Merge remote-tracking branch 'char-misc/char-misc-next'
[deliverable/linux.git] / drivers / misc / mei / hw-me.c
CommitLineData
3ce72726
OW
1/*
2 *
3 * Intel Management Engine Interface (Intel MEI) Linux driver
733ba91c 4 * Copyright (c) 2003-2012, Intel Corporation.
3ce72726
OW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 */
16
17#include <linux/pci.h>
06ecd645
TW
18
19#include <linux/kthread.h>
20#include <linux/interrupt.h>
77537ad2 21#include <linux/pm_runtime.h>
47a73801
TW
22
23#include "mei_dev.h"
06ecd645
TW
24#include "hbm.h"
25
6e4cd27a
TW
26#include "hw-me.h"
27#include "hw-me-regs.h"
06ecd645 28
a0a927d0
TW
29#include "mei-trace.h"
30
3a65dd4e 31/**
b68301e9 32 * mei_me_reg_read - Reads 32bit data from the mei device
3a65dd4e 33 *
a8605ea2 34 * @hw: the me hardware structure
3a65dd4e
TW
35 * @offset: offset from which to read the data
36 *
a8605ea2 37 * Return: register value (u32)
3a65dd4e 38 */
b68301e9 39static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
3a65dd4e
TW
40 unsigned long offset)
41{
52c34561 42 return ioread32(hw->mem_addr + offset);
3a65dd4e
TW
43}
44
45
46/**
b68301e9 47 * mei_me_reg_write - Writes 32bit data to the mei device
3a65dd4e 48 *
a8605ea2 49 * @hw: the me hardware structure
3a65dd4e
TW
50 * @offset: offset from which to write the data
51 * @value: register value to write (u32)
52 */
b68301e9 53static inline void mei_me_reg_write(const struct mei_me_hw *hw,
3a65dd4e
TW
54 unsigned long offset, u32 value)
55{
52c34561 56 iowrite32(value, hw->mem_addr + offset);
3a65dd4e 57}
3ce72726 58
3a65dd4e 59/**
b68301e9 60 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
d025284d 61 * read window register
3a65dd4e
TW
62 *
63 * @dev: the device structure
64 *
a8605ea2 65 * Return: ME_CB_RW register value (u32)
3a65dd4e 66 */
381a58c7 67static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
3a65dd4e 68{
b68301e9 69 return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
3a65dd4e 70}
381a58c7
TW
71
72/**
73 * mei_me_hcbww_write - write 32bit data to the host circular buffer
74 *
75 * @dev: the device structure
76 * @data: 32bit data to be written to the host circular buffer
77 */
78static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
79{
80 mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
81}
82
3a65dd4e 83/**
b68301e9 84 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
3a65dd4e 85 *
381a58c7 86 * @dev: the device structure
3a65dd4e 87 *
a8605ea2 88 * Return: ME_CSR_HA register value (u32)
3a65dd4e 89 */
381a58c7 90static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
3a65dd4e 91{
a0a927d0
TW
92 u32 reg;
93
94 reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
95 trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);
96
97 return reg;
3a65dd4e 98}
3ce72726
OW
99
100/**
d025284d
TW
101 * mei_hcsr_read - Reads 32bit data from the host CSR
102 *
381a58c7 103 * @dev: the device structure
d025284d 104 *
a8605ea2 105 * Return: H_CSR register value (u32)
d025284d 106 */
381a58c7 107static inline u32 mei_hcsr_read(const struct mei_device *dev)
d025284d 108{
a0a927d0
TW
109 u32 reg;
110
111 reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
112 trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);
113
114 return reg;
381a58c7
TW
115}
116
117/**
118 * mei_hcsr_write - writes H_CSR register to the mei device
119 *
120 * @dev: the device structure
121 * @reg: new register value
122 */
123static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
124{
a0a927d0 125 trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
381a58c7 126 mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
d025284d
TW
127}
128
129/**
130 * mei_hcsr_set - writes H_CSR register to the mei device,
3ce72726
OW
131 * and ignores the H_IS bit for it is write-one-to-zero.
132 *
381a58c7
TW
133 * @dev: the device structure
134 * @reg: new register value
3ce72726 135 */
381a58c7 136static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
3ce72726 137{
1fa55b4e 138 reg &= ~H_CSR_IS_MASK;
381a58c7 139 mei_hcsr_write(dev, reg);
3ce72726
OW
140}
141
859ef2ff
AU
142/**
143 * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
144 *
145 * @dev: the device structure
146 *
147 * Return: H_D0I3C register value (u32)
148 */
149static inline u32 mei_me_d0i3c_read(const struct mei_device *dev)
150{
151 u32 reg;
152
153 reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C);
cf094ebe 154 trace_mei_reg_read(dev->dev, "H_D0I3C", H_D0I3C, reg);
859ef2ff
AU
155
156 return reg;
157}
158
159/**
160 * mei_me_d0i3c_write - writes H_D0I3C register to device
161 *
162 * @dev: the device structure
163 * @reg: new register value
164 */
165static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg)
166{
cf094ebe 167 trace_mei_reg_write(dev->dev, "H_D0I3C", H_D0I3C, reg);
859ef2ff
AU
168 mei_me_reg_write(to_me_hw(dev), H_D0I3C, reg);
169}
170
1bd30b6a
TW
171/**
172 * mei_me_fw_status - read fw status register from pci config space
173 *
174 * @dev: mei device
175 * @fw_status: fw status register values
ce23139c
AU
176 *
177 * Return: 0 on success, error otherwise
1bd30b6a
TW
178 */
179static int mei_me_fw_status(struct mei_device *dev,
180 struct mei_fw_status *fw_status)
181{
1bd30b6a 182 struct pci_dev *pdev = to_pci_dev(dev->dev);
4ad96db6
TW
183 struct mei_me_hw *hw = to_me_hw(dev);
184 const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
1bd30b6a
TW
185 int ret;
186 int i;
187
188 if (!fw_status)
189 return -EINVAL;
190
191 fw_status->count = fw_src->count;
192 for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
a96c5482
TW
193 ret = pci_read_config_dword(pdev, fw_src->status[i],
194 &fw_status->status[i]);
195 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
196 fw_src->status[i],
197 fw_status->status[i]);
1bd30b6a
TW
198 if (ret)
199 return ret;
200 }
201
202 return 0;
203}
e7e0c231
TW
204
205/**
393b148f 206 * mei_me_hw_config - configure hw dependent settings
e7e0c231
TW
207 *
208 * @dev: mei device
209 */
827eef51 210static void mei_me_hw_config(struct mei_device *dev)
e7e0c231 211{
bb9f4d26 212 struct pci_dev *pdev = to_pci_dev(dev->dev);
ba9cdd0e 213 struct mei_me_hw *hw = to_me_hw(dev);
bb9f4d26
AU
214 u32 hcsr, reg;
215
e7e0c231 216 /* Doesn't change in runtime */
bb9f4d26 217 hcsr = mei_hcsr_read(dev);
e7e0c231 218 dev->hbuf_depth = (hcsr & H_CBD) >> 24;
ba9cdd0e 219
bb9f4d26
AU
220 reg = 0;
221 pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
a96c5482 222 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
bb9f4d26
AU
223 hw->d0i3_supported =
224 ((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK);
b9a1fc99
AU
225
226 hw->pg_state = MEI_PG_OFF;
227 if (hw->d0i3_supported) {
228 reg = mei_me_d0i3c_read(dev);
229 if (reg & H_D0I3C_I3)
230 hw->pg_state = MEI_PG_ON;
231 }
e7e0c231 232}
964a2331
TW
233
234/**
235 * mei_me_pg_state - translate internal pg state
236 * to the mei power gating state
237 *
ce23139c
AU
238 * @dev: mei device
239 *
240 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
964a2331
TW
241 */
242static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
243{
ba9cdd0e 244 struct mei_me_hw *hw = to_me_hw(dev);
92db1555 245
ba9cdd0e 246 return hw->pg_state;
964a2331
TW
247}
248
3ce72726 249/**
ce23139c 250 * mei_me_intr_clear - clear and stop interrupts
3a65dd4e
TW
251 *
252 * @dev: the device structure
253 */
827eef51 254static void mei_me_intr_clear(struct mei_device *dev)
3a65dd4e 255{
381a58c7 256 u32 hcsr = mei_hcsr_read(dev);
92db1555 257
1fa55b4e 258 if (hcsr & H_CSR_IS_MASK)
381a58c7 259 mei_hcsr_write(dev, hcsr);
3a65dd4e 260}
3a65dd4e 261/**
827eef51 262 * mei_me_intr_enable - enables mei device interrupts
3ce72726
OW
263 *
264 * @dev: the device structure
265 */
827eef51 266static void mei_me_intr_enable(struct mei_device *dev)
3ce72726 267{
381a58c7 268 u32 hcsr = mei_hcsr_read(dev);
92db1555 269
1fa55b4e 270 hcsr |= H_CSR_IE_MASK;
381a58c7 271 mei_hcsr_set(dev, hcsr);
3ce72726
OW
272}
273
274/**
ce23139c 275 * mei_me_intr_disable - disables mei device interrupts
3ce72726
OW
276 *
277 * @dev: the device structure
278 */
827eef51 279static void mei_me_intr_disable(struct mei_device *dev)
3ce72726 280{
381a58c7 281 u32 hcsr = mei_hcsr_read(dev);
92db1555 282
1fa55b4e 283 hcsr &= ~H_CSR_IE_MASK;
381a58c7 284 mei_hcsr_set(dev, hcsr);
3ce72726
OW
285}
286
68f8ea18
TW
287/**
288 * mei_me_hw_reset_release - release device from the reset
289 *
290 * @dev: the device structure
291 */
292static void mei_me_hw_reset_release(struct mei_device *dev)
293{
381a58c7 294 u32 hcsr = mei_hcsr_read(dev);
68f8ea18
TW
295
296 hcsr |= H_IG;
297 hcsr &= ~H_RST;
381a58c7 298 mei_hcsr_set(dev, hcsr);
b04ada92
TW
299
300 /* complete this write before we set host ready on another CPU */
301 mmiowb();
68f8ea18 302}
adfba322 303
115ba28c 304/**
827eef51 305 * mei_me_host_set_ready - enable device
115ba28c 306 *
ce23139c 307 * @dev: mei device
115ba28c 308 */
827eef51 309static void mei_me_host_set_ready(struct mei_device *dev)
115ba28c 310{
381a58c7 311 u32 hcsr = mei_hcsr_read(dev);
92db1555 312
1fa55b4e 313 hcsr |= H_CSR_IE_MASK | H_IG | H_RDY;
381a58c7 314 mei_hcsr_set(dev, hcsr);
115ba28c 315}
ce23139c 316
115ba28c 317/**
827eef51 318 * mei_me_host_is_ready - check whether the host has turned ready
115ba28c 319 *
a8605ea2
AU
320 * @dev: mei device
321 * Return: bool
115ba28c 322 */
827eef51 323static bool mei_me_host_is_ready(struct mei_device *dev)
115ba28c 324{
381a58c7 325 u32 hcsr = mei_hcsr_read(dev);
92db1555 326
18caeb70 327 return (hcsr & H_RDY) == H_RDY;
115ba28c
TW
328}
329
330/**
827eef51 331 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
115ba28c 332 *
a8605ea2
AU
333 * @dev: mei device
334 * Return: bool
115ba28c 335 */
827eef51 336static bool mei_me_hw_is_ready(struct mei_device *dev)
115ba28c 337{
381a58c7 338 u32 mecsr = mei_me_mecsr_read(dev);
92db1555 339
18caeb70 340 return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
115ba28c 341}
3a65dd4e 342
ce23139c
AU
343/**
344 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
345 * or timeout is reached
346 *
347 * @dev: mei device
348 * Return: 0 on success, error otherwise
349 */
aafae7ec
TW
350static int mei_me_hw_ready_wait(struct mei_device *dev)
351{
aafae7ec 352 mutex_unlock(&dev->device_lock);
2c2b93ec 353 wait_event_timeout(dev->wait_hw_ready,
dab9bf41 354 dev->recvd_hw_ready,
7d93e58d 355 mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
aafae7ec 356 mutex_lock(&dev->device_lock);
2c2b93ec 357 if (!dev->recvd_hw_ready) {
2bf94cab 358 dev_err(dev->dev, "wait hw ready failed\n");
2c2b93ec 359 return -ETIME;
aafae7ec
TW
360 }
361
663b7ee9 362 mei_me_hw_reset_release(dev);
aafae7ec
TW
363 dev->recvd_hw_ready = false;
364 return 0;
365}
366
ce23139c
AU
367/**
368 * mei_me_hw_start - hw start routine
369 *
370 * @dev: mei device
371 * Return: 0 on success, error otherwise
372 */
aafae7ec
TW
373static int mei_me_hw_start(struct mei_device *dev)
374{
375 int ret = mei_me_hw_ready_wait(dev);
92db1555 376
aafae7ec
TW
377 if (ret)
378 return ret;
2bf94cab 379 dev_dbg(dev->dev, "hw is ready\n");
aafae7ec
TW
380
381 mei_me_host_set_ready(dev);
382 return ret;
383}
384
385
3ce72726 386/**
726917f0 387 * mei_hbuf_filled_slots - gets number of device filled buffer slots
3ce72726 388 *
7353f85c 389 * @dev: the device structure
3ce72726 390 *
a8605ea2 391 * Return: number of filled slots
3ce72726 392 */
726917f0 393static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
3ce72726 394{
18caeb70 395 u32 hcsr;
3ce72726
OW
396 char read_ptr, write_ptr;
397
381a58c7 398 hcsr = mei_hcsr_read(dev);
726917f0 399
18caeb70
TW
400 read_ptr = (char) ((hcsr & H_CBRP) >> 8);
401 write_ptr = (char) ((hcsr & H_CBWP) >> 16);
3ce72726
OW
402
403 return (unsigned char) (write_ptr - read_ptr);
404}
405
406/**
393b148f 407 * mei_me_hbuf_is_empty - checks if host buffer is empty.
3ce72726
OW
408 *
409 * @dev: the device structure
410 *
a8605ea2 411 * Return: true if empty, false - otherwise.
3ce72726 412 */
827eef51 413static bool mei_me_hbuf_is_empty(struct mei_device *dev)
3ce72726 414{
726917f0 415 return mei_hbuf_filled_slots(dev) == 0;
3ce72726
OW
416}
417
418/**
827eef51 419 * mei_me_hbuf_empty_slots - counts write empty slots.
3ce72726
OW
420 *
421 * @dev: the device structure
422 *
a8605ea2 423 * Return: -EOVERFLOW if overflow, otherwise empty slots count
3ce72726 424 */
827eef51 425static int mei_me_hbuf_empty_slots(struct mei_device *dev)
3ce72726 426{
24aadc80 427 unsigned char filled_slots, empty_slots;
3ce72726 428
726917f0 429 filled_slots = mei_hbuf_filled_slots(dev);
24aadc80 430 empty_slots = dev->hbuf_depth - filled_slots;
3ce72726
OW
431
432 /* check for overflow */
24aadc80 433 if (filled_slots > dev->hbuf_depth)
3ce72726
OW
434 return -EOVERFLOW;
435
436 return empty_slots;
437}
438
ce23139c
AU
439/**
440 * mei_me_hbuf_max_len - returns size of hw buffer.
441 *
442 * @dev: the device structure
443 *
444 * Return: size of hw buffer in bytes
445 */
827eef51
TW
446static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
447{
448 return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
449}
450
451
3ce72726 452/**
7ca96aa2 453 * mei_me_write_message - writes a message to mei device.
3ce72726
OW
454 *
455 * @dev: the device structure
7353f85c 456 * @header: mei HECI header of message
438763f3 457 * @buf: message payload will be written
3ce72726 458 *
a8605ea2 459 * Return: -EIO if write has failed
3ce72726 460 */
827eef51
TW
461static int mei_me_write_message(struct mei_device *dev,
462 struct mei_msg_hdr *header,
463 unsigned char *buf)
3ce72726 464{
c8c8d080 465 unsigned long rem;
438763f3 466 unsigned long length = header->length;
169d1338 467 u32 *reg_buf = (u32 *)buf;
88eb99f2 468 u32 hcsr;
c8c8d080 469 u32 dw_cnt;
169d1338
TW
470 int i;
471 int empty_slots;
3ce72726 472
2bf94cab 473 dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
3ce72726 474
726917f0 475 empty_slots = mei_hbuf_empty_slots(dev);
2bf94cab 476 dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
3ce72726 477
7bdf72d3 478 dw_cnt = mei_data2slots(length);
169d1338 479 if (empty_slots < 0 || dw_cnt > empty_slots)
9d098192 480 return -EMSGSIZE;
3ce72726 481
381a58c7 482 mei_me_hcbww_write(dev, *((u32 *) header));
3ce72726 483
169d1338 484 for (i = 0; i < length / 4; i++)
381a58c7 485 mei_me_hcbww_write(dev, reg_buf[i]);
3ce72726 486
169d1338
TW
487 rem = length & 0x3;
488 if (rem > 0) {
489 u32 reg = 0;
92db1555 490
169d1338 491 memcpy(&reg, &buf[length - rem], rem);
381a58c7 492 mei_me_hcbww_write(dev, reg);
3ce72726
OW
493 }
494
381a58c7
TW
495 hcsr = mei_hcsr_read(dev) | H_IG;
496 mei_hcsr_set(dev, hcsr);
827eef51 497 if (!mei_me_hw_is_ready(dev))
1ccb7b62 498 return -EIO;
3ce72726 499
1ccb7b62 500 return 0;
3ce72726
OW
501}
502
503/**
827eef51 504 * mei_me_count_full_read_slots - counts read full slots.
3ce72726
OW
505 *
506 * @dev: the device structure
507 *
a8605ea2 508 * Return: -EOVERFLOW if overflow, otherwise filled slots count
3ce72726 509 */
827eef51 510static int mei_me_count_full_read_slots(struct mei_device *dev)
3ce72726 511{
18caeb70 512 u32 me_csr;
3ce72726
OW
513 char read_ptr, write_ptr;
514 unsigned char buffer_depth, filled_slots;
515
381a58c7 516 me_csr = mei_me_mecsr_read(dev);
18caeb70
TW
517 buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
518 read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
519 write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
3ce72726
OW
520 filled_slots = (unsigned char) (write_ptr - read_ptr);
521
522 /* check for overflow */
523 if (filled_slots > buffer_depth)
524 return -EOVERFLOW;
525
2bf94cab 526 dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
3ce72726
OW
527 return (int)filled_slots;
528}
529
530/**
827eef51 531 * mei_me_read_slots - reads a message from mei device.
3ce72726
OW
532 *
533 * @dev: the device structure
534 * @buffer: message buffer will be written
535 * @buffer_length: message size will be read
ce23139c
AU
536 *
537 * Return: always 0
3ce72726 538 */
827eef51 539static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
edf1eed4 540 unsigned long buffer_length)
3ce72726 541{
edf1eed4 542 u32 *reg_buf = (u32 *)buffer;
88eb99f2 543 u32 hcsr;
3ce72726 544
edf1eed4 545 for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
827eef51 546 *reg_buf++ = mei_me_mecbrw_read(dev);
3ce72726
OW
547
548 if (buffer_length > 0) {
827eef51 549 u32 reg = mei_me_mecbrw_read(dev);
92db1555 550
edf1eed4 551 memcpy(reg_buf, &reg, buffer_length);
3ce72726
OW
552 }
553
381a58c7
TW
554 hcsr = mei_hcsr_read(dev) | H_IG;
555 mei_hcsr_set(dev, hcsr);
827eef51 556 return 0;
3ce72726
OW
557}
558
b16c3571 559/**
2d1995fc 560 * mei_me_pg_set - write pg enter register
b16c3571
TW
561 *
562 * @dev: the device structure
563 */
2d1995fc 564static void mei_me_pg_set(struct mei_device *dev)
b16c3571
TW
565{
566 struct mei_me_hw *hw = to_me_hw(dev);
a0a927d0
TW
567 u32 reg;
568
569 reg = mei_me_reg_read(hw, H_HPG_CSR);
570 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
92db1555 571
b16c3571 572 reg |= H_HPG_CSR_PGI;
a0a927d0
TW
573
574 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
b16c3571
TW
575 mei_me_reg_write(hw, H_HPG_CSR, reg);
576}
577
578/**
2d1995fc 579 * mei_me_pg_unset - write pg exit register
b16c3571
TW
580 *
581 * @dev: the device structure
582 */
2d1995fc 583static void mei_me_pg_unset(struct mei_device *dev)
b16c3571
TW
584{
585 struct mei_me_hw *hw = to_me_hw(dev);
a0a927d0
TW
586 u32 reg;
587
588 reg = mei_me_reg_read(hw, H_HPG_CSR);
589 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
b16c3571
TW
590
591 WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
592
593 reg |= H_HPG_CSR_PGIHEXR;
a0a927d0
TW
594
595 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
b16c3571
TW
596 mei_me_reg_write(hw, H_HPG_CSR, reg);
597}
598
ba9cdd0e 599/**
859ef2ff 600 * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
ba9cdd0e
TW
601 *
602 * @dev: the device structure
603 *
a8605ea2 604 * Return: 0 on success an error code otherwise
ba9cdd0e 605 */
859ef2ff 606static int mei_me_pg_legacy_enter_sync(struct mei_device *dev)
ba9cdd0e
TW
607{
608 struct mei_me_hw *hw = to_me_hw(dev);
609 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
610 int ret;
611
612 dev->pg_event = MEI_PG_EVENT_WAIT;
613
614 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
615 if (ret)
616 return ret;
617
618 mutex_unlock(&dev->device_lock);
619 wait_event_timeout(dev->wait_pg,
620 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
621 mutex_lock(&dev->device_lock);
622
623 if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
2d1995fc 624 mei_me_pg_set(dev);
ba9cdd0e
TW
625 ret = 0;
626 } else {
627 ret = -ETIME;
628 }
629
630 dev->pg_event = MEI_PG_EVENT_IDLE;
631 hw->pg_state = MEI_PG_ON;
632
633 return ret;
634}
635
636/**
859ef2ff 637 * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
ba9cdd0e
TW
638 *
639 * @dev: the device structure
640 *
a8605ea2 641 * Return: 0 on success an error code otherwise
ba9cdd0e 642 */
859ef2ff 643static int mei_me_pg_legacy_exit_sync(struct mei_device *dev)
ba9cdd0e
TW
644{
645 struct mei_me_hw *hw = to_me_hw(dev);
646 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
647 int ret;
648
649 if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
650 goto reply;
651
652 dev->pg_event = MEI_PG_EVENT_WAIT;
653
2d1995fc 654 mei_me_pg_unset(dev);
ba9cdd0e
TW
655
656 mutex_unlock(&dev->device_lock);
657 wait_event_timeout(dev->wait_pg,
658 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
659 mutex_lock(&dev->device_lock);
660
661reply:
3dc196ea
AU
662 if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
663 ret = -ETIME;
664 goto out;
665 }
666
667 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
668 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
669 if (ret)
670 return ret;
671
672 mutex_unlock(&dev->device_lock);
673 wait_event_timeout(dev->wait_pg,
674 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
675 mutex_lock(&dev->device_lock);
676
677 if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
678 ret = 0;
ba9cdd0e
TW
679 else
680 ret = -ETIME;
681
3dc196ea 682out:
ba9cdd0e
TW
683 dev->pg_event = MEI_PG_EVENT_IDLE;
684 hw->pg_state = MEI_PG_OFF;
685
686 return ret;
687}
688
3dc196ea
AU
689/**
690 * mei_me_pg_in_transition - is device now in pg transition
691 *
692 * @dev: the device structure
693 *
694 * Return: true if in pg transition, false otherwise
695 */
696static bool mei_me_pg_in_transition(struct mei_device *dev)
697{
698 return dev->pg_event >= MEI_PG_EVENT_WAIT &&
699 dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
700}
701
ee7e5afd
TW
702/**
703 * mei_me_pg_is_enabled - detect if PG is supported by HW
704 *
705 * @dev: the device structure
706 *
a8605ea2 707 * Return: true is pg supported, false otherwise
ee7e5afd
TW
708 */
709static bool mei_me_pg_is_enabled(struct mei_device *dev)
710{
859ef2ff 711 struct mei_me_hw *hw = to_me_hw(dev);
381a58c7 712 u32 reg = mei_me_mecsr_read(dev);
ee7e5afd 713
859ef2ff
AU
714 if (hw->d0i3_supported)
715 return true;
716
ee7e5afd
TW
717 if ((reg & ME_PGIC_HRA) == 0)
718 goto notsupported;
719
bae1cc7d 720 if (!dev->hbm_f_pg_supported)
ee7e5afd
TW
721 goto notsupported;
722
723 return true;
724
725notsupported:
859ef2ff
AU
726 dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
727 hw->d0i3_supported,
ee7e5afd
TW
728 !!(reg & ME_PGIC_HRA),
729 dev->version.major_version,
730 dev->version.minor_version,
731 HBM_MAJOR_VERSION_PGI,
732 HBM_MINOR_VERSION_PGI);
733
734 return false;
735}
736
3dc196ea 737/**
859ef2ff 738 * mei_me_d0i3_set - write d0i3 register bit on mei device.
3dc196ea
AU
739 *
740 * @dev: the device structure
859ef2ff
AU
741 * @intr: ask for interrupt
742 *
743 * Return: D0I3C register value
3dc196ea 744 */
859ef2ff
AU
745static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr)
746{
747 u32 reg = mei_me_d0i3c_read(dev);
748
749 reg |= H_D0I3C_I3;
750 if (intr)
751 reg |= H_D0I3C_IR;
752 else
753 reg &= ~H_D0I3C_IR;
754 mei_me_d0i3c_write(dev, reg);
755 /* read it to ensure HW consistency */
756 reg = mei_me_d0i3c_read(dev);
757 return reg;
758}
759
760/**
761 * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
762 *
763 * @dev: the device structure
764 *
765 * Return: D0I3C register value
766 */
767static u32 mei_me_d0i3_unset(struct mei_device *dev)
768{
769 u32 reg = mei_me_d0i3c_read(dev);
770
771 reg &= ~H_D0I3C_I3;
772 reg |= H_D0I3C_IR;
773 mei_me_d0i3c_write(dev, reg);
774 /* read it to ensure HW consistency */
775 reg = mei_me_d0i3c_read(dev);
776 return reg;
777}
778
779/**
780 * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
781 *
782 * @dev: the device structure
783 *
784 * Return: 0 on success an error code otherwise
785 */
786static int mei_me_d0i3_enter_sync(struct mei_device *dev)
787{
788 struct mei_me_hw *hw = to_me_hw(dev);
789 unsigned long d0i3_timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
790 unsigned long pgi_timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
791 int ret;
792 u32 reg;
793
794 reg = mei_me_d0i3c_read(dev);
795 if (reg & H_D0I3C_I3) {
796 /* we are in d0i3, nothing to do */
797 dev_dbg(dev->dev, "d0i3 set not needed\n");
798 ret = 0;
799 goto on;
800 }
801
802 /* PGI entry procedure */
803 dev->pg_event = MEI_PG_EVENT_WAIT;
804
805 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
806 if (ret)
807 /* FIXME: should we reset here? */
808 goto out;
809
810 mutex_unlock(&dev->device_lock);
811 wait_event_timeout(dev->wait_pg,
812 dev->pg_event == MEI_PG_EVENT_RECEIVED, pgi_timeout);
813 mutex_lock(&dev->device_lock);
814
815 if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
816 ret = -ETIME;
817 goto out;
818 }
819 /* end PGI entry procedure */
820
821 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
822
823 reg = mei_me_d0i3_set(dev, true);
824 if (!(reg & H_D0I3C_CIP)) {
825 dev_dbg(dev->dev, "d0i3 enter wait not needed\n");
826 ret = 0;
827 goto on;
828 }
829
830 mutex_unlock(&dev->device_lock);
831 wait_event_timeout(dev->wait_pg,
832 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, d0i3_timeout);
833 mutex_lock(&dev->device_lock);
834
835 if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
836 reg = mei_me_d0i3c_read(dev);
837 if (!(reg & H_D0I3C_I3)) {
838 ret = -ETIME;
839 goto out;
840 }
841 }
842
843 ret = 0;
844on:
845 hw->pg_state = MEI_PG_ON;
846out:
847 dev->pg_event = MEI_PG_EVENT_IDLE;
848 dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret);
849 return ret;
850}
851
852/**
853 * mei_me_d0i3_enter - perform d0i3 entry procedure
854 * no hbm PG handshake
855 * no waiting for confirmation; runs with interrupts
856 * disabled
857 *
858 * @dev: the device structure
859 *
860 * Return: 0 on success an error code otherwise
861 */
862static int mei_me_d0i3_enter(struct mei_device *dev)
863{
864 struct mei_me_hw *hw = to_me_hw(dev);
865 u32 reg;
866
867 reg = mei_me_d0i3c_read(dev);
868 if (reg & H_D0I3C_I3) {
869 /* we are in d0i3, nothing to do */
870 dev_dbg(dev->dev, "already d0i3 : set not needed\n");
871 goto on;
872 }
873
874 mei_me_d0i3_set(dev, false);
875on:
876 hw->pg_state = MEI_PG_ON;
877 dev->pg_event = MEI_PG_EVENT_IDLE;
878 dev_dbg(dev->dev, "d0i3 enter\n");
879 return 0;
880}
881
882/**
883 * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
884 *
885 * @dev: the device structure
886 *
887 * Return: 0 on success an error code otherwise
888 */
889static int mei_me_d0i3_exit_sync(struct mei_device *dev)
890{
891 struct mei_me_hw *hw = to_me_hw(dev);
892 unsigned long timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
893 int ret;
894 u32 reg;
895
896 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
897
898 reg = mei_me_d0i3c_read(dev);
899 if (!(reg & H_D0I3C_I3)) {
900 /* we are not in d0i3, nothing to do */
901 dev_dbg(dev->dev, "d0i3 exit not needed\n");
902 ret = 0;
903 goto off;
904 }
905
906 reg = mei_me_d0i3_unset(dev);
907 if (!(reg & H_D0I3C_CIP)) {
908 dev_dbg(dev->dev, "d0i3 exit wait not needed\n");
909 ret = 0;
910 goto off;
911 }
912
913 mutex_unlock(&dev->device_lock);
914 wait_event_timeout(dev->wait_pg,
915 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
916 mutex_lock(&dev->device_lock);
917
918 if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
919 reg = mei_me_d0i3c_read(dev);
920 if (reg & H_D0I3C_I3) {
921 ret = -ETIME;
922 goto out;
923 }
924 }
925
926 ret = 0;
927off:
928 hw->pg_state = MEI_PG_OFF;
929out:
930 dev->pg_event = MEI_PG_EVENT_IDLE;
931
932 dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret);
933 return ret;
934}
935
936/**
937 * mei_me_pg_legacy_intr - perform legacy pg processing
938 * in interrupt thread handler
939 *
940 * @dev: the device structure
941 */
942static void mei_me_pg_legacy_intr(struct mei_device *dev)
3dc196ea
AU
943{
944 struct mei_me_hw *hw = to_me_hw(dev);
945
946 if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
947 return;
948
949 dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
950 hw->pg_state = MEI_PG_OFF;
951 if (waitqueue_active(&dev->wait_pg))
952 wake_up(&dev->wait_pg);
953}
954
859ef2ff
AU
955/**
956 * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
957 *
958 * @dev: the device structure
959 */
960static void mei_me_d0i3_intr(struct mei_device *dev)
961{
962 struct mei_me_hw *hw = to_me_hw(dev);
963
964 if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT &&
965 (hw->intr_source & H_D0I3C_IS)) {
966 dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
967 if (hw->pg_state == MEI_PG_ON) {
968 hw->pg_state = MEI_PG_OFF;
969 if (dev->hbm_state != MEI_HBM_IDLE) {
970 /*
971 * force H_RDY because it could be
972 * wiped off during PG
973 */
974 dev_dbg(dev->dev, "d0i3 set host ready\n");
975 mei_me_host_set_ready(dev);
976 }
977 } else {
978 hw->pg_state = MEI_PG_ON;
979 }
980
981 wake_up(&dev->wait_pg);
982 }
983
984 if (hw->pg_state == MEI_PG_ON && (hw->intr_source & H_IS)) {
985 /*
986 * HW sent some data and we are in D0i3, so
987 * we got here because of HW initiated exit from D0i3.
988 * Start runtime pm resume sequence to exit low power state.
989 */
990 dev_dbg(dev->dev, "d0i3 want resume\n");
991 mei_hbm_pg_resume(dev);
992 }
993}
994
995/**
996 * mei_me_pg_intr - perform pg processing in interrupt thread handler
997 *
998 * @dev: the device structure
999 */
1000static void mei_me_pg_intr(struct mei_device *dev)
1001{
1002 struct mei_me_hw *hw = to_me_hw(dev);
1003
1004 if (hw->d0i3_supported)
1005 mei_me_d0i3_intr(dev);
1006 else
1007 mei_me_pg_legacy_intr(dev);
1008}
1009
1010/**
1011 * mei_me_pg_enter_sync - perform runtime pm entry procedure
1012 *
1013 * @dev: the device structure
1014 *
1015 * Return: 0 on success an error code otherwise
1016 */
1017int mei_me_pg_enter_sync(struct mei_device *dev)
1018{
1019 struct mei_me_hw *hw = to_me_hw(dev);
1020
1021 if (hw->d0i3_supported)
1022 return mei_me_d0i3_enter_sync(dev);
1023 else
1024 return mei_me_pg_legacy_enter_sync(dev);
1025}
1026
1027/**
1028 * mei_me_pg_exit_sync - perform runtime pm exit procedure
1029 *
1030 * @dev: the device structure
1031 *
1032 * Return: 0 on success an error code otherwise
1033 */
1034int mei_me_pg_exit_sync(struct mei_device *dev)
1035{
1036 struct mei_me_hw *hw = to_me_hw(dev);
1037
1038 if (hw->d0i3_supported)
1039 return mei_me_d0i3_exit_sync(dev);
1040 else
1041 return mei_me_pg_legacy_exit_sync(dev);
1042}
1043
ebad6b94
AU
1044/**
1045 * mei_me_hw_reset - resets fw via mei csr register.
1046 *
1047 * @dev: the device structure
1048 * @intr_enable: if interrupt should be enabled after reset.
1049 *
b9a1fc99 1050 * Return: 0 on success an error code otherwise
ebad6b94
AU
1051 */
1052static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
1053{
b9a1fc99
AU
1054 struct mei_me_hw *hw = to_me_hw(dev);
1055 int ret;
1056 u32 hcsr;
1057
1058 if (intr_enable) {
1059 mei_me_intr_enable(dev);
1060 if (hw->d0i3_supported) {
1061 ret = mei_me_d0i3_exit_sync(dev);
1062 if (ret)
1063 return ret;
1064 }
1065 }
ebad6b94 1066
77537ad2
AU
1067 pm_runtime_set_active(dev->dev);
1068
b9a1fc99 1069 hcsr = mei_hcsr_read(dev);
ebad6b94
AU
1070 /* H_RST may be found lit before reset is started,
1071 * for example if preceding reset flow hasn't completed.
1072 * In that case asserting H_RST will be ignored, therefore
1073 * we need to clean H_RST bit to start a successful reset sequence.
1074 */
1075 if ((hcsr & H_RST) == H_RST) {
1076 dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
1077 hcsr &= ~H_RST;
1078 mei_hcsr_set(dev, hcsr);
1079 hcsr = mei_hcsr_read(dev);
1080 }
1081
1082 hcsr |= H_RST | H_IG | H_CSR_IS_MASK;
1083
b9a1fc99 1084 if (!intr_enable)
ebad6b94
AU
1085 hcsr &= ~H_CSR_IE_MASK;
1086
1087 dev->recvd_hw_ready = false;
1088 mei_hcsr_write(dev, hcsr);
1089
1090 /*
1091 * Host reads the H_CSR once to ensure that the
1092 * posted write to H_CSR completes.
1093 */
1094 hcsr = mei_hcsr_read(dev);
1095
1096 if ((hcsr & H_RST) == 0)
1097 dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
1098
1099 if ((hcsr & H_RDY) == H_RDY)
1100 dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
1101
b9a1fc99 1102 if (!intr_enable) {
ebad6b94 1103 mei_me_hw_reset_release(dev);
b9a1fc99
AU
1104 if (hw->d0i3_supported) {
1105 ret = mei_me_d0i3_enter(dev);
1106 if (ret)
1107 return ret;
1108 }
1109 }
ebad6b94
AU
1110 return 0;
1111}
1112
06ecd645
TW
1113/**
1114 * mei_me_irq_quick_handler - The ISR of the MEI device
1115 *
1116 * @irq: The irq number
1117 * @dev_id: pointer to the device structure
1118 *
a8605ea2 1119 * Return: irqreturn_t
06ecd645 1120 */
06ecd645
TW
1121irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
1122{
1fa55b4e
AU
1123 struct mei_device *dev = (struct mei_device *)dev_id;
1124 struct mei_me_hw *hw = to_me_hw(dev);
1125 u32 hcsr;
06ecd645 1126
1fa55b4e
AU
1127 hcsr = mei_hcsr_read(dev);
1128 if (!(hcsr & H_CSR_IS_MASK))
06ecd645
TW
1129 return IRQ_NONE;
1130
1fa55b4e
AU
1131 hw->intr_source = hcsr & H_CSR_IS_MASK;
1132 dev_dbg(dev->dev, "interrupt source 0x%08X.\n", hw->intr_source);
1133
1134 /* clear H_IS and H_D0I3C_IS bits in H_CSR to clear the interrupts */
381a58c7 1135 mei_hcsr_write(dev, hcsr);
06ecd645
TW
1136
1137 return IRQ_WAKE_THREAD;
1138}
1139
1140/**
1141 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
1142 * processing.
1143 *
1144 * @irq: The irq number
1145 * @dev_id: pointer to the device structure
1146 *
a8605ea2 1147 * Return: irqreturn_t
06ecd645
TW
1148 *
1149 */
1150irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
1151{
1152 struct mei_device *dev = (struct mei_device *) dev_id;
1153 struct mei_cl_cb complete_list;
06ecd645 1154 s32 slots;
544f9460 1155 int rets = 0;
06ecd645 1156
2bf94cab 1157 dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
06ecd645
TW
1158 /* initialize our complete list */
1159 mutex_lock(&dev->device_lock);
1160 mei_io_list_init(&complete_list);
1161
06ecd645 1162 /* check if ME wants a reset */
33ec0826 1163 if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
2bf94cab 1164 dev_warn(dev->dev, "FW not ready: resetting.\n");
544f9460
TW
1165 schedule_work(&dev->reset_work);
1166 goto end;
06ecd645
TW
1167 }
1168
3dc196ea
AU
1169 mei_me_pg_intr(dev);
1170
06ecd645
TW
1171 /* check if we need to start the dev */
1172 if (!mei_host_is_ready(dev)) {
1173 if (mei_hw_is_ready(dev)) {
2bf94cab 1174 dev_dbg(dev->dev, "we need to start the dev.\n");
aafae7ec 1175 dev->recvd_hw_ready = true;
2c2b93ec 1176 wake_up(&dev->wait_hw_ready);
06ecd645 1177 } else {
2bf94cab 1178 dev_dbg(dev->dev, "Spurious Interrupt\n");
06ecd645 1179 }
544f9460 1180 goto end;
06ecd645
TW
1181 }
1182 /* check slots available for reading */
1183 slots = mei_count_full_read_slots(dev);
1184 while (slots > 0) {
2bf94cab 1185 dev_dbg(dev->dev, "slots to read = %08x\n", slots);
06ecd645 1186 rets = mei_irq_read_handler(dev, &complete_list, &slots);
b1b94b5d
TW
1187 /* There is a race between ME write and interrupt delivery:
1188 * Not all data is always available immediately after the
1189 * interrupt, so try to read again on the next interrupt.
1190 */
1191 if (rets == -ENODATA)
1192 break;
1193
33ec0826 1194 if (rets && dev->dev_state != MEI_DEV_RESETTING) {
2bf94cab 1195 dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
b1b94b5d 1196 rets);
544f9460 1197 schedule_work(&dev->reset_work);
06ecd645 1198 goto end;
544f9460 1199 }
06ecd645 1200 }
544f9460 1201
6aae48ff
TW
1202 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1203
ba9cdd0e
TW
1204 /*
1205 * During PG handshake only allowed write is the replay to the
1206 * PG exit message, so block calling write function
3dc196ea 1207 * if the pg event is in PG handshake
ba9cdd0e 1208 */
3dc196ea
AU
1209 if (dev->pg_event != MEI_PG_EVENT_WAIT &&
1210 dev->pg_event != MEI_PG_EVENT_RECEIVED) {
ba9cdd0e
TW
1211 rets = mei_irq_write_handler(dev, &complete_list);
1212 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1213 }
06ecd645 1214
4c6e22b8 1215 mei_irq_compl_handler(dev, &complete_list);
06ecd645 1216
544f9460 1217end:
2bf94cab 1218 dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
544f9460 1219 mutex_unlock(&dev->device_lock);
06ecd645
TW
1220 return IRQ_HANDLED;
1221}
04dd3661 1222
827eef51
TW
1223static const struct mei_hw_ops mei_me_hw_ops = {
1224
1bd30b6a 1225 .fw_status = mei_me_fw_status,
964a2331
TW
1226 .pg_state = mei_me_pg_state,
1227
827eef51
TW
1228 .host_is_ready = mei_me_host_is_ready,
1229
1230 .hw_is_ready = mei_me_hw_is_ready,
1231 .hw_reset = mei_me_hw_reset,
aafae7ec
TW
1232 .hw_config = mei_me_hw_config,
1233 .hw_start = mei_me_hw_start,
827eef51 1234
3dc196ea 1235 .pg_in_transition = mei_me_pg_in_transition,
ee7e5afd
TW
1236 .pg_is_enabled = mei_me_pg_is_enabled,
1237
827eef51
TW
1238 .intr_clear = mei_me_intr_clear,
1239 .intr_enable = mei_me_intr_enable,
1240 .intr_disable = mei_me_intr_disable,
1241
1242 .hbuf_free_slots = mei_me_hbuf_empty_slots,
1243 .hbuf_is_ready = mei_me_hbuf_is_empty,
1244 .hbuf_max_len = mei_me_hbuf_max_len,
1245
1246 .write = mei_me_write_message,
1247
1248 .rdbuf_full_slots = mei_me_count_full_read_slots,
1249 .read_hdr = mei_me_mecbrw_read,
1250 .read = mei_me_read_slots
1251};
1252
c919951d
TW
1253static bool mei_me_fw_type_nm(struct pci_dev *pdev)
1254{
1255 u32 reg;
92db1555 1256
c919951d 1257 pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
a96c5482 1258 trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_2", PCI_CFG_HFS_2, reg);
c919951d
TW
1259 /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
1260 return (reg & 0x600) == 0x200;
1261}
1262
1263#define MEI_CFG_FW_NM \
1264 .quirk_probe = mei_me_fw_type_nm
1265
1266static bool mei_me_fw_type_sps(struct pci_dev *pdev)
1267{
1268 u32 reg;
8c57cac1
TW
1269 unsigned int devfn;
1270
1271 /*
1272 * Read ME FW Status register to check for SPS Firmware
1273 * The SPS FW is only signaled in pci function 0
1274 */
1275 devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1276 pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_1, &reg);
a96c5482 1277 trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
c919951d
TW
1278 /* if bits [19:16] = 15, running SPS Firmware */
1279 return (reg & 0xf0000) == 0xf0000;
1280}
1281
1282#define MEI_CFG_FW_SPS \
1283 .quirk_probe = mei_me_fw_type_sps
1284
1285
8d929d48
AU
1286#define MEI_CFG_LEGACY_HFS \
1287 .fw_status.count = 0
1288
1289#define MEI_CFG_ICH_HFS \
1290 .fw_status.count = 1, \
1291 .fw_status.status[0] = PCI_CFG_HFS_1
1292
1293#define MEI_CFG_PCH_HFS \
1294 .fw_status.count = 2, \
1295 .fw_status.status[0] = PCI_CFG_HFS_1, \
1296 .fw_status.status[1] = PCI_CFG_HFS_2
1297
edca5ea3
AU
1298#define MEI_CFG_PCH8_HFS \
1299 .fw_status.count = 6, \
1300 .fw_status.status[0] = PCI_CFG_HFS_1, \
1301 .fw_status.status[1] = PCI_CFG_HFS_2, \
1302 .fw_status.status[2] = PCI_CFG_HFS_3, \
1303 .fw_status.status[3] = PCI_CFG_HFS_4, \
1304 .fw_status.status[4] = PCI_CFG_HFS_5, \
1305 .fw_status.status[5] = PCI_CFG_HFS_6
8d929d48
AU
1306
1307/* ICH Legacy devices */
1308const struct mei_cfg mei_me_legacy_cfg = {
1309 MEI_CFG_LEGACY_HFS,
1310};
1311
1312/* ICH devices */
1313const struct mei_cfg mei_me_ich_cfg = {
1314 MEI_CFG_ICH_HFS,
1315};
1316
1317/* PCH devices */
1318const struct mei_cfg mei_me_pch_cfg = {
1319 MEI_CFG_PCH_HFS,
1320};
1321
c919951d
TW
1322
1323/* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
1324const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
1325 MEI_CFG_PCH_HFS,
1326 MEI_CFG_FW_NM,
1327};
1328
edca5ea3
AU
1329/* PCH8 Lynx Point and newer devices */
1330const struct mei_cfg mei_me_pch8_cfg = {
1331 MEI_CFG_PCH8_HFS,
1332};
1333
1334/* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
1335const struct mei_cfg mei_me_pch8_sps_cfg = {
1336 MEI_CFG_PCH8_HFS,
c919951d
TW
1337 MEI_CFG_FW_SPS,
1338};
1339
52c34561 1340/**
393b148f 1341 * mei_me_dev_init - allocates and initializes the mei device structure
52c34561
TW
1342 *
1343 * @pdev: The pci device structure
8d929d48 1344 * @cfg: per device generation config
52c34561 1345 *
a8605ea2 1346 * Return: The mei_device_device pointer on success, NULL on failure.
52c34561 1347 */
8d929d48
AU
1348struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
1349 const struct mei_cfg *cfg)
52c34561
TW
1350{
1351 struct mei_device *dev;
4ad96db6 1352 struct mei_me_hw *hw;
52c34561
TW
1353
1354 dev = kzalloc(sizeof(struct mei_device) +
1355 sizeof(struct mei_me_hw), GFP_KERNEL);
1356 if (!dev)
1357 return NULL;
4ad96db6 1358 hw = to_me_hw(dev);
52c34561 1359
3a7e9b6c 1360 mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
4ad96db6 1361 hw->cfg = cfg;
52c34561
TW
1362 return dev;
1363}
06ecd645 1364
This page took 0.392742 seconds and 5 git commands to generate.