struct md_sysfs_entry
4107raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4108 raid5_show_stripe_cache_size,
4109 raid5_store_stripe_cache_size);
3f294f4f 4110
8b3e6cdc
DW
4111static ssize_t
4112raid5_show_preread_threshold(mddev_t *mddev, char *page)
4113{
4114 raid5_conf_t *conf = mddev_to_conf(mddev);
4115 if (conf)
4116 return sprintf(page, "%d\n", conf->bypass_threshold);
4117 else
4118 return 0;
4119}
4120
4121static ssize_t
4122raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4123{
4124 raid5_conf_t *conf = mddev_to_conf(mddev);
4ef197d8 4125 unsigned long new;
8b3e6cdc
DW
4126 if (len >= PAGE_SIZE)
4127 return -EINVAL;
4128 if (!conf)
4129 return -ENODEV;
4130
4ef197d8 4131 if (strict_strtoul(page, 10, &new))
8b3e6cdc 4132 return -EINVAL;
4ef197d8 4133 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
4134 return -EINVAL;
4135 conf->bypass_threshold = new;
4136 return len;
4137}
4138
4139static struct md_sysfs_entry
4140raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4141 S_IRUGO | S_IWUSR,
4142 raid5_show_preread_threshold,
4143 raid5_store_preread_threshold);
4144
3f294f4f 4145static ssize_t
96de1e66 4146stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 4147{
007583c9 4148 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
4149 if (conf)
4150 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4151 else
4152 return 0;
3f294f4f
N
4153}
4154
96de1e66
N
4155static struct md_sysfs_entry
4156raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4157
007583c9 4158static struct attribute *raid5_attrs[] = {
3f294f4f
N
4159 &raid5_stripecache_size.attr,
4160 &raid5_stripecache_active.attr,
8b3e6cdc 4161 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4162 NULL,
4163};
007583c9
N
4164static struct attribute_group raid5_attrs_group = {
4165 .name = NULL,
4166 .attrs = raid5_attrs,
3f294f4f
N
4167};
4168
72626685 4169static int run(mddev_t *mddev)
1da177e4
LT
4170{
4171 raid5_conf_t *conf;
4172 int raid_disk, memory;
4173 mdk_rdev_t *rdev;
4174 struct disk_info *disk;
4175 struct list_head *tmp;
02c2de8c 4176 int working_disks = 0;
1da177e4 4177
16a53ecc
N
4178 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4179 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
14f8d26b 4180 mdname(mddev), mddev->level);
1da177e4
LT
4181 return -EIO;
4182 }
4183
f6705578
N
4184 if (mddev->reshape_position != MaxSector) {
4185 /* Check that we can continue the reshape.
4186 * Currently only disks can change, it must
4187 * increase, and we must be past the point where
4188 * a stripe over-writes itself
4189 */
4190 sector_t here_new, here_old;
4191 int old_disks;
f416885e 4192 int max_degraded = (mddev->level == 5 ? 1 : 2);
f6705578
N
4193
4194 if (mddev->new_level != mddev->level ||
4195 mddev->new_layout != mddev->layout ||
4196 mddev->new_chunk != mddev->chunk_size) {
f416885e
N
4197 printk(KERN_ERR "raid5: %s: unsupported reshape "
4198 "required - aborting.\n",
f6705578
N
4199 mdname(mddev));
4200 return -EINVAL;
4201 }
4202 if (mddev->delta_disks <= 0) {
f416885e
N
4203 printk(KERN_ERR "raid5: %s: unsupported reshape "
4204 "(reduce disks) required - aborting.\n",
f6705578
N
4205 mdname(mddev));
4206 return -EINVAL;
4207 }
4208 old_disks = mddev->raid_disks - mddev->delta_disks;
4209 /* reshape_position must be on a new-stripe boundary, and one
f416885e
N
4210 * further up in new geometry must map after here in old
4211 * geometry.
f6705578
N
4212 */
4213 here_new = mddev->reshape_position;
f416885e
N
4214 if (sector_div(here_new, (mddev->chunk_size>>9)*
4215 (mddev->raid_disks - max_degraded))) {
4216 printk(KERN_ERR "raid5: reshape_position not "
4217 "on a stripe boundary\n");
f6705578
N
4218 return -EINVAL;
4219 }
4220 /* here_new is the stripe we will write to */
4221 here_old = mddev->reshape_position;
f416885e
N
4222 sector_div(here_old, (mddev->chunk_size>>9)*
4223 (old_disks-max_degraded));
4224 /* here_old is the first stripe that we might need to read
4225 * from */
f6705578
N
4226 if (here_new >= here_old) {
4227 /* Reading from the same stripe as writing to - bad */
f416885e
N
4228 printk(KERN_ERR "raid5: reshape_position too early for "
4229 "auto-recovery - aborting.\n");
f6705578
N
4230 return -EINVAL;
4231 }
4232 printk(KERN_INFO "raid5: reshape will continue\n");
4233 /* OK, we should be able to continue; */
4234 }
4235
4236
b55e6bfc 4237 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
1da177e4
LT
4238 if ((conf = mddev->private) == NULL)
4239 goto abort;
f6705578
N
4240 if (mddev->reshape_position == MaxSector) {
4241 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4242 } else {
4243 conf->raid_disks = mddev->raid_disks;
4244 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4245 }
4246
4247 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
b55e6bfc
N
4248 GFP_KERNEL);
4249 if (!conf->disks)
4250 goto abort;
9ffae0cf 4251
1da177e4
LT
4252 conf->mddev = mddev;
4253
fccddba0 4254 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4255 goto abort;
1da177e4 4256
16a53ecc
N
4257 if (mddev->level == 6) {
4258 conf->spare_page = alloc_page(GFP_KERNEL);
4259 if (!conf->spare_page)
4260 goto abort;
4261 }
1da177e4 4262 spin_lock_init(&conf->device_lock);
e7e72bf6 4263 mddev->queue->queue_lock = &conf->device_lock;
1da177e4
LT
4264 init_waitqueue_head(&conf->wait_for_stripe);
4265 init_waitqueue_head(&conf->wait_for_overlap);
4266 INIT_LIST_HEAD(&conf->handle_list);
8b3e6cdc 4267 INIT_LIST_HEAD(&conf->hold_list);
1da177e4 4268 INIT_LIST_HEAD(&conf->delayed_list);
72626685 4269 INIT_LIST_HEAD(&conf->bitmap_list);
1da177e4
LT
4270 INIT_LIST_HEAD(&conf->inactive_list);
4271 atomic_set(&conf->active_stripes, 0);
4272 atomic_set(&conf->preread_active_stripes, 0);
46031f9a 4273 atomic_set(&conf->active_aligned_reads, 0);
8b3e6cdc 4274 conf->bypass_threshold = BYPASS_THRESHOLD;
1da177e4 4275
45b4233c 4276 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
1da177e4 4277
d089c6af 4278 rdev_for_each(rdev, tmp, mddev) {
1da177e4 4279 raid_disk = rdev->raid_disk;
f6705578 4280 if (raid_disk >= conf->raid_disks
1da177e4
LT
4281 || raid_disk < 0)
4282 continue;
4283 disk = conf->disks + raid_disk;
4284
4285 disk->rdev = rdev;
4286
b2d444d7 4287 if (test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
4288 char b[BDEVNAME_SIZE];
4289 printk(KERN_INFO "raid5: device %s operational as raid"
4290 " disk %d\n", bdevname(rdev->bdev,b),
4291 raid_disk);
02c2de8c 4292 working_disks++;
8c2e870a
NB
4293 } else
4294 /* Cannot rely on bitmap to complete recovery */
4295 conf->fullsync = 1;
1da177e4
LT
4296 }
4297
1da177e4 4298 /*
16a53ecc 4299 * 0 for a fully functional array, 1 or 2 for a degraded array.
1da177e4 4300 */
02c2de8c 4301 mddev->degraded = conf->raid_disks - working_disks;
1da177e4
LT
4302 conf->mddev = mddev;
4303 conf->chunk_size = mddev->chunk_size;
4304 conf->level = mddev->level;
16a53ecc
N
4305 if (conf->level == 6)
4306 conf->max_degraded = 2;
4307 else
4308 conf->max_degraded = 1;
1da177e4
LT
4309 conf->algorithm = mddev->layout;
4310 conf->max_nr_stripes = NR_STRIPES;
f6705578 4311 conf->expand_progress = mddev->reshape_position;
1da177e4
LT
4312
4313 /* device size must be a multiple of chunk size */
4314 mddev->size &= ~(mddev->chunk_size/1024 -1);
b1581566 4315 mddev->resync_max_sectors = mddev->size << 1;
1da177e4 4316
16a53ecc
N
4317 if (conf->level == 6 && conf->raid_disks < 4) {
4318 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4319 mdname(mddev), conf->raid_disks);
4320 goto abort;
4321 }
1da177e4
LT
4322 if (!conf->chunk_size || conf->chunk_size % 4) {
4323 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4324 conf->chunk_size, mdname(mddev));
4325 goto abort;
4326 }
4327 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4328 printk(KERN_ERR
4329 "raid5: unsupported parity algorithm %d for %s\n",
4330 conf->algorithm, mdname(mddev));
4331 goto abort;
4332 }
16a53ecc 4333 if (mddev->degraded > conf->max_degraded) {
1da177e4
LT
4334 printk(KERN_ERR "raid5: not enough operational devices for %s"
4335 " (%d/%d failed)\n",
02c2de8c 4336 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
4337 goto abort;
4338 }
4339
16a53ecc 4340 if (mddev->degraded > 0 &&
1da177e4 4341 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
4342 if (mddev->ok_start_degraded)
4343 printk(KERN_WARNING
4344 "raid5: starting dirty degraded array: %s"
4345 "- data corruption possible.\n",
4346 mdname(mddev));
4347 else {
4348 printk(KERN_ERR
4349 "raid5: cannot start dirty degraded array for %s\n",
4350 mdname(mddev));
4351 goto abort;
4352 }
1da177e4
LT
4353 }
4354
4355 {
4356 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4357 if (!mddev->thread) {
4358 printk(KERN_ERR
4359 "raid5: couldn't allocate thread for %s\n",
4360 mdname(mddev));
4361 goto abort;
4362 }
4363 }
5036805b 4364 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
1da177e4
LT
4365 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4366 if (grow_stripes(conf, conf->max_nr_stripes)) {
4367 printk(KERN_ERR
4368 "raid5: couldn't allocate %dkB for buffers\n", memory);
4369 shrink_stripes(conf);
4370 md_unregister_thread(mddev->thread);
4371 goto abort;
4372 } else
4373 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4374 memory, mdname(mddev));
4375
4376 if (mddev->degraded == 0)
4377 printk("raid5: raid level %d set %s active with %d out of %d"
4378 " devices, algorithm %d\n", conf->level, mdname(mddev),
4379 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4380 conf->algorithm);
4381 else
4382 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4383 " out of %d devices, algorithm %d\n", conf->level,
4384 mdname(mddev), mddev->raid_disks - mddev->degraded,
4385 mddev->raid_disks, conf->algorithm);
4386
4387 print_raid5_conf(conf);
4388
f6705578
N
4389 if (conf->expand_progress != MaxSector) {
4390 printk("...ok start reshape thread\n");
b578d55f 4391 conf->expand_lo = conf->expand_progress;
f6705578
N
4392 atomic_set(&conf->reshape_stripes, 0);
4393 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4394 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4395 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4396 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4397 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4398 "%s_reshape");
f6705578
N
4399 }
4400
1da177e4 4401 /* read-ahead size must cover two whole stripes, which is
16a53ecc 4402 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
1da177e4
LT
4403 */
4404 {
16a53ecc
N
4405 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4406 int stripe = data_disks *
8932c2e0 4407 (mddev->chunk_size / PAGE_SIZE);
1da177e4
LT
4408 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4409 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4410 }
4411
4412 /* Ok, everything is just fine now */
5e55e2f5
N
4413 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4414 printk(KERN_WARNING
4415 "raid5: failed to create sysfs attributes for %s\n",
4416 mdname(mddev));
7a5febe9
N
4417
4418 mddev->queue->unplug_fn = raid5_unplug_device;
f022b2fd 4419 mddev->queue->backing_dev_info.congested_data = mddev;
041ae52e 4420 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
f022b2fd 4421
16a53ecc
N
4422 mddev->array_size = mddev->size * (conf->previous_raid_disks -
4423 conf->max_degraded);
7a5febe9 4424
23032a0e
RBJ
4425 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4426
1da177e4
LT
4427 return 0;
4428abort:
4429 if (conf) {
4430 print_raid5_conf(conf);
16a53ecc 4431 safe_put_page(conf->spare_page);
b55e6bfc 4432 kfree(conf->disks);
fccddba0 4433 kfree(conf->stripe_hashtbl);
1da177e4
LT
4434 kfree(conf);
4435 }
4436 mddev->private = NULL;
4437 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4438 return -EIO;
4439}
4440
4441
4442
3f294f4f 4443static int stop(mddev_t *mddev)
1da177e4
LT
4444{
4445 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4446
4447 md_unregister_thread(mddev->thread);
4448 mddev->thread = NULL;
4449 shrink_stripes(conf);
fccddba0 4450 kfree(conf->stripe_hashtbl);
041ae52e 4451 mddev->queue->backing_dev_info.congested_fn = NULL;
1da177e4 4452 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
007583c9 4453 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
b55e6bfc 4454 kfree(conf->disks);
96de1e66 4455 kfree(conf);
1da177e4
LT
4456 mddev->private = NULL;
4457 return 0;
4458}
4459
45b4233c 4460#ifdef DEBUG
16a53ecc 4461static void print_sh (struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
4462{
4463 int i;
4464
16a53ecc
N
4465 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4466 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4467 seq_printf(seq, "sh %llu, count %d.\n",
4468 (unsigned long long)sh->sector, atomic_read(&sh->count));
4469 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 4470 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
4471 seq_printf(seq, "(cache%d: %p %ld) ",
4472 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 4473 }
16a53ecc 4474 seq_printf(seq, "\n");
1da177e4
LT
4475}
4476
16a53ecc 4477static void printall (struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
4478{
4479 struct stripe_head *sh;
fccddba0 4480 struct hlist_node *hn;
1da177e4
LT
4481 int i;
4482
4483 spin_lock_irq(&conf->device_lock);
4484 for (i = 0; i < NR_HASH; i++) {
fccddba0 4485 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
4486 if (sh->raid_conf != conf)
4487 continue;
16a53ecc 4488 print_sh(seq, sh);
1da177e4
LT
4489 }
4490 }
4491 spin_unlock_irq(&conf->device_lock);
4492}
4493#endif
4494
4495static void status (struct seq_file *seq, mddev_t *mddev)
4496{
4497 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4498 int i;
4499
4500 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
02c2de8c 4501 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
4502 for (i = 0; i < conf->raid_disks; i++)
4503 seq_printf (seq, "%s",
4504 conf->disks[i].rdev &&
b2d444d7 4505 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 4506 seq_printf (seq, "]");
45b4233c 4507#ifdef DEBUG
16a53ecc
N
4508 seq_printf (seq, "\n");
4509 printall(seq, conf);
1da177e4
LT
4510#endif
4511}
4512
4513static void print_raid5_conf (raid5_conf_t *conf)
4514{
4515 int i;
4516 struct disk_info *tmp;
4517
4518 printk("RAID5 conf printout:\n");
4519 if (!conf) {
4520 printk("(conf==NULL)\n");
4521 return;
4522 }
02c2de8c
N
4523 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4524 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
4525
4526 for (i = 0; i < conf->raid_disks; i++) {
4527 char b[BDEVNAME_SIZE];
4528 tmp = conf->disks + i;
4529 if (tmp->rdev)
4530 printk(" disk %d, o:%d, dev:%s\n",
b2d444d7 4531 i, !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
4532 bdevname(tmp->rdev->bdev,b));
4533 }
4534}
4535
4536static int raid5_spare_active(mddev_t *mddev)
4537{
4538 int i;
4539 raid5_conf_t *conf = mddev->private;
4540 struct disk_info *tmp;
4541
4542 for (i = 0; i < conf->raid_disks; i++) {
4543 tmp = conf->disks + i;
4544 if (tmp->rdev
b2d444d7 4545 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa
N
4546 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4547 unsigned long flags;
4548 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 4549 mddev->degraded--;
c04be0aa 4550 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
4551 }
4552 }
4553 print_raid5_conf(conf);
4554 return 0;
4555}
4556
4557static int raid5_remove_disk(mddev_t *mddev, int number)
4558{
4559 raid5_conf_t *conf = mddev->private;
4560 int err = 0;
4561 mdk_rdev_t *rdev;
4562 struct disk_info *p = conf->disks + number;
4563
4564 print_raid5_conf(conf);
4565 rdev = p->rdev;
4566 if (rdev) {
b2d444d7 4567 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
4568 atomic_read(&rdev->nr_pending)) {
4569 err = -EBUSY;
4570 goto abort;
4571 }
dfc70645
N
4572 /* Only remove non-faulty devices if recovery
4573 * isn't possible.
4574 */
4575 if (!test_bit(Faulty, &rdev->flags) &&
4576 mddev->degraded <= conf->max_degraded) {
4577 err = -EBUSY;
4578 goto abort;
4579 }
1da177e4 4580 p->rdev = NULL;
fbd568a3 4581 synchronize_rcu();
1da177e4
LT
4582 if (atomic_read(&rdev->nr_pending)) {
4583 /* lost the race, try later */
4584 err = -EBUSY;
4585 p->rdev = rdev;
4586 }
4587 }
4588abort:
4589
4590 print_raid5_conf(conf);
4591 return err;
4592}
4593
4594static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4595{
4596 raid5_conf_t *conf = mddev->private;
199050ea 4597 int err = -EEXIST;
1da177e4
LT
4598 int disk;
4599 struct disk_info *p;
6c2fce2e
NB
4600 int first = 0;
4601 int last = conf->raid_disks - 1;
1da177e4 4602
16a53ecc 4603 if (mddev->degraded > conf->max_degraded)
1da177e4 4604 /* no point adding a device */
199050ea 4605 return -EINVAL;
1da177e4 4606
6c2fce2e
NB
4607 if (rdev->raid_disk >= 0)
4608 first = last = rdev->raid_disk;
4609
1da177e4 4610 /*
16a53ecc
N
4611 * find the disk ... but prefer rdev->saved_raid_disk
4612 * if possible.
1da177e4 4613 */
16a53ecc 4614 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 4615 rdev->saved_raid_disk >= first &&
16a53ecc
N
4616 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4617 disk = rdev->saved_raid_disk;
4618 else
6c2fce2e
NB
4619 disk = first;
4620 for ( ; disk <= last ; disk++)
1da177e4 4621 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 4622 clear_bit(In_sync, &rdev->flags);
1da177e4 4623 rdev->raid_disk = disk;
199050ea 4624 err = 0;
72626685
N
4625 if (rdev->saved_raid_disk != disk)
4626 conf->fullsync = 1;
d6065f7b 4627 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
4628 break;
4629 }
4630 print_raid5_conf(conf);
199050ea 4631 return err;
1da177e4
LT
4632}
4633
4634static int raid5_resize(mddev_t *mddev, sector_t sectors)
4635{
4636 /* no resync is happening, and there is enough space
4637 * on all devices, so we can resize.
4638 * We need to make sure resync covers any new space.
4639 * If the array is shrinking we should possibly wait until
4640 * any io in the removed space completes, but it hardly seems
4641 * worth it.
4642 */
16a53ecc
N
4643 raid5_conf_t *conf = mddev_to_conf(mddev);
4644
1da177e4 4645 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
16a53ecc 4646 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
1da177e4 4647 set_capacity(mddev->gendisk, mddev->array_size << 1);
44ce6294 4648 mddev->changed = 1;
1da177e4
LT
4649 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
4650 mddev->recovery_cp = mddev->size << 1;
4651 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4652 }
4653 mddev->size = sectors /2;
4b5c7ae8 4654 mddev->resync_max_sectors = sectors;
1da177e4
LT
4655 return 0;
4656}
4657
29269553 4658#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f 4659static int raid5_check_reshape(mddev_t *mddev)
29269553
N
4660{
4661 raid5_conf_t *conf = mddev_to_conf(mddev);
4662 int err;
29269553 4663
63c70c4f
N
4664 if (mddev->delta_disks < 0 ||
4665 mddev->new_level != mddev->level)
4666 return -EINVAL; /* Cannot shrink array or change level yet */
4667 if (mddev->delta_disks == 0)
29269553
N
4668 return 0; /* nothing to do */
4669
4670 /* Can only proceed if there are plenty of stripe_heads.
4671 * We need a minimum of one full stripe,, and for sensible progress
4672 * it is best to have about 4 times that.
4673 * If we require 4 times, then the default 256 4K stripe_heads will
4674 * allow for chunk sizes up to 256K, which is probably OK.
4675 * If the chunk size is greater, user-space should request more
4676 * stripe_heads first.
4677 */
63c70c4f
N
4678 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4679 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
29269553
N
4680 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4681 (mddev->chunk_size / STRIPE_SIZE)*4);
4682 return -ENOSPC;
4683 }
4684
63c70c4f
N
4685 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4686 if (err)
4687 return err;
4688
b4c4c7b8
N
4689 if (mddev->degraded > conf->max_degraded)
4690 return -EINVAL;
63c70c4f
N
4691 /* looks like we might be able to manage this */
4692 return 0;
4693}
4694
4695static int raid5_start_reshape(mddev_t *mddev)
4696{
4697 raid5_conf_t *conf = mddev_to_conf(mddev);
4698 mdk_rdev_t *rdev;
4699 struct list_head *rtmp;
4700 int spares = 0;
4701 int added_devices = 0;
c04be0aa 4702 unsigned long flags;
63c70c4f 4703
f416885e 4704 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
4705 return -EBUSY;
4706
d089c6af 4707 rdev_for_each(rdev, rtmp, mddev)
29269553
N
4708 if (rdev->raid_disk < 0 &&
4709 !test_bit(Faulty, &rdev->flags))
4710 spares++;
63c70c4f 4711
f416885e 4712 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
4713 /* Not enough devices even to make a degraded array
4714 * of that size
4715 */
4716 return -EINVAL;
4717
f6705578 4718 atomic_set(&conf->reshape_stripes, 0);
29269553
N
4719 spin_lock_irq(&conf->device_lock);
4720 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 4721 conf->raid_disks += mddev->delta_disks;
29269553 4722 conf->expand_progress = 0;
b578d55f 4723 conf->expand_lo = 0;
29269553
N
4724 spin_unlock_irq(&conf->device_lock);
4725
4726 /* Add some new drives, as many as will fit.
4727 * We know there are enough to make the newly sized array work.
4728 */
d089c6af 4729 rdev_for_each(rdev, rtmp, mddev)
29269553
N
4730 if (rdev->raid_disk < 0 &&
4731 !test_bit(Faulty, &rdev->flags)) {
199050ea 4732 if (raid5_add_disk(mddev, rdev) == 0) {
29269553
N
4733 char nm[20];
4734 set_bit(In_sync, &rdev->flags);
29269553 4735 added_devices++;
5fd6c1dc 4736 rdev->recovery_offset = 0;
29269553 4737 sprintf(nm, "rd%d", rdev->raid_disk);
5e55e2f5
N
4738 if (sysfs_create_link(&mddev->kobj,
4739 &rdev->kobj, nm))
4740 printk(KERN_WARNING
4741 "raid5: failed to create "
4742 " link %s for %s\n",
4743 nm, mdname(mddev));
29269553
N
4744 } else
4745 break;
4746 }
4747
c04be0aa 4748 spin_lock_irqsave(&conf->device_lock, flags);
63c70c4f 4749 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
c04be0aa 4750 spin_unlock_irqrestore(&conf->device_lock, flags);
63c70c4f 4751 mddev->raid_disks = conf->raid_disks;
f6705578 4752 mddev->reshape_position = 0;
850b2b42 4753 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 4754
29269553
N
4755 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4756 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4757 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4758 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4759 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4760 "%s_reshape");
4761 if (!mddev->sync_thread) {
4762 mddev->recovery = 0;
4763 spin_lock_irq(&conf->device_lock);
4764 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4765 conf->expand_progress = MaxSector;
4766 spin_unlock_irq(&conf->device_lock);
4767 return -EAGAIN;
4768 }
4769 md_wakeup_thread(mddev->sync_thread);
4770 md_new_event(mddev);
4771 return 0;
4772}
4773#endif
4774
4775static void end_reshape(raid5_conf_t *conf)
4776{
4777 struct block_device *bdev;
4778
f6705578 4779 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f416885e
N
4780 conf->mddev->array_size = conf->mddev->size *
4781 (conf->raid_disks - conf->max_degraded);
f6705578 4782 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
44ce6294 4783 conf->mddev->changed = 1;
f6705578
N
4784
4785 bdev = bdget_disk(conf->mddev->gendisk, 0);
4786 if (bdev) {
4787 mutex_lock(&bdev->bd_inode->i_mutex);
0692c6b1 4788 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
f6705578
N
4789 mutex_unlock(&bdev->bd_inode->i_mutex);
4790 bdput(bdev);
4791 }
4792 spin_lock_irq(&conf->device_lock);
4793 conf->expand_progress = MaxSector;
4794 spin_unlock_irq(&conf->device_lock);
4795 conf->mddev->reshape_position = MaxSector;
16a53ecc
N
4796
4797 /* read-ahead size must cover two whole stripes, which is
4798 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4799 */
4800 {
4801 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4802 int stripe = data_disks *
4803 (conf->mddev->chunk_size / PAGE_SIZE);
4804 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4805 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4806 }
29269553 4807 }
29269553
N
4808}
4809
72626685
N
4810static void raid5_quiesce(mddev_t *mddev, int state)
4811{
4812 raid5_conf_t *conf = mddev_to_conf(mddev);
4813
4814 switch(state) {
e464eafd
N
4815 case 2: /* resume for a suspend */
4816 wake_up(&conf->wait_for_overlap);
4817 break;
4818
72626685
N
4819 case 1: /* stop all writes */
4820 spin_lock_irq(&conf->device_lock);
4821 conf->quiesce = 1;
4822 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
4823 atomic_read(&conf->active_stripes) == 0 &&
4824 atomic_read(&conf->active_aligned_reads) == 0,
72626685
N
4825 conf->device_lock, /* nothing */);
4826 spin_unlock_irq(&conf->device_lock);
4827 break;
4828
4829 case 0: /* re-enable writes */
4830 spin_lock_irq(&conf->device_lock);
4831 conf->quiesce = 0;
4832 wake_up(&conf->wait_for_stripe);
e464eafd 4833 wake_up(&conf->wait_for_overlap);
72626685
N
4834 spin_unlock_irq(&conf->device_lock);
4835 break;
4836 }
72626685 4837}
b15c2e57 4838
16a53ecc
N
4839static struct mdk_personality raid6_personality =
4840{
4841 .name = "raid6",
4842 .level = 6,
4843 .owner = THIS_MODULE,
4844 .make_request = make_request,
4845 .run = run,
4846 .stop = stop,
4847 .status = status,
4848 .error_handler = error,
4849 .hot_add_disk = raid5_add_disk,
4850 .hot_remove_disk= raid5_remove_disk,
4851 .spare_active = raid5_spare_active,
4852 .sync_request = sync_request,
4853 .resize = raid5_resize,
f416885e
N
4854#ifdef CONFIG_MD_RAID5_RESHAPE
4855 .check_reshape = raid5_check_reshape,
4856 .start_reshape = raid5_start_reshape,
4857#endif
16a53ecc
N
4858 .quiesce = raid5_quiesce,
4859};
2604b703 4860static struct mdk_personality raid5_personality =
1da177e4
LT
4861{
4862 .name = "raid5",
2604b703 4863 .level = 5,
1da177e4
LT
4864 .owner = THIS_MODULE,
4865 .make_request = make_request,
4866 .run = run,
4867 .stop = stop,
4868 .status = status,
4869 .error_handler = error,
4870 .hot_add_disk = raid5_add_disk,
4871 .hot_remove_disk= raid5_remove_disk,
4872 .spare_active = raid5_spare_active,
4873 .sync_request = sync_request,
4874 .resize = raid5_resize,
29269553 4875#ifdef CONFIG_MD_RAID5_RESHAPE
63c70c4f
N
4876 .check_reshape = raid5_check_reshape,
4877 .start_reshape = raid5_start_reshape,
29269553 4878#endif
72626685 4879 .quiesce = raid5_quiesce,
1da177e4
LT
4880};
4881
2604b703 4882static struct mdk_personality raid4_personality =
1da177e4 4883{
2604b703
N
4884 .name = "raid4",
4885 .level = 4,
4886 .owner = THIS_MODULE,
4887 .make_request = make_request,
4888 .run = run,
4889 .stop = stop,
4890 .status = status,
4891 .error_handler = error,
4892 .hot_add_disk = raid5_add_disk,
4893 .hot_remove_disk= raid5_remove_disk,
4894 .spare_active = raid5_spare_active,
4895 .sync_request = sync_request,
4896 .resize = raid5_resize,
3d37890b
N
4897#ifdef CONFIG_MD_RAID5_RESHAPE
4898 .check_reshape = raid5_check_reshape,
4899 .start_reshape = raid5_start_reshape,
4900#endif
2604b703
N
4901 .quiesce = raid5_quiesce,
4902};
4903
4904static int __init raid5_init(void)
4905{
16a53ecc
N
4906 int e;
4907
4908 e = raid6_select_algo();
4909 if ( e )
4910 return e;
4911 register_md_personality(&raid6_personality);
2604b703
N
4912 register_md_personality(&raid5_personality);
4913 register_md_personality(&raid4_personality);
4914 return 0;
1da177e4
LT
4915}
4916
2604b703 4917static void raid5_exit(void)
1da177e4 4918{
16a53ecc 4919 unregister_md_personality(&raid6_personality);
2604b703
N
4920 unregister_md_personality(&raid5_personality);
4921 unregister_md_personality(&raid4_personality);
1da177e4
LT
4922}
4923
4924module_init(raid5_init);
4925module_exit(raid5_exit);
4926MODULE_LICENSE("GPL");
4927MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
4928MODULE_ALIAS("md-raid5");
4929MODULE_ALIAS("md-raid4");
2604b703
N
4930MODULE_ALIAS("md-level-5");
4931MODULE_ALIAS("md-level-4");
16a53ecc
N
4932MODULE_ALIAS("md-personality-8"); /* RAID6 */
4933MODULE_ALIAS("md-raid6");
4934MODULE_ALIAS("md-level-6");
4935
4936/* This used to be two separate modules, they were: */
4937MODULE_ALIAS("raid5");
4938MODULE_ALIAS("raid6");
This page took 0.656368 seconds and 5 git commands to generate.