Merge branch 'drm-nouveau-fixes-3.8' of git://anongit.freedesktop.org/git/nouveau...
[deliverable/linux.git] / drivers / mtd / devices / mtd_dataflash.c
CommitLineData
1d6432fe
DB
1/*
2 * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
3 *
4 * Largely derived from at91_dataflash.c:
5 * Copyright (C) 2003-2005 SAN People (Pty) Ltd
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11*/
1d6432fe
DB
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/slab.h>
15#include <linux/delay.h>
16#include <linux/device.h>
ec9ce52e 17#include <linux/mutex.h>
771999b6 18#include <linux/err.h>
5b7f3a50 19#include <linux/math64.h>
b94e757c
SG
20#include <linux/of.h>
21#include <linux/of_device.h>
771999b6 22
1d6432fe
DB
23#include <linux/spi/spi.h>
24#include <linux/spi/flash.h>
25
26#include <linux/mtd/mtd.h>
27#include <linux/mtd/partitions.h>
28
1d6432fe
DB
29/*
30 * DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in
31 * each chip, which may be used for double buffered I/O; but this driver
32 * doesn't (yet) use these for any kind of i/o overlap or prefetching.
33 *
34 * Sometimes DataFlash is packaged in MMC-format cards, although the
8c64038e 35 * MMC stack can't (yet?) distinguish between MMC and DataFlash
1d6432fe
DB
36 * protocols during enumeration.
37 */
38
1d6432fe
DB
39/* reads can bypass the buffers */
40#define OP_READ_CONTINUOUS 0xE8
41#define OP_READ_PAGE 0xD2
42
43/* group B requests can run even while status reports "busy" */
44#define OP_READ_STATUS 0xD7 /* group B */
45
46/* move data between host and buffer */
47#define OP_READ_BUFFER1 0xD4 /* group B */
48#define OP_READ_BUFFER2 0xD6 /* group B */
49#define OP_WRITE_BUFFER1 0x84 /* group B */
50#define OP_WRITE_BUFFER2 0x87 /* group B */
51
52/* erasing flash */
53#define OP_ERASE_PAGE 0x81
54#define OP_ERASE_BLOCK 0x50
55
56/* move data between buffer and flash */
57#define OP_TRANSFER_BUF1 0x53
58#define OP_TRANSFER_BUF2 0x55
59#define OP_MREAD_BUFFER1 0xD4
60#define OP_MREAD_BUFFER2 0xD6
61#define OP_MWERASE_BUFFER1 0x83
62#define OP_MWERASE_BUFFER2 0x86
63#define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */
64#define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */
65
66/* write to buffer, then write-erase to flash */
67#define OP_PROGRAM_VIA_BUF1 0x82
68#define OP_PROGRAM_VIA_BUF2 0x85
69
70/* compare buffer to flash */
71#define OP_COMPARE_BUF1 0x60
72#define OP_COMPARE_BUF2 0x61
73
74/* read flash to buffer, then write-erase to flash */
75#define OP_REWRITE_VIA_BUF1 0x58
76#define OP_REWRITE_VIA_BUF2 0x59
77
78/* newer chips report JEDEC manufacturer and device IDs; chip
79 * serial number and OTP bits; and per-sector writeprotect.
80 */
81#define OP_READ_ID 0x9F
82#define OP_READ_SECURITY 0x77
34a82443
DB
83#define OP_WRITE_SECURITY_REVC 0x9A
84#define OP_WRITE_SECURITY 0x9B /* revision D */
1d6432fe
DB
85
86
87struct dataflash {
271c5c59 88 uint8_t command[4];
1d6432fe
DB
89 char name[24];
90
91 unsigned partitioned:1;
92
93 unsigned short page_offset; /* offset in flash address */
94 unsigned int page_size; /* of bytes per page */
95
ec9ce52e 96 struct mutex lock;
1d6432fe
DB
97 struct spi_device *spi;
98
99 struct mtd_info mtd;
100};
101
b94e757c
SG
102#ifdef CONFIG_OF
103static const struct of_device_id dataflash_dt_ids[] = {
104 { .compatible = "atmel,at45", },
105 { .compatible = "atmel,dataflash", },
106 { /* sentinel */ }
107};
108#else
109#define dataflash_dt_ids NULL
110#endif
111
1d6432fe
DB
112/* ......................................................................... */
113
114/*
115 * Return the status of the DataFlash device.
116 */
117static inline int dataflash_status(struct spi_device *spi)
118{
119 /* NOTE: at45db321c over 25 MHz wants to write
120 * a dummy byte after the opcode...
121 */
122 return spi_w8r8(spi, OP_READ_STATUS);
123}
124
125/*
126 * Poll the DataFlash device until it is READY.
127 * This usually takes 5-20 msec or so; more for sector erase.
128 */
129static int dataflash_waitready(struct spi_device *spi)
130{
131 int status;
132
133 for (;;) {
134 status = dataflash_status(spi);
135 if (status < 0) {
289c0522 136 pr_debug("%s: status %d?\n",
160bbab3 137 dev_name(&spi->dev), status);
1d6432fe
DB
138 status = 0;
139 }
140
141 if (status & (1 << 7)) /* RDY/nBSY */
142 return status;
143
144 msleep(3);
145 }
146}
147
148/* ......................................................................... */
149
150/*
151 * Erase pages of flash.
152 */
153static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
154{
42845d2a 155 struct dataflash *priv = mtd->priv;
1d6432fe 156 struct spi_device *spi = priv->spi;
8275c642 157 struct spi_transfer x = { .tx_dma = 0, };
1d6432fe
DB
158 struct spi_message msg;
159 unsigned blocksize = priv->page_size << 3;
271c5c59 160 uint8_t *command;
5b7f3a50 161 uint32_t rem;
1d6432fe 162
289c0522 163 pr_debug("%s: erase addr=0x%llx len 0x%llx\n",
160bbab3
KS
164 dev_name(&spi->dev), (long long)instr->addr,
165 (long long)instr->len);
1d6432fe 166
5b7f3a50
AB
167 div_u64_rem(instr->len, priv->page_size, &rem);
168 if (rem)
169 return -EINVAL;
170 div_u64_rem(instr->addr, priv->page_size, &rem);
171 if (rem)
1d6432fe
DB
172 return -EINVAL;
173
8275c642
VW
174 spi_message_init(&msg);
175
176 x.tx_buf = command = priv->command;
177 x.len = 4;
178 spi_message_add_tail(&x, &msg);
1d6432fe 179
ec9ce52e 180 mutex_lock(&priv->lock);
1d6432fe
DB
181 while (instr->len > 0) {
182 unsigned int pageaddr;
183 int status;
184 int do_block;
185
186 /* Calculate flash page address; use block erase (for speed) if
187 * we're at a block boundary and need to erase the whole block.
188 */
dbf8c11f 189 pageaddr = div_u64(instr->addr, priv->page_size);
3cb4f09f 190 do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
1d6432fe
DB
191 pageaddr = pageaddr << priv->page_offset;
192
193 command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
271c5c59
DW
194 command[1] = (uint8_t)(pageaddr >> 16);
195 command[2] = (uint8_t)(pageaddr >> 8);
1d6432fe
DB
196 command[3] = 0;
197
289c0522 198 pr_debug("ERASE %s: (%x) %x %x %x [%i]\n",
1d6432fe
DB
199 do_block ? "block" : "page",
200 command[0], command[1], command[2], command[3],
201 pageaddr);
202
203 status = spi_sync(spi, &msg);
204 (void) dataflash_waitready(spi);
205
206 if (status < 0) {
207 printk(KERN_ERR "%s: erase %x, err %d\n",
160bbab3 208 dev_name(&spi->dev), pageaddr, status);
1d6432fe
DB
209 /* REVISIT: can retry instr->retries times; or
210 * giveup and instr->fail_addr = instr->addr;
211 */
212 continue;
213 }
214
215 if (do_block) {
216 instr->addr += blocksize;
217 instr->len -= blocksize;
218 } else {
219 instr->addr += priv->page_size;
220 instr->len -= priv->page_size;
221 }
222 }
ec9ce52e 223 mutex_unlock(&priv->lock);
1d6432fe
DB
224
225 /* Inform MTD subsystem that erase is complete */
226 instr->state = MTD_ERASE_DONE;
227 mtd_erase_callback(instr);
228
229 return 0;
230}
231
232/*
233 * Read from the DataFlash device.
234 * from : Start offset in flash device
235 * len : Amount to read
236 * retlen : About of data actually read
237 * buf : Buffer containing the data
238 */
239static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
240 size_t *retlen, u_char *buf)
241{
42845d2a 242 struct dataflash *priv = mtd->priv;
1d6432fe
DB
243 struct spi_transfer x[2] = { { .tx_dma = 0, }, };
244 struct spi_message msg;
245 unsigned int addr;
271c5c59 246 uint8_t *command;
1d6432fe
DB
247 int status;
248
0a32a102
BN
249 pr_debug("%s: read 0x%x..0x%x\n", dev_name(&priv->spi->dev),
250 (unsigned)from, (unsigned)(from + len));
1d6432fe 251
1d6432fe
DB
252 /* Calculate flash page/byte address */
253 addr = (((unsigned)from / priv->page_size) << priv->page_offset)
254 + ((unsigned)from % priv->page_size);
255
256 command = priv->command;
257
289c0522 258 pr_debug("READ: (%x) %x %x %x\n",
1d6432fe
DB
259 command[0], command[1], command[2], command[3]);
260
8275c642
VW
261 spi_message_init(&msg);
262
1d6432fe
DB
263 x[0].tx_buf = command;
264 x[0].len = 8;
8275c642
VW
265 spi_message_add_tail(&x[0], &msg);
266
1d6432fe
DB
267 x[1].rx_buf = buf;
268 x[1].len = len;
8275c642 269 spi_message_add_tail(&x[1], &msg);
1d6432fe 270
ec9ce52e 271 mutex_lock(&priv->lock);
1d6432fe
DB
272
273 /* Continuous read, max clock = f(car) which may be less than
274 * the peak rate available. Some chips support commands with
275 * fewer "don't care" bytes. Both buffers stay unchanged.
276 */
277 command[0] = OP_READ_CONTINUOUS;
271c5c59
DW
278 command[1] = (uint8_t)(addr >> 16);
279 command[2] = (uint8_t)(addr >> 8);
280 command[3] = (uint8_t)(addr >> 0);
1d6432fe
DB
281 /* plus 4 "don't care" bytes */
282
283 status = spi_sync(priv->spi, &msg);
ec9ce52e 284 mutex_unlock(&priv->lock);
1d6432fe
DB
285
286 if (status >= 0) {
287 *retlen = msg.actual_length - 8;
288 status = 0;
289 } else
289c0522 290 pr_debug("%s: read %x..%x --> %d\n",
160bbab3 291 dev_name(&priv->spi->dev),
1d6432fe
DB
292 (unsigned)from, (unsigned)(from + len),
293 status);
294 return status;
295}
296
297/*
298 * Write to the DataFlash device.
299 * to : Start offset in flash device
300 * len : Amount to write
301 * retlen : Amount of data actually written
302 * buf : Buffer containing the data
303 */
304static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
305 size_t * retlen, const u_char * buf)
306{
42845d2a 307 struct dataflash *priv = mtd->priv;
1d6432fe
DB
308 struct spi_device *spi = priv->spi;
309 struct spi_transfer x[2] = { { .tx_dma = 0, }, };
310 struct spi_message msg;
311 unsigned int pageaddr, addr, offset, writelen;
312 size_t remaining = len;
313 u_char *writebuf = (u_char *) buf;
314 int status = -EINVAL;
271c5c59 315 uint8_t *command;
1d6432fe 316
289c0522 317 pr_debug("%s: write 0x%x..0x%x\n",
160bbab3 318 dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len));
1d6432fe 319
8275c642
VW
320 spi_message_init(&msg);
321
1d6432fe
DB
322 x[0].tx_buf = command = priv->command;
323 x[0].len = 4;
8275c642 324 spi_message_add_tail(&x[0], &msg);
1d6432fe
DB
325
326 pageaddr = ((unsigned)to / priv->page_size);
327 offset = ((unsigned)to % priv->page_size);
328 if (offset + len > priv->page_size)
329 writelen = priv->page_size - offset;
330 else
331 writelen = len;
332
ec9ce52e 333 mutex_lock(&priv->lock);
1d6432fe 334 while (remaining > 0) {
289c0522 335 pr_debug("write @ %i:%i len=%i\n",
1d6432fe
DB
336 pageaddr, offset, writelen);
337
338 /* REVISIT:
339 * (a) each page in a sector must be rewritten at least
340 * once every 10K sibling erase/program operations.
341 * (b) for pages that are already erased, we could
342 * use WRITE+MWRITE not PROGRAM for ~30% speedup.
343 * (c) WRITE to buffer could be done while waiting for
344 * a previous MWRITE/MWERASE to complete ...
345 * (d) error handling here seems to be mostly missing.
346 *
347 * Two persistent bits per page, plus a per-sector counter,
348 * could support (a) and (b) ... we might consider using
349 * the second half of sector zero, which is just one block,
350 * to track that state. (On AT91, that sector should also
351 * support boot-from-DataFlash.)
352 */
353
354 addr = pageaddr << priv->page_offset;
355
356 /* (1) Maybe transfer partial page to Buffer1 */
357 if (writelen != priv->page_size) {
358 command[0] = OP_TRANSFER_BUF1;
359 command[1] = (addr & 0x00FF0000) >> 16;
360 command[2] = (addr & 0x0000FF00) >> 8;
361 command[3] = 0;
362
289c0522 363 pr_debug("TRANSFER: (%x) %x %x %x\n",
1d6432fe
DB
364 command[0], command[1], command[2], command[3]);
365
1d6432fe
DB
366 status = spi_sync(spi, &msg);
367 if (status < 0)
0a32a102 368 pr_debug("%s: xfer %u -> %d\n",
160bbab3 369 dev_name(&spi->dev), addr, status);
1d6432fe
DB
370
371 (void) dataflash_waitready(priv->spi);
372 }
373
374 /* (2) Program full page via Buffer1 */
375 addr += offset;
376 command[0] = OP_PROGRAM_VIA_BUF1;
377 command[1] = (addr & 0x00FF0000) >> 16;
378 command[2] = (addr & 0x0000FF00) >> 8;
379 command[3] = (addr & 0x000000FF);
380
289c0522 381 pr_debug("PROGRAM: (%x) %x %x %x\n",
1d6432fe
DB
382 command[0], command[1], command[2], command[3]);
383
384 x[1].tx_buf = writebuf;
385 x[1].len = writelen;
8275c642 386 spi_message_add_tail(x + 1, &msg);
1d6432fe 387 status = spi_sync(spi, &msg);
8275c642 388 spi_transfer_del(x + 1);
1d6432fe 389 if (status < 0)
0a32a102 390 pr_debug("%s: pgm %u/%u -> %d\n",
160bbab3 391 dev_name(&spi->dev), addr, writelen, status);
1d6432fe
DB
392
393 (void) dataflash_waitready(priv->spi);
394
8275c642 395
05dd1807 396#ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY
1d6432fe
DB
397
398 /* (3) Compare to Buffer1 */
399 addr = pageaddr << priv->page_offset;
400 command[0] = OP_COMPARE_BUF1;
401 command[1] = (addr & 0x00FF0000) >> 16;
402 command[2] = (addr & 0x0000FF00) >> 8;
403 command[3] = 0;
404
289c0522 405 pr_debug("COMPARE: (%x) %x %x %x\n",
1d6432fe
DB
406 command[0], command[1], command[2], command[3]);
407
1d6432fe
DB
408 status = spi_sync(spi, &msg);
409 if (status < 0)
0a32a102 410 pr_debug("%s: compare %u -> %d\n",
160bbab3 411 dev_name(&spi->dev), addr, status);
1d6432fe
DB
412
413 status = dataflash_waitready(priv->spi);
414
415 /* Check result of the compare operation */
cccb45d4 416 if (status & (1 << 6)) {
1d6432fe 417 printk(KERN_ERR "%s: compare page %u, err %d\n",
160bbab3 418 dev_name(&spi->dev), pageaddr, status);
1d6432fe
DB
419 remaining = 0;
420 status = -EIO;
421 break;
422 } else
423 status = 0;
424
05dd1807 425#endif /* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */
1d6432fe
DB
426
427 remaining = remaining - writelen;
428 pageaddr++;
429 offset = 0;
430 writebuf += writelen;
431 *retlen += writelen;
432
433 if (remaining > priv->page_size)
434 writelen = priv->page_size;
435 else
436 writelen = remaining;
437 }
ec9ce52e 438 mutex_unlock(&priv->lock);
1d6432fe
DB
439
440 return status;
441}
442
443/* ......................................................................... */
444
34a82443
DB
445#ifdef CONFIG_MTD_DATAFLASH_OTP
446
447static int dataflash_get_otp_info(struct mtd_info *mtd,
448 struct otp_info *info, size_t len)
449{
450 /* Report both blocks as identical: bytes 0..64, locked.
451 * Unless the user block changed from all-ones, we can't
452 * tell whether it's still writable; so we assume it isn't.
453 */
454 info->start = 0;
455 info->length = 64;
456 info->locked = 1;
457 return sizeof(*info);
458}
459
460static ssize_t otp_read(struct spi_device *spi, unsigned base,
461 uint8_t *buf, loff_t off, size_t len)
462{
463 struct spi_message m;
464 size_t l;
465 uint8_t *scratch;
466 struct spi_transfer t;
467 int status;
468
469 if (off > 64)
470 return -EINVAL;
471
472 if ((off + len) > 64)
473 len = 64 - off;
34a82443
DB
474
475 spi_message_init(&m);
476
477 l = 4 + base + off + len;
478 scratch = kzalloc(l, GFP_KERNEL);
479 if (!scratch)
480 return -ENOMEM;
481
482 /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
483 * IN: ignore 4 bytes, data bytes 0..N (max 127)
484 */
485 scratch[0] = OP_READ_SECURITY;
486
487 memset(&t, 0, sizeof t);
488 t.tx_buf = scratch;
489 t.rx_buf = scratch;
490 t.len = l;
491 spi_message_add_tail(&t, &m);
492
493 dataflash_waitready(spi);
494
495 status = spi_sync(spi, &m);
496 if (status >= 0) {
497 memcpy(buf, scratch + 4 + base + off, len);
498 status = len;
499 }
500
501 kfree(scratch);
502 return status;
503}
504
505static int dataflash_read_fact_otp(struct mtd_info *mtd,
506 loff_t from, size_t len, size_t *retlen, u_char *buf)
507{
42845d2a 508 struct dataflash *priv = mtd->priv;
34a82443
DB
509 int status;
510
511 /* 64 bytes, from 0..63 ... start at 64 on-chip */
512 mutex_lock(&priv->lock);
513 status = otp_read(priv->spi, 64, buf, from, len);
514 mutex_unlock(&priv->lock);
515
516 if (status < 0)
517 return status;
518 *retlen = status;
519 return 0;
520}
521
522static int dataflash_read_user_otp(struct mtd_info *mtd,
523 loff_t from, size_t len, size_t *retlen, u_char *buf)
524{
42845d2a 525 struct dataflash *priv = mtd->priv;
34a82443
DB
526 int status;
527
528 /* 64 bytes, from 0..63 ... start at 0 on-chip */
529 mutex_lock(&priv->lock);
530 status = otp_read(priv->spi, 0, buf, from, len);
531 mutex_unlock(&priv->lock);
532
533 if (status < 0)
534 return status;
535 *retlen = status;
536 return 0;
537}
538
539static int dataflash_write_user_otp(struct mtd_info *mtd,
540 loff_t from, size_t len, size_t *retlen, u_char *buf)
541{
542 struct spi_message m;
543 const size_t l = 4 + 64;
544 uint8_t *scratch;
545 struct spi_transfer t;
42845d2a 546 struct dataflash *priv = mtd->priv;
34a82443
DB
547 int status;
548
549 if (len > 64)
550 return -EINVAL;
551
552 /* Strictly speaking, we *could* truncate the write ... but
553 * let's not do that for the only write that's ever possible.
554 */
555 if ((from + len) > 64)
556 return -EINVAL;
557
558 /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
559 * IN: ignore all
560 */
561 scratch = kzalloc(l, GFP_KERNEL);
562 if (!scratch)
563 return -ENOMEM;
564 scratch[0] = OP_WRITE_SECURITY;
565 memcpy(scratch + 4 + from, buf, len);
566
567 spi_message_init(&m);
568
569 memset(&t, 0, sizeof t);
570 t.tx_buf = scratch;
571 t.len = l;
572 spi_message_add_tail(&t, &m);
573
574 /* Write the OTP bits, if they've not yet been written.
575 * This modifies SRAM buffer1.
576 */
577 mutex_lock(&priv->lock);
578 dataflash_waitready(priv->spi);
579 status = spi_sync(priv->spi, &m);
580 mutex_unlock(&priv->lock);
581
582 kfree(scratch);
583
584 if (status >= 0) {
585 status = 0;
586 *retlen = len;
587 }
588 return status;
589}
590
591static char *otp_setup(struct mtd_info *device, char revision)
592{
3c3c10bb
AB
593 device->_get_fact_prot_info = dataflash_get_otp_info;
594 device->_read_fact_prot_reg = dataflash_read_fact_otp;
595 device->_get_user_prot_info = dataflash_get_otp_info;
596 device->_read_user_prot_reg = dataflash_read_user_otp;
34a82443
DB
597
598 /* rev c parts (at45db321c and at45db1281 only!) use a
599 * different write procedure; not (yet?) implemented.
600 */
601 if (revision > 'c')
3c3c10bb 602 device->_write_user_prot_reg = dataflash_write_user_otp;
34a82443
DB
603
604 return ", OTP";
605}
606
607#else
608
cf93ae02 609static char *otp_setup(struct mtd_info *device, char revision)
34a82443
DB
610{
611 return " (OTP)";
612}
613
614#endif
615
616/* ......................................................................... */
617
1d6432fe
DB
618/*
619 * Register DataFlash device with MTD subsystem.
620 */
d8929942
GKH
621static int add_dataflash_otp(struct spi_device *spi, char *name, int nr_pages,
622 int pagesize, int pageoffset, char revision)
1d6432fe
DB
623{
624 struct dataflash *priv;
625 struct mtd_info *device;
b94e757c 626 struct mtd_part_parser_data ppdata;
1d6432fe 627 struct flash_platform_data *pdata = spi->dev.platform_data;
34a82443 628 char *otp_tag = "";
d4702669 629 int err = 0;
1d6432fe 630
5cbded58 631 priv = kzalloc(sizeof *priv, GFP_KERNEL);
1d6432fe
DB
632 if (!priv)
633 return -ENOMEM;
634
ec9ce52e 635 mutex_init(&priv->lock);
1d6432fe
DB
636 priv->spi = spi;
637 priv->page_size = pagesize;
638 priv->page_offset = pageoffset;
639
640 /* name must be usable with cmdlinepart */
641 sprintf(priv->name, "spi%d.%d-%s",
642 spi->master->bus_num, spi->chip_select,
643 name);
644
645 device = &priv->mtd;
646 device->name = (pdata && pdata->name) ? pdata->name : priv->name;
647 device->size = nr_pages * pagesize;
648 device->erasesize = pagesize;
17ffc7ba 649 device->writesize = pagesize;
1d6432fe
DB
650 device->owner = THIS_MODULE;
651 device->type = MTD_DATAFLASH;
6c33cafc 652 device->flags = MTD_WRITEABLE;
3c3c10bb
AB
653 device->_erase = dataflash_erase;
654 device->_read = dataflash_read;
655 device->_write = dataflash_write;
1d6432fe
DB
656 device->priv = priv;
657
87f39f04
DB
658 device->dev.parent = &spi->dev;
659
34a82443
DB
660 if (revision >= 'c')
661 otp_tag = otp_setup(device, revision);
662
5b7f3a50
AB
663 dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n",
664 name, (long long)((device->size + 1023) >> 10),
34a82443 665 pagesize, otp_tag);
1d6432fe
DB
666 dev_set_drvdata(&spi->dev, priv);
667
b94e757c
SG
668 ppdata.of_node = spi->dev.of_node;
669 err = mtd_device_parse_register(device, NULL, &ppdata,
3a8fb12a
DES
670 pdata ? pdata->parts : NULL,
671 pdata ? pdata->nr_parts : 0);
1d6432fe 672
d4702669
HS
673 if (!err)
674 return 0;
675
676 dev_set_drvdata(&spi->dev, NULL);
677 kfree(priv);
678 return err;
1d6432fe
DB
679}
680
d8929942
GKH
681static inline int add_dataflash(struct spi_device *spi, char *name,
682 int nr_pages, int pagesize, int pageoffset)
34a82443
DB
683{
684 return add_dataflash_otp(spi, name, nr_pages, pagesize,
685 pageoffset, 0);
686}
687
e9d42227
MH
688struct flash_info {
689 char *name;
690
771999b6 691 /* JEDEC id has a high byte of zero plus three data bytes:
692 * the manufacturer id, then a two byte device id.
e9d42227 693 */
271c5c59 694 uint32_t jedec_id;
e9d42227 695
771999b6 696 /* The size listed here is what works with OP_ERASE_PAGE. */
e9d42227 697 unsigned nr_pages;
271c5c59
DW
698 uint16_t pagesize;
699 uint16_t pageoffset;
e9d42227 700
271c5c59 701 uint16_t flags;
771999b6 702#define SUP_POW2PS 0x0002 /* supports 2^N byte pages */
703#define IS_POW2PS 0x0001 /* uses 2^N byte pages */
e9d42227
MH
704};
705
7bf350b7 706static struct flash_info dataflash_data[] = {
e9d42227 707
771999b6 708 /*
709 * NOTE: chips with SUP_POW2PS (rev D and up) need two entries,
710 * one with IS_POW2PS and the other without. The entry with the
711 * non-2^N byte page size can't name exact chip revisions without
712 * losing backwards compatibility for cmdlinepart.
713 *
714 * These newer chips also support 128-byte security registers (with
715 * 64 bytes one-time-programmable) and software write-protection.
716 */
717 { "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS},
e9d42227
MH
718 { "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
719
771999b6 720 { "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS},
e9d42227
MH
721 { "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
722
771999b6 723 { "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS},
e9d42227
MH
724 { "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
725
771999b6 726 { "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS},
e9d42227
MH
727 { "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
728
771999b6 729 { "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS},
e9d42227
MH
730 { "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
731
771999b6 732 { "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */
e9d42227 733
771999b6 734 { "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS},
e9d42227
MH
735 { "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
736
771999b6 737 { "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS},
738 { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
e9d42227
MH
739};
740
06f25510 741static struct flash_info *jedec_probe(struct spi_device *spi)
e9d42227
MH
742{
743 int tmp;
271c5c59
DW
744 uint8_t code = OP_READ_ID;
745 uint8_t id[3];
746 uint32_t jedec;
e9d42227
MH
747 struct flash_info *info;
748 int status;
749
e9d42227
MH
750 /* JEDEC also defines an optional "extended device information"
751 * string for after vendor-specific data, after the three bytes
752 * we use here. Supporting some chips might require using it.
771999b6 753 *
754 * If the vendor ID isn't Atmel's (0x1f), assume this call failed.
755 * That's not an error; only rev C and newer chips handle it, and
756 * only Atmel sells these chips.
e9d42227
MH
757 */
758 tmp = spi_write_then_read(spi, &code, 1, id, 3);
759 if (tmp < 0) {
289c0522 760 pr_debug("%s: error %d reading JEDEC ID\n",
160bbab3 761 dev_name(&spi->dev), tmp);
771999b6 762 return ERR_PTR(tmp);
e9d42227 763 }
771999b6 764 if (id[0] != 0x1f)
765 return NULL;
766
e9d42227
MH
767 jedec = id[0];
768 jedec = jedec << 8;
769 jedec |= id[1];
770 jedec = jedec << 8;
771 jedec |= id[2];
772
773 for (tmp = 0, info = dataflash_data;
774 tmp < ARRAY_SIZE(dataflash_data);
775 tmp++, info++) {
776 if (info->jedec_id == jedec) {
289c0522 777 pr_debug("%s: OTP, sector protect%s\n",
771999b6 778 dev_name(&spi->dev),
779 (info->flags & SUP_POW2PS)
780 ? ", binary pagesize" : ""
781 );
e9d42227
MH
782 if (info->flags & SUP_POW2PS) {
783 status = dataflash_status(spi);
771999b6 784 if (status < 0) {
289c0522 785 pr_debug("%s: status error %d\n",
771999b6 786 dev_name(&spi->dev), status);
787 return ERR_PTR(status);
788 }
789 if (status & 0x1) {
790 if (info->flags & IS_POW2PS)
791 return info;
792 } else {
793 if (!(info->flags & IS_POW2PS))
794 return info;
795 }
229cc58b
WN
796 } else
797 return info;
e9d42227
MH
798 }
799 }
771999b6 800
801 /*
802 * Treat other chips as errors ... we won't know the right page
803 * size (it might be binary) even when we can tell which density
804 * class is involved (legacy chip id scheme).
805 */
806 dev_warn(&spi->dev, "JEDEC id %06x not handled\n", jedec);
807 return ERR_PTR(-ENODEV);
e9d42227
MH
808}
809
771999b6 810/*
811 * Detect and initialize DataFlash device, using JEDEC IDs on newer chips
812 * or else the ID code embedded in the status bits:
813 *
814 * Device Density ID code #Pages PageSize Offset
815 * AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9
816 * AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9
817 * AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9
818 * AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9
819 * AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10
820 * AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10
821 * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11
822 * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11
823 */
06f25510 824static int dataflash_probe(struct spi_device *spi)
1d6432fe
DB
825{
826 int status;
e9d42227
MH
827 struct flash_info *info;
828
829 /*
830 * Try to detect dataflash by JEDEC ID.
831 * If it succeeds we know we have either a C or D part.
832 * D will support power of 2 pagesize option.
34a82443
DB
833 * Both support the security register, though with different
834 * write procedures.
e9d42227 835 */
e9d42227 836 info = jedec_probe(spi);
771999b6 837 if (IS_ERR(info))
838 return PTR_ERR(info);
e9d42227 839 if (info != NULL)
34a82443
DB
840 return add_dataflash_otp(spi, info->name, info->nr_pages,
841 info->pagesize, info->pageoffset,
842 (info->flags & SUP_POW2PS) ? 'd' : 'c');
e9d42227 843
771999b6 844 /*
845 * Older chips support only legacy commands, identifing
846 * capacity using bits in the status byte.
847 */
1d6432fe
DB
848 status = dataflash_status(spi);
849 if (status <= 0 || status == 0xff) {
289c0522 850 pr_debug("%s: status error %d\n",
160bbab3 851 dev_name(&spi->dev), status);
de4fa992 852 if (status == 0 || status == 0xff)
1d6432fe
DB
853 status = -ENODEV;
854 return status;
855 }
856
857 /* if there's a device there, assume it's dataflash.
858 * board setup should have set spi->max_speed_max to
859 * match f(car) for continuous reads, mode 0 or 3.
860 */
861 switch (status & 0x3c) {
862 case 0x0c: /* 0 0 1 1 x x */
863 status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
864 break;
865 case 0x14: /* 0 1 0 1 x x */
e9d42227 866 status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
1d6432fe
DB
867 break;
868 case 0x1c: /* 0 1 1 1 x x */
771999b6 869 status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
1d6432fe
DB
870 break;
871 case 0x24: /* 1 0 0 1 x x */
872 status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
873 break;
874 case 0x2c: /* 1 0 1 1 x x */
771999b6 875 status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
1d6432fe
DB
876 break;
877 case 0x34: /* 1 1 0 1 x x */
878 status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
879 break;
880 case 0x38: /* 1 1 1 x x x */
881 case 0x3c:
882 status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
883 break;
884 /* obsolete AT45DB1282 not (yet?) supported */
885 default:
0a32a102
BN
886 pr_debug("%s: unsupported device (%x)\n", dev_name(&spi->dev),
887 status & 0x3c);
1d6432fe
DB
888 status = -ENODEV;
889 }
890
891 if (status < 0)
0a32a102
BN
892 pr_debug("%s: add_dataflash --> %d\n", dev_name(&spi->dev),
893 status);
1d6432fe
DB
894
895 return status;
896}
897
810b7e06 898static int dataflash_remove(struct spi_device *spi)
1d6432fe
DB
899{
900 struct dataflash *flash = dev_get_drvdata(&spi->dev);
901 int status;
902
289c0522 903 pr_debug("%s: remove\n", dev_name(&spi->dev));
1d6432fe 904
436c06da 905 status = mtd_device_unregister(&flash->mtd);
d4702669
HS
906 if (status == 0) {
907 dev_set_drvdata(&spi->dev, NULL);
1d6432fe 908 kfree(flash);
d4702669 909 }
1d6432fe
DB
910 return status;
911}
912
913static struct spi_driver dataflash_driver = {
914 .driver = {
915 .name = "mtd_dataflash",
1d6432fe 916 .owner = THIS_MODULE,
b94e757c 917 .of_match_table = dataflash_dt_ids,
1d6432fe
DB
918 },
919
920 .probe = dataflash_probe,
5153b88c 921 .remove = dataflash_remove,
1d6432fe
DB
922
923 /* FIXME: investigate suspend and resume... */
924};
925
c9d1b752 926module_spi_driver(dataflash_driver);
1d6432fe
DB
927
928MODULE_LICENSE("GPL");
929MODULE_AUTHOR("Andrew Victor, David Brownell");
930MODULE_DESCRIPTION("MTD DataFlash driver");
e0626e38 931MODULE_ALIAS("spi:mtd_dataflash");
This page took 0.708048 seconds and 5 git commands to generate.