Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[deliverable/linux.git] / drivers / mtd / nand / nandsim.c
CommitLineData
1da177e4
LT
1/*
2 * NAND flash simulator.
3 *
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5 *
61b03bd7 6 * Copyright (C) 2004 Nokia Corporation
1da177e4
LT
7 *
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
14 * version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
1da177e4
LT
24 */
25
1da177e4
LT
26#include <linux/init.h>
27#include <linux/types.h>
28#include <linux/module.h>
29#include <linux/moduleparam.h>
30#include <linux/vmalloc.h>
596fd462 31#include <linux/math64.h>
1da177e4
LT
32#include <linux/slab.h>
33#include <linux/errno.h>
34#include <linux/string.h>
35#include <linux/mtd/mtd.h>
36#include <linux/mtd/nand.h>
fc2ff592 37#include <linux/mtd/nand_bch.h>
1da177e4
LT
38#include <linux/mtd/partitions.h>
39#include <linux/delay.h>
2b77a0ed 40#include <linux/list.h>
514087e7 41#include <linux/random.h>
a5cce42f 42#include <linux/sched.h>
a9fc8991
AH
43#include <linux/fs.h>
44#include <linux/pagemap.h>
5346c27c
EG
45#include <linux/seq_file.h>
46#include <linux/debugfs.h>
1da177e4
LT
47
48/* Default simulator parameters values */
49#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
50 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
51 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
52 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
53#define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
54#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
55#define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
56#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
57#endif
58
59#ifndef CONFIG_NANDSIM_ACCESS_DELAY
60#define CONFIG_NANDSIM_ACCESS_DELAY 25
61#endif
62#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
63#define CONFIG_NANDSIM_PROGRAMM_DELAY 200
64#endif
65#ifndef CONFIG_NANDSIM_ERASE_DELAY
66#define CONFIG_NANDSIM_ERASE_DELAY 2
67#endif
68#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
69#define CONFIG_NANDSIM_OUTPUT_CYCLE 40
70#endif
71#ifndef CONFIG_NANDSIM_INPUT_CYCLE
72#define CONFIG_NANDSIM_INPUT_CYCLE 50
73#endif
74#ifndef CONFIG_NANDSIM_BUS_WIDTH
75#define CONFIG_NANDSIM_BUS_WIDTH 8
76#endif
77#ifndef CONFIG_NANDSIM_DO_DELAYS
78#define CONFIG_NANDSIM_DO_DELAYS 0
79#endif
80#ifndef CONFIG_NANDSIM_LOG
81#define CONFIG_NANDSIM_LOG 0
82#endif
83#ifndef CONFIG_NANDSIM_DBG
84#define CONFIG_NANDSIM_DBG 0
85#endif
e99e90ae
BH
86#ifndef CONFIG_NANDSIM_MAX_PARTS
87#define CONFIG_NANDSIM_MAX_PARTS 32
88#endif
1da177e4
LT
89
90static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE;
91static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
92static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE;
93static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
94static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
95static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
96static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
97static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
98static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
99static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
100static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
101static uint log = CONFIG_NANDSIM_LOG;
102static uint dbg = CONFIG_NANDSIM_DBG;
e99e90ae 103static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
2b77a0ed 104static unsigned int parts_num;
514087e7
AH
105static char *badblocks = NULL;
106static char *weakblocks = NULL;
107static char *weakpages = NULL;
108static unsigned int bitflips = 0;
109static char *gravepages = NULL;
a5ac8aeb 110static unsigned int overridesize = 0;
a9fc8991 111static char *cache_file = NULL;
ce85b79f 112static unsigned int bbt;
fc2ff592 113static unsigned int bch;
1da177e4
LT
114
115module_param(first_id_byte, uint, 0400);
116module_param(second_id_byte, uint, 0400);
117module_param(third_id_byte, uint, 0400);
118module_param(fourth_id_byte, uint, 0400);
119module_param(access_delay, uint, 0400);
120module_param(programm_delay, uint, 0400);
121module_param(erase_delay, uint, 0400);
122module_param(output_cycle, uint, 0400);
123module_param(input_cycle, uint, 0400);
124module_param(bus_width, uint, 0400);
125module_param(do_delays, uint, 0400);
126module_param(log, uint, 0400);
127module_param(dbg, uint, 0400);
2b77a0ed 128module_param_array(parts, ulong, &parts_num, 0400);
514087e7
AH
129module_param(badblocks, charp, 0400);
130module_param(weakblocks, charp, 0400);
131module_param(weakpages, charp, 0400);
132module_param(bitflips, uint, 0400);
133module_param(gravepages, charp, 0400);
a5ac8aeb 134module_param(overridesize, uint, 0400);
a9fc8991 135module_param(cache_file, charp, 0400);
ce85b79f 136module_param(bbt, uint, 0400);
fc2ff592 137module_param(bch, uint, 0400);
1da177e4 138
a5ac8aeb 139MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
1da177e4
LT
140MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
141MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command");
142MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
a9fc8991 143MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)");
1da177e4
LT
144MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
145MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
6029a3a4
AY
146MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)");
147MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)");
1da177e4
LT
148MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
149MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
150MODULE_PARM_DESC(log, "Perform logging if not zero");
151MODULE_PARM_DESC(dbg, "Output debug information if not zero");
2b77a0ed 152MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas");
514087e7
AH
153/* Page and erase block positions for the following parameters are independent of any partitions */
154MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas");
155MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
156 " separated by commas e.g. 113:2 means eb 113"
157 " can be erased only twice before failing");
158MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]"
159 " separated by commas e.g. 1401:2 means page 1401"
160 " can be written only twice before failing");
161MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)");
162MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]"
163 " separated by commas e.g. 1401:2 means page 1401"
164 " can be read only twice before failing");
a5ac8aeb
AH
165MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. "
166 "The size is specified in erase blocks and as the exponent of a power of two"
167 " e.g. 5 means a size of 32 erase blocks");
a9fc8991 168MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory");
ce85b79f 169MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
fc2ff592
ID
170MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should "
171 "be correctable in 512-byte blocks");
1da177e4
LT
172
173/* The largest possible page size */
75352662 174#define NS_LARGEST_PAGE_SIZE 4096
61b03bd7 175
1da177e4
LT
176/* The prefix for simulator output */
177#define NS_OUTPUT_PREFIX "[nandsim]"
178
179/* Simulator's output macros (logging, debugging, warning, error) */
180#define NS_LOG(args...) \
181 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
182#define NS_DBG(args...) \
183 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
184#define NS_WARN(args...) \
2b77a0ed 185 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
1da177e4 186#define NS_ERR(args...) \
2b77a0ed 187 do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
57aa6b54
AH
188#define NS_INFO(args...) \
189 do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
1da177e4
LT
190
191/* Busy-wait delay macros (microseconds, milliseconds) */
192#define NS_UDELAY(us) \
193 do { if (do_delays) udelay(us); } while(0)
194#define NS_MDELAY(us) \
195 do { if (do_delays) mdelay(us); } while(0)
61b03bd7 196
1da177e4
LT
197/* Is the nandsim structure initialized ? */
198#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
199
200/* Good operation completion status */
201#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
202
203/* Operation failed completion status */
61b03bd7 204#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
1da177e4
LT
205
206/* Calculate the page offset in flash RAM image by (row, column) address */
207#define NS_RAW_OFFSET(ns) \
208 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
61b03bd7 209
1da177e4
LT
210/* Calculate the OOB offset in flash RAM image by (row, column) address */
211#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
212
213/* After a command is input, the simulator goes to one of the following states */
214#define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
215#define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
4a0c50c0 216#define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
daf05ec0 217#define STATE_CMD_PAGEPROG 0x00000004 /* start page program */
1da177e4
LT
218#define STATE_CMD_READOOB 0x00000005 /* read OOB area */
219#define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
220#define STATE_CMD_STATUS 0x00000007 /* read status */
221#define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
daf05ec0 222#define STATE_CMD_SEQIN 0x00000009 /* sequential data input */
1da177e4
LT
223#define STATE_CMD_READID 0x0000000A /* read ID */
224#define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
225#define STATE_CMD_RESET 0x0000000C /* reset */
74216be4
AB
226#define STATE_CMD_RNDOUT 0x0000000D /* random output command */
227#define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
1da177e4
LT
228#define STATE_CMD_MASK 0x0000000F /* command states mask */
229
8e87d782 230/* After an address is input, the simulator goes to one of these states */
1da177e4
LT
231#define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
232#define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
74216be4
AB
233#define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
234#define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
235#define STATE_ADDR_MASK 0x00000070 /* address states mask */
1da177e4 236
daf05ec0 237/* During data input/output the simulator is in these states */
1da177e4
LT
238#define STATE_DATAIN 0x00000100 /* waiting for data input */
239#define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
240
241#define STATE_DATAOUT 0x00001000 /* waiting for page data output */
242#define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
243#define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
244#define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
245#define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
246
247/* Previous operation is done, ready to accept new requests */
248#define STATE_READY 0x00000000
249
250/* This state is used to mark that the next state isn't known yet */
251#define STATE_UNKNOWN 0x10000000
252
253/* Simulator's actions bit masks */
254#define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
daf05ec0 255#define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */
1da177e4
LT
256#define ACTION_SECERASE 0x00300000 /* erase sector */
257#define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
258#define ACTION_HALFOFF 0x00500000 /* add to address half of page */
259#define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
260#define ACTION_MASK 0x00700000 /* action mask */
261
74216be4 262#define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
1da177e4
LT
263#define NS_OPER_STATES 6 /* Maximum number of states in operation */
264
265#define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
266#define OPT_PAGE256 0x00000001 /* 256-byte page chips */
267#define OPT_PAGE512 0x00000002 /* 512-byte page chips */
268#define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
269#define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
1da177e4 270#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
75352662
SAS
271#define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */
272#define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
1da177e4
LT
273#define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
274
daf05ec0 275/* Remove action bits from state */
1da177e4 276#define NS_STATE(x) ((x) & ~ACTION_MASK)
61b03bd7
TG
277
278/*
1da177e4 279 * Maximum previous states which need to be saved. Currently saving is
daf05ec0 280 * only needed for page program operation with preceded read command
1da177e4
LT
281 * (which is only valid for 512-byte pages).
282 */
283#define NS_MAX_PREVSTATES 1
284
a9fc8991
AH
285/* Maximum page cache pages needed to read or write a NAND page to the cache_file */
286#define NS_MAX_HELD_PAGES 16
287
5346c27c
EG
288struct nandsim_debug_info {
289 struct dentry *dfs_root;
290 struct dentry *dfs_wear_report;
291};
292
d086d436
VK
293/*
294 * A union to represent flash memory contents and flash buffer.
295 */
296union ns_mem {
297 u_char *byte; /* for byte access */
298 uint16_t *word; /* for 16-bit word access */
299};
300
61b03bd7 301/*
1da177e4
LT
302 * The structure which describes all the internal simulator data.
303 */
304struct nandsim {
e99e90ae 305 struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
2b77a0ed 306 unsigned int nbparts;
1da177e4
LT
307
308 uint busw; /* flash chip bus width (8 or 16) */
309 u_char ids[4]; /* chip's ID bytes */
310 uint32_t options; /* chip's characteristic bits */
311 uint32_t state; /* current chip state */
312 uint32_t nxstate; /* next expected state */
61b03bd7 313
1da177e4
LT
314 uint32_t *op; /* current operation, NULL operations isn't known yet */
315 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
316 uint16_t npstates; /* number of previous states saved */
317 uint16_t stateidx; /* current state index */
318
d086d436
VK
319 /* The simulated NAND flash pages array */
320 union ns_mem *pages;
1da177e4 321
8a4c2495
AK
322 /* Slab allocator for nand pages */
323 struct kmem_cache *nand_pages_slab;
324
1da177e4 325 /* Internal buffer of page + OOB size bytes */
d086d436 326 union ns_mem buf;
1da177e4
LT
327
328 /* NAND flash "geometry" */
0bfa4df2 329 struct {
6eda7a55 330 uint64_t totsz; /* total flash size, bytes */
1da177e4
LT
331 uint32_t secsz; /* flash sector (erase block) size, bytes */
332 uint pgsz; /* NAND flash page size, bytes */
333 uint oobsz; /* page OOB area size, bytes */
6eda7a55 334 uint64_t totszoob; /* total flash size including OOB, bytes */
1da177e4
LT
335 uint pgszoob; /* page size including OOB , bytes*/
336 uint secszoob; /* sector size including OOB, bytes */
337 uint pgnum; /* total number of pages */
338 uint pgsec; /* number of pages per sector */
339 uint secshift; /* bits number in sector size */
340 uint pgshift; /* bits number in page size */
341 uint oobshift; /* bits number in OOB size */
342 uint pgaddrbytes; /* bytes per page address */
343 uint secaddrbytes; /* bytes per sector address */
344 uint idbytes; /* the number ID bytes that this chip outputs */
345 } geom;
346
347 /* NAND flash internal registers */
0bfa4df2 348 struct {
1da177e4
LT
349 unsigned command; /* the command register */
350 u_char status; /* the status register */
351 uint row; /* the page number */
352 uint column; /* the offset within page */
353 uint count; /* internal counter */
354 uint num; /* number of bytes which must be processed */
355 uint off; /* fixed page offset */
356 } regs;
357
358 /* NAND flash lines state */
0bfa4df2 359 struct {
1da177e4
LT
360 int ce; /* chip Enable */
361 int cle; /* command Latch Enable */
362 int ale; /* address Latch Enable */
363 int wp; /* write Protect */
364 } lines;
a9fc8991
AH
365
366 /* Fields needed when using a cache file */
367 struct file *cfile; /* Open file */
368 unsigned char *pages_written; /* Which pages have been written */
369 void *file_buf;
370 struct page *held_pages[NS_MAX_HELD_PAGES];
371 int held_cnt;
5346c27c
EG
372
373 struct nandsim_debug_info dbg;
1da177e4
LT
374};
375
376/*
377 * Operations array. To perform any operation the simulator must pass
378 * through the correspondent states chain.
379 */
380static struct nandsim_operations {
381 uint32_t reqopts; /* options which are required to perform the operation */
382 uint32_t states[NS_OPER_STATES]; /* operation's states */
383} ops[NS_OPER_NUM] = {
384 /* Read page + OOB from the beginning */
385 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
386 STATE_DATAOUT, STATE_READY}},
387 /* Read page + OOB from the second half */
388 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
389 STATE_DATAOUT, STATE_READY}},
390 /* Read OOB */
391 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
392 STATE_DATAOUT, STATE_READY}},
daf05ec0 393 /* Program page starting from the beginning */
1da177e4
LT
394 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
395 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
daf05ec0 396 /* Program page starting from the beginning */
1da177e4
LT
397 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
398 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
daf05ec0 399 /* Program page starting from the second half */
1da177e4
LT
400 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
401 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
daf05ec0 402 /* Program OOB */
1da177e4
LT
403 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
404 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
405 /* Erase sector */
406 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
407 /* Read status */
408 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
409 /* Read multi-plane status */
410 {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
411 /* Read ID */
412 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
413 /* Large page devices read page */
414 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
74216be4
AB
415 STATE_DATAOUT, STATE_READY}},
416 /* Large page devices random page read */
417 {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
418 STATE_DATAOUT, STATE_READY}},
1da177e4
LT
419};
420
514087e7
AH
421struct weak_block {
422 struct list_head list;
423 unsigned int erase_block_no;
424 unsigned int max_erases;
425 unsigned int erases_done;
426};
427
428static LIST_HEAD(weak_blocks);
429
430struct weak_page {
431 struct list_head list;
432 unsigned int page_no;
433 unsigned int max_writes;
434 unsigned int writes_done;
435};
436
437static LIST_HEAD(weak_pages);
438
439struct grave_page {
440 struct list_head list;
441 unsigned int page_no;
442 unsigned int max_reads;
443 unsigned int reads_done;
444};
445
446static LIST_HEAD(grave_pages);
447
57aa6b54
AH
448static unsigned long *erase_block_wear = NULL;
449static unsigned int wear_eb_count = 0;
450static unsigned long total_wear = 0;
57aa6b54 451
1da177e4
LT
452/* MTD structure for NAND controller */
453static struct mtd_info *nsmtd;
454
5346c27c
EG
455static int nandsim_debugfs_show(struct seq_file *m, void *private)
456{
457 unsigned long wmin = -1, wmax = 0, avg;
458 unsigned long deciles[10], decile_max[10], tot = 0;
459 unsigned int i;
460
461 /* Calc wear stats */
462 for (i = 0; i < wear_eb_count; ++i) {
463 unsigned long wear = erase_block_wear[i];
464 if (wear < wmin)
465 wmin = wear;
466 if (wear > wmax)
467 wmax = wear;
468 tot += wear;
469 }
470
471 for (i = 0; i < 9; ++i) {
472 deciles[i] = 0;
473 decile_max[i] = (wmax * (i + 1) + 5) / 10;
474 }
475 deciles[9] = 0;
476 decile_max[9] = wmax;
477 for (i = 0; i < wear_eb_count; ++i) {
478 int d;
479 unsigned long wear = erase_block_wear[i];
480 for (d = 0; d < 10; ++d)
481 if (wear <= decile_max[d]) {
482 deciles[d] += 1;
483 break;
484 }
485 }
486 avg = tot / wear_eb_count;
487
488 /* Output wear report */
489 seq_printf(m, "Total numbers of erases: %lu\n", tot);
490 seq_printf(m, "Number of erase blocks: %u\n", wear_eb_count);
491 seq_printf(m, "Average number of erases: %lu\n", avg);
492 seq_printf(m, "Maximum number of erases: %lu\n", wmax);
493 seq_printf(m, "Minimum number of erases: %lu\n", wmin);
494 for (i = 0; i < 10; ++i) {
495 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
496 if (from > decile_max[i])
497 continue;
498 seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
499 from,
500 decile_max[i],
501 deciles[i]);
502 }
503
504 return 0;
505}
506
507static int nandsim_debugfs_open(struct inode *inode, struct file *file)
508{
509 return single_open(file, nandsim_debugfs_show, inode->i_private);
510}
511
512static const struct file_operations dfs_fops = {
513 .open = nandsim_debugfs_open,
514 .read = seq_read,
515 .llseek = seq_lseek,
516 .release = single_release,
517};
518
519/**
520 * nandsim_debugfs_create - initialize debugfs
521 * @dev: nandsim device description object
522 *
523 * This function creates all debugfs files for UBI device @ubi. Returns zero in
524 * case of success and a negative error code in case of failure.
525 */
526static int nandsim_debugfs_create(struct nandsim *dev)
527{
528 struct nandsim_debug_info *dbg = &dev->dbg;
529 struct dentry *dent;
530 int err;
531
532 if (!IS_ENABLED(CONFIG_DEBUG_FS))
533 return 0;
534
535 dent = debugfs_create_dir("nandsim", NULL);
536 if (IS_ERR_OR_NULL(dent)) {
537 int err = dent ? -ENODEV : PTR_ERR(dent);
538
539 NS_ERR("cannot create \"nandsim\" debugfs directory, err %d\n",
540 err);
541 return err;
542 }
543 dbg->dfs_root = dent;
544
545 dent = debugfs_create_file("wear_report", S_IRUSR,
546 dbg->dfs_root, dev, &dfs_fops);
547 if (IS_ERR_OR_NULL(dent))
548 goto out_remove;
549 dbg->dfs_wear_report = dent;
550
551 return 0;
552
553out_remove:
554 debugfs_remove_recursive(dbg->dfs_root);
555 err = dent ? PTR_ERR(dent) : -ENODEV;
556 return err;
557}
558
559/**
560 * nandsim_debugfs_remove - destroy all debugfs files
561 */
562static void nandsim_debugfs_remove(struct nandsim *ns)
563{
564 if (IS_ENABLED(CONFIG_DEBUG_FS))
565 debugfs_remove_recursive(ns->dbg.dfs_root);
566}
567
d086d436 568/*
8a4c2495
AK
569 * Allocate array of page pointers, create slab allocation for an array
570 * and initialize the array by NULL pointers.
d086d436
VK
571 *
572 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
573 */
a5602146 574static int alloc_device(struct nandsim *ns)
d086d436 575{
a9fc8991
AH
576 struct file *cfile;
577 int i, err;
578
579 if (cache_file) {
580 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
581 if (IS_ERR(cfile))
582 return PTR_ERR(cfile);
583 if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
584 NS_ERR("alloc_device: cache file not readable\n");
585 err = -EINVAL;
586 goto err_close;
587 }
588 if (!cfile->f_op->write && !cfile->f_op->aio_write) {
589 NS_ERR("alloc_device: cache file not writeable\n");
590 err = -EINVAL;
591 goto err_close;
592 }
309b5e4e 593 ns->pages_written = vzalloc(ns->geom.pgnum);
a9fc8991
AH
594 if (!ns->pages_written) {
595 NS_ERR("alloc_device: unable to allocate pages written array\n");
596 err = -ENOMEM;
597 goto err_close;
598 }
599 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
600 if (!ns->file_buf) {
601 NS_ERR("alloc_device: unable to allocate file buf\n");
602 err = -ENOMEM;
603 goto err_free;
604 }
605 ns->cfile = cfile;
a9fc8991
AH
606 return 0;
607 }
d086d436
VK
608
609 ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
610 if (!ns->pages) {
a9fc8991 611 NS_ERR("alloc_device: unable to allocate page array\n");
d086d436
VK
612 return -ENOMEM;
613 }
614 for (i = 0; i < ns->geom.pgnum; i++) {
615 ns->pages[i].byte = NULL;
616 }
8a4c2495
AK
617 ns->nand_pages_slab = kmem_cache_create("nandsim",
618 ns->geom.pgszoob, 0, 0, NULL);
619 if (!ns->nand_pages_slab) {
620 NS_ERR("cache_create: unable to create kmem_cache\n");
621 return -ENOMEM;
622 }
d086d436
VK
623
624 return 0;
a9fc8991
AH
625
626err_free:
627 vfree(ns->pages_written);
628err_close:
629 filp_close(cfile, NULL);
630 return err;
d086d436
VK
631}
632
633/*
634 * Free any allocated pages, and free the array of page pointers.
635 */
a5602146 636static void free_device(struct nandsim *ns)
d086d436
VK
637{
638 int i;
639
a9fc8991
AH
640 if (ns->cfile) {
641 kfree(ns->file_buf);
642 vfree(ns->pages_written);
643 filp_close(ns->cfile, NULL);
644 return;
645 }
646
d086d436
VK
647 if (ns->pages) {
648 for (i = 0; i < ns->geom.pgnum; i++) {
649 if (ns->pages[i].byte)
8a4c2495
AK
650 kmem_cache_free(ns->nand_pages_slab,
651 ns->pages[i].byte);
d086d436 652 }
8a4c2495 653 kmem_cache_destroy(ns->nand_pages_slab);
d086d436
VK
654 vfree(ns->pages);
655 }
656}
657
2b77a0ed
AH
658static char *get_partition_name(int i)
659{
660 char buf[64];
661 sprintf(buf, "NAND simulator partition %d", i);
662 return kstrdup(buf, GFP_KERNEL);
663}
664
1da177e4
LT
665/*
666 * Initialize the nandsim structure.
667 *
668 * RETURNS: 0 if success, -ERRNO if failure.
669 */
a5602146 670static int init_nandsim(struct mtd_info *mtd)
1da177e4 671{
7b8516b7
KV
672 struct nand_chip *chip = mtd->priv;
673 struct nandsim *ns = chip->priv;
2b77a0ed 674 int i, ret = 0;
0f07a0be
DW
675 uint64_t remains;
676 uint64_t next_offset;
1da177e4
LT
677
678 if (NS_IS_INITIALIZED(ns)) {
679 NS_ERR("init_nandsim: nandsim is already initialized\n");
680 return -EIO;
681 }
682
683 /* Force mtd to not do delays */
684 chip->chip_delay = 0;
685
686 /* Initialize the NAND flash parameters */
687 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
688 ns->geom.totsz = mtd->size;
28318776 689 ns->geom.pgsz = mtd->writesize;
1da177e4
LT
690 ns->geom.oobsz = mtd->oobsize;
691 ns->geom.secsz = mtd->erasesize;
692 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
596fd462 693 ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz);
6eda7a55 694 ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
1da177e4
LT
695 ns->geom.secshift = ffs(ns->geom.secsz) - 1;
696 ns->geom.pgshift = chip->page_shift;
697 ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
698 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
699 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
700 ns->options = 0;
701
702 if (ns->geom.pgsz == 256) {
703 ns->options |= OPT_PAGE256;
704 }
705 else if (ns->geom.pgsz == 512) {
831d316b 706 ns->options |= OPT_PAGE512;
1da177e4
LT
707 if (ns->busw == 8)
708 ns->options |= OPT_PAGE512_8BIT;
709 } else if (ns->geom.pgsz == 2048) {
710 ns->options |= OPT_PAGE2048;
75352662
SAS
711 } else if (ns->geom.pgsz == 4096) {
712 ns->options |= OPT_PAGE4096;
1da177e4
LT
713 } else {
714 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
715 return -EIO;
716 }
717
718 if (ns->options & OPT_SMALLPAGE) {
af3deccf 719 if (ns->geom.totsz <= (32 << 20)) {
1da177e4
LT
720 ns->geom.pgaddrbytes = 3;
721 ns->geom.secaddrbytes = 2;
722 } else {
723 ns->geom.pgaddrbytes = 4;
724 ns->geom.secaddrbytes = 3;
725 }
726 } else {
727 if (ns->geom.totsz <= (128 << 20)) {
4a0c50c0 728 ns->geom.pgaddrbytes = 4;
1da177e4
LT
729 ns->geom.secaddrbytes = 2;
730 } else {
731 ns->geom.pgaddrbytes = 5;
732 ns->geom.secaddrbytes = 3;
733 }
734 }
61b03bd7 735
2b77a0ed
AH
736 /* Fill the partition_info structure */
737 if (parts_num > ARRAY_SIZE(ns->partitions)) {
738 NS_ERR("too many partitions.\n");
739 ret = -EINVAL;
740 goto error;
741 }
742 remains = ns->geom.totsz;
743 next_offset = 0;
744 for (i = 0; i < parts_num; ++i) {
0f07a0be 745 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
6eda7a55
AH
746
747 if (!part_sz || part_sz > remains) {
2b77a0ed
AH
748 NS_ERR("bad partition size.\n");
749 ret = -EINVAL;
750 goto error;
751 }
752 ns->partitions[i].name = get_partition_name(i);
753 ns->partitions[i].offset = next_offset;
6eda7a55 754 ns->partitions[i].size = part_sz;
2b77a0ed
AH
755 next_offset += ns->partitions[i].size;
756 remains -= ns->partitions[i].size;
757 }
758 ns->nbparts = parts_num;
759 if (remains) {
760 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
761 NS_ERR("too many partitions.\n");
762 ret = -EINVAL;
763 goto error;
764 }
765 ns->partitions[i].name = get_partition_name(i);
766 ns->partitions[i].offset = next_offset;
767 ns->partitions[i].size = remains;
768 ns->nbparts += 1;
769 }
770
1da177e4
LT
771 /* Detect how many ID bytes the NAND chip outputs */
772 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
773 if (second_id_byte != nand_flash_ids[i].id)
774 continue;
1da177e4
LT
775 }
776
777 if (ns->busw == 16)
778 NS_WARN("16-bit flashes support wasn't tested\n");
779
e4c094a5
AM
780 printk("flash size: %llu MiB\n",
781 (unsigned long long)ns->geom.totsz >> 20);
1da177e4
LT
782 printk("page size: %u bytes\n", ns->geom.pgsz);
783 printk("OOB area size: %u bytes\n", ns->geom.oobsz);
784 printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
785 printk("pages number: %u\n", ns->geom.pgnum);
786 printk("pages per sector: %u\n", ns->geom.pgsec);
787 printk("bus width: %u\n", ns->busw);
788 printk("bits in sector size: %u\n", ns->geom.secshift);
789 printk("bits in page size: %u\n", ns->geom.pgshift);
e4c094a5
AM
790 printk("bits in OOB size: %u\n", ns->geom.oobshift);
791 printk("flash size with OOB: %llu KiB\n",
792 (unsigned long long)ns->geom.totszoob >> 10);
1da177e4
LT
793 printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
794 printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
795 printk("options: %#x\n", ns->options);
796
2b77a0ed 797 if ((ret = alloc_device(ns)) != 0)
d086d436 798 goto error;
1da177e4
LT
799
800 /* Allocate / initialize the internal buffer */
801 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
802 if (!ns->buf.byte) {
803 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
804 ns->geom.pgszoob);
2b77a0ed 805 ret = -ENOMEM;
1da177e4
LT
806 goto error;
807 }
808 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
809
1da177e4
LT
810 return 0;
811
812error:
d086d436 813 free_device(ns);
1da177e4 814
2b77a0ed 815 return ret;
1da177e4
LT
816}
817
818/*
819 * Free the nandsim structure.
820 */
a5602146 821static void free_nandsim(struct nandsim *ns)
1da177e4
LT
822{
823 kfree(ns->buf.byte);
d086d436 824 free_device(ns);
1da177e4
LT
825
826 return;
827}
828
514087e7
AH
829static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
830{
831 char *w;
832 int zero_ok;
833 unsigned int erase_block_no;
834 loff_t offset;
835
836 if (!badblocks)
837 return 0;
838 w = badblocks;
839 do {
840 zero_ok = (*w == '0' ? 1 : 0);
841 erase_block_no = simple_strtoul(w, &w, 0);
842 if (!zero_ok && !erase_block_no) {
843 NS_ERR("invalid badblocks.\n");
844 return -EINVAL;
845 }
846 offset = erase_block_no * ns->geom.secsz;
5942ddbc 847 if (mtd_block_markbad(mtd, offset)) {
514087e7
AH
848 NS_ERR("invalid badblocks.\n");
849 return -EINVAL;
850 }
851 if (*w == ',')
852 w += 1;
853 } while (*w);
854 return 0;
855}
856
857static int parse_weakblocks(void)
858{
859 char *w;
860 int zero_ok;
861 unsigned int erase_block_no;
862 unsigned int max_erases;
863 struct weak_block *wb;
864
865 if (!weakblocks)
866 return 0;
867 w = weakblocks;
868 do {
869 zero_ok = (*w == '0' ? 1 : 0);
870 erase_block_no = simple_strtoul(w, &w, 0);
871 if (!zero_ok && !erase_block_no) {
872 NS_ERR("invalid weakblocks.\n");
873 return -EINVAL;
874 }
875 max_erases = 3;
876 if (*w == ':') {
877 w += 1;
878 max_erases = simple_strtoul(w, &w, 0);
879 }
880 if (*w == ',')
881 w += 1;
882 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
883 if (!wb) {
884 NS_ERR("unable to allocate memory.\n");
885 return -ENOMEM;
886 }
887 wb->erase_block_no = erase_block_no;
888 wb->max_erases = max_erases;
889 list_add(&wb->list, &weak_blocks);
890 } while (*w);
891 return 0;
892}
893
894static int erase_error(unsigned int erase_block_no)
895{
896 struct weak_block *wb;
897
898 list_for_each_entry(wb, &weak_blocks, list)
899 if (wb->erase_block_no == erase_block_no) {
900 if (wb->erases_done >= wb->max_erases)
901 return 1;
902 wb->erases_done += 1;
903 return 0;
904 }
905 return 0;
906}
907
908static int parse_weakpages(void)
909{
910 char *w;
911 int zero_ok;
912 unsigned int page_no;
913 unsigned int max_writes;
914 struct weak_page *wp;
915
916 if (!weakpages)
917 return 0;
918 w = weakpages;
919 do {
920 zero_ok = (*w == '0' ? 1 : 0);
921 page_no = simple_strtoul(w, &w, 0);
922 if (!zero_ok && !page_no) {
923 NS_ERR("invalid weakpagess.\n");
924 return -EINVAL;
925 }
926 max_writes = 3;
927 if (*w == ':') {
928 w += 1;
929 max_writes = simple_strtoul(w, &w, 0);
930 }
931 if (*w == ',')
932 w += 1;
933 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
934 if (!wp) {
935 NS_ERR("unable to allocate memory.\n");
936 return -ENOMEM;
937 }
938 wp->page_no = page_no;
939 wp->max_writes = max_writes;
940 list_add(&wp->list, &weak_pages);
941 } while (*w);
942 return 0;
943}
944
945static int write_error(unsigned int page_no)
946{
947 struct weak_page *wp;
948
949 list_for_each_entry(wp, &weak_pages, list)
950 if (wp->page_no == page_no) {
951 if (wp->writes_done >= wp->max_writes)
952 return 1;
953 wp->writes_done += 1;
954 return 0;
955 }
956 return 0;
957}
958
959static int parse_gravepages(void)
960{
961 char *g;
962 int zero_ok;
963 unsigned int page_no;
964 unsigned int max_reads;
965 struct grave_page *gp;
966
967 if (!gravepages)
968 return 0;
969 g = gravepages;
970 do {
971 zero_ok = (*g == '0' ? 1 : 0);
972 page_no = simple_strtoul(g, &g, 0);
973 if (!zero_ok && !page_no) {
974 NS_ERR("invalid gravepagess.\n");
975 return -EINVAL;
976 }
977 max_reads = 3;
978 if (*g == ':') {
979 g += 1;
980 max_reads = simple_strtoul(g, &g, 0);
981 }
982 if (*g == ',')
983 g += 1;
984 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
985 if (!gp) {
986 NS_ERR("unable to allocate memory.\n");
987 return -ENOMEM;
988 }
989 gp->page_no = page_no;
990 gp->max_reads = max_reads;
991 list_add(&gp->list, &grave_pages);
992 } while (*g);
993 return 0;
994}
995
996static int read_error(unsigned int page_no)
997{
998 struct grave_page *gp;
999
1000 list_for_each_entry(gp, &grave_pages, list)
1001 if (gp->page_no == page_no) {
1002 if (gp->reads_done >= gp->max_reads)
1003 return 1;
1004 gp->reads_done += 1;
1005 return 0;
1006 }
1007 return 0;
1008}
1009
1010static void free_lists(void)
1011{
1012 struct list_head *pos, *n;
1013 list_for_each_safe(pos, n, &weak_blocks) {
1014 list_del(pos);
1015 kfree(list_entry(pos, struct weak_block, list));
1016 }
1017 list_for_each_safe(pos, n, &weak_pages) {
1018 list_del(pos);
1019 kfree(list_entry(pos, struct weak_page, list));
1020 }
1021 list_for_each_safe(pos, n, &grave_pages) {
1022 list_del(pos);
1023 kfree(list_entry(pos, struct grave_page, list));
1024 }
57aa6b54
AH
1025 kfree(erase_block_wear);
1026}
1027
1028static int setup_wear_reporting(struct mtd_info *mtd)
1029{
1030 size_t mem;
1031
596fd462 1032 wear_eb_count = div_u64(mtd->size, mtd->erasesize);
57aa6b54
AH
1033 mem = wear_eb_count * sizeof(unsigned long);
1034 if (mem / sizeof(unsigned long) != wear_eb_count) {
1035 NS_ERR("Too many erase blocks for wear reporting\n");
1036 return -ENOMEM;
1037 }
1038 erase_block_wear = kzalloc(mem, GFP_KERNEL);
1039 if (!erase_block_wear) {
1040 NS_ERR("Too many erase blocks for wear reporting\n");
1041 return -ENOMEM;
1042 }
1043 return 0;
1044}
1045
1046static void update_wear(unsigned int erase_block_no)
1047{
57aa6b54
AH
1048 if (!erase_block_wear)
1049 return;
1050 total_wear += 1;
5346c27c
EG
1051 /*
1052 * TODO: Notify this through a debugfs entry,
1053 * instead of showing an error message.
1054 */
57aa6b54
AH
1055 if (total_wear == 0)
1056 NS_ERR("Erase counter total overflow\n");
1057 erase_block_wear[erase_block_no] += 1;
1058 if (erase_block_wear[erase_block_no] == 0)
1059 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
514087e7
AH
1060}
1061
1da177e4
LT
1062/*
1063 * Returns the string representation of 'state' state.
1064 */
a5602146 1065static char *get_state_name(uint32_t state)
1da177e4
LT
1066{
1067 switch (NS_STATE(state)) {
1068 case STATE_CMD_READ0:
1069 return "STATE_CMD_READ0";
1070 case STATE_CMD_READ1:
1071 return "STATE_CMD_READ1";
1072 case STATE_CMD_PAGEPROG:
1073 return "STATE_CMD_PAGEPROG";
1074 case STATE_CMD_READOOB:
1075 return "STATE_CMD_READOOB";
1076 case STATE_CMD_READSTART:
1077 return "STATE_CMD_READSTART";
1078 case STATE_CMD_ERASE1:
1079 return "STATE_CMD_ERASE1";
1080 case STATE_CMD_STATUS:
1081 return "STATE_CMD_STATUS";
1082 case STATE_CMD_STATUS_M:
1083 return "STATE_CMD_STATUS_M";
1084 case STATE_CMD_SEQIN:
1085 return "STATE_CMD_SEQIN";
1086 case STATE_CMD_READID:
1087 return "STATE_CMD_READID";
1088 case STATE_CMD_ERASE2:
1089 return "STATE_CMD_ERASE2";
1090 case STATE_CMD_RESET:
1091 return "STATE_CMD_RESET";
74216be4
AB
1092 case STATE_CMD_RNDOUT:
1093 return "STATE_CMD_RNDOUT";
1094 case STATE_CMD_RNDOUTSTART:
1095 return "STATE_CMD_RNDOUTSTART";
1da177e4
LT
1096 case STATE_ADDR_PAGE:
1097 return "STATE_ADDR_PAGE";
1098 case STATE_ADDR_SEC:
1099 return "STATE_ADDR_SEC";
1100 case STATE_ADDR_ZERO:
1101 return "STATE_ADDR_ZERO";
74216be4
AB
1102 case STATE_ADDR_COLUMN:
1103 return "STATE_ADDR_COLUMN";
1da177e4
LT
1104 case STATE_DATAIN:
1105 return "STATE_DATAIN";
1106 case STATE_DATAOUT:
1107 return "STATE_DATAOUT";
1108 case STATE_DATAOUT_ID:
1109 return "STATE_DATAOUT_ID";
1110 case STATE_DATAOUT_STATUS:
1111 return "STATE_DATAOUT_STATUS";
1112 case STATE_DATAOUT_STATUS_M:
1113 return "STATE_DATAOUT_STATUS_M";
1114 case STATE_READY:
1115 return "STATE_READY";
1116 case STATE_UNKNOWN:
1117 return "STATE_UNKNOWN";
1118 }
1119
1120 NS_ERR("get_state_name: unknown state, BUG\n");
1121 return NULL;
1122}
1123
1124/*
1125 * Check if command is valid.
1126 *
1127 * RETURNS: 1 if wrong command, 0 if right.
1128 */
a5602146 1129static int check_command(int cmd)
1da177e4
LT
1130{
1131 switch (cmd) {
61b03bd7 1132
1da177e4 1133 case NAND_CMD_READ0:
74216be4 1134 case NAND_CMD_READ1:
1da177e4
LT
1135 case NAND_CMD_READSTART:
1136 case NAND_CMD_PAGEPROG:
1137 case NAND_CMD_READOOB:
1138 case NAND_CMD_ERASE1:
1139 case NAND_CMD_STATUS:
1140 case NAND_CMD_SEQIN:
1141 case NAND_CMD_READID:
1142 case NAND_CMD_ERASE2:
1143 case NAND_CMD_RESET:
74216be4
AB
1144 case NAND_CMD_RNDOUT:
1145 case NAND_CMD_RNDOUTSTART:
1da177e4 1146 return 0;
61b03bd7 1147
1da177e4
LT
1148 case NAND_CMD_STATUS_MULTI:
1149 default:
1150 return 1;
1151 }
1152}
1153
1154/*
1155 * Returns state after command is accepted by command number.
1156 */
a5602146 1157static uint32_t get_state_by_command(unsigned command)
1da177e4
LT
1158{
1159 switch (command) {
1160 case NAND_CMD_READ0:
1161 return STATE_CMD_READ0;
1162 case NAND_CMD_READ1:
1163 return STATE_CMD_READ1;
1164 case NAND_CMD_PAGEPROG:
1165 return STATE_CMD_PAGEPROG;
1166 case NAND_CMD_READSTART:
1167 return STATE_CMD_READSTART;
1168 case NAND_CMD_READOOB:
1169 return STATE_CMD_READOOB;
1170 case NAND_CMD_ERASE1:
1171 return STATE_CMD_ERASE1;
1172 case NAND_CMD_STATUS:
1173 return STATE_CMD_STATUS;
1174 case NAND_CMD_STATUS_MULTI:
1175 return STATE_CMD_STATUS_M;
1176 case NAND_CMD_SEQIN:
1177 return STATE_CMD_SEQIN;
1178 case NAND_CMD_READID:
1179 return STATE_CMD_READID;
1180 case NAND_CMD_ERASE2:
1181 return STATE_CMD_ERASE2;
1182 case NAND_CMD_RESET:
1183 return STATE_CMD_RESET;
74216be4
AB
1184 case NAND_CMD_RNDOUT:
1185 return STATE_CMD_RNDOUT;
1186 case NAND_CMD_RNDOUTSTART:
1187 return STATE_CMD_RNDOUTSTART;
1da177e4
LT
1188 }
1189
1190 NS_ERR("get_state_by_command: unknown command, BUG\n");
1191 return 0;
1192}
1193
1194/*
1195 * Move an address byte to the correspondent internal register.
1196 */
a5602146 1197static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1da177e4
LT
1198{
1199 uint byte = (uint)bt;
61b03bd7 1200
1da177e4
LT
1201 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1202 ns->regs.column |= (byte << 8 * ns->regs.count);
1203 else {
1204 ns->regs.row |= (byte << 8 * (ns->regs.count -
1205 ns->geom.pgaddrbytes +
1206 ns->geom.secaddrbytes));
1207 }
1208
1209 return;
1210}
61b03bd7 1211
1da177e4
LT
1212/*
1213 * Switch to STATE_READY state.
1214 */
a5602146 1215static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1da177e4
LT
1216{
1217 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1218
1219 ns->state = STATE_READY;
1220 ns->nxstate = STATE_UNKNOWN;
1221 ns->op = NULL;
1222 ns->npstates = 0;
1223 ns->stateidx = 0;
1224 ns->regs.num = 0;
1225 ns->regs.count = 0;
1226 ns->regs.off = 0;
1227 ns->regs.row = 0;
1228 ns->regs.column = 0;
1229 ns->regs.status = status;
1230}
1231
1232/*
1233 * If the operation isn't known yet, try to find it in the global array
1234 * of supported operations.
1235 *
1236 * Operation can be unknown because of the following.
daf05ec0 1237 * 1. New command was accepted and this is the first call to find the
1da177e4 1238 * correspondent states chain. In this case ns->npstates = 0;
daf05ec0 1239 * 2. There are several operations which begin with the same command(s)
1da177e4
LT
1240 * (for example program from the second half and read from the
1241 * second half operations both begin with the READ1 command). In this
1242 * case the ns->pstates[] array contains previous states.
61b03bd7 1243 *
1da177e4
LT
1244 * Thus, the function tries to find operation containing the following
1245 * states (if the 'flag' parameter is 0):
1246 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1247 *
1248 * If (one and only one) matching operation is found, it is accepted (
1249 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1250 * zeroed).
61b03bd7 1251 *
daf05ec0 1252 * If there are several matches, the current state is pushed to the
1da177e4
LT
1253 * ns->pstates.
1254 *
1255 * The operation can be unknown only while commands are input to the chip.
1256 * As soon as address command is accepted, the operation must be known.
1257 * In such situation the function is called with 'flag' != 0, and the
1258 * operation is searched using the following pattern:
1259 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
61b03bd7 1260 *
daf05ec0 1261 * It is supposed that this pattern must either match one operation or
1da177e4
LT
1262 * none. There can't be ambiguity in that case.
1263 *
daf05ec0 1264 * If no matches found, the function does the following:
1da177e4
LT
1265 * 1. if there are saved states present, try to ignore them and search
1266 * again only using the last command. If nothing was found, switch
1267 * to the STATE_READY state.
1268 * 2. if there are no saved states, switch to the STATE_READY state.
1269 *
1270 * RETURNS: -2 - no matched operations found.
1271 * -1 - several matches.
1272 * 0 - operation is found.
1273 */
a5602146 1274static int find_operation(struct nandsim *ns, uint32_t flag)
1da177e4
LT
1275{
1276 int opsfound = 0;
1277 int i, j, idx = 0;
61b03bd7 1278
1da177e4
LT
1279 for (i = 0; i < NS_OPER_NUM; i++) {
1280
1281 int found = 1;
61b03bd7 1282
1da177e4
LT
1283 if (!(ns->options & ops[i].reqopts))
1284 /* Ignore operations we can't perform */
1285 continue;
61b03bd7 1286
1da177e4
LT
1287 if (flag) {
1288 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1289 continue;
1290 } else {
1291 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1292 continue;
1293 }
1294
61b03bd7 1295 for (j = 0; j < ns->npstates; j++)
1da177e4
LT
1296 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1297 && (ns->options & ops[idx].reqopts)) {
1298 found = 0;
1299 break;
1300 }
1301
1302 if (found) {
1303 idx = i;
1304 opsfound += 1;
1305 }
1306 }
1307
1308 if (opsfound == 1) {
1309 /* Exact match */
1310 ns->op = &ops[idx].states[0];
1311 if (flag) {
61b03bd7 1312 /*
1da177e4
LT
1313 * In this case the find_operation function was
1314 * called when address has just began input. But it isn't
1315 * yet fully input and the current state must
1316 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1317 * state must be the next state (ns->nxstate).
1318 */
1319 ns->stateidx = ns->npstates - 1;
1320 } else {
1321 ns->stateidx = ns->npstates;
1322 }
1323 ns->npstates = 0;
1324 ns->state = ns->op[ns->stateidx];
1325 ns->nxstate = ns->op[ns->stateidx + 1];
1326 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1327 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1328 return 0;
1329 }
61b03bd7 1330
1da177e4
LT
1331 if (opsfound == 0) {
1332 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1333 if (ns->npstates != 0) {
1334 NS_DBG("find_operation: no operation found, try again with state %s\n",
1335 get_state_name(ns->state));
1336 ns->npstates = 0;
1337 return find_operation(ns, 0);
1338
1339 }
1340 NS_DBG("find_operation: no operations found\n");
1341 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1342 return -2;
1343 }
61b03bd7 1344
1da177e4
LT
1345 if (flag) {
1346 /* This shouldn't happen */
1347 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1348 return -2;
1349 }
61b03bd7 1350
1da177e4
LT
1351 NS_DBG("find_operation: there is still ambiguity\n");
1352
1353 ns->pstates[ns->npstates++] = ns->state;
1354
1355 return -1;
1356}
1357
a9fc8991
AH
1358static void put_pages(struct nandsim *ns)
1359{
1360 int i;
1361
1362 for (i = 0; i < ns->held_cnt; i++)
1363 page_cache_release(ns->held_pages[i]);
1364}
1365
1366/* Get page cache pages in advance to provide NOFS memory allocation */
1367static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1368{
1369 pgoff_t index, start_index, end_index;
1370 struct page *page;
1371 struct address_space *mapping = file->f_mapping;
1372
1373 start_index = pos >> PAGE_CACHE_SHIFT;
1374 end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1375 if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1376 return -EINVAL;
1377 ns->held_cnt = 0;
1378 for (index = start_index; index <= end_index; index++) {
1379 page = find_get_page(mapping, index);
1380 if (page == NULL) {
1381 page = find_or_create_page(mapping, index, GFP_NOFS);
1382 if (page == NULL) {
1383 write_inode_now(mapping->host, 1);
1384 page = find_or_create_page(mapping, index, GFP_NOFS);
1385 }
1386 if (page == NULL) {
1387 put_pages(ns);
1388 return -ENOMEM;
1389 }
1390 unlock_page(page);
1391 }
1392 ns->held_pages[ns->held_cnt++] = page;
1393 }
1394 return 0;
1395}
1396
1397static int set_memalloc(void)
1398{
1399 if (current->flags & PF_MEMALLOC)
1400 return 0;
1401 current->flags |= PF_MEMALLOC;
1402 return 1;
1403}
1404
1405static void clear_memalloc(int memalloc)
1406{
1407 if (memalloc)
1408 current->flags &= ~PF_MEMALLOC;
1409}
1410
1411static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1412{
1413 mm_segment_t old_fs;
1414 ssize_t tx;
1415 int err, memalloc;
1416
1417 err = get_pages(ns, file, count, *pos);
1418 if (err)
1419 return err;
1420 old_fs = get_fs();
1421 set_fs(get_ds());
1422 memalloc = set_memalloc();
1423 tx = vfs_read(file, (char __user *)buf, count, pos);
1424 clear_memalloc(memalloc);
1425 set_fs(old_fs);
1426 put_pages(ns);
1427 return tx;
1428}
1429
1430static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1431{
1432 mm_segment_t old_fs;
1433 ssize_t tx;
1434 int err, memalloc;
1435
1436 err = get_pages(ns, file, count, *pos);
1437 if (err)
1438 return err;
1439 old_fs = get_fs();
1440 set_fs(get_ds());
1441 memalloc = set_memalloc();
1442 tx = vfs_write(file, (char __user *)buf, count, pos);
1443 clear_memalloc(memalloc);
1444 set_fs(old_fs);
1445 put_pages(ns);
1446 return tx;
1447}
1448
d086d436
VK
1449/*
1450 * Returns a pointer to the current page.
1451 */
1452static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1453{
1454 return &(ns->pages[ns->regs.row]);
1455}
1456
1457/*
1458 * Retuns a pointer to the current byte, within the current page.
1459 */
1460static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1461{
1462 return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1463}
1464
a9fc8991
AH
1465int do_read_error(struct nandsim *ns, int num)
1466{
1467 unsigned int page_no = ns->regs.row;
1468
1469 if (read_error(page_no)) {
7e45bf83 1470 prandom_bytes(ns->buf.byte, num);
a9fc8991
AH
1471 NS_WARN("simulating read error in page %u\n", page_no);
1472 return 1;
1473 }
1474 return 0;
1475}
1476
1477void do_bit_flips(struct nandsim *ns, int num)
1478{
1479 if (bitflips && random32() < (1 << 22)) {
1480 int flips = 1;
1481 if (bitflips > 1)
1482 flips = (random32() % (int) bitflips) + 1;
1483 while (flips--) {
1484 int pos = random32() % (num * 8);
1485 ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1486 NS_WARN("read_page: flipping bit %d in page %d "
1487 "reading from %d ecc: corrected=%u failed=%u\n",
1488 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1489 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1490 }
1491 }
1492}
1493
d086d436
VK
1494/*
1495 * Fill the NAND buffer with data read from the specified page.
1496 */
1497static void read_page(struct nandsim *ns, int num)
1498{
1499 union ns_mem *mypage;
1500
a9fc8991
AH
1501 if (ns->cfile) {
1502 if (!ns->pages_written[ns->regs.row]) {
1503 NS_DBG("read_page: page %d not written\n", ns->regs.row);
1504 memset(ns->buf.byte, 0xFF, num);
1505 } else {
1506 loff_t pos;
1507 ssize_t tx;
1508
1509 NS_DBG("read_page: page %d written, reading from %d\n",
1510 ns->regs.row, ns->regs.column + ns->regs.off);
1511 if (do_read_error(ns, num))
1512 return;
1513 pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1514 tx = read_file(ns, ns->cfile, ns->buf.byte, num, &pos);
1515 if (tx != num) {
1516 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1517 return;
1518 }
1519 do_bit_flips(ns, num);
1520 }
1521 return;
1522 }
1523
d086d436
VK
1524 mypage = NS_GET_PAGE(ns);
1525 if (mypage->byte == NULL) {
1526 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1527 memset(ns->buf.byte, 0xFF, num);
1528 } else {
1529 NS_DBG("read_page: page %d allocated, reading from %d\n",
1530 ns->regs.row, ns->regs.column + ns->regs.off);
a9fc8991 1531 if (do_read_error(ns, num))
514087e7 1532 return;
d086d436 1533 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
a9fc8991 1534 do_bit_flips(ns, num);
d086d436
VK
1535 }
1536}
1537
1538/*
1539 * Erase all pages in the specified sector.
1540 */
1541static void erase_sector(struct nandsim *ns)
1542{
1543 union ns_mem *mypage;
1544 int i;
1545
a9fc8991
AH
1546 if (ns->cfile) {
1547 for (i = 0; i < ns->geom.pgsec; i++)
1548 if (ns->pages_written[ns->regs.row + i]) {
1549 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1550 ns->pages_written[ns->regs.row + i] = 0;
1551 }
1552 return;
1553 }
1554
d086d436
VK
1555 mypage = NS_GET_PAGE(ns);
1556 for (i = 0; i < ns->geom.pgsec; i++) {
1557 if (mypage->byte != NULL) {
1558 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
8a4c2495 1559 kmem_cache_free(ns->nand_pages_slab, mypage->byte);
d086d436
VK
1560 mypage->byte = NULL;
1561 }
1562 mypage++;
1563 }
1564}
1565
1566/*
1567 * Program the specified page with the contents from the NAND buffer.
1568 */
1569static int prog_page(struct nandsim *ns, int num)
1570{
82810b7b 1571 int i;
d086d436
VK
1572 union ns_mem *mypage;
1573 u_char *pg_off;
1574
a9fc8991
AH
1575 if (ns->cfile) {
1576 loff_t off, pos;
1577 ssize_t tx;
1578 int all;
1579
1580 NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1581 pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1582 off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1583 if (!ns->pages_written[ns->regs.row]) {
1584 all = 1;
1585 memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1586 } else {
1587 all = 0;
1588 pos = off;
1589 tx = read_file(ns, ns->cfile, pg_off, num, &pos);
1590 if (tx != num) {
1591 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1592 return -1;
1593 }
1594 }
1595 for (i = 0; i < num; i++)
1596 pg_off[i] &= ns->buf.byte[i];
1597 if (all) {
1598 pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1599 tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, &pos);
1600 if (tx != ns->geom.pgszoob) {
1601 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1602 return -1;
1603 }
1604 ns->pages_written[ns->regs.row] = 1;
1605 } else {
1606 pos = off;
1607 tx = write_file(ns, ns->cfile, pg_off, num, &pos);
1608 if (tx != num) {
1609 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1610 return -1;
1611 }
1612 }
1613 return 0;
1614 }
1615
d086d436
VK
1616 mypage = NS_GET_PAGE(ns);
1617 if (mypage->byte == NULL) {
1618 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
98b830d2
AB
1619 /*
1620 * We allocate memory with GFP_NOFS because a flash FS may
1621 * utilize this. If it is holding an FS lock, then gets here,
8a4c2495
AK
1622 * then kernel memory alloc runs writeback which goes to the FS
1623 * again and deadlocks. This was seen in practice.
98b830d2 1624 */
8a4c2495 1625 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
d086d436
VK
1626 if (mypage->byte == NULL) {
1627 NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1628 return -1;
1629 }
1630 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1631 }
1632
1633 pg_off = NS_PAGE_BYTE_OFF(ns);
82810b7b
AB
1634 for (i = 0; i < num; i++)
1635 pg_off[i] &= ns->buf.byte[i];
d086d436
VK
1636
1637 return 0;
1638}
1639
1da177e4
LT
1640/*
1641 * If state has any action bit, perform this action.
1642 *
1643 * RETURNS: 0 if success, -1 if error.
1644 */
a5602146 1645static int do_state_action(struct nandsim *ns, uint32_t action)
1da177e4 1646{
d086d436 1647 int num;
1da177e4 1648 int busdiv = ns->busw == 8 ? 1 : 2;
514087e7 1649 unsigned int erase_block_no, page_no;
1da177e4
LT
1650
1651 action &= ACTION_MASK;
61b03bd7 1652
1da177e4
LT
1653 /* Check that page address input is correct */
1654 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1655 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1656 return -1;
1657 }
1658
1659 switch (action) {
1660
1661 case ACTION_CPY:
1662 /*
1663 * Copy page data to the internal buffer.
1664 */
1665
1666 /* Column shouldn't be very large */
1667 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1668 NS_ERR("do_state_action: column number is too large\n");
1669 break;
1670 }
1671 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
d086d436 1672 read_page(ns, num);
1da177e4
LT
1673
1674 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1675 num, NS_RAW_OFFSET(ns) + ns->regs.off);
61b03bd7 1676
1da177e4
LT
1677 if (ns->regs.off == 0)
1678 NS_LOG("read page %d\n", ns->regs.row);
1679 else if (ns->regs.off < ns->geom.pgsz)
1680 NS_LOG("read page %d (second half)\n", ns->regs.row);
1681 else
1682 NS_LOG("read OOB of page %d\n", ns->regs.row);
61b03bd7 1683
1da177e4
LT
1684 NS_UDELAY(access_delay);
1685 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1686
1687 break;
1688
1689 case ACTION_SECERASE:
1690 /*
1691 * Erase sector.
1692 */
61b03bd7 1693
1da177e4
LT
1694 if (ns->lines.wp) {
1695 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1696 return -1;
1697 }
61b03bd7 1698
1da177e4
LT
1699 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1700 || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1701 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1702 return -1;
1703 }
61b03bd7 1704
1da177e4
LT
1705 ns->regs.row = (ns->regs.row <<
1706 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1707 ns->regs.column = 0;
61b03bd7 1708
514087e7
AH
1709 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1710
1da177e4
LT
1711 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1712 ns->regs.row, NS_RAW_OFFSET(ns));
514087e7 1713 NS_LOG("erase sector %u\n", erase_block_no);
1da177e4 1714
d086d436 1715 erase_sector(ns);
61b03bd7 1716
1da177e4 1717 NS_MDELAY(erase_delay);
61b03bd7 1718
57aa6b54
AH
1719 if (erase_block_wear)
1720 update_wear(erase_block_no);
1721
514087e7
AH
1722 if (erase_error(erase_block_no)) {
1723 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1724 return -1;
1725 }
1726
1da177e4
LT
1727 break;
1728
1729 case ACTION_PRGPAGE:
1730 /*
daf05ec0 1731 * Program page - move internal buffer data to the page.
1da177e4
LT
1732 */
1733
1734 if (ns->lines.wp) {
1735 NS_WARN("do_state_action: device is write-protected, programm\n");
1736 return -1;
1737 }
1738
1739 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1740 if (num != ns->regs.count) {
1741 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1742 ns->regs.count, num);
1743 return -1;
1744 }
1745
d086d436
VK
1746 if (prog_page(ns, num) == -1)
1747 return -1;
1da177e4 1748
514087e7
AH
1749 page_no = ns->regs.row;
1750
1da177e4
LT
1751 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1752 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1753 NS_LOG("programm page %d\n", ns->regs.row);
61b03bd7 1754
1da177e4
LT
1755 NS_UDELAY(programm_delay);
1756 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
61b03bd7 1757
514087e7
AH
1758 if (write_error(page_no)) {
1759 NS_WARN("simulating write failure in page %u\n", page_no);
1760 return -1;
1761 }
1762
1da177e4 1763 break;
61b03bd7 1764
1da177e4
LT
1765 case ACTION_ZEROOFF:
1766 NS_DBG("do_state_action: set internal offset to 0\n");
1767 ns->regs.off = 0;
1768 break;
1769
1770 case ACTION_HALFOFF:
1771 if (!(ns->options & OPT_PAGE512_8BIT)) {
1772 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1773 "byte page size 8x chips\n");
1774 return -1;
1775 }
1776 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1777 ns->regs.off = ns->geom.pgsz/2;
1778 break;
1779
1780 case ACTION_OOBOFF:
1781 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1782 ns->regs.off = ns->geom.pgsz;
1783 break;
61b03bd7 1784
1da177e4
LT
1785 default:
1786 NS_DBG("do_state_action: BUG! unknown action\n");
1787 }
1788
1789 return 0;
1790}
1791
1792/*
1793 * Switch simulator's state.
1794 */
a5602146 1795static void switch_state(struct nandsim *ns)
1da177e4
LT
1796{
1797 if (ns->op) {
1798 /*
1799 * The current operation have already been identified.
1800 * Just follow the states chain.
1801 */
61b03bd7 1802
1da177e4
LT
1803 ns->stateidx += 1;
1804 ns->state = ns->nxstate;
1805 ns->nxstate = ns->op[ns->stateidx + 1];
1806
1807 NS_DBG("switch_state: operation is known, switch to the next state, "
1808 "state: %s, nxstate: %s\n",
1809 get_state_name(ns->state), get_state_name(ns->nxstate));
1810
1811 /* See, whether we need to do some action */
1812 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1813 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1814 return;
1815 }
61b03bd7 1816
1da177e4
LT
1817 } else {
1818 /*
1819 * We don't yet know which operation we perform.
1820 * Try to identify it.
1821 */
1822
61b03bd7 1823 /*
1da177e4
LT
1824 * The only event causing the switch_state function to
1825 * be called with yet unknown operation is new command.
1826 */
1827 ns->state = get_state_by_command(ns->regs.command);
1828
1829 NS_DBG("switch_state: operation is unknown, try to find it\n");
1830
1831 if (find_operation(ns, 0) != 0)
1832 return;
1833
1834 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1835 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1836 return;
1837 }
1838 }
1839
1840 /* For 16x devices column means the page offset in words */
1841 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1842 NS_DBG("switch_state: double the column number for 16x device\n");
1843 ns->regs.column <<= 1;
1844 }
1845
1846 if (NS_STATE(ns->nxstate) == STATE_READY) {
1847 /*
1848 * The current state is the last. Return to STATE_READY
1849 */
1850
1851 u_char status = NS_STATUS_OK(ns);
61b03bd7 1852
1da177e4
LT
1853 /* In case of data states, see if all bytes were input/output */
1854 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1855 && ns->regs.count != ns->regs.num) {
1856 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1857 ns->regs.num - ns->regs.count);
1858 status = NS_STATUS_FAILED(ns);
1859 }
61b03bd7 1860
1da177e4
LT
1861 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1862
1863 switch_to_ready_state(ns, status);
1864
1865 return;
1866 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
61b03bd7 1867 /*
1da177e4
LT
1868 * If the next state is data input/output, switch to it now
1869 */
61b03bd7 1870
1da177e4
LT
1871 ns->state = ns->nxstate;
1872 ns->nxstate = ns->op[++ns->stateidx + 1];
1873 ns->regs.num = ns->regs.count = 0;
1874
1875 NS_DBG("switch_state: the next state is data I/O, switch, "
1876 "state: %s, nxstate: %s\n",
1877 get_state_name(ns->state), get_state_name(ns->nxstate));
1878
1879 /*
1880 * Set the internal register to the count of bytes which
1881 * are expected to be input or output
1882 */
1883 switch (NS_STATE(ns->state)) {
1884 case STATE_DATAIN:
1885 case STATE_DATAOUT:
1886 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1887 break;
61b03bd7 1888
1da177e4
LT
1889 case STATE_DATAOUT_ID:
1890 ns->regs.num = ns->geom.idbytes;
1891 break;
61b03bd7 1892
1da177e4
LT
1893 case STATE_DATAOUT_STATUS:
1894 case STATE_DATAOUT_STATUS_M:
1895 ns->regs.count = ns->regs.num = 0;
1896 break;
61b03bd7 1897
1da177e4
LT
1898 default:
1899 NS_ERR("switch_state: BUG! unknown data state\n");
1900 }
1901
1902 } else if (ns->nxstate & STATE_ADDR_MASK) {
1903 /*
1904 * If the next state is address input, set the internal
1905 * register to the number of expected address bytes
1906 */
1907
1908 ns->regs.count = 0;
61b03bd7 1909
1da177e4
LT
1910 switch (NS_STATE(ns->nxstate)) {
1911 case STATE_ADDR_PAGE:
1912 ns->regs.num = ns->geom.pgaddrbytes;
61b03bd7 1913
1da177e4
LT
1914 break;
1915 case STATE_ADDR_SEC:
1916 ns->regs.num = ns->geom.secaddrbytes;
1917 break;
61b03bd7 1918
1da177e4
LT
1919 case STATE_ADDR_ZERO:
1920 ns->regs.num = 1;
1921 break;
1922
74216be4
AB
1923 case STATE_ADDR_COLUMN:
1924 /* Column address is always 2 bytes */
1925 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1926 break;
1927
1da177e4
LT
1928 default:
1929 NS_ERR("switch_state: BUG! unknown address state\n");
1930 }
1931 } else {
61b03bd7 1932 /*
1da177e4
LT
1933 * Just reset internal counters.
1934 */
1935
1936 ns->regs.num = 0;
1937 ns->regs.count = 0;
1938 }
1939}
1940
a5602146 1941static u_char ns_nand_read_byte(struct mtd_info *mtd)
1da177e4 1942{
7b8516b7 1943 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1da177e4
LT
1944 u_char outb = 0x00;
1945
1946 /* Sanity and correctness checks */
1947 if (!ns->lines.ce) {
1948 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1949 return outb;
1950 }
1951 if (ns->lines.ale || ns->lines.cle) {
1952 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1953 return outb;
1954 }
1955 if (!(ns->state & STATE_DATAOUT_MASK)) {
1956 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1957 "return %#x\n", get_state_name(ns->state), (uint)outb);
1958 return outb;
1959 }
1960
1961 /* Status register may be read as many times as it is wanted */
1962 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1963 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1964 return ns->regs.status;
1965 }
1966
1967 /* Check if there is any data in the internal buffer which may be read */
1968 if (ns->regs.count == ns->regs.num) {
1969 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1970 return outb;
1971 }
1972
1973 switch (NS_STATE(ns->state)) {
1974 case STATE_DATAOUT:
1975 if (ns->busw == 8) {
1976 outb = ns->buf.byte[ns->regs.count];
1977 ns->regs.count += 1;
1978 } else {
1979 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1980 ns->regs.count += 2;
1981 }
1982 break;
1983 case STATE_DATAOUT_ID:
1984 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1985 outb = ns->ids[ns->regs.count];
1986 ns->regs.count += 1;
1987 break;
1988 default:
1989 BUG();
1990 }
61b03bd7 1991
1da177e4
LT
1992 if (ns->regs.count == ns->regs.num) {
1993 NS_DBG("read_byte: all bytes were read\n");
1994
831d316b 1995 if (NS_STATE(ns->nxstate) == STATE_READY)
1da177e4 1996 switch_state(ns);
1da177e4 1997 }
61b03bd7 1998
1da177e4
LT
1999 return outb;
2000}
2001
a5602146 2002static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1da177e4 2003{
7b8516b7 2004 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
61b03bd7 2005
1da177e4
LT
2006 /* Sanity and correctness checks */
2007 if (!ns->lines.ce) {
2008 NS_ERR("write_byte: chip is disabled, ignore write\n");
2009 return;
2010 }
2011 if (ns->lines.ale && ns->lines.cle) {
2012 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
2013 return;
2014 }
61b03bd7 2015
1da177e4
LT
2016 if (ns->lines.cle == 1) {
2017 /*
2018 * The byte written is a command.
2019 */
2020
2021 if (byte == NAND_CMD_RESET) {
2022 NS_LOG("reset chip\n");
2023 switch_to_ready_state(ns, NS_STATUS_OK(ns));
2024 return;
2025 }
2026
74216be4
AB
2027 /* Check that the command byte is correct */
2028 if (check_command(byte)) {
2029 NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
2030 return;
2031 }
2032
1da177e4
LT
2033 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
2034 || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
74216be4
AB
2035 || NS_STATE(ns->state) == STATE_DATAOUT) {
2036 int row = ns->regs.row;
2037
1da177e4 2038 switch_state(ns);
74216be4
AB
2039 if (byte == NAND_CMD_RNDOUT)
2040 ns->regs.row = row;
2041 }
1da177e4
LT
2042
2043 /* Check if chip is expecting command */
2044 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
9359ea46
AH
2045 /* Do not warn if only 2 id bytes are read */
2046 if (!(ns->regs.command == NAND_CMD_READID &&
2047 NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
2048 /*
2049 * We are in situation when something else (not command)
2050 * was expected but command was input. In this case ignore
2051 * previous command(s)/state(s) and accept the last one.
2052 */
2053 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2054 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2055 }
1da177e4
LT
2056 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2057 }
61b03bd7 2058
1da177e4
LT
2059 NS_DBG("command byte corresponding to %s state accepted\n",
2060 get_state_name(get_state_by_command(byte)));
2061 ns->regs.command = byte;
2062 switch_state(ns);
2063
2064 } else if (ns->lines.ale == 1) {
2065 /*
2066 * The byte written is an address.
2067 */
2068
2069 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2070
2071 NS_DBG("write_byte: operation isn't known yet, identify it\n");
2072
2073 if (find_operation(ns, 1) < 0)
2074 return;
61b03bd7 2075
1da177e4
LT
2076 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2077 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2078 return;
2079 }
61b03bd7 2080
1da177e4
LT
2081 ns->regs.count = 0;
2082 switch (NS_STATE(ns->nxstate)) {
2083 case STATE_ADDR_PAGE:
2084 ns->regs.num = ns->geom.pgaddrbytes;
2085 break;
2086 case STATE_ADDR_SEC:
2087 ns->regs.num = ns->geom.secaddrbytes;
2088 break;
2089 case STATE_ADDR_ZERO:
2090 ns->regs.num = 1;
2091 break;
2092 default:
2093 BUG();
2094 }
2095 }
2096
2097 /* Check that chip is expecting address */
2098 if (!(ns->nxstate & STATE_ADDR_MASK)) {
2099 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2100 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2101 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2102 return;
2103 }
61b03bd7 2104
1da177e4
LT
2105 /* Check if this is expected byte */
2106 if (ns->regs.count == ns->regs.num) {
2107 NS_ERR("write_byte: no more address bytes expected\n");
2108 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2109 return;
2110 }
2111
2112 accept_addr_byte(ns, byte);
2113
2114 ns->regs.count += 1;
2115
2116 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2117 (uint)byte, ns->regs.count, ns->regs.num);
2118
2119 if (ns->regs.count == ns->regs.num) {
2120 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2121 switch_state(ns);
2122 }
61b03bd7 2123
1da177e4
LT
2124 } else {
2125 /*
2126 * The byte written is an input data.
2127 */
61b03bd7 2128
1da177e4
LT
2129 /* Check that chip is expecting data input */
2130 if (!(ns->state & STATE_DATAIN_MASK)) {
2131 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2132 "switch to %s\n", (uint)byte,
2133 get_state_name(ns->state), get_state_name(STATE_READY));
2134 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2135 return;
2136 }
2137
2138 /* Check if this is expected byte */
2139 if (ns->regs.count == ns->regs.num) {
2140 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2141 ns->regs.num);
2142 return;
2143 }
2144
2145 if (ns->busw == 8) {
2146 ns->buf.byte[ns->regs.count] = byte;
2147 ns->regs.count += 1;
2148 } else {
2149 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2150 ns->regs.count += 2;
2151 }
2152 }
2153
2154 return;
2155}
2156
7abd3ef9
TG
2157static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2158{
2159 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2160
2161 ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2162 ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2163 ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2164
2165 if (cmd != NAND_CMD_NONE)
2166 ns_nand_write_byte(mtd, cmd);
2167}
2168
a5602146 2169static int ns_device_ready(struct mtd_info *mtd)
1da177e4
LT
2170{
2171 NS_DBG("device_ready\n");
2172 return 1;
2173}
2174
a5602146 2175static uint16_t ns_nand_read_word(struct mtd_info *mtd)
1da177e4
LT
2176{
2177 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2178
2179 NS_DBG("read_word\n");
61b03bd7 2180
1da177e4
LT
2181 return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2182}
2183
a5602146 2184static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
1da177e4 2185{
7b8516b7 2186 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1da177e4
LT
2187
2188 /* Check that chip is expecting data input */
2189 if (!(ns->state & STATE_DATAIN_MASK)) {
2190 NS_ERR("write_buf: data input isn't expected, state is %s, "
2191 "switch to STATE_READY\n", get_state_name(ns->state));
2192 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2193 return;
2194 }
2195
2196 /* Check if these are expected bytes */
2197 if (ns->regs.count + len > ns->regs.num) {
2198 NS_ERR("write_buf: too many input bytes\n");
2199 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2200 return;
2201 }
2202
2203 memcpy(ns->buf.byte + ns->regs.count, buf, len);
2204 ns->regs.count += len;
61b03bd7 2205
1da177e4
LT
2206 if (ns->regs.count == ns->regs.num) {
2207 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2208 }
2209}
2210
a5602146 2211static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
1da177e4 2212{
7b8516b7 2213 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1da177e4
LT
2214
2215 /* Sanity and correctness checks */
2216 if (!ns->lines.ce) {
2217 NS_ERR("read_buf: chip is disabled\n");
2218 return;
2219 }
2220 if (ns->lines.ale || ns->lines.cle) {
2221 NS_ERR("read_buf: ALE or CLE pin is high\n");
2222 return;
2223 }
2224 if (!(ns->state & STATE_DATAOUT_MASK)) {
2225 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2226 get_state_name(ns->state));
2227 return;
2228 }
2229
2230 if (NS_STATE(ns->state) != STATE_DATAOUT) {
2231 int i;
2232
2233 for (i = 0; i < len; i++)
2234 buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2235
2236 return;
2237 }
2238
2239 /* Check if these are expected bytes */
2240 if (ns->regs.count + len > ns->regs.num) {
2241 NS_ERR("read_buf: too many bytes to read\n");
2242 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2243 return;
2244 }
2245
2246 memcpy(buf, ns->buf.byte + ns->regs.count, len);
2247 ns->regs.count += len;
61b03bd7 2248
1da177e4 2249 if (ns->regs.count == ns->regs.num) {
831d316b 2250 if (NS_STATE(ns->nxstate) == STATE_READY)
1da177e4
LT
2251 switch_state(ns);
2252 }
61b03bd7 2253
1da177e4
LT
2254 return;
2255}
2256
1da177e4
LT
2257/*
2258 * Module initialization function
2259 */
2b9175c1 2260static int __init ns_init_module(void)
1da177e4
LT
2261{
2262 struct nand_chip *chip;
2263 struct nandsim *nand;
2b77a0ed 2264 int retval = -ENOMEM, i;
1da177e4
LT
2265
2266 if (bus_width != 8 && bus_width != 16) {
2267 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2268 return -EINVAL;
2269 }
61b03bd7 2270
1da177e4 2271 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
95b93a0c 2272 nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
1da177e4
LT
2273 + sizeof(struct nandsim), GFP_KERNEL);
2274 if (!nsmtd) {
2275 NS_ERR("unable to allocate core structures.\n");
2276 return -ENOMEM;
2277 }
1da177e4
LT
2278 chip = (struct nand_chip *)(nsmtd + 1);
2279 nsmtd->priv = (void *)chip;
2280 nand = (struct nandsim *)(chip + 1);
61b03bd7 2281 chip->priv = (void *)nand;
1da177e4
LT
2282
2283 /*
2284 * Register simulator's callbacks.
2285 */
7abd3ef9 2286 chip->cmd_ctrl = ns_hwcontrol;
1da177e4
LT
2287 chip->read_byte = ns_nand_read_byte;
2288 chip->dev_ready = ns_device_ready;
1da177e4
LT
2289 chip->write_buf = ns_nand_write_buf;
2290 chip->read_buf = ns_nand_read_buf;
1da177e4 2291 chip->read_word = ns_nand_read_word;
6dfc6d25 2292 chip->ecc.mode = NAND_ECC_SOFT;
a5ac8aeb
AH
2293 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2294 /* and 'badblocks' parameters to work */
51502287 2295 chip->options |= NAND_SKIP_BBTSCAN;
1da177e4 2296
ce85b79f
SAS
2297 switch (bbt) {
2298 case 2:
a40f7341 2299 chip->bbt_options |= NAND_BBT_NO_OOB;
ce85b79f 2300 case 1:
bb9ebd4e 2301 chip->bbt_options |= NAND_BBT_USE_FLASH;
ce85b79f
SAS
2302 case 0:
2303 break;
2304 default:
2305 NS_ERR("bbt has to be 0..2\n");
2306 retval = -EINVAL;
2307 goto error;
2308 }
61b03bd7 2309 /*
1da177e4 2310 * Perform minimum nandsim structure initialization to handle
61b03bd7 2311 * the initial ID read command correctly
1da177e4
LT
2312 */
2313 if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2314 nand->geom.idbytes = 4;
2315 else
2316 nand->geom.idbytes = 2;
2317 nand->regs.status = NS_STATUS_OK(nand);
2318 nand->nxstate = STATE_UNKNOWN;
2319 nand->options |= OPT_PAGE256; /* temporary value */
2320 nand->ids[0] = first_id_byte;
2321 nand->ids[1] = second_id_byte;
2322 nand->ids[2] = third_id_byte;
2323 nand->ids[3] = fourth_id_byte;
2324 if (bus_width == 16) {
2325 nand->busw = 16;
2326 chip->options |= NAND_BUSWIDTH_16;
2327 }
2328
552d9205
DW
2329 nsmtd->owner = THIS_MODULE;
2330
514087e7
AH
2331 if ((retval = parse_weakblocks()) != 0)
2332 goto error;
2333
2334 if ((retval = parse_weakpages()) != 0)
2335 goto error;
2336
2337 if ((retval = parse_gravepages()) != 0)
2338 goto error;
2339
fc2ff592
ID
2340 retval = nand_scan_ident(nsmtd, 1, NULL);
2341 if (retval) {
2342 NS_ERR("cannot scan NAND Simulator device\n");
2343 if (retval > 0)
2344 retval = -ENXIO;
2345 goto error;
2346 }
2347
2348 if (bch) {
2349 unsigned int eccsteps, eccbytes;
2350 if (!mtd_nand_has_bch()) {
2351 NS_ERR("BCH ECC support is disabled\n");
2352 retval = -EINVAL;
2353 goto error;
2354 }
2355 /* use 512-byte ecc blocks */
2356 eccsteps = nsmtd->writesize/512;
2357 eccbytes = (bch*13+7)/8;
2358 /* do not bother supporting small page devices */
2359 if ((nsmtd->oobsize < 64) || !eccsteps) {
2360 NS_ERR("bch not available on small page devices\n");
2361 retval = -EINVAL;
2362 goto error;
2363 }
2364 if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
2365 NS_ERR("invalid bch value %u\n", bch);
2366 retval = -EINVAL;
2367 goto error;
2368 }
2369 chip->ecc.mode = NAND_ECC_SOFT_BCH;
2370 chip->ecc.size = 512;
2371 chip->ecc.bytes = eccbytes;
2372 NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2373 }
2374
2375 retval = nand_scan_tail(nsmtd);
2376 if (retval) {
1da177e4
LT
2377 NS_ERR("can't register NAND Simulator\n");
2378 if (retval > 0)
2379 retval = -ENXIO;
2380 goto error;
2381 }
2382
a5ac8aeb 2383 if (overridesize) {
0f07a0be 2384 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
a5ac8aeb
AH
2385 if (new_size >> overridesize != nsmtd->erasesize) {
2386 NS_ERR("overridesize is too big\n");
bb0a13a1 2387 retval = -EINVAL;
a5ac8aeb
AH
2388 goto err_exit;
2389 }
2390 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2391 nsmtd->size = new_size;
2392 chip->chipsize = new_size;
6eda7a55 2393 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
07293b20 2394 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
a5ac8aeb
AH
2395 }
2396
57aa6b54
AH
2397 if ((retval = setup_wear_reporting(nsmtd)) != 0)
2398 goto err_exit;
2399
5346c27c
EG
2400 if ((retval = nandsim_debugfs_create(nand)) != 0)
2401 goto err_exit;
2402
2b77a0ed
AH
2403 if ((retval = init_nandsim(nsmtd)) != 0)
2404 goto err_exit;
61b03bd7 2405
ce85b79f 2406 if ((retval = nand_default_bbt(nsmtd)) != 0)
514087e7
AH
2407 goto err_exit;
2408
ce85b79f 2409 if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2b77a0ed 2410 goto err_exit;
51502287 2411
2b77a0ed 2412 /* Register NAND partitions */
ee0e87b1
JI
2413 retval = mtd_device_register(nsmtd, &nand->partitions[0],
2414 nand->nbparts);
2415 if (retval != 0)
2b77a0ed 2416 goto err_exit;
1da177e4
LT
2417
2418 return 0;
2419
2b77a0ed
AH
2420err_exit:
2421 free_nandsim(nand);
2422 nand_release(nsmtd);
2423 for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2424 kfree(nand->partitions[i].name);
1da177e4
LT
2425error:
2426 kfree(nsmtd);
514087e7 2427 free_lists();
1da177e4
LT
2428
2429 return retval;
2430}
2431
2432module_init(ns_init_module);
2433
2434/*
2435 * Module clean-up function
2436 */
2437static void __exit ns_cleanup_module(void)
2438{
7b8516b7 2439 struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2b77a0ed 2440 int i;
1da177e4 2441
5346c27c 2442 nandsim_debugfs_remove(ns);
1da177e4 2443 free_nandsim(ns); /* Free nandsim private resources */
2b77a0ed
AH
2444 nand_release(nsmtd); /* Unregister driver */
2445 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2446 kfree(ns->partitions[i].name);
1da177e4 2447 kfree(nsmtd); /* Free other structures */
514087e7 2448 free_lists();
1da177e4
LT
2449}
2450
2451module_exit(ns_cleanup_module);
2452
2453MODULE_LICENSE ("GPL");
2454MODULE_AUTHOR ("Artem B. Bityuckiy");
2455MODULE_DESCRIPTION ("The NAND flash simulator");
This page took 0.639254 seconds and 5 git commands to generate.