mfd: Extend DB8500 PRCMU mailbox defs
[deliverable/linux.git] / drivers / mfd / db8500-prcmu.c
CommitLineData
e3726fcf 1/*
e0befb23
MP
2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
e3726fcf
LW
4 *
5 * License Terms: GNU General Public License v2
e0befb23
MP
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
e3726fcf
LW
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9 *
e0befb23
MP
10 * U8500 PRCM Unit interface driver
11 *
e3726fcf 12 */
e3726fcf 13#include <linux/module.h>
3df57bcf
MN
14#include <linux/kernel.h>
15#include <linux/delay.h>
e3726fcf
LW
16#include <linux/errno.h>
17#include <linux/err.h>
3df57bcf 18#include <linux/spinlock.h>
e3726fcf 19#include <linux/io.h>
3df57bcf 20#include <linux/slab.h>
e3726fcf
LW
21#include <linux/mutex.h>
22#include <linux/completion.h>
3df57bcf 23#include <linux/irq.h>
e3726fcf
LW
24#include <linux/jiffies.h>
25#include <linux/bitops.h>
3df57bcf
MN
26#include <linux/fs.h>
27#include <linux/platform_device.h>
28#include <linux/uaccess.h>
29#include <linux/mfd/core.h>
650c2a21 30#include <linux/mfd/db8500-prcmu.h>
1032fbfd
BJ
31#include <linux/regulator/db8500-prcmu.h>
32#include <linux/regulator/machine.h>
3df57bcf
MN
33#include <mach/hardware.h>
34#include <mach/irqs.h>
35#include <mach/db8500-regs.h>
36#include <mach/id.h>
37#include "db8500-prcmu-regs.h"
38
39/* Offset for the firmware version within the TCPM */
40#define PRCMU_FW_VERSION_OFFSET 0xA4
41
42/* PRCMU project numbers, defined by PRCMU FW */
43#define PRCMU_PROJECT_ID_8500V1_0 1
44#define PRCMU_PROJECT_ID_8500V2_0 2
45#define PRCMU_PROJECT_ID_8400V2_0 3
46
47/* Index of different voltages to be used when accessing AVSData */
48#define PRCM_AVS_BASE 0x2FC
49#define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
50#define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
51#define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
52#define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
53#define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
54#define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
55#define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
56#define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
57#define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
58#define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
59#define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
60#define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
61#define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
62
63#define PRCM_AVS_VOLTAGE 0
64#define PRCM_AVS_VOLTAGE_MASK 0x3f
65#define PRCM_AVS_ISSLOWSTARTUP 6
66#define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
67#define PRCM_AVS_ISMODEENABLE 7
68#define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
69
70#define PRCM_BOOT_STATUS 0xFFF
71#define PRCM_ROMCODE_A2P 0xFFE
72#define PRCM_ROMCODE_P2A 0xFFD
73#define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
74
75#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
76
77#define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
78#define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
79#define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
80#define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
81#define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
82#define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
83#define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
84#define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
85
86/* Req Mailboxes */
87#define PRCM_REQ_MB0 0xFDC /* 12 bytes */
88#define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
89#define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
90#define PRCM_REQ_MB3 0xE4C /* 372 bytes */
91#define PRCM_REQ_MB4 0xE48 /* 4 bytes */
92#define PRCM_REQ_MB5 0xE44 /* 4 bytes */
93
94/* Ack Mailboxes */
95#define PRCM_ACK_MB0 0xE08 /* 52 bytes */
96#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
97#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
98#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
99#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
100#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
101
102/* Mailbox 0 headers */
103#define MB0H_POWER_STATE_TRANS 0
104#define MB0H_CONFIG_WAKEUPS_EXE 1
105#define MB0H_READ_WAKEUP_ACK 3
106#define MB0H_CONFIG_WAKEUPS_SLEEP 4
107
108#define MB0H_WAKEUP_EXE 2
109#define MB0H_WAKEUP_SLEEP 5
110
111/* Mailbox 0 REQs */
112#define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
113#define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
114#define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
115#define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
116#define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
117#define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
118
119/* Mailbox 0 ACKs */
120#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
121#define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
122#define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
123#define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
124#define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
125#define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
126#define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
127
128/* Mailbox 1 headers */
129#define MB1H_ARM_APE_OPP 0x0
130#define MB1H_RESET_MODEM 0x2
131#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
132#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
133#define MB1H_RELEASE_USB_WAKEUP 0x5
a592c2e2 134#define MB1H_PLL_ON_OFF 0x6
3df57bcf
MN
135
136/* Mailbox 1 Requests */
137#define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
138#define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
a592c2e2
MN
139#define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
140#define PLL_SOC1_OFF 0x4
141#define PLL_SOC1_ON 0x8
3df57bcf
MN
142
143/* Mailbox 1 ACKs */
144#define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
145#define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
146#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
147#define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
148
149/* Mailbox 2 headers */
150#define MB2H_DPS 0x0
151#define MB2H_AUTO_PWR 0x1
152
153/* Mailbox 2 REQs */
154#define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
155#define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
156#define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
157#define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
158#define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
159#define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
160#define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
161#define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
162#define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
163#define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
164
165/* Mailbox 2 ACKs */
166#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
167#define HWACC_PWR_ST_OK 0xFE
168
169/* Mailbox 3 headers */
170#define MB3H_ANC 0x0
171#define MB3H_SIDETONE 0x1
172#define MB3H_SYSCLK 0xE
173
174/* Mailbox 3 Requests */
175#define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
176#define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
177#define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
178#define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
179#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
180#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
181#define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
182
183/* Mailbox 4 headers */
184#define MB4H_DDR_INIT 0x0
185#define MB4H_MEM_ST 0x1
186#define MB4H_HOTDOG 0x12
187#define MB4H_HOTMON 0x13
188#define MB4H_HOT_PERIOD 0x14
a592c2e2
MN
189#define MB4H_A9WDOG_CONF 0x16
190#define MB4H_A9WDOG_EN 0x17
191#define MB4H_A9WDOG_DIS 0x18
192#define MB4H_A9WDOG_LOAD 0x19
193#define MB4H_A9WDOG_KICK 0x20
3df57bcf
MN
194
195/* Mailbox 4 Requests */
196#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
197#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
198#define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
199#define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
200#define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
201#define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
202#define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
203#define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
204#define HOTMON_CONFIG_LOW BIT(0)
205#define HOTMON_CONFIG_HIGH BIT(1)
a592c2e2
MN
206#define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
207#define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
208#define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
209#define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
210#define A9WDOG_AUTO_OFF_EN BIT(7)
211#define A9WDOG_AUTO_OFF_DIS 0
212#define A9WDOG_ID_MASK 0xf
3df57bcf
MN
213
214/* Mailbox 5 Requests */
215#define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
216#define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
217#define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
218#define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
219#define PRCMU_I2C_WRITE(slave) \
220 (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
221#define PRCMU_I2C_READ(slave) \
222 (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
223#define PRCMU_I2C_STOP_EN BIT(3)
224
225/* Mailbox 5 ACKs */
226#define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
227#define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
228#define I2C_WR_OK 0x1
229#define I2C_RD_OK 0x2
230
231#define NUM_MB 8
232#define MBOX_BIT BIT
233#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
234
235/*
236 * Wakeups/IRQs
237 */
238
239#define WAKEUP_BIT_RTC BIT(0)
240#define WAKEUP_BIT_RTT0 BIT(1)
241#define WAKEUP_BIT_RTT1 BIT(2)
242#define WAKEUP_BIT_HSI0 BIT(3)
243#define WAKEUP_BIT_HSI1 BIT(4)
244#define WAKEUP_BIT_CA_WAKE BIT(5)
245#define WAKEUP_BIT_USB BIT(6)
246#define WAKEUP_BIT_ABB BIT(7)
247#define WAKEUP_BIT_ABB_FIFO BIT(8)
248#define WAKEUP_BIT_SYSCLK_OK BIT(9)
249#define WAKEUP_BIT_CA_SLEEP BIT(10)
250#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
251#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
252#define WAKEUP_BIT_ANC_OK BIT(13)
253#define WAKEUP_BIT_SW_ERROR BIT(14)
254#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
255#define WAKEUP_BIT_ARM BIT(17)
256#define WAKEUP_BIT_HOTMON_LOW BIT(18)
257#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
258#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
259#define WAKEUP_BIT_GPIO0 BIT(23)
260#define WAKEUP_BIT_GPIO1 BIT(24)
261#define WAKEUP_BIT_GPIO2 BIT(25)
262#define WAKEUP_BIT_GPIO3 BIT(26)
263#define WAKEUP_BIT_GPIO4 BIT(27)
264#define WAKEUP_BIT_GPIO5 BIT(28)
265#define WAKEUP_BIT_GPIO6 BIT(29)
266#define WAKEUP_BIT_GPIO7 BIT(30)
267#define WAKEUP_BIT_GPIO8 BIT(31)
268
269/*
270 * This vector maps irq numbers to the bits in the bit field used in
271 * communication with the PRCMU firmware.
272 *
273 * The reason for having this is to keep the irq numbers contiguous even though
274 * the bits in the bit field are not. (The bits also have a tendency to move
275 * around, to further complicate matters.)
276 */
277#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
278#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
279static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
280 IRQ_ENTRY(RTC),
281 IRQ_ENTRY(RTT0),
282 IRQ_ENTRY(RTT1),
283 IRQ_ENTRY(HSI0),
284 IRQ_ENTRY(HSI1),
285 IRQ_ENTRY(CA_WAKE),
286 IRQ_ENTRY(USB),
287 IRQ_ENTRY(ABB),
288 IRQ_ENTRY(ABB_FIFO),
289 IRQ_ENTRY(CA_SLEEP),
290 IRQ_ENTRY(ARM),
291 IRQ_ENTRY(HOTMON_LOW),
292 IRQ_ENTRY(HOTMON_HIGH),
293 IRQ_ENTRY(MODEM_SW_RESET_REQ),
294 IRQ_ENTRY(GPIO0),
295 IRQ_ENTRY(GPIO1),
296 IRQ_ENTRY(GPIO2),
297 IRQ_ENTRY(GPIO3),
298 IRQ_ENTRY(GPIO4),
299 IRQ_ENTRY(GPIO5),
300 IRQ_ENTRY(GPIO6),
301 IRQ_ENTRY(GPIO7),
302 IRQ_ENTRY(GPIO8)
303};
304
305#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
306#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
307static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
308 WAKEUP_ENTRY(RTC),
309 WAKEUP_ENTRY(RTT0),
310 WAKEUP_ENTRY(RTT1),
311 WAKEUP_ENTRY(HSI0),
312 WAKEUP_ENTRY(HSI1),
313 WAKEUP_ENTRY(USB),
314 WAKEUP_ENTRY(ABB),
315 WAKEUP_ENTRY(ABB_FIFO),
316 WAKEUP_ENTRY(ARM)
317};
318
319/*
320 * mb0_transfer - state needed for mailbox 0 communication.
321 * @lock: The transaction lock.
322 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
323 * the request data.
324 * @mask_work: Work structure used for (un)masking wakeup interrupts.
325 * @req: Request data that need to persist between requests.
326 */
327static struct {
328 spinlock_t lock;
329 spinlock_t dbb_irqs_lock;
330 struct work_struct mask_work;
331 struct mutex ac_wake_lock;
332 struct completion ac_wake_work;
333 struct {
334 u32 dbb_irqs;
335 u32 dbb_wakeups;
336 u32 abb_events;
337 } req;
338} mb0_transfer;
339
340/*
341 * mb1_transfer - state needed for mailbox 1 communication.
342 * @lock: The transaction lock.
343 * @work: The transaction completion structure.
344 * @ack: Reply ("acknowledge") data.
345 */
346static struct {
347 struct mutex lock;
348 struct completion work;
349 struct {
350 u8 header;
351 u8 arm_opp;
352 u8 ape_opp;
353 u8 ape_voltage_status;
354 } ack;
355} mb1_transfer;
356
357/*
358 * mb2_transfer - state needed for mailbox 2 communication.
359 * @lock: The transaction lock.
360 * @work: The transaction completion structure.
361 * @auto_pm_lock: The autonomous power management configuration lock.
362 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
363 * @req: Request data that need to persist between requests.
364 * @ack: Reply ("acknowledge") data.
365 */
366static struct {
367 struct mutex lock;
368 struct completion work;
369 spinlock_t auto_pm_lock;
370 bool auto_pm_enabled;
371 struct {
372 u8 status;
373 } ack;
374} mb2_transfer;
375
376/*
377 * mb3_transfer - state needed for mailbox 3 communication.
378 * @lock: The request lock.
379 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
380 * @sysclk_work: Work structure used for sysclk requests.
381 */
382static struct {
383 spinlock_t lock;
384 struct mutex sysclk_lock;
385 struct completion sysclk_work;
386} mb3_transfer;
387
388/*
389 * mb4_transfer - state needed for mailbox 4 communication.
390 * @lock: The transaction lock.
391 * @work: The transaction completion structure.
392 */
393static struct {
394 struct mutex lock;
395 struct completion work;
396} mb4_transfer;
397
398/*
399 * mb5_transfer - state needed for mailbox 5 communication.
400 * @lock: The transaction lock.
401 * @work: The transaction completion structure.
402 * @ack: Reply ("acknowledge") data.
403 */
404static struct {
405 struct mutex lock;
406 struct completion work;
407 struct {
408 u8 status;
409 u8 value;
410 } ack;
411} mb5_transfer;
412
413static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
414
415/* Spinlocks */
416static DEFINE_SPINLOCK(clkout_lock);
417static DEFINE_SPINLOCK(gpiocr_lock);
418
419/* Global var to runtime determine TCDM base for v2 or v1 */
420static __iomem void *tcdm_base;
421
422struct clk_mgt {
423 unsigned int offset;
424 u32 pllsw;
425};
426
427static DEFINE_SPINLOCK(clk_mgt_lock);
428
c553b3ca 429#define CLK_MGT_ENTRY(_name)[PRCMU_##_name] = { (PRCM_##_name##_MGT_OFF), 0 }
3df57bcf
MN
430struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
431 CLK_MGT_ENTRY(SGACLK),
432 CLK_MGT_ENTRY(UARTCLK),
433 CLK_MGT_ENTRY(MSP02CLK),
434 CLK_MGT_ENTRY(MSP1CLK),
435 CLK_MGT_ENTRY(I2CCLK),
436 CLK_MGT_ENTRY(SDMMCCLK),
437 CLK_MGT_ENTRY(SLIMCLK),
438 CLK_MGT_ENTRY(PER1CLK),
439 CLK_MGT_ENTRY(PER2CLK),
440 CLK_MGT_ENTRY(PER3CLK),
441 CLK_MGT_ENTRY(PER5CLK),
442 CLK_MGT_ENTRY(PER6CLK),
443 CLK_MGT_ENTRY(PER7CLK),
444 CLK_MGT_ENTRY(LCDCLK),
445 CLK_MGT_ENTRY(BMLCLK),
446 CLK_MGT_ENTRY(HSITXCLK),
447 CLK_MGT_ENTRY(HSIRXCLK),
448 CLK_MGT_ENTRY(HDMICLK),
449 CLK_MGT_ENTRY(APEATCLK),
450 CLK_MGT_ENTRY(APETRACECLK),
451 CLK_MGT_ENTRY(MCDECLK),
452 CLK_MGT_ENTRY(IPI2CCLK),
453 CLK_MGT_ENTRY(DSIALTCLK),
454 CLK_MGT_ENTRY(DMACLK),
455 CLK_MGT_ENTRY(B2R2CLK),
456 CLK_MGT_ENTRY(TVCLK),
457 CLK_MGT_ENTRY(SSPCLK),
458 CLK_MGT_ENTRY(RNGCLK),
459 CLK_MGT_ENTRY(UICCCLK),
460};
461
462/*
463* Used by MCDE to setup all necessary PRCMU registers
464*/
465#define PRCMU_RESET_DSIPLL 0x00004000
466#define PRCMU_UNCLAMP_DSIPLL 0x00400800
467
468#define PRCMU_CLK_PLL_DIV_SHIFT 0
469#define PRCMU_CLK_PLL_SW_SHIFT 5
470#define PRCMU_CLK_38 (1 << 9)
471#define PRCMU_CLK_38_SRC (1 << 10)
472#define PRCMU_CLK_38_DIV (1 << 11)
473
474/* PLLDIV=12, PLLSW=4 (PLLDDR) */
475#define PRCMU_DSI_CLOCK_SETTING 0x0000008C
476
477/* PLLDIV=8, PLLSW=4 (PLLDDR) */
478#define PRCMU_DSI_CLOCK_SETTING_U8400 0x00000088
479
480/* DPI 50000000 Hz */
481#define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
482 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
483#define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
484
485/* D=101, N=1, R=4, SELDIV2=0 */
486#define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
487
488/* D=70, N=1, R=3, SELDIV2=0 */
489#define PRCMU_PLLDSI_FREQ_SETTING_U8400 0x00030146
490
491#define PRCMU_ENABLE_PLLDSI 0x00000001
492#define PRCMU_DISABLE_PLLDSI 0x00000000
493#define PRCMU_RELEASE_RESET_DSS 0x0000400C
494#define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
495/* ESC clk, div0=1, div1=1, div2=3 */
496#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
497#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
498#define PRCMU_DSI_RESET_SW 0x00000007
499
500#define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
501
502static struct {
503 u8 project_number;
504 u8 api_version;
505 u8 func_version;
506 u8 errata;
507} prcmu_version;
508
509
510int prcmu_enable_dsipll(void)
511{
512 int i;
513 unsigned int plldsifreq;
514
515 /* Clear DSIPLL_RESETN */
c553b3ca 516 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
3df57bcf 517 /* Unclamp DSIPLL in/out */
c553b3ca 518 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
3df57bcf
MN
519
520 if (prcmu_is_u8400())
521 plldsifreq = PRCMU_PLLDSI_FREQ_SETTING_U8400;
522 else
523 plldsifreq = PRCMU_PLLDSI_FREQ_SETTING;
524 /* Set DSI PLL FREQ */
c553b3ca
MN
525 writel(plldsifreq, PRCM_PLLDSI_FREQ);
526 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
3df57bcf 527 /* Enable Escape clocks */
c553b3ca 528 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
529
530 /* Start DSI PLL */
c553b3ca 531 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 532 /* Reset DSI PLL */
c553b3ca 533 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
3df57bcf 534 for (i = 0; i < 10; i++) {
c553b3ca 535 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
3df57bcf
MN
536 == PRCMU_PLLDSI_LOCKP_LOCKED)
537 break;
538 udelay(100);
539 }
540 /* Set DSIPLL_RESETN */
c553b3ca 541 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
3df57bcf
MN
542 return 0;
543}
544
545int prcmu_disable_dsipll(void)
546{
547 /* Disable dsi pll */
c553b3ca 548 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 549 /* Disable escapeclock */
c553b3ca 550 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
551 return 0;
552}
553
554int prcmu_set_display_clocks(void)
555{
556 unsigned long flags;
557 unsigned int dsiclk;
558
559 if (prcmu_is_u8400())
560 dsiclk = PRCMU_DSI_CLOCK_SETTING_U8400;
561 else
562 dsiclk = PRCMU_DSI_CLOCK_SETTING;
563
564 spin_lock_irqsave(&clk_mgt_lock, flags);
565
566 /* Grab the HW semaphore. */
c553b3ca 567 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
568 cpu_relax();
569
c553b3ca
MN
570 writel(dsiclk, PRCM_HDMICLK_MGT);
571 writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
572 writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
3df57bcf
MN
573
574 /* Release the HW semaphore. */
c553b3ca 575 writel(0, PRCM_SEM);
3df57bcf
MN
576
577 spin_unlock_irqrestore(&clk_mgt_lock, flags);
578
579 return 0;
580}
581
582/**
583 * prcmu_enable_spi2 - Enables pin muxing for SPI2 on OtherAlternateC1.
584 */
585void prcmu_enable_spi2(void)
586{
587 u32 reg;
588 unsigned long flags;
589
590 spin_lock_irqsave(&gpiocr_lock, flags);
c553b3ca
MN
591 reg = readl(PRCM_GPIOCR);
592 writel(reg | PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
3df57bcf
MN
593 spin_unlock_irqrestore(&gpiocr_lock, flags);
594}
595
596/**
597 * prcmu_disable_spi2 - Disables pin muxing for SPI2 on OtherAlternateC1.
598 */
599void prcmu_disable_spi2(void)
600{
601 u32 reg;
602 unsigned long flags;
603
604 spin_lock_irqsave(&gpiocr_lock, flags);
c553b3ca
MN
605 reg = readl(PRCM_GPIOCR);
606 writel(reg & ~PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
3df57bcf
MN
607 spin_unlock_irqrestore(&gpiocr_lock, flags);
608}
609
610bool prcmu_has_arm_maxopp(void)
611{
612 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
613 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
614}
615
616bool prcmu_is_u8400(void)
617{
618 return prcmu_version.project_number == PRCMU_PROJECT_ID_8400V2_0;
619}
620
621/**
622 * prcmu_get_boot_status - PRCMU boot status checking
623 * Returns: the current PRCMU boot status
624 */
625int prcmu_get_boot_status(void)
626{
627 return readb(tcdm_base + PRCM_BOOT_STATUS);
628}
629
630/**
631 * prcmu_set_rc_a2p - This function is used to run few power state sequences
632 * @val: Value to be set, i.e. transition requested
633 * Returns: 0 on success, -EINVAL on invalid argument
634 *
635 * This function is used to run the following power state sequences -
636 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
637 */
638int prcmu_set_rc_a2p(enum romcode_write val)
639{
640 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
641 return -EINVAL;
642 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
643 return 0;
644}
645
646/**
647 * prcmu_get_rc_p2a - This function is used to get power state sequences
648 * Returns: the power transition that has last happened
649 *
650 * This function can return the following transitions-
651 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
652 */
653enum romcode_read prcmu_get_rc_p2a(void)
654{
655 return readb(tcdm_base + PRCM_ROMCODE_P2A);
656}
657
658/**
659 * prcmu_get_current_mode - Return the current XP70 power mode
660 * Returns: Returns the current AP(ARM) power mode: init,
661 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
662 */
663enum ap_pwrst prcmu_get_xp70_current_state(void)
664{
665 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
666}
667
668/**
669 * prcmu_config_clkout - Configure one of the programmable clock outputs.
670 * @clkout: The CLKOUT number (0 or 1).
671 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
672 * @div: The divider to be applied.
673 *
674 * Configures one of the programmable clock outputs (CLKOUTs).
675 * @div should be in the range [1,63] to request a configuration, or 0 to
676 * inform that the configuration is no longer requested.
677 */
678int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
679{
680 static int requests[2];
681 int r = 0;
682 unsigned long flags;
683 u32 val;
684 u32 bits;
685 u32 mask;
686 u32 div_mask;
687
688 BUG_ON(clkout > 1);
689 BUG_ON(div > 63);
690 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
691
692 if (!div && !requests[clkout])
693 return -EINVAL;
694
695 switch (clkout) {
696 case 0:
697 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
698 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
699 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
700 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
701 break;
702 case 1:
703 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
704 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
705 PRCM_CLKOCR_CLK1TYPE);
706 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
707 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
708 break;
709 }
710 bits &= mask;
711
712 spin_lock_irqsave(&clkout_lock, flags);
713
c553b3ca 714 val = readl(PRCM_CLKOCR);
3df57bcf
MN
715 if (val & div_mask) {
716 if (div) {
717 if ((val & mask) != bits) {
718 r = -EBUSY;
719 goto unlock_and_return;
720 }
721 } else {
722 if ((val & mask & ~div_mask) != bits) {
723 r = -EINVAL;
724 goto unlock_and_return;
725 }
726 }
727 }
c553b3ca 728 writel((bits | (val & ~mask)), PRCM_CLKOCR);
3df57bcf
MN
729 requests[clkout] += (div ? 1 : -1);
730
731unlock_and_return:
732 spin_unlock_irqrestore(&clkout_lock, flags);
733
734 return r;
735}
736
737int prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
738{
739 unsigned long flags;
740
741 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
742
743 spin_lock_irqsave(&mb0_transfer.lock, flags);
744
c553b3ca 745 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
746 cpu_relax();
747
748 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
749 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
750 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
751 writeb((keep_ulp_clk ? 1 : 0),
752 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
753 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
c553b3ca 754 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
755
756 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
757
758 return 0;
759}
760
761/* This function should only be called while mb0_transfer.lock is held. */
762static void config_wakeups(void)
763{
764 const u8 header[2] = {
765 MB0H_CONFIG_WAKEUPS_EXE,
766 MB0H_CONFIG_WAKEUPS_SLEEP
767 };
768 static u32 last_dbb_events;
769 static u32 last_abb_events;
770 u32 dbb_events;
771 u32 abb_events;
772 unsigned int i;
773
774 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
775 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
776
777 abb_events = mb0_transfer.req.abb_events;
778
779 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
780 return;
781
782 for (i = 0; i < 2; i++) {
c553b3ca 783 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
784 cpu_relax();
785 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
786 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
787 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 788 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
789 }
790 last_dbb_events = dbb_events;
791 last_abb_events = abb_events;
792}
793
794void prcmu_enable_wakeups(u32 wakeups)
795{
796 unsigned long flags;
797 u32 bits;
798 int i;
799
800 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
801
802 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
803 if (wakeups & BIT(i))
804 bits |= prcmu_wakeup_bit[i];
805 }
806
807 spin_lock_irqsave(&mb0_transfer.lock, flags);
808
809 mb0_transfer.req.dbb_wakeups = bits;
810 config_wakeups();
811
812 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
813}
814
815void prcmu_config_abb_event_readout(u32 abb_events)
816{
817 unsigned long flags;
818
819 spin_lock_irqsave(&mb0_transfer.lock, flags);
820
821 mb0_transfer.req.abb_events = abb_events;
822 config_wakeups();
823
824 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
825}
826
827void prcmu_get_abb_event_buffer(void __iomem **buf)
828{
829 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
830 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
831 else
832 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
833}
834
835/**
836 * prcmu_set_arm_opp - set the appropriate ARM OPP
837 * @opp: The new ARM operating point to which transition is to be made
838 * Returns: 0 on success, non-zero on failure
839 *
840 * This function sets the the operating point of the ARM.
841 */
842int prcmu_set_arm_opp(u8 opp)
843{
844 int r;
845
846 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
847 return -EINVAL;
848
849 r = 0;
850
851 mutex_lock(&mb1_transfer.lock);
852
c553b3ca 853 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
854 cpu_relax();
855
856 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
857 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
858 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
859
c553b3ca 860 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
861 wait_for_completion(&mb1_transfer.work);
862
863 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
864 (mb1_transfer.ack.arm_opp != opp))
865 r = -EIO;
866
867 mutex_unlock(&mb1_transfer.lock);
868
869 return r;
870}
871
872/**
873 * prcmu_get_arm_opp - get the current ARM OPP
874 *
875 * Returns: the current ARM OPP
876 */
877int prcmu_get_arm_opp(void)
878{
879 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
880}
881
882/**
883 * prcmu_get_ddr_opp - get the current DDR OPP
884 *
885 * Returns: the current DDR OPP
886 */
887int prcmu_get_ddr_opp(void)
888{
c553b3ca 889 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
890}
891
892/**
893 * set_ddr_opp - set the appropriate DDR OPP
894 * @opp: The new DDR operating point to which transition is to be made
895 * Returns: 0 on success, non-zero on failure
896 *
897 * This function sets the operating point of the DDR.
898 */
899int prcmu_set_ddr_opp(u8 opp)
900{
901 if (opp < DDR_100_OPP || opp > DDR_25_OPP)
902 return -EINVAL;
903 /* Changing the DDR OPP can hang the hardware pre-v21 */
904 if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
c553b3ca 905 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
906
907 return 0;
908}
909/**
910 * set_ape_opp - set the appropriate APE OPP
911 * @opp: The new APE operating point to which transition is to be made
912 * Returns: 0 on success, non-zero on failure
913 *
914 * This function sets the operating point of the APE.
915 */
916int prcmu_set_ape_opp(u8 opp)
917{
918 int r = 0;
919
920 mutex_lock(&mb1_transfer.lock);
921
c553b3ca 922 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
923 cpu_relax();
924
925 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
926 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
927 writeb(opp, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
928
c553b3ca 929 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
930 wait_for_completion(&mb1_transfer.work);
931
932 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
933 (mb1_transfer.ack.ape_opp != opp))
934 r = -EIO;
935
936 mutex_unlock(&mb1_transfer.lock);
937
938 return r;
939}
940
941/**
942 * prcmu_get_ape_opp - get the current APE OPP
943 *
944 * Returns: the current APE OPP
945 */
946int prcmu_get_ape_opp(void)
947{
948 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
949}
950
951/**
952 * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
953 * @enable: true to request the higher voltage, false to drop a request.
954 *
955 * Calls to this function to enable and disable requests must be balanced.
956 */
957int prcmu_request_ape_opp_100_voltage(bool enable)
958{
959 int r = 0;
960 u8 header;
961 static unsigned int requests;
962
963 mutex_lock(&mb1_transfer.lock);
964
965 if (enable) {
966 if (0 != requests++)
967 goto unlock_and_return;
968 header = MB1H_REQUEST_APE_OPP_100_VOLT;
969 } else {
970 if (requests == 0) {
971 r = -EIO;
972 goto unlock_and_return;
973 } else if (1 != requests--) {
974 goto unlock_and_return;
975 }
976 header = MB1H_RELEASE_APE_OPP_100_VOLT;
977 }
978
c553b3ca 979 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
980 cpu_relax();
981
982 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
983
c553b3ca 984 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
985 wait_for_completion(&mb1_transfer.work);
986
987 if ((mb1_transfer.ack.header != header) ||
988 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
989 r = -EIO;
990
991unlock_and_return:
992 mutex_unlock(&mb1_transfer.lock);
993
994 return r;
995}
996
997/**
998 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
999 *
1000 * This function releases the power state requirements of a USB wakeup.
1001 */
1002int prcmu_release_usb_wakeup_state(void)
1003{
1004 int r = 0;
1005
1006 mutex_lock(&mb1_transfer.lock);
1007
c553b3ca 1008 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1009 cpu_relax();
1010
1011 writeb(MB1H_RELEASE_USB_WAKEUP,
1012 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1013
c553b3ca 1014 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1015 wait_for_completion(&mb1_transfer.work);
1016
1017 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1018 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1019 r = -EIO;
1020
1021 mutex_unlock(&mb1_transfer.lock);
1022
1023 return r;
1024}
1025
1026/**
1027 * prcmu_set_epod - set the state of a EPOD (power domain)
1028 * @epod_id: The EPOD to set
1029 * @epod_state: The new EPOD state
1030 *
1031 * This function sets the state of a EPOD (power domain). It may not be called
1032 * from interrupt context.
1033 */
1034int prcmu_set_epod(u16 epod_id, u8 epod_state)
1035{
1036 int r = 0;
1037 bool ram_retention = false;
1038 int i;
1039
1040 /* check argument */
1041 BUG_ON(epod_id >= NUM_EPOD_ID);
1042
1043 /* set flag if retention is possible */
1044 switch (epod_id) {
1045 case EPOD_ID_SVAMMDSP:
1046 case EPOD_ID_SIAMMDSP:
1047 case EPOD_ID_ESRAM12:
1048 case EPOD_ID_ESRAM34:
1049 ram_retention = true;
1050 break;
1051 }
1052
1053 /* check argument */
1054 BUG_ON(epod_state > EPOD_STATE_ON);
1055 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1056
1057 /* get lock */
1058 mutex_lock(&mb2_transfer.lock);
1059
1060 /* wait for mailbox */
c553b3ca 1061 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
3df57bcf
MN
1062 cpu_relax();
1063
1064 /* fill in mailbox */
1065 for (i = 0; i < NUM_EPOD_ID; i++)
1066 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1067 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1068
1069 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1070
c553b3ca 1071 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1072
1073 /*
1074 * The current firmware version does not handle errors correctly,
1075 * and we cannot recover if there is an error.
1076 * This is expected to change when the firmware is updated.
1077 */
1078 if (!wait_for_completion_timeout(&mb2_transfer.work,
1079 msecs_to_jiffies(20000))) {
1080 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1081 __func__);
1082 r = -EIO;
1083 goto unlock_and_return;
1084 }
1085
1086 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1087 r = -EIO;
1088
1089unlock_and_return:
1090 mutex_unlock(&mb2_transfer.lock);
1091 return r;
1092}
1093
1094/**
1095 * prcmu_configure_auto_pm - Configure autonomous power management.
1096 * @sleep: Configuration for ApSleep.
1097 * @idle: Configuration for ApIdle.
1098 */
1099void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1100 struct prcmu_auto_pm_config *idle)
1101{
1102 u32 sleep_cfg;
1103 u32 idle_cfg;
1104 unsigned long flags;
e3726fcf 1105
3df57bcf 1106 BUG_ON((sleep == NULL) || (idle == NULL));
650c2a21 1107
3df57bcf
MN
1108 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1109 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1110 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1111 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1112 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1113 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
e3726fcf 1114
3df57bcf
MN
1115 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1116 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1117 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1118 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1119 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1120 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
e3726fcf 1121
3df57bcf 1122 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
e0befb23 1123
3df57bcf
MN
1124 /*
1125 * The autonomous power management configuration is done through
1126 * fields in mailbox 2, but these fields are only used as shared
1127 * variables - i.e. there is no need to send a message.
1128 */
1129 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1130 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
e0befb23 1131
3df57bcf
MN
1132 mb2_transfer.auto_pm_enabled =
1133 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1134 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1135 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1136 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
e0befb23 1137
3df57bcf
MN
1138 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1139}
1140EXPORT_SYMBOL(prcmu_configure_auto_pm);
e3726fcf 1141
3df57bcf
MN
1142bool prcmu_is_auto_pm_enabled(void)
1143{
1144 return mb2_transfer.auto_pm_enabled;
1145}
e0befb23 1146
3df57bcf
MN
1147static int request_sysclk(bool enable)
1148{
1149 int r;
1150 unsigned long flags;
e3726fcf 1151
3df57bcf 1152 r = 0;
e3726fcf 1153
3df57bcf 1154 mutex_lock(&mb3_transfer.sysclk_lock);
e0befb23 1155
3df57bcf 1156 spin_lock_irqsave(&mb3_transfer.lock, flags);
e0befb23 1157
c553b3ca 1158 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
3df57bcf 1159 cpu_relax();
e0befb23 1160
3df57bcf 1161 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
e3726fcf 1162
3df57bcf 1163 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
c553b3ca 1164 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
e3726fcf 1165
3df57bcf
MN
1166 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1167
1168 /*
1169 * The firmware only sends an ACK if we want to enable the
1170 * SysClk, and it succeeds.
1171 */
1172 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1173 msecs_to_jiffies(20000))) {
1174 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1175 __func__);
1176 r = -EIO;
1177 }
1178
1179 mutex_unlock(&mb3_transfer.sysclk_lock);
1180
1181 return r;
1182}
1183
1184static int request_timclk(bool enable)
1185{
1186 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1187
1188 if (!enable)
1189 val |= PRCM_TCR_STOP_TIMERS;
c553b3ca 1190 writel(val, PRCM_TCR);
3df57bcf
MN
1191
1192 return 0;
1193}
1194
1195static int request_reg_clock(u8 clock, bool enable)
1196{
1197 u32 val;
1198 unsigned long flags;
1199
1200 spin_lock_irqsave(&clk_mgt_lock, flags);
1201
1202 /* Grab the HW semaphore. */
c553b3ca 1203 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
1204 cpu_relax();
1205
1206 val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
1207 if (enable) {
1208 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1209 } else {
1210 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1211 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1212 }
1213 writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
1214
1215 /* Release the HW semaphore. */
c553b3ca 1216 writel(0, PRCM_SEM);
3df57bcf
MN
1217
1218 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1219
1220 return 0;
1221}
1222
1223/**
1224 * prcmu_request_clock() - Request for a clock to be enabled or disabled.
1225 * @clock: The clock for which the request is made.
1226 * @enable: Whether the clock should be enabled (true) or disabled (false).
1227 *
1228 * This function should only be used by the clock implementation.
1229 * Do not use it from any other place!
1230 */
1231int prcmu_request_clock(u8 clock, bool enable)
1232{
1233 if (clock < PRCMU_NUM_REG_CLOCKS)
1234 return request_reg_clock(clock, enable);
1235 else if (clock == PRCMU_TIMCLK)
1236 return request_timclk(enable);
1237 else if (clock == PRCMU_SYSCLK)
1238 return request_sysclk(enable);
1239 else
1240 return -EINVAL;
1241}
1242
1243int prcmu_config_esram0_deep_sleep(u8 state)
1244{
1245 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1246 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1247 return -EINVAL;
1248
1249 mutex_lock(&mb4_transfer.lock);
1250
c553b3ca 1251 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
1252 cpu_relax();
1253
1254 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1255 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1256 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1257 writeb(DDR_PWR_STATE_ON,
1258 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1259 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1260
c553b3ca 1261 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1262 wait_for_completion(&mb4_transfer.work);
1263
1264 mutex_unlock(&mb4_transfer.lock);
1265
1266 return 0;
1267}
1268
1269int prcmu_config_hotdog(u8 threshold)
1270{
1271 mutex_lock(&mb4_transfer.lock);
1272
c553b3ca 1273 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
1274 cpu_relax();
1275
1276 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1277 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1278
c553b3ca 1279 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1280 wait_for_completion(&mb4_transfer.work);
1281
1282 mutex_unlock(&mb4_transfer.lock);
1283
1284 return 0;
1285}
1286
1287int prcmu_config_hotmon(u8 low, u8 high)
1288{
1289 mutex_lock(&mb4_transfer.lock);
1290
c553b3ca 1291 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
1292 cpu_relax();
1293
1294 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1295 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1296 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1297 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1298 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1299
c553b3ca 1300 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1301 wait_for_completion(&mb4_transfer.work);
1302
1303 mutex_unlock(&mb4_transfer.lock);
1304
1305 return 0;
1306}
1307
1308static int config_hot_period(u16 val)
1309{
1310 mutex_lock(&mb4_transfer.lock);
1311
c553b3ca 1312 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
1313 cpu_relax();
1314
1315 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1316 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1317
c553b3ca 1318 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1319 wait_for_completion(&mb4_transfer.work);
1320
1321 mutex_unlock(&mb4_transfer.lock);
1322
1323 return 0;
1324}
1325
1326int prcmu_start_temp_sense(u16 cycles32k)
1327{
1328 if (cycles32k == 0xFFFF)
1329 return -EINVAL;
1330
1331 return config_hot_period(cycles32k);
1332}
1333
1334int prcmu_stop_temp_sense(void)
1335{
1336 return config_hot_period(0xFFFF);
1337}
1338
1339/**
1340 * prcmu_set_clock_divider() - Configure the clock divider.
1341 * @clock: The clock for which the request is made.
1342 * @divider: The clock divider. (< 32)
1343 *
1344 * This function should only be used by the clock implementation.
1345 * Do not use it from any other place!
1346 */
1347int prcmu_set_clock_divider(u8 clock, u8 divider)
1348{
1349 u32 val;
1350 unsigned long flags;
1351
1352 if ((clock >= PRCMU_NUM_REG_CLOCKS) || (divider < 1) || (31 < divider))
1353 return -EINVAL;
1354
1355 spin_lock_irqsave(&clk_mgt_lock, flags);
1356
1357 /* Grab the HW semaphore. */
c553b3ca 1358 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
1359 cpu_relax();
1360
1361 val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
1362 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK);
1363 val |= (u32)divider;
1364 writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
1365
1366 /* Release the HW semaphore. */
c553b3ca 1367 writel(0, PRCM_SEM);
3df57bcf
MN
1368
1369 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1370
1371 return 0;
1372}
e3726fcf
LW
1373
1374/**
1375 * prcmu_abb_read() - Read register value(s) from the ABB.
1376 * @slave: The I2C slave address.
1377 * @reg: The (start) register address.
1378 * @value: The read out value(s).
1379 * @size: The number of registers to read.
1380 *
1381 * Reads register value(s) from the ABB.
1382 * @size has to be 1 for the current firmware version.
1383 */
1384int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
1385{
1386 int r;
1387
1388 if (size != 1)
1389 return -EINVAL;
1390
3df57bcf 1391 mutex_lock(&mb5_transfer.lock);
e3726fcf 1392
c553b3ca 1393 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
1394 cpu_relax();
1395
3df57bcf
MN
1396 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
1397 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
1398 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
1399 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
1400
c553b3ca 1401 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 1402
e3726fcf 1403 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
1404 msecs_to_jiffies(20000))) {
1405 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1406 __func__);
e3726fcf 1407 r = -EIO;
3df57bcf
MN
1408 } else {
1409 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
e3726fcf 1410 }
3df57bcf 1411
e3726fcf
LW
1412 if (!r)
1413 *value = mb5_transfer.ack.value;
1414
e3726fcf 1415 mutex_unlock(&mb5_transfer.lock);
3df57bcf 1416
e3726fcf
LW
1417 return r;
1418}
e3726fcf
LW
1419
1420/**
1421 * prcmu_abb_write() - Write register value(s) to the ABB.
1422 * @slave: The I2C slave address.
1423 * @reg: The (start) register address.
1424 * @value: The value(s) to write.
1425 * @size: The number of registers to write.
1426 *
1427 * Reads register value(s) from the ABB.
1428 * @size has to be 1 for the current firmware version.
1429 */
1430int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
1431{
1432 int r;
1433
1434 if (size != 1)
1435 return -EINVAL;
1436
3df57bcf 1437 mutex_lock(&mb5_transfer.lock);
e3726fcf 1438
c553b3ca 1439 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
1440 cpu_relax();
1441
3df57bcf
MN
1442 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
1443 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
1444 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
1445 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
1446
c553b3ca 1447 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 1448
e3726fcf 1449 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
1450 msecs_to_jiffies(20000))) {
1451 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1452 __func__);
e3726fcf 1453 r = -EIO;
3df57bcf
MN
1454 } else {
1455 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
e3726fcf 1456 }
e3726fcf 1457
e3726fcf 1458 mutex_unlock(&mb5_transfer.lock);
3df57bcf 1459
e3726fcf
LW
1460 return r;
1461}
e3726fcf 1462
3df57bcf
MN
1463/**
1464 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
1465 */
1466void prcmu_ac_wake_req(void)
e0befb23 1467{
3df57bcf 1468 u32 val;
e0befb23 1469
3df57bcf 1470 mutex_lock(&mb0_transfer.ac_wake_lock);
e0befb23 1471
c553b3ca 1472 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
1473 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
1474 goto unlock_and_return;
e0befb23 1475
3df57bcf 1476 atomic_set(&ac_wake_req_state, 1);
e0befb23 1477
c553b3ca 1478 writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), PRCM_HOSTACCESS_REQ);
e0befb23 1479
3df57bcf
MN
1480 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
1481 msecs_to_jiffies(20000))) {
1482 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1483 __func__);
1484 }
e0befb23 1485
3df57bcf
MN
1486unlock_and_return:
1487 mutex_unlock(&mb0_transfer.ac_wake_lock);
e0befb23
MP
1488}
1489
1490/**
3df57bcf 1491 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
e0befb23 1492 */
3df57bcf 1493void prcmu_ac_sleep_req()
e0befb23 1494{
3df57bcf
MN
1495 u32 val;
1496
1497 mutex_lock(&mb0_transfer.ac_wake_lock);
1498
c553b3ca 1499 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
1500 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
1501 goto unlock_and_return;
1502
1503 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
c553b3ca 1504 PRCM_HOSTACCESS_REQ);
3df57bcf
MN
1505
1506 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
1507 msecs_to_jiffies(20000))) {
1508 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1509 __func__);
1510 }
1511
1512 atomic_set(&ac_wake_req_state, 0);
1513
1514unlock_and_return:
1515 mutex_unlock(&mb0_transfer.ac_wake_lock);
e0befb23 1516}
e0befb23 1517
3df57bcf 1518bool prcmu_is_ac_wake_requested(void)
e0befb23 1519{
3df57bcf 1520 return (atomic_read(&ac_wake_req_state) != 0);
e0befb23 1521}
e0befb23
MP
1522
1523/**
3df57bcf 1524 * prcmu_system_reset - System reset
e0befb23 1525 *
3df57bcf
MN
1526 * Saves the reset reason code and then sets the APE_SOFRST register which
1527 * fires interrupt to fw
e0befb23 1528 */
3df57bcf 1529void prcmu_system_reset(u16 reset_code)
e0befb23 1530{
3df57bcf 1531 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
c553b3ca 1532 writel(1, PRCM_APE_SOFTRST);
e0befb23 1533}
e0befb23
MP
1534
1535/**
3df57bcf 1536 * prcmu_reset_modem - ask the PRCMU to reset modem
e0befb23 1537 */
3df57bcf 1538void prcmu_modem_reset(void)
e0befb23 1539{
3df57bcf
MN
1540 mutex_lock(&mb1_transfer.lock);
1541
c553b3ca 1542 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1543 cpu_relax();
1544
1545 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
c553b3ca 1546 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1547 wait_for_completion(&mb1_transfer.work);
1548
1549 /*
1550 * No need to check return from PRCMU as modem should go in reset state
1551 * This state is already managed by upper layer
1552 */
1553
1554 mutex_unlock(&mb1_transfer.lock);
e0befb23 1555}
e0befb23 1556
3df57bcf 1557static void ack_dbb_wakeup(void)
e0befb23 1558{
3df57bcf
MN
1559 unsigned long flags;
1560
1561 spin_lock_irqsave(&mb0_transfer.lock, flags);
1562
c553b3ca 1563 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
1564 cpu_relax();
1565
1566 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 1567 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1568
1569 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
e0befb23 1570}
e0befb23 1571
3df57bcf 1572static inline void print_unknown_header_warning(u8 n, u8 header)
e0befb23 1573{
3df57bcf
MN
1574 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
1575 header, n);
e0befb23
MP
1576}
1577
3df57bcf 1578static bool read_mailbox_0(void)
e3726fcf 1579{
3df57bcf
MN
1580 bool r;
1581 u32 ev;
1582 unsigned int n;
1583 u8 header;
1584
1585 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
1586 switch (header) {
1587 case MB0H_WAKEUP_EXE:
1588 case MB0H_WAKEUP_SLEEP:
1589 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
1590 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
1591 else
1592 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
1593
1594 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
1595 complete(&mb0_transfer.ac_wake_work);
1596 if (ev & WAKEUP_BIT_SYSCLK_OK)
1597 complete(&mb3_transfer.sysclk_work);
1598
1599 ev &= mb0_transfer.req.dbb_irqs;
1600
1601 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
1602 if (ev & prcmu_irq_bit[n])
1603 generic_handle_irq(IRQ_PRCMU_BASE + n);
1604 }
1605 r = true;
1606 break;
1607 default:
1608 print_unknown_header_warning(0, header);
1609 r = false;
1610 break;
1611 }
c553b3ca 1612 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
3df57bcf 1613 return r;
e3726fcf
LW
1614}
1615
3df57bcf 1616static bool read_mailbox_1(void)
e3726fcf 1617{
3df57bcf
MN
1618 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
1619 mb1_transfer.ack.arm_opp = readb(tcdm_base +
1620 PRCM_ACK_MB1_CURRENT_ARM_OPP);
1621 mb1_transfer.ack.ape_opp = readb(tcdm_base +
1622 PRCM_ACK_MB1_CURRENT_APE_OPP);
1623 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
1624 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
c553b3ca 1625 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
e0befb23 1626 complete(&mb1_transfer.work);
3df57bcf 1627 return false;
e3726fcf
LW
1628}
1629
3df57bcf 1630static bool read_mailbox_2(void)
e3726fcf 1631{
3df57bcf 1632 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
c553b3ca 1633 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
3df57bcf
MN
1634 complete(&mb2_transfer.work);
1635 return false;
e3726fcf
LW
1636}
1637
3df57bcf 1638static bool read_mailbox_3(void)
e3726fcf 1639{
c553b3ca 1640 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
3df57bcf 1641 return false;
e3726fcf
LW
1642}
1643
3df57bcf 1644static bool read_mailbox_4(void)
e3726fcf 1645{
3df57bcf
MN
1646 u8 header;
1647 bool do_complete = true;
1648
1649 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
1650 switch (header) {
1651 case MB4H_MEM_ST:
1652 case MB4H_HOTDOG:
1653 case MB4H_HOTMON:
1654 case MB4H_HOT_PERIOD:
a592c2e2
MN
1655 case MB4H_A9WDOG_CONF:
1656 case MB4H_A9WDOG_EN:
1657 case MB4H_A9WDOG_DIS:
1658 case MB4H_A9WDOG_LOAD:
1659 case MB4H_A9WDOG_KICK:
3df57bcf
MN
1660 break;
1661 default:
1662 print_unknown_header_warning(4, header);
1663 do_complete = false;
1664 break;
1665 }
1666
c553b3ca 1667 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
3df57bcf
MN
1668
1669 if (do_complete)
1670 complete(&mb4_transfer.work);
1671
1672 return false;
e3726fcf
LW
1673}
1674
3df57bcf 1675static bool read_mailbox_5(void)
e3726fcf 1676{
3df57bcf
MN
1677 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
1678 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
c553b3ca 1679 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
e3726fcf 1680 complete(&mb5_transfer.work);
3df57bcf 1681 return false;
e3726fcf
LW
1682}
1683
3df57bcf 1684static bool read_mailbox_6(void)
e3726fcf 1685{
c553b3ca 1686 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
3df57bcf 1687 return false;
e3726fcf
LW
1688}
1689
3df57bcf 1690static bool read_mailbox_7(void)
e3726fcf 1691{
c553b3ca 1692 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
3df57bcf 1693 return false;
e3726fcf
LW
1694}
1695
3df57bcf 1696static bool (* const read_mailbox[NUM_MB])(void) = {
e3726fcf
LW
1697 read_mailbox_0,
1698 read_mailbox_1,
1699 read_mailbox_2,
1700 read_mailbox_3,
1701 read_mailbox_4,
1702 read_mailbox_5,
1703 read_mailbox_6,
1704 read_mailbox_7
1705};
1706
1707static irqreturn_t prcmu_irq_handler(int irq, void *data)
1708{
1709 u32 bits;
1710 u8 n;
3df57bcf 1711 irqreturn_t r;
e3726fcf 1712
c553b3ca 1713 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
e3726fcf
LW
1714 if (unlikely(!bits))
1715 return IRQ_NONE;
1716
3df57bcf 1717 r = IRQ_HANDLED;
e3726fcf
LW
1718 for (n = 0; bits; n++) {
1719 if (bits & MBOX_BIT(n)) {
1720 bits -= MBOX_BIT(n);
3df57bcf
MN
1721 if (read_mailbox[n]())
1722 r = IRQ_WAKE_THREAD;
e3726fcf
LW
1723 }
1724 }
3df57bcf
MN
1725 return r;
1726}
1727
1728static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
1729{
1730 ack_dbb_wakeup();
e3726fcf
LW
1731 return IRQ_HANDLED;
1732}
1733
3df57bcf
MN
1734static void prcmu_mask_work(struct work_struct *work)
1735{
1736 unsigned long flags;
1737
1738 spin_lock_irqsave(&mb0_transfer.lock, flags);
1739
1740 config_wakeups();
1741
1742 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
1743}
1744
1745static void prcmu_irq_mask(struct irq_data *d)
1746{
1747 unsigned long flags;
1748
1749 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
1750
1751 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
1752
1753 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
1754
1755 if (d->irq != IRQ_PRCMU_CA_SLEEP)
1756 schedule_work(&mb0_transfer.mask_work);
1757}
1758
1759static void prcmu_irq_unmask(struct irq_data *d)
1760{
1761 unsigned long flags;
1762
1763 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
1764
1765 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
1766
1767 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
1768
1769 if (d->irq != IRQ_PRCMU_CA_SLEEP)
1770 schedule_work(&mb0_transfer.mask_work);
1771}
1772
1773static void noop(struct irq_data *d)
1774{
1775}
1776
1777static struct irq_chip prcmu_irq_chip = {
1778 .name = "prcmu",
1779 .irq_disable = prcmu_irq_mask,
1780 .irq_ack = noop,
1781 .irq_mask = prcmu_irq_mask,
1782 .irq_unmask = prcmu_irq_unmask,
1783};
1784
fcbd458e
MW
1785void __init prcmu_early_init(void)
1786{
3df57bcf
MN
1787 unsigned int i;
1788
1789 if (cpu_is_u8500v1()) {
fcbd458e
MW
1790 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE_V1);
1791 } else if (cpu_is_u8500v2()) {
3df57bcf
MN
1792 void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
1793
1794 if (tcpm_base != NULL) {
1795 int version;
1796 version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
1797 prcmu_version.project_number = version & 0xFF;
1798 prcmu_version.api_version = (version >> 8) & 0xFF;
1799 prcmu_version.func_version = (version >> 16) & 0xFF;
1800 prcmu_version.errata = (version >> 24) & 0xFF;
1801 pr_info("PRCMU firmware version %d.%d.%d\n",
1802 (version >> 8) & 0xFF, (version >> 16) & 0xFF,
1803 (version >> 24) & 0xFF);
1804 iounmap(tcpm_base);
1805 }
1806
fcbd458e
MW
1807 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
1808 } else {
1809 pr_err("prcmu: Unsupported chip version\n");
1810 BUG();
1811 }
e0befb23 1812
3df57bcf
MN
1813 spin_lock_init(&mb0_transfer.lock);
1814 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
1815 mutex_init(&mb0_transfer.ac_wake_lock);
1816 init_completion(&mb0_transfer.ac_wake_work);
e0befb23
MP
1817 mutex_init(&mb1_transfer.lock);
1818 init_completion(&mb1_transfer.work);
3df57bcf
MN
1819 mutex_init(&mb2_transfer.lock);
1820 init_completion(&mb2_transfer.work);
1821 spin_lock_init(&mb2_transfer.auto_pm_lock);
1822 spin_lock_init(&mb3_transfer.lock);
1823 mutex_init(&mb3_transfer.sysclk_lock);
1824 init_completion(&mb3_transfer.sysclk_work);
1825 mutex_init(&mb4_transfer.lock);
1826 init_completion(&mb4_transfer.work);
e3726fcf
LW
1827 mutex_init(&mb5_transfer.lock);
1828 init_completion(&mb5_transfer.work);
1829
3df57bcf
MN
1830 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
1831
1832 /* Initalize irqs. */
1833 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
1834 unsigned int irq;
1835
1836 irq = IRQ_PRCMU_BASE + i;
1837 irq_set_chip_and_handler(irq, &prcmu_irq_chip,
1838 handle_simple_irq);
1839 set_irq_flags(irq, IRQF_VALID);
1840 }
1841}
1842
1032fbfd
BJ
1843/*
1844 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
1845 */
1846static struct regulator_consumer_supply db8500_vape_consumers[] = {
1847 REGULATOR_SUPPLY("v-ape", NULL),
1848 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
1849 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
1850 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
1851 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
1852 /* "v-mmc" changed to "vcore" in the mainline kernel */
1853 REGULATOR_SUPPLY("vcore", "sdi0"),
1854 REGULATOR_SUPPLY("vcore", "sdi1"),
1855 REGULATOR_SUPPLY("vcore", "sdi2"),
1856 REGULATOR_SUPPLY("vcore", "sdi3"),
1857 REGULATOR_SUPPLY("vcore", "sdi4"),
1858 REGULATOR_SUPPLY("v-dma", "dma40.0"),
1859 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
1860 /* "v-uart" changed to "vcore" in the mainline kernel */
1861 REGULATOR_SUPPLY("vcore", "uart0"),
1862 REGULATOR_SUPPLY("vcore", "uart1"),
1863 REGULATOR_SUPPLY("vcore", "uart2"),
1864 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
1865};
1866
1867static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
1868 /* CG2900 and CW1200 power to off-chip peripherals */
1869 REGULATOR_SUPPLY("gbf_1v8", "cg2900-uart.0"),
1870 REGULATOR_SUPPLY("wlan_1v8", "cw1200.0"),
1871 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
1872 /* AV8100 regulator */
1873 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
1874};
1875
1876static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
1877 REGULATOR_SUPPLY("vsupply", "b2r2.0"),
1878 REGULATOR_SUPPLY("vsupply", "mcde.0"),
1879};
1880
1881static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
1882 [DB8500_REGULATOR_VAPE] = {
1883 .constraints = {
1884 .name = "db8500-vape",
1885 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1886 },
1887 .consumer_supplies = db8500_vape_consumers,
1888 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
1889 },
1890 [DB8500_REGULATOR_VARM] = {
1891 .constraints = {
1892 .name = "db8500-varm",
1893 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1894 },
1895 },
1896 [DB8500_REGULATOR_VMODEM] = {
1897 .constraints = {
1898 .name = "db8500-vmodem",
1899 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1900 },
1901 },
1902 [DB8500_REGULATOR_VPLL] = {
1903 .constraints = {
1904 .name = "db8500-vpll",
1905 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1906 },
1907 },
1908 [DB8500_REGULATOR_VSMPS1] = {
1909 .constraints = {
1910 .name = "db8500-vsmps1",
1911 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1912 },
1913 },
1914 [DB8500_REGULATOR_VSMPS2] = {
1915 .constraints = {
1916 .name = "db8500-vsmps2",
1917 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1918 },
1919 .consumer_supplies = db8500_vsmps2_consumers,
1920 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
1921 },
1922 [DB8500_REGULATOR_VSMPS3] = {
1923 .constraints = {
1924 .name = "db8500-vsmps3",
1925 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1926 },
1927 },
1928 [DB8500_REGULATOR_VRF1] = {
1929 .constraints = {
1930 .name = "db8500-vrf1",
1931 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1932 },
1933 },
1934 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
1935 .supply_regulator = "db8500-vape",
1936 .constraints = {
1937 .name = "db8500-sva-mmdsp",
1938 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1939 },
1940 },
1941 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
1942 .constraints = {
1943 /* "ret" means "retention" */
1944 .name = "db8500-sva-mmdsp-ret",
1945 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1946 },
1947 },
1948 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
1949 .supply_regulator = "db8500-vape",
1950 .constraints = {
1951 .name = "db8500-sva-pipe",
1952 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1953 },
1954 },
1955 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
1956 .supply_regulator = "db8500-vape",
1957 .constraints = {
1958 .name = "db8500-sia-mmdsp",
1959 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1960 },
1961 },
1962 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
1963 .constraints = {
1964 .name = "db8500-sia-mmdsp-ret",
1965 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1966 },
1967 },
1968 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
1969 .supply_regulator = "db8500-vape",
1970 .constraints = {
1971 .name = "db8500-sia-pipe",
1972 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1973 },
1974 },
1975 [DB8500_REGULATOR_SWITCH_SGA] = {
1976 .supply_regulator = "db8500-vape",
1977 .constraints = {
1978 .name = "db8500-sga",
1979 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1980 },
1981 },
1982 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
1983 .supply_regulator = "db8500-vape",
1984 .constraints = {
1985 .name = "db8500-b2r2-mcde",
1986 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1987 },
1988 .consumer_supplies = db8500_b2r2_mcde_consumers,
1989 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
1990 },
1991 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
1992 .supply_regulator = "db8500-vape",
1993 .constraints = {
1994 .name = "db8500-esram12",
1995 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1996 },
1997 },
1998 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
1999 .constraints = {
2000 .name = "db8500-esram12-ret",
2001 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2002 },
2003 },
2004 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2005 .supply_regulator = "db8500-vape",
2006 .constraints = {
2007 .name = "db8500-esram34",
2008 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2009 },
2010 },
2011 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2012 .constraints = {
2013 .name = "db8500-esram34-ret",
2014 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2015 },
2016 },
2017};
2018
3df57bcf
MN
2019static struct mfd_cell db8500_prcmu_devs[] = {
2020 {
2021 .name = "db8500-prcmu-regulators",
1ed7891f
MW
2022 .platform_data = &db8500_regulators,
2023 .pdata_size = sizeof(db8500_regulators),
3df57bcf
MN
2024 },
2025 {
2026 .name = "cpufreq-u8500",
2027 },
2028};
2029
2030/**
2031 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
2032 *
2033 */
2034static int __init db8500_prcmu_probe(struct platform_device *pdev)
2035{
2036 int err = 0;
2037
2038 if (ux500_is_svp())
2039 return -ENODEV;
2040
e3726fcf 2041 /* Clean up the mailbox interrupts after pre-kernel code. */
c553b3ca 2042 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3df57bcf
MN
2043
2044 err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
2045 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
2046 if (err < 0) {
2047 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
2048 err = -EBUSY;
2049 goto no_irq_return;
2050 }
2051
2052 if (cpu_is_u8500v20_or_later())
2053 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
2054
2055 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
2056 ARRAY_SIZE(db8500_prcmu_devs), NULL,
2057 0);
e3726fcf 2058
3df57bcf
MN
2059 if (err)
2060 pr_err("prcmu: Failed to add subdevices\n");
2061 else
2062 pr_info("DB8500 PRCMU initialized\n");
2063
2064no_irq_return:
2065 return err;
2066}
2067
2068static struct platform_driver db8500_prcmu_driver = {
2069 .driver = {
2070 .name = "db8500-prcmu",
2071 .owner = THIS_MODULE,
2072 },
2073};
2074
2075static int __init db8500_prcmu_init(void)
2076{
2077 return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
e3726fcf
LW
2078}
2079
3df57bcf
MN
2080arch_initcall(db8500_prcmu_init);
2081
2082MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
2083MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
2084MODULE_LICENSE("GPL v2");
This page took 0.174896 seconds and 5 git commands to generate.