[MTD] [NAND] remove excess kernel-doc notation
[deliverable/linux.git] / drivers / mtd / nand / fsl_elbc_nand.c
CommitLineData
76b10467
SW
1/* Freescale Enhanced Local Bus Controller NAND driver
2 *
3 * Copyright (c) 2006-2007 Freescale Semiconductor
4 *
5 * Authors: Nick Spence <nick.spence@freescale.com>,
6 * Scott Wood <scottwood@freescale.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 */
22
23#include <linux/module.h>
24#include <linux/types.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
27#include <linux/string.h>
28#include <linux/ioport.h>
29#include <linux/of_platform.h>
30#include <linux/slab.h>
31#include <linux/interrupt.h>
32
33#include <linux/mtd/mtd.h>
34#include <linux/mtd/nand.h>
35#include <linux/mtd/nand_ecc.h>
36#include <linux/mtd/partitions.h>
37
38#include <asm/io.h>
d4a32fe4 39#include <asm/fsl_lbc.h>
76b10467
SW
40
41#define MAX_BANKS 8
42#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
43#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
44
76b10467
SW
45struct fsl_elbc_ctrl;
46
47/* mtd information per set */
48
49struct fsl_elbc_mtd {
50 struct mtd_info mtd;
51 struct nand_chip chip;
52 struct fsl_elbc_ctrl *ctrl;
53
54 struct device *dev;
55 int bank; /* Chip select bank number */
56 u8 __iomem *vbase; /* Chip select base virtual address */
57 int page_size; /* NAND page size (0=512, 1=2048) */
58 unsigned int fmr; /* FCM Flash Mode Register value */
59};
60
61/* overview of the fsl elbc controller */
62
63struct fsl_elbc_ctrl {
64 struct nand_hw_control controller;
65 struct fsl_elbc_mtd *chips[MAX_BANKS];
66
67 /* device info */
68 struct device *dev;
d4a32fe4 69 struct fsl_lbc_regs __iomem *regs;
76b10467
SW
70 int irq;
71 wait_queue_head_t irq_wait;
72 unsigned int irq_status; /* status read from LTESR by irq handler */
73 u8 __iomem *addr; /* Address of assigned FCM buffer */
74 unsigned int page; /* Last page written to / read from */
75 unsigned int read_bytes; /* Number of bytes read during command */
76 unsigned int column; /* Saved column from SEQIN */
77 unsigned int index; /* Pointer to next byte to 'read' */
78 unsigned int status; /* status read from LTESR after last op */
79 unsigned int mdr; /* UPM/FCM Data Register value */
80 unsigned int use_mdr; /* Non zero if the MDR is to be set */
81 unsigned int oob; /* Non zero if operating on OOB data */
82 char *oob_poi; /* Place to write ECC after read back */
83};
84
85/* These map to the positions used by the FCM hardware ECC generator */
86
87/* Small Page FLASH with FMR[ECCM] = 0 */
88static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
89 .eccbytes = 3,
90 .eccpos = {6, 7, 8},
91 .oobfree = { {0, 5}, {9, 7} },
76b10467
SW
92};
93
94/* Small Page FLASH with FMR[ECCM] = 1 */
95static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
96 .eccbytes = 3,
97 .eccpos = {8, 9, 10},
98 .oobfree = { {0, 5}, {6, 2}, {11, 5} },
76b10467
SW
99};
100
101/* Large Page FLASH with FMR[ECCM] = 0 */
102static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
103 .eccbytes = 12,
104 .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
105 .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
76b10467
SW
106};
107
108/* Large Page FLASH with FMR[ECCM] = 1 */
109static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
110 .eccbytes = 12,
111 .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
112 .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
76b10467
SW
113};
114
452db272
AV
115/*
116 * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
117 * 1, so we have to adjust bad block pattern. This pattern should be used for
118 * x8 chips only. So far hardware does not support x16 chips anyway.
119 */
120static u8 scan_ff_pattern[] = { 0xff, };
121
122static struct nand_bbt_descr largepage_memorybased = {
123 .options = 0,
124 .offs = 0,
125 .len = 1,
126 .pattern = scan_ff_pattern,
127};
128
ec6e0ea3
AV
129/*
130 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
131 * interfere with ECC positions, that's why we implement our own descriptors.
132 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
133 */
134static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
135static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
136
137static struct nand_bbt_descr bbt_main_descr = {
138 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
139 NAND_BBT_2BIT | NAND_BBT_VERSION,
140 .offs = 11,
141 .len = 4,
142 .veroffs = 15,
143 .maxblocks = 4,
144 .pattern = bbt_pattern,
145};
146
147static struct nand_bbt_descr bbt_mirror_descr = {
148 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
149 NAND_BBT_2BIT | NAND_BBT_VERSION,
150 .offs = 11,
151 .len = 4,
152 .veroffs = 15,
153 .maxblocks = 4,
154 .pattern = mirror_pattern,
155};
156
76b10467
SW
157/*=================================*/
158
159/*
160 * Set up the FCM hardware block and page address fields, and the fcm
161 * structure addr field to point to the correct FCM buffer in memory
162 */
163static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
164{
165 struct nand_chip *chip = mtd->priv;
166 struct fsl_elbc_mtd *priv = chip->priv;
167 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
d4a32fe4 168 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
76b10467
SW
169 int buf_num;
170
171 ctrl->page = page_addr;
172
173 out_be32(&lbc->fbar,
174 page_addr >> (chip->phys_erase_shift - chip->page_shift));
175
176 if (priv->page_size) {
177 out_be32(&lbc->fpar,
178 ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
179 (oob ? FPAR_LP_MS : 0) | column);
180 buf_num = (page_addr & 1) << 2;
181 } else {
182 out_be32(&lbc->fpar,
183 ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
184 (oob ? FPAR_SP_MS : 0) | column);
185 buf_num = page_addr & 7;
186 }
187
188 ctrl->addr = priv->vbase + buf_num * 1024;
189 ctrl->index = column;
190
191 /* for OOB data point to the second half of the buffer */
192 if (oob)
193 ctrl->index += priv->page_size ? 2048 : 512;
194
195 dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
196 "index %x, pes %d ps %d\n",
197 buf_num, ctrl->addr, priv->vbase, ctrl->index,
198 chip->phys_erase_shift, chip->page_shift);
199}
200
201/*
202 * execute FCM command and wait for it to complete
203 */
204static int fsl_elbc_run_command(struct mtd_info *mtd)
205{
206 struct nand_chip *chip = mtd->priv;
207 struct fsl_elbc_mtd *priv = chip->priv;
208 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
d4a32fe4 209 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
76b10467
SW
210
211 /* Setup the FMR[OP] to execute without write protection */
212 out_be32(&lbc->fmr, priv->fmr | 3);
213 if (ctrl->use_mdr)
214 out_be32(&lbc->mdr, ctrl->mdr);
215
216 dev_vdbg(ctrl->dev,
217 "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
218 in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
219 dev_vdbg(ctrl->dev,
220 "fsl_elbc_run_command: fbar=%08x fpar=%08x "
221 "fbcr=%08x bank=%d\n",
222 in_be32(&lbc->fbar), in_be32(&lbc->fpar),
223 in_be32(&lbc->fbcr), priv->bank);
224
1938de46 225 ctrl->irq_status = 0;
76b10467
SW
226 /* execute special operation */
227 out_be32(&lbc->lsor, priv->bank);
228
229 /* wait for FCM complete flag or timeout */
76b10467
SW
230 wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
231 FCM_TIMEOUT_MSECS * HZ/1000);
232 ctrl->status = ctrl->irq_status;
233
234 /* store mdr value in case it was needed */
235 if (ctrl->use_mdr)
236 ctrl->mdr = in_be32(&lbc->mdr);
237
238 ctrl->use_mdr = 0;
239
240 dev_vdbg(ctrl->dev,
241 "fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
242 ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));
243
244 /* returns 0 on success otherwise non-zero) */
245 return ctrl->status == LTESR_CC ? 0 : -EIO;
246}
247
248static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
249{
250 struct fsl_elbc_mtd *priv = chip->priv;
251 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
d4a32fe4 252 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
76b10467
SW
253
254 if (priv->page_size) {
255 out_be32(&lbc->fir,
256 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
257 (FIR_OP_CA << FIR_OP1_SHIFT) |
258 (FIR_OP_PA << FIR_OP2_SHIFT) |
259 (FIR_OP_CW1 << FIR_OP3_SHIFT) |
260 (FIR_OP_RBW << FIR_OP4_SHIFT));
261
262 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
263 (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
264 } else {
265 out_be32(&lbc->fir,
266 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
267 (FIR_OP_CA << FIR_OP1_SHIFT) |
268 (FIR_OP_PA << FIR_OP2_SHIFT) |
269 (FIR_OP_RBW << FIR_OP3_SHIFT));
270
271 if (oob)
272 out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
273 else
274 out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
275 }
276}
277
278/* cmdfunc send commands to the FCM */
279static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
280 int column, int page_addr)
281{
282 struct nand_chip *chip = mtd->priv;
283 struct fsl_elbc_mtd *priv = chip->priv;
284 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
d4a32fe4 285 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
76b10467
SW
286
287 ctrl->use_mdr = 0;
288
289 /* clear the read buffer */
290 ctrl->read_bytes = 0;
291 if (command != NAND_CMD_PAGEPROG)
292 ctrl->index = 0;
293
294 switch (command) {
295 /* READ0 and READ1 read the entire buffer to use hardware ECC. */
296 case NAND_CMD_READ1:
297 column += 256;
298
299 /* fall-through */
300 case NAND_CMD_READ0:
301 dev_dbg(ctrl->dev,
302 "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
303 " 0x%x, column: 0x%x.\n", page_addr, column);
304
305
306 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
307 set_addr(mtd, 0, page_addr, 0);
308
309 ctrl->read_bytes = mtd->writesize + mtd->oobsize;
310 ctrl->index += column;
311
312 fsl_elbc_do_read(chip, 0);
313 fsl_elbc_run_command(mtd);
314 return;
315
316 /* READOOB reads only the OOB because no ECC is performed. */
317 case NAND_CMD_READOOB:
318 dev_vdbg(ctrl->dev,
319 "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
320 " 0x%x, column: 0x%x.\n", page_addr, column);
321
322 out_be32(&lbc->fbcr, mtd->oobsize - column);
323 set_addr(mtd, column, page_addr, 1);
324
325 ctrl->read_bytes = mtd->writesize + mtd->oobsize;
326
327 fsl_elbc_do_read(chip, 1);
328 fsl_elbc_run_command(mtd);
329 return;
330
331 /* READID must read all 5 possible bytes while CEB is active */
332 case NAND_CMD_READID:
333 dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
334
335 out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) |
336 (FIR_OP_UA << FIR_OP1_SHIFT) |
337 (FIR_OP_RBW << FIR_OP2_SHIFT));
338 out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
339 /* 5 bytes for manuf, device and exts */
340 out_be32(&lbc->fbcr, 5);
341 ctrl->read_bytes = 5;
342 ctrl->use_mdr = 1;
343 ctrl->mdr = 0;
344
345 set_addr(mtd, 0, 0, 0);
346 fsl_elbc_run_command(mtd);
347 return;
348
349 /* ERASE1 stores the block and page address */
350 case NAND_CMD_ERASE1:
351 dev_vdbg(ctrl->dev,
352 "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
353 "page_addr: 0x%x.\n", page_addr);
354 set_addr(mtd, 0, page_addr, 0);
355 return;
356
357 /* ERASE2 uses the block and page address from ERASE1 */
358 case NAND_CMD_ERASE2:
359 dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
360
361 out_be32(&lbc->fir,
362 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
363 (FIR_OP_PA << FIR_OP1_SHIFT) |
364 (FIR_OP_CM1 << FIR_OP2_SHIFT));
365
366 out_be32(&lbc->fcr,
367 (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
368 (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT));
369
370 out_be32(&lbc->fbcr, 0);
371 ctrl->read_bytes = 0;
372
373 fsl_elbc_run_command(mtd);
374 return;
375
376 /* SEQIN sets up the addr buffer and all registers except the length */
377 case NAND_CMD_SEQIN: {
378 __be32 fcr;
379 dev_vdbg(ctrl->dev,
380 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
381 "page_addr: 0x%x, column: 0x%x.\n",
382 page_addr, column);
383
384 ctrl->column = column;
385 ctrl->oob = 0;
386
76b10467 387 if (priv->page_size) {
57650664
SW
388 fcr = (NAND_CMD_SEQIN << FCR_CMD0_SHIFT) |
389 (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT);
390
76b10467
SW
391 out_be32(&lbc->fir,
392 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
393 (FIR_OP_CA << FIR_OP1_SHIFT) |
394 (FIR_OP_PA << FIR_OP2_SHIFT) |
395 (FIR_OP_WB << FIR_OP3_SHIFT) |
396 (FIR_OP_CW1 << FIR_OP4_SHIFT));
76b10467 397 } else {
57650664
SW
398 fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) |
399 (NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
400
76b10467
SW
401 out_be32(&lbc->fir,
402 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
403 (FIR_OP_CM2 << FIR_OP1_SHIFT) |
404 (FIR_OP_CA << FIR_OP2_SHIFT) |
405 (FIR_OP_PA << FIR_OP3_SHIFT) |
406 (FIR_OP_WB << FIR_OP4_SHIFT) |
407 (FIR_OP_CW1 << FIR_OP5_SHIFT));
408
409 if (column >= mtd->writesize) {
410 /* OOB area --> READOOB */
411 column -= mtd->writesize;
412 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
413 ctrl->oob = 1;
414 } else if (column < 256) {
415 /* First 256 bytes --> READ0 */
416 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
417 } else {
418 /* Second 256 bytes --> READ1 */
419 fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
420 }
421 }
422
423 out_be32(&lbc->fcr, fcr);
424 set_addr(mtd, column, page_addr, ctrl->oob);
425 return;
426 }
427
428 /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
429 case NAND_CMD_PAGEPROG: {
430 int full_page;
431 dev_vdbg(ctrl->dev,
432 "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
433 "writing %d bytes.\n", ctrl->index);
434
435 /* if the write did not start at 0 or is not a full page
436 * then set the exact length, otherwise use a full page
437 * write so the HW generates the ECC.
438 */
439 if (ctrl->oob || ctrl->column != 0 ||
440 ctrl->index != mtd->writesize + mtd->oobsize) {
441 out_be32(&lbc->fbcr, ctrl->index);
442 full_page = 0;
443 } else {
444 out_be32(&lbc->fbcr, 0);
445 full_page = 1;
446 }
447
448 fsl_elbc_run_command(mtd);
449
450 /* Read back the page in order to fill in the ECC for the
451 * caller. Is this really needed?
452 */
453 if (full_page && ctrl->oob_poi) {
454 out_be32(&lbc->fbcr, 3);
455 set_addr(mtd, 6, page_addr, 1);
456
457 ctrl->read_bytes = mtd->writesize + 9;
458
459 fsl_elbc_do_read(chip, 1);
460 fsl_elbc_run_command(mtd);
461
462 memcpy_fromio(ctrl->oob_poi + 6,
463 &ctrl->addr[ctrl->index], 3);
464 ctrl->index += 3;
465 }
466
467 ctrl->oob_poi = NULL;
468 return;
469 }
470
471 /* CMD_STATUS must read the status byte while CEB is active */
472 /* Note - it does not wait for the ready line */
473 case NAND_CMD_STATUS:
474 out_be32(&lbc->fir,
475 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
476 (FIR_OP_RBW << FIR_OP1_SHIFT));
477 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
478 out_be32(&lbc->fbcr, 1);
479 set_addr(mtd, 0, 0, 0);
480 ctrl->read_bytes = 1;
481
482 fsl_elbc_run_command(mtd);
483
484 /* The chip always seems to report that it is
485 * write-protected, even when it is not.
486 */
487 setbits8(ctrl->addr, NAND_STATUS_WP);
488 return;
489
490 /* RESET without waiting for the ready line */
491 case NAND_CMD_RESET:
492 dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
493 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
494 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
495 fsl_elbc_run_command(mtd);
496 return;
497
498 default:
499 dev_err(ctrl->dev,
500 "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
501 command);
502 }
503}
504
505static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
506{
507 /* The hardware does not seem to support multiple
508 * chips per bank.
509 */
510}
511
512/*
513 * Write buf to the FCM Controller Data Buffer
514 */
515static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
516{
517 struct nand_chip *chip = mtd->priv;
518 struct fsl_elbc_mtd *priv = chip->priv;
519 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
520 unsigned int bufsize = mtd->writesize + mtd->oobsize;
521
0ff6631b 522 if (len <= 0) {
76b10467
SW
523 dev_err(ctrl->dev, "write_buf of %d bytes", len);
524 ctrl->status = 0;
525 return;
526 }
527
528 if ((unsigned int)len > bufsize - ctrl->index) {
529 dev_err(ctrl->dev,
530 "write_buf beyond end of buffer "
531 "(%d requested, %u available)\n",
532 len, bufsize - ctrl->index);
533 len = bufsize - ctrl->index;
534 }
535
536 memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
0ff6631b
AV
537 /*
538 * This is workaround for the weird elbc hangs during nand write,
539 * Scott Wood says: "...perhaps difference in how long it takes a
540 * write to make it through the localbus compared to a write to IMMR
541 * is causing problems, and sync isn't helping for some reason."
542 * Reading back the last byte helps though.
543 */
544 in_8(&ctrl->addr[ctrl->index] + len - 1);
545
76b10467
SW
546 ctrl->index += len;
547}
548
549/*
550 * read a byte from either the FCM hardware buffer if it has any data left
551 * otherwise issue a command to read a single byte.
552 */
553static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
554{
555 struct nand_chip *chip = mtd->priv;
556 struct fsl_elbc_mtd *priv = chip->priv;
557 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
558
559 /* If there are still bytes in the FCM, then use the next byte. */
560 if (ctrl->index < ctrl->read_bytes)
561 return in_8(&ctrl->addr[ctrl->index++]);
562
563 dev_err(ctrl->dev, "read_byte beyond end of buffer\n");
564 return ERR_BYTE;
565}
566
567/*
568 * Read from the FCM Controller Data Buffer
569 */
570static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
571{
572 struct nand_chip *chip = mtd->priv;
573 struct fsl_elbc_mtd *priv = chip->priv;
574 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
575 int avail;
576
577 if (len < 0)
578 return;
579
580 avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
581 memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
582 ctrl->index += avail;
583
584 if (len > avail)
585 dev_err(ctrl->dev,
586 "read_buf beyond end of buffer "
587 "(%d requested, %d available)\n",
588 len, avail);
589}
590
591/*
592 * Verify buffer against the FCM Controller Data Buffer
593 */
594static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
595{
596 struct nand_chip *chip = mtd->priv;
597 struct fsl_elbc_mtd *priv = chip->priv;
598 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
599 int i;
600
601 if (len < 0) {
602 dev_err(ctrl->dev, "write_buf of %d bytes", len);
603 return -EINVAL;
604 }
605
606 if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
607 dev_err(ctrl->dev,
608 "verify_buf beyond end of buffer "
609 "(%d requested, %u available)\n",
610 len, ctrl->read_bytes - ctrl->index);
611
612 ctrl->index = ctrl->read_bytes;
613 return -EINVAL;
614 }
615
616 for (i = 0; i < len; i++)
617 if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
618 break;
619
620 ctrl->index += len;
621 return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
622}
623
624/* This function is called after Program and Erase Operations to
625 * check for success or failure.
626 */
627static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
628{
629 struct fsl_elbc_mtd *priv = chip->priv;
630 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
d4a32fe4 631 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
76b10467
SW
632
633 if (ctrl->status != LTESR_CC)
634 return NAND_STATUS_FAIL;
635
636 /* Use READ_STATUS command, but wait for the device to be ready */
637 ctrl->use_mdr = 0;
638 out_be32(&lbc->fir,
639 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
640 (FIR_OP_RBW << FIR_OP1_SHIFT));
641 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
642 out_be32(&lbc->fbcr, 1);
643 set_addr(mtd, 0, 0, 0);
644 ctrl->read_bytes = 1;
645
646 fsl_elbc_run_command(mtd);
647
648 if (ctrl->status != LTESR_CC)
649 return NAND_STATUS_FAIL;
650
651 /* The chip always seems to report that it is
652 * write-protected, even when it is not.
653 */
654 setbits8(ctrl->addr, NAND_STATUS_WP);
655 return fsl_elbc_read_byte(mtd);
656}
657
658static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
659{
660 struct nand_chip *chip = mtd->priv;
661 struct fsl_elbc_mtd *priv = chip->priv;
662 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
d4a32fe4 663 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
76b10467
SW
664 unsigned int al;
665
666 /* calculate FMR Address Length field */
667 al = 0;
668 if (chip->pagemask & 0xffff0000)
669 al++;
670 if (chip->pagemask & 0xff000000)
671 al++;
672
673 /* add to ECCM mode set in fsl_elbc_init */
674 priv->fmr |= (12 << FMR_CWTO_SHIFT) | /* Timeout > 12 ms */
675 (al << FMR_AL_SHIFT);
676
677 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n",
678 chip->numchips);
679 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %ld\n",
680 chip->chipsize);
681 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
682 chip->pagemask);
683 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
684 chip->chip_delay);
685 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
686 chip->badblockpos);
687 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
688 chip->chip_shift);
689 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n",
690 chip->page_shift);
691 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
692 chip->phys_erase_shift);
693 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
694 chip->ecclayout);
695 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
696 chip->ecc.mode);
697 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
698 chip->ecc.steps);
699 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
700 chip->ecc.bytes);
701 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
702 chip->ecc.total);
703 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
704 chip->ecc.layout);
705 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
706 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %d\n", mtd->size);
707 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
708 mtd->erasesize);
709 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n",
710 mtd->writesize);
711 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
712 mtd->oobsize);
713
714 /* adjust Option Register and ECC to match Flash page size */
715 if (mtd->writesize == 512) {
716 priv->page_size = 0;
1938de46 717 clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
76b10467
SW
718 } else if (mtd->writesize == 2048) {
719 priv->page_size = 1;
720 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
721 /* adjust ecc setup if needed */
722 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
723 BR_DECC_CHK_GEN) {
724 chip->ecc.size = 512;
725 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
726 &fsl_elbc_oob_lp_eccm1 :
727 &fsl_elbc_oob_lp_eccm0;
452db272 728 chip->badblock_pattern = &largepage_memorybased;
76b10467
SW
729 }
730 } else {
731 dev_err(ctrl->dev,
732 "fsl_elbc_init: page size %d is not supported\n",
733 mtd->writesize);
734 return -1;
735 }
736
76b10467
SW
737 return 0;
738}
739
740static int fsl_elbc_read_page(struct mtd_info *mtd,
741 struct nand_chip *chip,
742 uint8_t *buf)
743{
744 fsl_elbc_read_buf(mtd, buf, mtd->writesize);
745 fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
746
747 if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
748 mtd->ecc_stats.failed++;
749
750 return 0;
751}
752
753/* ECC will be calculated automatically, and errors will be detected in
754 * waitfunc.
755 */
756static void fsl_elbc_write_page(struct mtd_info *mtd,
757 struct nand_chip *chip,
758 const uint8_t *buf)
759{
760 struct fsl_elbc_mtd *priv = chip->priv;
761 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
762
763 fsl_elbc_write_buf(mtd, buf, mtd->writesize);
764 fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
765
766 ctrl->oob_poi = chip->oob_poi;
767}
768
769static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
770{
771 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
d4a32fe4 772 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
76b10467
SW
773 struct nand_chip *chip = &priv->chip;
774
775 dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
776
777 /* Fill in fsl_elbc_mtd structure */
778 priv->mtd.priv = chip;
779 priv->mtd.owner = THIS_MODULE;
780 priv->fmr = 0; /* rest filled in later */
781
782 /* fill in nand_chip structure */
783 /* set up function call table */
784 chip->read_byte = fsl_elbc_read_byte;
785 chip->write_buf = fsl_elbc_write_buf;
786 chip->read_buf = fsl_elbc_read_buf;
787 chip->verify_buf = fsl_elbc_verify_buf;
788 chip->select_chip = fsl_elbc_select_chip;
789 chip->cmdfunc = fsl_elbc_cmdfunc;
790 chip->waitfunc = fsl_elbc_wait;
791
ec6e0ea3
AV
792 chip->bbt_td = &bbt_main_descr;
793 chip->bbt_md = &bbt_mirror_descr;
794
76b10467 795 /* set up nand options */
ec6e0ea3
AV
796 chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR |
797 NAND_USE_FLASH_BBT;
76b10467
SW
798
799 chip->controller = &ctrl->controller;
800 chip->priv = priv;
801
802 chip->ecc.read_page = fsl_elbc_read_page;
803 chip->ecc.write_page = fsl_elbc_write_page;
804
805 /* If CS Base Register selects full hardware ECC then use it */
806 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
807 BR_DECC_CHK_GEN) {
808 chip->ecc.mode = NAND_ECC_HW;
809 /* put in small page settings and adjust later if needed */
810 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
811 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
812 chip->ecc.size = 512;
813 chip->ecc.bytes = 3;
814 } else {
815 /* otherwise fall back to default software ECC */
816 chip->ecc.mode = NAND_ECC_SOFT;
817 }
818
819 return 0;
820}
821
822static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
823{
824 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
825
826 nand_release(&priv->mtd);
827
9ebed3e6
AV
828 kfree(priv->mtd.name);
829
76b10467
SW
830 if (priv->vbase)
831 iounmap(priv->vbase);
832
833 ctrl->chips[priv->bank] = NULL;
834 kfree(priv);
835
836 return 0;
837}
838
55679df3
AV
839static int __devinit fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl,
840 struct device_node *node)
76b10467 841{
d4a32fe4 842 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
76b10467
SW
843 struct fsl_elbc_mtd *priv;
844 struct resource res;
845#ifdef CONFIG_MTD_PARTITIONS
846 static const char *part_probe_types[]
847 = { "cmdlinepart", "RedBoot", NULL };
848 struct mtd_partition *parts;
849#endif
850 int ret;
851 int bank;
852
853 /* get, allocate and map the memory resource */
854 ret = of_address_to_resource(node, 0, &res);
855 if (ret) {
856 dev_err(ctrl->dev, "failed to get resource\n");
857 return ret;
858 }
859
860 /* find which chip select it is connected to */
861 for (bank = 0; bank < MAX_BANKS; bank++)
862 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
863 (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
864 (in_be32(&lbc->bank[bank].br) &
865 in_be32(&lbc->bank[bank].or) & BR_BA)
866 == res.start)
867 break;
868
869 if (bank >= MAX_BANKS) {
870 dev_err(ctrl->dev, "address did not match any chip selects\n");
871 return -ENODEV;
872 }
873
874 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
875 if (!priv)
876 return -ENOMEM;
877
878 ctrl->chips[bank] = priv;
879 priv->bank = bank;
880 priv->ctrl = ctrl;
881 priv->dev = ctrl->dev;
882
883 priv->vbase = ioremap(res.start, res.end - res.start + 1);
884 if (!priv->vbase) {
885 dev_err(ctrl->dev, "failed to map chip region\n");
886 ret = -ENOMEM;
887 goto err;
888 }
889
650da9d0 890 priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
9ebed3e6
AV
891 if (!priv->mtd.name) {
892 ret = -ENOMEM;
893 goto err;
894 }
895
76b10467
SW
896 ret = fsl_elbc_chip_init(priv);
897 if (ret)
898 goto err;
899
900 ret = nand_scan_ident(&priv->mtd, 1);
901 if (ret)
902 goto err;
903
904 ret = fsl_elbc_chip_init_tail(&priv->mtd);
905 if (ret)
906 goto err;
907
908 ret = nand_scan_tail(&priv->mtd);
909 if (ret)
910 goto err;
911
912#ifdef CONFIG_MTD_PARTITIONS
913 /* First look for RedBoot table or partitions on the command
914 * line, these take precedence over device tree information */
915 ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
916 if (ret < 0)
917 goto err;
918
919#ifdef CONFIG_MTD_OF_PARTS
920 if (ret == 0) {
69fd3a8d 921 ret = of_mtd_parse_partitions(priv->dev, node, &parts);
76b10467
SW
922 if (ret < 0)
923 goto err;
924 }
925#endif
926
927 if (ret > 0)
928 add_mtd_partitions(&priv->mtd, parts, ret);
929 else
930#endif
931 add_mtd_device(&priv->mtd);
932
933 printk(KERN_INFO "eLBC NAND device at 0x%zx, bank %d\n",
934 res.start, priv->bank);
935 return 0;
936
937err:
938 fsl_elbc_chip_remove(priv);
939 return ret;
940}
941
942static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl)
943{
d4a32fe4 944 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
76b10467
SW
945
946 /* clear event registers */
947 setbits32(&lbc->ltesr, LTESR_NAND_MASK);
948 out_be32(&lbc->lteatr, 0);
949
950 /* Enable interrupts for any detected events */
951 out_be32(&lbc->lteir, LTESR_NAND_MASK);
952
953 ctrl->read_bytes = 0;
954 ctrl->index = 0;
955 ctrl->addr = NULL;
956
957 return 0;
958}
959
aa83570e 960static int fsl_elbc_ctrl_remove(struct of_device *ofdev)
76b10467
SW
961{
962 struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev);
963 int i;
964
965 for (i = 0; i < MAX_BANKS; i++)
966 if (ctrl->chips[i])
967 fsl_elbc_chip_remove(ctrl->chips[i]);
968
969 if (ctrl->irq)
970 free_irq(ctrl->irq, ctrl);
971
972 if (ctrl->regs)
973 iounmap(ctrl->regs);
974
975 dev_set_drvdata(&ofdev->dev, NULL);
976 kfree(ctrl);
977 return 0;
978}
979
980/* NOTE: This interrupt is also used to report other localbus events,
981 * such as transaction errors on other chipselects. If we want to
982 * capture those, we'll need to move the IRQ code into a shared
983 * LBC driver.
984 */
985
986static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data)
987{
988 struct fsl_elbc_ctrl *ctrl = data;
d4a32fe4 989 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
76b10467
SW
990 __be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK;
991
992 if (status) {
993 out_be32(&lbc->ltesr, status);
994 out_be32(&lbc->lteatr, 0);
995
996 ctrl->irq_status = status;
997 smp_wmb();
998 wake_up(&ctrl->irq_wait);
999
1000 return IRQ_HANDLED;
1001 }
1002
1003 return IRQ_NONE;
1004}
1005
1006/* fsl_elbc_ctrl_probe
1007 *
1008 * called by device layer when it finds a device matching
1009 * one our driver can handled. This code allocates all of
1010 * the resources needed for the controller only. The
1011 * resources for the NAND banks themselves are allocated
1012 * in the chip probe function.
1013*/
1014
1015static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev,
1016 const struct of_device_id *match)
1017{
1018 struct device_node *child;
1019 struct fsl_elbc_ctrl *ctrl;
1020 int ret;
1021
1022 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1023 if (!ctrl)
1024 return -ENOMEM;
1025
1026 dev_set_drvdata(&ofdev->dev, ctrl);
1027
1028 spin_lock_init(&ctrl->controller.lock);
1029 init_waitqueue_head(&ctrl->controller.wq);
1030 init_waitqueue_head(&ctrl->irq_wait);
1031
1032 ctrl->regs = of_iomap(ofdev->node, 0);
1033 if (!ctrl->regs) {
1034 dev_err(&ofdev->dev, "failed to get memory region\n");
1035 ret = -ENODEV;
1036 goto err;
1037 }
1038
1039 ctrl->irq = of_irq_to_resource(ofdev->node, 0, NULL);
1040 if (ctrl->irq == NO_IRQ) {
1041 dev_err(&ofdev->dev, "failed to get irq resource\n");
1042 ret = -ENODEV;
1043 goto err;
1044 }
1045
1046 ctrl->dev = &ofdev->dev;
1047
1048 ret = fsl_elbc_ctrl_init(ctrl);
1049 if (ret < 0)
1050 goto err;
1051
1052 ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl);
1053 if (ret != 0) {
1054 dev_err(&ofdev->dev, "failed to install irq (%d)\n",
1055 ctrl->irq);
1056 ret = ctrl->irq;
1057 goto err;
1058 }
1059
1060 for_each_child_of_node(ofdev->node, child)
1061 if (of_device_is_compatible(child, "fsl,elbc-fcm-nand"))
1062 fsl_elbc_chip_probe(ctrl, child);
1063
1064 return 0;
1065
1066err:
1067 fsl_elbc_ctrl_remove(ofdev);
1068 return ret;
1069}
1070
1071static const struct of_device_id fsl_elbc_match[] = {
1072 {
1073 .compatible = "fsl,elbc",
1074 },
1075 {}
1076};
1077
1078static struct of_platform_driver fsl_elbc_ctrl_driver = {
1079 .driver = {
1080 .name = "fsl-elbc",
1081 },
1082 .match_table = fsl_elbc_match,
1083 .probe = fsl_elbc_ctrl_probe,
aa83570e 1084 .remove = fsl_elbc_ctrl_remove,
76b10467
SW
1085};
1086
1087static int __init fsl_elbc_init(void)
1088{
1089 return of_register_platform_driver(&fsl_elbc_ctrl_driver);
1090}
1091
1092static void __exit fsl_elbc_exit(void)
1093{
1094 of_unregister_platform_driver(&fsl_elbc_ctrl_driver);
1095}
1096
1097module_init(fsl_elbc_init);
1098module_exit(fsl_elbc_exit);
1099
1100MODULE_LICENSE("GPL");
1101MODULE_AUTHOR("Freescale");
1102MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");
This page took 0.189137 seconds and 5 git commands to generate.