mei: pg: fix cat and paste error in comments
[deliverable/linux.git] / drivers / misc / mei / hw-txe.c
CommitLineData
32e2b59f
TW
1/*
2 *
3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2013-2014, Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 */
16
17#include <linux/pci.h>
18#include <linux/jiffies.h>
19#include <linux/delay.h>
20#include <linux/kthread.h>
4a22176a 21#include <linux/irqreturn.h>
32e2b59f
TW
22
23#include <linux/mei.h>
24
25#include "mei_dev.h"
26#include "hw-txe.h"
27#include "client.h"
28#include "hbm.h"
29
30/**
31 * mei_txe_reg_read - Reads 32bit data from the device
32 *
33 * @base_addr: registers base address
34 * @offset: register offset
35 *
36 */
37static inline u32 mei_txe_reg_read(void __iomem *base_addr,
38 unsigned long offset)
39{
40 return ioread32(base_addr + offset);
41}
42
43/**
44 * mei_txe_reg_write - Writes 32bit data to the device
45 *
46 * @base_addr: registers base address
47 * @offset: register offset
48 * @value: the value to write
49 */
50static inline void mei_txe_reg_write(void __iomem *base_addr,
51 unsigned long offset, u32 value)
52{
53 iowrite32(value, base_addr + offset);
54}
55
56/**
57 * mei_txe_sec_reg_read_silent - Reads 32bit data from the SeC BAR
58 *
59 * @dev: the device structure
60 * @offset: register offset
61 *
62 * Doesn't check for aliveness while Reads 32bit data from the SeC BAR
63 */
64static inline u32 mei_txe_sec_reg_read_silent(struct mei_txe_hw *hw,
65 unsigned long offset)
66{
67 return mei_txe_reg_read(hw->mem_addr[SEC_BAR], offset);
68}
69
70/**
71 * mei_txe_sec_reg_read - Reads 32bit data from the SeC BAR
72 *
73 * @dev: the device structure
74 * @offset: register offset
75 *
76 * Reads 32bit data from the SeC BAR and shout loud if aliveness is not set
77 */
78static inline u32 mei_txe_sec_reg_read(struct mei_txe_hw *hw,
79 unsigned long offset)
80{
81 WARN(!hw->aliveness, "sec read: aliveness not asserted\n");
82 return mei_txe_sec_reg_read_silent(hw, offset);
83}
84/**
85 * mei_txe_sec_reg_write_silent - Writes 32bit data to the SeC BAR
86 * doesn't check for aliveness
87 *
88 * @dev: the device structure
89 * @offset: register offset
90 * @value: value to write
91 *
92 * Doesn't check for aliveness while writes 32bit data from to the SeC BAR
93 */
94static inline void mei_txe_sec_reg_write_silent(struct mei_txe_hw *hw,
95 unsigned long offset, u32 value)
96{
97 mei_txe_reg_write(hw->mem_addr[SEC_BAR], offset, value);
98}
99
100/**
101 * mei_txe_sec_reg_write - Writes 32bit data to the SeC BAR
102 *
103 * @dev: the device structure
104 * @offset: register offset
105 * @value: value to write
106 *
107 * Writes 32bit data from the SeC BAR and shout loud if aliveness is not set
108 */
109static inline void mei_txe_sec_reg_write(struct mei_txe_hw *hw,
110 unsigned long offset, u32 value)
111{
112 WARN(!hw->aliveness, "sec write: aliveness not asserted\n");
113 mei_txe_sec_reg_write_silent(hw, offset, value);
114}
115/**
116 * mei_txe_br_reg_read - Reads 32bit data from the Bridge BAR
117 *
118 * @hw: the device structure
119 * @offset: offset from which to read the data
120 *
121 */
122static inline u32 mei_txe_br_reg_read(struct mei_txe_hw *hw,
123 unsigned long offset)
124{
125 return mei_txe_reg_read(hw->mem_addr[BRIDGE_BAR], offset);
126}
127
128/**
129 * mei_txe_br_reg_write - Writes 32bit data to the Bridge BAR
130 *
131 * @hw: the device structure
132 * @offset: offset from which to write the data
133 * @value: the byte to write
134 */
135static inline void mei_txe_br_reg_write(struct mei_txe_hw *hw,
136 unsigned long offset, u32 value)
137{
138 mei_txe_reg_write(hw->mem_addr[BRIDGE_BAR], offset, value);
139}
140
141/**
142 * mei_txe_aliveness_set - request for aliveness change
143 *
144 * @dev: the device structure
145 * @req: requested aliveness value
146 *
147 * Request for aliveness change and returns true if the change is
148 * really needed and false if aliveness is already
149 * in the requested state
150 * Requires device lock to be held
151 */
152static bool mei_txe_aliveness_set(struct mei_device *dev, u32 req)
153{
154
155 struct mei_txe_hw *hw = to_txe_hw(dev);
156 bool do_req = hw->aliveness != req;
157
158 dev_dbg(&dev->pdev->dev, "Aliveness current=%d request=%d\n",
159 hw->aliveness, req);
160 if (do_req) {
964a2331 161 dev->pg_event = MEI_PG_EVENT_WAIT;
32e2b59f
TW
162 mei_txe_br_reg_write(hw, SICR_HOST_ALIVENESS_REQ_REG, req);
163 }
164 return do_req;
165}
166
167
168/**
169 * mei_txe_aliveness_req_get - get aliveness requested register value
170 *
171 * @dev: the device structure
172 *
173 * Extract HICR_HOST_ALIVENESS_RESP_ACK bit from
174 * from HICR_HOST_ALIVENESS_REQ register value
175 */
176static u32 mei_txe_aliveness_req_get(struct mei_device *dev)
177{
178 struct mei_txe_hw *hw = to_txe_hw(dev);
179 u32 reg;
180 reg = mei_txe_br_reg_read(hw, SICR_HOST_ALIVENESS_REQ_REG);
181 return reg & SICR_HOST_ALIVENESS_REQ_REQUESTED;
182}
183
184/**
185 * mei_txe_aliveness_get - get aliveness response register value
186 * @dev: the device structure
187 *
188 * Extract HICR_HOST_ALIVENESS_RESP_ACK bit
189 * from HICR_HOST_ALIVENESS_RESP register value
190 */
191static u32 mei_txe_aliveness_get(struct mei_device *dev)
192{
193 struct mei_txe_hw *hw = to_txe_hw(dev);
194 u32 reg;
195 reg = mei_txe_br_reg_read(hw, HICR_HOST_ALIVENESS_RESP_REG);
196 return reg & HICR_HOST_ALIVENESS_RESP_ACK;
197}
198
199/**
200 * mei_txe_aliveness_poll - waits for aliveness to settle
201 *
202 * @dev: the device structure
203 * @expected: expected aliveness value
204 *
205 * Polls for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
206 * returns > 0 if the expected value was received, -ETIME otherwise
207 */
208static int mei_txe_aliveness_poll(struct mei_device *dev, u32 expected)
209{
210 struct mei_txe_hw *hw = to_txe_hw(dev);
211 int t = 0;
212
213 do {
214 hw->aliveness = mei_txe_aliveness_get(dev);
215 if (hw->aliveness == expected) {
964a2331 216 dev->pg_event = MEI_PG_EVENT_IDLE;
32e2b59f
TW
217 dev_dbg(&dev->pdev->dev,
218 "aliveness settled after %d msecs\n", t);
219 return t;
220 }
221 mutex_unlock(&dev->device_lock);
222 msleep(MSEC_PER_SEC / 5);
223 mutex_lock(&dev->device_lock);
224 t += MSEC_PER_SEC / 5;
225 } while (t < SEC_ALIVENESS_WAIT_TIMEOUT);
226
964a2331 227 dev->pg_event = MEI_PG_EVENT_IDLE;
32e2b59f
TW
228 dev_err(&dev->pdev->dev, "aliveness timed out\n");
229 return -ETIME;
230}
231
232/**
233 * mei_txe_aliveness_wait - waits for aliveness to settle
234 *
235 * @dev: the device structure
236 * @expected: expected aliveness value
237 *
238 * Waits for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
239 * returns returns 0 on success and < 0 otherwise
240 */
241static int mei_txe_aliveness_wait(struct mei_device *dev, u32 expected)
242{
243 struct mei_txe_hw *hw = to_txe_hw(dev);
244 const unsigned long timeout =
245 msecs_to_jiffies(SEC_ALIVENESS_WAIT_TIMEOUT);
246 long err;
247 int ret;
248
249 hw->aliveness = mei_txe_aliveness_get(dev);
250 if (hw->aliveness == expected)
251 return 0;
252
253 mutex_unlock(&dev->device_lock);
964a2331
TW
254 err = wait_event_timeout(hw->wait_aliveness_resp,
255 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
32e2b59f
TW
256 mutex_lock(&dev->device_lock);
257
258 hw->aliveness = mei_txe_aliveness_get(dev);
259 ret = hw->aliveness == expected ? 0 : -ETIME;
260
261 if (ret)
964a2331
TW
262 dev_warn(&dev->pdev->dev, "aliveness timed out = %ld aliveness = %d event = %d\n",
263 err, hw->aliveness, dev->pg_event);
32e2b59f 264 else
964a2331
TW
265 dev_dbg(&dev->pdev->dev, "aliveness settled after = %d msec aliveness = %d event = %d\n",
266 jiffies_to_msecs(timeout - err),
267 hw->aliveness, dev->pg_event);
268
269 dev->pg_event = MEI_PG_EVENT_IDLE;
32e2b59f
TW
270 return ret;
271}
272
273/**
274 * mei_txe_aliveness_set_sync - sets an wait for aliveness to complete
275 *
276 * @dev: the device structure
277 *
278 * returns returns 0 on success and < 0 otherwise
279 */
280int mei_txe_aliveness_set_sync(struct mei_device *dev, u32 req)
281{
282 if (mei_txe_aliveness_set(dev, req))
283 return mei_txe_aliveness_wait(dev, req);
284 return 0;
285}
286
ee7e5afd
TW
287/**
288 * mei_txe_pg_is_enabled - detect if PG is supported by HW
289 *
290 * @dev: the device structure
291 *
292 * returns: true is pg supported, false otherwise
293 */
294static bool mei_txe_pg_is_enabled(struct mei_device *dev)
295{
296 return true;
297}
298
964a2331
TW
299/**
300 * mei_txe_pg_state - translate aliveness register value
301 * to the mei power gating state
302 *
303 * @dev: the device structure
304 *
305 * returns: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
306 */
307static inline enum mei_pg_state mei_txe_pg_state(struct mei_device *dev)
308{
309 struct mei_txe_hw *hw = to_txe_hw(dev);
310 return hw->aliveness ? MEI_PG_OFF : MEI_PG_ON;
311}
312
32e2b59f
TW
313/**
314 * mei_txe_input_ready_interrupt_enable - sets the Input Ready Interrupt
315 *
316 * @dev: the device structure
317 */
318static void mei_txe_input_ready_interrupt_enable(struct mei_device *dev)
319{
320 struct mei_txe_hw *hw = to_txe_hw(dev);
321 u32 hintmsk;
322 /* Enable the SEC_IPC_HOST_INT_MASK_IN_RDY interrupt */
323 hintmsk = mei_txe_sec_reg_read(hw, SEC_IPC_HOST_INT_MASK_REG);
324 hintmsk |= SEC_IPC_HOST_INT_MASK_IN_RDY;
325 mei_txe_sec_reg_write(hw, SEC_IPC_HOST_INT_MASK_REG, hintmsk);
326}
327
328/**
329 * mei_txe_input_doorbell_set
330 * - Sets bit 0 in SEC_IPC_INPUT_DOORBELL.IPC_INPUT_DOORBELL.
331 * @dev: the device structure
332 */
333static void mei_txe_input_doorbell_set(struct mei_txe_hw *hw)
334{
335 /* Clear the interrupt cause */
336 clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause);
337 mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_DOORBELL_REG, 1);
338}
339
340/**
341 * mei_txe_output_ready_set - Sets the SICR_SEC_IPC_OUTPUT_STATUS bit to 1
342 *
343 * @dev: the device structure
344 */
345static void mei_txe_output_ready_set(struct mei_txe_hw *hw)
346{
347 mei_txe_br_reg_write(hw,
348 SICR_SEC_IPC_OUTPUT_STATUS_REG,
349 SEC_IPC_OUTPUT_STATUS_RDY);
350}
351
352/**
353 * mei_txe_is_input_ready - check if TXE is ready for receiving data
354 *
355 * @dev: the device structure
356 */
357static bool mei_txe_is_input_ready(struct mei_device *dev)
358{
359 struct mei_txe_hw *hw = to_txe_hw(dev);
360 u32 status;
361 status = mei_txe_sec_reg_read(hw, SEC_IPC_INPUT_STATUS_REG);
362 return !!(SEC_IPC_INPUT_STATUS_RDY & status);
363}
364
365/**
366 * mei_txe_intr_clear - clear all interrupts
367 *
368 * @dev: the device structure
369 */
370static inline void mei_txe_intr_clear(struct mei_device *dev)
371{
372 struct mei_txe_hw *hw = to_txe_hw(dev);
373 mei_txe_sec_reg_write_silent(hw, SEC_IPC_HOST_INT_STATUS_REG,
374 SEC_IPC_HOST_INT_STATUS_PENDING);
375 mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_STS_MSK);
376 mei_txe_br_reg_write(hw, HHISR_REG, IPC_HHIER_MSK);
377}
378
379/**
380 * mei_txe_intr_disable - disable all interrupts
381 *
382 * @dev: the device structure
383 */
384static void mei_txe_intr_disable(struct mei_device *dev)
385{
386 struct mei_txe_hw *hw = to_txe_hw(dev);
387 mei_txe_br_reg_write(hw, HHIER_REG, 0);
388 mei_txe_br_reg_write(hw, HIER_REG, 0);
389}
390/**
391 * mei_txe_intr_disable - enable all interrupts
392 *
393 * @dev: the device structure
394 */
395static void mei_txe_intr_enable(struct mei_device *dev)
396{
397 struct mei_txe_hw *hw = to_txe_hw(dev);
398 mei_txe_br_reg_write(hw, HHIER_REG, IPC_HHIER_MSK);
399 mei_txe_br_reg_write(hw, HIER_REG, HIER_INT_EN_MSK);
400}
401
402/**
403 * mei_txe_pending_interrupts - check if there are pending interrupts
404 * only Aliveness, Input ready, and output doorbell are of relevance
405 *
406 * @dev: the device structure
407 *
408 * Checks if there are pending interrupts
409 * only Aliveness, Readiness, Input ready, and Output doorbell are relevant
410 */
411static bool mei_txe_pending_interrupts(struct mei_device *dev)
412{
413
414 struct mei_txe_hw *hw = to_txe_hw(dev);
415 bool ret = (hw->intr_cause & (TXE_INTR_READINESS |
416 TXE_INTR_ALIVENESS |
417 TXE_INTR_IN_READY |
418 TXE_INTR_OUT_DB));
419
420 if (ret) {
421 dev_dbg(&dev->pdev->dev,
422 "Pending Interrupts InReady=%01d Readiness=%01d, Aliveness=%01d, OutDoor=%01d\n",
423 !!(hw->intr_cause & TXE_INTR_IN_READY),
424 !!(hw->intr_cause & TXE_INTR_READINESS),
425 !!(hw->intr_cause & TXE_INTR_ALIVENESS),
426 !!(hw->intr_cause & TXE_INTR_OUT_DB));
427 }
428 return ret;
429}
430
431/**
432 * mei_txe_input_payload_write - write a dword to the host buffer
433 * at offset idx
434 *
435 * @dev: the device structure
436 * @idx: index in the host buffer
437 * @value: value
438 */
439static void mei_txe_input_payload_write(struct mei_device *dev,
440 unsigned long idx, u32 value)
441{
442 struct mei_txe_hw *hw = to_txe_hw(dev);
443 mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_PAYLOAD_REG +
444 (idx * sizeof(u32)), value);
445}
446
447/**
448 * mei_txe_out_data_read - read dword from the device buffer
449 * at offset idx
450 *
451 * @dev: the device structure
452 * @idx: index in the device buffer
453 *
454 * returns register value at index
455 */
456static u32 mei_txe_out_data_read(const struct mei_device *dev,
457 unsigned long idx)
458{
459 struct mei_txe_hw *hw = to_txe_hw(dev);
460 return mei_txe_br_reg_read(hw,
461 BRIDGE_IPC_OUTPUT_PAYLOAD_REG + (idx * sizeof(u32)));
462}
463
464/* Readiness */
465
466/**
467 * mei_txe_readiness_set_host_rdy
468 *
469 * @dev: the device structure
470 */
471static void mei_txe_readiness_set_host_rdy(struct mei_device *dev)
472{
473 struct mei_txe_hw *hw = to_txe_hw(dev);
474 mei_txe_br_reg_write(hw,
475 SICR_HOST_IPC_READINESS_REQ_REG,
476 SICR_HOST_IPC_READINESS_HOST_RDY);
477}
478
479/**
480 * mei_txe_readiness_clear
481 *
482 * @dev: the device structure
483 */
484static void mei_txe_readiness_clear(struct mei_device *dev)
485{
486 struct mei_txe_hw *hw = to_txe_hw(dev);
487 mei_txe_br_reg_write(hw, SICR_HOST_IPC_READINESS_REQ_REG,
488 SICR_HOST_IPC_READINESS_RDY_CLR);
489}
490/**
491 * mei_txe_readiness_get - Reads and returns
492 * the HICR_SEC_IPC_READINESS register value
493 *
494 * @dev: the device structure
495 */
496static u32 mei_txe_readiness_get(struct mei_device *dev)
497{
498 struct mei_txe_hw *hw = to_txe_hw(dev);
499 return mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
500}
501
502
503/**
504 * mei_txe_readiness_is_sec_rdy - check readiness
505 * for HICR_SEC_IPC_READINESS_SEC_RDY
506 *
507 * @readiness - cached readiness state
508 */
509static inline bool mei_txe_readiness_is_sec_rdy(u32 readiness)
510{
511 return !!(readiness & HICR_SEC_IPC_READINESS_SEC_RDY);
512}
513
514/**
515 * mei_txe_hw_is_ready - check if the hw is ready
516 *
517 * @dev: the device structure
518 */
519static bool mei_txe_hw_is_ready(struct mei_device *dev)
520{
521 u32 readiness = mei_txe_readiness_get(dev);
522 return mei_txe_readiness_is_sec_rdy(readiness);
523}
524
525/**
526 * mei_txe_host_is_ready - check if the host is ready
527 *
528 * @dev: the device structure
529 */
530static inline bool mei_txe_host_is_ready(struct mei_device *dev)
531{
532 struct mei_txe_hw *hw = to_txe_hw(dev);
533 u32 reg = mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
534 return !!(reg & HICR_SEC_IPC_READINESS_HOST_RDY);
535}
536
537/**
538 * mei_txe_readiness_wait - wait till readiness settles
539 *
540 * @dev: the device structure
541 *
542 * returns 0 on success and -ETIME on timeout
543 */
544static int mei_txe_readiness_wait(struct mei_device *dev)
545{
546 if (mei_txe_hw_is_ready(dev))
547 return 0;
548
549 mutex_unlock(&dev->device_lock);
550 wait_event_timeout(dev->wait_hw_ready, dev->recvd_hw_ready,
551 msecs_to_jiffies(SEC_RESET_WAIT_TIMEOUT));
552 mutex_lock(&dev->device_lock);
553 if (!dev->recvd_hw_ready) {
554 dev_err(&dev->pdev->dev, "wait for readiness failed\n");
555 return -ETIME;
556 }
557
558 dev->recvd_hw_ready = false;
559 return 0;
560}
561
562/**
563 * mei_txe_hw_config - configure hardware at the start of the devices
564 *
565 * @dev: the device structure
566 *
567 * Configure hardware at the start of the device should be done only
568 * once at the device probe time
569 */
570static void mei_txe_hw_config(struct mei_device *dev)
571{
572
573 struct mei_txe_hw *hw = to_txe_hw(dev);
574 /* Doesn't change in runtime */
575 dev->hbuf_depth = PAYLOAD_SIZE / 4;
576
577 hw->aliveness = mei_txe_aliveness_get(dev);
578 hw->readiness = mei_txe_readiness_get(dev);
579
580 dev_dbg(&dev->pdev->dev, "aliveness_resp = 0x%08x, readiness = 0x%08x.\n",
581 hw->aliveness, hw->readiness);
582}
583
584
585/**
586 * mei_txe_write - writes a message to device.
587 *
588 * @dev: the device structure
589 * @header: header of message
590 * @buf: message buffer will be written
591 * returns 1 if success, 0 - otherwise.
592 */
593
594static int mei_txe_write(struct mei_device *dev,
595 struct mei_msg_hdr *header, unsigned char *buf)
596{
597 struct mei_txe_hw *hw = to_txe_hw(dev);
598 unsigned long rem;
599 unsigned long length;
9d098192 600 int slots = dev->hbuf_depth;
32e2b59f 601 u32 *reg_buf = (u32 *)buf;
9d098192 602 u32 dw_cnt;
32e2b59f
TW
603 int i;
604
605 if (WARN_ON(!header || !buf))
606 return -EINVAL;
607
608 length = header->length;
609
610 dev_dbg(&dev->pdev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
611
9d098192
TW
612 dw_cnt = mei_data2slots(length);
613 if (dw_cnt > slots)
614 return -EMSGSIZE;
32e2b59f
TW
615
616 if (WARN(!hw->aliveness, "txe write: aliveness not asserted\n"))
617 return -EAGAIN;
618
619 /* Enable Input Ready Interrupt. */
620 mei_txe_input_ready_interrupt_enable(dev);
621
622 if (!mei_txe_is_input_ready(dev)) {
04dd3661
AU
623 struct mei_fw_status fw_status;
624 mei_fw_status(dev, &fw_status);
625 dev_err(&dev->pdev->dev, "Input is not ready " FW_STS_FMT "\n",
626 FW_STS_PRM(fw_status));
32e2b59f
TW
627 return -EAGAIN;
628 }
629
630 mei_txe_input_payload_write(dev, 0, *((u32 *)header));
631
632 for (i = 0; i < length / 4; i++)
633 mei_txe_input_payload_write(dev, i + 1, reg_buf[i]);
634
635 rem = length & 0x3;
636 if (rem > 0) {
637 u32 reg = 0;
638 memcpy(&reg, &buf[length - rem], rem);
639 mei_txe_input_payload_write(dev, i + 1, reg);
640 }
641
9d098192
TW
642 /* after each write the whole buffer is consumed */
643 hw->slots = 0;
644
32e2b59f
TW
645 /* Set Input-Doorbell */
646 mei_txe_input_doorbell_set(hw);
647
648 return 0;
649}
650
651/**
652 * mei_txe_hbuf_max_len - mimics the me hbuf circular buffer
653 *
654 * @dev: the device structure
655 *
656 * returns the PAYLOAD_SIZE - 4
657 */
658static size_t mei_txe_hbuf_max_len(const struct mei_device *dev)
659{
660 return PAYLOAD_SIZE - sizeof(struct mei_msg_hdr);
661}
662
663/**
664 * mei_txe_hbuf_empty_slots - mimics the me hbuf circular buffer
665 *
666 * @dev: the device structure
667 *
668 * returns always hbuf_depth
669 */
670static int mei_txe_hbuf_empty_slots(struct mei_device *dev)
671{
9d098192
TW
672 struct mei_txe_hw *hw = to_txe_hw(dev);
673 return hw->slots;
32e2b59f
TW
674}
675
676/**
677 * mei_txe_count_full_read_slots - mimics the me device circular buffer
678 *
679 * @dev: the device structure
680 *
681 * returns always buffer size in dwords count
682 */
683static int mei_txe_count_full_read_slots(struct mei_device *dev)
684{
685 /* read buffers has static size */
686 return PAYLOAD_SIZE / 4;
687}
688
689/**
690 * mei_txe_read_hdr - read message header which is always in 4 first bytes
691 *
692 * @dev: the device structure
693 *
694 * returns mei message header
695 */
696
697static u32 mei_txe_read_hdr(const struct mei_device *dev)
698{
699 return mei_txe_out_data_read(dev, 0);
700}
701/**
702 * mei_txe_read - reads a message from the txe device.
703 *
704 * @dev: the device structure
705 * @buf: message buffer will be written
706 * @len: message size will be read
707 *
708 * returns -EINVAL on error wrong argument and 0 on success
709 */
710static int mei_txe_read(struct mei_device *dev,
711 unsigned char *buf, unsigned long len)
712{
713
714 struct mei_txe_hw *hw = to_txe_hw(dev);
715 u32 i;
716 u32 *reg_buf = (u32 *)buf;
717 u32 rem = len & 0x3;
718
719 if (WARN_ON(!buf || !len))
720 return -EINVAL;
721
722 dev_dbg(&dev->pdev->dev,
723 "buffer-length = %lu buf[0]0x%08X\n",
724 len, mei_txe_out_data_read(dev, 0));
725
726 for (i = 0; i < len / 4; i++) {
727 /* skip header: index starts from 1 */
728 u32 reg = mei_txe_out_data_read(dev, i + 1);
729 dev_dbg(&dev->pdev->dev, "buf[%d] = 0x%08X\n", i, reg);
730 *reg_buf++ = reg;
731 }
732
733 if (rem) {
734 u32 reg = mei_txe_out_data_read(dev, i + 1);
735 memcpy(reg_buf, &reg, rem);
736 }
737
738 mei_txe_output_ready_set(hw);
739 return 0;
740}
741
742/**
743 * mei_txe_hw_reset - resets host and fw.
744 *
745 * @dev: the device structure
746 * @intr_enable: if interrupt should be enabled after reset.
747 *
748 * returns 0 on success and < 0 in case of error
749 */
750static int mei_txe_hw_reset(struct mei_device *dev, bool intr_enable)
751{
752 struct mei_txe_hw *hw = to_txe_hw(dev);
753
754 u32 aliveness_req;
755 /*
756 * read input doorbell to ensure consistency between Bridge and SeC
757 * return value might be garbage return
758 */
759 (void)mei_txe_sec_reg_read_silent(hw, SEC_IPC_INPUT_DOORBELL_REG);
760
761 aliveness_req = mei_txe_aliveness_req_get(dev);
762 hw->aliveness = mei_txe_aliveness_get(dev);
763
764 /* Disable interrupts in this stage we will poll */
765 mei_txe_intr_disable(dev);
766
767 /*
768 * If Aliveness Request and Aliveness Response are not equal then
769 * wait for them to be equal
770 * Since we might have interrupts disabled - poll for it
771 */
772 if (aliveness_req != hw->aliveness)
773 if (mei_txe_aliveness_poll(dev, aliveness_req) < 0) {
774 dev_err(&dev->pdev->dev,
775 "wait for aliveness settle failed ... bailing out\n");
776 return -EIO;
777 }
778
779 /*
780 * If Aliveness Request and Aliveness Response are set then clear them
781 */
782 if (aliveness_req) {
783 mei_txe_aliveness_set(dev, 0);
784 if (mei_txe_aliveness_poll(dev, 0) < 0) {
785 dev_err(&dev->pdev->dev,
786 "wait for aliveness failed ... bailing out\n");
787 return -EIO;
788 }
789 }
790
791 /*
792 * Set rediness RDY_CLR bit
793 */
794 mei_txe_readiness_clear(dev);
795
796 return 0;
797}
798
799/**
800 * mei_txe_hw_start - start the hardware after reset
801 *
802 * @dev: the device structure
803 *
804 * returns 0 on success and < 0 in case of error
805 */
806static int mei_txe_hw_start(struct mei_device *dev)
807{
808 struct mei_txe_hw *hw = to_txe_hw(dev);
809 int ret;
810
811 u32 hisr;
812
813 /* bring back interrupts */
814 mei_txe_intr_enable(dev);
815
816 ret = mei_txe_readiness_wait(dev);
817 if (ret < 0) {
818 dev_err(&dev->pdev->dev, "wating for readiness failed\n");
819 return ret;
820 }
821
822 /*
823 * If HISR.INT2_STS interrupt status bit is set then clear it.
824 */
825 hisr = mei_txe_br_reg_read(hw, HISR_REG);
826 if (hisr & HISR_INT_2_STS)
827 mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_2_STS);
828
829 /* Clear the interrupt cause of OutputDoorbell */
830 clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause);
831
832 ret = mei_txe_aliveness_set_sync(dev, 1);
833 if (ret < 0) {
834 dev_err(&dev->pdev->dev, "wait for aliveness failed ... bailing out\n");
835 return ret;
836 }
837
838 /* enable input ready interrupts:
839 * SEC_IPC_HOST_INT_MASK.IPC_INPUT_READY_INT_MASK
840 */
841 mei_txe_input_ready_interrupt_enable(dev);
842
843
844 /* Set the SICR_SEC_IPC_OUTPUT_STATUS.IPC_OUTPUT_READY bit */
845 mei_txe_output_ready_set(hw);
846
847 /* Set bit SICR_HOST_IPC_READINESS.HOST_RDY
848 */
849 mei_txe_readiness_set_host_rdy(dev);
850
851 return 0;
852}
853
854/**
855 * mei_txe_check_and_ack_intrs - translate multi BAR interrupt into
856 * single bit mask and acknowledge the interrupts
857 *
858 * @dev: the device structure
859 * @do_ack: acknowledge interrupts
860 */
861static bool mei_txe_check_and_ack_intrs(struct mei_device *dev, bool do_ack)
862{
863 struct mei_txe_hw *hw = to_txe_hw(dev);
864 u32 hisr;
865 u32 hhisr;
866 u32 ipc_isr;
867 u32 aliveness;
868 bool generated;
869
870 /* read interrupt registers */
871 hhisr = mei_txe_br_reg_read(hw, HHISR_REG);
872 generated = (hhisr & IPC_HHIER_MSK);
873 if (!generated)
874 goto out;
875
876 hisr = mei_txe_br_reg_read(hw, HISR_REG);
877
878 aliveness = mei_txe_aliveness_get(dev);
879 if (hhisr & IPC_HHIER_SEC && aliveness)
880 ipc_isr = mei_txe_sec_reg_read_silent(hw,
881 SEC_IPC_HOST_INT_STATUS_REG);
882 else
883 ipc_isr = 0;
884
885 generated = generated ||
886 (hisr & HISR_INT_STS_MSK) ||
887 (ipc_isr & SEC_IPC_HOST_INT_STATUS_PENDING);
888
889 if (generated && do_ack) {
890 /* Save the interrupt causes */
891 hw->intr_cause |= hisr & HISR_INT_STS_MSK;
892 if (ipc_isr & SEC_IPC_HOST_INT_STATUS_IN_RDY)
893 hw->intr_cause |= TXE_INTR_IN_READY;
894
895
896 mei_txe_intr_disable(dev);
897 /* Clear the interrupts in hierarchy:
898 * IPC and Bridge, than the High Level */
899 mei_txe_sec_reg_write_silent(hw,
900 SEC_IPC_HOST_INT_STATUS_REG, ipc_isr);
901 mei_txe_br_reg_write(hw, HISR_REG, hisr);
902 mei_txe_br_reg_write(hw, HHISR_REG, hhisr);
903 }
904
905out:
906 return generated;
907}
908
909/**
910 * mei_txe_irq_quick_handler - The ISR of the MEI device
911 *
912 * @irq: The irq number
913 * @dev_id: pointer to the device structure
914 *
915 * returns irqreturn_t
916 */
917irqreturn_t mei_txe_irq_quick_handler(int irq, void *dev_id)
918{
919 struct mei_device *dev = dev_id;
920
921 if (mei_txe_check_and_ack_intrs(dev, true))
922 return IRQ_WAKE_THREAD;
923 return IRQ_NONE;
924}
925
926
927/**
928 * mei_txe_irq_thread_handler - txe interrupt thread
929 *
930 * @irq: The irq number
931 * @dev_id: pointer to the device structure
932 *
933 * returns irqreturn_t
934 *
935 */
936irqreturn_t mei_txe_irq_thread_handler(int irq, void *dev_id)
937{
938 struct mei_device *dev = (struct mei_device *) dev_id;
939 struct mei_txe_hw *hw = to_txe_hw(dev);
940 struct mei_cl_cb complete_list;
941 s32 slots;
942 int rets = 0;
943
944 dev_dbg(&dev->pdev->dev, "irq thread: Interrupt Registers HHISR|HISR|SEC=%02X|%04X|%02X\n",
945 mei_txe_br_reg_read(hw, HHISR_REG),
946 mei_txe_br_reg_read(hw, HISR_REG),
947 mei_txe_sec_reg_read_silent(hw, SEC_IPC_HOST_INT_STATUS_REG));
948
949
950 /* initialize our complete list */
951 mutex_lock(&dev->device_lock);
952 mei_io_list_init(&complete_list);
953
954 if (pci_dev_msi_enabled(dev->pdev))
955 mei_txe_check_and_ack_intrs(dev, true);
956
957 /* show irq events */
958 mei_txe_pending_interrupts(dev);
959
960 hw->aliveness = mei_txe_aliveness_get(dev);
961 hw->readiness = mei_txe_readiness_get(dev);
962
963 /* Readiness:
964 * Detection of TXE driver going through reset
965 * or TXE driver resetting the HECI interface.
966 */
967 if (test_and_clear_bit(TXE_INTR_READINESS_BIT, &hw->intr_cause)) {
968 dev_dbg(&dev->pdev->dev, "Readiness Interrupt was received...\n");
969
970 /* Check if SeC is going through reset */
971 if (mei_txe_readiness_is_sec_rdy(hw->readiness)) {
972 dev_dbg(&dev->pdev->dev, "we need to start the dev.\n");
973 dev->recvd_hw_ready = true;
974 } else {
975 dev->recvd_hw_ready = false;
976 if (dev->dev_state != MEI_DEV_RESETTING) {
977
978 dev_warn(&dev->pdev->dev, "FW not ready: resetting.\n");
979 schedule_work(&dev->reset_work);
980 goto end;
981
982 }
983 }
984 wake_up(&dev->wait_hw_ready);
985 }
986
987 /************************************************************/
988 /* Check interrupt cause:
989 * Aliveness: Detection of SeC acknowledge of host request that
990 * it remain alive or host cancellation of that request.
991 */
992
993 if (test_and_clear_bit(TXE_INTR_ALIVENESS_BIT, &hw->intr_cause)) {
994 /* Clear the interrupt cause */
995 dev_dbg(&dev->pdev->dev,
996 "Aliveness Interrupt: Status: %d\n", hw->aliveness);
964a2331
TW
997 dev->pg_event = MEI_PG_EVENT_RECEIVED;
998 if (waitqueue_active(&hw->wait_aliveness_resp))
999 wake_up(&hw->wait_aliveness_resp);
32e2b59f
TW
1000 }
1001
1002
1003 /* Output Doorbell:
1004 * Detection of SeC having sent output to host
1005 */
1006 slots = mei_count_full_read_slots(dev);
1007 if (test_and_clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause)) {
1008 /* Read from TXE */
1009 rets = mei_irq_read_handler(dev, &complete_list, &slots);
1010 if (rets && dev->dev_state != MEI_DEV_RESETTING) {
1011 dev_err(&dev->pdev->dev,
1012 "mei_irq_read_handler ret = %d.\n", rets);
1013
1014 schedule_work(&dev->reset_work);
1015 goto end;
1016 }
1017 }
1018 /* Input Ready: Detection if host can write to SeC */
9d098192 1019 if (test_and_clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause)) {
32e2b59f 1020 dev->hbuf_is_ready = true;
9d098192
TW
1021 hw->slots = dev->hbuf_depth;
1022 }
32e2b59f
TW
1023
1024 if (hw->aliveness && dev->hbuf_is_ready) {
6aae48ff
TW
1025 /* get the real register value */
1026 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
32e2b59f 1027 rets = mei_irq_write_handler(dev, &complete_list);
6aae48ff
TW
1028 if (rets && rets != -EMSGSIZE)
1029 dev_err(&dev->pdev->dev, "mei_irq_write_handler ret = %d.\n",
1030 rets);
1031 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
32e2b59f
TW
1032 }
1033
32e2b59f
TW
1034 mei_irq_compl_handler(dev, &complete_list);
1035
1036end:
1037 dev_dbg(&dev->pdev->dev, "interrupt thread end ret = %d\n", rets);
1038
1039 mutex_unlock(&dev->device_lock);
1040
1041 mei_enable_interrupts(dev);
1042 return IRQ_HANDLED;
1043}
1044
1045static const struct mei_hw_ops mei_txe_hw_ops = {
1046
1047 .host_is_ready = mei_txe_host_is_ready,
1048
964a2331
TW
1049 .pg_state = mei_txe_pg_state,
1050
32e2b59f
TW
1051 .hw_is_ready = mei_txe_hw_is_ready,
1052 .hw_reset = mei_txe_hw_reset,
1053 .hw_config = mei_txe_hw_config,
1054 .hw_start = mei_txe_hw_start,
1055
ee7e5afd
TW
1056 .pg_is_enabled = mei_txe_pg_is_enabled,
1057
32e2b59f
TW
1058 .intr_clear = mei_txe_intr_clear,
1059 .intr_enable = mei_txe_intr_enable,
1060 .intr_disable = mei_txe_intr_disable,
1061
1062 .hbuf_free_slots = mei_txe_hbuf_empty_slots,
1063 .hbuf_is_ready = mei_txe_is_input_ready,
1064 .hbuf_max_len = mei_txe_hbuf_max_len,
1065
1066 .write = mei_txe_write,
1067
1068 .rdbuf_full_slots = mei_txe_count_full_read_slots,
1069 .read_hdr = mei_txe_read_hdr,
1070
1071 .read = mei_txe_read,
1072
1073};
1074
8d929d48
AU
1075#define MEI_CFG_TXE_FW_STS \
1076 .fw_status.count = 2, \
1077 .fw_status.status[0] = PCI_CFG_TXE_FW_STS0, \
1078 .fw_status.status[1] = PCI_CFG_TXE_FW_STS1
1079
1080const struct mei_cfg mei_txe_cfg = {
1081 MEI_CFG_TXE_FW_STS,
1082};
1083
1084
32e2b59f
TW
1085/**
1086 * mei_txe_dev_init - allocates and initializes txe hardware specific structure
1087 *
1088 * @pdev - pci device
8d929d48
AU
1089 * @cfg - per device generation config
1090 *
32e2b59f
TW
1091 * returns struct mei_device * on success or NULL;
1092 *
1093 */
8d929d48
AU
1094struct mei_device *mei_txe_dev_init(struct pci_dev *pdev,
1095 const struct mei_cfg *cfg)
32e2b59f
TW
1096{
1097 struct mei_device *dev;
1098 struct mei_txe_hw *hw;
1099
1100 dev = kzalloc(sizeof(struct mei_device) +
1101 sizeof(struct mei_txe_hw), GFP_KERNEL);
1102 if (!dev)
1103 return NULL;
1104
8d929d48 1105 mei_device_init(dev, cfg);
32e2b59f
TW
1106
1107 hw = to_txe_hw(dev);
1108
964a2331 1109 init_waitqueue_head(&hw->wait_aliveness_resp);
32e2b59f
TW
1110
1111 dev->ops = &mei_txe_hw_ops;
1112
1113 dev->pdev = pdev;
1114 return dev;
1115}
1116
1117/**
1118 * mei_txe_setup_satt2 - SATT2 configuration for DMA support.
1119 *
1120 * @dev: the device structure
1121 * @addr: physical address start of the range
1122 * @range: physical range size
1123 */
1124int mei_txe_setup_satt2(struct mei_device *dev, phys_addr_t addr, u32 range)
1125{
1126 struct mei_txe_hw *hw = to_txe_hw(dev);
1127
1128 u32 lo32 = lower_32_bits(addr);
1129 u32 hi32 = upper_32_bits(addr);
1130 u32 ctrl;
1131
1132 /* SATT is limited to 36 Bits */
1133 if (hi32 & ~0xF)
1134 return -EINVAL;
1135
1136 /* SATT has to be 16Byte aligned */
1137 if (lo32 & 0xF)
1138 return -EINVAL;
1139
1140 /* SATT range has to be 4Bytes aligned */
1141 if (range & 0x4)
1142 return -EINVAL;
1143
1144 /* SATT is limited to 32 MB range*/
1145 if (range > SATT_RANGE_MAX)
1146 return -EINVAL;
1147
1148 ctrl = SATT2_CTRL_VALID_MSK;
1149 ctrl |= hi32 << SATT2_CTRL_BR_BASE_ADDR_REG_SHIFT;
1150
1151 mei_txe_br_reg_write(hw, SATT2_SAP_SIZE_REG, range);
1152 mei_txe_br_reg_write(hw, SATT2_BRG_BA_LSB_REG, lo32);
1153 mei_txe_br_reg_write(hw, SATT2_CTRL_REG, ctrl);
1154 dev_dbg(&dev->pdev->dev, "SATT2: SAP_SIZE_OFFSET=0x%08X, BRG_BA_LSB_OFFSET=0x%08X, CTRL_OFFSET=0x%08X\n",
1155 range, lo32, ctrl);
1156
1157 return 0;
1158}
This page took 0.103418 seconds and 5 git commands to generate.