mtd: Fixed checkpatch seq_printf warnings
[deliverable/linux.git] / drivers / mtd / nand / nand_base.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
61b03bd7 7 *
1da177e4 8 * Additional technical information is available on
8b2b403c 9 * http://www.linux-mtd.infradead.org/doc/nand.html
61b03bd7 10 *
1da177e4 11 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
ace4dfee 12 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
1da177e4 13 *
ace4dfee 14 * Credits:
61b03bd7
TG
15 * David Woodhouse for adding multichip support
16 *
1da177e4
LT
17 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
18 * rework for 2K page size chips
19 *
ace4dfee 20 * TODO:
1da177e4
LT
21 * Enable cached programming for 2k page size chips
22 * Check, if mtd->ecctype should be set to MTD_ECC_HW
7854d3f7 23 * if we have HW ECC support.
c0b8ba7b 24 * BBT table is not serialized, has to be fixed
1da177e4 25 *
1da177e4
LT
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License version 2 as
28 * published by the Free Software Foundation.
29 *
30 */
31
20171642
EG
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
552d9205 34#include <linux/module.h>
1da177e4
LT
35#include <linux/delay.h>
36#include <linux/errno.h>
7aa65bfd 37#include <linux/err.h>
1da177e4
LT
38#include <linux/sched.h>
39#include <linux/slab.h>
66507c7b 40#include <linux/mm.h>
1da177e4
LT
41#include <linux/types.h>
42#include <linux/mtd/mtd.h>
43#include <linux/mtd/nand.h>
44#include <linux/mtd/nand_ecc.h>
193bd400 45#include <linux/mtd/nand_bch.h>
1da177e4
LT
46#include <linux/interrupt.h>
47#include <linux/bitops.h>
8fe833c1 48#include <linux/leds.h>
7351d3a5 49#include <linux/io.h>
1da177e4 50#include <linux/mtd/partitions.h>
1da177e4
LT
51
52/* Define default oob placement schemes for large and small page devices */
5bd34c09 53static struct nand_ecclayout nand_oob_8 = {
1da177e4
LT
54 .eccbytes = 3,
55 .eccpos = {0, 1, 2},
5bd34c09
TG
56 .oobfree = {
57 {.offset = 3,
58 .length = 2},
59 {.offset = 6,
f8ac0414 60 .length = 2} }
1da177e4
LT
61};
62
5bd34c09 63static struct nand_ecclayout nand_oob_16 = {
1da177e4
LT
64 .eccbytes = 6,
65 .eccpos = {0, 1, 2, 3, 6, 7},
5bd34c09
TG
66 .oobfree = {
67 {.offset = 8,
f8ac0414 68 . length = 8} }
1da177e4
LT
69};
70
5bd34c09 71static struct nand_ecclayout nand_oob_64 = {
1da177e4
LT
72 .eccbytes = 24,
73 .eccpos = {
e0c7d767
DW
74 40, 41, 42, 43, 44, 45, 46, 47,
75 48, 49, 50, 51, 52, 53, 54, 55,
76 56, 57, 58, 59, 60, 61, 62, 63},
5bd34c09
TG
77 .oobfree = {
78 {.offset = 2,
f8ac0414 79 .length = 38} }
1da177e4
LT
80};
81
81ec5364
TG
82static struct nand_ecclayout nand_oob_128 = {
83 .eccbytes = 48,
84 .eccpos = {
85 80, 81, 82, 83, 84, 85, 86, 87,
86 88, 89, 90, 91, 92, 93, 94, 95,
87 96, 97, 98, 99, 100, 101, 102, 103,
88 104, 105, 106, 107, 108, 109, 110, 111,
89 112, 113, 114, 115, 116, 117, 118, 119,
90 120, 121, 122, 123, 124, 125, 126, 127},
91 .oobfree = {
92 {.offset = 2,
f8ac0414 93 .length = 78} }
81ec5364
TG
94};
95
6a8214aa 96static int nand_get_device(struct mtd_info *mtd, int new_state);
1da177e4 97
8593fbc6
TG
98static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
99 struct mtd_oob_ops *ops);
100
d470a97c 101/*
8e87d782 102 * For devices which display every fart in the system on a separate LED. Is
d470a97c
TG
103 * compiled away when LED support is disabled.
104 */
105DEFINE_LED_TRIGGER(nand_led_trigger);
106
6fe5a6ac
VS
107static int check_offs_len(struct mtd_info *mtd,
108 loff_t ofs, uint64_t len)
109{
110 struct nand_chip *chip = mtd->priv;
111 int ret = 0;
112
113 /* Start address must align on block boundary */
daae74ca 114 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 115 pr_debug("%s: unaligned address\n", __func__);
6fe5a6ac
VS
116 ret = -EINVAL;
117 }
118
119 /* Length must align on block boundary */
daae74ca 120 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
289c0522 121 pr_debug("%s: length not block aligned\n", __func__);
6fe5a6ac
VS
122 ret = -EINVAL;
123 }
124
6fe5a6ac
VS
125 return ret;
126}
127
1da177e4
LT
128/**
129 * nand_release_device - [GENERIC] release chip
8b6e50c9 130 * @mtd: MTD device structure
61b03bd7 131 *
b0bb6903 132 * Release chip lock and wake up anyone waiting on the device.
1da177e4 133 */
e0c7d767 134static void nand_release_device(struct mtd_info *mtd)
1da177e4 135{
ace4dfee 136 struct nand_chip *chip = mtd->priv;
1da177e4 137
a36ed299 138 /* Release the controller and the chip */
ace4dfee
TG
139 spin_lock(&chip->controller->lock);
140 chip->controller->active = NULL;
141 chip->state = FL_READY;
142 wake_up(&chip->controller->wq);
143 spin_unlock(&chip->controller->lock);
1da177e4
LT
144}
145
146/**
147 * nand_read_byte - [DEFAULT] read one byte from the chip
8b6e50c9 148 * @mtd: MTD device structure
1da177e4 149 *
7854d3f7 150 * Default read function for 8bit buswidth
1da177e4 151 */
58dd8f2b 152static uint8_t nand_read_byte(struct mtd_info *mtd)
1da177e4 153{
ace4dfee
TG
154 struct nand_chip *chip = mtd->priv;
155 return readb(chip->IO_ADDR_R);
1da177e4
LT
156}
157
1da177e4 158/**
064a7694 159 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
7854d3f7 160 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
8b6e50c9 161 * @mtd: MTD device structure
1da177e4 162 *
7854d3f7
BN
163 * Default read function for 16bit buswidth with endianness conversion.
164 *
1da177e4 165 */
58dd8f2b 166static uint8_t nand_read_byte16(struct mtd_info *mtd)
1da177e4 167{
ace4dfee
TG
168 struct nand_chip *chip = mtd->priv;
169 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
1da177e4
LT
170}
171
1da177e4
LT
172/**
173 * nand_read_word - [DEFAULT] read one word from the chip
8b6e50c9 174 * @mtd: MTD device structure
1da177e4 175 *
7854d3f7 176 * Default read function for 16bit buswidth without endianness conversion.
1da177e4
LT
177 */
178static u16 nand_read_word(struct mtd_info *mtd)
179{
ace4dfee
TG
180 struct nand_chip *chip = mtd->priv;
181 return readw(chip->IO_ADDR_R);
1da177e4
LT
182}
183
1da177e4
LT
184/**
185 * nand_select_chip - [DEFAULT] control CE line
8b6e50c9
BN
186 * @mtd: MTD device structure
187 * @chipnr: chipnumber to select, -1 for deselect
1da177e4
LT
188 *
189 * Default select function for 1 chip devices.
190 */
ace4dfee 191static void nand_select_chip(struct mtd_info *mtd, int chipnr)
1da177e4 192{
ace4dfee
TG
193 struct nand_chip *chip = mtd->priv;
194
195 switch (chipnr) {
1da177e4 196 case -1:
ace4dfee 197 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
1da177e4
LT
198 break;
199 case 0:
1da177e4
LT
200 break;
201
202 default:
203 BUG();
204 }
205}
206
05f78359
UKK
207/**
208 * nand_write_byte - [DEFAULT] write single byte to chip
209 * @mtd: MTD device structure
210 * @byte: value to write
211 *
212 * Default function to write a byte to I/O[7:0]
213 */
214static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
215{
216 struct nand_chip *chip = mtd->priv;
217
218 chip->write_buf(mtd, &byte, 1);
219}
220
221/**
222 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
223 * @mtd: MTD device structure
224 * @byte: value to write
225 *
226 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
227 */
228static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
229{
230 struct nand_chip *chip = mtd->priv;
231 uint16_t word = byte;
232
233 /*
234 * It's not entirely clear what should happen to I/O[15:8] when writing
235 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
236 *
237 * When the host supports a 16-bit bus width, only data is
238 * transferred at the 16-bit width. All address and command line
239 * transfers shall use only the lower 8-bits of the data bus. During
240 * command transfers, the host may place any value on the upper
241 * 8-bits of the data bus. During address transfers, the host shall
242 * set the upper 8-bits of the data bus to 00h.
243 *
244 * One user of the write_byte callback is nand_onfi_set_features. The
245 * four parameters are specified to be written to I/O[7:0], but this is
246 * neither an address nor a command transfer. Let's assume a 0 on the
247 * upper I/O lines is OK.
248 */
249 chip->write_buf(mtd, (uint8_t *)&word, 2);
250}
251
1da177e4
LT
252/**
253 * nand_write_buf - [DEFAULT] write buffer to chip
8b6e50c9
BN
254 * @mtd: MTD device structure
255 * @buf: data buffer
256 * @len: number of bytes to write
1da177e4 257 *
7854d3f7 258 * Default write function for 8bit buswidth.
1da177e4 259 */
58dd8f2b 260static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 261{
ace4dfee 262 struct nand_chip *chip = mtd->priv;
1da177e4 263
76413839 264 iowrite8_rep(chip->IO_ADDR_W, buf, len);
1da177e4
LT
265}
266
267/**
61b03bd7 268 * nand_read_buf - [DEFAULT] read chip data into buffer
8b6e50c9
BN
269 * @mtd: MTD device structure
270 * @buf: buffer to store date
271 * @len: number of bytes to read
1da177e4 272 *
7854d3f7 273 * Default read function for 8bit buswidth.
1da177e4 274 */
58dd8f2b 275static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 276{
ace4dfee 277 struct nand_chip *chip = mtd->priv;
1da177e4 278
76413839 279 ioread8_rep(chip->IO_ADDR_R, buf, len);
1da177e4
LT
280}
281
1da177e4
LT
282/**
283 * nand_write_buf16 - [DEFAULT] write buffer to chip
8b6e50c9
BN
284 * @mtd: MTD device structure
285 * @buf: data buffer
286 * @len: number of bytes to write
1da177e4 287 *
7854d3f7 288 * Default write function for 16bit buswidth.
1da177e4 289 */
58dd8f2b 290static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
1da177e4 291{
ace4dfee 292 struct nand_chip *chip = mtd->priv;
1da177e4 293 u16 *p = (u16 *) buf;
61b03bd7 294
76413839 295 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
1da177e4
LT
296}
297
298/**
61b03bd7 299 * nand_read_buf16 - [DEFAULT] read chip data into buffer
8b6e50c9
BN
300 * @mtd: MTD device structure
301 * @buf: buffer to store date
302 * @len: number of bytes to read
1da177e4 303 *
7854d3f7 304 * Default read function for 16bit buswidth.
1da177e4 305 */
58dd8f2b 306static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
1da177e4 307{
ace4dfee 308 struct nand_chip *chip = mtd->priv;
1da177e4 309 u16 *p = (u16 *) buf;
1da177e4 310
76413839 311 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
1da177e4
LT
312}
313
1da177e4
LT
314/**
315 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
8b6e50c9
BN
316 * @mtd: MTD device structure
317 * @ofs: offset from device start
318 * @getchip: 0, if the chip is already selected
1da177e4 319 *
61b03bd7 320 * Check, if the block is bad.
1da177e4
LT
321 */
322static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
323{
cdbec050 324 int page, chipnr, res = 0, i = 0;
ace4dfee 325 struct nand_chip *chip = mtd->priv;
1da177e4
LT
326 u16 bad;
327
5fb1549d 328 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
b60b08b0
KC
329 ofs += mtd->erasesize - mtd->writesize;
330
1a12f46a
TK
331 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
332
1da177e4 333 if (getchip) {
ace4dfee 334 chipnr = (int)(ofs >> chip->chip_shift);
1da177e4 335
6a8214aa 336 nand_get_device(mtd, FL_READING);
1da177e4
LT
337
338 /* Select the NAND device */
ace4dfee 339 chip->select_chip(mtd, chipnr);
1a12f46a 340 }
1da177e4 341
cdbec050
BN
342 do {
343 if (chip->options & NAND_BUSWIDTH_16) {
344 chip->cmdfunc(mtd, NAND_CMD_READOOB,
345 chip->badblockpos & 0xFE, page);
346 bad = cpu_to_le16(chip->read_word(mtd));
347 if (chip->badblockpos & 0x1)
348 bad >>= 8;
349 else
350 bad &= 0xFF;
351 } else {
352 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
353 page);
354 bad = chip->read_byte(mtd);
355 }
356
357 if (likely(chip->badblockbits == 8))
358 res = bad != 0xFF;
e0b58d0a 359 else
cdbec050
BN
360 res = hweight8(bad) < chip->badblockbits;
361 ofs += mtd->writesize;
362 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
363 i++;
364 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
e0b58d0a 365
b0bb6903
HS
366 if (getchip) {
367 chip->select_chip(mtd, -1);
1da177e4 368 nand_release_device(mtd);
b0bb6903 369 }
61b03bd7 370
1da177e4
LT
371 return res;
372}
373
374/**
5a0edb25 375 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
8b6e50c9
BN
376 * @mtd: MTD device structure
377 * @ofs: offset from device start
1da177e4 378 *
8b6e50c9 379 * This is the default implementation, which can be overridden by a hardware
5a0edb25
BN
380 * specific driver. It provides the details for writing a bad block marker to a
381 * block.
382 */
383static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
384{
385 struct nand_chip *chip = mtd->priv;
386 struct mtd_oob_ops ops;
387 uint8_t buf[2] = { 0, 0 };
388 int ret = 0, res, i = 0;
389
390 ops.datbuf = NULL;
391 ops.oobbuf = buf;
392 ops.ooboffs = chip->badblockpos;
393 if (chip->options & NAND_BUSWIDTH_16) {
394 ops.ooboffs &= ~0x01;
395 ops.len = ops.ooblen = 2;
396 } else {
397 ops.len = ops.ooblen = 1;
398 }
399 ops.mode = MTD_OPS_PLACE_OOB;
400
401 /* Write to first/last page(s) if necessary */
402 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
403 ofs += mtd->erasesize - mtd->writesize;
404 do {
405 res = nand_do_write_oob(mtd, ofs, &ops);
406 if (!ret)
407 ret = res;
408
409 i++;
410 ofs += mtd->writesize;
411 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
412
413 return ret;
414}
415
416/**
417 * nand_block_markbad_lowlevel - mark a block bad
418 * @mtd: MTD device structure
419 * @ofs: offset from device start
420 *
421 * This function performs the generic NAND bad block marking steps (i.e., bad
422 * block table(s) and/or marker(s)). We only allow the hardware driver to
423 * specify how to write bad block markers to OOB (chip->block_markbad).
424 *
b32843b7 425 * We try operations in the following order:
e2414f4c 426 * (1) erase the affected block, to allow OOB marker to be written cleanly
b32843b7
BN
427 * (2) write bad block marker to OOB area of affected block (unless flag
428 * NAND_BBT_NO_OOB_BBM is present)
429 * (3) update the BBT
430 * Note that we retain the first error encountered in (2) or (3), finish the
e2414f4c 431 * procedures, and dump the error in the end.
1da177e4 432*/
5a0edb25 433static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
1da177e4 434{
ace4dfee 435 struct nand_chip *chip = mtd->priv;
b32843b7 436 int res, ret = 0;
61b03bd7 437
b32843b7 438 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
00918429
BN
439 struct erase_info einfo;
440
441 /* Attempt erase before marking OOB */
442 memset(&einfo, 0, sizeof(einfo));
443 einfo.mtd = mtd;
444 einfo.addr = ofs;
daae74ca 445 einfo.len = 1ULL << chip->phys_erase_shift;
00918429 446 nand_erase_nand(mtd, &einfo, 0);
1da177e4 447
b32843b7 448 /* Write bad block marker to OOB */
6a8214aa 449 nand_get_device(mtd, FL_WRITING);
5a0edb25 450 ret = chip->block_markbad(mtd, ofs);
c0b8ba7b 451 nand_release_device(mtd);
f1a28c02 452 }
e2414f4c 453
b32843b7
BN
454 /* Mark block bad in BBT */
455 if (chip->bbt) {
456 res = nand_markbad_bbt(mtd, ofs);
e2414f4c
BN
457 if (!ret)
458 ret = res;
459 }
460
f1a28c02
TG
461 if (!ret)
462 mtd->ecc_stats.badblocks++;
c0b8ba7b 463
f1a28c02 464 return ret;
1da177e4
LT
465}
466
61b03bd7 467/**
1da177e4 468 * nand_check_wp - [GENERIC] check if the chip is write protected
8b6e50c9 469 * @mtd: MTD device structure
1da177e4 470 *
8b6e50c9
BN
471 * Check, if the device is write protected. The function expects, that the
472 * device is already selected.
1da177e4 473 */
e0c7d767 474static int nand_check_wp(struct mtd_info *mtd)
1da177e4 475{
ace4dfee 476 struct nand_chip *chip = mtd->priv;
93edbad6 477
8b6e50c9 478 /* Broken xD cards report WP despite being writable */
93edbad6
ML
479 if (chip->options & NAND_BROKEN_XD)
480 return 0;
481
1da177e4 482 /* Check the WP bit */
ace4dfee
TG
483 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
484 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
1da177e4
LT
485}
486
8471bb73
EG
487/**
488 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
489 * @mtd: MTD device structure
490 * @ofs: offset from device start
491 *
492 * Check if the block is mark as reserved.
493 */
494static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
495{
496 struct nand_chip *chip = mtd->priv;
497
498 if (!chip->bbt)
499 return 0;
500 /* Return info from the table */
501 return nand_isreserved_bbt(mtd, ofs);
502}
503
1da177e4
LT
504/**
505 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
8b6e50c9
BN
506 * @mtd: MTD device structure
507 * @ofs: offset from device start
508 * @getchip: 0, if the chip is already selected
509 * @allowbbt: 1, if its allowed to access the bbt area
1da177e4
LT
510 *
511 * Check, if the block is bad. Either by reading the bad block table or
512 * calling of the scan function.
513 */
2c0a2bed
TG
514static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
515 int allowbbt)
1da177e4 516{
ace4dfee 517 struct nand_chip *chip = mtd->priv;
61b03bd7 518
ace4dfee
TG
519 if (!chip->bbt)
520 return chip->block_bad(mtd, ofs, getchip);
61b03bd7 521
1da177e4 522 /* Return info from the table */
e0c7d767 523 return nand_isbad_bbt(mtd, ofs, allowbbt);
1da177e4
LT
524}
525
2af7c653
SK
526/**
527 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
8b6e50c9
BN
528 * @mtd: MTD device structure
529 * @timeo: Timeout
2af7c653
SK
530 *
531 * Helper function for nand_wait_ready used when needing to wait in interrupt
532 * context.
533 */
534static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
535{
536 struct nand_chip *chip = mtd->priv;
537 int i;
538
539 /* Wait for the device to get ready */
540 for (i = 0; i < timeo; i++) {
541 if (chip->dev_ready(mtd))
542 break;
543 touch_softlockup_watchdog();
544 mdelay(1);
545 }
546}
547
7854d3f7 548/* Wait for the ready pin, after a command. The timeout is caught later. */
4b648b02 549void nand_wait_ready(struct mtd_info *mtd)
3b88775c 550{
ace4dfee 551 struct nand_chip *chip = mtd->priv;
ca6a2489 552 unsigned long timeo = jiffies + msecs_to_jiffies(20);
3b88775c 553
2af7c653
SK
554 /* 400ms timeout */
555 if (in_interrupt() || oops_in_progress)
556 return panic_nand_wait_ready(mtd, 400);
557
8fe833c1 558 led_trigger_event(nand_led_trigger, LED_FULL);
7854d3f7 559 /* Wait until command is processed or timeout occurs */
3b88775c 560 do {
ace4dfee 561 if (chip->dev_ready(mtd))
8fe833c1 562 break;
8446f1d3 563 touch_softlockup_watchdog();
61b03bd7 564 } while (time_before(jiffies, timeo));
8fe833c1 565 led_trigger_event(nand_led_trigger, LED_OFF);
3b88775c 566}
4b648b02 567EXPORT_SYMBOL_GPL(nand_wait_ready);
3b88775c 568
1da177e4
LT
569/**
570 * nand_command - [DEFAULT] Send command to NAND device
8b6e50c9
BN
571 * @mtd: MTD device structure
572 * @command: the command to be sent
573 * @column: the column address for this command, -1 if none
574 * @page_addr: the page address for this command, -1 if none
1da177e4 575 *
8b6e50c9 576 * Send command to NAND device. This function is used for small page devices
51148f1f 577 * (512 Bytes per page).
1da177e4 578 */
7abd3ef9
TG
579static void nand_command(struct mtd_info *mtd, unsigned int command,
580 int column, int page_addr)
1da177e4 581{
ace4dfee 582 register struct nand_chip *chip = mtd->priv;
7abd3ef9 583 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
1da177e4 584
8b6e50c9 585 /* Write out the command to the device */
1da177e4
LT
586 if (command == NAND_CMD_SEQIN) {
587 int readcmd;
588
28318776 589 if (column >= mtd->writesize) {
1da177e4 590 /* OOB area */
28318776 591 column -= mtd->writesize;
1da177e4
LT
592 readcmd = NAND_CMD_READOOB;
593 } else if (column < 256) {
594 /* First 256 bytes --> READ0 */
595 readcmd = NAND_CMD_READ0;
596 } else {
597 column -= 256;
598 readcmd = NAND_CMD_READ1;
599 }
ace4dfee 600 chip->cmd_ctrl(mtd, readcmd, ctrl);
7abd3ef9 601 ctrl &= ~NAND_CTRL_CHANGE;
1da177e4 602 }
ace4dfee 603 chip->cmd_ctrl(mtd, command, ctrl);
1da177e4 604
8b6e50c9 605 /* Address cycle, when necessary */
7abd3ef9
TG
606 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
607 /* Serially input address */
608 if (column != -1) {
609 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
610 if (chip->options & NAND_BUSWIDTH_16 &&
611 !nand_opcode_8bits(command))
7abd3ef9 612 column >>= 1;
ace4dfee 613 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9
TG
614 ctrl &= ~NAND_CTRL_CHANGE;
615 }
616 if (page_addr != -1) {
ace4dfee 617 chip->cmd_ctrl(mtd, page_addr, ctrl);
7abd3ef9 618 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 619 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
7abd3ef9 620 /* One more address cycle for devices > 32MiB */
ace4dfee
TG
621 if (chip->chipsize > (32 << 20))
622 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
1da177e4 623 }
ace4dfee 624 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
625
626 /*
8b6e50c9
BN
627 * Program and erase have their own busy handlers status and sequential
628 * in needs no delay
e0c7d767 629 */
1da177e4 630 switch (command) {
61b03bd7 631
1da177e4
LT
632 case NAND_CMD_PAGEPROG:
633 case NAND_CMD_ERASE1:
634 case NAND_CMD_ERASE2:
635 case NAND_CMD_SEQIN:
636 case NAND_CMD_STATUS:
637 return;
638
639 case NAND_CMD_RESET:
ace4dfee 640 if (chip->dev_ready)
1da177e4 641 break;
ace4dfee
TG
642 udelay(chip->chip_delay);
643 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
7abd3ef9 644 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
12efdde3
TG
645 chip->cmd_ctrl(mtd,
646 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
f8ac0414
FF
647 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
648 ;
1da177e4
LT
649 return;
650
e0c7d767 651 /* This applies to read commands */
1da177e4 652 default:
61b03bd7 653 /*
1da177e4
LT
654 * If we don't have access to the busy pin, we apply the given
655 * command delay
e0c7d767 656 */
ace4dfee
TG
657 if (!chip->dev_ready) {
658 udelay(chip->chip_delay);
1da177e4 659 return;
61b03bd7 660 }
1da177e4 661 }
8b6e50c9
BN
662 /*
663 * Apply this short delay always to ensure that we do wait tWB in
664 * any case on any machine.
665 */
e0c7d767 666 ndelay(100);
3b88775c
TG
667
668 nand_wait_ready(mtd);
1da177e4
LT
669}
670
671/**
672 * nand_command_lp - [DEFAULT] Send command to NAND large page device
8b6e50c9
BN
673 * @mtd: MTD device structure
674 * @command: the command to be sent
675 * @column: the column address for this command, -1 if none
676 * @page_addr: the page address for this command, -1 if none
1da177e4 677 *
7abd3ef9 678 * Send command to NAND device. This is the version for the new large page
7854d3f7
BN
679 * devices. We don't have the separate regions as we have in the small page
680 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
1da177e4 681 */
7abd3ef9
TG
682static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
683 int column, int page_addr)
1da177e4 684{
ace4dfee 685 register struct nand_chip *chip = mtd->priv;
1da177e4
LT
686
687 /* Emulate NAND_CMD_READOOB */
688 if (command == NAND_CMD_READOOB) {
28318776 689 column += mtd->writesize;
1da177e4
LT
690 command = NAND_CMD_READ0;
691 }
61b03bd7 692
7abd3ef9 693 /* Command latch cycle */
fb066ada 694 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
1da177e4
LT
695
696 if (column != -1 || page_addr != -1) {
7abd3ef9 697 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
1da177e4
LT
698
699 /* Serially input address */
700 if (column != -1) {
701 /* Adjust columns for 16 bit buswidth */
3dad2344
BN
702 if (chip->options & NAND_BUSWIDTH_16 &&
703 !nand_opcode_8bits(command))
1da177e4 704 column >>= 1;
ace4dfee 705 chip->cmd_ctrl(mtd, column, ctrl);
7abd3ef9 706 ctrl &= ~NAND_CTRL_CHANGE;
ace4dfee 707 chip->cmd_ctrl(mtd, column >> 8, ctrl);
61b03bd7 708 }
1da177e4 709 if (page_addr != -1) {
ace4dfee
TG
710 chip->cmd_ctrl(mtd, page_addr, ctrl);
711 chip->cmd_ctrl(mtd, page_addr >> 8,
7abd3ef9 712 NAND_NCE | NAND_ALE);
1da177e4 713 /* One more address cycle for devices > 128MiB */
ace4dfee
TG
714 if (chip->chipsize > (128 << 20))
715 chip->cmd_ctrl(mtd, page_addr >> 16,
7abd3ef9 716 NAND_NCE | NAND_ALE);
1da177e4 717 }
1da177e4 718 }
ace4dfee 719 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7
TG
720
721 /*
8b6e50c9
BN
722 * Program and erase have their own busy handlers status, sequential
723 * in, and deplete1 need no delay.
30f464b7 724 */
1da177e4 725 switch (command) {
61b03bd7 726
1da177e4
LT
727 case NAND_CMD_CACHEDPROG:
728 case NAND_CMD_PAGEPROG:
729 case NAND_CMD_ERASE1:
730 case NAND_CMD_ERASE2:
731 case NAND_CMD_SEQIN:
7bc3312b 732 case NAND_CMD_RNDIN:
1da177e4 733 case NAND_CMD_STATUS:
30f464b7 734 return;
1da177e4
LT
735
736 case NAND_CMD_RESET:
ace4dfee 737 if (chip->dev_ready)
1da177e4 738 break;
ace4dfee 739 udelay(chip->chip_delay);
12efdde3
TG
740 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
741 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
742 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
743 NAND_NCE | NAND_CTRL_CHANGE);
f8ac0414
FF
744 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
745 ;
1da177e4
LT
746 return;
747
7bc3312b
TG
748 case NAND_CMD_RNDOUT:
749 /* No ready / busy check necessary */
750 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
751 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
752 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
753 NAND_NCE | NAND_CTRL_CHANGE);
754 return;
755
1da177e4 756 case NAND_CMD_READ0:
12efdde3
TG
757 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
758 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
759 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
760 NAND_NCE | NAND_CTRL_CHANGE);
61b03bd7 761
e0c7d767 762 /* This applies to read commands */
1da177e4 763 default:
61b03bd7 764 /*
1da177e4 765 * If we don't have access to the busy pin, we apply the given
8b6e50c9 766 * command delay.
e0c7d767 767 */
ace4dfee
TG
768 if (!chip->dev_ready) {
769 udelay(chip->chip_delay);
1da177e4 770 return;
61b03bd7 771 }
1da177e4 772 }
3b88775c 773
8b6e50c9
BN
774 /*
775 * Apply this short delay always to ensure that we do wait tWB in
776 * any case on any machine.
777 */
e0c7d767 778 ndelay(100);
3b88775c
TG
779
780 nand_wait_ready(mtd);
1da177e4
LT
781}
782
2af7c653
SK
783/**
784 * panic_nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
785 * @chip: the nand chip descriptor
786 * @mtd: MTD device structure
787 * @new_state: the state which is requested
2af7c653
SK
788 *
789 * Used when in panic, no locks are taken.
790 */
791static void panic_nand_get_device(struct nand_chip *chip,
792 struct mtd_info *mtd, int new_state)
793{
7854d3f7 794 /* Hardware controller shared among independent devices */
2af7c653
SK
795 chip->controller->active = chip;
796 chip->state = new_state;
797}
798
1da177e4
LT
799/**
800 * nand_get_device - [GENERIC] Get chip for selected access
8b6e50c9
BN
801 * @mtd: MTD device structure
802 * @new_state: the state which is requested
1da177e4
LT
803 *
804 * Get the device and lock it for exclusive access
805 */
2c0a2bed 806static int
6a8214aa 807nand_get_device(struct mtd_info *mtd, int new_state)
1da177e4 808{
6a8214aa 809 struct nand_chip *chip = mtd->priv;
ace4dfee
TG
810 spinlock_t *lock = &chip->controller->lock;
811 wait_queue_head_t *wq = &chip->controller->wq;
e0c7d767 812 DECLARE_WAITQUEUE(wait, current);
7351d3a5 813retry:
0dfc6246
TG
814 spin_lock(lock);
815
b8b3ee9a 816 /* Hardware controller shared among independent devices */
ace4dfee
TG
817 if (!chip->controller->active)
818 chip->controller->active = chip;
a36ed299 819
ace4dfee
TG
820 if (chip->controller->active == chip && chip->state == FL_READY) {
821 chip->state = new_state;
0dfc6246 822 spin_unlock(lock);
962034f4
VW
823 return 0;
824 }
825 if (new_state == FL_PM_SUSPENDED) {
6b0d9a84
LY
826 if (chip->controller->active->state == FL_PM_SUSPENDED) {
827 chip->state = FL_PM_SUSPENDED;
828 spin_unlock(lock);
829 return 0;
6b0d9a84 830 }
0dfc6246
TG
831 }
832 set_current_state(TASK_UNINTERRUPTIBLE);
833 add_wait_queue(wq, &wait);
834 spin_unlock(lock);
835 schedule();
836 remove_wait_queue(wq, &wait);
1da177e4
LT
837 goto retry;
838}
839
2af7c653 840/**
8b6e50c9
BN
841 * panic_nand_wait - [GENERIC] wait until the command is done
842 * @mtd: MTD device structure
843 * @chip: NAND chip structure
844 * @timeo: timeout
2af7c653
SK
845 *
846 * Wait for command done. This is a helper function for nand_wait used when
847 * we are in interrupt context. May happen when in panic and trying to write
b595076a 848 * an oops through mtdoops.
2af7c653
SK
849 */
850static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
851 unsigned long timeo)
852{
853 int i;
854 for (i = 0; i < timeo; i++) {
855 if (chip->dev_ready) {
856 if (chip->dev_ready(mtd))
857 break;
858 } else {
859 if (chip->read_byte(mtd) & NAND_STATUS_READY)
860 break;
861 }
862 mdelay(1);
f8ac0414 863 }
2af7c653
SK
864}
865
1da177e4 866/**
8b6e50c9
BN
867 * nand_wait - [DEFAULT] wait until the command is done
868 * @mtd: MTD device structure
869 * @chip: NAND chip structure
1da177e4 870 *
8b6e50c9
BN
871 * Wait for command done. This applies to erase and program only. Erase can
872 * take up to 400ms and program up to 20ms according to general NAND and
873 * SmartMedia specs.
844d3b42 874 */
7bc3312b 875static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
1da177e4
LT
876{
877
7bc3312b 878 int status, state = chip->state;
6d2559f8 879 unsigned long timeo = (state == FL_ERASING ? 400 : 20);
1da177e4 880
8fe833c1
RP
881 led_trigger_event(nand_led_trigger, LED_FULL);
882
8b6e50c9
BN
883 /*
884 * Apply this short delay always to ensure that we do wait tWB in any
885 * case on any machine.
886 */
e0c7d767 887 ndelay(100);
1da177e4 888
14c65786 889 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
1da177e4 890
2af7c653
SK
891 if (in_interrupt() || oops_in_progress)
892 panic_nand_wait(mtd, chip, timeo);
893 else {
6d2559f8 894 timeo = jiffies + msecs_to_jiffies(timeo);
2af7c653
SK
895 while (time_before(jiffies, timeo)) {
896 if (chip->dev_ready) {
897 if (chip->dev_ready(mtd))
898 break;
899 } else {
900 if (chip->read_byte(mtd) & NAND_STATUS_READY)
901 break;
902 }
903 cond_resched();
1da177e4 904 }
1da177e4 905 }
8fe833c1
RP
906 led_trigger_event(nand_led_trigger, LED_OFF);
907
ace4dfee 908 status = (int)chip->read_byte(mtd);
f251b8df
MC
909 /* This can happen if in case of timeout or buggy dev_ready */
910 WARN_ON(!(status & NAND_STATUS_READY));
1da177e4
LT
911 return status;
912}
913
7d70f334 914/**
b6d676db 915 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
916 * @mtd: mtd info
917 * @ofs: offset to start unlock from
918 * @len: length to unlock
8b6e50c9
BN
919 * @invert: when = 0, unlock the range of blocks within the lower and
920 * upper boundary address
921 * when = 1, unlock the range of blocks outside the boundaries
922 * of the lower and upper boundary address
7d70f334 923 *
8b6e50c9 924 * Returs unlock status.
7d70f334
VS
925 */
926static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
927 uint64_t len, int invert)
928{
929 int ret = 0;
930 int status, page;
931 struct nand_chip *chip = mtd->priv;
932
933 /* Submit address of first page to unlock */
934 page = ofs >> chip->page_shift;
935 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
936
937 /* Submit address of last page to unlock */
938 page = (ofs + len) >> chip->page_shift;
939 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
940 (page | invert) & chip->pagemask);
941
942 /* Call wait ready function */
943 status = chip->waitfunc(mtd, chip);
7d70f334 944 /* See if device thinks it succeeded */
74830966 945 if (status & NAND_STATUS_FAIL) {
289c0522 946 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
947 __func__, status);
948 ret = -EIO;
949 }
950
951 return ret;
952}
953
954/**
b6d676db 955 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
b6d676db
RD
956 * @mtd: mtd info
957 * @ofs: offset to start unlock from
958 * @len: length to unlock
7d70f334 959 *
8b6e50c9 960 * Returns unlock status.
7d70f334
VS
961 */
962int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
963{
964 int ret = 0;
965 int chipnr;
966 struct nand_chip *chip = mtd->priv;
967
289c0522 968 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
969 __func__, (unsigned long long)ofs, len);
970
971 if (check_offs_len(mtd, ofs, len))
972 ret = -EINVAL;
973
974 /* Align to last block address if size addresses end of the device */
975 if (ofs + len == mtd->size)
976 len -= mtd->erasesize;
977
6a8214aa 978 nand_get_device(mtd, FL_UNLOCKING);
7d70f334
VS
979
980 /* Shift to get chip number */
981 chipnr = ofs >> chip->chip_shift;
982
983 chip->select_chip(mtd, chipnr);
984
985 /* Check, if it is write protected */
986 if (nand_check_wp(mtd)) {
289c0522 987 pr_debug("%s: device is write protected!\n",
7d70f334
VS
988 __func__);
989 ret = -EIO;
990 goto out;
991 }
992
993 ret = __nand_unlock(mtd, ofs, len, 0);
994
995out:
b0bb6903 996 chip->select_chip(mtd, -1);
7d70f334
VS
997 nand_release_device(mtd);
998
999 return ret;
1000}
7351d3a5 1001EXPORT_SYMBOL(nand_unlock);
7d70f334
VS
1002
1003/**
b6d676db 1004 * nand_lock - [REPLACEABLE] locks all blocks present in the device
b6d676db
RD
1005 * @mtd: mtd info
1006 * @ofs: offset to start unlock from
1007 * @len: length to unlock
7d70f334 1008 *
8b6e50c9
BN
1009 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1010 * have this feature, but it allows only to lock all blocks, not for specified
1011 * range for block. Implementing 'lock' feature by making use of 'unlock', for
1012 * now.
7d70f334 1013 *
8b6e50c9 1014 * Returns lock status.
7d70f334
VS
1015 */
1016int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1017{
1018 int ret = 0;
1019 int chipnr, status, page;
1020 struct nand_chip *chip = mtd->priv;
1021
289c0522 1022 pr_debug("%s: start = 0x%012llx, len = %llu\n",
7d70f334
VS
1023 __func__, (unsigned long long)ofs, len);
1024
1025 if (check_offs_len(mtd, ofs, len))
1026 ret = -EINVAL;
1027
6a8214aa 1028 nand_get_device(mtd, FL_LOCKING);
7d70f334
VS
1029
1030 /* Shift to get chip number */
1031 chipnr = ofs >> chip->chip_shift;
1032
1033 chip->select_chip(mtd, chipnr);
1034
1035 /* Check, if it is write protected */
1036 if (nand_check_wp(mtd)) {
289c0522 1037 pr_debug("%s: device is write protected!\n",
7d70f334
VS
1038 __func__);
1039 status = MTD_ERASE_FAILED;
1040 ret = -EIO;
1041 goto out;
1042 }
1043
1044 /* Submit address of first page to lock */
1045 page = ofs >> chip->page_shift;
1046 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1047
1048 /* Call wait ready function */
1049 status = chip->waitfunc(mtd, chip);
7d70f334 1050 /* See if device thinks it succeeded */
74830966 1051 if (status & NAND_STATUS_FAIL) {
289c0522 1052 pr_debug("%s: error status = 0x%08x\n",
7d70f334
VS
1053 __func__, status);
1054 ret = -EIO;
1055 goto out;
1056 }
1057
1058 ret = __nand_unlock(mtd, ofs, len, 0x1);
1059
1060out:
b0bb6903 1061 chip->select_chip(mtd, -1);
7d70f334
VS
1062 nand_release_device(mtd);
1063
1064 return ret;
1065}
7351d3a5 1066EXPORT_SYMBOL(nand_lock);
7d70f334 1067
8593fbc6 1068/**
7854d3f7 1069 * nand_read_page_raw - [INTERN] read raw page data without ecc
8b6e50c9
BN
1070 * @mtd: mtd info structure
1071 * @chip: nand chip info structure
1072 * @buf: buffer to store read data
1fbb938d 1073 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1074 * @page: page number to read
52ff49df 1075 *
7854d3f7 1076 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6
TG
1077 */
1078static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1079 uint8_t *buf, int oob_required, int page)
8593fbc6
TG
1080{
1081 chip->read_buf(mtd, buf, mtd->writesize);
279f08d4
BN
1082 if (oob_required)
1083 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
8593fbc6
TG
1084 return 0;
1085}
1086
52ff49df 1087/**
7854d3f7 1088 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
8b6e50c9
BN
1089 * @mtd: mtd info structure
1090 * @chip: nand chip info structure
1091 * @buf: buffer to store read data
1fbb938d 1092 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1093 * @page: page number to read
52ff49df
DB
1094 *
1095 * We need a special oob layout and handling even when OOB isn't used.
1096 */
7351d3a5 1097static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1fbb938d
BN
1098 struct nand_chip *chip, uint8_t *buf,
1099 int oob_required, int page)
52ff49df
DB
1100{
1101 int eccsize = chip->ecc.size;
1102 int eccbytes = chip->ecc.bytes;
1103 uint8_t *oob = chip->oob_poi;
1104 int steps, size;
1105
1106 for (steps = chip->ecc.steps; steps > 0; steps--) {
1107 chip->read_buf(mtd, buf, eccsize);
1108 buf += eccsize;
1109
1110 if (chip->ecc.prepad) {
1111 chip->read_buf(mtd, oob, chip->ecc.prepad);
1112 oob += chip->ecc.prepad;
1113 }
1114
1115 chip->read_buf(mtd, oob, eccbytes);
1116 oob += eccbytes;
1117
1118 if (chip->ecc.postpad) {
1119 chip->read_buf(mtd, oob, chip->ecc.postpad);
1120 oob += chip->ecc.postpad;
1121 }
1122 }
1123
1124 size = mtd->oobsize - (oob - chip->oob_poi);
1125 if (size)
1126 chip->read_buf(mtd, oob, size);
1127
1128 return 0;
1129}
1130
1da177e4 1131/**
7854d3f7 1132 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
8b6e50c9
BN
1133 * @mtd: mtd info structure
1134 * @chip: nand chip info structure
1135 * @buf: buffer to store read data
1fbb938d 1136 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1137 * @page: page number to read
068e3c0a 1138 */
f5bbdacc 1139static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1140 uint8_t *buf, int oob_required, int page)
1da177e4 1141{
f5bbdacc
TG
1142 int i, eccsize = chip->ecc.size;
1143 int eccbytes = chip->ecc.bytes;
1144 int eccsteps = chip->ecc.steps;
1145 uint8_t *p = buf;
4bf63fcb
DW
1146 uint8_t *ecc_calc = chip->buffers->ecccalc;
1147 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1148 uint32_t *eccpos = chip->ecc.layout->eccpos;
3f91e94f 1149 unsigned int max_bitflips = 0;
f5bbdacc 1150
1fbb938d 1151 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
f5bbdacc
TG
1152
1153 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1154 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1155
1156 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1157 ecc_code[i] = chip->oob_poi[eccpos[i]];
f5bbdacc
TG
1158
1159 eccsteps = chip->ecc.steps;
1160 p = buf;
1161
1162 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1163 int stat;
1164
1165 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1166 if (stat < 0) {
f5bbdacc 1167 mtd->ecc_stats.failed++;
3f91e94f 1168 } else {
f5bbdacc 1169 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1170 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1171 }
f5bbdacc 1172 }
3f91e94f 1173 return max_bitflips;
22c60f5f 1174}
1da177e4 1175
3d459559 1176/**
837a6ba4 1177 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
8b6e50c9
BN
1178 * @mtd: mtd info structure
1179 * @chip: nand chip info structure
1180 * @data_offs: offset of requested data within the page
1181 * @readlen: data length
1182 * @bufpoi: buffer to store read data
e004debd 1183 * @page: page number to read
3d459559 1184 */
7351d3a5 1185static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
e004debd
HS
1186 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1187 int page)
3d459559
AK
1188{
1189 int start_step, end_step, num_steps;
1190 uint32_t *eccpos = chip->ecc.layout->eccpos;
1191 uint8_t *p;
1192 int data_col_addr, i, gaps = 0;
1193 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1194 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
4a4163ca 1195 int index;
3f91e94f 1196 unsigned int max_bitflips = 0;
3d459559 1197
7854d3f7 1198 /* Column address within the page aligned to ECC size (256bytes) */
3d459559
AK
1199 start_step = data_offs / chip->ecc.size;
1200 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1201 num_steps = end_step - start_step + 1;
4a4163ca 1202 index = start_step * chip->ecc.bytes;
3d459559 1203
8b6e50c9 1204 /* Data size aligned to ECC ecc.size */
3d459559
AK
1205 datafrag_len = num_steps * chip->ecc.size;
1206 eccfrag_len = num_steps * chip->ecc.bytes;
1207
1208 data_col_addr = start_step * chip->ecc.size;
1209 /* If we read not a page aligned data */
1210 if (data_col_addr != 0)
1211 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1212
1213 p = bufpoi + data_col_addr;
1214 chip->read_buf(mtd, p, datafrag_len);
1215
8b6e50c9 1216 /* Calculate ECC */
3d459559
AK
1217 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1218 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1219
8b6e50c9
BN
1220 /*
1221 * The performance is faster if we position offsets according to
7854d3f7 1222 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
8b6e50c9 1223 */
3d459559 1224 for (i = 0; i < eccfrag_len - 1; i++) {
47570bb1 1225 if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
3d459559
AK
1226 gaps = 1;
1227 break;
1228 }
1229 }
1230 if (gaps) {
1231 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1232 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1233 } else {
8b6e50c9 1234 /*
7854d3f7 1235 * Send the command to read the particular ECC bytes take care
8b6e50c9
BN
1236 * about buswidth alignment in read_buf.
1237 */
7351d3a5 1238 aligned_pos = eccpos[index] & ~(busw - 1);
3d459559 1239 aligned_len = eccfrag_len;
7351d3a5 1240 if (eccpos[index] & (busw - 1))
3d459559 1241 aligned_len++;
7351d3a5 1242 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
3d459559
AK
1243 aligned_len++;
1244
7351d3a5
FF
1245 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1246 mtd->writesize + aligned_pos, -1);
3d459559
AK
1247 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1248 }
1249
1250 for (i = 0; i < eccfrag_len; i++)
7351d3a5 1251 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
3d459559
AK
1252
1253 p = bufpoi + data_col_addr;
1254 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1255 int stat;
1256
7351d3a5
FF
1257 stat = chip->ecc.correct(mtd, p,
1258 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
3f91e94f 1259 if (stat < 0) {
3d459559 1260 mtd->ecc_stats.failed++;
3f91e94f 1261 } else {
3d459559 1262 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1263 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1264 }
3d459559 1265 }
3f91e94f 1266 return max_bitflips;
3d459559
AK
1267}
1268
068e3c0a 1269/**
7854d3f7 1270 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
8b6e50c9
BN
1271 * @mtd: mtd info structure
1272 * @chip: nand chip info structure
1273 * @buf: buffer to store read data
1fbb938d 1274 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1275 * @page: page number to read
068e3c0a 1276 *
7854d3f7 1277 * Not for syndrome calculating ECC controllers which need a special oob layout.
068e3c0a 1278 */
f5bbdacc 1279static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1280 uint8_t *buf, int oob_required, int page)
1da177e4 1281{
f5bbdacc
TG
1282 int i, eccsize = chip->ecc.size;
1283 int eccbytes = chip->ecc.bytes;
1284 int eccsteps = chip->ecc.steps;
1285 uint8_t *p = buf;
4bf63fcb
DW
1286 uint8_t *ecc_calc = chip->buffers->ecccalc;
1287 uint8_t *ecc_code = chip->buffers->ecccode;
8b099a39 1288 uint32_t *eccpos = chip->ecc.layout->eccpos;
3f91e94f 1289 unsigned int max_bitflips = 0;
f5bbdacc
TG
1290
1291 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1292 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1293 chip->read_buf(mtd, p, eccsize);
1294 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1da177e4 1295 }
f75e5097 1296 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1da177e4 1297
f5bbdacc 1298 for (i = 0; i < chip->ecc.total; i++)
f75e5097 1299 ecc_code[i] = chip->oob_poi[eccpos[i]];
1da177e4 1300
f5bbdacc
TG
1301 eccsteps = chip->ecc.steps;
1302 p = buf;
61b03bd7 1303
f5bbdacc
TG
1304 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1305 int stat;
1da177e4 1306
f5bbdacc 1307 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
3f91e94f 1308 if (stat < 0) {
f5bbdacc 1309 mtd->ecc_stats.failed++;
3f91e94f 1310 } else {
f5bbdacc 1311 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1312 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1313 }
f5bbdacc 1314 }
3f91e94f 1315 return max_bitflips;
f5bbdacc 1316}
1da177e4 1317
6e0cb135 1318/**
7854d3f7 1319 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
8b6e50c9
BN
1320 * @mtd: mtd info structure
1321 * @chip: nand chip info structure
1322 * @buf: buffer to store read data
1fbb938d 1323 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1324 * @page: page number to read
6e0cb135 1325 *
8b6e50c9
BN
1326 * Hardware ECC for large page chips, require OOB to be read first. For this
1327 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1328 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1329 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1330 * the data area, by overwriting the NAND manufacturer bad block markings.
6e0cb135
SN
1331 */
1332static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1fbb938d 1333 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
6e0cb135
SN
1334{
1335 int i, eccsize = chip->ecc.size;
1336 int eccbytes = chip->ecc.bytes;
1337 int eccsteps = chip->ecc.steps;
1338 uint8_t *p = buf;
1339 uint8_t *ecc_code = chip->buffers->ecccode;
1340 uint32_t *eccpos = chip->ecc.layout->eccpos;
1341 uint8_t *ecc_calc = chip->buffers->ecccalc;
3f91e94f 1342 unsigned int max_bitflips = 0;
6e0cb135
SN
1343
1344 /* Read the OOB area first */
1345 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1346 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1347 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1348
1349 for (i = 0; i < chip->ecc.total; i++)
1350 ecc_code[i] = chip->oob_poi[eccpos[i]];
1351
1352 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1353 int stat;
1354
1355 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1356 chip->read_buf(mtd, p, eccsize);
1357 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1358
1359 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
3f91e94f 1360 if (stat < 0) {
6e0cb135 1361 mtd->ecc_stats.failed++;
3f91e94f 1362 } else {
6e0cb135 1363 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1364 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1365 }
6e0cb135 1366 }
3f91e94f 1367 return max_bitflips;
6e0cb135
SN
1368}
1369
f5bbdacc 1370/**
7854d3f7 1371 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
8b6e50c9
BN
1372 * @mtd: mtd info structure
1373 * @chip: nand chip info structure
1374 * @buf: buffer to store read data
1fbb938d 1375 * @oob_required: caller requires OOB data read to chip->oob_poi
8b6e50c9 1376 * @page: page number to read
f5bbdacc 1377 *
8b6e50c9
BN
1378 * The hw generator calculates the error syndrome automatically. Therefore we
1379 * need a special oob layout and handling.
f5bbdacc
TG
1380 */
1381static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 1382 uint8_t *buf, int oob_required, int page)
f5bbdacc
TG
1383{
1384 int i, eccsize = chip->ecc.size;
1385 int eccbytes = chip->ecc.bytes;
1386 int eccsteps = chip->ecc.steps;
1387 uint8_t *p = buf;
f75e5097 1388 uint8_t *oob = chip->oob_poi;
3f91e94f 1389 unsigned int max_bitflips = 0;
1da177e4 1390
f5bbdacc
TG
1391 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1392 int stat;
61b03bd7 1393
f5bbdacc
TG
1394 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1395 chip->read_buf(mtd, p, eccsize);
1da177e4 1396
f5bbdacc
TG
1397 if (chip->ecc.prepad) {
1398 chip->read_buf(mtd, oob, chip->ecc.prepad);
1399 oob += chip->ecc.prepad;
1400 }
1da177e4 1401
f5bbdacc
TG
1402 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1403 chip->read_buf(mtd, oob, eccbytes);
1404 stat = chip->ecc.correct(mtd, p, oob, NULL);
61b03bd7 1405
3f91e94f 1406 if (stat < 0) {
f5bbdacc 1407 mtd->ecc_stats.failed++;
3f91e94f 1408 } else {
f5bbdacc 1409 mtd->ecc_stats.corrected += stat;
3f91e94f
MD
1410 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1411 }
61b03bd7 1412
f5bbdacc 1413 oob += eccbytes;
1da177e4 1414
f5bbdacc
TG
1415 if (chip->ecc.postpad) {
1416 chip->read_buf(mtd, oob, chip->ecc.postpad);
1417 oob += chip->ecc.postpad;
61b03bd7 1418 }
f5bbdacc 1419 }
1da177e4 1420
f5bbdacc 1421 /* Calculate remaining oob bytes */
7e4178f9 1422 i = mtd->oobsize - (oob - chip->oob_poi);
f5bbdacc
TG
1423 if (i)
1424 chip->read_buf(mtd, oob, i);
61b03bd7 1425
3f91e94f 1426 return max_bitflips;
f5bbdacc 1427}
1da177e4 1428
f5bbdacc 1429/**
7854d3f7 1430 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
8b6e50c9
BN
1431 * @chip: nand chip structure
1432 * @oob: oob destination address
1433 * @ops: oob ops structure
1434 * @len: size of oob to transfer
8593fbc6
TG
1435 */
1436static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
7014568b 1437 struct mtd_oob_ops *ops, size_t len)
8593fbc6 1438{
f8ac0414 1439 switch (ops->mode) {
8593fbc6 1440
0612b9dd
BN
1441 case MTD_OPS_PLACE_OOB:
1442 case MTD_OPS_RAW:
8593fbc6
TG
1443 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1444 return oob + len;
1445
0612b9dd 1446 case MTD_OPS_AUTO_OOB: {
8593fbc6 1447 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
1448 uint32_t boffs = 0, roffs = ops->ooboffs;
1449 size_t bytes = 0;
8593fbc6 1450
f8ac0414 1451 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 1452 /* Read request not from offset 0? */
7bc3312b
TG
1453 if (unlikely(roffs)) {
1454 if (roffs >= free->length) {
1455 roffs -= free->length;
1456 continue;
1457 }
1458 boffs = free->offset + roffs;
1459 bytes = min_t(size_t, len,
1460 (free->length - roffs));
1461 roffs = 0;
1462 } else {
1463 bytes = min_t(size_t, len, free->length);
1464 boffs = free->offset;
1465 }
1466 memcpy(oob, chip->oob_poi + boffs, bytes);
8593fbc6
TG
1467 oob += bytes;
1468 }
1469 return oob;
1470 }
1471 default:
1472 BUG();
1473 }
1474 return NULL;
1475}
1476
ba84fb59
BN
1477/**
1478 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1479 * @mtd: MTD device structure
1480 * @retry_mode: the retry mode to use
1481 *
1482 * Some vendors supply a special command to shift the Vt threshold, to be used
1483 * when there are too many bitflips in a page (i.e., ECC error). After setting
1484 * a new threshold, the host should retry reading the page.
1485 */
1486static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1487{
1488 struct nand_chip *chip = mtd->priv;
1489
1490 pr_debug("setting READ RETRY mode %d\n", retry_mode);
1491
1492 if (retry_mode >= chip->read_retries)
1493 return -EINVAL;
1494
1495 if (!chip->setup_read_retry)
1496 return -EOPNOTSUPP;
1497
1498 return chip->setup_read_retry(mtd, retry_mode);
1499}
1500
8593fbc6 1501/**
7854d3f7 1502 * nand_do_read_ops - [INTERN] Read data with ECC
8b6e50c9
BN
1503 * @mtd: MTD device structure
1504 * @from: offset to read from
1505 * @ops: oob ops structure
f5bbdacc
TG
1506 *
1507 * Internal function. Called with chip held.
1508 */
8593fbc6
TG
1509static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1510 struct mtd_oob_ops *ops)
f5bbdacc 1511{
e47f3db4 1512 int chipnr, page, realpage, col, bytes, aligned, oob_required;
f5bbdacc 1513 struct nand_chip *chip = mtd->priv;
f5bbdacc 1514 int ret = 0;
8593fbc6 1515 uint32_t readlen = ops->len;
7014568b 1516 uint32_t oobreadlen = ops->ooblen;
0612b9dd 1517 uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
9aca334e
ML
1518 mtd->oobavail : mtd->oobsize;
1519
8593fbc6 1520 uint8_t *bufpoi, *oob, *buf;
66507c7b 1521 int use_bufpoi;
edbc4540 1522 unsigned int max_bitflips = 0;
ba84fb59 1523 int retry_mode = 0;
b72f3dfb 1524 bool ecc_fail = false;
1da177e4 1525
f5bbdacc
TG
1526 chipnr = (int)(from >> chip->chip_shift);
1527 chip->select_chip(mtd, chipnr);
61b03bd7 1528
f5bbdacc
TG
1529 realpage = (int)(from >> chip->page_shift);
1530 page = realpage & chip->pagemask;
1da177e4 1531
f5bbdacc 1532 col = (int)(from & (mtd->writesize - 1));
61b03bd7 1533
8593fbc6
TG
1534 buf = ops->datbuf;
1535 oob = ops->oobbuf;
e47f3db4 1536 oob_required = oob ? 1 : 0;
8593fbc6 1537
f8ac0414 1538 while (1) {
b72f3dfb
BN
1539 unsigned int ecc_failures = mtd->ecc_stats.failed;
1540
f5bbdacc
TG
1541 bytes = min(mtd->writesize - col, readlen);
1542 aligned = (bytes == mtd->writesize);
61b03bd7 1543
66507c7b
KD
1544 if (!aligned)
1545 use_bufpoi = 1;
1546 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1547 use_bufpoi = !virt_addr_valid(buf);
1548 else
1549 use_bufpoi = 0;
1550
8b6e50c9 1551 /* Is the current page in the buffer? */
8593fbc6 1552 if (realpage != chip->pagebuf || oob) {
66507c7b
KD
1553 bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1554
1555 if (use_bufpoi && aligned)
1556 pr_debug("%s: using read bounce buffer for buf@%p\n",
1557 __func__, buf);
61b03bd7 1558
ba84fb59 1559read_retry:
c00a0991 1560 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1da177e4 1561
edbc4540
MD
1562 /*
1563 * Now read the page into the buffer. Absent an error,
1564 * the read methods return max bitflips per ecc step.
1565 */
0612b9dd 1566 if (unlikely(ops->mode == MTD_OPS_RAW))
1fbb938d 1567 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
e47f3db4
BN
1568 oob_required,
1569 page);
a5ff4f10
JW
1570 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1571 !oob)
7351d3a5 1572 ret = chip->ecc.read_subpage(mtd, chip,
e004debd
HS
1573 col, bytes, bufpoi,
1574 page);
956e944c 1575 else
46a8cf2d 1576 ret = chip->ecc.read_page(mtd, chip, bufpoi,
e47f3db4 1577 oob_required, page);
6d77b9d0 1578 if (ret < 0) {
66507c7b 1579 if (use_bufpoi)
6d77b9d0
BN
1580 /* Invalidate page cache */
1581 chip->pagebuf = -1;
1da177e4 1582 break;
6d77b9d0 1583 }
f5bbdacc 1584
edbc4540
MD
1585 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1586
f5bbdacc 1587 /* Transfer not aligned data */
66507c7b 1588 if (use_bufpoi) {
a5ff4f10 1589 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
b72f3dfb 1590 !(mtd->ecc_stats.failed - ecc_failures) &&
edbc4540 1591 (ops->mode != MTD_OPS_RAW)) {
3d459559 1592 chip->pagebuf = realpage;
edbc4540
MD
1593 chip->pagebuf_bitflips = ret;
1594 } else {
6d77b9d0
BN
1595 /* Invalidate page cache */
1596 chip->pagebuf = -1;
edbc4540 1597 }
4bf63fcb 1598 memcpy(buf, chip->buffers->databuf + col, bytes);
f5bbdacc
TG
1599 }
1600
8593fbc6 1601 if (unlikely(oob)) {
b64d39d8
ML
1602 int toread = min(oobreadlen, max_oobsize);
1603
1604 if (toread) {
1605 oob = nand_transfer_oob(chip,
1606 oob, ops, toread);
1607 oobreadlen -= toread;
1608 }
8593fbc6 1609 }
5bc7c33c
BN
1610
1611 if (chip->options & NAND_NEED_READRDY) {
1612 /* Apply delay or wait for ready/busy pin */
1613 if (!chip->dev_ready)
1614 udelay(chip->chip_delay);
1615 else
1616 nand_wait_ready(mtd);
1617 }
b72f3dfb 1618
ba84fb59 1619 if (mtd->ecc_stats.failed - ecc_failures) {
28fa65e6 1620 if (retry_mode + 1 < chip->read_retries) {
ba84fb59
BN
1621 retry_mode++;
1622 ret = nand_setup_read_retry(mtd,
1623 retry_mode);
1624 if (ret < 0)
1625 break;
1626
1627 /* Reset failures; retry */
1628 mtd->ecc_stats.failed = ecc_failures;
1629 goto read_retry;
1630 } else {
1631 /* No more retry modes; real failure */
1632 ecc_fail = true;
1633 }
1634 }
1635
1636 buf += bytes;
8593fbc6 1637 } else {
4bf63fcb 1638 memcpy(buf, chip->buffers->databuf + col, bytes);
8593fbc6 1639 buf += bytes;
edbc4540
MD
1640 max_bitflips = max_t(unsigned int, max_bitflips,
1641 chip->pagebuf_bitflips);
8593fbc6 1642 }
1da177e4 1643
f5bbdacc 1644 readlen -= bytes;
61b03bd7 1645
ba84fb59
BN
1646 /* Reset to retry mode 0 */
1647 if (retry_mode) {
1648 ret = nand_setup_read_retry(mtd, 0);
1649 if (ret < 0)
1650 break;
1651 retry_mode = 0;
1652 }
1653
f5bbdacc 1654 if (!readlen)
61b03bd7 1655 break;
1da177e4 1656
8b6e50c9 1657 /* For subsequent reads align to page boundary */
1da177e4
LT
1658 col = 0;
1659 /* Increment page address */
1660 realpage++;
1661
ace4dfee 1662 page = realpage & chip->pagemask;
1da177e4
LT
1663 /* Check, if we cross a chip boundary */
1664 if (!page) {
1665 chipnr++;
ace4dfee
TG
1666 chip->select_chip(mtd, -1);
1667 chip->select_chip(mtd, chipnr);
1da177e4 1668 }
1da177e4 1669 }
b0bb6903 1670 chip->select_chip(mtd, -1);
1da177e4 1671
8593fbc6 1672 ops->retlen = ops->len - (size_t) readlen;
7014568b
VW
1673 if (oob)
1674 ops->oobretlen = ops->ooblen - oobreadlen;
1da177e4 1675
3f91e94f 1676 if (ret < 0)
f5bbdacc
TG
1677 return ret;
1678
b72f3dfb 1679 if (ecc_fail)
9a1fcdfd
TG
1680 return -EBADMSG;
1681
edbc4540 1682 return max_bitflips;
f5bbdacc
TG
1683}
1684
1685/**
25985edc 1686 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
8b6e50c9
BN
1687 * @mtd: MTD device structure
1688 * @from: offset to read from
1689 * @len: number of bytes to read
1690 * @retlen: pointer to variable to store the number of read bytes
1691 * @buf: the databuffer to put data
f5bbdacc 1692 *
8b6e50c9 1693 * Get hold of the chip and call nand_do_read.
f5bbdacc
TG
1694 */
1695static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1696 size_t *retlen, uint8_t *buf)
1697{
4a89ff88 1698 struct mtd_oob_ops ops;
f5bbdacc
TG
1699 int ret;
1700
6a8214aa 1701 nand_get_device(mtd, FL_READING);
4a89ff88
BN
1702 ops.len = len;
1703 ops.datbuf = buf;
1704 ops.oobbuf = NULL;
11041ae6 1705 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 1706 ret = nand_do_read_ops(mtd, from, &ops);
4a89ff88 1707 *retlen = ops.retlen;
f5bbdacc 1708 nand_release_device(mtd);
f5bbdacc 1709 return ret;
1da177e4
LT
1710}
1711
7bc3312b 1712/**
7854d3f7 1713 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
8b6e50c9
BN
1714 * @mtd: mtd info structure
1715 * @chip: nand chip info structure
1716 * @page: page number to read
7bc3312b
TG
1717 */
1718static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1719 int page)
7bc3312b 1720{
5c2ffb11 1721 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
7bc3312b 1722 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
5c2ffb11 1723 return 0;
7bc3312b
TG
1724}
1725
1726/**
7854d3f7 1727 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
7bc3312b 1728 * with syndromes
8b6e50c9
BN
1729 * @mtd: mtd info structure
1730 * @chip: nand chip info structure
1731 * @page: page number to read
7bc3312b
TG
1732 */
1733static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
5c2ffb11 1734 int page)
7bc3312b
TG
1735{
1736 uint8_t *buf = chip->oob_poi;
1737 int length = mtd->oobsize;
1738 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1739 int eccsize = chip->ecc.size;
1740 uint8_t *bufpoi = buf;
1741 int i, toread, sndrnd = 0, pos;
1742
1743 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1744 for (i = 0; i < chip->ecc.steps; i++) {
1745 if (sndrnd) {
1746 pos = eccsize + i * (eccsize + chunk);
1747 if (mtd->writesize > 512)
1748 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1749 else
1750 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1751 } else
1752 sndrnd = 1;
1753 toread = min_t(int, length, chunk);
1754 chip->read_buf(mtd, bufpoi, toread);
1755 bufpoi += toread;
1756 length -= toread;
1757 }
1758 if (length > 0)
1759 chip->read_buf(mtd, bufpoi, length);
1760
5c2ffb11 1761 return 0;
7bc3312b
TG
1762}
1763
1764/**
7854d3f7 1765 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
8b6e50c9
BN
1766 * @mtd: mtd info structure
1767 * @chip: nand chip info structure
1768 * @page: page number to write
7bc3312b
TG
1769 */
1770static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1771 int page)
1772{
1773 int status = 0;
1774 const uint8_t *buf = chip->oob_poi;
1775 int length = mtd->oobsize;
1776
1777 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1778 chip->write_buf(mtd, buf, length);
1779 /* Send command to program the OOB data */
1780 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1781
1782 status = chip->waitfunc(mtd, chip);
1783
0d420f9d 1784 return status & NAND_STATUS_FAIL ? -EIO : 0;
7bc3312b
TG
1785}
1786
1787/**
7854d3f7 1788 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
8b6e50c9
BN
1789 * with syndrome - only for large page flash
1790 * @mtd: mtd info structure
1791 * @chip: nand chip info structure
1792 * @page: page number to write
7bc3312b
TG
1793 */
1794static int nand_write_oob_syndrome(struct mtd_info *mtd,
1795 struct nand_chip *chip, int page)
1796{
1797 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1798 int eccsize = chip->ecc.size, length = mtd->oobsize;
1799 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1800 const uint8_t *bufpoi = chip->oob_poi;
1801
1802 /*
1803 * data-ecc-data-ecc ... ecc-oob
1804 * or
1805 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1806 */
1807 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1808 pos = steps * (eccsize + chunk);
1809 steps = 0;
1810 } else
8b0036ee 1811 pos = eccsize;
7bc3312b
TG
1812
1813 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1814 for (i = 0; i < steps; i++) {
1815 if (sndcmd) {
1816 if (mtd->writesize <= 512) {
1817 uint32_t fill = 0xFFFFFFFF;
1818
1819 len = eccsize;
1820 while (len > 0) {
1821 int num = min_t(int, len, 4);
1822 chip->write_buf(mtd, (uint8_t *)&fill,
1823 num);
1824 len -= num;
1825 }
1826 } else {
1827 pos = eccsize + i * (eccsize + chunk);
1828 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1829 }
1830 } else
1831 sndcmd = 1;
1832 len = min_t(int, length, chunk);
1833 chip->write_buf(mtd, bufpoi, len);
1834 bufpoi += len;
1835 length -= len;
1836 }
1837 if (length > 0)
1838 chip->write_buf(mtd, bufpoi, length);
1839
1840 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1841 status = chip->waitfunc(mtd, chip);
1842
1843 return status & NAND_STATUS_FAIL ? -EIO : 0;
1844}
1845
1da177e4 1846/**
7854d3f7 1847 * nand_do_read_oob - [INTERN] NAND read out-of-band
8b6e50c9
BN
1848 * @mtd: MTD device structure
1849 * @from: offset to read from
1850 * @ops: oob operations description structure
1da177e4 1851 *
8b6e50c9 1852 * NAND read out-of-band data from the spare area.
1da177e4 1853 */
8593fbc6
TG
1854static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1855 struct mtd_oob_ops *ops)
1da177e4 1856{
c00a0991 1857 int page, realpage, chipnr;
ace4dfee 1858 struct nand_chip *chip = mtd->priv;
041e4575 1859 struct mtd_ecc_stats stats;
7014568b
VW
1860 int readlen = ops->ooblen;
1861 int len;
7bc3312b 1862 uint8_t *buf = ops->oobbuf;
1951f2f7 1863 int ret = 0;
61b03bd7 1864
289c0522 1865 pr_debug("%s: from = 0x%08Lx, len = %i\n",
20d8e248 1866 __func__, (unsigned long long)from, readlen);
1da177e4 1867
041e4575
BN
1868 stats = mtd->ecc_stats;
1869
0612b9dd 1870 if (ops->mode == MTD_OPS_AUTO_OOB)
7014568b 1871 len = chip->ecc.layout->oobavail;
03736155
AH
1872 else
1873 len = mtd->oobsize;
1874
1875 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
1876 pr_debug("%s: attempt to start read outside oob\n",
1877 __func__);
03736155
AH
1878 return -EINVAL;
1879 }
1880
1881 /* Do not allow reads past end of device */
1882 if (unlikely(from >= mtd->size ||
1883 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1884 (from >> chip->page_shift)) * len)) {
289c0522
BN
1885 pr_debug("%s: attempt to read beyond end of device\n",
1886 __func__);
03736155
AH
1887 return -EINVAL;
1888 }
7014568b 1889
7314e9e7 1890 chipnr = (int)(from >> chip->chip_shift);
ace4dfee 1891 chip->select_chip(mtd, chipnr);
1da177e4 1892
7314e9e7
TG
1893 /* Shift to get page */
1894 realpage = (int)(from >> chip->page_shift);
1895 page = realpage & chip->pagemask;
1da177e4 1896
f8ac0414 1897 while (1) {
0612b9dd 1898 if (ops->mode == MTD_OPS_RAW)
1951f2f7 1899 ret = chip->ecc.read_oob_raw(mtd, chip, page);
c46f6483 1900 else
1951f2f7
SL
1901 ret = chip->ecc.read_oob(mtd, chip, page);
1902
1903 if (ret < 0)
1904 break;
7014568b
VW
1905
1906 len = min(len, readlen);
1907 buf = nand_transfer_oob(chip, buf, ops, len);
8593fbc6 1908
5bc7c33c
BN
1909 if (chip->options & NAND_NEED_READRDY) {
1910 /* Apply delay or wait for ready/busy pin */
1911 if (!chip->dev_ready)
1912 udelay(chip->chip_delay);
1913 else
1914 nand_wait_ready(mtd);
1915 }
1916
7014568b 1917 readlen -= len;
0d420f9d
SZ
1918 if (!readlen)
1919 break;
1920
7314e9e7
TG
1921 /* Increment page address */
1922 realpage++;
1923
1924 page = realpage & chip->pagemask;
1925 /* Check, if we cross a chip boundary */
1926 if (!page) {
1927 chipnr++;
1928 chip->select_chip(mtd, -1);
1929 chip->select_chip(mtd, chipnr);
1da177e4
LT
1930 }
1931 }
b0bb6903 1932 chip->select_chip(mtd, -1);
1da177e4 1933
1951f2f7
SL
1934 ops->oobretlen = ops->ooblen - readlen;
1935
1936 if (ret < 0)
1937 return ret;
041e4575
BN
1938
1939 if (mtd->ecc_stats.failed - stats.failed)
1940 return -EBADMSG;
1941
1942 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1da177e4
LT
1943}
1944
1945/**
8593fbc6 1946 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
8b6e50c9
BN
1947 * @mtd: MTD device structure
1948 * @from: offset to read from
1949 * @ops: oob operation description structure
1da177e4 1950 *
8b6e50c9 1951 * NAND read data and/or out-of-band data.
1da177e4 1952 */
8593fbc6
TG
1953static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1954 struct mtd_oob_ops *ops)
1da177e4 1955{
8593fbc6
TG
1956 int ret = -ENOTSUPP;
1957
1958 ops->retlen = 0;
1da177e4
LT
1959
1960 /* Do not allow reads past end of device */
7014568b 1961 if (ops->datbuf && (from + ops->len) > mtd->size) {
289c0522
BN
1962 pr_debug("%s: attempt to read beyond end of device\n",
1963 __func__);
1da177e4
LT
1964 return -EINVAL;
1965 }
1966
6a8214aa 1967 nand_get_device(mtd, FL_READING);
1da177e4 1968
f8ac0414 1969 switch (ops->mode) {
0612b9dd
BN
1970 case MTD_OPS_PLACE_OOB:
1971 case MTD_OPS_AUTO_OOB:
1972 case MTD_OPS_RAW:
8593fbc6 1973 break;
1da177e4 1974
8593fbc6
TG
1975 default:
1976 goto out;
1977 }
1da177e4 1978
8593fbc6
TG
1979 if (!ops->datbuf)
1980 ret = nand_do_read_oob(mtd, from, ops);
1981 else
1982 ret = nand_do_read_ops(mtd, from, ops);
61b03bd7 1983
7351d3a5 1984out:
8593fbc6
TG
1985 nand_release_device(mtd);
1986 return ret;
1987}
61b03bd7 1988
1da177e4 1989
8593fbc6 1990/**
7854d3f7 1991 * nand_write_page_raw - [INTERN] raw page write function
8b6e50c9
BN
1992 * @mtd: mtd info structure
1993 * @chip: nand chip info structure
1994 * @buf: data buffer
1fbb938d 1995 * @oob_required: must write chip->oob_poi to OOB
52ff49df 1996 *
7854d3f7 1997 * Not for syndrome calculating ECC controllers, which use a special oob layout.
8593fbc6 1998 */
fdbad98d 1999static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 2000 const uint8_t *buf, int oob_required)
8593fbc6
TG
2001{
2002 chip->write_buf(mtd, buf, mtd->writesize);
279f08d4
BN
2003 if (oob_required)
2004 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
2005
2006 return 0;
1da177e4
LT
2007}
2008
52ff49df 2009/**
7854d3f7 2010 * nand_write_page_raw_syndrome - [INTERN] raw page write function
8b6e50c9
BN
2011 * @mtd: mtd info structure
2012 * @chip: nand chip info structure
2013 * @buf: data buffer
1fbb938d 2014 * @oob_required: must write chip->oob_poi to OOB
52ff49df
DB
2015 *
2016 * We need a special oob layout and handling even when ECC isn't checked.
2017 */
fdbad98d 2018static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
7351d3a5 2019 struct nand_chip *chip,
1fbb938d 2020 const uint8_t *buf, int oob_required)
52ff49df
DB
2021{
2022 int eccsize = chip->ecc.size;
2023 int eccbytes = chip->ecc.bytes;
2024 uint8_t *oob = chip->oob_poi;
2025 int steps, size;
2026
2027 for (steps = chip->ecc.steps; steps > 0; steps--) {
2028 chip->write_buf(mtd, buf, eccsize);
2029 buf += eccsize;
2030
2031 if (chip->ecc.prepad) {
2032 chip->write_buf(mtd, oob, chip->ecc.prepad);
2033 oob += chip->ecc.prepad;
2034 }
2035
60c3bc1f 2036 chip->write_buf(mtd, oob, eccbytes);
52ff49df
DB
2037 oob += eccbytes;
2038
2039 if (chip->ecc.postpad) {
2040 chip->write_buf(mtd, oob, chip->ecc.postpad);
2041 oob += chip->ecc.postpad;
2042 }
2043 }
2044
2045 size = mtd->oobsize - (oob - chip->oob_poi);
2046 if (size)
2047 chip->write_buf(mtd, oob, size);
fdbad98d
JW
2048
2049 return 0;
52ff49df 2050}
9223a456 2051/**
7854d3f7 2052 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
8b6e50c9
BN
2053 * @mtd: mtd info structure
2054 * @chip: nand chip info structure
2055 * @buf: data buffer
1fbb938d 2056 * @oob_required: must write chip->oob_poi to OOB
9223a456 2057 */
fdbad98d 2058static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 2059 const uint8_t *buf, int oob_required)
9223a456 2060{
f75e5097
TG
2061 int i, eccsize = chip->ecc.size;
2062 int eccbytes = chip->ecc.bytes;
2063 int eccsteps = chip->ecc.steps;
4bf63fcb 2064 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 2065 const uint8_t *p = buf;
8b099a39 2066 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 2067
7854d3f7 2068 /* Software ECC calculation */
8593fbc6
TG
2069 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2070 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456 2071
8593fbc6
TG
2072 for (i = 0; i < chip->ecc.total; i++)
2073 chip->oob_poi[eccpos[i]] = ecc_calc[i];
9223a456 2074
fdbad98d 2075 return chip->ecc.write_page_raw(mtd, chip, buf, 1);
f75e5097 2076}
9223a456 2077
f75e5097 2078/**
7854d3f7 2079 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
8b6e50c9
BN
2080 * @mtd: mtd info structure
2081 * @chip: nand chip info structure
2082 * @buf: data buffer
1fbb938d 2083 * @oob_required: must write chip->oob_poi to OOB
f75e5097 2084 */
fdbad98d 2085static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1fbb938d 2086 const uint8_t *buf, int oob_required)
f75e5097
TG
2087{
2088 int i, eccsize = chip->ecc.size;
2089 int eccbytes = chip->ecc.bytes;
2090 int eccsteps = chip->ecc.steps;
4bf63fcb 2091 uint8_t *ecc_calc = chip->buffers->ecccalc;
f75e5097 2092 const uint8_t *p = buf;
8b099a39 2093 uint32_t *eccpos = chip->ecc.layout->eccpos;
9223a456 2094
f75e5097
TG
2095 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2096 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
29da9cea 2097 chip->write_buf(mtd, p, eccsize);
f75e5097 2098 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
9223a456
TG
2099 }
2100
f75e5097
TG
2101 for (i = 0; i < chip->ecc.total; i++)
2102 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2103
2104 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
fdbad98d
JW
2105
2106 return 0;
9223a456
TG
2107}
2108
837a6ba4
GP
2109
2110/**
2111 * nand_write_subpage_hwecc - [REPLACABLE] hardware ECC based subpage write
2112 * @mtd: mtd info structure
2113 * @chip: nand chip info structure
d6a95080 2114 * @offset: column address of subpage within the page
837a6ba4 2115 * @data_len: data length
d6a95080 2116 * @buf: data buffer
837a6ba4
GP
2117 * @oob_required: must write chip->oob_poi to OOB
2118 */
2119static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2120 struct nand_chip *chip, uint32_t offset,
d6a95080 2121 uint32_t data_len, const uint8_t *buf,
837a6ba4
GP
2122 int oob_required)
2123{
2124 uint8_t *oob_buf = chip->oob_poi;
2125 uint8_t *ecc_calc = chip->buffers->ecccalc;
2126 int ecc_size = chip->ecc.size;
2127 int ecc_bytes = chip->ecc.bytes;
2128 int ecc_steps = chip->ecc.steps;
2129 uint32_t *eccpos = chip->ecc.layout->eccpos;
2130 uint32_t start_step = offset / ecc_size;
2131 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2132 int oob_bytes = mtd->oobsize / ecc_steps;
2133 int step, i;
2134
2135 for (step = 0; step < ecc_steps; step++) {
2136 /* configure controller for WRITE access */
2137 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2138
2139 /* write data (untouched subpages already masked by 0xFF) */
d6a95080 2140 chip->write_buf(mtd, buf, ecc_size);
837a6ba4
GP
2141
2142 /* mask ECC of un-touched subpages by padding 0xFF */
2143 if ((step < start_step) || (step > end_step))
2144 memset(ecc_calc, 0xff, ecc_bytes);
2145 else
d6a95080 2146 chip->ecc.calculate(mtd, buf, ecc_calc);
837a6ba4
GP
2147
2148 /* mask OOB of un-touched subpages by padding 0xFF */
2149 /* if oob_required, preserve OOB metadata of written subpage */
2150 if (!oob_required || (step < start_step) || (step > end_step))
2151 memset(oob_buf, 0xff, oob_bytes);
2152
d6a95080 2153 buf += ecc_size;
837a6ba4
GP
2154 ecc_calc += ecc_bytes;
2155 oob_buf += oob_bytes;
2156 }
2157
2158 /* copy calculated ECC for whole page to chip->buffer->oob */
2159 /* this include masked-value(0xFF) for unwritten subpages */
2160 ecc_calc = chip->buffers->ecccalc;
2161 for (i = 0; i < chip->ecc.total; i++)
2162 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2163
2164 /* write OOB buffer to NAND device */
2165 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2166
2167 return 0;
2168}
2169
2170
61b03bd7 2171/**
7854d3f7 2172 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
8b6e50c9
BN
2173 * @mtd: mtd info structure
2174 * @chip: nand chip info structure
2175 * @buf: data buffer
1fbb938d 2176 * @oob_required: must write chip->oob_poi to OOB
1da177e4 2177 *
8b6e50c9
BN
2178 * The hw generator calculates the error syndrome automatically. Therefore we
2179 * need a special oob layout and handling.
f75e5097 2180 */
fdbad98d 2181static int nand_write_page_syndrome(struct mtd_info *mtd,
1fbb938d
BN
2182 struct nand_chip *chip,
2183 const uint8_t *buf, int oob_required)
1da177e4 2184{
f75e5097
TG
2185 int i, eccsize = chip->ecc.size;
2186 int eccbytes = chip->ecc.bytes;
2187 int eccsteps = chip->ecc.steps;
2188 const uint8_t *p = buf;
2189 uint8_t *oob = chip->oob_poi;
1da177e4 2190
f75e5097 2191 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1da177e4 2192
f75e5097
TG
2193 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2194 chip->write_buf(mtd, p, eccsize);
61b03bd7 2195
f75e5097
TG
2196 if (chip->ecc.prepad) {
2197 chip->write_buf(mtd, oob, chip->ecc.prepad);
2198 oob += chip->ecc.prepad;
2199 }
2200
2201 chip->ecc.calculate(mtd, p, oob);
2202 chip->write_buf(mtd, oob, eccbytes);
2203 oob += eccbytes;
2204
2205 if (chip->ecc.postpad) {
2206 chip->write_buf(mtd, oob, chip->ecc.postpad);
2207 oob += chip->ecc.postpad;
1da177e4 2208 }
1da177e4 2209 }
f75e5097
TG
2210
2211 /* Calculate remaining oob bytes */
7e4178f9 2212 i = mtd->oobsize - (oob - chip->oob_poi);
f75e5097
TG
2213 if (i)
2214 chip->write_buf(mtd, oob, i);
fdbad98d
JW
2215
2216 return 0;
f75e5097
TG
2217}
2218
2219/**
956e944c 2220 * nand_write_page - [REPLACEABLE] write one page
8b6e50c9
BN
2221 * @mtd: MTD device structure
2222 * @chip: NAND chip descriptor
837a6ba4
GP
2223 * @offset: address offset within the page
2224 * @data_len: length of actual data to be written
8b6e50c9 2225 * @buf: the data to write
1fbb938d 2226 * @oob_required: must write chip->oob_poi to OOB
8b6e50c9
BN
2227 * @page: page number to write
2228 * @cached: cached programming
2229 * @raw: use _raw version of write_page
f75e5097
TG
2230 */
2231static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
837a6ba4
GP
2232 uint32_t offset, int data_len, const uint8_t *buf,
2233 int oob_required, int page, int cached, int raw)
f75e5097 2234{
837a6ba4
GP
2235 int status, subpage;
2236
2237 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2238 chip->ecc.write_subpage)
2239 subpage = offset || (data_len < mtd->writesize);
2240 else
2241 subpage = 0;
f75e5097
TG
2242
2243 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2244
956e944c 2245 if (unlikely(raw))
837a6ba4
GP
2246 status = chip->ecc.write_page_raw(mtd, chip, buf,
2247 oob_required);
2248 else if (subpage)
2249 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2250 buf, oob_required);
956e944c 2251 else
fdbad98d
JW
2252 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2253
2254 if (status < 0)
2255 return status;
f75e5097
TG
2256
2257 /*
7854d3f7 2258 * Cached progamming disabled for now. Not sure if it's worth the
8b6e50c9 2259 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
f75e5097
TG
2260 */
2261 cached = 0;
2262
3239a6cd 2263 if (!cached || !NAND_HAS_CACHEPROG(chip)) {
f75e5097
TG
2264
2265 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
7bc3312b 2266 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2267 /*
2268 * See if operation failed and additional status checks are
8b6e50c9 2269 * available.
f75e5097
TG
2270 */
2271 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2272 status = chip->errstat(mtd, chip, FL_WRITING, status,
2273 page);
2274
2275 if (status & NAND_STATUS_FAIL)
2276 return -EIO;
2277 } else {
2278 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
7bc3312b 2279 status = chip->waitfunc(mtd, chip);
f75e5097
TG
2280 }
2281
f75e5097 2282 return 0;
1da177e4
LT
2283}
2284
8593fbc6 2285/**
7854d3f7 2286 * nand_fill_oob - [INTERN] Transfer client buffer to oob
f722013e 2287 * @mtd: MTD device structure
8b6e50c9
BN
2288 * @oob: oob data buffer
2289 * @len: oob data write length
2290 * @ops: oob ops structure
8593fbc6 2291 */
f722013e
TAA
2292static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2293 struct mtd_oob_ops *ops)
8593fbc6 2294{
f722013e
TAA
2295 struct nand_chip *chip = mtd->priv;
2296
2297 /*
2298 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2299 * data from a previous OOB read.
2300 */
2301 memset(chip->oob_poi, 0xff, mtd->oobsize);
2302
f8ac0414 2303 switch (ops->mode) {
8593fbc6 2304
0612b9dd
BN
2305 case MTD_OPS_PLACE_OOB:
2306 case MTD_OPS_RAW:
8593fbc6
TG
2307 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2308 return oob + len;
2309
0612b9dd 2310 case MTD_OPS_AUTO_OOB: {
8593fbc6 2311 struct nand_oobfree *free = chip->ecc.layout->oobfree;
7bc3312b
TG
2312 uint32_t boffs = 0, woffs = ops->ooboffs;
2313 size_t bytes = 0;
8593fbc6 2314
f8ac0414 2315 for (; free->length && len; free++, len -= bytes) {
8b6e50c9 2316 /* Write request not from offset 0? */
7bc3312b
TG
2317 if (unlikely(woffs)) {
2318 if (woffs >= free->length) {
2319 woffs -= free->length;
2320 continue;
2321 }
2322 boffs = free->offset + woffs;
2323 bytes = min_t(size_t, len,
2324 (free->length - woffs));
2325 woffs = 0;
2326 } else {
2327 bytes = min_t(size_t, len, free->length);
2328 boffs = free->offset;
2329 }
8b0036ee 2330 memcpy(chip->oob_poi + boffs, oob, bytes);
8593fbc6
TG
2331 oob += bytes;
2332 }
2333 return oob;
2334 }
2335 default:
2336 BUG();
2337 }
2338 return NULL;
2339}
2340
f8ac0414 2341#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
1da177e4
LT
2342
2343/**
7854d3f7 2344 * nand_do_write_ops - [INTERN] NAND write with ECC
8b6e50c9
BN
2345 * @mtd: MTD device structure
2346 * @to: offset to write to
2347 * @ops: oob operations description structure
1da177e4 2348 *
8b6e50c9 2349 * NAND write with ECC.
1da177e4 2350 */
8593fbc6
TG
2351static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2352 struct mtd_oob_ops *ops)
1da177e4 2353{
29072b96 2354 int chipnr, realpage, page, blockmask, column;
ace4dfee 2355 struct nand_chip *chip = mtd->priv;
8593fbc6 2356 uint32_t writelen = ops->len;
782ce79a
ML
2357
2358 uint32_t oobwritelen = ops->ooblen;
0612b9dd 2359 uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
782ce79a
ML
2360 mtd->oobavail : mtd->oobsize;
2361
8593fbc6
TG
2362 uint8_t *oob = ops->oobbuf;
2363 uint8_t *buf = ops->datbuf;
837a6ba4 2364 int ret;
e47f3db4 2365 int oob_required = oob ? 1 : 0;
1da177e4 2366
8593fbc6 2367 ops->retlen = 0;
29072b96
TG
2368 if (!writelen)
2369 return 0;
1da177e4 2370
8b6e50c9 2371 /* Reject writes, which are not page aligned */
8593fbc6 2372 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
d0370219
BN
2373 pr_notice("%s: attempt to write non page aligned data\n",
2374 __func__);
1da177e4
LT
2375 return -EINVAL;
2376 }
2377
29072b96 2378 column = to & (mtd->writesize - 1);
1da177e4 2379
6a930961
TG
2380 chipnr = (int)(to >> chip->chip_shift);
2381 chip->select_chip(mtd, chipnr);
2382
1da177e4 2383 /* Check, if it is write protected */
b0bb6903
HS
2384 if (nand_check_wp(mtd)) {
2385 ret = -EIO;
2386 goto err_out;
2387 }
1da177e4 2388
f75e5097
TG
2389 realpage = (int)(to >> chip->page_shift);
2390 page = realpage & chip->pagemask;
2391 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2392
2393 /* Invalidate the page cache, when we write to the cached page */
2394 if (to <= (chip->pagebuf << chip->page_shift) &&
8593fbc6 2395 (chip->pagebuf << chip->page_shift) < (to + ops->len))
ace4dfee 2396 chip->pagebuf = -1;
61b03bd7 2397
782ce79a 2398 /* Don't allow multipage oob writes with offset */
b0bb6903
HS
2399 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2400 ret = -EINVAL;
2401 goto err_out;
2402 }
782ce79a 2403
f8ac0414 2404 while (1) {
29072b96 2405 int bytes = mtd->writesize;
f75e5097 2406 int cached = writelen > bytes && page != blockmask;
29072b96 2407 uint8_t *wbuf = buf;
66507c7b
KD
2408 int use_bufpoi;
2409 int part_pagewr = (column || writelen < (mtd->writesize - 1));
2410
2411 if (part_pagewr)
2412 use_bufpoi = 1;
2413 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2414 use_bufpoi = !virt_addr_valid(buf);
2415 else
2416 use_bufpoi = 0;
29072b96 2417
66507c7b
KD
2418 /* Partial page write?, or need to use bounce buffer */
2419 if (use_bufpoi) {
2420 pr_debug("%s: using write bounce buffer for buf@%p\n",
2421 __func__, buf);
29072b96 2422 cached = 0;
66507c7b
KD
2423 if (part_pagewr)
2424 bytes = min_t(int, bytes - column, writelen);
29072b96
TG
2425 chip->pagebuf = -1;
2426 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2427 memcpy(&chip->buffers->databuf[column], buf, bytes);
2428 wbuf = chip->buffers->databuf;
2429 }
1da177e4 2430
782ce79a
ML
2431 if (unlikely(oob)) {
2432 size_t len = min(oobwritelen, oobmaxlen);
f722013e 2433 oob = nand_fill_oob(mtd, oob, len, ops);
782ce79a 2434 oobwritelen -= len;
f722013e
TAA
2435 } else {
2436 /* We still need to erase leftover OOB data */
2437 memset(chip->oob_poi, 0xff, mtd->oobsize);
782ce79a 2438 }
837a6ba4
GP
2439 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2440 oob_required, page, cached,
2441 (ops->mode == MTD_OPS_RAW));
f75e5097
TG
2442 if (ret)
2443 break;
2444
2445 writelen -= bytes;
2446 if (!writelen)
2447 break;
2448
29072b96 2449 column = 0;
f75e5097
TG
2450 buf += bytes;
2451 realpage++;
2452
2453 page = realpage & chip->pagemask;
2454 /* Check, if we cross a chip boundary */
2455 if (!page) {
2456 chipnr++;
2457 chip->select_chip(mtd, -1);
2458 chip->select_chip(mtd, chipnr);
1da177e4
LT
2459 }
2460 }
8593fbc6 2461
8593fbc6 2462 ops->retlen = ops->len - writelen;
7014568b
VW
2463 if (unlikely(oob))
2464 ops->oobretlen = ops->ooblen;
b0bb6903
HS
2465
2466err_out:
2467 chip->select_chip(mtd, -1);
1da177e4
LT
2468 return ret;
2469}
2470
2af7c653
SK
2471/**
2472 * panic_nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2473 * @mtd: MTD device structure
2474 * @to: offset to write to
2475 * @len: number of bytes to write
2476 * @retlen: pointer to variable to store the number of written bytes
2477 * @buf: the data to write
2af7c653
SK
2478 *
2479 * NAND write with ECC. Used when performing writes in interrupt context, this
2480 * may for example be called by mtdoops when writing an oops while in panic.
2481 */
2482static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2483 size_t *retlen, const uint8_t *buf)
2484{
2485 struct nand_chip *chip = mtd->priv;
4a89ff88 2486 struct mtd_oob_ops ops;
2af7c653
SK
2487 int ret;
2488
8b6e50c9 2489 /* Wait for the device to get ready */
2af7c653
SK
2490 panic_nand_wait(mtd, chip, 400);
2491
8b6e50c9 2492 /* Grab the device */
2af7c653
SK
2493 panic_nand_get_device(chip, mtd, FL_WRITING);
2494
4a89ff88
BN
2495 ops.len = len;
2496 ops.datbuf = (uint8_t *)buf;
2497 ops.oobbuf = NULL;
11041ae6 2498 ops.mode = MTD_OPS_PLACE_OOB;
2af7c653 2499
4a89ff88 2500 ret = nand_do_write_ops(mtd, to, &ops);
2af7c653 2501
4a89ff88 2502 *retlen = ops.retlen;
2af7c653
SK
2503 return ret;
2504}
2505
f75e5097 2506/**
8593fbc6 2507 * nand_write - [MTD Interface] NAND write with ECC
8b6e50c9
BN
2508 * @mtd: MTD device structure
2509 * @to: offset to write to
2510 * @len: number of bytes to write
2511 * @retlen: pointer to variable to store the number of written bytes
2512 * @buf: the data to write
f75e5097 2513 *
8b6e50c9 2514 * NAND write with ECC.
f75e5097 2515 */
8593fbc6
TG
2516static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2517 size_t *retlen, const uint8_t *buf)
f75e5097 2518{
4a89ff88 2519 struct mtd_oob_ops ops;
f75e5097
TG
2520 int ret;
2521
6a8214aa 2522 nand_get_device(mtd, FL_WRITING);
4a89ff88
BN
2523 ops.len = len;
2524 ops.datbuf = (uint8_t *)buf;
2525 ops.oobbuf = NULL;
11041ae6 2526 ops.mode = MTD_OPS_PLACE_OOB;
4a89ff88 2527 ret = nand_do_write_ops(mtd, to, &ops);
4a89ff88 2528 *retlen = ops.retlen;
f75e5097 2529 nand_release_device(mtd);
8593fbc6 2530 return ret;
f75e5097 2531}
7314e9e7 2532
1da177e4 2533/**
8593fbc6 2534 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
8b6e50c9
BN
2535 * @mtd: MTD device structure
2536 * @to: offset to write to
2537 * @ops: oob operation description structure
1da177e4 2538 *
8b6e50c9 2539 * NAND write out-of-band.
1da177e4 2540 */
8593fbc6
TG
2541static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2542 struct mtd_oob_ops *ops)
1da177e4 2543{
03736155 2544 int chipnr, page, status, len;
ace4dfee 2545 struct nand_chip *chip = mtd->priv;
1da177e4 2546
289c0522 2547 pr_debug("%s: to = 0x%08x, len = %i\n",
20d8e248 2548 __func__, (unsigned int)to, (int)ops->ooblen);
1da177e4 2549
0612b9dd 2550 if (ops->mode == MTD_OPS_AUTO_OOB)
03736155
AH
2551 len = chip->ecc.layout->oobavail;
2552 else
2553 len = mtd->oobsize;
2554
1da177e4 2555 /* Do not allow write past end of page */
03736155 2556 if ((ops->ooboffs + ops->ooblen) > len) {
289c0522
BN
2557 pr_debug("%s: attempt to write past end of page\n",
2558 __func__);
1da177e4
LT
2559 return -EINVAL;
2560 }
2561
03736155 2562 if (unlikely(ops->ooboffs >= len)) {
289c0522
BN
2563 pr_debug("%s: attempt to start write outside oob\n",
2564 __func__);
03736155
AH
2565 return -EINVAL;
2566 }
2567
775adc3d 2568 /* Do not allow write past end of device */
03736155
AH
2569 if (unlikely(to >= mtd->size ||
2570 ops->ooboffs + ops->ooblen >
2571 ((mtd->size >> chip->page_shift) -
2572 (to >> chip->page_shift)) * len)) {
289c0522
BN
2573 pr_debug("%s: attempt to write beyond end of device\n",
2574 __func__);
03736155
AH
2575 return -EINVAL;
2576 }
2577
7314e9e7 2578 chipnr = (int)(to >> chip->chip_shift);
ace4dfee 2579 chip->select_chip(mtd, chipnr);
1da177e4 2580
7314e9e7
TG
2581 /* Shift to get page */
2582 page = (int)(to >> chip->page_shift);
2583
2584 /*
2585 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2586 * of my DiskOnChip 2000 test units) will clear the whole data page too
2587 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2588 * it in the doc2000 driver in August 1999. dwmw2.
2589 */
ace4dfee 2590 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4
LT
2591
2592 /* Check, if it is write protected */
b0bb6903
HS
2593 if (nand_check_wp(mtd)) {
2594 chip->select_chip(mtd, -1);
8593fbc6 2595 return -EROFS;
b0bb6903 2596 }
61b03bd7 2597
1da177e4 2598 /* Invalidate the page cache, if we write to the cached page */
ace4dfee
TG
2599 if (page == chip->pagebuf)
2600 chip->pagebuf = -1;
1da177e4 2601
f722013e 2602 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
9ce244b3 2603
0612b9dd 2604 if (ops->mode == MTD_OPS_RAW)
9ce244b3
BN
2605 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2606 else
2607 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1da177e4 2608
b0bb6903
HS
2609 chip->select_chip(mtd, -1);
2610
7bc3312b
TG
2611 if (status)
2612 return status;
1da177e4 2613
7014568b 2614 ops->oobretlen = ops->ooblen;
1da177e4 2615
7bc3312b 2616 return 0;
8593fbc6
TG
2617}
2618
2619/**
2620 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
8b6e50c9
BN
2621 * @mtd: MTD device structure
2622 * @to: offset to write to
2623 * @ops: oob operation description structure
8593fbc6
TG
2624 */
2625static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2626 struct mtd_oob_ops *ops)
2627{
8593fbc6
TG
2628 int ret = -ENOTSUPP;
2629
2630 ops->retlen = 0;
2631
2632 /* Do not allow writes past end of device */
7014568b 2633 if (ops->datbuf && (to + ops->len) > mtd->size) {
289c0522
BN
2634 pr_debug("%s: attempt to write beyond end of device\n",
2635 __func__);
8593fbc6
TG
2636 return -EINVAL;
2637 }
2638
6a8214aa 2639 nand_get_device(mtd, FL_WRITING);
8593fbc6 2640
f8ac0414 2641 switch (ops->mode) {
0612b9dd
BN
2642 case MTD_OPS_PLACE_OOB:
2643 case MTD_OPS_AUTO_OOB:
2644 case MTD_OPS_RAW:
8593fbc6
TG
2645 break;
2646
2647 default:
2648 goto out;
2649 }
2650
2651 if (!ops->datbuf)
2652 ret = nand_do_write_oob(mtd, to, ops);
2653 else
2654 ret = nand_do_write_ops(mtd, to, ops);
2655
7351d3a5 2656out:
1da177e4 2657 nand_release_device(mtd);
1da177e4
LT
2658 return ret;
2659}
2660
1da177e4 2661/**
49c50b97 2662 * single_erase - [GENERIC] NAND standard block erase command function
8b6e50c9
BN
2663 * @mtd: MTD device structure
2664 * @page: the page address of the block which will be erased
1da177e4 2665 *
49c50b97 2666 * Standard erase command for NAND chips. Returns NAND status.
1da177e4 2667 */
49c50b97 2668static int single_erase(struct mtd_info *mtd, int page)
1da177e4 2669{
ace4dfee 2670 struct nand_chip *chip = mtd->priv;
1da177e4 2671 /* Send commands to erase a block */
ace4dfee
TG
2672 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2673 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
49c50b97
BN
2674
2675 return chip->waitfunc(mtd, chip);
1da177e4
LT
2676}
2677
1da177e4
LT
2678/**
2679 * nand_erase - [MTD Interface] erase block(s)
8b6e50c9
BN
2680 * @mtd: MTD device structure
2681 * @instr: erase instruction
1da177e4 2682 *
8b6e50c9 2683 * Erase one ore more blocks.
1da177e4 2684 */
e0c7d767 2685static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1da177e4 2686{
e0c7d767 2687 return nand_erase_nand(mtd, instr, 0);
1da177e4 2688}
61b03bd7 2689
1da177e4 2690/**
7854d3f7 2691 * nand_erase_nand - [INTERN] erase block(s)
8b6e50c9
BN
2692 * @mtd: MTD device structure
2693 * @instr: erase instruction
2694 * @allowbbt: allow erasing the bbt area
1da177e4 2695 *
8b6e50c9 2696 * Erase one ore more blocks.
1da177e4 2697 */
ace4dfee
TG
2698int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2699 int allowbbt)
1da177e4 2700{
69423d99 2701 int page, status, pages_per_block, ret, chipnr;
ace4dfee 2702 struct nand_chip *chip = mtd->priv;
69423d99 2703 loff_t len;
1da177e4 2704
289c0522
BN
2705 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2706 __func__, (unsigned long long)instr->addr,
2707 (unsigned long long)instr->len);
1da177e4 2708
6fe5a6ac 2709 if (check_offs_len(mtd, instr->addr, instr->len))
1da177e4 2710 return -EINVAL;
1da177e4 2711
1da177e4 2712 /* Grab the lock and see if the device is available */
6a8214aa 2713 nand_get_device(mtd, FL_ERASING);
1da177e4
LT
2714
2715 /* Shift to get first page */
ace4dfee
TG
2716 page = (int)(instr->addr >> chip->page_shift);
2717 chipnr = (int)(instr->addr >> chip->chip_shift);
1da177e4
LT
2718
2719 /* Calculate pages in each block */
ace4dfee 2720 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1da177e4
LT
2721
2722 /* Select the NAND device */
ace4dfee 2723 chip->select_chip(mtd, chipnr);
1da177e4 2724
1da177e4
LT
2725 /* Check, if it is write protected */
2726 if (nand_check_wp(mtd)) {
289c0522
BN
2727 pr_debug("%s: device is write protected!\n",
2728 __func__);
1da177e4
LT
2729 instr->state = MTD_ERASE_FAILED;
2730 goto erase_exit;
2731 }
2732
2733 /* Loop through the pages */
2734 len = instr->len;
2735
2736 instr->state = MTD_ERASING;
2737
2738 while (len) {
12183a20 2739 /* Check if we have a bad block, we do not erase bad blocks! */
ace4dfee
TG
2740 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2741 chip->page_shift, 0, allowbbt)) {
d0370219
BN
2742 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2743 __func__, page);
1da177e4
LT
2744 instr->state = MTD_ERASE_FAILED;
2745 goto erase_exit;
2746 }
61b03bd7 2747
ace4dfee
TG
2748 /*
2749 * Invalidate the page cache, if we erase the block which
8b6e50c9 2750 * contains the current cached page.
ace4dfee
TG
2751 */
2752 if (page <= chip->pagebuf && chip->pagebuf <
2753 (page + pages_per_block))
2754 chip->pagebuf = -1;
1da177e4 2755
49c50b97 2756 status = chip->erase(mtd, page & chip->pagemask);
1da177e4 2757
ace4dfee
TG
2758 /*
2759 * See if operation failed and additional status checks are
2760 * available
2761 */
2762 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2763 status = chip->errstat(mtd, chip, FL_ERASING,
2764 status, page);
068e3c0a 2765
1da177e4 2766 /* See if block erase succeeded */
a4ab4c5d 2767 if (status & NAND_STATUS_FAIL) {
289c0522
BN
2768 pr_debug("%s: failed erase, page 0x%08x\n",
2769 __func__, page);
1da177e4 2770 instr->state = MTD_ERASE_FAILED;
69423d99
AH
2771 instr->fail_addr =
2772 ((loff_t)page << chip->page_shift);
1da177e4
LT
2773 goto erase_exit;
2774 }
30f464b7 2775
1da177e4 2776 /* Increment page address and decrement length */
daae74ca 2777 len -= (1ULL << chip->phys_erase_shift);
1da177e4
LT
2778 page += pages_per_block;
2779
2780 /* Check, if we cross a chip boundary */
ace4dfee 2781 if (len && !(page & chip->pagemask)) {
1da177e4 2782 chipnr++;
ace4dfee
TG
2783 chip->select_chip(mtd, -1);
2784 chip->select_chip(mtd, chipnr);
1da177e4
LT
2785 }
2786 }
2787 instr->state = MTD_ERASE_DONE;
2788
7351d3a5 2789erase_exit:
1da177e4
LT
2790
2791 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1da177e4
LT
2792
2793 /* Deselect and wake up anyone waiting on the device */
b0bb6903 2794 chip->select_chip(mtd, -1);
1da177e4
LT
2795 nand_release_device(mtd);
2796
49defc01
DW
2797 /* Do call back function */
2798 if (!ret)
2799 mtd_erase_callback(instr);
2800
1da177e4
LT
2801 /* Return more or less happy */
2802 return ret;
2803}
2804
2805/**
2806 * nand_sync - [MTD Interface] sync
8b6e50c9 2807 * @mtd: MTD device structure
1da177e4 2808 *
8b6e50c9 2809 * Sync is actually a wait for chip ready function.
1da177e4 2810 */
e0c7d767 2811static void nand_sync(struct mtd_info *mtd)
1da177e4 2812{
289c0522 2813 pr_debug("%s: called\n", __func__);
1da177e4
LT
2814
2815 /* Grab the lock and see if the device is available */
6a8214aa 2816 nand_get_device(mtd, FL_SYNCING);
1da177e4 2817 /* Release it and go back */
e0c7d767 2818 nand_release_device(mtd);
1da177e4
LT
2819}
2820
1da177e4 2821/**
ace4dfee 2822 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
8b6e50c9
BN
2823 * @mtd: MTD device structure
2824 * @offs: offset relative to mtd start
1da177e4 2825 */
ace4dfee 2826static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
1da177e4 2827{
ace4dfee 2828 return nand_block_checkbad(mtd, offs, 1, 0);
1da177e4
LT
2829}
2830
2831/**
ace4dfee 2832 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
8b6e50c9
BN
2833 * @mtd: MTD device structure
2834 * @ofs: offset relative to mtd start
1da177e4 2835 */
e0c7d767 2836static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1da177e4 2837{
1da177e4
LT
2838 int ret;
2839
f8ac0414
FF
2840 ret = nand_block_isbad(mtd, ofs);
2841 if (ret) {
8b6e50c9 2842 /* If it was bad already, return success and do nothing */
1da177e4
LT
2843 if (ret > 0)
2844 return 0;
e0c7d767
DW
2845 return ret;
2846 }
1da177e4 2847
5a0edb25 2848 return nand_block_markbad_lowlevel(mtd, ofs);
1da177e4
LT
2849}
2850
7db03ecc
HS
2851/**
2852 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2853 * @mtd: MTD device structure
2854 * @chip: nand chip info structure
2855 * @addr: feature address.
2856 * @subfeature_param: the subfeature parameters, a four bytes array.
2857 */
2858static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2859 int addr, uint8_t *subfeature_param)
2860{
2861 int status;
05f78359 2862 int i;
7db03ecc 2863
d914c932
DM
2864 if (!chip->onfi_version ||
2865 !(le16_to_cpu(chip->onfi_params.opt_cmd)
2866 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
2867 return -EINVAL;
2868
2869 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
05f78359
UKK
2870 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2871 chip->write_byte(mtd, subfeature_param[i]);
2872
7db03ecc
HS
2873 status = chip->waitfunc(mtd, chip);
2874 if (status & NAND_STATUS_FAIL)
2875 return -EIO;
2876 return 0;
2877}
2878
2879/**
2880 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2881 * @mtd: MTD device structure
2882 * @chip: nand chip info structure
2883 * @addr: feature address.
2884 * @subfeature_param: the subfeature parameters, a four bytes array.
2885 */
2886static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2887 int addr, uint8_t *subfeature_param)
2888{
05f78359
UKK
2889 int i;
2890
d914c932
DM
2891 if (!chip->onfi_version ||
2892 !(le16_to_cpu(chip->onfi_params.opt_cmd)
2893 & ONFI_OPT_CMD_SET_GET_FEATURES))
7db03ecc
HS
2894 return -EINVAL;
2895
2896 /* clear the sub feature parameters */
2897 memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2898
2899 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
05f78359
UKK
2900 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2901 *subfeature_param++ = chip->read_byte(mtd);
7db03ecc
HS
2902 return 0;
2903}
2904
962034f4
VW
2905/**
2906 * nand_suspend - [MTD Interface] Suspend the NAND flash
8b6e50c9 2907 * @mtd: MTD device structure
962034f4
VW
2908 */
2909static int nand_suspend(struct mtd_info *mtd)
2910{
6a8214aa 2911 return nand_get_device(mtd, FL_PM_SUSPENDED);
962034f4
VW
2912}
2913
2914/**
2915 * nand_resume - [MTD Interface] Resume the NAND flash
8b6e50c9 2916 * @mtd: MTD device structure
962034f4
VW
2917 */
2918static void nand_resume(struct mtd_info *mtd)
2919{
ace4dfee 2920 struct nand_chip *chip = mtd->priv;
962034f4 2921
ace4dfee 2922 if (chip->state == FL_PM_SUSPENDED)
962034f4
VW
2923 nand_release_device(mtd);
2924 else
d0370219
BN
2925 pr_err("%s called for a chip which is not in suspended state\n",
2926 __func__);
962034f4
VW
2927}
2928
8b6e50c9 2929/* Set default functions */
ace4dfee 2930static void nand_set_defaults(struct nand_chip *chip, int busw)
7aa65bfd 2931{
1da177e4 2932 /* check for proper chip_delay setup, set 20us if not */
ace4dfee
TG
2933 if (!chip->chip_delay)
2934 chip->chip_delay = 20;
1da177e4
LT
2935
2936 /* check, if a user supplied command function given */
ace4dfee
TG
2937 if (chip->cmdfunc == NULL)
2938 chip->cmdfunc = nand_command;
1da177e4
LT
2939
2940 /* check, if a user supplied wait function given */
ace4dfee
TG
2941 if (chip->waitfunc == NULL)
2942 chip->waitfunc = nand_wait;
2943
2944 if (!chip->select_chip)
2945 chip->select_chip = nand_select_chip;
68e80780 2946
4204cccd
HS
2947 /* set for ONFI nand */
2948 if (!chip->onfi_set_features)
2949 chip->onfi_set_features = nand_onfi_set_features;
2950 if (!chip->onfi_get_features)
2951 chip->onfi_get_features = nand_onfi_get_features;
2952
68e80780
BN
2953 /* If called twice, pointers that depend on busw may need to be reset */
2954 if (!chip->read_byte || chip->read_byte == nand_read_byte)
ace4dfee
TG
2955 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2956 if (!chip->read_word)
2957 chip->read_word = nand_read_word;
2958 if (!chip->block_bad)
2959 chip->block_bad = nand_block_bad;
2960 if (!chip->block_markbad)
2961 chip->block_markbad = nand_default_block_markbad;
68e80780 2962 if (!chip->write_buf || chip->write_buf == nand_write_buf)
ace4dfee 2963 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
05f78359
UKK
2964 if (!chip->write_byte || chip->write_byte == nand_write_byte)
2965 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
68e80780 2966 if (!chip->read_buf || chip->read_buf == nand_read_buf)
ace4dfee 2967 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
ace4dfee
TG
2968 if (!chip->scan_bbt)
2969 chip->scan_bbt = nand_default_bbt;
f75e5097
TG
2970
2971 if (!chip->controller) {
2972 chip->controller = &chip->hwcontrol;
2973 spin_lock_init(&chip->controller->lock);
2974 init_waitqueue_head(&chip->controller->wq);
2975 }
2976
7aa65bfd
TG
2977}
2978
8b6e50c9 2979/* Sanitize ONFI strings so we can safely print them */
d1e1f4e4
FF
2980static void sanitize_string(uint8_t *s, size_t len)
2981{
2982 ssize_t i;
2983
8b6e50c9 2984 /* Null terminate */
d1e1f4e4
FF
2985 s[len - 1] = 0;
2986
8b6e50c9 2987 /* Remove non printable chars */
d1e1f4e4
FF
2988 for (i = 0; i < len - 1; i++) {
2989 if (s[i] < ' ' || s[i] > 127)
2990 s[i] = '?';
2991 }
2992
8b6e50c9 2993 /* Remove trailing spaces */
d1e1f4e4
FF
2994 strim(s);
2995}
2996
2997static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2998{
2999 int i;
3000 while (len--) {
3001 crc ^= *p++ << 8;
3002 for (i = 0; i < 8; i++)
3003 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3004 }
3005
3006 return crc;
3007}
3008
6dcbe0cd
HS
3009/* Parse the Extended Parameter Page. */
3010static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3011 struct nand_chip *chip, struct nand_onfi_params *p)
3012{
3013 struct onfi_ext_param_page *ep;
3014 struct onfi_ext_section *s;
3015 struct onfi_ext_ecc_info *ecc;
3016 uint8_t *cursor;
3017 int ret = -EINVAL;
3018 int len;
3019 int i;
3020
3021 len = le16_to_cpu(p->ext_param_page_length) * 16;
3022 ep = kmalloc(len, GFP_KERNEL);
5cb13271
BN
3023 if (!ep)
3024 return -ENOMEM;
6dcbe0cd
HS
3025
3026 /* Send our own NAND_CMD_PARAM. */
3027 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3028
3029 /* Use the Change Read Column command to skip the ONFI param pages. */
3030 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3031 sizeof(*p) * p->num_of_param_pages , -1);
3032
3033 /* Read out the Extended Parameter Page. */
3034 chip->read_buf(mtd, (uint8_t *)ep, len);
3035 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3036 != le16_to_cpu(ep->crc))) {
3037 pr_debug("fail in the CRC.\n");
3038 goto ext_out;
3039 }
3040
3041 /*
3042 * Check the signature.
3043 * Do not strictly follow the ONFI spec, maybe changed in future.
3044 */
3045 if (strncmp(ep->sig, "EPPS", 4)) {
3046 pr_debug("The signature is invalid.\n");
3047 goto ext_out;
3048 }
3049
3050 /* find the ECC section. */
3051 cursor = (uint8_t *)(ep + 1);
3052 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3053 s = ep->sections + i;
3054 if (s->type == ONFI_SECTION_TYPE_2)
3055 break;
3056 cursor += s->length * 16;
3057 }
3058 if (i == ONFI_EXT_SECTION_MAX) {
3059 pr_debug("We can not find the ECC section.\n");
3060 goto ext_out;
3061 }
3062
3063 /* get the info we want. */
3064 ecc = (struct onfi_ext_ecc_info *)cursor;
3065
4ae7d228
BN
3066 if (!ecc->codeword_size) {
3067 pr_debug("Invalid codeword size\n");
3068 goto ext_out;
6dcbe0cd
HS
3069 }
3070
4ae7d228
BN
3071 chip->ecc_strength_ds = ecc->ecc_bits;
3072 chip->ecc_step_ds = 1 << ecc->codeword_size;
5cb13271 3073 ret = 0;
6dcbe0cd
HS
3074
3075ext_out:
3076 kfree(ep);
3077 return ret;
3078}
3079
8429bb39
BN
3080static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3081{
3082 struct nand_chip *chip = mtd->priv;
3083 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3084
3085 return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3086 feature);
3087}
3088
3089/*
3090 * Configure chip properties from Micron vendor-specific ONFI table
3091 */
3092static void nand_onfi_detect_micron(struct nand_chip *chip,
3093 struct nand_onfi_params *p)
3094{
3095 struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3096
3097 if (le16_to_cpu(p->vendor_revision) < 1)
3098 return;
3099
3100 chip->read_retries = micron->read_retry_options;
3101 chip->setup_read_retry = nand_setup_read_retry_micron;
3102}
3103
6fb277ba 3104/*
8b6e50c9 3105 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
6fb277ba
FF
3106 */
3107static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
08c248fb 3108 int *busw)
6fb277ba
FF
3109{
3110 struct nand_onfi_params *p = &chip->onfi_params;
bd9c6e99 3111 int i, j;
6fb277ba
FF
3112 int val;
3113
7854d3f7 3114 /* Try ONFI for unknown chip or LP */
6fb277ba
FF
3115 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3116 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3117 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3118 return 0;
3119
6fb277ba
FF
3120 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3121 for (i = 0; i < 3; i++) {
bd9c6e99
BN
3122 for (j = 0; j < sizeof(*p); j++)
3123 ((uint8_t *)p)[j] = chip->read_byte(mtd);
6fb277ba
FF
3124 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3125 le16_to_cpu(p->crc)) {
6fb277ba
FF
3126 break;
3127 }
3128 }
3129
c7f23a70
BN
3130 if (i == 3) {
3131 pr_err("Could not find valid ONFI parameter page; aborting\n");
6fb277ba 3132 return 0;
c7f23a70 3133 }
6fb277ba 3134
8b6e50c9 3135 /* Check version */
6fb277ba 3136 val = le16_to_cpu(p->revision);
b7b1a29d
BN
3137 if (val & (1 << 5))
3138 chip->onfi_version = 23;
3139 else if (val & (1 << 4))
6fb277ba
FF
3140 chip->onfi_version = 22;
3141 else if (val & (1 << 3))
3142 chip->onfi_version = 21;
3143 else if (val & (1 << 2))
3144 chip->onfi_version = 20;
b7b1a29d 3145 else if (val & (1 << 1))
6fb277ba 3146 chip->onfi_version = 10;
b7b1a29d
BN
3147
3148 if (!chip->onfi_version) {
20171642 3149 pr_info("unsupported ONFI version: %d\n", val);
b7b1a29d
BN
3150 return 0;
3151 }
6fb277ba
FF
3152
3153 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3154 sanitize_string(p->model, sizeof(p->model));
3155 if (!mtd->name)
3156 mtd->name = p->model;
4355b70c 3157
6fb277ba 3158 mtd->writesize = le32_to_cpu(p->byte_per_page);
4355b70c
BN
3159
3160 /*
3161 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3162 * (don't ask me who thought of this...). MTD assumes that these
3163 * dimensions will be power-of-2, so just truncate the remaining area.
3164 */
3165 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3166 mtd->erasesize *= mtd->writesize;
3167
6fb277ba 3168 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
4355b70c
BN
3169
3170 /* See erasesize comment */
3171 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
63795755 3172 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
13fbd179 3173 chip->bits_per_cell = p->bits_per_cell;
e2985fc1
HS
3174
3175 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
08c248fb 3176 *busw = NAND_BUSWIDTH_16;
e2985fc1
HS
3177 else
3178 *busw = 0;
6fb277ba 3179
10c86bab
HS
3180 if (p->ecc_bits != 0xff) {
3181 chip->ecc_strength_ds = p->ecc_bits;
3182 chip->ecc_step_ds = 512;
6dcbe0cd
HS
3183 } else if (chip->onfi_version >= 21 &&
3184 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3185
3186 /*
3187 * The nand_flash_detect_ext_param_page() uses the
3188 * Change Read Column command which maybe not supported
3189 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3190 * now. We do not replace user supplied command function.
3191 */
3192 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3193 chip->cmdfunc = nand_command_lp;
3194
3195 /* The Extended Parameter Page is supported since ONFI 2.1. */
3196 if (nand_flash_detect_ext_param_page(mtd, chip, p))
c7f23a70
BN
3197 pr_warn("Failed to detect ONFI extended param page\n");
3198 } else {
3199 pr_warn("Could not retrieve ONFI ECC requirements\n");
10c86bab
HS
3200 }
3201
8429bb39
BN
3202 if (p->jedec_id == NAND_MFR_MICRON)
3203 nand_onfi_detect_micron(chip, p);
3204
6fb277ba
FF
3205 return 1;
3206}
3207
91361818
HS
3208/*
3209 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3210 */
3211static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3212 int *busw)
3213{
3214 struct nand_jedec_params *p = &chip->jedec_params;
3215 struct jedec_ecc_info *ecc;
3216 int val;
3217 int i, j;
3218
3219 /* Try JEDEC for unknown chip or LP */
3220 chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3221 if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3222 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3223 chip->read_byte(mtd) != 'C')
3224 return 0;
3225
3226 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3227 for (i = 0; i < 3; i++) {
3228 for (j = 0; j < sizeof(*p); j++)
3229 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3230
3231 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3232 le16_to_cpu(p->crc))
3233 break;
3234 }
3235
3236 if (i == 3) {
3237 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3238 return 0;
3239 }
3240
3241 /* Check version */
3242 val = le16_to_cpu(p->revision);
3243 if (val & (1 << 2))
3244 chip->jedec_version = 10;
3245 else if (val & (1 << 1))
3246 chip->jedec_version = 1; /* vendor specific version */
3247
3248 if (!chip->jedec_version) {
3249 pr_info("unsupported JEDEC version: %d\n", val);
3250 return 0;
3251 }
3252
3253 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3254 sanitize_string(p->model, sizeof(p->model));
3255 if (!mtd->name)
3256 mtd->name = p->model;
3257
3258 mtd->writesize = le32_to_cpu(p->byte_per_page);
3259
3260 /* Please reference to the comment for nand_flash_detect_onfi. */
3261 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3262 mtd->erasesize *= mtd->writesize;
3263
3264 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3265
3266 /* Please reference to the comment for nand_flash_detect_onfi. */
3267 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3268 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3269 chip->bits_per_cell = p->bits_per_cell;
3270
3271 if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3272 *busw = NAND_BUSWIDTH_16;
3273 else
3274 *busw = 0;
3275
3276 /* ECC info */
3277 ecc = &p->ecc_info[0];
3278
3279 if (ecc->codeword_size >= 9) {
3280 chip->ecc_strength_ds = ecc->ecc_bits;
3281 chip->ecc_step_ds = 1 << ecc->codeword_size;
3282 } else {
3283 pr_warn("Invalid codeword size\n");
3284 }
3285
3286 return 1;
3287}
3288
e3b88bd6
BN
3289/*
3290 * nand_id_has_period - Check if an ID string has a given wraparound period
3291 * @id_data: the ID string
3292 * @arrlen: the length of the @id_data array
3293 * @period: the period of repitition
3294 *
3295 * Check if an ID string is repeated within a given sequence of bytes at
3296 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
d4d4f1bf 3297 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
e3b88bd6
BN
3298 * if the repetition has a period of @period; otherwise, returns zero.
3299 */
3300static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3301{
3302 int i, j;
3303 for (i = 0; i < period; i++)
3304 for (j = i + period; j < arrlen; j += period)
3305 if (id_data[i] != id_data[j])
3306 return 0;
3307 return 1;
3308}
3309
3310/*
3311 * nand_id_len - Get the length of an ID string returned by CMD_READID
3312 * @id_data: the ID string
3313 * @arrlen: the length of the @id_data array
3314
3315 * Returns the length of the ID string, according to known wraparound/trailing
3316 * zero patterns. If no pattern exists, returns the length of the array.
3317 */
3318static int nand_id_len(u8 *id_data, int arrlen)
3319{
3320 int last_nonzero, period;
3321
3322 /* Find last non-zero byte */
3323 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3324 if (id_data[last_nonzero])
3325 break;
3326
3327 /* All zeros */
3328 if (last_nonzero < 0)
3329 return 0;
3330
3331 /* Calculate wraparound period */
3332 for (period = 1; period < arrlen; period++)
3333 if (nand_id_has_period(id_data, arrlen, period))
3334 break;
3335
3336 /* There's a repeated pattern */
3337 if (period < arrlen)
3338 return period;
3339
3340 /* There are trailing zeros */
3341 if (last_nonzero < arrlen - 1)
3342 return last_nonzero + 1;
3343
3344 /* No pattern detected */
3345 return arrlen;
3346}
3347
7db906b7
HS
3348/* Extract the bits of per cell from the 3rd byte of the extended ID */
3349static int nand_get_bits_per_cell(u8 cellinfo)
3350{
3351 int bits;
3352
3353 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3354 bits >>= NAND_CI_CELLTYPE_SHIFT;
3355 return bits + 1;
3356}
3357
fc09bbc0
BN
3358/*
3359 * Many new NAND share similar device ID codes, which represent the size of the
3360 * chip. The rest of the parameters must be decoded according to generic or
3361 * manufacturer-specific "extended ID" decoding patterns.
3362 */
3363static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3364 u8 id_data[8], int *busw)
3365{
e3b88bd6 3366 int extid, id_len;
fc09bbc0 3367 /* The 3rd id byte holds MLC / multichip data */
7db906b7 3368 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
fc09bbc0
BN
3369 /* The 4th id byte is the important one */
3370 extid = id_data[3];
3371
e3b88bd6
BN
3372 id_len = nand_id_len(id_data, 8);
3373
fc09bbc0
BN
3374 /*
3375 * Field definitions are in the following datasheets:
3376 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
af451af4 3377 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
73ca392f 3378 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
fc09bbc0 3379 *
af451af4
BN
3380 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3381 * ID to decide what to do.
fc09bbc0 3382 */
af451af4 3383 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
1d0ed69d 3384 !nand_is_slc(chip) && id_data[5] != 0x00) {
fc09bbc0
BN
3385 /* Calc pagesize */
3386 mtd->writesize = 2048 << (extid & 0x03);
3387 extid >>= 2;
3388 /* Calc oobsize */
e2d3a35e 3389 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
fc09bbc0
BN
3390 case 1:
3391 mtd->oobsize = 128;
3392 break;
3393 case 2:
3394 mtd->oobsize = 218;
3395 break;
3396 case 3:
3397 mtd->oobsize = 400;
3398 break;
e2d3a35e 3399 case 4:
fc09bbc0
BN
3400 mtd->oobsize = 436;
3401 break;
e2d3a35e
BN
3402 case 5:
3403 mtd->oobsize = 512;
3404 break;
3405 case 6:
e2d3a35e
BN
3406 mtd->oobsize = 640;
3407 break;
94d04e82
HS
3408 case 7:
3409 default: /* Other cases are "reserved" (unknown) */
3410 mtd->oobsize = 1024;
3411 break;
fc09bbc0
BN
3412 }
3413 extid >>= 2;
3414 /* Calc blocksize */
3415 mtd->erasesize = (128 * 1024) <<
3416 (((extid >> 1) & 0x04) | (extid & 0x03));
3417 *busw = 0;
73ca392f 3418 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
1d0ed69d 3419 !nand_is_slc(chip)) {
73ca392f
BN
3420 unsigned int tmp;
3421
3422 /* Calc pagesize */
3423 mtd->writesize = 2048 << (extid & 0x03);
3424 extid >>= 2;
3425 /* Calc oobsize */
3426 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3427 case 0:
3428 mtd->oobsize = 128;
3429 break;
3430 case 1:
3431 mtd->oobsize = 224;
3432 break;
3433 case 2:
3434 mtd->oobsize = 448;
3435 break;
3436 case 3:
3437 mtd->oobsize = 64;
3438 break;
3439 case 4:
3440 mtd->oobsize = 32;
3441 break;
3442 case 5:
3443 mtd->oobsize = 16;
3444 break;
3445 default:
3446 mtd->oobsize = 640;
3447 break;
3448 }
3449 extid >>= 2;
3450 /* Calc blocksize */
3451 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3452 if (tmp < 0x03)
3453 mtd->erasesize = (128 * 1024) << tmp;
3454 else if (tmp == 0x03)
3455 mtd->erasesize = 768 * 1024;
3456 else
3457 mtd->erasesize = (64 * 1024) << tmp;
3458 *busw = 0;
fc09bbc0
BN
3459 } else {
3460 /* Calc pagesize */
3461 mtd->writesize = 1024 << (extid & 0x03);
3462 extid >>= 2;
3463 /* Calc oobsize */
3464 mtd->oobsize = (8 << (extid & 0x01)) *
3465 (mtd->writesize >> 9);
3466 extid >>= 2;
3467 /* Calc blocksize. Blocksize is multiples of 64KiB */
3468 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3469 extid >>= 2;
3470 /* Get buswidth information */
3471 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
60c67382
BN
3472
3473 /*
3474 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3475 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3476 * follows:
3477 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3478 * 110b -> 24nm
3479 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3480 */
3481 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
1d0ed69d 3482 nand_is_slc(chip) &&
60c67382
BN
3483 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3484 !(id_data[4] & 0x80) /* !BENAND */) {
3485 mtd->oobsize = 32 * mtd->writesize >> 9;
3486 }
3487
fc09bbc0
BN
3488 }
3489}
3490
f23a481c
BN
3491/*
3492 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3493 * decodes a matching ID table entry and assigns the MTD size parameters for
3494 * the chip.
3495 */
3496static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3497 struct nand_flash_dev *type, u8 id_data[8],
3498 int *busw)
3499{
3500 int maf_id = id_data[0];
3501
3502 mtd->erasesize = type->erasesize;
3503 mtd->writesize = type->pagesize;
3504 mtd->oobsize = mtd->writesize / 32;
3505 *busw = type->options & NAND_BUSWIDTH_16;
3506
1c195e90
HS
3507 /* All legacy ID NAND are small-page, SLC */
3508 chip->bits_per_cell = 1;
3509
f23a481c
BN
3510 /*
3511 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3512 * some Spansion chips have erasesize that conflicts with size
3513 * listed in nand_ids table.
3514 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3515 */
3516 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3517 && id_data[6] == 0x00 && id_data[7] == 0x00
3518 && mtd->writesize == 512) {
3519 mtd->erasesize = 128 * 1024;
3520 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3521 }
3522}
3523
7e74c2d7
BN
3524/*
3525 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3526 * heuristic patterns using various detected parameters (e.g., manufacturer,
3527 * page size, cell-type information).
3528 */
3529static void nand_decode_bbm_options(struct mtd_info *mtd,
3530 struct nand_chip *chip, u8 id_data[8])
3531{
3532 int maf_id = id_data[0];
3533
3534 /* Set the bad block position */
3535 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3536 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3537 else
3538 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3539
3540 /*
3541 * Bad block marker is stored in the last page of each block on Samsung
3542 * and Hynix MLC devices; stored in first two pages of each block on
3543 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3544 * AMD/Spansion, and Macronix. All others scan only the first page.
3545 */
1d0ed69d 3546 if (!nand_is_slc(chip) &&
7e74c2d7
BN
3547 (maf_id == NAND_MFR_SAMSUNG ||
3548 maf_id == NAND_MFR_HYNIX))
3549 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
1d0ed69d 3550 else if ((nand_is_slc(chip) &&
7e74c2d7
BN
3551 (maf_id == NAND_MFR_SAMSUNG ||
3552 maf_id == NAND_MFR_HYNIX ||
3553 maf_id == NAND_MFR_TOSHIBA ||
3554 maf_id == NAND_MFR_AMD ||
3555 maf_id == NAND_MFR_MACRONIX)) ||
3556 (mtd->writesize == 2048 &&
3557 maf_id == NAND_MFR_MICRON))
3558 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3559}
3560
ec6e87e3
HS
3561static inline bool is_full_id_nand(struct nand_flash_dev *type)
3562{
3563 return type->id_len;
3564}
3565
3566static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3567 struct nand_flash_dev *type, u8 *id_data, int *busw)
3568{
3569 if (!strncmp(type->id, id_data, type->id_len)) {
3570 mtd->writesize = type->pagesize;
3571 mtd->erasesize = type->erasesize;
3572 mtd->oobsize = type->oobsize;
3573
7db906b7 3574 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
ec6e87e3
HS
3575 chip->chipsize = (uint64_t)type->chipsize << 20;
3576 chip->options |= type->options;
57219342
HS
3577 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3578 chip->ecc_step_ds = NAND_ECC_STEP(type);
ec6e87e3
HS
3579
3580 *busw = type->options & NAND_BUSWIDTH_16;
3581
092b6a1d
CZ
3582 if (!mtd->name)
3583 mtd->name = type->name;
3584
ec6e87e3
HS
3585 return true;
3586 }
3587 return false;
3588}
3589
7aa65bfd 3590/*
8b6e50c9 3591 * Get the flash and manufacturer id and lookup if the type is supported.
7aa65bfd
TG
3592 */
3593static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
ace4dfee 3594 struct nand_chip *chip,
7351d3a5 3595 int *maf_id, int *dev_id,
5e81e88a 3596 struct nand_flash_dev *type)
7aa65bfd 3597{
bb77082f 3598 int busw;
d1e1f4e4 3599 int i, maf_idx;
426c457a 3600 u8 id_data[8];
1da177e4
LT
3601
3602 /* Select the device */
ace4dfee 3603 chip->select_chip(mtd, 0);
1da177e4 3604
ef89a880
KB
3605 /*
3606 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
8b6e50c9 3607 * after power-up.
ef89a880
KB
3608 */
3609 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3610
1da177e4 3611 /* Send the command for reading device ID */
ace4dfee 3612 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4
LT
3613
3614 /* Read manufacturer and device IDs */
ace4dfee 3615 *maf_id = chip->read_byte(mtd);
d1e1f4e4 3616 *dev_id = chip->read_byte(mtd);
1da177e4 3617
8b6e50c9
BN
3618 /*
3619 * Try again to make sure, as some systems the bus-hold or other
ed8165c7
BD
3620 * interface concerns can cause random data which looks like a
3621 * possibly credible NAND flash to appear. If the two results do
3622 * not match, ignore the device completely.
3623 */
3624
3625 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3626
4aef9b78
BN
3627 /* Read entire ID string */
3628 for (i = 0; i < 8; i++)
426c457a 3629 id_data[i] = chip->read_byte(mtd);
ed8165c7 3630
d1e1f4e4 3631 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
20171642 3632 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
d0370219 3633 *maf_id, *dev_id, id_data[0], id_data[1]);
ed8165c7
BD
3634 return ERR_PTR(-ENODEV);
3635 }
3636
7aa65bfd 3637 if (!type)
5e81e88a
DW
3638 type = nand_flash_ids;
3639
ec6e87e3
HS
3640 for (; type->name != NULL; type++) {
3641 if (is_full_id_nand(type)) {
3642 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3643 goto ident_done;
3644 } else if (*dev_id == type->dev_id) {
3645 break;
3646 }
3647 }
5e81e88a 3648
d1e1f4e4
FF
3649 chip->onfi_version = 0;
3650 if (!type->name || !type->pagesize) {
35fc5195 3651 /* Check if the chip is ONFI compliant */
47450b35 3652 if (nand_flash_detect_onfi(mtd, chip, &busw))
6fb277ba 3653 goto ident_done;
91361818
HS
3654
3655 /* Check if the chip is JEDEC compliant */
3656 if (nand_flash_detect_jedec(mtd, chip, &busw))
3657 goto ident_done;
d1e1f4e4
FF
3658 }
3659
5e81e88a 3660 if (!type->name)
7aa65bfd
TG
3661 return ERR_PTR(-ENODEV);
3662
ba0251fe
TG
3663 if (!mtd->name)
3664 mtd->name = type->name;
3665
69423d99 3666 chip->chipsize = (uint64_t)type->chipsize << 20;
7aa65bfd 3667
12a40a57 3668 if (!type->pagesize && chip->init_size) {
8b6e50c9 3669 /* Set the pagesize, oobsize, erasesize by the driver */
12a40a57
HS
3670 busw = chip->init_size(mtd, chip, id_data);
3671 } else if (!type->pagesize) {
fc09bbc0
BN
3672 /* Decode parameters from extended ID */
3673 nand_decode_ext_id(mtd, chip, id_data, &busw);
7aa65bfd 3674 } else {
f23a481c 3675 nand_decode_id(mtd, chip, type, id_data, &busw);
7aa65bfd 3676 }
bf7a01bf
BN
3677 /* Get chip options */
3678 chip->options |= type->options;
d1e1f4e4 3679
8b6e50c9
BN
3680 /*
3681 * Check if chip is not a Samsung device. Do not clear the
3682 * options for chips which do not have an extended id.
d1e1f4e4
FF
3683 */
3684 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3685 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3686ident_done:
3687
7aa65bfd 3688 /* Try to identify manufacturer */
9a909867 3689 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
7aa65bfd
TG
3690 if (nand_manuf_ids[maf_idx].id == *maf_id)
3691 break;
3692 }
0ea4a755 3693
64b37b2a
MC
3694 if (chip->options & NAND_BUSWIDTH_AUTO) {
3695 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3696 chip->options |= busw;
3697 nand_set_defaults(chip, busw);
3698 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3699 /*
3700 * Check, if buswidth is correct. Hardware drivers should set
3701 * chip correct!
3702 */
20171642
EG
3703 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3704 *maf_id, *dev_id);
3705 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3706 pr_warn("bus width %d instead %d bit\n",
d0370219
BN
3707 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3708 busw ? 16 : 8);
7aa65bfd
TG
3709 return ERR_PTR(-EINVAL);
3710 }
61b03bd7 3711
7e74c2d7
BN
3712 nand_decode_bbm_options(mtd, chip, id_data);
3713
7aa65bfd 3714 /* Calculate the address shift from the page size */
ace4dfee 3715 chip->page_shift = ffs(mtd->writesize) - 1;
8b6e50c9 3716 /* Convert chipsize to number of pages per chip -1 */
ace4dfee 3717 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
61b03bd7 3718
ace4dfee 3719 chip->bbt_erase_shift = chip->phys_erase_shift =
7aa65bfd 3720 ffs(mtd->erasesize) - 1;
69423d99
AH
3721 if (chip->chipsize & 0xffffffff)
3722 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
7351d3a5
FF
3723 else {
3724 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3725 chip->chip_shift += 32 - 1;
3726 }
1da177e4 3727
26d9be11 3728 chip->badblockbits = 8;
49c50b97 3729 chip->erase = single_erase;
7aa65bfd 3730
8b6e50c9 3731 /* Do not replace user supplied command function! */
ace4dfee
TG
3732 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3733 chip->cmdfunc = nand_command_lp;
7aa65bfd 3734
20171642
EG
3735 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3736 *maf_id, *dev_id);
ffdac6cd
HS
3737
3738 if (chip->onfi_version)
3739 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3740 chip->onfi_params.model);
3741 else if (chip->jedec_version)
3742 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3743 chip->jedec_params.model);
3744 else
3745 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3746 type->name);
3747
20171642 3748 pr_info("%dMiB, %s, page size: %d, OOB size: %d\n",
3723e93c
HS
3749 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3750 mtd->writesize, mtd->oobsize);
7aa65bfd
TG
3751 return type;
3752}
3753
7aa65bfd 3754/**
3b85c321 3755 * nand_scan_ident - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
3756 * @mtd: MTD device structure
3757 * @maxchips: number of chips to scan for
3758 * @table: alternative NAND ID table
7aa65bfd 3759 *
8b6e50c9
BN
3760 * This is the first phase of the normal nand_scan() function. It reads the
3761 * flash ID and sets up MTD fields accordingly.
7aa65bfd 3762 *
3b85c321 3763 * The mtd->owner field must be set to the module of the caller.
7aa65bfd 3764 */
5e81e88a
DW
3765int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3766 struct nand_flash_dev *table)
7aa65bfd 3767{
bb77082f 3768 int i, nand_maf_id, nand_dev_id;
ace4dfee 3769 struct nand_chip *chip = mtd->priv;
7aa65bfd
TG
3770 struct nand_flash_dev *type;
3771
7aa65bfd 3772 /* Set the default functions */
bb77082f 3773 nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
7aa65bfd
TG
3774
3775 /* Read the flash type */
bb77082f
CZ
3776 type = nand_get_flash_type(mtd, chip, &nand_maf_id,
3777 &nand_dev_id, table);
7aa65bfd
TG
3778
3779 if (IS_ERR(type)) {
b1c6e6db 3780 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
d0370219 3781 pr_warn("No NAND device found\n");
ace4dfee 3782 chip->select_chip(mtd, -1);
7aa65bfd 3783 return PTR_ERR(type);
1da177e4
LT
3784 }
3785
07300164
HS
3786 chip->select_chip(mtd, -1);
3787
7aa65bfd 3788 /* Check for a chip array */
e0c7d767 3789 for (i = 1; i < maxchips; i++) {
ace4dfee 3790 chip->select_chip(mtd, i);
ef89a880
KB
3791 /* See comment in nand_get_flash_type for reset */
3792 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1da177e4 3793 /* Send the command for reading device ID */
ace4dfee 3794 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
1da177e4 3795 /* Read manufacturer and device IDs */
ace4dfee 3796 if (nand_maf_id != chip->read_byte(mtd) ||
07300164
HS
3797 nand_dev_id != chip->read_byte(mtd)) {
3798 chip->select_chip(mtd, -1);
1da177e4 3799 break;
07300164
HS
3800 }
3801 chip->select_chip(mtd, -1);
1da177e4
LT
3802 }
3803 if (i > 1)
20171642 3804 pr_info("%d chips detected\n", i);
61b03bd7 3805
1da177e4 3806 /* Store the number of chips and calc total size for mtd */
ace4dfee
TG
3807 chip->numchips = i;
3808 mtd->size = i * chip->chipsize;
7aa65bfd 3809
3b85c321
DW
3810 return 0;
3811}
7351d3a5 3812EXPORT_SYMBOL(nand_scan_ident);
3b85c321 3813
67a9ad9b
EG
3814/*
3815 * Check if the chip configuration meet the datasheet requirements.
3816
3817 * If our configuration corrects A bits per B bytes and the minimum
3818 * required correction level is X bits per Y bytes, then we must ensure
3819 * both of the following are true:
3820 *
3821 * (1) A / B >= X / Y
3822 * (2) A >= X
3823 *
3824 * Requirement (1) ensures we can correct for the required bitflip density.
3825 * Requirement (2) ensures we can correct even when all bitflips are clumped
3826 * in the same sector.
3827 */
3828static bool nand_ecc_strength_good(struct mtd_info *mtd)
3829{
3830 struct nand_chip *chip = mtd->priv;
3831 struct nand_ecc_ctrl *ecc = &chip->ecc;
3832 int corr, ds_corr;
3833
3834 if (ecc->size == 0 || chip->ecc_step_ds == 0)
3835 /* Not enough information */
3836 return true;
3837
3838 /*
3839 * We get the number of corrected bits per page to compare
3840 * the correction density.
3841 */
3842 corr = (mtd->writesize * ecc->strength) / ecc->size;
3843 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
3844
3845 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
3846}
3b85c321
DW
3847
3848/**
3849 * nand_scan_tail - [NAND Interface] Scan for the NAND device
8b6e50c9 3850 * @mtd: MTD device structure
3b85c321 3851 *
8b6e50c9
BN
3852 * This is the second phase of the normal nand_scan() function. It fills out
3853 * all the uninitialized function pointers with the defaults and scans for a
3854 * bad block table if appropriate.
3b85c321
DW
3855 */
3856int nand_scan_tail(struct mtd_info *mtd)
3857{
3858 int i;
3859 struct nand_chip *chip = mtd->priv;
97de79e0 3860 struct nand_ecc_ctrl *ecc = &chip->ecc;
f02ea4e6 3861 struct nand_buffers *nbuf;
3b85c321 3862
e2414f4c
BN
3863 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3864 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3865 !(chip->bbt_options & NAND_BBT_USE_FLASH));
3866
f02ea4e6
HS
3867 if (!(chip->options & NAND_OWN_BUFFERS)) {
3868 nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
3869 + mtd->oobsize * 3, GFP_KERNEL);
3870 if (!nbuf)
3871 return -ENOMEM;
3872 nbuf->ecccalc = (uint8_t *)(nbuf + 1);
3873 nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
3874 nbuf->databuf = nbuf->ecccode + mtd->oobsize;
3875
3876 chip->buffers = nbuf;
3877 } else {
3878 if (!chip->buffers)
3879 return -ENOMEM;
3880 }
4bf63fcb 3881
7dcdcbef 3882 /* Set the internal oob buffer location, just after the page data */
784f4d5e 3883 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
1da177e4 3884
7aa65bfd 3885 /*
8b6e50c9 3886 * If no default placement scheme is given, select an appropriate one.
7aa65bfd 3887 */
97de79e0 3888 if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
61b03bd7 3889 switch (mtd->oobsize) {
1da177e4 3890 case 8:
97de79e0 3891 ecc->layout = &nand_oob_8;
1da177e4
LT
3892 break;
3893 case 16:
97de79e0 3894 ecc->layout = &nand_oob_16;
1da177e4
LT
3895 break;
3896 case 64:
97de79e0 3897 ecc->layout = &nand_oob_64;
1da177e4 3898 break;
81ec5364 3899 case 128:
97de79e0 3900 ecc->layout = &nand_oob_128;
81ec5364 3901 break;
1da177e4 3902 default:
d0370219
BN
3903 pr_warn("No oob scheme defined for oobsize %d\n",
3904 mtd->oobsize);
1da177e4
LT
3905 BUG();
3906 }
3907 }
61b03bd7 3908
956e944c
DW
3909 if (!chip->write_page)
3910 chip->write_page = nand_write_page;
3911
61b03bd7 3912 /*
8b6e50c9 3913 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
7aa65bfd 3914 * selected and we have 256 byte pagesize fallback to software ECC
e0c7d767 3915 */
956e944c 3916
97de79e0 3917 switch (ecc->mode) {
6e0cb135
SN
3918 case NAND_ECC_HW_OOB_FIRST:
3919 /* Similar to NAND_ECC_HW, but a separate read_page handle */
97de79e0 3920 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
9a4d4d69 3921 pr_warn("No ECC functions supplied; "
d0370219 3922 "hardware ECC not possible\n");
6e0cb135
SN
3923 BUG();
3924 }
97de79e0
HS
3925 if (!ecc->read_page)
3926 ecc->read_page = nand_read_page_hwecc_oob_first;
6e0cb135 3927
6dfc6d25 3928 case NAND_ECC_HW:
8b6e50c9 3929 /* Use standard hwecc read page function? */
97de79e0
HS
3930 if (!ecc->read_page)
3931 ecc->read_page = nand_read_page_hwecc;
3932 if (!ecc->write_page)
3933 ecc->write_page = nand_write_page_hwecc;
3934 if (!ecc->read_page_raw)
3935 ecc->read_page_raw = nand_read_page_raw;
3936 if (!ecc->write_page_raw)
3937 ecc->write_page_raw = nand_write_page_raw;
3938 if (!ecc->read_oob)
3939 ecc->read_oob = nand_read_oob_std;
3940 if (!ecc->write_oob)
3941 ecc->write_oob = nand_write_oob_std;
3942 if (!ecc->read_subpage)
3943 ecc->read_subpage = nand_read_subpage;
3944 if (!ecc->write_subpage)
3945 ecc->write_subpage = nand_write_subpage_hwecc;
f5bbdacc 3946
6dfc6d25 3947 case NAND_ECC_HW_SYNDROME:
97de79e0
HS
3948 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
3949 (!ecc->read_page ||
3950 ecc->read_page == nand_read_page_hwecc ||
3951 !ecc->write_page ||
3952 ecc->write_page == nand_write_page_hwecc)) {
9a4d4d69 3953 pr_warn("No ECC functions supplied; "
d0370219 3954 "hardware ECC not possible\n");
6dfc6d25
TG
3955 BUG();
3956 }
8b6e50c9 3957 /* Use standard syndrome read/write page function? */
97de79e0
HS
3958 if (!ecc->read_page)
3959 ecc->read_page = nand_read_page_syndrome;
3960 if (!ecc->write_page)
3961 ecc->write_page = nand_write_page_syndrome;
3962 if (!ecc->read_page_raw)
3963 ecc->read_page_raw = nand_read_page_raw_syndrome;
3964 if (!ecc->write_page_raw)
3965 ecc->write_page_raw = nand_write_page_raw_syndrome;
3966 if (!ecc->read_oob)
3967 ecc->read_oob = nand_read_oob_syndrome;
3968 if (!ecc->write_oob)
3969 ecc->write_oob = nand_write_oob_syndrome;
3970
3971 if (mtd->writesize >= ecc->size) {
3972 if (!ecc->strength) {
e2788c98
MD
3973 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3974 BUG();
3975 }
6dfc6d25 3976 break;
e2788c98 3977 }
9a4d4d69 3978 pr_warn("%d byte HW ECC not possible on "
d0370219 3979 "%d byte page size, fallback to SW ECC\n",
97de79e0
HS
3980 ecc->size, mtd->writesize);
3981 ecc->mode = NAND_ECC_SOFT;
61b03bd7 3982
6dfc6d25 3983 case NAND_ECC_SOFT:
97de79e0
HS
3984 ecc->calculate = nand_calculate_ecc;
3985 ecc->correct = nand_correct_data;
3986 ecc->read_page = nand_read_page_swecc;
3987 ecc->read_subpage = nand_read_subpage;
3988 ecc->write_page = nand_write_page_swecc;
3989 ecc->read_page_raw = nand_read_page_raw;
3990 ecc->write_page_raw = nand_write_page_raw;
3991 ecc->read_oob = nand_read_oob_std;
3992 ecc->write_oob = nand_write_oob_std;
3993 if (!ecc->size)
3994 ecc->size = 256;
3995 ecc->bytes = 3;
3996 ecc->strength = 1;
1da177e4 3997 break;
61b03bd7 3998
193bd400
ID
3999 case NAND_ECC_SOFT_BCH:
4000 if (!mtd_nand_has_bch()) {
148256fa 4001 pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
193bd400
ID
4002 BUG();
4003 }
97de79e0
HS
4004 ecc->calculate = nand_bch_calculate_ecc;
4005 ecc->correct = nand_bch_correct_data;
4006 ecc->read_page = nand_read_page_swecc;
4007 ecc->read_subpage = nand_read_subpage;
4008 ecc->write_page = nand_write_page_swecc;
4009 ecc->read_page_raw = nand_read_page_raw;
4010 ecc->write_page_raw = nand_write_page_raw;
4011 ecc->read_oob = nand_read_oob_std;
4012 ecc->write_oob = nand_write_oob_std;
193bd400
ID
4013 /*
4014 * Board driver should supply ecc.size and ecc.bytes values to
4015 * select how many bits are correctable; see nand_bch_init()
8b6e50c9
BN
4016 * for details. Otherwise, default to 4 bits for large page
4017 * devices.
193bd400 4018 */
97de79e0
HS
4019 if (!ecc->size && (mtd->oobsize >= 64)) {
4020 ecc->size = 512;
4021 ecc->bytes = 7;
193bd400 4022 }
97de79e0
HS
4023 ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes,
4024 &ecc->layout);
4025 if (!ecc->priv) {
9a4d4d69 4026 pr_warn("BCH ECC initialization failed!\n");
193bd400
ID
4027 BUG();
4028 }
97de79e0 4029 ecc->strength = ecc->bytes * 8 / fls(8 * ecc->size);
193bd400
ID
4030 break;
4031
61b03bd7 4032 case NAND_ECC_NONE:
9a4d4d69 4033 pr_warn("NAND_ECC_NONE selected by board driver. "
d0370219 4034 "This is not recommended!\n");
97de79e0
HS
4035 ecc->read_page = nand_read_page_raw;
4036 ecc->write_page = nand_write_page_raw;
4037 ecc->read_oob = nand_read_oob_std;
4038 ecc->read_page_raw = nand_read_page_raw;
4039 ecc->write_page_raw = nand_write_page_raw;
4040 ecc->write_oob = nand_write_oob_std;
4041 ecc->size = mtd->writesize;
4042 ecc->bytes = 0;
4043 ecc->strength = 0;
1da177e4 4044 break;
956e944c 4045
1da177e4 4046 default:
97de79e0 4047 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
61b03bd7 4048 BUG();
1da177e4 4049 }
61b03bd7 4050
9ce244b3 4051 /* For many systems, the standard OOB write also works for raw */
97de79e0
HS
4052 if (!ecc->read_oob_raw)
4053 ecc->read_oob_raw = ecc->read_oob;
4054 if (!ecc->write_oob_raw)
4055 ecc->write_oob_raw = ecc->write_oob;
9ce244b3 4056
5bd34c09
TG
4057 /*
4058 * The number of bytes available for a client to place data into
8b6e50c9 4059 * the out of band area.
5bd34c09 4060 */
97de79e0
HS
4061 ecc->layout->oobavail = 0;
4062 for (i = 0; ecc->layout->oobfree[i].length
4063 && i < ARRAY_SIZE(ecc->layout->oobfree); i++)
4064 ecc->layout->oobavail += ecc->layout->oobfree[i].length;
4065 mtd->oobavail = ecc->layout->oobavail;
5bd34c09 4066
54c39e9b
TP
4067 /* ECC sanity check: warn if it's too weak */
4068 if (!nand_ecc_strength_good(mtd))
4069 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4070 mtd->name);
67a9ad9b 4071
7aa65bfd
TG
4072 /*
4073 * Set the number of read / write steps for one page depending on ECC
8b6e50c9 4074 * mode.
7aa65bfd 4075 */
97de79e0
HS
4076 ecc->steps = mtd->writesize / ecc->size;
4077 if (ecc->steps * ecc->size != mtd->writesize) {
9a4d4d69 4078 pr_warn("Invalid ECC parameters\n");
6dfc6d25 4079 BUG();
1da177e4 4080 }
97de79e0 4081 ecc->total = ecc->steps * ecc->bytes;
61b03bd7 4082
8b6e50c9 4083 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
1d0ed69d 4084 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
97de79e0 4085 switch (ecc->steps) {
29072b96
TG
4086 case 2:
4087 mtd->subpage_sft = 1;
4088 break;
4089 case 4:
4090 case 8:
81ec5364 4091 case 16:
29072b96
TG
4092 mtd->subpage_sft = 2;
4093 break;
4094 }
4095 }
4096 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4097
04bbd0ea 4098 /* Initialize state */
ace4dfee 4099 chip->state = FL_READY;
1da177e4 4100
1da177e4 4101 /* Invalidate the pagebuffer reference */
ace4dfee 4102 chip->pagebuf = -1;
1da177e4 4103
a5ff4f10 4104 /* Large page NAND with SOFT_ECC should support subpage reads */
4007e2d1
RL
4105 switch (ecc->mode) {
4106 case NAND_ECC_SOFT:
4107 case NAND_ECC_SOFT_BCH:
4108 if (chip->page_shift > 9)
4109 chip->options |= NAND_SUBPAGE_READ;
4110 break;
4111
4112 default:
4113 break;
4114 }
a5ff4f10 4115
1da177e4 4116 /* Fill in remaining MTD driver data */
963d1c28 4117 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
93edbad6
ML
4118 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4119 MTD_CAP_NANDFLASH;
3c3c10bb
AB
4120 mtd->_erase = nand_erase;
4121 mtd->_point = NULL;
4122 mtd->_unpoint = NULL;
4123 mtd->_read = nand_read;
4124 mtd->_write = nand_write;
4125 mtd->_panic_write = panic_nand_write;
4126 mtd->_read_oob = nand_read_oob;
4127 mtd->_write_oob = nand_write_oob;
4128 mtd->_sync = nand_sync;
4129 mtd->_lock = NULL;
4130 mtd->_unlock = NULL;
4131 mtd->_suspend = nand_suspend;
4132 mtd->_resume = nand_resume;
8471bb73 4133 mtd->_block_isreserved = nand_block_isreserved;
3c3c10bb
AB
4134 mtd->_block_isbad = nand_block_isbad;
4135 mtd->_block_markbad = nand_block_markbad;
cbcab65a 4136 mtd->writebufsize = mtd->writesize;
1da177e4 4137
6a918bad 4138 /* propagate ecc info to mtd_info */
97de79e0
HS
4139 mtd->ecclayout = ecc->layout;
4140 mtd->ecc_strength = ecc->strength;
4141 mtd->ecc_step_size = ecc->size;
ea3b2ea2
SL
4142 /*
4143 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4144 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4145 * properly set.
4146 */
4147 if (!mtd->bitflip_threshold)
4148 mtd->bitflip_threshold = mtd->ecc_strength;
1da177e4 4149
0040bf38 4150 /* Check, if we should skip the bad block table scan */
ace4dfee 4151 if (chip->options & NAND_SKIP_BBTSCAN)
0040bf38 4152 return 0;
1da177e4
LT
4153
4154 /* Build bad block table */
ace4dfee 4155 return chip->scan_bbt(mtd);
1da177e4 4156}
7351d3a5 4157EXPORT_SYMBOL(nand_scan_tail);
1da177e4 4158
8b6e50c9
BN
4159/*
4160 * is_module_text_address() isn't exported, and it's mostly a pointless
7351d3a5 4161 * test if this is a module _anyway_ -- they'd have to try _really_ hard
8b6e50c9
BN
4162 * to call us from in-kernel code if the core NAND support is modular.
4163 */
3b85c321
DW
4164#ifdef MODULE
4165#define caller_is_module() (1)
4166#else
4167#define caller_is_module() \
a6e6abd5 4168 is_module_text_address((unsigned long)__builtin_return_address(0))
3b85c321
DW
4169#endif
4170
4171/**
4172 * nand_scan - [NAND Interface] Scan for the NAND device
8b6e50c9
BN
4173 * @mtd: MTD device structure
4174 * @maxchips: number of chips to scan for
3b85c321 4175 *
8b6e50c9
BN
4176 * This fills out all the uninitialized function pointers with the defaults.
4177 * The flash ID is read and the mtd/chip structures are filled with the
4178 * appropriate values. The mtd->owner field must be set to the module of the
4179 * caller.
3b85c321
DW
4180 */
4181int nand_scan(struct mtd_info *mtd, int maxchips)
4182{
4183 int ret;
4184
4185 /* Many callers got this wrong, so check for it for a while... */
4186 if (!mtd->owner && caller_is_module()) {
d0370219 4187 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3b85c321
DW
4188 BUG();
4189 }
4190
5e81e88a 4191 ret = nand_scan_ident(mtd, maxchips, NULL);
3b85c321
DW
4192 if (!ret)
4193 ret = nand_scan_tail(mtd);
4194 return ret;
4195}
7351d3a5 4196EXPORT_SYMBOL(nand_scan);
3b85c321 4197
1da177e4 4198/**
61b03bd7 4199 * nand_release - [NAND Interface] Free resources held by the NAND device
8b6e50c9
BN
4200 * @mtd: MTD device structure
4201 */
e0c7d767 4202void nand_release(struct mtd_info *mtd)
1da177e4 4203{
ace4dfee 4204 struct nand_chip *chip = mtd->priv;
1da177e4 4205
193bd400
ID
4206 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4207 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4208
5ffcaf3d 4209 mtd_device_unregister(mtd);
1da177e4 4210
fa671646 4211 /* Free bad block table memory */
ace4dfee 4212 kfree(chip->bbt);
4bf63fcb
DW
4213 if (!(chip->options & NAND_OWN_BUFFERS))
4214 kfree(chip->buffers);
58373ff0
BN
4215
4216 /* Free bad block descriptor memory */
4217 if (chip->badblock_pattern && chip->badblock_pattern->options
4218 & NAND_BBT_DYNAMICSTRUCT)
4219 kfree(chip->badblock_pattern);
1da177e4 4220}
e0c7d767 4221EXPORT_SYMBOL_GPL(nand_release);
8fe833c1
RP
4222
4223static int __init nand_base_init(void)
4224{
4225 led_trigger_register_simple("nand-disk", &nand_led_trigger);
4226 return 0;
4227}
4228
4229static void __exit nand_base_exit(void)
4230{
4231 led_trigger_unregister_simple(nand_led_trigger);
4232}
4233
4234module_init(nand_base_init);
4235module_exit(nand_base_exit);
4236
e0c7d767 4237MODULE_LICENSE("GPL");
7351d3a5
FF
4238MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4239MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
e0c7d767 4240MODULE_DESCRIPTION("Generic NAND flash driver code");
This page took 1.010142 seconds and 5 git commands to generate.