Documentation: Fixes some translation error in Documentation/zh_CN/gpio.txt
[deliverable/linux.git] / drivers / memory / emif.c
CommitLineData
7ec94453
A
1/*
2 * EMIF driver
3 *
4 * Copyright (C) 2012 Texas Instruments, Inc.
5 *
6 * Aneesh V <aneesh@ti.com>
7 * Santosh Shilimkar <santosh.shilimkar@ti.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13#include <linux/kernel.h>
14#include <linux/reboot.h>
15#include <linux/platform_data/emif_plat.h>
16#include <linux/io.h>
17#include <linux/device.h>
18#include <linux/platform_device.h>
19#include <linux/interrupt.h>
20#include <linux/slab.h>
e6b42eb6 21#include <linux/of.h>
aac10aaa 22#include <linux/debugfs.h>
7ec94453
A
23#include <linux/seq_file.h>
24#include <linux/module.h>
25#include <linux/list.h>
a93de288 26#include <linux/spinlock.h>
7ec94453
A
27#include <memory/jedec_ddr.h>
28#include "emif.h"
e6b42eb6 29#include "of_memory.h"
7ec94453
A
30
31/**
32 * struct emif_data - Per device static data for driver's use
33 * @duplicate: Whether the DDR devices attached to this EMIF
34 * instance are exactly same as that on EMIF1. In
35 * this case we can save some memory and processing
36 * @temperature_level: Maximum temperature of LPDDR2 devices attached
37 * to this EMIF - read from MR4 register. If there
38 * are two devices attached to this EMIF, this
39 * value is the maximum of the two temperature
40 * levels.
41 * @node: node in the device list
42 * @base: base address of memory-mapped IO registers.
43 * @dev: device pointer.
a93de288
A
44 * @addressing table with addressing information from the spec
45 * @regs_cache: An array of 'struct emif_regs' that stores
46 * calculated register values for different
47 * frequencies, to avoid re-calculating them on
48 * each DVFS transition.
49 * @curr_regs: The set of register values used in the last
50 * frequency change (i.e. corresponding to the
51 * frequency in effect at the moment)
7ec94453 52 * @plat_data: Pointer to saved platform data.
aac10aaa 53 * @debugfs_root: dentry to the root folder for EMIF in debugfs
e6b42eb6 54 * @np_ddr: Pointer to ddr device tree node
7ec94453
A
55 */
56struct emif_data {
57 u8 duplicate;
58 u8 temperature_level;
a93de288 59 u8 lpmode;
7ec94453 60 struct list_head node;
a93de288 61 unsigned long irq_state;
7ec94453
A
62 void __iomem *base;
63 struct device *dev;
a93de288
A
64 const struct lpddr2_addressing *addressing;
65 struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
66 struct emif_regs *curr_regs;
7ec94453 67 struct emif_platform_data *plat_data;
aac10aaa 68 struct dentry *debugfs_root;
e6b42eb6 69 struct device_node *np_ddr;
7ec94453
A
70};
71
72static struct emif_data *emif1;
a93de288
A
73static spinlock_t emif_lock;
74static unsigned long irq_state;
75static u32 t_ck; /* DDR clock period in ps */
7ec94453
A
76static LIST_HEAD(device_list);
77
aac10aaa
A
78static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
79 struct emif_regs *regs)
80{
81 u32 type = emif->plat_data->device_info->type;
82 u32 ip_rev = emif->plat_data->ip_rev;
83
84 seq_printf(s, "EMIF register cache dump for %dMHz\n",
85 regs->freq/1000000);
86
87 seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
88 seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
89 seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
90 seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
91
92 if (ip_rev == EMIF_4D) {
93 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
94 regs->read_idle_ctrl_shdw_normal);
95 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
96 regs->read_idle_ctrl_shdw_volt_ramp);
97 } else if (ip_rev == EMIF_4D5) {
98 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
99 regs->dll_calib_ctrl_shdw_normal);
100 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
101 regs->dll_calib_ctrl_shdw_volt_ramp);
102 }
103
104 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
105 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
106 regs->ref_ctrl_shdw_derated);
107 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
108 regs->sdram_tim1_shdw_derated);
109 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
110 regs->sdram_tim3_shdw_derated);
111 }
112}
113
114static int emif_regdump_show(struct seq_file *s, void *unused)
115{
116 struct emif_data *emif = s->private;
117 struct emif_regs **regs_cache;
118 int i;
119
120 if (emif->duplicate)
121 regs_cache = emif1->regs_cache;
122 else
123 regs_cache = emif->regs_cache;
124
125 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
126 do_emif_regdump_show(s, emif, regs_cache[i]);
127 seq_printf(s, "\n");
128 }
129
130 return 0;
131}
132
133static int emif_regdump_open(struct inode *inode, struct file *file)
134{
135 return single_open(file, emif_regdump_show, inode->i_private);
136}
137
138static const struct file_operations emif_regdump_fops = {
139 .open = emif_regdump_open,
140 .read = seq_read,
141 .release = single_release,
142};
143
144static int emif_mr4_show(struct seq_file *s, void *unused)
145{
146 struct emif_data *emif = s->private;
147
148 seq_printf(s, "MR4=%d\n", emif->temperature_level);
149 return 0;
150}
151
152static int emif_mr4_open(struct inode *inode, struct file *file)
153{
154 return single_open(file, emif_mr4_show, inode->i_private);
155}
156
157static const struct file_operations emif_mr4_fops = {
158 .open = emif_mr4_open,
159 .read = seq_read,
160 .release = single_release,
161};
162
163static int __init_or_module emif_debugfs_init(struct emif_data *emif)
164{
165 struct dentry *dentry;
166 int ret;
167
168 dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
169 if (IS_ERR(dentry)) {
170 ret = PTR_ERR(dentry);
171 goto err0;
172 }
173 emif->debugfs_root = dentry;
174
175 dentry = debugfs_create_file("regcache_dump", S_IRUGO,
176 emif->debugfs_root, emif, &emif_regdump_fops);
177 if (IS_ERR(dentry)) {
178 ret = PTR_ERR(dentry);
179 goto err1;
180 }
181
182 dentry = debugfs_create_file("mr4", S_IRUGO,
183 emif->debugfs_root, emif, &emif_mr4_fops);
184 if (IS_ERR(dentry)) {
185 ret = PTR_ERR(dentry);
186 goto err1;
187 }
188
189 return 0;
190err1:
191 debugfs_remove_recursive(emif->debugfs_root);
192err0:
193 return ret;
194}
195
196static void __exit emif_debugfs_exit(struct emif_data *emif)
197{
198 debugfs_remove_recursive(emif->debugfs_root);
199 emif->debugfs_root = NULL;
200}
201
a93de288
A
202/*
203 * Calculate the period of DDR clock from frequency value
204 */
205static void set_ddr_clk_period(u32 freq)
206{
207 /* Divide 10^12 by frequency to get period in ps */
208 t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
209}
210
98231c4f
A
211/*
212 * Get bus width used by EMIF. Note that this may be different from the
213 * bus width of the DDR devices used. For instance two 16-bit DDR devices
214 * may be connected to a given CS of EMIF. In this case bus width as far
215 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
216 */
217static u32 get_emif_bus_width(struct emif_data *emif)
218{
219 u32 width;
220 void __iomem *base = emif->base;
221
222 width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
223 >> NARROW_MODE_SHIFT;
224 width = width == 0 ? 32 : 16;
225
226 return width;
227}
228
a93de288
A
229/*
230 * Get the CL from SDRAM_CONFIG register
231 */
232static u32 get_cl(struct emif_data *emif)
233{
234 u32 cl;
235 void __iomem *base = emif->base;
236
237 cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
238
239 return cl;
240}
241
242static void set_lpmode(struct emif_data *emif, u8 lpmode)
243{
244 u32 temp;
245 void __iomem *base = emif->base;
246
247 temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
248 temp &= ~LP_MODE_MASK;
249 temp |= (lpmode << LP_MODE_SHIFT);
250 writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
251}
252
253static void do_freq_update(void)
254{
255 struct emif_data *emif;
256
257 /*
258 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
259 *
260 * i728 DESCRIPTION:
261 * The EMIF automatically puts the SDRAM into self-refresh mode
262 * after the EMIF has not performed accesses during
263 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
264 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
265 * to 0x2. If during a small window the following three events
266 * occur:
267 * - The SR_TIMING counter expires
268 * - And frequency change is requested
269 * - And OCP access is requested
270 * Then it causes instable clock on the DDR interface.
271 *
272 * WORKAROUND
273 * To avoid the occurrence of the three events, the workaround
274 * is to disable the self-refresh when requesting a frequency
275 * change. Before requesting a frequency change the software must
276 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
277 * frequency change has been done, the software can reprogram
278 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
279 */
280 list_for_each_entry(emif, &device_list, node) {
281 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
282 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
283 }
284
285 /*
286 * TODO: Do FREQ_UPDATE here when an API
287 * is available for this as part of the new
288 * clock framework
289 */
290
291 list_for_each_entry(emif, &device_list, node) {
292 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
293 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
294 }
295}
296
297/* Find addressing table entry based on the device's type and density */
298static const struct lpddr2_addressing *get_addressing_table(
299 const struct ddr_device_info *device_info)
300{
301 u32 index, type, density;
302
303 type = device_info->type;
304 density = device_info->density;
305
306 switch (type) {
307 case DDR_TYPE_LPDDR2_S4:
308 index = density - 1;
309 break;
310 case DDR_TYPE_LPDDR2_S2:
311 switch (density) {
312 case DDR_DENSITY_1Gb:
313 case DDR_DENSITY_2Gb:
314 index = density + 3;
315 break;
316 default:
317 index = density - 1;
318 }
319 break;
320 default:
321 return NULL;
322 }
323
324 return &lpddr2_jedec_addressing_table[index];
325}
326
327/*
328 * Find the the right timing table from the array of timing
329 * tables of the device using DDR clock frequency
330 */
331static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
332 u32 freq)
333{
334 u32 i, min, max, freq_nearest;
335 const struct lpddr2_timings *timings = NULL;
336 const struct lpddr2_timings *timings_arr = emif->plat_data->timings;
337 struct device *dev = emif->dev;
338
339 /* Start with a very high frequency - 1GHz */
340 freq_nearest = 1000000000;
341
342 /*
343 * Find the timings table such that:
344 * 1. the frequency range covers the required frequency(safe) AND
345 * 2. the max_freq is closest to the required frequency(optimal)
346 */
347 for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
348 max = timings_arr[i].max_freq;
349 min = timings_arr[i].min_freq;
350 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
351 freq_nearest = max;
352 timings = &timings_arr[i];
353 }
354 }
355
356 if (!timings)
357 dev_err(dev, "%s: couldn't find timings for - %dHz\n",
358 __func__, freq);
359
360 dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
361 __func__, freq, freq_nearest);
362
363 return timings;
364}
365
366static u32 get_sdram_ref_ctrl_shdw(u32 freq,
367 const struct lpddr2_addressing *addressing)
368{
369 u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
370
371 /* Scale down frequency and t_refi to avoid overflow */
372 freq_khz = freq / 1000;
373 t_refi = addressing->tREFI_ns / 100;
374
375 /*
376 * refresh rate to be set is 'tREFI(in us) * freq in MHz
377 * division by 10000 to account for change in units
378 */
379 val = t_refi * freq_khz / 10000;
380 ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
381
382 return ref_ctrl_shdw;
383}
384
385static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
386 const struct lpddr2_min_tck *min_tck,
387 const struct lpddr2_addressing *addressing)
388{
389 u32 tim1 = 0, val = 0;
390
391 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
392 tim1 |= val << T_WTR_SHIFT;
393
394 if (addressing->num_banks == B8)
395 val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
396 else
397 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
398 tim1 |= (val - 1) << T_RRD_SHIFT;
399
400 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
401 tim1 |= val << T_RC_SHIFT;
402
403 val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
404 tim1 |= (val - 1) << T_RAS_SHIFT;
405
406 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
407 tim1 |= val << T_WR_SHIFT;
408
409 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
410 tim1 |= val << T_RCD_SHIFT;
411
412 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
413 tim1 |= val << T_RP_SHIFT;
414
415 return tim1;
416}
417
418static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
419 const struct lpddr2_min_tck *min_tck,
420 const struct lpddr2_addressing *addressing)
421{
422 u32 tim1 = 0, val = 0;
423
424 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
425 tim1 = val << T_WTR_SHIFT;
426
427 /*
428 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
429 * to tFAW for de-rating
430 */
431 if (addressing->num_banks == B8) {
432 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
433 } else {
434 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
435 val = max(min_tck->tRRD, val) - 1;
436 }
437 tim1 |= val << T_RRD_SHIFT;
438
439 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
440 tim1 |= (val - 1) << T_RC_SHIFT;
441
442 val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
443 val = max(min_tck->tRASmin, val) - 1;
444 tim1 |= val << T_RAS_SHIFT;
445
446 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
447 tim1 |= val << T_WR_SHIFT;
448
449 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
450 tim1 |= (val - 1) << T_RCD_SHIFT;
451
452 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
453 tim1 |= (val - 1) << T_RP_SHIFT;
454
455 return tim1;
456}
457
458static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
459 const struct lpddr2_min_tck *min_tck,
460 const struct lpddr2_addressing *addressing,
461 u32 type)
462{
463 u32 tim2 = 0, val = 0;
464
465 val = min_tck->tCKE - 1;
466 tim2 |= val << T_CKE_SHIFT;
467
468 val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
469 tim2 |= val << T_RTP_SHIFT;
470
471 /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
472 val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
473 tim2 |= val << T_XSNR_SHIFT;
474
475 /* XSRD same as XSNR for LPDDR2 */
476 tim2 |= val << T_XSRD_SHIFT;
477
478 val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
479 tim2 |= val << T_XP_SHIFT;
480
481 return tim2;
482}
483
484static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
485 const struct lpddr2_min_tck *min_tck,
486 const struct lpddr2_addressing *addressing,
487 u32 type, u32 ip_rev, u32 derated)
488{
489 u32 tim3 = 0, val = 0, t_dqsck;
490
491 val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
492 val = val > 0xF ? 0xF : val;
493 tim3 |= val << T_RAS_MAX_SHIFT;
494
495 val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
496 tim3 |= val << T_RFC_SHIFT;
497
498 t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
499 timings->tDQSCK_max_derated : timings->tDQSCK_max;
500 if (ip_rev == EMIF_4D5)
501 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
502 else
503 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
504
505 tim3 |= val << T_TDQSCKMAX_SHIFT;
506
507 val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
508 tim3 |= val << ZQ_ZQCS_SHIFT;
509
510 val = DIV_ROUND_UP(timings->tCKESR, t_ck);
511 val = max(min_tck->tCKESR, val) - 1;
512 tim3 |= val << T_CKESR_SHIFT;
513
514 if (ip_rev == EMIF_4D5) {
515 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
516
517 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
518 tim3 |= val << T_PDLL_UL_SHIFT;
519 }
520
521 return tim3;
522}
523
98231c4f
A
524static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
525 bool cs1_used, bool cal_resistors_per_cs)
526{
527 u32 zq = 0, val = 0;
528
529 val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
530 zq |= val << ZQ_REFINTERVAL_SHIFT;
531
532 val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
533 zq |= val << ZQ_ZQCL_MULT_SHIFT;
534
535 val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
536 zq |= val << ZQ_ZQINIT_MULT_SHIFT;
537
538 zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
539
540 if (cal_resistors_per_cs)
541 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
542 else
543 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
544
545 zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
546
547 val = cs1_used ? 1 : 0;
548 zq |= val << ZQ_CS1EN_SHIFT;
549
550 return zq;
551}
552
553static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
554 const struct emif_custom_configs *custom_configs, bool cs1_used,
555 u32 sdram_io_width, u32 emif_bus_width)
556{
557 u32 alert = 0, interval, devcnt;
558
559 if (custom_configs && (custom_configs->mask &
560 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
561 interval = custom_configs->temp_alert_poll_interval_ms;
562 else
563 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
564
565 interval *= 1000000; /* Convert to ns */
566 interval /= addressing->tREFI_ns; /* Convert to refresh cycles */
567 alert |= (interval << TA_REFINTERVAL_SHIFT);
568
569 /*
570 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
571 * also to this form and subtract to get TA_DEVCNT, which is
572 * in log2(x) form.
573 */
574 emif_bus_width = __fls(emif_bus_width) - 1;
575 devcnt = emif_bus_width - sdram_io_width;
576 alert |= devcnt << TA_DEVCNT_SHIFT;
577
578 /* DEVWDT is in 'log2(x) - 3' form */
579 alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
580
581 alert |= 1 << TA_SFEXITEN_SHIFT;
582 alert |= 1 << TA_CS0EN_SHIFT;
583 alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
584
585 return alert;
586}
587
a93de288
A
588static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
589{
590 u32 idle = 0, val = 0;
591
592 /*
593 * Maximum value in normal conditions and increased frequency
594 * when voltage is ramping
595 */
596 if (volt_ramp)
597 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
598 else
599 val = 0x1FF;
600
601 /*
602 * READ_IDLE_CTRL register in EMIF4D has same offset and fields
603 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
604 */
605 idle |= val << DLL_CALIB_INTERVAL_SHIFT;
606 idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
607
608 return idle;
609}
610
611static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
612{
613 u32 calib = 0, val = 0;
614
615 if (volt_ramp == DDR_VOLTAGE_RAMPING)
616 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
617 else
618 val = 0; /* Disabled when voltage is stable */
619
620 calib |= val << DLL_CALIB_INTERVAL_SHIFT;
621 calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
622
623 return calib;
624}
625
626static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
627 u32 freq, u8 RL)
628{
629 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
630
631 val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
632 phy |= val << READ_LATENCY_SHIFT_4D;
633
634 if (freq <= 100000000)
635 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
636 else if (freq <= 200000000)
637 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
638 else
639 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
640
641 phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
642
643 return phy;
644}
645
646static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
647{
648 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
649
650 /*
651 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
652 * half-delay is not needed else set half-delay
653 */
654 if (freq >= 265000000 && freq < 267000000)
655 half_delay = 0;
656 else
657 half_delay = 1;
658
659 phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
660 phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
661 t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
662
663 return phy;
664}
665
666static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
667{
668 u32 fifo_we_slave_ratio;
669
670 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
671 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
672
673 return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
674 fifo_we_slave_ratio << 22;
675}
676
677static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
678{
679 u32 fifo_we_slave_ratio;
680
681 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
682 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
683
684 return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
685 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
686}
687
688static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
689{
690 u32 fifo_we_slave_ratio;
691
692 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
693 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
694
695 return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
696 fifo_we_slave_ratio << 13;
697}
698
699static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
700{
701 u32 pwr_mgmt_ctrl = 0, timeout;
702 u32 lpmode = EMIF_LP_MODE_SELF_REFRESH;
703 u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
704 u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER;
705 u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD;
706
707 struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
708
709 if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
710 lpmode = cust_cfgs->lpmode;
711 timeout_perf = cust_cfgs->lpmode_timeout_performance;
712 timeout_pwr = cust_cfgs->lpmode_timeout_power;
713 freq_threshold = cust_cfgs->lpmode_freq_threshold;
714 }
715
716 /* Timeout based on DDR frequency */
717 timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
718
719 /* The value to be set in register is "log2(timeout) - 3" */
720 if (timeout < 16) {
721 timeout = 0;
722 } else {
723 timeout = __fls(timeout) - 3;
724 if (timeout & (timeout - 1))
725 timeout++;
726 }
727
728 switch (lpmode) {
729 case EMIF_LP_MODE_CLOCK_STOP:
730 pwr_mgmt_ctrl = (timeout << CS_TIM_SHIFT) |
731 SR_TIM_MASK | PD_TIM_MASK;
732 break;
733 case EMIF_LP_MODE_SELF_REFRESH:
734 /* Workaround for errata i735 */
735 if (timeout < 6)
736 timeout = 6;
737
738 pwr_mgmt_ctrl = (timeout << SR_TIM_SHIFT) |
739 CS_TIM_MASK | PD_TIM_MASK;
740 break;
741 case EMIF_LP_MODE_PWR_DN:
742 pwr_mgmt_ctrl = (timeout << PD_TIM_SHIFT) |
743 CS_TIM_MASK | SR_TIM_MASK;
744 break;
745 case EMIF_LP_MODE_DISABLE:
746 default:
747 pwr_mgmt_ctrl = CS_TIM_MASK |
748 PD_TIM_MASK | SR_TIM_MASK;
749 }
750
751 /* No CS_TIM in EMIF_4D5 */
752 if (ip_rev == EMIF_4D5)
753 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
754
755 pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
756
757 return pwr_mgmt_ctrl;
758}
759
68b4aee3
A
760/*
761 * Get the temperature level of the EMIF instance:
762 * Reads the MR4 register of attached SDRAM parts to find out the temperature
763 * level. If there are two parts attached(one on each CS), then the temperature
764 * level for the EMIF instance is the higher of the two temperatures.
765 */
766static void get_temperature_level(struct emif_data *emif)
767{
768 u32 temp, temperature_level;
769 void __iomem *base;
770
771 base = emif->base;
772
773 /* Read mode register 4 */
774 writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
775 temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
776 temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
777 MR4_SDRAM_REF_RATE_SHIFT;
778
779 if (emif->plat_data->device_info->cs1_used) {
780 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
781 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
782 temp = (temp & MR4_SDRAM_REF_RATE_MASK)
783 >> MR4_SDRAM_REF_RATE_SHIFT;
784 temperature_level = max(temp, temperature_level);
785 }
786
787 /* treat everything less than nominal(3) in MR4 as nominal */
788 if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
789 temperature_level = SDRAM_TEMP_NOMINAL;
790
791 /* if we get reserved value in MR4 persist with the existing value */
792 if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
793 emif->temperature_level = temperature_level;
794}
795
a93de288
A
796/*
797 * Program EMIF shadow registers that are not dependent on temperature
798 * or voltage
799 */
800static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
801{
802 void __iomem *base = emif->base;
803
804 writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
805 writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
806
807 /* Settings specific for EMIF4D5 */
808 if (emif->plat_data->ip_rev != EMIF_4D5)
809 return;
810 writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
811 writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
812 writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
813}
814
815/*
816 * When voltage ramps dll calibration and forced read idle should
817 * happen more often
818 */
819static void setup_volt_sensitive_regs(struct emif_data *emif,
820 struct emif_regs *regs, u32 volt_state)
821{
822 u32 calib_ctrl;
823 void __iomem *base = emif->base;
824
825 /*
826 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
827 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
828 * is an alias of the respective read_idle_ctrl_shdw_* (members of
829 * a union). So, the below code takes care of both cases
830 */
831 if (volt_state == DDR_VOLTAGE_RAMPING)
832 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
833 else
834 calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
835
836 writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
837}
838
839/*
840 * setup_temperature_sensitive_regs() - set the timings for temperature
841 * sensitive registers. This happens once at initialisation time based
842 * on the temperature at boot time and subsequently based on the temperature
843 * alert interrupt. Temperature alert can happen when the temperature
844 * increases or drops. So this function can have the effect of either
845 * derating the timings or going back to nominal values.
846 */
847static void setup_temperature_sensitive_regs(struct emif_data *emif,
848 struct emif_regs *regs)
849{
850 u32 tim1, tim3, ref_ctrl, type;
851 void __iomem *base = emif->base;
852 u32 temperature;
853
854 type = emif->plat_data->device_info->type;
855
856 tim1 = regs->sdram_tim1_shdw;
857 tim3 = regs->sdram_tim3_shdw;
858 ref_ctrl = regs->ref_ctrl_shdw;
859
860 /* No de-rating for non-lpddr2 devices */
861 if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
862 goto out;
863
864 temperature = emif->temperature_level;
865 if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
866 ref_ctrl = regs->ref_ctrl_shdw_derated;
867 } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
868 tim1 = regs->sdram_tim1_shdw_derated;
869 tim3 = regs->sdram_tim3_shdw_derated;
870 ref_ctrl = regs->ref_ctrl_shdw_derated;
871 }
872
873out:
874 writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
875 writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
876 writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
877}
878
68b4aee3
A
879static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
880{
881 u32 old_temp_level;
882 irqreturn_t ret = IRQ_HANDLED;
883
884 spin_lock_irqsave(&emif_lock, irq_state);
885 old_temp_level = emif->temperature_level;
886 get_temperature_level(emif);
887
888 if (unlikely(emif->temperature_level == old_temp_level)) {
889 goto out;
890 } else if (!emif->curr_regs) {
891 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
892 goto out;
893 }
894
895 if (emif->temperature_level < old_temp_level ||
896 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
897 /*
898 * Temperature coming down - defer handling to thread OR
899 * Temperature far too high - do kernel_power_off() from
900 * thread context
901 */
902 ret = IRQ_WAKE_THREAD;
903 } else {
904 /* Temperature is going up - handle immediately */
905 setup_temperature_sensitive_regs(emif, emif->curr_regs);
906 do_freq_update();
907 }
908
909out:
910 spin_unlock_irqrestore(&emif_lock, irq_state);
911 return ret;
912}
913
914static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
915{
916 u32 interrupts;
917 struct emif_data *emif = dev_id;
918 void __iomem *base = emif->base;
919 struct device *dev = emif->dev;
920 irqreturn_t ret = IRQ_HANDLED;
921
922 /* Save the status and clear it */
923 interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
924 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
925
926 /*
927 * Handle temperature alert
928 * Temperature alert should be same for all ports
929 * So, it's enough to process it only for one of the ports
930 */
931 if (interrupts & TA_SYS_MASK)
932 ret = handle_temp_alert(base, emif);
933
934 if (interrupts & ERR_SYS_MASK)
935 dev_err(dev, "Access error from SYS port - %x\n", interrupts);
936
937 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
938 /* Save the status and clear it */
939 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
940 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
941
942 if (interrupts & ERR_LL_MASK)
943 dev_err(dev, "Access error from LL port - %x\n",
944 interrupts);
945 }
946
947 return ret;
948}
949
950static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
951{
952 struct emif_data *emif = dev_id;
953
954 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
955 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
956 kernel_power_off();
957 return IRQ_HANDLED;
958 }
959
960 spin_lock_irqsave(&emif_lock, irq_state);
961
962 if (emif->curr_regs) {
963 setup_temperature_sensitive_regs(emif, emif->curr_regs);
964 do_freq_update();
965 } else {
966 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
967 }
968
969 spin_unlock_irqrestore(&emif_lock, irq_state);
970
971 return IRQ_HANDLED;
972}
973
974static void clear_all_interrupts(struct emif_data *emif)
975{
976 void __iomem *base = emif->base;
977
978 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
979 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
980 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
981 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
982 base + EMIF_LL_OCP_INTERRUPT_STATUS);
983}
984
985static void disable_and_clear_all_interrupts(struct emif_data *emif)
986{
987 void __iomem *base = emif->base;
988
989 /* Disable all interrupts */
990 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
991 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
992 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
993 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
994 base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
995
996 /* Clear all interrupts */
997 clear_all_interrupts(emif);
998}
999
1000static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1001{
1002 u32 interrupts, type;
1003 void __iomem *base = emif->base;
1004
1005 type = emif->plat_data->device_info->type;
1006
1007 clear_all_interrupts(emif);
1008
1009 /* Enable interrupts for SYS interface */
1010 interrupts = EN_ERR_SYS_MASK;
1011 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1012 interrupts |= EN_TA_SYS_MASK;
1013 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1014
1015 /* Enable interrupts for LL interface */
1016 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1017 /* TA need not be enabled for LL */
1018 interrupts = EN_ERR_LL_MASK;
1019 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1020 }
1021
1022 /* setup IRQ handlers */
1023 return devm_request_threaded_irq(emif->dev, irq,
1024 emif_interrupt_handler,
1025 emif_threaded_isr,
1026 0, dev_name(emif->dev),
1027 emif);
1028
1029}
1030
98231c4f
A
1031static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1032{
1033 u32 pwr_mgmt_ctrl, zq, temp_alert_cfg;
1034 void __iomem *base = emif->base;
1035 const struct lpddr2_addressing *addressing;
1036 const struct ddr_device_info *device_info;
1037
1038 device_info = emif->plat_data->device_info;
1039 addressing = get_addressing_table(device_info);
1040
1041 /*
1042 * Init power management settings
1043 * We don't know the frequency yet. Use a high frequency
1044 * value for a conservative timeout setting
1045 */
1046 pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1047 emif->plat_data->ip_rev);
1048 emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1049 writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1050
1051 /* Init ZQ calibration settings */
1052 zq = get_zq_config_reg(addressing, device_info->cs1_used,
1053 device_info->cal_resistors_per_cs);
1054 writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1055
1056 /* Check temperature level temperature level*/
1057 get_temperature_level(emif);
1058 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1059 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1060
1061 /* Init temperature polling */
1062 temp_alert_cfg = get_temp_alert_config(addressing,
1063 emif->plat_data->custom_configs, device_info->cs1_used,
1064 device_info->io_width, get_emif_bus_width(emif));
1065 writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1066
1067 /*
1068 * Program external PHY control registers that are not frequency
1069 * dependent
1070 */
1071 if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1072 return;
1073 writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1074 writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1075 writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1076 writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1077 writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1078 writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1079 writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1080 writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1081 writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1082 writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1083 writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1084 writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1085 writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1086 writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1087 writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1088 writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1089 writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1090 writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1091 writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1092 writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1093 writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1094}
1095
7ec94453
A
1096static void get_default_timings(struct emif_data *emif)
1097{
1098 struct emif_platform_data *pd = emif->plat_data;
1099
1100 pd->timings = lpddr2_jedec_timings;
1101 pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings);
1102
1103 dev_warn(emif->dev, "%s: using default timings\n", __func__);
1104}
1105
1106static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1107 u32 ip_rev, struct device *dev)
1108{
1109 int valid;
1110
1111 valid = (type == DDR_TYPE_LPDDR2_S4 ||
1112 type == DDR_TYPE_LPDDR2_S2)
1113 && (density >= DDR_DENSITY_64Mb
1114 && density <= DDR_DENSITY_8Gb)
1115 && (io_width >= DDR_IO_WIDTH_8
1116 && io_width <= DDR_IO_WIDTH_32);
1117
1118 /* Combinations of EMIF and PHY revisions that we support today */
1119 switch (ip_rev) {
1120 case EMIF_4D:
1121 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1122 break;
1123 case EMIF_4D5:
1124 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1125 break;
1126 default:
1127 valid = 0;
1128 }
1129
1130 if (!valid)
1131 dev_err(dev, "%s: invalid DDR details\n", __func__);
1132 return valid;
1133}
1134
1135static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1136 struct device *dev)
1137{
1138 int valid = 1;
1139
1140 if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1141 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1142 valid = cust_cfgs->lpmode_freq_threshold &&
1143 cust_cfgs->lpmode_timeout_performance &&
1144 cust_cfgs->lpmode_timeout_power;
1145
1146 if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1147 valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1148
1149 if (!valid)
1150 dev_warn(dev, "%s: invalid custom configs\n", __func__);
1151
1152 return valid;
1153}
1154
e6b42eb6
A
1155#if defined(CONFIG_OF)
1156static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1157 struct emif_data *emif)
1158{
1159 struct emif_custom_configs *cust_cfgs = NULL;
1160 int len;
1161 const int *lpmode, *poll_intvl;
1162
1163 lpmode = of_get_property(np_emif, "low-power-mode", &len);
1164 poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1165
1166 if (lpmode || poll_intvl)
1167 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1168 GFP_KERNEL);
1169
1170 if (!cust_cfgs)
1171 return;
1172
1173 if (lpmode) {
1174 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1175 cust_cfgs->lpmode = *lpmode;
1176 of_property_read_u32(np_emif,
1177 "low-power-mode-timeout-performance",
1178 &cust_cfgs->lpmode_timeout_performance);
1179 of_property_read_u32(np_emif,
1180 "low-power-mode-timeout-power",
1181 &cust_cfgs->lpmode_timeout_power);
1182 of_property_read_u32(np_emif,
1183 "low-power-mode-freq-threshold",
1184 &cust_cfgs->lpmode_freq_threshold);
1185 }
1186
1187 if (poll_intvl) {
1188 cust_cfgs->mask |=
1189 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
1190 cust_cfgs->temp_alert_poll_interval_ms = *poll_intvl;
1191 }
1192
1193 if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1194 devm_kfree(emif->dev, cust_cfgs);
1195 return;
1196 }
1197
1198 emif->plat_data->custom_configs = cust_cfgs;
1199}
1200
1201static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1202 struct device_node *np_ddr,
1203 struct ddr_device_info *dev_info)
1204{
1205 u32 density = 0, io_width = 0;
1206 int len;
1207
1208 if (of_find_property(np_emif, "cs1-used", &len))
1209 dev_info->cs1_used = true;
1210
1211 if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1212 dev_info->cal_resistors_per_cs = true;
1213
1214 if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4"))
1215 dev_info->type = DDR_TYPE_LPDDR2_S4;
1216 else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2"))
1217 dev_info->type = DDR_TYPE_LPDDR2_S2;
1218
1219 of_property_read_u32(np_ddr, "density", &density);
1220 of_property_read_u32(np_ddr, "io-width", &io_width);
1221
1222 /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1223 if (density & (density - 1))
1224 dev_info->density = 0;
1225 else
1226 dev_info->density = __fls(density) - 5;
1227
1228 /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1229 if (io_width & (io_width - 1))
1230 dev_info->io_width = 0;
1231 else
1232 dev_info->io_width = __fls(io_width) - 1;
1233}
1234
1235static struct emif_data * __init_or_module of_get_memory_device_details(
1236 struct device_node *np_emif, struct device *dev)
1237{
1238 struct emif_data *emif = NULL;
1239 struct ddr_device_info *dev_info = NULL;
1240 struct emif_platform_data *pd = NULL;
1241 struct device_node *np_ddr;
1242 int len;
1243
1244 np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1245 if (!np_ddr)
1246 goto error;
1247 emif = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1248 pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1249 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1250
1251 if (!emif || !pd || !dev_info) {
1252 dev_err(dev, "%s: Out of memory!!\n",
1253 __func__);
1254 goto error;
1255 }
1256
1257 emif->plat_data = pd;
1258 pd->device_info = dev_info;
1259 emif->dev = dev;
1260 emif->np_ddr = np_ddr;
1261 emif->temperature_level = SDRAM_TEMP_NOMINAL;
1262
1263 if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1264 emif->plat_data->ip_rev = EMIF_4D;
1265 else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1266 emif->plat_data->ip_rev = EMIF_4D5;
1267
1268 of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1269
1270 if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1271 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1272
1273 of_get_ddr_info(np_emif, np_ddr, dev_info);
1274 if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1275 pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1276 emif->dev)) {
1277 dev_err(dev, "%s: invalid device data!!\n", __func__);
1278 goto error;
1279 }
1280 /*
1281 * For EMIF instances other than EMIF1 see if the devices connected
1282 * are exactly same as on EMIF1(which is typically the case). If so,
1283 * mark it as a duplicate of EMIF1. This will save some memory and
1284 * computation.
1285 */
1286 if (emif1 && emif1->np_ddr == np_ddr) {
1287 emif->duplicate = true;
1288 goto out;
1289 } else if (emif1) {
1290 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1291 __func__);
1292 }
1293
1294 of_get_custom_configs(np_emif, emif);
1295 emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1296 emif->plat_data->device_info->type,
1297 &emif->plat_data->timings_arr_size);
1298
1299 emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1300 goto out;
1301
1302error:
1303 return NULL;
1304out:
1305 return emif;
1306}
1307
1308#else
1309
1310static struct emif_data * __init_or_module of_get_memory_device_details(
1311 struct device_node *np_emif, struct device *dev)
1312{
1313 return NULL;
1314}
1315#endif
1316
7ec94453
A
1317static struct emif_data *__init_or_module get_device_details(
1318 struct platform_device *pdev)
1319{
1320 u32 size;
1321 struct emif_data *emif = NULL;
1322 struct ddr_device_info *dev_info;
1323 struct emif_custom_configs *cust_cfgs;
1324 struct emif_platform_data *pd;
1325 struct device *dev;
1326 void *temp;
1327
1328 pd = pdev->dev.platform_data;
1329 dev = &pdev->dev;
1330
1331 if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1332 pd->device_info->density, pd->device_info->io_width,
1333 pd->phy_type, pd->ip_rev, dev))) {
1334 dev_err(dev, "%s: invalid device data\n", __func__);
1335 goto error;
1336 }
1337
1338 emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1339 temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1340 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1341
1342 if (!emif || !pd || !dev_info) {
1343 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1344 goto error;
1345 }
1346
1347 memcpy(temp, pd, sizeof(*pd));
1348 pd = temp;
1349 memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1350
1351 pd->device_info = dev_info;
1352 emif->plat_data = pd;
1353 emif->dev = dev;
1354 emif->temperature_level = SDRAM_TEMP_NOMINAL;
1355
1356 /*
1357 * For EMIF instances other than EMIF1 see if the devices connected
1358 * are exactly same as on EMIF1(which is typically the case). If so,
1359 * mark it as a duplicate of EMIF1 and skip copying timings data.
1360 * This will save some memory and some computation later.
1361 */
1362 emif->duplicate = emif1 && (memcmp(dev_info,
1363 emif1->plat_data->device_info,
1364 sizeof(struct ddr_device_info)) == 0);
1365
1366 if (emif->duplicate) {
1367 pd->timings = NULL;
1368 pd->min_tck = NULL;
1369 goto out;
1370 } else if (emif1) {
1371 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1372 __func__);
1373 }
1374
1375 /*
1376 * Copy custom configs - ignore allocation error, if any, as
1377 * custom_configs is not very critical
1378 */
1379 cust_cfgs = pd->custom_configs;
1380 if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1381 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1382 if (temp)
1383 memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1384 else
1385 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1386 __LINE__);
1387 pd->custom_configs = temp;
1388 }
1389
1390 /*
1391 * Copy timings and min-tck values from platform data. If it is not
1392 * available or if memory allocation fails, use JEDEC defaults
1393 */
1394 size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1395 if (pd->timings) {
1396 temp = devm_kzalloc(dev, size, GFP_KERNEL);
1397 if (temp) {
1398 memcpy(temp, pd->timings, sizeof(*pd->timings));
1399 pd->timings = temp;
1400 } else {
1401 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1402 __LINE__);
1403 get_default_timings(emif);
1404 }
1405 } else {
1406 get_default_timings(emif);
1407 }
1408
1409 if (pd->min_tck) {
1410 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1411 if (temp) {
1412 memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1413 pd->min_tck = temp;
1414 } else {
1415 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1416 __LINE__);
1417 pd->min_tck = &lpddr2_jedec_min_tck;
1418 }
1419 } else {
1420 pd->min_tck = &lpddr2_jedec_min_tck;
1421 }
1422
1423out:
1424 return emif;
1425
1426error:
1427 return NULL;
1428}
1429
1430static int __init_or_module emif_probe(struct platform_device *pdev)
1431{
1432 struct emif_data *emif;
1433 struct resource *res;
68b4aee3 1434 int irq;
7ec94453 1435
e6b42eb6
A
1436 if (pdev->dev.of_node)
1437 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1438 else
1439 emif = get_device_details(pdev);
1440
7ec94453
A
1441 if (!emif) {
1442 pr_err("%s: error getting device data\n", __func__);
1443 goto error;
1444 }
1445
7ec94453 1446 list_add(&emif->node, &device_list);
a93de288 1447 emif->addressing = get_addressing_table(emif->plat_data->device_info);
7ec94453
A
1448
1449 /* Save pointers to each other in emif and device structures */
1450 emif->dev = &pdev->dev;
1451 platform_set_drvdata(pdev, emif);
1452
1453 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1454 if (!res) {
1455 dev_err(emif->dev, "%s: error getting memory resource\n",
1456 __func__);
1457 goto error;
1458 }
1459
1460 emif->base = devm_request_and_ioremap(emif->dev, res);
1461 if (!emif->base) {
1462 dev_err(emif->dev, "%s: devm_request_and_ioremap() failed\n",
1463 __func__);
1464 goto error;
1465 }
1466
68b4aee3
A
1467 irq = platform_get_irq(pdev, 0);
1468 if (irq < 0) {
1469 dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
1470 __func__, irq);
1471 goto error;
1472 }
1473
98231c4f 1474 emif_onetime_settings(emif);
aac10aaa 1475 emif_debugfs_init(emif);
68b4aee3
A
1476 disable_and_clear_all_interrupts(emif);
1477 setup_interrupts(emif, irq);
1478
a93de288
A
1479 /* One-time actions taken on probing the first device */
1480 if (!emif1) {
1481 emif1 = emif;
1482 spin_lock_init(&emif_lock);
1483
1484 /*
1485 * TODO: register notifiers for frequency and voltage
1486 * change here once the respective frameworks are
1487 * available
1488 */
1489 }
1490
68b4aee3
A
1491 dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1492 __func__, emif->base, irq);
7ec94453
A
1493
1494 return 0;
1495error:
1496 return -ENODEV;
1497}
1498
aac10aaa
A
1499static int __exit emif_remove(struct platform_device *pdev)
1500{
1501 struct emif_data *emif = platform_get_drvdata(pdev);
1502
1503 emif_debugfs_exit(emif);
1504
1505 return 0;
1506}
1507
68b4aee3
A
1508static void emif_shutdown(struct platform_device *pdev)
1509{
1510 struct emif_data *emif = platform_get_drvdata(pdev);
1511
1512 disable_and_clear_all_interrupts(emif);
1513}
1514
a93de288
A
1515static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1516 struct emif_regs *regs)
1517{
1518 u32 cs1_used, ip_rev, phy_type;
1519 u32 cl, type;
1520 const struct lpddr2_timings *timings;
1521 const struct lpddr2_min_tck *min_tck;
1522 const struct ddr_device_info *device_info;
1523 const struct lpddr2_addressing *addressing;
1524 struct emif_data *emif_for_calc;
1525 struct device *dev;
1526 const struct emif_custom_configs *custom_configs;
1527
1528 dev = emif->dev;
1529 /*
1530 * If the devices on this EMIF instance is duplicate of EMIF1,
1531 * use EMIF1 details for the calculation
1532 */
1533 emif_for_calc = emif->duplicate ? emif1 : emif;
1534 timings = get_timings_table(emif_for_calc, freq);
1535 addressing = emif_for_calc->addressing;
1536 if (!timings || !addressing) {
1537 dev_err(dev, "%s: not enough data available for %dHz",
1538 __func__, freq);
1539 return -1;
1540 }
1541
1542 device_info = emif_for_calc->plat_data->device_info;
1543 type = device_info->type;
1544 cs1_used = device_info->cs1_used;
1545 ip_rev = emif_for_calc->plat_data->ip_rev;
1546 phy_type = emif_for_calc->plat_data->phy_type;
1547
1548 min_tck = emif_for_calc->plat_data->min_tck;
1549 custom_configs = emif_for_calc->plat_data->custom_configs;
1550
1551 set_ddr_clk_period(freq);
1552
1553 regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1554 regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1555 addressing);
1556 regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1557 addressing, type);
1558 regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1559 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1560
1561 cl = get_cl(emif);
1562
1563 if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1564 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1565 timings, freq, cl);
1566 } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1567 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1568 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1569 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1570 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1571 } else {
1572 return -1;
1573 }
1574
1575 /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1576 regs->pwr_mgmt_ctrl_shdw =
1577 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1578 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1579
1580 if (ip_rev & EMIF_4D) {
1581 regs->read_idle_ctrl_shdw_normal =
1582 get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1583
1584 regs->read_idle_ctrl_shdw_volt_ramp =
1585 get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1586 } else if (ip_rev & EMIF_4D5) {
1587 regs->dll_calib_ctrl_shdw_normal =
1588 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1589
1590 regs->dll_calib_ctrl_shdw_volt_ramp =
1591 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1592 }
1593
1594 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1595 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1596 addressing);
1597
1598 regs->sdram_tim1_shdw_derated =
1599 get_sdram_tim_1_shdw_derated(timings, min_tck,
1600 addressing);
1601
1602 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1603 min_tck, addressing, type, ip_rev,
1604 EMIF_DERATED_TIMINGS);
1605 }
1606
1607 regs->freq = freq;
1608
1609 return 0;
1610}
1611
1612/*
1613 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1614 * given frequency(freq):
1615 *
1616 * As an optimisation, every EMIF instance other than EMIF1 shares the
1617 * register cache with EMIF1 if the devices connected on this instance
1618 * are same as that on EMIF1(indicated by the duplicate flag)
1619 *
1620 * If we do not have an entry corresponding to the frequency given, we
1621 * allocate a new entry and calculate the values
1622 *
1623 * Upon finding the right reg dump, save it in curr_regs. It can be
1624 * directly used for thermal de-rating and voltage ramping changes.
1625 */
1626static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1627{
1628 int i;
1629 struct emif_regs **regs_cache;
1630 struct emif_regs *regs = NULL;
1631 struct device *dev;
1632
1633 dev = emif->dev;
1634 if (emif->curr_regs && emif->curr_regs->freq == freq) {
1635 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1636 return emif->curr_regs;
1637 }
1638
1639 if (emif->duplicate)
1640 regs_cache = emif1->regs_cache;
1641 else
1642 regs_cache = emif->regs_cache;
1643
1644 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1645 if (regs_cache[i]->freq == freq) {
1646 regs = regs_cache[i];
1647 dev_dbg(dev,
1648 "%s: reg dump found in reg cache for %u Hz\n",
1649 __func__, freq);
1650 break;
1651 }
1652 }
1653
1654 /*
1655 * If we don't have an entry for this frequency in the cache create one
1656 * and calculate the values
1657 */
1658 if (!regs) {
1659 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1660 if (!regs)
1661 return NULL;
1662
1663 if (get_emif_reg_values(emif, freq, regs)) {
1664 devm_kfree(emif->dev, regs);
1665 return NULL;
1666 }
1667
1668 /*
1669 * Now look for an un-used entry in the cache and save the
1670 * newly created struct. If there are no free entries
1671 * over-write the last entry
1672 */
1673 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1674 ;
1675
1676 if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1677 dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1678 __func__);
1679 i = EMIF_MAX_NUM_FREQUENCIES - 1;
1680 devm_kfree(emif->dev, regs_cache[i]);
1681 }
1682 regs_cache[i] = regs;
1683 }
1684
1685 return regs;
1686}
1687
1688static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1689{
1690 dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1691 volt_state);
1692
1693 if (!emif->curr_regs) {
1694 dev_err(emif->dev,
1695 "%s: volt-notify before registers are ready: %d\n",
1696 __func__, volt_state);
1697 return;
1698 }
1699
1700 setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1701}
1702
1703/*
1704 * TODO: voltage notify handling should be hooked up to
1705 * regulator framework as soon as the necessary support
1706 * is available in mainline kernel. This function is un-used
1707 * right now.
1708 */
1709static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1710{
1711 struct emif_data *emif;
1712
1713 spin_lock_irqsave(&emif_lock, irq_state);
1714
1715 list_for_each_entry(emif, &device_list, node)
1716 do_volt_notify_handling(emif, volt_state);
1717 do_freq_update();
1718
1719 spin_unlock_irqrestore(&emif_lock, irq_state);
1720}
1721
1722static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1723{
1724 struct emif_regs *regs;
1725
1726 regs = get_regs(emif, new_freq);
1727 if (!regs)
1728 return;
1729
1730 emif->curr_regs = regs;
1731
1732 /*
1733 * Update the shadow registers:
1734 * Temperature and voltage-ramp sensitive settings are also configured
1735 * in terms of DDR cycles. So, we need to update them too when there
1736 * is a freq change
1737 */
1738 dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1739 __func__, new_freq);
1740 setup_registers(emif, regs);
1741 setup_temperature_sensitive_regs(emif, regs);
1742 setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1743
1744 /*
1745 * Part of workaround for errata i728. See do_freq_update()
1746 * for more details
1747 */
1748 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1749 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1750}
1751
1752/*
1753 * TODO: frequency notify handling should be hooked up to
1754 * clock framework as soon as the necessary support is
1755 * available in mainline kernel. This function is un-used
1756 * right now.
1757 */
1758static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1759{
1760 struct emif_data *emif;
1761
1762 /*
1763 * NOTE: we are taking the spin-lock here and releases it
1764 * only in post-notifier. This doesn't look good and
1765 * Sparse complains about it, but this seems to be
1766 * un-avoidable. We need to lock a sequence of events
1767 * that is split between EMIF and clock framework.
1768 *
1769 * 1. EMIF driver updates EMIF timings in shadow registers in the
1770 * frequency pre-notify callback from clock framework
1771 * 2. clock framework sets up the registers for the new frequency
1772 * 3. clock framework initiates a hw-sequence that updates
1773 * the frequency EMIF timings synchronously.
1774 *
1775 * All these 3 steps should be performed as an atomic operation
1776 * vis-a-vis similar sequence in the EMIF interrupt handler
1777 * for temperature events. Otherwise, there could be race
1778 * conditions that could result in incorrect EMIF timings for
1779 * a given frequency
1780 */
1781 spin_lock_irqsave(&emif_lock, irq_state);
1782
1783 list_for_each_entry(emif, &device_list, node)
1784 do_freq_pre_notify_handling(emif, new_freq);
1785}
1786
1787static void do_freq_post_notify_handling(struct emif_data *emif)
1788{
1789 /*
1790 * Part of workaround for errata i728. See do_freq_update()
1791 * for more details
1792 */
1793 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1794 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1795}
1796
1797/*
1798 * TODO: frequency notify handling should be hooked up to
1799 * clock framework as soon as the necessary support is
1800 * available in mainline kernel. This function is un-used
1801 * right now.
1802 */
1803static void __attribute__((unused)) freq_post_notify_handling(void)
1804{
1805 struct emif_data *emif;
1806
1807 list_for_each_entry(emif, &device_list, node)
1808 do_freq_post_notify_handling(emif);
1809
1810 /*
1811 * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1812 * for more details
1813 */
1814 spin_unlock_irqrestore(&emif_lock, irq_state);
1815}
1816
e6b42eb6
A
1817#if defined(CONFIG_OF)
1818static const struct of_device_id emif_of_match[] = {
1819 { .compatible = "ti,emif-4d" },
1820 { .compatible = "ti,emif-4d5" },
1821 {},
1822};
1823MODULE_DEVICE_TABLE(of, emif_of_match);
1824#endif
1825
7ec94453 1826static struct platform_driver emif_driver = {
aac10aaa 1827 .remove = __exit_p(emif_remove),
68b4aee3 1828 .shutdown = emif_shutdown,
7ec94453
A
1829 .driver = {
1830 .name = "emif",
e6b42eb6 1831 .of_match_table = of_match_ptr(emif_of_match),
7ec94453
A
1832 },
1833};
1834
1835static int __init_or_module emif_register(void)
1836{
1837 return platform_driver_probe(&emif_driver, emif_probe);
1838}
1839
1840static void __exit emif_unregister(void)
1841{
1842 platform_driver_unregister(&emif_driver);
1843}
1844
1845module_init(emif_register);
1846module_exit(emif_unregister);
1847MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1848MODULE_LICENSE("GPL");
1849MODULE_ALIAS("platform:emif");
1850MODULE_AUTHOR("Texas Instruments Inc");
This page took 0.117575 seconds and 5 git commands to generate.