Merge branch 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdim...
[deliverable/linux.git] / drivers / mtd / nand / nand_ecc.c
CommitLineData
1da177e4 1/*
e6cf5df1 2 * This file contains an ECC algorithm that detects and corrects 1 bit
3 * errors in a 256 byte block of data.
1da177e4
LT
4 *
5 * drivers/mtd/nand/nand_ecc.c
6 *
ccbcd6cb
DW
7 * Copyright © 2008 Koninklijke Philips Electronics NV.
8 * Author: Frans Meulenbroeks
1da177e4 9 *
e6cf5df1 10 * Completely replaces the previous ECC implementation which was written by:
11 * Steven J. Hill (sjhill@realitydiluted.com)
12 * Thomas Gleixner (tglx@linutronix.de)
13 *
14 * Information on how this algorithm works and how it was developed
ccbcd6cb 15 * can be found in Documentation/mtd/nand_ecc.txt
819d6a32 16 *
1da177e4
LT
17 * This file is free software; you can redistribute it and/or modify it
18 * under the terms of the GNU General Public License as published by the
19 * Free Software Foundation; either version 2 or (at your option) any
20 * later version.
61b03bd7 21 *
1da177e4
LT
22 * This file is distributed in the hope that it will be useful, but WITHOUT
23 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
24 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
25 * for more details.
61b03bd7 26 *
1da177e4
LT
27 * You should have received a copy of the GNU General Public License along
28 * with this file; if not, write to the Free Software Foundation, Inc.,
29 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
61b03bd7 30 *
1da177e4
LT
31 */
32
e6cf5df1 33/*
34 * The STANDALONE macro is useful when running the code outside the kernel
35 * e.g. when running the code in a testbed or a benchmark program.
36 * When STANDALONE is used, the module related macros are commented out
37 * as well as the linux include files.
ccbcd6cb 38 * Instead a private definition of mtd_info is given to satisfy the compiler
e6cf5df1 39 * (the code does not use mtd_info, so the code does not care)
40 */
41#ifndef STANDALONE
1da177e4
LT
42#include <linux/types.h>
43#include <linux/kernel.h>
44#include <linux/module.h>
d68156cf
SV
45#include <linux/mtd/mtd.h>
46#include <linux/mtd/nand.h>
1da177e4 47#include <linux/mtd/nand_ecc.h>
1077be58 48#include <asm/byteorder.h>
e6cf5df1 49#else
ccbcd6cb
DW
50#include <stdint.h>
51struct mtd_info;
e6cf5df1 52#define EXPORT_SYMBOL(x) /* x */
53
54#define MODULE_LICENSE(x) /* x */
55#define MODULE_AUTHOR(x) /* x */
56#define MODULE_DESCRIPTION(x) /* x */
1077be58 57
54cccc70 58#define pr_err printf
e6cf5df1 59#endif
60
61/*
62 * invparity is a 256 byte table that contains the odd parity
63 * for each byte. So if the number of bits in a byte is even,
64 * the array element is 1, and when the number of bits is odd
65 * the array eleemnt is 0.
66 */
67static const char invparity[256] = {
68 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
69 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
70 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
71 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
72 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
73 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
74 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
75 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
76 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
77 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
78 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
79 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
80 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
81 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
82 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
83 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
84};
1da177e4
LT
85
86/*
e6cf5df1 87 * bitsperbyte contains the number of bits per byte
88 * this is only used for testing and repairing parity
89 * (a precalculated value slightly improves performance)
1da177e4 90 */
e6cf5df1 91static const char bitsperbyte[256] = {
92 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
93 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
94 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
95 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
96 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
97 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
98 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
99 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
100 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
101 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
102 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
103 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
104 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
105 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
106 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
107 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
108};
109
110/*
111 * addressbits is a lookup table to filter out the bits from the xor-ed
7854d3f7 112 * ECC data that identify the faulty location.
e6cf5df1 113 * this is only used for repairing parity
114 * see the comments in nand_correct_data for more details
115 */
116static const char addressbits[256] = {
117 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
118 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
119 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
120 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
121 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
122 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
123 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
124 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
125 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
126 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
127 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
128 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
129 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
130 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
131 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
132 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
133 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
134 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
135 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
136 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
137 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
138 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
139 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
140 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
141 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
142 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
143 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
144 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
145 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
146 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
147 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
148 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f
1da177e4
LT
149};
150
1da177e4 151/**
1c63aca3 152 * __nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte
d68156cf 153 * block
17c1d2be 154 * @buf: input buffer with raw data
7854d3f7 155 * @eccsize: data bytes per ECC step (256 or 512)
17c1d2be 156 * @code: output buffer with ECC
1da177e4 157 */
1c63aca3 158void __nand_calculate_ecc(const unsigned char *buf, unsigned int eccsize,
e6cf5df1 159 unsigned char *code)
1da177e4 160{
819d6a32 161 int i;
e6cf5df1 162 const uint32_t *bp = (uint32_t *)buf;
d68156cf 163 /* 256 or 512 bytes/ecc */
1c63aca3 164 const uint32_t eccsize_mult = eccsize >> 8;
e6cf5df1 165 uint32_t cur; /* current value in buffer */
d68156cf 166 /* rp0..rp15..rp17 are the various accumulated parities (per byte) */
e6cf5df1 167 uint32_t rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
d68156cf
SV
168 uint32_t rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15, rp16;
169 uint32_t uninitialized_var(rp17); /* to make compiler happy */
e6cf5df1 170 uint32_t par; /* the cumulative parity for all data */
171 uint32_t tmppar; /* the cumulative parity for this iteration;
d68156cf
SV
172 for rp12, rp14 and rp16 at the end of the
173 loop */
e6cf5df1 174
175 par = 0;
176 rp4 = 0;
177 rp6 = 0;
178 rp8 = 0;
179 rp10 = 0;
180 rp12 = 0;
181 rp14 = 0;
d68156cf 182 rp16 = 0;
e6cf5df1 183
184 /*
185 * The loop is unrolled a number of times;
186 * This avoids if statements to decide on which rp value to update
187 * Also we process the data by longwords.
188 * Note: passing unaligned data might give a performance penalty.
189 * It is assumed that the buffers are aligned.
190 * tmppar is the cumulative sum of this iteration.
d68156cf 191 * needed for calculating rp12, rp14, rp16 and par
e6cf5df1 192 * also used as a performance improvement for rp6, rp8 and rp10
193 */
d68156cf 194 for (i = 0; i < eccsize_mult << 2; i++) {
e6cf5df1 195 cur = *bp++;
196 tmppar = cur;
197 rp4 ^= cur;
198 cur = *bp++;
199 tmppar ^= cur;
200 rp6 ^= tmppar;
201 cur = *bp++;
202 tmppar ^= cur;
203 rp4 ^= cur;
204 cur = *bp++;
205 tmppar ^= cur;
206 rp8 ^= tmppar;
61b03bd7 207
e6cf5df1 208 cur = *bp++;
209 tmppar ^= cur;
210 rp4 ^= cur;
211 rp6 ^= cur;
212 cur = *bp++;
213 tmppar ^= cur;
214 rp6 ^= cur;
215 cur = *bp++;
216 tmppar ^= cur;
217 rp4 ^= cur;
218 cur = *bp++;
219 tmppar ^= cur;
220 rp10 ^= tmppar;
61b03bd7 221
e6cf5df1 222 cur = *bp++;
223 tmppar ^= cur;
224 rp4 ^= cur;
225 rp6 ^= cur;
226 rp8 ^= cur;
227 cur = *bp++;
228 tmppar ^= cur;
229 rp6 ^= cur;
230 rp8 ^= cur;
231 cur = *bp++;
232 tmppar ^= cur;
233 rp4 ^= cur;
234 rp8 ^= cur;
235 cur = *bp++;
236 tmppar ^= cur;
237 rp8 ^= cur;
61b03bd7 238
e6cf5df1 239 cur = *bp++;
240 tmppar ^= cur;
241 rp4 ^= cur;
242 rp6 ^= cur;
243 cur = *bp++;
244 tmppar ^= cur;
245 rp6 ^= cur;
246 cur = *bp++;
247 tmppar ^= cur;
248 rp4 ^= cur;
249 cur = *bp++;
250 tmppar ^= cur;
251
252 par ^= tmppar;
253 if ((i & 0x1) == 0)
254 rp12 ^= tmppar;
255 if ((i & 0x2) == 0)
256 rp14 ^= tmppar;
d68156cf
SV
257 if (eccsize_mult == 2 && (i & 0x4) == 0)
258 rp16 ^= tmppar;
1da177e4 259 }
61b03bd7 260
e6cf5df1 261 /*
262 * handle the fact that we use longword operations
d68156cf
SV
263 * we'll bring rp4..rp14..rp16 back to single byte entities by
264 * shifting and xoring first fold the upper and lower 16 bits,
e6cf5df1 265 * then the upper and lower 8 bits.
266 */
267 rp4 ^= (rp4 >> 16);
268 rp4 ^= (rp4 >> 8);
269 rp4 &= 0xff;
270 rp6 ^= (rp6 >> 16);
271 rp6 ^= (rp6 >> 8);
272 rp6 &= 0xff;
273 rp8 ^= (rp8 >> 16);
274 rp8 ^= (rp8 >> 8);
275 rp8 &= 0xff;
276 rp10 ^= (rp10 >> 16);
277 rp10 ^= (rp10 >> 8);
278 rp10 &= 0xff;
279 rp12 ^= (rp12 >> 16);
280 rp12 ^= (rp12 >> 8);
281 rp12 &= 0xff;
282 rp14 ^= (rp14 >> 16);
283 rp14 ^= (rp14 >> 8);
284 rp14 &= 0xff;
d68156cf
SV
285 if (eccsize_mult == 2) {
286 rp16 ^= (rp16 >> 16);
287 rp16 ^= (rp16 >> 8);
288 rp16 &= 0xff;
289 }
e6cf5df1 290
291 /*
292 * we also need to calculate the row parity for rp0..rp3
293 * This is present in par, because par is now
1077be58 294 * rp3 rp3 rp2 rp2 in little endian and
295 * rp2 rp2 rp3 rp3 in big endian
e6cf5df1 296 * as well as
1077be58 297 * rp1 rp0 rp1 rp0 in little endian and
298 * rp0 rp1 rp0 rp1 in big endian
e6cf5df1 299 * First calculate rp2 and rp3
e6cf5df1 300 */
1077be58 301#ifdef __BIG_ENDIAN
302 rp2 = (par >> 16);
303 rp2 ^= (rp2 >> 8);
304 rp2 &= 0xff;
305 rp3 = par & 0xffff;
306 rp3 ^= (rp3 >> 8);
307 rp3 &= 0xff;
308#else
e6cf5df1 309 rp3 = (par >> 16);
310 rp3 ^= (rp3 >> 8);
311 rp3 &= 0xff;
312 rp2 = par & 0xffff;
313 rp2 ^= (rp2 >> 8);
314 rp2 &= 0xff;
1077be58 315#endif
e6cf5df1 316
317 /* reduce par to 16 bits then calculate rp1 and rp0 */
318 par ^= (par >> 16);
1077be58 319#ifdef __BIG_ENDIAN
320 rp0 = (par >> 8) & 0xff;
321 rp1 = (par & 0xff);
322#else
e6cf5df1 323 rp1 = (par >> 8) & 0xff;
324 rp0 = (par & 0xff);
1077be58 325#endif
e6cf5df1 326
327 /* finally reduce par to 8 bits */
328 par ^= (par >> 8);
329 par &= 0xff;
330
331 /*
d68156cf 332 * and calculate rp5..rp15..rp17
e6cf5df1 333 * note that par = rp4 ^ rp5 and due to the commutative property
334 * of the ^ operator we can say:
335 * rp5 = (par ^ rp4);
336 * The & 0xff seems superfluous, but benchmarking learned that
337 * leaving it out gives slightly worse results. No idea why, probably
338 * it has to do with the way the pipeline in pentium is organized.
339 */
340 rp5 = (par ^ rp4) & 0xff;
341 rp7 = (par ^ rp6) & 0xff;
342 rp9 = (par ^ rp8) & 0xff;
343 rp11 = (par ^ rp10) & 0xff;
344 rp13 = (par ^ rp12) & 0xff;
345 rp15 = (par ^ rp14) & 0xff;
d68156cf
SV
346 if (eccsize_mult == 2)
347 rp17 = (par ^ rp16) & 0xff;
e6cf5df1 348
349 /*
7854d3f7 350 * Finally calculate the ECC bits.
e6cf5df1 351 * Again here it might seem that there are performance optimisations
352 * possible, but benchmarks showed that on the system this is developed
353 * the code below is the fastest
354 */
fc029194 355#ifdef CONFIG_MTD_NAND_ECC_SMC
e6cf5df1 356 code[0] =
357 (invparity[rp7] << 7) |
358 (invparity[rp6] << 6) |
359 (invparity[rp5] << 5) |
360 (invparity[rp4] << 4) |
361 (invparity[rp3] << 3) |
362 (invparity[rp2] << 2) |
363 (invparity[rp1] << 1) |
364 (invparity[rp0]);
365 code[1] =
366 (invparity[rp15] << 7) |
367 (invparity[rp14] << 6) |
368 (invparity[rp13] << 5) |
369 (invparity[rp12] << 4) |
370 (invparity[rp11] << 3) |
371 (invparity[rp10] << 2) |
372 (invparity[rp9] << 1) |
373 (invparity[rp8]);
819d6a32 374#else
e6cf5df1 375 code[1] =
376 (invparity[rp7] << 7) |
377 (invparity[rp6] << 6) |
378 (invparity[rp5] << 5) |
379 (invparity[rp4] << 4) |
380 (invparity[rp3] << 3) |
381 (invparity[rp2] << 2) |
382 (invparity[rp1] << 1) |
383 (invparity[rp0]);
384 code[0] =
385 (invparity[rp15] << 7) |
386 (invparity[rp14] << 6) |
387 (invparity[rp13] << 5) |
388 (invparity[rp12] << 4) |
389 (invparity[rp11] << 3) |
390 (invparity[rp10] << 2) |
391 (invparity[rp9] << 1) |
392 (invparity[rp8]);
819d6a32 393#endif
d68156cf
SV
394 if (eccsize_mult == 1)
395 code[2] =
396 (invparity[par & 0xf0] << 7) |
397 (invparity[par & 0x0f] << 6) |
398 (invparity[par & 0xcc] << 5) |
399 (invparity[par & 0x33] << 4) |
400 (invparity[par & 0xaa] << 3) |
401 (invparity[par & 0x55] << 2) |
402 3;
403 else
404 code[2] =
405 (invparity[par & 0xf0] << 7) |
406 (invparity[par & 0x0f] << 6) |
407 (invparity[par & 0xcc] << 5) |
408 (invparity[par & 0x33] << 4) |
409 (invparity[par & 0xaa] << 3) |
410 (invparity[par & 0x55] << 2) |
411 (invparity[rp17] << 1) |
412 (invparity[rp16] << 0);
1c63aca3
AM
413}
414EXPORT_SYMBOL(__nand_calculate_ecc);
415
416/**
417 * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte
418 * block
419 * @mtd: MTD block structure
420 * @buf: input buffer with raw data
421 * @code: output buffer with ECC
422 */
423int nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf,
424 unsigned char *code)
425{
426 __nand_calculate_ecc(buf,
862eba51 427 mtd_to_nand(mtd)->ecc.size, code);
1c63aca3 428
1da177e4
LT
429 return 0;
430}
819d6a32
TG
431EXPORT_SYMBOL(nand_calculate_ecc);
432
1da177e4 433/**
be2f092b 434 * __nand_correct_data - [NAND Interface] Detect and correct bit error(s)
17c1d2be 435 * @buf: raw data read from the chip
1da177e4
LT
436 * @read_ecc: ECC from the chip
437 * @calc_ecc: the ECC calculated from raw data
7854d3f7 438 * @eccsize: data bytes per ECC step (256 or 512)
1da177e4 439 *
be2f092b 440 * Detect and correct a 1 bit error for eccsize byte block
1da177e4 441 */
be2f092b
AN
442int __nand_correct_data(unsigned char *buf,
443 unsigned char *read_ecc, unsigned char *calc_ecc,
444 unsigned int eccsize)
1da177e4 445{
260dc003
VS
446 unsigned char b0, b1, b2, bit_addr;
447 unsigned int byte_addr;
d68156cf 448 /* 256 or 512 bytes/ecc */
be2f092b 449 const uint32_t eccsize_mult = eccsize >> 8;
819d6a32 450
e6cf5df1 451 /*
452 * b0 to b2 indicate which bit is faulty (if any)
453 * we might need the xor result more than once,
454 * so keep them in a local var
455 */
fc029194 456#ifdef CONFIG_MTD_NAND_ECC_SMC
e6cf5df1 457 b0 = read_ecc[0] ^ calc_ecc[0];
458 b1 = read_ecc[1] ^ calc_ecc[1];
819d6a32 459#else
e6cf5df1 460 b0 = read_ecc[1] ^ calc_ecc[1];
461 b1 = read_ecc[0] ^ calc_ecc[0];
819d6a32 462#endif
e6cf5df1 463 b2 = read_ecc[2] ^ calc_ecc[2];
819d6a32 464
e6cf5df1 465 /* check if there are any bitfaults */
819d6a32 466
e6cf5df1 467 /* repeated if statements are slightly more efficient than switch ... */
468 /* ordered in order of likelihood */
1077be58 469
470 if ((b0 | b1 | b2) == 0)
ccbcd6cb 471 return 0; /* no error */
1077be58 472
473 if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) &&
474 (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) &&
d68156cf
SV
475 ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) ||
476 (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) {
477 /* single bit error */
e6cf5df1 478 /*
d68156cf
SV
479 * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty
480 * byte, cp 5/3/1 indicate the faulty bit.
e6cf5df1 481 * A lookup table (called addressbits) is used to filter
482 * the bits from the byte they are in.
483 * A marginal optimisation is possible by having three
484 * different lookup tables.
485 * One as we have now (for b0), one for b2
486 * (that would avoid the >> 1), and one for b1 (with all values
487 * << 4). However it was felt that introducing two more tables
488 * hardly justify the gain.
489 *
490 * The b2 shift is there to get rid of the lowest two bits.
491 * We could also do addressbits[b2] >> 1 but for the
af901ca1 492 * performance it does not make any difference
e6cf5df1 493 */
d68156cf
SV
494 if (eccsize_mult == 1)
495 byte_addr = (addressbits[b1] << 4) + addressbits[b0];
496 else
497 byte_addr = (addressbits[b2 & 0x3] << 8) +
498 (addressbits[b1] << 4) + addressbits[b0];
e6cf5df1 499 bit_addr = addressbits[b2 >> 2];
500 /* flip the bit */
501 buf[byte_addr] ^= (1 << bit_addr);
ccbcd6cb 502 return 1;
1077be58 503
1da177e4 504 }
1077be58 505 /* count nr of bits; use table lookup, faster than calculating it */
506 if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1)
7854d3f7 507 return 1; /* error in ECC data; no action needed */
1077be58 508
85a3bd97 509 pr_err("%s: uncorrectable ECC error\n", __func__);
6e941192 510 return -EBADMSG;
1da177e4 511}
be2f092b
AN
512EXPORT_SYMBOL(__nand_correct_data);
513
514/**
515 * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
516 * @mtd: MTD block structure
517 * @buf: raw data read from the chip
518 * @read_ecc: ECC from the chip
519 * @calc_ecc: the ECC calculated from raw data
520 *
521 * Detect and correct a 1 bit error for 256/512 byte block
522 */
523int nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
524 unsigned char *read_ecc, unsigned char *calc_ecc)
525{
526 return __nand_correct_data(buf, read_ecc, calc_ecc,
862eba51 527 mtd_to_nand(mtd)->ecc.size);
be2f092b 528}
1da177e4
LT
529EXPORT_SYMBOL(nand_correct_data);
530
531MODULE_LICENSE("GPL");
e6cf5df1 532MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>");
1da177e4 533MODULE_DESCRIPTION("Generic NAND ECC support");
This page took 0.703786 seconds and 5 git commands to generate.