mei: push all standard settings into mei_device_init
[deliverable/linux.git] / drivers / misc / mei / hw-txe.c
CommitLineData
32e2b59f
TW
1/*
2 *
3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2013-2014, Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 */
16
17#include <linux/pci.h>
18#include <linux/jiffies.h>
19#include <linux/delay.h>
20#include <linux/kthread.h>
4a22176a 21#include <linux/irqreturn.h>
32e2b59f
TW
22
23#include <linux/mei.h>
24
25#include "mei_dev.h"
26#include "hw-txe.h"
27#include "client.h"
28#include "hbm.h"
29
30/**
31 * mei_txe_reg_read - Reads 32bit data from the device
32 *
33 * @base_addr: registers base address
34 * @offset: register offset
35 *
36 */
37static inline u32 mei_txe_reg_read(void __iomem *base_addr,
38 unsigned long offset)
39{
40 return ioread32(base_addr + offset);
41}
42
43/**
44 * mei_txe_reg_write - Writes 32bit data to the device
45 *
46 * @base_addr: registers base address
47 * @offset: register offset
48 * @value: the value to write
49 */
50static inline void mei_txe_reg_write(void __iomem *base_addr,
51 unsigned long offset, u32 value)
52{
53 iowrite32(value, base_addr + offset);
54}
55
56/**
57 * mei_txe_sec_reg_read_silent - Reads 32bit data from the SeC BAR
58 *
59 * @dev: the device structure
60 * @offset: register offset
61 *
62 * Doesn't check for aliveness while Reads 32bit data from the SeC BAR
63 */
64static inline u32 mei_txe_sec_reg_read_silent(struct mei_txe_hw *hw,
65 unsigned long offset)
66{
67 return mei_txe_reg_read(hw->mem_addr[SEC_BAR], offset);
68}
69
70/**
71 * mei_txe_sec_reg_read - Reads 32bit data from the SeC BAR
72 *
73 * @dev: the device structure
74 * @offset: register offset
75 *
76 * Reads 32bit data from the SeC BAR and shout loud if aliveness is not set
77 */
78static inline u32 mei_txe_sec_reg_read(struct mei_txe_hw *hw,
79 unsigned long offset)
80{
81 WARN(!hw->aliveness, "sec read: aliveness not asserted\n");
82 return mei_txe_sec_reg_read_silent(hw, offset);
83}
84/**
85 * mei_txe_sec_reg_write_silent - Writes 32bit data to the SeC BAR
86 * doesn't check for aliveness
87 *
88 * @dev: the device structure
89 * @offset: register offset
90 * @value: value to write
91 *
92 * Doesn't check for aliveness while writes 32bit data from to the SeC BAR
93 */
94static inline void mei_txe_sec_reg_write_silent(struct mei_txe_hw *hw,
95 unsigned long offset, u32 value)
96{
97 mei_txe_reg_write(hw->mem_addr[SEC_BAR], offset, value);
98}
99
100/**
101 * mei_txe_sec_reg_write - Writes 32bit data to the SeC BAR
102 *
103 * @dev: the device structure
104 * @offset: register offset
105 * @value: value to write
106 *
107 * Writes 32bit data from the SeC BAR and shout loud if aliveness is not set
108 */
109static inline void mei_txe_sec_reg_write(struct mei_txe_hw *hw,
110 unsigned long offset, u32 value)
111{
112 WARN(!hw->aliveness, "sec write: aliveness not asserted\n");
113 mei_txe_sec_reg_write_silent(hw, offset, value);
114}
115/**
116 * mei_txe_br_reg_read - Reads 32bit data from the Bridge BAR
117 *
118 * @hw: the device structure
119 * @offset: offset from which to read the data
120 *
121 */
122static inline u32 mei_txe_br_reg_read(struct mei_txe_hw *hw,
123 unsigned long offset)
124{
125 return mei_txe_reg_read(hw->mem_addr[BRIDGE_BAR], offset);
126}
127
128/**
129 * mei_txe_br_reg_write - Writes 32bit data to the Bridge BAR
130 *
131 * @hw: the device structure
132 * @offset: offset from which to write the data
133 * @value: the byte to write
134 */
135static inline void mei_txe_br_reg_write(struct mei_txe_hw *hw,
136 unsigned long offset, u32 value)
137{
138 mei_txe_reg_write(hw->mem_addr[BRIDGE_BAR], offset, value);
139}
140
141/**
142 * mei_txe_aliveness_set - request for aliveness change
143 *
144 * @dev: the device structure
145 * @req: requested aliveness value
146 *
147 * Request for aliveness change and returns true if the change is
148 * really needed and false if aliveness is already
149 * in the requested state
150 * Requires device lock to be held
151 */
152static bool mei_txe_aliveness_set(struct mei_device *dev, u32 req)
153{
154
155 struct mei_txe_hw *hw = to_txe_hw(dev);
156 bool do_req = hw->aliveness != req;
157
158 dev_dbg(&dev->pdev->dev, "Aliveness current=%d request=%d\n",
159 hw->aliveness, req);
160 if (do_req) {
964a2331 161 dev->pg_event = MEI_PG_EVENT_WAIT;
32e2b59f
TW
162 mei_txe_br_reg_write(hw, SICR_HOST_ALIVENESS_REQ_REG, req);
163 }
164 return do_req;
165}
166
167
168/**
169 * mei_txe_aliveness_req_get - get aliveness requested register value
170 *
171 * @dev: the device structure
172 *
173 * Extract HICR_HOST_ALIVENESS_RESP_ACK bit from
174 * from HICR_HOST_ALIVENESS_REQ register value
175 */
176static u32 mei_txe_aliveness_req_get(struct mei_device *dev)
177{
178 struct mei_txe_hw *hw = to_txe_hw(dev);
179 u32 reg;
92db1555 180
32e2b59f
TW
181 reg = mei_txe_br_reg_read(hw, SICR_HOST_ALIVENESS_REQ_REG);
182 return reg & SICR_HOST_ALIVENESS_REQ_REQUESTED;
183}
184
185/**
186 * mei_txe_aliveness_get - get aliveness response register value
187 * @dev: the device structure
188 *
189 * Extract HICR_HOST_ALIVENESS_RESP_ACK bit
190 * from HICR_HOST_ALIVENESS_RESP register value
191 */
192static u32 mei_txe_aliveness_get(struct mei_device *dev)
193{
194 struct mei_txe_hw *hw = to_txe_hw(dev);
195 u32 reg;
92db1555 196
32e2b59f
TW
197 reg = mei_txe_br_reg_read(hw, HICR_HOST_ALIVENESS_RESP_REG);
198 return reg & HICR_HOST_ALIVENESS_RESP_ACK;
199}
200
201/**
202 * mei_txe_aliveness_poll - waits for aliveness to settle
203 *
204 * @dev: the device structure
205 * @expected: expected aliveness value
206 *
207 * Polls for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
208 * returns > 0 if the expected value was received, -ETIME otherwise
209 */
210static int mei_txe_aliveness_poll(struct mei_device *dev, u32 expected)
211{
212 struct mei_txe_hw *hw = to_txe_hw(dev);
213 int t = 0;
214
215 do {
216 hw->aliveness = mei_txe_aliveness_get(dev);
217 if (hw->aliveness == expected) {
964a2331 218 dev->pg_event = MEI_PG_EVENT_IDLE;
32e2b59f
TW
219 dev_dbg(&dev->pdev->dev,
220 "aliveness settled after %d msecs\n", t);
221 return t;
222 }
223 mutex_unlock(&dev->device_lock);
224 msleep(MSEC_PER_SEC / 5);
225 mutex_lock(&dev->device_lock);
226 t += MSEC_PER_SEC / 5;
227 } while (t < SEC_ALIVENESS_WAIT_TIMEOUT);
228
964a2331 229 dev->pg_event = MEI_PG_EVENT_IDLE;
32e2b59f
TW
230 dev_err(&dev->pdev->dev, "aliveness timed out\n");
231 return -ETIME;
232}
233
234/**
235 * mei_txe_aliveness_wait - waits for aliveness to settle
236 *
237 * @dev: the device structure
238 * @expected: expected aliveness value
239 *
240 * Waits for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
241 * returns returns 0 on success and < 0 otherwise
242 */
243static int mei_txe_aliveness_wait(struct mei_device *dev, u32 expected)
244{
245 struct mei_txe_hw *hw = to_txe_hw(dev);
246 const unsigned long timeout =
247 msecs_to_jiffies(SEC_ALIVENESS_WAIT_TIMEOUT);
248 long err;
249 int ret;
250
251 hw->aliveness = mei_txe_aliveness_get(dev);
252 if (hw->aliveness == expected)
253 return 0;
254
255 mutex_unlock(&dev->device_lock);
964a2331
TW
256 err = wait_event_timeout(hw->wait_aliveness_resp,
257 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
32e2b59f
TW
258 mutex_lock(&dev->device_lock);
259
260 hw->aliveness = mei_txe_aliveness_get(dev);
261 ret = hw->aliveness == expected ? 0 : -ETIME;
262
263 if (ret)
964a2331
TW
264 dev_warn(&dev->pdev->dev, "aliveness timed out = %ld aliveness = %d event = %d\n",
265 err, hw->aliveness, dev->pg_event);
32e2b59f 266 else
964a2331
TW
267 dev_dbg(&dev->pdev->dev, "aliveness settled after = %d msec aliveness = %d event = %d\n",
268 jiffies_to_msecs(timeout - err),
269 hw->aliveness, dev->pg_event);
270
271 dev->pg_event = MEI_PG_EVENT_IDLE;
32e2b59f
TW
272 return ret;
273}
274
275/**
276 * mei_txe_aliveness_set_sync - sets an wait for aliveness to complete
277 *
278 * @dev: the device structure
279 *
280 * returns returns 0 on success and < 0 otherwise
281 */
282int mei_txe_aliveness_set_sync(struct mei_device *dev, u32 req)
283{
284 if (mei_txe_aliveness_set(dev, req))
285 return mei_txe_aliveness_wait(dev, req);
286 return 0;
287}
288
ee7e5afd
TW
289/**
290 * mei_txe_pg_is_enabled - detect if PG is supported by HW
291 *
292 * @dev: the device structure
293 *
294 * returns: true is pg supported, false otherwise
295 */
296static bool mei_txe_pg_is_enabled(struct mei_device *dev)
297{
298 return true;
299}
300
964a2331
TW
301/**
302 * mei_txe_pg_state - translate aliveness register value
303 * to the mei power gating state
304 *
305 * @dev: the device structure
306 *
307 * returns: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
308 */
309static inline enum mei_pg_state mei_txe_pg_state(struct mei_device *dev)
310{
311 struct mei_txe_hw *hw = to_txe_hw(dev);
92db1555 312
964a2331
TW
313 return hw->aliveness ? MEI_PG_OFF : MEI_PG_ON;
314}
315
32e2b59f
TW
316/**
317 * mei_txe_input_ready_interrupt_enable - sets the Input Ready Interrupt
318 *
319 * @dev: the device structure
320 */
321static void mei_txe_input_ready_interrupt_enable(struct mei_device *dev)
322{
323 struct mei_txe_hw *hw = to_txe_hw(dev);
324 u32 hintmsk;
325 /* Enable the SEC_IPC_HOST_INT_MASK_IN_RDY interrupt */
326 hintmsk = mei_txe_sec_reg_read(hw, SEC_IPC_HOST_INT_MASK_REG);
327 hintmsk |= SEC_IPC_HOST_INT_MASK_IN_RDY;
328 mei_txe_sec_reg_write(hw, SEC_IPC_HOST_INT_MASK_REG, hintmsk);
329}
330
331/**
332 * mei_txe_input_doorbell_set
333 * - Sets bit 0 in SEC_IPC_INPUT_DOORBELL.IPC_INPUT_DOORBELL.
334 * @dev: the device structure
335 */
336static void mei_txe_input_doorbell_set(struct mei_txe_hw *hw)
337{
338 /* Clear the interrupt cause */
339 clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause);
340 mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_DOORBELL_REG, 1);
341}
342
343/**
344 * mei_txe_output_ready_set - Sets the SICR_SEC_IPC_OUTPUT_STATUS bit to 1
345 *
346 * @dev: the device structure
347 */
348static void mei_txe_output_ready_set(struct mei_txe_hw *hw)
349{
350 mei_txe_br_reg_write(hw,
351 SICR_SEC_IPC_OUTPUT_STATUS_REG,
352 SEC_IPC_OUTPUT_STATUS_RDY);
353}
354
355/**
356 * mei_txe_is_input_ready - check if TXE is ready for receiving data
357 *
358 * @dev: the device structure
359 */
360static bool mei_txe_is_input_ready(struct mei_device *dev)
361{
362 struct mei_txe_hw *hw = to_txe_hw(dev);
363 u32 status;
92db1555 364
32e2b59f
TW
365 status = mei_txe_sec_reg_read(hw, SEC_IPC_INPUT_STATUS_REG);
366 return !!(SEC_IPC_INPUT_STATUS_RDY & status);
367}
368
369/**
370 * mei_txe_intr_clear - clear all interrupts
371 *
372 * @dev: the device structure
373 */
374static inline void mei_txe_intr_clear(struct mei_device *dev)
375{
376 struct mei_txe_hw *hw = to_txe_hw(dev);
92db1555 377
32e2b59f
TW
378 mei_txe_sec_reg_write_silent(hw, SEC_IPC_HOST_INT_STATUS_REG,
379 SEC_IPC_HOST_INT_STATUS_PENDING);
380 mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_STS_MSK);
381 mei_txe_br_reg_write(hw, HHISR_REG, IPC_HHIER_MSK);
382}
383
384/**
385 * mei_txe_intr_disable - disable all interrupts
386 *
387 * @dev: the device structure
388 */
389static void mei_txe_intr_disable(struct mei_device *dev)
390{
391 struct mei_txe_hw *hw = to_txe_hw(dev);
92db1555 392
32e2b59f
TW
393 mei_txe_br_reg_write(hw, HHIER_REG, 0);
394 mei_txe_br_reg_write(hw, HIER_REG, 0);
395}
396/**
397 * mei_txe_intr_disable - enable all interrupts
398 *
399 * @dev: the device structure
400 */
401static void mei_txe_intr_enable(struct mei_device *dev)
402{
403 struct mei_txe_hw *hw = to_txe_hw(dev);
92db1555 404
32e2b59f
TW
405 mei_txe_br_reg_write(hw, HHIER_REG, IPC_HHIER_MSK);
406 mei_txe_br_reg_write(hw, HIER_REG, HIER_INT_EN_MSK);
407}
408
409/**
410 * mei_txe_pending_interrupts - check if there are pending interrupts
411 * only Aliveness, Input ready, and output doorbell are of relevance
412 *
413 * @dev: the device structure
414 *
415 * Checks if there are pending interrupts
416 * only Aliveness, Readiness, Input ready, and Output doorbell are relevant
417 */
418static bool mei_txe_pending_interrupts(struct mei_device *dev)
419{
420
421 struct mei_txe_hw *hw = to_txe_hw(dev);
422 bool ret = (hw->intr_cause & (TXE_INTR_READINESS |
423 TXE_INTR_ALIVENESS |
424 TXE_INTR_IN_READY |
425 TXE_INTR_OUT_DB));
426
427 if (ret) {
428 dev_dbg(&dev->pdev->dev,
429 "Pending Interrupts InReady=%01d Readiness=%01d, Aliveness=%01d, OutDoor=%01d\n",
430 !!(hw->intr_cause & TXE_INTR_IN_READY),
431 !!(hw->intr_cause & TXE_INTR_READINESS),
432 !!(hw->intr_cause & TXE_INTR_ALIVENESS),
433 !!(hw->intr_cause & TXE_INTR_OUT_DB));
434 }
435 return ret;
436}
437
438/**
439 * mei_txe_input_payload_write - write a dword to the host buffer
440 * at offset idx
441 *
442 * @dev: the device structure
443 * @idx: index in the host buffer
444 * @value: value
445 */
446static void mei_txe_input_payload_write(struct mei_device *dev,
447 unsigned long idx, u32 value)
448{
449 struct mei_txe_hw *hw = to_txe_hw(dev);
92db1555 450
32e2b59f
TW
451 mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_PAYLOAD_REG +
452 (idx * sizeof(u32)), value);
453}
454
455/**
456 * mei_txe_out_data_read - read dword from the device buffer
457 * at offset idx
458 *
459 * @dev: the device structure
460 * @idx: index in the device buffer
461 *
462 * returns register value at index
463 */
464static u32 mei_txe_out_data_read(const struct mei_device *dev,
465 unsigned long idx)
466{
467 struct mei_txe_hw *hw = to_txe_hw(dev);
92db1555 468
32e2b59f
TW
469 return mei_txe_br_reg_read(hw,
470 BRIDGE_IPC_OUTPUT_PAYLOAD_REG + (idx * sizeof(u32)));
471}
472
473/* Readiness */
474
475/**
476 * mei_txe_readiness_set_host_rdy
477 *
478 * @dev: the device structure
479 */
480static void mei_txe_readiness_set_host_rdy(struct mei_device *dev)
481{
482 struct mei_txe_hw *hw = to_txe_hw(dev);
92db1555 483
32e2b59f
TW
484 mei_txe_br_reg_write(hw,
485 SICR_HOST_IPC_READINESS_REQ_REG,
486 SICR_HOST_IPC_READINESS_HOST_RDY);
487}
488
489/**
490 * mei_txe_readiness_clear
491 *
492 * @dev: the device structure
493 */
494static void mei_txe_readiness_clear(struct mei_device *dev)
495{
496 struct mei_txe_hw *hw = to_txe_hw(dev);
92db1555 497
32e2b59f
TW
498 mei_txe_br_reg_write(hw, SICR_HOST_IPC_READINESS_REQ_REG,
499 SICR_HOST_IPC_READINESS_RDY_CLR);
500}
501/**
502 * mei_txe_readiness_get - Reads and returns
503 * the HICR_SEC_IPC_READINESS register value
504 *
505 * @dev: the device structure
506 */
507static u32 mei_txe_readiness_get(struct mei_device *dev)
508{
509 struct mei_txe_hw *hw = to_txe_hw(dev);
92db1555 510
32e2b59f
TW
511 return mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
512}
513
514
515/**
516 * mei_txe_readiness_is_sec_rdy - check readiness
517 * for HICR_SEC_IPC_READINESS_SEC_RDY
518 *
519 * @readiness - cached readiness state
520 */
521static inline bool mei_txe_readiness_is_sec_rdy(u32 readiness)
522{
523 return !!(readiness & HICR_SEC_IPC_READINESS_SEC_RDY);
524}
525
526/**
527 * mei_txe_hw_is_ready - check if the hw is ready
528 *
529 * @dev: the device structure
530 */
531static bool mei_txe_hw_is_ready(struct mei_device *dev)
532{
533 u32 readiness = mei_txe_readiness_get(dev);
92db1555 534
32e2b59f
TW
535 return mei_txe_readiness_is_sec_rdy(readiness);
536}
537
538/**
539 * mei_txe_host_is_ready - check if the host is ready
540 *
541 * @dev: the device structure
542 */
543static inline bool mei_txe_host_is_ready(struct mei_device *dev)
544{
545 struct mei_txe_hw *hw = to_txe_hw(dev);
546 u32 reg = mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
92db1555 547
32e2b59f
TW
548 return !!(reg & HICR_SEC_IPC_READINESS_HOST_RDY);
549}
550
551/**
552 * mei_txe_readiness_wait - wait till readiness settles
553 *
554 * @dev: the device structure
555 *
556 * returns 0 on success and -ETIME on timeout
557 */
558static int mei_txe_readiness_wait(struct mei_device *dev)
559{
560 if (mei_txe_hw_is_ready(dev))
561 return 0;
562
563 mutex_unlock(&dev->device_lock);
564 wait_event_timeout(dev->wait_hw_ready, dev->recvd_hw_ready,
565 msecs_to_jiffies(SEC_RESET_WAIT_TIMEOUT));
566 mutex_lock(&dev->device_lock);
567 if (!dev->recvd_hw_ready) {
568 dev_err(&dev->pdev->dev, "wait for readiness failed\n");
569 return -ETIME;
570 }
571
572 dev->recvd_hw_ready = false;
573 return 0;
574}
575
576/**
577 * mei_txe_hw_config - configure hardware at the start of the devices
578 *
579 * @dev: the device structure
580 *
581 * Configure hardware at the start of the device should be done only
582 * once at the device probe time
583 */
584static void mei_txe_hw_config(struct mei_device *dev)
585{
586
587 struct mei_txe_hw *hw = to_txe_hw(dev);
92db1555 588
32e2b59f
TW
589 /* Doesn't change in runtime */
590 dev->hbuf_depth = PAYLOAD_SIZE / 4;
591
592 hw->aliveness = mei_txe_aliveness_get(dev);
593 hw->readiness = mei_txe_readiness_get(dev);
594
595 dev_dbg(&dev->pdev->dev, "aliveness_resp = 0x%08x, readiness = 0x%08x.\n",
596 hw->aliveness, hw->readiness);
597}
598
599
600/**
601 * mei_txe_write - writes a message to device.
602 *
603 * @dev: the device structure
604 * @header: header of message
605 * @buf: message buffer will be written
606 * returns 1 if success, 0 - otherwise.
607 */
608
609static int mei_txe_write(struct mei_device *dev,
610 struct mei_msg_hdr *header, unsigned char *buf)
611{
612 struct mei_txe_hw *hw = to_txe_hw(dev);
613 unsigned long rem;
614 unsigned long length;
9d098192 615 int slots = dev->hbuf_depth;
32e2b59f 616 u32 *reg_buf = (u32 *)buf;
9d098192 617 u32 dw_cnt;
32e2b59f
TW
618 int i;
619
620 if (WARN_ON(!header || !buf))
621 return -EINVAL;
622
623 length = header->length;
624
625 dev_dbg(&dev->pdev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
626
9d098192
TW
627 dw_cnt = mei_data2slots(length);
628 if (dw_cnt > slots)
629 return -EMSGSIZE;
32e2b59f
TW
630
631 if (WARN(!hw->aliveness, "txe write: aliveness not asserted\n"))
632 return -EAGAIN;
633
634 /* Enable Input Ready Interrupt. */
635 mei_txe_input_ready_interrupt_enable(dev);
636
637 if (!mei_txe_is_input_ready(dev)) {
04dd3661 638 struct mei_fw_status fw_status;
92db1555 639
04dd3661
AU
640 mei_fw_status(dev, &fw_status);
641 dev_err(&dev->pdev->dev, "Input is not ready " FW_STS_FMT "\n",
642 FW_STS_PRM(fw_status));
32e2b59f
TW
643 return -EAGAIN;
644 }
645
646 mei_txe_input_payload_write(dev, 0, *((u32 *)header));
647
648 for (i = 0; i < length / 4; i++)
649 mei_txe_input_payload_write(dev, i + 1, reg_buf[i]);
650
651 rem = length & 0x3;
652 if (rem > 0) {
653 u32 reg = 0;
92db1555 654
32e2b59f
TW
655 memcpy(&reg, &buf[length - rem], rem);
656 mei_txe_input_payload_write(dev, i + 1, reg);
657 }
658
9d098192
TW
659 /* after each write the whole buffer is consumed */
660 hw->slots = 0;
661
32e2b59f
TW
662 /* Set Input-Doorbell */
663 mei_txe_input_doorbell_set(hw);
664
665 return 0;
666}
667
668/**
669 * mei_txe_hbuf_max_len - mimics the me hbuf circular buffer
670 *
671 * @dev: the device structure
672 *
673 * returns the PAYLOAD_SIZE - 4
674 */
675static size_t mei_txe_hbuf_max_len(const struct mei_device *dev)
676{
677 return PAYLOAD_SIZE - sizeof(struct mei_msg_hdr);
678}
679
680/**
681 * mei_txe_hbuf_empty_slots - mimics the me hbuf circular buffer
682 *
683 * @dev: the device structure
684 *
685 * returns always hbuf_depth
686 */
687static int mei_txe_hbuf_empty_slots(struct mei_device *dev)
688{
9d098192 689 struct mei_txe_hw *hw = to_txe_hw(dev);
92db1555 690
9d098192 691 return hw->slots;
32e2b59f
TW
692}
693
694/**
695 * mei_txe_count_full_read_slots - mimics the me device circular buffer
696 *
697 * @dev: the device structure
698 *
699 * returns always buffer size in dwords count
700 */
701static int mei_txe_count_full_read_slots(struct mei_device *dev)
702{
703 /* read buffers has static size */
704 return PAYLOAD_SIZE / 4;
705}
706
707/**
708 * mei_txe_read_hdr - read message header which is always in 4 first bytes
709 *
710 * @dev: the device structure
711 *
712 * returns mei message header
713 */
714
715static u32 mei_txe_read_hdr(const struct mei_device *dev)
716{
717 return mei_txe_out_data_read(dev, 0);
718}
719/**
720 * mei_txe_read - reads a message from the txe device.
721 *
722 * @dev: the device structure
723 * @buf: message buffer will be written
724 * @len: message size will be read
725 *
726 * returns -EINVAL on error wrong argument and 0 on success
727 */
728static int mei_txe_read(struct mei_device *dev,
729 unsigned char *buf, unsigned long len)
730{
731
732 struct mei_txe_hw *hw = to_txe_hw(dev);
92db1555
TW
733 u32 *reg_buf, reg;
734 u32 rem;
32e2b59f 735 u32 i;
32e2b59f
TW
736
737 if (WARN_ON(!buf || !len))
738 return -EINVAL;
739
92db1555
TW
740 reg_buf = (u32 *)buf;
741 rem = len & 0x3;
742
32e2b59f
TW
743 dev_dbg(&dev->pdev->dev,
744 "buffer-length = %lu buf[0]0x%08X\n",
745 len, mei_txe_out_data_read(dev, 0));
746
747 for (i = 0; i < len / 4; i++) {
748 /* skip header: index starts from 1 */
92db1555 749 reg = mei_txe_out_data_read(dev, i + 1);
32e2b59f
TW
750 dev_dbg(&dev->pdev->dev, "buf[%d] = 0x%08X\n", i, reg);
751 *reg_buf++ = reg;
752 }
753
754 if (rem) {
92db1555 755 reg = mei_txe_out_data_read(dev, i + 1);
32e2b59f
TW
756 memcpy(reg_buf, &reg, rem);
757 }
758
759 mei_txe_output_ready_set(hw);
760 return 0;
761}
762
763/**
764 * mei_txe_hw_reset - resets host and fw.
765 *
766 * @dev: the device structure
767 * @intr_enable: if interrupt should be enabled after reset.
768 *
769 * returns 0 on success and < 0 in case of error
770 */
771static int mei_txe_hw_reset(struct mei_device *dev, bool intr_enable)
772{
773 struct mei_txe_hw *hw = to_txe_hw(dev);
774
775 u32 aliveness_req;
776 /*
777 * read input doorbell to ensure consistency between Bridge and SeC
778 * return value might be garbage return
779 */
780 (void)mei_txe_sec_reg_read_silent(hw, SEC_IPC_INPUT_DOORBELL_REG);
781
782 aliveness_req = mei_txe_aliveness_req_get(dev);
783 hw->aliveness = mei_txe_aliveness_get(dev);
784
785 /* Disable interrupts in this stage we will poll */
786 mei_txe_intr_disable(dev);
787
788 /*
789 * If Aliveness Request and Aliveness Response are not equal then
790 * wait for them to be equal
791 * Since we might have interrupts disabled - poll for it
792 */
793 if (aliveness_req != hw->aliveness)
794 if (mei_txe_aliveness_poll(dev, aliveness_req) < 0) {
795 dev_err(&dev->pdev->dev,
796 "wait for aliveness settle failed ... bailing out\n");
797 return -EIO;
798 }
799
800 /*
801 * If Aliveness Request and Aliveness Response are set then clear them
802 */
803 if (aliveness_req) {
804 mei_txe_aliveness_set(dev, 0);
805 if (mei_txe_aliveness_poll(dev, 0) < 0) {
806 dev_err(&dev->pdev->dev,
807 "wait for aliveness failed ... bailing out\n");
808 return -EIO;
809 }
810 }
811
812 /*
813 * Set rediness RDY_CLR bit
814 */
815 mei_txe_readiness_clear(dev);
816
817 return 0;
818}
819
820/**
821 * mei_txe_hw_start - start the hardware after reset
822 *
823 * @dev: the device structure
824 *
825 * returns 0 on success and < 0 in case of error
826 */
827static int mei_txe_hw_start(struct mei_device *dev)
828{
829 struct mei_txe_hw *hw = to_txe_hw(dev);
830 int ret;
831
832 u32 hisr;
833
834 /* bring back interrupts */
835 mei_txe_intr_enable(dev);
836
837 ret = mei_txe_readiness_wait(dev);
838 if (ret < 0) {
839 dev_err(&dev->pdev->dev, "wating for readiness failed\n");
840 return ret;
841 }
842
843 /*
844 * If HISR.INT2_STS interrupt status bit is set then clear it.
845 */
846 hisr = mei_txe_br_reg_read(hw, HISR_REG);
847 if (hisr & HISR_INT_2_STS)
848 mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_2_STS);
849
850 /* Clear the interrupt cause of OutputDoorbell */
851 clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause);
852
853 ret = mei_txe_aliveness_set_sync(dev, 1);
854 if (ret < 0) {
855 dev_err(&dev->pdev->dev, "wait for aliveness failed ... bailing out\n");
856 return ret;
857 }
858
859 /* enable input ready interrupts:
860 * SEC_IPC_HOST_INT_MASK.IPC_INPUT_READY_INT_MASK
861 */
862 mei_txe_input_ready_interrupt_enable(dev);
863
864
865 /* Set the SICR_SEC_IPC_OUTPUT_STATUS.IPC_OUTPUT_READY bit */
866 mei_txe_output_ready_set(hw);
867
868 /* Set bit SICR_HOST_IPC_READINESS.HOST_RDY
869 */
870 mei_txe_readiness_set_host_rdy(dev);
871
872 return 0;
873}
874
875/**
876 * mei_txe_check_and_ack_intrs - translate multi BAR interrupt into
877 * single bit mask and acknowledge the interrupts
878 *
879 * @dev: the device structure
880 * @do_ack: acknowledge interrupts
881 */
882static bool mei_txe_check_and_ack_intrs(struct mei_device *dev, bool do_ack)
883{
884 struct mei_txe_hw *hw = to_txe_hw(dev);
885 u32 hisr;
886 u32 hhisr;
887 u32 ipc_isr;
888 u32 aliveness;
889 bool generated;
890
891 /* read interrupt registers */
892 hhisr = mei_txe_br_reg_read(hw, HHISR_REG);
893 generated = (hhisr & IPC_HHIER_MSK);
894 if (!generated)
895 goto out;
896
897 hisr = mei_txe_br_reg_read(hw, HISR_REG);
898
899 aliveness = mei_txe_aliveness_get(dev);
900 if (hhisr & IPC_HHIER_SEC && aliveness)
901 ipc_isr = mei_txe_sec_reg_read_silent(hw,
902 SEC_IPC_HOST_INT_STATUS_REG);
903 else
904 ipc_isr = 0;
905
906 generated = generated ||
907 (hisr & HISR_INT_STS_MSK) ||
908 (ipc_isr & SEC_IPC_HOST_INT_STATUS_PENDING);
909
910 if (generated && do_ack) {
911 /* Save the interrupt causes */
912 hw->intr_cause |= hisr & HISR_INT_STS_MSK;
913 if (ipc_isr & SEC_IPC_HOST_INT_STATUS_IN_RDY)
914 hw->intr_cause |= TXE_INTR_IN_READY;
915
916
917 mei_txe_intr_disable(dev);
918 /* Clear the interrupts in hierarchy:
919 * IPC and Bridge, than the High Level */
920 mei_txe_sec_reg_write_silent(hw,
921 SEC_IPC_HOST_INT_STATUS_REG, ipc_isr);
922 mei_txe_br_reg_write(hw, HISR_REG, hisr);
923 mei_txe_br_reg_write(hw, HHISR_REG, hhisr);
924 }
925
926out:
927 return generated;
928}
929
930/**
931 * mei_txe_irq_quick_handler - The ISR of the MEI device
932 *
933 * @irq: The irq number
934 * @dev_id: pointer to the device structure
935 *
936 * returns irqreturn_t
937 */
938irqreturn_t mei_txe_irq_quick_handler(int irq, void *dev_id)
939{
940 struct mei_device *dev = dev_id;
941
942 if (mei_txe_check_and_ack_intrs(dev, true))
943 return IRQ_WAKE_THREAD;
944 return IRQ_NONE;
945}
946
947
948/**
949 * mei_txe_irq_thread_handler - txe interrupt thread
950 *
951 * @irq: The irq number
952 * @dev_id: pointer to the device structure
953 *
954 * returns irqreturn_t
955 *
956 */
957irqreturn_t mei_txe_irq_thread_handler(int irq, void *dev_id)
958{
959 struct mei_device *dev = (struct mei_device *) dev_id;
960 struct mei_txe_hw *hw = to_txe_hw(dev);
961 struct mei_cl_cb complete_list;
962 s32 slots;
963 int rets = 0;
964
965 dev_dbg(&dev->pdev->dev, "irq thread: Interrupt Registers HHISR|HISR|SEC=%02X|%04X|%02X\n",
966 mei_txe_br_reg_read(hw, HHISR_REG),
967 mei_txe_br_reg_read(hw, HISR_REG),
968 mei_txe_sec_reg_read_silent(hw, SEC_IPC_HOST_INT_STATUS_REG));
969
970
971 /* initialize our complete list */
972 mutex_lock(&dev->device_lock);
973 mei_io_list_init(&complete_list);
974
975 if (pci_dev_msi_enabled(dev->pdev))
976 mei_txe_check_and_ack_intrs(dev, true);
977
978 /* show irq events */
979 mei_txe_pending_interrupts(dev);
980
981 hw->aliveness = mei_txe_aliveness_get(dev);
982 hw->readiness = mei_txe_readiness_get(dev);
983
984 /* Readiness:
985 * Detection of TXE driver going through reset
986 * or TXE driver resetting the HECI interface.
987 */
988 if (test_and_clear_bit(TXE_INTR_READINESS_BIT, &hw->intr_cause)) {
989 dev_dbg(&dev->pdev->dev, "Readiness Interrupt was received...\n");
990
991 /* Check if SeC is going through reset */
992 if (mei_txe_readiness_is_sec_rdy(hw->readiness)) {
993 dev_dbg(&dev->pdev->dev, "we need to start the dev.\n");
994 dev->recvd_hw_ready = true;
995 } else {
996 dev->recvd_hw_ready = false;
997 if (dev->dev_state != MEI_DEV_RESETTING) {
998
999 dev_warn(&dev->pdev->dev, "FW not ready: resetting.\n");
1000 schedule_work(&dev->reset_work);
1001 goto end;
1002
1003 }
1004 }
1005 wake_up(&dev->wait_hw_ready);
1006 }
1007
1008 /************************************************************/
1009 /* Check interrupt cause:
1010 * Aliveness: Detection of SeC acknowledge of host request that
1011 * it remain alive or host cancellation of that request.
1012 */
1013
1014 if (test_and_clear_bit(TXE_INTR_ALIVENESS_BIT, &hw->intr_cause)) {
1015 /* Clear the interrupt cause */
1016 dev_dbg(&dev->pdev->dev,
1017 "Aliveness Interrupt: Status: %d\n", hw->aliveness);
964a2331
TW
1018 dev->pg_event = MEI_PG_EVENT_RECEIVED;
1019 if (waitqueue_active(&hw->wait_aliveness_resp))
1020 wake_up(&hw->wait_aliveness_resp);
32e2b59f
TW
1021 }
1022
1023
1024 /* Output Doorbell:
1025 * Detection of SeC having sent output to host
1026 */
1027 slots = mei_count_full_read_slots(dev);
1028 if (test_and_clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause)) {
1029 /* Read from TXE */
1030 rets = mei_irq_read_handler(dev, &complete_list, &slots);
1031 if (rets && dev->dev_state != MEI_DEV_RESETTING) {
1032 dev_err(&dev->pdev->dev,
1033 "mei_irq_read_handler ret = %d.\n", rets);
1034
1035 schedule_work(&dev->reset_work);
1036 goto end;
1037 }
1038 }
1039 /* Input Ready: Detection if host can write to SeC */
9d098192 1040 if (test_and_clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause)) {
32e2b59f 1041 dev->hbuf_is_ready = true;
9d098192
TW
1042 hw->slots = dev->hbuf_depth;
1043 }
32e2b59f
TW
1044
1045 if (hw->aliveness && dev->hbuf_is_ready) {
6aae48ff
TW
1046 /* get the real register value */
1047 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
32e2b59f 1048 rets = mei_irq_write_handler(dev, &complete_list);
6aae48ff
TW
1049 if (rets && rets != -EMSGSIZE)
1050 dev_err(&dev->pdev->dev, "mei_irq_write_handler ret = %d.\n",
1051 rets);
1052 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
32e2b59f
TW
1053 }
1054
32e2b59f
TW
1055 mei_irq_compl_handler(dev, &complete_list);
1056
1057end:
1058 dev_dbg(&dev->pdev->dev, "interrupt thread end ret = %d\n", rets);
1059
1060 mutex_unlock(&dev->device_lock);
1061
1062 mei_enable_interrupts(dev);
1063 return IRQ_HANDLED;
1064}
1065
1066static const struct mei_hw_ops mei_txe_hw_ops = {
1067
1068 .host_is_ready = mei_txe_host_is_ready,
1069
964a2331
TW
1070 .pg_state = mei_txe_pg_state,
1071
32e2b59f
TW
1072 .hw_is_ready = mei_txe_hw_is_ready,
1073 .hw_reset = mei_txe_hw_reset,
1074 .hw_config = mei_txe_hw_config,
1075 .hw_start = mei_txe_hw_start,
1076
ee7e5afd
TW
1077 .pg_is_enabled = mei_txe_pg_is_enabled,
1078
32e2b59f
TW
1079 .intr_clear = mei_txe_intr_clear,
1080 .intr_enable = mei_txe_intr_enable,
1081 .intr_disable = mei_txe_intr_disable,
1082
1083 .hbuf_free_slots = mei_txe_hbuf_empty_slots,
1084 .hbuf_is_ready = mei_txe_is_input_ready,
1085 .hbuf_max_len = mei_txe_hbuf_max_len,
1086
1087 .write = mei_txe_write,
1088
1089 .rdbuf_full_slots = mei_txe_count_full_read_slots,
1090 .read_hdr = mei_txe_read_hdr,
1091
1092 .read = mei_txe_read,
1093
1094};
1095
8d929d48
AU
1096#define MEI_CFG_TXE_FW_STS \
1097 .fw_status.count = 2, \
1098 .fw_status.status[0] = PCI_CFG_TXE_FW_STS0, \
1099 .fw_status.status[1] = PCI_CFG_TXE_FW_STS1
1100
1101const struct mei_cfg mei_txe_cfg = {
1102 MEI_CFG_TXE_FW_STS,
1103};
1104
1105
32e2b59f
TW
1106/**
1107 * mei_txe_dev_init - allocates and initializes txe hardware specific structure
1108 *
1109 * @pdev - pci device
8d929d48
AU
1110 * @cfg - per device generation config
1111 *
32e2b59f
TW
1112 * returns struct mei_device * on success or NULL;
1113 *
1114 */
8d929d48
AU
1115struct mei_device *mei_txe_dev_init(struct pci_dev *pdev,
1116 const struct mei_cfg *cfg)
32e2b59f
TW
1117{
1118 struct mei_device *dev;
1119 struct mei_txe_hw *hw;
1120
1121 dev = kzalloc(sizeof(struct mei_device) +
1122 sizeof(struct mei_txe_hw), GFP_KERNEL);
1123 if (!dev)
1124 return NULL;
1125
3a7e9b6c 1126 mei_device_init(dev, &pdev->dev, &mei_txe_hw_ops);
32e2b59f
TW
1127
1128 hw = to_txe_hw(dev);
1129
964a2331 1130 init_waitqueue_head(&hw->wait_aliveness_resp);
32e2b59f 1131
3a7e9b6c 1132 dev->cfg = cfg;
32e2b59f
TW
1133 dev->pdev = pdev;
1134 return dev;
1135}
1136
1137/**
1138 * mei_txe_setup_satt2 - SATT2 configuration for DMA support.
1139 *
1140 * @dev: the device structure
1141 * @addr: physical address start of the range
1142 * @range: physical range size
1143 */
1144int mei_txe_setup_satt2(struct mei_device *dev, phys_addr_t addr, u32 range)
1145{
1146 struct mei_txe_hw *hw = to_txe_hw(dev);
1147
1148 u32 lo32 = lower_32_bits(addr);
1149 u32 hi32 = upper_32_bits(addr);
1150 u32 ctrl;
1151
1152 /* SATT is limited to 36 Bits */
1153 if (hi32 & ~0xF)
1154 return -EINVAL;
1155
1156 /* SATT has to be 16Byte aligned */
1157 if (lo32 & 0xF)
1158 return -EINVAL;
1159
1160 /* SATT range has to be 4Bytes aligned */
1161 if (range & 0x4)
1162 return -EINVAL;
1163
1164 /* SATT is limited to 32 MB range*/
1165 if (range > SATT_RANGE_MAX)
1166 return -EINVAL;
1167
1168 ctrl = SATT2_CTRL_VALID_MSK;
1169 ctrl |= hi32 << SATT2_CTRL_BR_BASE_ADDR_REG_SHIFT;
1170
1171 mei_txe_br_reg_write(hw, SATT2_SAP_SIZE_REG, range);
1172 mei_txe_br_reg_write(hw, SATT2_BRG_BA_LSB_REG, lo32);
1173 mei_txe_br_reg_write(hw, SATT2_CTRL_REG, ctrl);
1174 dev_dbg(&dev->pdev->dev, "SATT2: SAP_SIZE_OFFSET=0x%08X, BRG_BA_LSB_OFFSET=0x%08X, CTRL_OFFSET=0x%08X\n",
1175 range, lo32, ctrl);
1176
1177 return 0;
1178}
This page took 0.102351 seconds and 5 git commands to generate.