[media] mb86a20s: add BER measurement
[deliverable/linux.git] / drivers / media / dvb-frontends / mb86a20s.c
CommitLineData
b9ede79a
MCC
1/*
2 * Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver
3 *
a77cfcac 4 * Copyright (C) 2010-2013 Mauro Carvalho Chehab <mchehab@redhat.com>
b9ede79a
MCC
5 * Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com>
6 *
b9ede79a
MCC
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation version 2.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 */
16
17#include <linux/kernel.h>
18#include <asm/div64.h>
19
20#include "dvb_frontend.h"
21#include "mb86a20s.h"
22
23static int debug = 1;
24module_param(debug, int, 0644);
25MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)");
26
b9ede79a
MCC
27struct mb86a20s_state {
28 struct i2c_adapter *i2c;
29 const struct mb86a20s_config *config;
09b6d21e 30 u32 last_frequency;
b9ede79a
MCC
31
32 struct dvb_frontend frontend;
c736a5f2
MCC
33
34 bool need_init;
b9ede79a
MCC
35};
36
37struct regdata {
38 u8 reg;
39 u8 data;
40};
41
42/*
43 * Initialization sequence: Use whatevere default values that PV SBTVD
44 * does on its initialisation, obtained via USB snoop
45 */
46static struct regdata mb86a20s_init[] = {
47 { 0x70, 0x0f },
48 { 0x70, 0xff },
49 { 0x08, 0x01 },
50 { 0x09, 0x3e },
a7025edf 51 { 0x50, 0xd1 }, { 0x51, 0x22 },
b9ede79a
MCC
52 { 0x39, 0x01 },
53 { 0x71, 0x00 },
a7025edf
MCC
54 { 0x28, 0x2a }, { 0x29, 0x00 }, { 0x2a, 0xff }, { 0x2b, 0x80 },
55 { 0x28, 0x20 }, { 0x29, 0x33 }, { 0x2a, 0xdf }, { 0x2b, 0xa9 },
ebe96749 56 { 0x28, 0x22 }, { 0x29, 0x00 }, { 0x2a, 0x1f }, { 0x2b, 0xf0 },
b9ede79a
MCC
57 { 0x3b, 0x21 },
58 { 0x3c, 0x3a },
59 { 0x01, 0x0d },
a7025edf
MCC
60 { 0x04, 0x08 }, { 0x05, 0x05 },
61 { 0x04, 0x0e }, { 0x05, 0x00 },
62 { 0x04, 0x0f }, { 0x05, 0x14 },
63 { 0x04, 0x0b }, { 0x05, 0x8c },
64 { 0x04, 0x00 }, { 0x05, 0x00 },
65 { 0x04, 0x01 }, { 0x05, 0x07 },
66 { 0x04, 0x02 }, { 0x05, 0x0f },
67 { 0x04, 0x03 }, { 0x05, 0xa0 },
68 { 0x04, 0x09 }, { 0x05, 0x00 },
69 { 0x04, 0x0a }, { 0x05, 0xff },
70 { 0x04, 0x27 }, { 0x05, 0x64 },
71 { 0x04, 0x28 }, { 0x05, 0x00 },
72 { 0x04, 0x1e }, { 0x05, 0xff },
73 { 0x04, 0x29 }, { 0x05, 0x0a },
74 { 0x04, 0x32 }, { 0x05, 0x0a },
75 { 0x04, 0x14 }, { 0x05, 0x02 },
76 { 0x04, 0x04 }, { 0x05, 0x00 },
77 { 0x04, 0x05 }, { 0x05, 0x22 },
78 { 0x04, 0x06 }, { 0x05, 0x0e },
79 { 0x04, 0x07 }, { 0x05, 0xd8 },
80 { 0x04, 0x12 }, { 0x05, 0x00 },
81 { 0x04, 0x13 }, { 0x05, 0xff },
ebe96749
MCC
82 { 0x04, 0x15 }, { 0x05, 0x4e },
83 { 0x04, 0x16 }, { 0x05, 0x20 },
09b6d21e
MCC
84
85 /*
86 * On this demod, when the bit count reaches the count below,
87 * it collects the bit error count. The bit counters are initialized
88 * to 65535 here. This warrants that all of them will be quickly
89 * calculated when device gets locked. As TMCC is parsed, the values
90 * can be adjusted later in the driver's code.
91 */
92 { 0x52, 0x01 }, /* Turn on BER before Viterbi */
93 { 0x50, 0xa7 }, { 0x51, 0x00 },
a7025edf
MCC
94 { 0x50, 0xa8 }, { 0x51, 0xff },
95 { 0x50, 0xa9 }, { 0x51, 0xff },
09b6d21e 96 { 0x50, 0xaa }, { 0x51, 0x00 },
a7025edf
MCC
97 { 0x50, 0xab }, { 0x51, 0xff },
98 { 0x50, 0xac }, { 0x51, 0xff },
09b6d21e 99 { 0x50, 0xad }, { 0x51, 0x00 },
a7025edf
MCC
100 { 0x50, 0xae }, { 0x51, 0xff },
101 { 0x50, 0xaf }, { 0x51, 0xff },
09b6d21e
MCC
102
103 { 0x5e, 0x00 }, /* Turn off BER after Viterbi */
a7025edf
MCC
104 { 0x50, 0xdc }, { 0x51, 0x01 },
105 { 0x50, 0xdd }, { 0x51, 0xf4 },
106 { 0x50, 0xde }, { 0x51, 0x01 },
107 { 0x50, 0xdf }, { 0x51, 0xf4 },
108 { 0x50, 0xe0 }, { 0x51, 0x01 },
109 { 0x50, 0xe1 }, { 0x51, 0xf4 },
110 { 0x50, 0xb0 }, { 0x51, 0x07 },
111 { 0x50, 0xb2 }, { 0x51, 0xff },
112 { 0x50, 0xb3 }, { 0x51, 0xff },
113 { 0x50, 0xb4 }, { 0x51, 0xff },
114 { 0x50, 0xb5 }, { 0x51, 0xff },
115 { 0x50, 0xb6 }, { 0x51, 0xff },
116 { 0x50, 0xb7 }, { 0x51, 0xff },
117 { 0x50, 0x50 }, { 0x51, 0x02 },
09b6d21e
MCC
118 { 0x50, 0x51 }, { 0x51, 0x04 }, /* MER symbol 4 */
119 { 0x45, 0x04 }, /* CN symbol 4 */
b9ede79a 120 { 0x48, 0x04 },
a7025edf
MCC
121 { 0x50, 0xd5 }, { 0x51, 0x01 }, /* Serial */
122 { 0x50, 0xd6 }, { 0x51, 0x1f },
123 { 0x50, 0xd2 }, { 0x51, 0x03 },
124 { 0x50, 0xd7 }, { 0x51, 0x3f },
ebe96749
MCC
125 { 0x28, 0x74 }, { 0x29, 0x00 }, { 0x28, 0x74 }, { 0x29, 0x40 },
126 { 0x28, 0x46 }, { 0x29, 0x2c }, { 0x28, 0x46 }, { 0x29, 0x0c },
ce77d120
MCC
127
128 { 0x04, 0x40 }, { 0x05, 0x00 },
ebe96749
MCC
129 { 0x28, 0x00 }, { 0x29, 0x10 },
130 { 0x28, 0x05 }, { 0x29, 0x02 },
b9ede79a 131 { 0x1c, 0x01 },
a7025edf
MCC
132 { 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x03 },
133 { 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0d },
134 { 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 },
135 { 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x01 },
136 { 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x21 },
137 { 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x29 },
138 { 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 },
139 { 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x31 },
140 { 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0e },
141 { 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x4e },
142 { 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x46 },
143 { 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f },
144 { 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x56 },
145 { 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x35 },
146 { 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbe },
147 { 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0x84 },
148 { 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x03 }, { 0x2b, 0xee },
149 { 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x98 },
150 { 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x9f },
151 { 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xb2 },
152 { 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0xc2 },
153 { 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0x4a },
154 { 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbc },
155 { 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x04 }, { 0x2b, 0xba },
156 { 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0x14 },
157 { 0x50, 0x1e }, { 0x51, 0x5d },
158 { 0x50, 0x22 }, { 0x51, 0x00 },
159 { 0x50, 0x23 }, { 0x51, 0xc8 },
160 { 0x50, 0x24 }, { 0x51, 0x00 },
161 { 0x50, 0x25 }, { 0x51, 0xf0 },
162 { 0x50, 0x26 }, { 0x51, 0x00 },
163 { 0x50, 0x27 }, { 0x51, 0xc3 },
164 { 0x50, 0x39 }, { 0x51, 0x02 },
ebe96749 165 { 0x28, 0x6a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x00 },
b9ede79a
MCC
166 { 0xd0, 0x00 },
167};
168
169static struct regdata mb86a20s_reset_reception[] = {
170 { 0x70, 0xf0 },
171 { 0x70, 0xff },
172 { 0x08, 0x01 },
173 { 0x08, 0x00 },
174};
175
09b6d21e
MCC
176static struct regdata mb86a20s_vber_reset[] = {
177 { 0x53, 0x00 }, /* VBER Counter reset */
178 { 0x53, 0x07 },
179};
180
181static struct regdata mb86a20s_per_reset[] = {
182 { 0x50, 0xb1 }, /* PER Counter reset */
183 { 0x51, 0x07 },
184 { 0x51, 0x00 },
185};
186
dd4493ef
MCC
187/*
188 * I2C read/write functions and macros
189 */
190
b9ede79a 191static int mb86a20s_i2c_writereg(struct mb86a20s_state *state,
09b6d21e 192 u8 i2c_addr, u8 reg, u8 data)
b9ede79a
MCC
193{
194 u8 buf[] = { reg, data };
195 struct i2c_msg msg = {
196 .addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
197 };
198 int rc;
199
200 rc = i2c_transfer(state->i2c, &msg, 1);
201 if (rc != 1) {
f66d81b5
MCC
202 dev_err(&state->i2c->dev,
203 "%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
204 __func__, rc, reg, data);
b9ede79a
MCC
205 return rc;
206 }
207
208 return 0;
209}
210
211static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state,
212 u8 i2c_addr, struct regdata *rd, int size)
213{
214 int i, rc;
215
216 for (i = 0; i < size; i++) {
217 rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg,
218 rd[i].data);
219 if (rc < 0)
220 return rc;
221 }
222 return 0;
223}
224
225static int mb86a20s_i2c_readreg(struct mb86a20s_state *state,
226 u8 i2c_addr, u8 reg)
227{
228 u8 val;
229 int rc;
230 struct i2c_msg msg[] = {
231 { .addr = i2c_addr, .flags = 0, .buf = &reg, .len = 1 },
232 { .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 }
233 };
234
235 rc = i2c_transfer(state->i2c, msg, 2);
236
237 if (rc != 2) {
f66d81b5
MCC
238 dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n",
239 __func__, reg, rc);
240 return (rc < 0) ? rc : -EIO;
b9ede79a
MCC
241 }
242
243 return val;
244}
245
246#define mb86a20s_readreg(state, reg) \
247 mb86a20s_i2c_readreg(state, state->config->demod_address, reg)
248#define mb86a20s_writereg(state, reg, val) \
249 mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val)
250#define mb86a20s_writeregdata(state, regdata) \
251 mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
252 regdata, ARRAY_SIZE(regdata))
253
09b6d21e
MCC
254/*
255 * Ancillary internal routines (likely compiled inlined)
256 *
257 * The functions below assume that gateway lock has already obtained
258 */
259
dd4493ef 260static int mb86a20s_read_status(struct dvb_frontend *fe, fe_status_t *status)
b9ede79a
MCC
261{
262 struct mb86a20s_state *state = fe->demodulator_priv;
dd4493ef 263 int val;
b9ede79a 264
dd4493ef 265 *status = 0;
b9ede79a 266
dd4493ef
MCC
267 val = mb86a20s_readreg(state, 0x0a) & 0xf;
268 if (val < 0)
269 return val;
68541cda 270
dd4493ef
MCC
271 if (val >= 2)
272 *status |= FE_HAS_SIGNAL;
b9ede79a 273
dd4493ef
MCC
274 if (val >= 4)
275 *status |= FE_HAS_CARRIER;
7572f9c5 276
dd4493ef
MCC
277 if (val >= 5)
278 *status |= FE_HAS_VITERBI;
7572f9c5 279
dd4493ef
MCC
280 if (val >= 7)
281 *status |= FE_HAS_SYNC;
68541cda 282
dd4493ef
MCC
283 if (val >= 8) /* Maybe 9? */
284 *status |= FE_HAS_LOCK;
285
f66d81b5
MCC
286 dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n",
287 __func__, *status, val);
dd4493ef
MCC
288
289 return 0;
b9ede79a
MCC
290}
291
09b6d21e 292static int mb86a20s_read_signal_strength(struct dvb_frontend *fe)
b9ede79a
MCC
293{
294 struct mb86a20s_state *state = fe->demodulator_priv;
09b6d21e 295 int rc;
b9ede79a 296 unsigned rf_max, rf_min, rf;
68541cda 297
b9ede79a
MCC
298 /* Does a binary search to get RF strength */
299 rf_max = 0xfff;
300 rf_min = 0;
301 do {
302 rf = (rf_max + rf_min) / 2;
09b6d21e
MCC
303 rc = mb86a20s_writereg(state, 0x04, 0x1f);
304 if (rc < 0)
305 return rc;
306 rc = mb86a20s_writereg(state, 0x05, rf >> 8);
307 if (rc < 0)
308 return rc;
309 rc = mb86a20s_writereg(state, 0x04, 0x20);
310 if (rc < 0)
311 return rc;
312 rc = mb86a20s_writereg(state, 0x04, rf);
313 if (rc < 0)
314 return rc;
b9ede79a 315
09b6d21e
MCC
316 rc = mb86a20s_readreg(state, 0x02);
317 if (rc < 0)
318 return rc;
319 if (rc & 0x08)
b9ede79a
MCC
320 rf_min = (rf_max + rf_min) / 2;
321 else
322 rf_max = (rf_max + rf_min) / 2;
323 if (rf_max - rf_min < 4) {
09b6d21e
MCC
324 rf = (rf_max + rf_min) / 2;
325
326 /* Rescale it from 2^12 (4096) to 2^16 */
327 rf <<= (16 - 12);
f66d81b5
MCC
328 dev_dbg(&state->i2c->dev,
329 "%s: signal strength = %d (%d < RF=%d < %d)\n",
330 __func__, rf, rf_min, rf >> 4, rf_max);
09b6d21e 331 return rf;
b9ede79a
MCC
332 }
333 } while (1);
334
b9ede79a
MCC
335 return 0;
336}
337
959a119f
MCC
338static int mb86a20s_get_modulation(struct mb86a20s_state *state,
339 unsigned layer)
340{
341 int rc;
342 static unsigned char reg[] = {
343 [0] = 0x86, /* Layer A */
344 [1] = 0x8a, /* Layer B */
345 [2] = 0x8e, /* Layer C */
346 };
347
82033bc5 348 if (layer >= ARRAY_SIZE(reg))
959a119f
MCC
349 return -EINVAL;
350 rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
351 if (rc < 0)
352 return rc;
353 rc = mb86a20s_readreg(state, 0x6e);
354 if (rc < 0)
355 return rc;
04585921 356 switch ((rc >> 4) & 0x07) {
959a119f
MCC
357 case 0:
358 return DQPSK;
359 case 1:
360 return QPSK;
361 case 2:
362 return QAM_16;
363 case 3:
364 return QAM_64;
365 default:
366 return QAM_AUTO;
367 }
368}
369
370static int mb86a20s_get_fec(struct mb86a20s_state *state,
371 unsigned layer)
372{
373 int rc;
374
375 static unsigned char reg[] = {
376 [0] = 0x87, /* Layer A */
377 [1] = 0x8b, /* Layer B */
378 [2] = 0x8f, /* Layer C */
379 };
380
82033bc5 381 if (layer >= ARRAY_SIZE(reg))
959a119f
MCC
382 return -EINVAL;
383 rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
384 if (rc < 0)
385 return rc;
386 rc = mb86a20s_readreg(state, 0x6e);
387 if (rc < 0)
388 return rc;
04585921 389 switch ((rc >> 4) & 0x07) {
959a119f
MCC
390 case 0:
391 return FEC_1_2;
392 case 1:
393 return FEC_2_3;
394 case 2:
395 return FEC_3_4;
396 case 3:
397 return FEC_5_6;
398 case 4:
399 return FEC_7_8;
400 default:
401 return FEC_AUTO;
402 }
403}
404
405static int mb86a20s_get_interleaving(struct mb86a20s_state *state,
406 unsigned layer)
407{
408 int rc;
409
410 static unsigned char reg[] = {
411 [0] = 0x88, /* Layer A */
412 [1] = 0x8c, /* Layer B */
413 [2] = 0x90, /* Layer C */
414 };
415
82033bc5 416 if (layer >= ARRAY_SIZE(reg))
959a119f
MCC
417 return -EINVAL;
418 rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
419 if (rc < 0)
420 return rc;
421 rc = mb86a20s_readreg(state, 0x6e);
422 if (rc < 0)
423 return rc;
04585921
MCC
424
425 switch ((rc >> 4) & 0x07) {
426 case 1:
427 return GUARD_INTERVAL_1_4;
428 case 2:
429 return GUARD_INTERVAL_1_8;
430 case 3:
431 return GUARD_INTERVAL_1_16;
432 case 4:
433 return GUARD_INTERVAL_1_32;
434
435 default:
436 case 0:
437 return GUARD_INTERVAL_AUTO;
438 }
959a119f
MCC
439}
440
441static int mb86a20s_get_segment_count(struct mb86a20s_state *state,
442 unsigned layer)
443{
444 int rc, count;
959a119f
MCC
445 static unsigned char reg[] = {
446 [0] = 0x89, /* Layer A */
447 [1] = 0x8d, /* Layer B */
448 [2] = 0x91, /* Layer C */
449 };
450
f66d81b5
MCC
451 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
452
82033bc5 453 if (layer >= ARRAY_SIZE(reg))
959a119f 454 return -EINVAL;
f66d81b5 455
959a119f
MCC
456 rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
457 if (rc < 0)
458 return rc;
459 rc = mb86a20s_readreg(state, 0x6e);
460 if (rc < 0)
461 return rc;
462 count = (rc >> 4) & 0x0f;
463
f66d81b5
MCC
464 dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count);
465
959a119f
MCC
466 return count;
467}
468
a77cfcac
MCC
469static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe)
470{
f66d81b5 471 struct mb86a20s_state *state = fe->demodulator_priv;
a77cfcac
MCC
472 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
473
f66d81b5
MCC
474 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
475
a77cfcac
MCC
476 /* Fixed parameters */
477 c->delivery_system = SYS_ISDBT;
478 c->bandwidth_hz = 6000000;
479
480 /* Initialize values that will be later autodetected */
481 c->isdbt_layer_enabled = 0;
482 c->transmission_mode = TRANSMISSION_MODE_AUTO;
483 c->guard_interval = GUARD_INTERVAL_AUTO;
484 c->isdbt_sb_mode = 0;
485 c->isdbt_sb_segment_count = 0;
486}
487
7c61d80a 488static int mb86a20s_get_frontend(struct dvb_frontend *fe)
b9ede79a 489{
959a119f 490 struct mb86a20s_state *state = fe->demodulator_priv;
a77cfcac 491 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
959a119f 492 int i, rc;
b9ede79a 493
f66d81b5
MCC
494 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
495
a77cfcac
MCC
496 /* Reset frontend cache to default values */
497 mb86a20s_reset_frontend_cache(fe);
959a119f 498
959a119f
MCC
499 /* Check for partial reception */
500 rc = mb86a20s_writereg(state, 0x6d, 0x85);
a77cfcac
MCC
501 if (rc < 0)
502 return rc;
503 rc = mb86a20s_readreg(state, 0x6e);
504 if (rc < 0)
505 return rc;
506 c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0;
959a119f
MCC
507
508 /* Get per-layer data */
a77cfcac 509
959a119f 510 for (i = 0; i < 3; i++) {
f66d81b5
MCC
511 dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n",
512 __func__, 'A' + i);
513
959a119f 514 rc = mb86a20s_get_segment_count(state, i);
a77cfcac 515 if (rc < 0)
f66d81b5 516 goto noperlayer_error;
a77cfcac
MCC
517 if (rc >= 0 && rc < 14)
518 c->layer[i].segment_count = rc;
519 else {
520 c->layer[i].segment_count = 0;
959a119f 521 continue;
a77cfcac
MCC
522 }
523 c->isdbt_layer_enabled |= 1 << i;
959a119f 524 rc = mb86a20s_get_modulation(state, i);
a77cfcac 525 if (rc < 0)
f66d81b5
MCC
526 goto noperlayer_error;
527 dev_dbg(&state->i2c->dev, "%s: modulation %d.\n",
528 __func__, rc);
a77cfcac 529 c->layer[i].modulation = rc;
959a119f 530 rc = mb86a20s_get_fec(state, i);
a77cfcac 531 if (rc < 0)
f66d81b5
MCC
532 goto noperlayer_error;
533 dev_dbg(&state->i2c->dev, "%s: FEC %d.\n",
534 __func__, rc);
a77cfcac 535 c->layer[i].fec = rc;
959a119f 536 rc = mb86a20s_get_interleaving(state, i);
a77cfcac 537 if (rc < 0)
f66d81b5
MCC
538 goto noperlayer_error;
539 dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n",
540 __func__, rc);
a77cfcac 541 c->layer[i].interleaving = rc;
959a119f
MCC
542 }
543
959a119f 544 rc = mb86a20s_writereg(state, 0x6d, 0x84);
a77cfcac
MCC
545 if (rc < 0)
546 return rc;
547 if ((rc & 0x60) == 0x20) {
548 c->isdbt_sb_mode = 1;
959a119f 549 /* At least, one segment should exist */
a77cfcac
MCC
550 if (!c->isdbt_sb_segment_count)
551 c->isdbt_sb_segment_count = 1;
552 }
959a119f
MCC
553
554 /* Get transmission mode and guard interval */
959a119f 555 rc = mb86a20s_readreg(state, 0x07);
a77cfcac
MCC
556 if (rc < 0)
557 return rc;
558 if ((rc & 0x60) == 0x20) {
559 switch (rc & 0x0c >> 2) {
560 case 0:
561 c->transmission_mode = TRANSMISSION_MODE_2K;
562 break;
563 case 1:
564 c->transmission_mode = TRANSMISSION_MODE_4K;
565 break;
566 case 2:
567 c->transmission_mode = TRANSMISSION_MODE_8K;
568 break;
959a119f 569 }
a77cfcac
MCC
570 }
571 if (!(rc & 0x10)) {
572 switch (rc & 0x3) {
573 case 0:
574 c->guard_interval = GUARD_INTERVAL_1_4;
575 break;
576 case 1:
577 c->guard_interval = GUARD_INTERVAL_1_8;
578 break;
579 case 2:
580 c->guard_interval = GUARD_INTERVAL_1_16;
581 break;
959a119f
MCC
582 }
583 }
09b6d21e 584 return 0;
959a119f 585
f66d81b5 586noperlayer_error:
b9ede79a 587
09b6d21e
MCC
588 /* per-layer info is incomplete; discard all per-layer */
589 c->isdbt_layer_enabled = 0;
590
591 return rc;
592}
593
594static int mb86a20s_reset_counters(struct dvb_frontend *fe)
595{
596 struct mb86a20s_state *state = fe->demodulator_priv;
597 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
598 int rc, val;
599
600 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
601
602 /* Reset the counters, if the channel changed */
603 if (state->last_frequency != c->frequency) {
604 memset(&c->strength, 0, sizeof(c->strength));
605 memset(&c->cnr, 0, sizeof(c->cnr));
606 memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error));
607 memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count));
608 memset(&c->block_error, 0, sizeof(c->block_error));
609 memset(&c->block_count, 0, sizeof(c->block_count));
610
611 state->last_frequency = c->frequency;
612 }
613
614 /* Clear status for most stats */
615
616 /* BER counter reset */
617 rc = mb86a20s_writeregdata(state, mb86a20s_vber_reset);
618 if (rc < 0)
619 goto err;
620
621 /* MER, PER counter reset */
622 rc = mb86a20s_writeregdata(state, mb86a20s_per_reset);
623 if (rc < 0)
624 goto err;
625
626 /* CNR counter reset */
627 rc = mb86a20s_readreg(state, 0x45);
628 if (rc < 0)
629 goto err;
630 val = rc;
631 rc = mb86a20s_writereg(state, 0x45, val | 0x10);
632 if (rc < 0)
633 goto err;
634 rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
635 if (rc < 0)
636 goto err;
637
638 /* MER counter reset */
639 rc = mb86a20s_writereg(state, 0x50, 0x50);
640 if (rc < 0)
641 goto err;
642 rc = mb86a20s_readreg(state, 0x51);
643 if (rc < 0)
644 goto err;
645 val = rc;
646 rc = mb86a20s_writereg(state, 0x51, val | 0x01);
647 if (rc < 0)
648 goto err;
649 rc = mb86a20s_writereg(state, 0x51, val & 0x06);
650 if (rc < 0)
651 goto err;
652
149d518a 653 goto ok;
09b6d21e 654err:
149d518a
MCC
655 dev_err(&state->i2c->dev,
656 "%s: Can't reset FE statistics (error %d).\n",
657 __func__, rc);
658ok:
a77cfcac 659 return rc;
09b6d21e
MCC
660}
661
149d518a
MCC
662static int mb86a20s_get_ber_before_vterbi(struct dvb_frontend *fe,
663 unsigned layer,
664 u32 *error, u32 *count)
665{
666 struct mb86a20s_state *state = fe->demodulator_priv;
667 int rc;
668
669 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
670
671 if (layer >= 3)
672 return -EINVAL;
673
674 /* Check if the BER measures are already available */
675 rc = mb86a20s_readreg(state, 0x54);
676 if (rc < 0)
677 return rc;
678
679 /* Check if data is available for that layer */
680 if (!(rc & (1 << layer))) {
681 dev_dbg(&state->i2c->dev,
682 "%s: BER for layer %c is not available yet.\n",
683 __func__, 'A' + layer);
684 return -EBUSY;
685 }
686
687 /* Read Bit Error Count */
688 rc = mb86a20s_readreg(state, 0x55 + layer * 3);
689 if (rc < 0)
690 return rc;
691 *error = rc << 16;
692 rc = mb86a20s_readreg(state, 0x56 + layer * 3);
693 if (rc < 0)
694 return rc;
695 *error |= rc << 8;
696 rc = mb86a20s_readreg(state, 0x57 + layer * 3);
697 if (rc < 0)
698 return rc;
699 *error |= rc;
700
701 dev_dbg(&state->i2c->dev,
702 "%s: bit error before Viterbi for layer %c: %d.\n",
703 __func__, 'A' + layer, *error);
704
705 /* Read Bit Count */
706 rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
707 if (rc < 0)
708 return rc;
709 rc = mb86a20s_readreg(state, 0x51);
710 if (rc < 0)
711 return rc;
712 *count = rc << 16;
713 rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
714 if (rc < 0)
715 return rc;
716 rc = mb86a20s_readreg(state, 0x51);
717 if (rc < 0)
718 return rc;
719 *count |= rc << 8;
720 rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
721 if (rc < 0)
722 return rc;
723 rc = mb86a20s_readreg(state, 0x51);
724 if (rc < 0)
725 return rc;
726 *count |= rc;
727
728 dev_dbg(&state->i2c->dev,
729 "%s: bit count before Viterbi for layer %c: %d.\n",
730 __func__, 'A' + layer, *count);
731
732
733 /* Reset counter to collect new data */
734 rc = mb86a20s_writereg(state, 0x53, 0x07 & ~(1 << layer));
735 if (rc < 0)
736 return rc;
737 rc = mb86a20s_writereg(state, 0x53, 0x07);
738
739 return 0;
740}
741
09b6d21e
MCC
742static void mb86a20s_stats_not_ready(struct dvb_frontend *fe)
743{
744 struct mb86a20s_state *state = fe->demodulator_priv;
745 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
746 int i;
747
748 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
a77cfcac 749
09b6d21e
MCC
750 /* Fill the length of each status counter */
751
752 /* Only global stats */
753 c->strength.len = 1;
754
755 /* Per-layer stats - 3 layers + global */
756 c->cnr.len = 4;
757 c->pre_bit_error.len = 4;
758 c->pre_bit_count.len = 4;
759 c->block_error.len = 4;
760 c->block_count.len = 4;
761
762 /* Signal is always available */
763 c->strength.stat[0].scale = FE_SCALE_RELATIVE;
764 c->strength.stat[0].uvalue = 0;
765
766 /* Put all of them at FE_SCALE_NOT_AVAILABLE */
767 for (i = 0; i < 4; i++) {
768 c->cnr.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
769 c->pre_bit_error.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
770 c->pre_bit_count.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
771 c->block_error.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
772 c->block_count.stat[i].scale = FE_SCALE_NOT_AVAILABLE;
773 }
b9ede79a
MCC
774}
775
149d518a
MCC
776static int mb86a20s_get_stats(struct dvb_frontend *fe)
777{
778 struct mb86a20s_state *state = fe->demodulator_priv;
779 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
780 int rc = 0, i;
781 u32 bit_error = 0, bit_count = 0;
782 u32 t_pre_bit_error = 0, t_pre_bit_count = 0;
783 int active_layers = 0, ber_layers = 0;
784
785 /* Get per-layer stats */
786 for (i = 0; i < 3; i++) {
787 if (c->isdbt_layer_enabled & (1 << i)) {
788 /* Layer is active and has rc segments */
789 active_layers++;
790
791 /* Read per-layer BER */
792 /* Handle BER before vterbi */
793 rc = mb86a20s_get_ber_before_vterbi(fe, i,
794 &bit_error,
795 &bit_count);
796 if (rc >= 0) {
797 c->pre_bit_error.stat[1 + i].scale = FE_SCALE_COUNTER;
798 c->pre_bit_error.stat[1 + i].uvalue += bit_error;
799 c->pre_bit_count.stat[1 + i].scale = FE_SCALE_COUNTER;
800 c->pre_bit_count.stat[1 + i].uvalue += bit_count;
801 } else if (rc != -EBUSY) {
802 /*
803 * If an I/O error happened,
804 * measures are now unavailable
805 */
806 c->pre_bit_error.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE;
807 c->pre_bit_count.stat[1 + i].scale = FE_SCALE_NOT_AVAILABLE;
808 dev_err(&state->i2c->dev,
809 "%s: Can't get BER for layer %c (error %d).\n",
810 __func__, 'A' + i, rc);
811 }
812
813 if (c->block_error.stat[1 + i].scale != FE_SCALE_NOT_AVAILABLE)
814 ber_layers++;
815
816 /* Update total BER */
817 t_pre_bit_error += c->pre_bit_error.stat[1 + i].uvalue;
818 t_pre_bit_count += c->pre_bit_count.stat[1 + i].uvalue;
819 }
820 }
821
822 /*
823 * Start showing global count if at least one error count is
824 * available.
825 */
826 if (ber_layers) {
827 /*
828 * At least one per-layer BER measure was read. We can now
829 * calculate the total BER
830 *
831 * Total Bit Error/Count is calculated as the sum of the
832 * bit errors on all active layers.
833 */
834 c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
835 c->pre_bit_error.stat[0].uvalue = t_pre_bit_error;
836 c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
837 c->pre_bit_count.stat[0].uvalue = t_pre_bit_count;
838 }
839
840 return rc;
841}
09b6d21e
MCC
842
843/*
844 * The functions below are called via DVB callbacks, so they need to
845 * properly use the I2C gate control
846 */
847
dd4493ef
MCC
848static int mb86a20s_initfe(struct dvb_frontend *fe)
849{
850 struct mb86a20s_state *state = fe->demodulator_priv;
851 int rc;
852 u8 regD5 = 1;
853
f66d81b5 854 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
dd4493ef
MCC
855
856 if (fe->ops.i2c_gate_ctrl)
857 fe->ops.i2c_gate_ctrl(fe, 0);
858
859 /* Initialize the frontend */
860 rc = mb86a20s_writeregdata(state, mb86a20s_init);
861 if (rc < 0)
862 goto err;
863
864 if (!state->config->is_serial) {
865 regD5 &= ~1;
866
867 rc = mb86a20s_writereg(state, 0x50, 0xd5);
868 if (rc < 0)
869 goto err;
870 rc = mb86a20s_writereg(state, 0x51, regD5);
871 if (rc < 0)
872 goto err;
873 }
874
875err:
876 if (fe->ops.i2c_gate_ctrl)
877 fe->ops.i2c_gate_ctrl(fe, 1);
878
879 if (rc < 0) {
880 state->need_init = true;
f66d81b5
MCC
881 dev_info(&state->i2c->dev,
882 "mb86a20s: Init failed. Will try again later\n");
dd4493ef
MCC
883 } else {
884 state->need_init = false;
f66d81b5 885 dev_dbg(&state->i2c->dev, "Initialization succeeded.\n");
dd4493ef
MCC
886 }
887 return rc;
888}
889
890static int mb86a20s_set_frontend(struct dvb_frontend *fe)
891{
892 struct mb86a20s_state *state = fe->demodulator_priv;
893 int rc;
894#if 0
895 /*
896 * FIXME: Properly implement the set frontend properties
897 */
898 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
899#endif
f66d81b5 900 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
dd4493ef
MCC
901
902 /*
903 * Gate should already be opened, but it doesn't hurt to
904 * double-check
905 */
906 if (fe->ops.i2c_gate_ctrl)
907 fe->ops.i2c_gate_ctrl(fe, 1);
dd4493ef
MCC
908 fe->ops.tuner_ops.set_params(fe);
909
910 /*
911 * Make it more reliable: if, for some reason, the initial
912 * device initialization doesn't happen, initialize it when
913 * a SBTVD parameters are adjusted.
914 *
915 * Unfortunately, due to a hard to track bug at tda829x/tda18271,
916 * the agc callback logic is not called during DVB attach time,
917 * causing mb86a20s to not be initialized with Kworld SBTVD.
918 * So, this hack is needed, in order to make Kworld SBTVD to work.
919 */
920 if (state->need_init)
921 mb86a20s_initfe(fe);
922
923 if (fe->ops.i2c_gate_ctrl)
924 fe->ops.i2c_gate_ctrl(fe, 0);
925 rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception);
09b6d21e 926 mb86a20s_reset_counters(fe);
dd4493ef
MCC
927 if (fe->ops.i2c_gate_ctrl)
928 fe->ops.i2c_gate_ctrl(fe, 1);
929
930 return rc;
931}
932
09b6d21e
MCC
933static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe,
934 fe_status_t *status)
d36e418a 935{
09b6d21e
MCC
936 struct mb86a20s_state *state = fe->demodulator_priv;
937 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
938 int rc;
d36e418a 939
09b6d21e 940 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
d36e418a
MCC
941
942 if (fe->ops.i2c_gate_ctrl)
943 fe->ops.i2c_gate_ctrl(fe, 0);
944
09b6d21e
MCC
945 /* Get lock */
946 rc = mb86a20s_read_status(fe, status);
947 if (!(*status & FE_HAS_LOCK)) {
948 mb86a20s_stats_not_ready(fe);
949 mb86a20s_reset_frontend_cache(fe);
950 }
149d518a
MCC
951 if (rc < 0) {
952 dev_err(&state->i2c->dev,
953 "%s: Can't read frontend lock status\n", __func__);
09b6d21e 954 goto error;
149d518a 955 }
09b6d21e
MCC
956
957 /* Get signal strength */
958 rc = mb86a20s_read_signal_strength(fe);
959 if (rc < 0) {
149d518a
MCC
960 dev_err(&state->i2c->dev,
961 "%s: Can't reset VBER registers.\n", __func__);
09b6d21e
MCC
962 mb86a20s_stats_not_ready(fe);
963 mb86a20s_reset_frontend_cache(fe);
149d518a
MCC
964
965 rc = 0; /* Status is OK */
09b6d21e
MCC
966 goto error;
967 }
968 /* Fill signal strength */
969 c->strength.stat[0].uvalue = rc;
970
971 if (*status & FE_HAS_LOCK) {
972 /* Get TMCC info*/
973 rc = mb86a20s_get_frontend(fe);
149d518a
MCC
974 if (rc < 0) {
975 dev_err(&state->i2c->dev,
976 "%s: Can't get FE TMCC data.\n", __func__);
977 rc = 0; /* Status is OK */
978 goto error;
979 }
980
981 /* Get statistics */
982 rc = mb86a20s_get_stats(fe);
983 if (rc < 0 && rc != -EBUSY) {
984 dev_err(&state->i2c->dev,
985 "%s: Can't get FE statistics.\n", __func__);
986 rc = 0;
09b6d21e 987 goto error;
149d518a
MCC
988 }
989 rc = 0; /* Don't return EBUSY to userspace */
09b6d21e 990 }
149d518a 991 goto ok;
09b6d21e 992
149d518a 993error:
09b6d21e 994 mb86a20s_stats_not_ready(fe);
d36e418a 995
149d518a 996ok:
d36e418a
MCC
997 if (fe->ops.i2c_gate_ctrl)
998 fe->ops.i2c_gate_ctrl(fe, 1);
149d518a 999
09b6d21e
MCC
1000 return rc;
1001}
1002
1003static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe,
1004 u16 *strength)
1005{
1006 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1007
1008
1009 *strength = c->strength.stat[0].uvalue;
d36e418a 1010
09b6d21e 1011 return 0;
d36e418a
MCC
1012}
1013
09b6d21e
MCC
1014static int mb86a20s_get_frontend_dummy(struct dvb_frontend *fe)
1015{
1016 /*
1017 * get_frontend is now handled together with other stats
1018 * retrival, when read_status() is called, as some statistics
1019 * will depend on the layers detection.
1020 */
1021 return 0;
1022};
1023
b9ede79a 1024static int mb86a20s_tune(struct dvb_frontend *fe,
7e072221 1025 bool re_tune,
b9ede79a
MCC
1026 unsigned int mode_flags,
1027 unsigned int *delay,
1028 fe_status_t *status)
1029{
f66d81b5 1030 struct mb86a20s_state *state = fe->demodulator_priv;
b9ede79a
MCC
1031 int rc = 0;
1032
f66d81b5 1033 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
b9ede79a 1034
7e072221 1035 if (re_tune)
2d76e22b 1036 rc = mb86a20s_set_frontend(fe);
b9ede79a
MCC
1037
1038 if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
09b6d21e 1039 mb86a20s_read_status_and_stats(fe, status);
b9ede79a
MCC
1040
1041 return rc;
1042}
1043
1044static void mb86a20s_release(struct dvb_frontend *fe)
1045{
1046 struct mb86a20s_state *state = fe->demodulator_priv;
1047
f66d81b5 1048 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
b9ede79a
MCC
1049
1050 kfree(state);
1051}
1052
1053static struct dvb_frontend_ops mb86a20s_ops;
1054
1055struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config,
1056 struct i2c_adapter *i2c)
1057{
f66d81b5 1058 struct mb86a20s_state *state;
b9ede79a
MCC
1059 u8 rev;
1060
f167e302
MCC
1061 dev_dbg(&i2c->dev, "%s called.\n", __func__);
1062
b9ede79a 1063 /* allocate memory for the internal state */
f66d81b5 1064 state = kzalloc(sizeof(struct mb86a20s_state), GFP_KERNEL);
b9ede79a 1065 if (state == NULL) {
f167e302 1066 dev_err(&i2c->dev,
f66d81b5 1067 "%s: unable to allocate memory for state\n", __func__);
b9ede79a
MCC
1068 goto error;
1069 }
1070
1071 /* setup the state */
1072 state->config = config;
1073 state->i2c = i2c;
1074
1075 /* create dvb_frontend */
1076 memcpy(&state->frontend.ops, &mb86a20s_ops,
1077 sizeof(struct dvb_frontend_ops));
1078 state->frontend.demodulator_priv = state;
1079
1080 /* Check if it is a mb86a20s frontend */
1081 rev = mb86a20s_readreg(state, 0);
1082
1083 if (rev == 0x13) {
f167e302 1084 dev_info(&i2c->dev,
f66d81b5 1085 "Detected a Fujitsu mb86a20s frontend\n");
b9ede79a 1086 } else {
f167e302 1087 dev_dbg(&i2c->dev,
f66d81b5 1088 "Frontend revision %d is unknown - aborting.\n",
b9ede79a
MCC
1089 rev);
1090 goto error;
1091 }
1092
1093 return &state->frontend;
1094
1095error:
1096 kfree(state);
1097 return NULL;
1098}
1099EXPORT_SYMBOL(mb86a20s_attach);
1100
1101static struct dvb_frontend_ops mb86a20s_ops = {
2d76e22b 1102 .delsys = { SYS_ISDBT },
b9ede79a
MCC
1103 /* Use dib8000 values per default */
1104 .info = {
1105 .name = "Fujitsu mb86A20s",
b9ede79a
MCC
1106 .caps = FE_CAN_INVERSION_AUTO | FE_CAN_RECOVER |
1107 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1108 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1109 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 |
1110 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO |
1111 FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO,
1112 /* Actually, those values depend on the used tuner */
1113 .frequency_min = 45000000,
1114 .frequency_max = 864000000,
1115 .frequency_stepsize = 62500,
1116 },
1117
1118 .release = mb86a20s_release,
1119
1120 .init = mb86a20s_initfe,
2d76e22b 1121 .set_frontend = mb86a20s_set_frontend,
09b6d21e
MCC
1122 .get_frontend = mb86a20s_get_frontend_dummy,
1123 .read_status = mb86a20s_read_status_and_stats,
1124 .read_signal_strength = mb86a20s_read_signal_strength_from_cache,
b9ede79a
MCC
1125 .tune = mb86a20s_tune,
1126};
1127
1128MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware");
1129MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1130MODULE_LICENSE("GPL");
This page took 0.263832 seconds and 5 git commands to generate.