MTD: nandsim: suppress unnecessary warning
[deliverable/linux.git] / drivers / mtd / nand / nandsim.c
CommitLineData
1da177e4
LT
1/*
2 * NAND flash simulator.
3 *
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5 *
61b03bd7 6 * Copyright (C) 2004 Nokia Corporation
1da177e4
LT
7 *
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
14 * version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
1da177e4
LT
24 */
25
1da177e4
LT
26#include <linux/init.h>
27#include <linux/types.h>
28#include <linux/module.h>
29#include <linux/moduleparam.h>
30#include <linux/vmalloc.h>
fc1f397b 31#include <asm/div64.h>
1da177e4
LT
32#include <linux/slab.h>
33#include <linux/errno.h>
34#include <linux/string.h>
35#include <linux/mtd/mtd.h>
36#include <linux/mtd/nand.h>
37#include <linux/mtd/partitions.h>
38#include <linux/delay.h>
2b77a0ed 39#include <linux/list.h>
514087e7 40#include <linux/random.h>
1da177e4
LT
41
42/* Default simulator parameters values */
43#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
44 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
45 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
46 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
47#define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
48#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
49#define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
50#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
51#endif
52
53#ifndef CONFIG_NANDSIM_ACCESS_DELAY
54#define CONFIG_NANDSIM_ACCESS_DELAY 25
55#endif
56#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
57#define CONFIG_NANDSIM_PROGRAMM_DELAY 200
58#endif
59#ifndef CONFIG_NANDSIM_ERASE_DELAY
60#define CONFIG_NANDSIM_ERASE_DELAY 2
61#endif
62#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
63#define CONFIG_NANDSIM_OUTPUT_CYCLE 40
64#endif
65#ifndef CONFIG_NANDSIM_INPUT_CYCLE
66#define CONFIG_NANDSIM_INPUT_CYCLE 50
67#endif
68#ifndef CONFIG_NANDSIM_BUS_WIDTH
69#define CONFIG_NANDSIM_BUS_WIDTH 8
70#endif
71#ifndef CONFIG_NANDSIM_DO_DELAYS
72#define CONFIG_NANDSIM_DO_DELAYS 0
73#endif
74#ifndef CONFIG_NANDSIM_LOG
75#define CONFIG_NANDSIM_LOG 0
76#endif
77#ifndef CONFIG_NANDSIM_DBG
78#define CONFIG_NANDSIM_DBG 0
79#endif
80
81static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE;
82static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
83static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE;
84static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
85static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
86static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
87static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
88static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
89static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
90static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
91static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
92static uint log = CONFIG_NANDSIM_LOG;
93static uint dbg = CONFIG_NANDSIM_DBG;
2b77a0ed
AH
94static unsigned long parts[MAX_MTD_DEVICES];
95static unsigned int parts_num;
514087e7
AH
96static char *badblocks = NULL;
97static char *weakblocks = NULL;
98static char *weakpages = NULL;
99static unsigned int bitflips = 0;
100static char *gravepages = NULL;
57aa6b54 101static unsigned int rptwear = 0;
a5ac8aeb 102static unsigned int overridesize = 0;
1da177e4
LT
103
104module_param(first_id_byte, uint, 0400);
105module_param(second_id_byte, uint, 0400);
106module_param(third_id_byte, uint, 0400);
107module_param(fourth_id_byte, uint, 0400);
108module_param(access_delay, uint, 0400);
109module_param(programm_delay, uint, 0400);
110module_param(erase_delay, uint, 0400);
111module_param(output_cycle, uint, 0400);
112module_param(input_cycle, uint, 0400);
113module_param(bus_width, uint, 0400);
114module_param(do_delays, uint, 0400);
115module_param(log, uint, 0400);
116module_param(dbg, uint, 0400);
2b77a0ed 117module_param_array(parts, ulong, &parts_num, 0400);
514087e7
AH
118module_param(badblocks, charp, 0400);
119module_param(weakblocks, charp, 0400);
120module_param(weakpages, charp, 0400);
121module_param(bitflips, uint, 0400);
122module_param(gravepages, charp, 0400);
57aa6b54 123module_param(rptwear, uint, 0400);
a5ac8aeb 124module_param(overridesize, uint, 0400);
1da177e4 125
a5ac8aeb 126MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
1da177e4
LT
127MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
128MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command");
129MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
130MODULE_PARM_DESC(access_delay, "Initial page access delay (microiseconds)");
131MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
132MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
133MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanodeconds)");
134MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanodeconds)");
135MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
136MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
137MODULE_PARM_DESC(log, "Perform logging if not zero");
138MODULE_PARM_DESC(dbg, "Output debug information if not zero");
2b77a0ed 139MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas");
514087e7
AH
140/* Page and erase block positions for the following parameters are independent of any partitions */
141MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas");
142MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
143 " separated by commas e.g. 113:2 means eb 113"
144 " can be erased only twice before failing");
145MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]"
146 " separated by commas e.g. 1401:2 means page 1401"
147 " can be written only twice before failing");
148MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)");
149MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]"
150 " separated by commas e.g. 1401:2 means page 1401"
151 " can be read only twice before failing");
57aa6b54 152MODULE_PARM_DESC(rptwear, "Number of erases inbetween reporting wear, if not zero");
a5ac8aeb
AH
153MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. "
154 "The size is specified in erase blocks and as the exponent of a power of two"
155 " e.g. 5 means a size of 32 erase blocks");
1da177e4
LT
156
157/* The largest possible page size */
158#define NS_LARGEST_PAGE_SIZE 2048
61b03bd7 159
1da177e4
LT
160/* The prefix for simulator output */
161#define NS_OUTPUT_PREFIX "[nandsim]"
162
163/* Simulator's output macros (logging, debugging, warning, error) */
164#define NS_LOG(args...) \
165 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
166#define NS_DBG(args...) \
167 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
168#define NS_WARN(args...) \
2b77a0ed 169 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
1da177e4 170#define NS_ERR(args...) \
2b77a0ed 171 do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
57aa6b54
AH
172#define NS_INFO(args...) \
173 do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
1da177e4
LT
174
175/* Busy-wait delay macros (microseconds, milliseconds) */
176#define NS_UDELAY(us) \
177 do { if (do_delays) udelay(us); } while(0)
178#define NS_MDELAY(us) \
179 do { if (do_delays) mdelay(us); } while(0)
61b03bd7 180
1da177e4
LT
181/* Is the nandsim structure initialized ? */
182#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
183
184/* Good operation completion status */
185#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
186
187/* Operation failed completion status */
61b03bd7 188#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
1da177e4
LT
189
190/* Calculate the page offset in flash RAM image by (row, column) address */
191#define NS_RAW_OFFSET(ns) \
192 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
61b03bd7 193
1da177e4
LT
194/* Calculate the OOB offset in flash RAM image by (row, column) address */
195#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
196
197/* After a command is input, the simulator goes to one of the following states */
198#define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
199#define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
4a0c50c0 200#define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
1da177e4
LT
201#define STATE_CMD_PAGEPROG 0x00000004 /* start page programm */
202#define STATE_CMD_READOOB 0x00000005 /* read OOB area */
203#define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
204#define STATE_CMD_STATUS 0x00000007 /* read status */
205#define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
206#define STATE_CMD_SEQIN 0x00000009 /* sequential data imput */
207#define STATE_CMD_READID 0x0000000A /* read ID */
208#define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
209#define STATE_CMD_RESET 0x0000000C /* reset */
74216be4
AB
210#define STATE_CMD_RNDOUT 0x0000000D /* random output command */
211#define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
1da177e4
LT
212#define STATE_CMD_MASK 0x0000000F /* command states mask */
213
8e87d782 214/* After an address is input, the simulator goes to one of these states */
1da177e4
LT
215#define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
216#define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
74216be4
AB
217#define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
218#define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
219#define STATE_ADDR_MASK 0x00000070 /* address states mask */
1da177e4
LT
220
221/* Durind data input/output the simulator is in these states */
222#define STATE_DATAIN 0x00000100 /* waiting for data input */
223#define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
224
225#define STATE_DATAOUT 0x00001000 /* waiting for page data output */
226#define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
227#define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
228#define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
229#define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
230
231/* Previous operation is done, ready to accept new requests */
232#define STATE_READY 0x00000000
233
234/* This state is used to mark that the next state isn't known yet */
235#define STATE_UNKNOWN 0x10000000
236
237/* Simulator's actions bit masks */
238#define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
239#define ACTION_PRGPAGE 0x00200000 /* programm the internal buffer to flash */
240#define ACTION_SECERASE 0x00300000 /* erase sector */
241#define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
242#define ACTION_HALFOFF 0x00500000 /* add to address half of page */
243#define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
244#define ACTION_MASK 0x00700000 /* action mask */
245
74216be4 246#define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
1da177e4
LT
247#define NS_OPER_STATES 6 /* Maximum number of states in operation */
248
249#define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
250#define OPT_PAGE256 0x00000001 /* 256-byte page chips */
251#define OPT_PAGE512 0x00000002 /* 512-byte page chips */
252#define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
253#define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
254#define OPT_AUTOINCR 0x00000020 /* page number auto inctimentation is possible */
255#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
256#define OPT_LARGEPAGE (OPT_PAGE2048) /* 2048-byte page chips */
257#define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
258
259/* Remove action bits ftom state */
260#define NS_STATE(x) ((x) & ~ACTION_MASK)
61b03bd7
TG
261
262/*
1da177e4
LT
263 * Maximum previous states which need to be saved. Currently saving is
264 * only needed for page programm operation with preceeded read command
265 * (which is only valid for 512-byte pages).
266 */
267#define NS_MAX_PREVSTATES 1
268
d086d436
VK
269/*
270 * A union to represent flash memory contents and flash buffer.
271 */
272union ns_mem {
273 u_char *byte; /* for byte access */
274 uint16_t *word; /* for 16-bit word access */
275};
276
61b03bd7 277/*
1da177e4
LT
278 * The structure which describes all the internal simulator data.
279 */
280struct nandsim {
2b77a0ed
AH
281 struct mtd_partition partitions[MAX_MTD_DEVICES];
282 unsigned int nbparts;
1da177e4
LT
283
284 uint busw; /* flash chip bus width (8 or 16) */
285 u_char ids[4]; /* chip's ID bytes */
286 uint32_t options; /* chip's characteristic bits */
287 uint32_t state; /* current chip state */
288 uint32_t nxstate; /* next expected state */
61b03bd7 289
1da177e4
LT
290 uint32_t *op; /* current operation, NULL operations isn't known yet */
291 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
292 uint16_t npstates; /* number of previous states saved */
293 uint16_t stateidx; /* current state index */
294
d086d436
VK
295 /* The simulated NAND flash pages array */
296 union ns_mem *pages;
1da177e4
LT
297
298 /* Internal buffer of page + OOB size bytes */
d086d436 299 union ns_mem buf;
1da177e4
LT
300
301 /* NAND flash "geometry" */
302 struct nandsin_geometry {
6eda7a55 303 uint64_t totsz; /* total flash size, bytes */
1da177e4
LT
304 uint32_t secsz; /* flash sector (erase block) size, bytes */
305 uint pgsz; /* NAND flash page size, bytes */
306 uint oobsz; /* page OOB area size, bytes */
6eda7a55 307 uint64_t totszoob; /* total flash size including OOB, bytes */
1da177e4
LT
308 uint pgszoob; /* page size including OOB , bytes*/
309 uint secszoob; /* sector size including OOB, bytes */
310 uint pgnum; /* total number of pages */
311 uint pgsec; /* number of pages per sector */
312 uint secshift; /* bits number in sector size */
313 uint pgshift; /* bits number in page size */
314 uint oobshift; /* bits number in OOB size */
315 uint pgaddrbytes; /* bytes per page address */
316 uint secaddrbytes; /* bytes per sector address */
317 uint idbytes; /* the number ID bytes that this chip outputs */
318 } geom;
319
320 /* NAND flash internal registers */
321 struct nandsim_regs {
322 unsigned command; /* the command register */
323 u_char status; /* the status register */
324 uint row; /* the page number */
325 uint column; /* the offset within page */
326 uint count; /* internal counter */
327 uint num; /* number of bytes which must be processed */
328 uint off; /* fixed page offset */
329 } regs;
330
331 /* NAND flash lines state */
332 struct ns_lines_status {
333 int ce; /* chip Enable */
334 int cle; /* command Latch Enable */
335 int ale; /* address Latch Enable */
336 int wp; /* write Protect */
337 } lines;
338};
339
340/*
341 * Operations array. To perform any operation the simulator must pass
342 * through the correspondent states chain.
343 */
344static struct nandsim_operations {
345 uint32_t reqopts; /* options which are required to perform the operation */
346 uint32_t states[NS_OPER_STATES]; /* operation's states */
347} ops[NS_OPER_NUM] = {
348 /* Read page + OOB from the beginning */
349 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
350 STATE_DATAOUT, STATE_READY}},
351 /* Read page + OOB from the second half */
352 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
353 STATE_DATAOUT, STATE_READY}},
354 /* Read OOB */
355 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
356 STATE_DATAOUT, STATE_READY}},
357 /* Programm page starting from the beginning */
358 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
359 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
360 /* Programm page starting from the beginning */
361 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
362 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
363 /* Programm page starting from the second half */
364 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
365 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
366 /* Programm OOB */
367 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
368 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
369 /* Erase sector */
370 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
371 /* Read status */
372 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
373 /* Read multi-plane status */
374 {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
375 /* Read ID */
376 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
377 /* Large page devices read page */
378 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
74216be4
AB
379 STATE_DATAOUT, STATE_READY}},
380 /* Large page devices random page read */
381 {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
382 STATE_DATAOUT, STATE_READY}},
1da177e4
LT
383};
384
514087e7
AH
385struct weak_block {
386 struct list_head list;
387 unsigned int erase_block_no;
388 unsigned int max_erases;
389 unsigned int erases_done;
390};
391
392static LIST_HEAD(weak_blocks);
393
394struct weak_page {
395 struct list_head list;
396 unsigned int page_no;
397 unsigned int max_writes;
398 unsigned int writes_done;
399};
400
401static LIST_HEAD(weak_pages);
402
403struct grave_page {
404 struct list_head list;
405 unsigned int page_no;
406 unsigned int max_reads;
407 unsigned int reads_done;
408};
409
410static LIST_HEAD(grave_pages);
411
57aa6b54
AH
412static unsigned long *erase_block_wear = NULL;
413static unsigned int wear_eb_count = 0;
414static unsigned long total_wear = 0;
415static unsigned int rptwear_cnt = 0;
416
1da177e4
LT
417/* MTD structure for NAND controller */
418static struct mtd_info *nsmtd;
419
420static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
421
d086d436
VK
422/*
423 * Allocate array of page pointers and initialize the array to NULL
424 * pointers.
425 *
426 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
427 */
a5602146 428static int alloc_device(struct nandsim *ns)
d086d436
VK
429{
430 int i;
431
432 ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
433 if (!ns->pages) {
434 NS_ERR("alloc_map: unable to allocate page array\n");
435 return -ENOMEM;
436 }
437 for (i = 0; i < ns->geom.pgnum; i++) {
438 ns->pages[i].byte = NULL;
439 }
440
441 return 0;
442}
443
444/*
445 * Free any allocated pages, and free the array of page pointers.
446 */
a5602146 447static void free_device(struct nandsim *ns)
d086d436
VK
448{
449 int i;
450
451 if (ns->pages) {
452 for (i = 0; i < ns->geom.pgnum; i++) {
453 if (ns->pages[i].byte)
454 kfree(ns->pages[i].byte);
455 }
456 vfree(ns->pages);
457 }
458}
459
2b77a0ed
AH
460static char *get_partition_name(int i)
461{
462 char buf[64];
463 sprintf(buf, "NAND simulator partition %d", i);
464 return kstrdup(buf, GFP_KERNEL);
465}
466
6eda7a55
AH
467static u_int64_t divide(u_int64_t n, u_int32_t d)
468{
469 do_div(n, d);
470 return n;
471}
472
1da177e4
LT
473/*
474 * Initialize the nandsim structure.
475 *
476 * RETURNS: 0 if success, -ERRNO if failure.
477 */
a5602146 478static int init_nandsim(struct mtd_info *mtd)
1da177e4
LT
479{
480 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
481 struct nandsim *ns = (struct nandsim *)(chip->priv);
2b77a0ed 482 int i, ret = 0;
6eda7a55
AH
483 u_int64_t remains;
484 u_int64_t next_offset;
1da177e4
LT
485
486 if (NS_IS_INITIALIZED(ns)) {
487 NS_ERR("init_nandsim: nandsim is already initialized\n");
488 return -EIO;
489 }
490
491 /* Force mtd to not do delays */
492 chip->chip_delay = 0;
493
494 /* Initialize the NAND flash parameters */
495 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
496 ns->geom.totsz = mtd->size;
28318776 497 ns->geom.pgsz = mtd->writesize;
1da177e4
LT
498 ns->geom.oobsz = mtd->oobsize;
499 ns->geom.secsz = mtd->erasesize;
500 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
6eda7a55
AH
501 ns->geom.pgnum = divide(ns->geom.totsz, ns->geom.pgsz);
502 ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
1da177e4
LT
503 ns->geom.secshift = ffs(ns->geom.secsz) - 1;
504 ns->geom.pgshift = chip->page_shift;
505 ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
506 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
507 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
508 ns->options = 0;
509
510 if (ns->geom.pgsz == 256) {
511 ns->options |= OPT_PAGE256;
512 }
513 else if (ns->geom.pgsz == 512) {
514 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
515 if (ns->busw == 8)
516 ns->options |= OPT_PAGE512_8BIT;
517 } else if (ns->geom.pgsz == 2048) {
518 ns->options |= OPT_PAGE2048;
519 } else {
520 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
521 return -EIO;
522 }
523
524 if (ns->options & OPT_SMALLPAGE) {
af3deccf 525 if (ns->geom.totsz <= (32 << 20)) {
1da177e4
LT
526 ns->geom.pgaddrbytes = 3;
527 ns->geom.secaddrbytes = 2;
528 } else {
529 ns->geom.pgaddrbytes = 4;
530 ns->geom.secaddrbytes = 3;
531 }
532 } else {
533 if (ns->geom.totsz <= (128 << 20)) {
4a0c50c0 534 ns->geom.pgaddrbytes = 4;
1da177e4
LT
535 ns->geom.secaddrbytes = 2;
536 } else {
537 ns->geom.pgaddrbytes = 5;
538 ns->geom.secaddrbytes = 3;
539 }
540 }
61b03bd7 541
2b77a0ed
AH
542 /* Fill the partition_info structure */
543 if (parts_num > ARRAY_SIZE(ns->partitions)) {
544 NS_ERR("too many partitions.\n");
545 ret = -EINVAL;
546 goto error;
547 }
548 remains = ns->geom.totsz;
549 next_offset = 0;
550 for (i = 0; i < parts_num; ++i) {
6eda7a55
AH
551 u_int64_t part_sz = (u_int64_t)parts[i] * ns->geom.secsz;
552
553 if (!part_sz || part_sz > remains) {
2b77a0ed
AH
554 NS_ERR("bad partition size.\n");
555 ret = -EINVAL;
556 goto error;
557 }
558 ns->partitions[i].name = get_partition_name(i);
559 ns->partitions[i].offset = next_offset;
6eda7a55 560 ns->partitions[i].size = part_sz;
2b77a0ed
AH
561 next_offset += ns->partitions[i].size;
562 remains -= ns->partitions[i].size;
563 }
564 ns->nbparts = parts_num;
565 if (remains) {
566 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
567 NS_ERR("too many partitions.\n");
568 ret = -EINVAL;
569 goto error;
570 }
571 ns->partitions[i].name = get_partition_name(i);
572 ns->partitions[i].offset = next_offset;
573 ns->partitions[i].size = remains;
574 ns->nbparts += 1;
575 }
576
1da177e4
LT
577 /* Detect how many ID bytes the NAND chip outputs */
578 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
579 if (second_id_byte != nand_flash_ids[i].id)
580 continue;
581 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
582 ns->options |= OPT_AUTOINCR;
583 }
584
585 if (ns->busw == 16)
586 NS_WARN("16-bit flashes support wasn't tested\n");
587
e4c094a5
AM
588 printk("flash size: %llu MiB\n",
589 (unsigned long long)ns->geom.totsz >> 20);
1da177e4
LT
590 printk("page size: %u bytes\n", ns->geom.pgsz);
591 printk("OOB area size: %u bytes\n", ns->geom.oobsz);
592 printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
593 printk("pages number: %u\n", ns->geom.pgnum);
594 printk("pages per sector: %u\n", ns->geom.pgsec);
595 printk("bus width: %u\n", ns->busw);
596 printk("bits in sector size: %u\n", ns->geom.secshift);
597 printk("bits in page size: %u\n", ns->geom.pgshift);
e4c094a5
AM
598 printk("bits in OOB size: %u\n", ns->geom.oobshift);
599 printk("flash size with OOB: %llu KiB\n",
600 (unsigned long long)ns->geom.totszoob >> 10);
1da177e4
LT
601 printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
602 printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
603 printk("options: %#x\n", ns->options);
604
2b77a0ed 605 if ((ret = alloc_device(ns)) != 0)
d086d436 606 goto error;
1da177e4
LT
607
608 /* Allocate / initialize the internal buffer */
609 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
610 if (!ns->buf.byte) {
611 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
612 ns->geom.pgszoob);
2b77a0ed 613 ret = -ENOMEM;
1da177e4
LT
614 goto error;
615 }
616 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
617
1da177e4
LT
618 return 0;
619
620error:
d086d436 621 free_device(ns);
1da177e4 622
2b77a0ed 623 return ret;
1da177e4
LT
624}
625
626/*
627 * Free the nandsim structure.
628 */
a5602146 629static void free_nandsim(struct nandsim *ns)
1da177e4
LT
630{
631 kfree(ns->buf.byte);
d086d436 632 free_device(ns);
1da177e4
LT
633
634 return;
635}
636
514087e7
AH
637static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
638{
639 char *w;
640 int zero_ok;
641 unsigned int erase_block_no;
642 loff_t offset;
643
644 if (!badblocks)
645 return 0;
646 w = badblocks;
647 do {
648 zero_ok = (*w == '0' ? 1 : 0);
649 erase_block_no = simple_strtoul(w, &w, 0);
650 if (!zero_ok && !erase_block_no) {
651 NS_ERR("invalid badblocks.\n");
652 return -EINVAL;
653 }
654 offset = erase_block_no * ns->geom.secsz;
655 if (mtd->block_markbad(mtd, offset)) {
656 NS_ERR("invalid badblocks.\n");
657 return -EINVAL;
658 }
659 if (*w == ',')
660 w += 1;
661 } while (*w);
662 return 0;
663}
664
665static int parse_weakblocks(void)
666{
667 char *w;
668 int zero_ok;
669 unsigned int erase_block_no;
670 unsigned int max_erases;
671 struct weak_block *wb;
672
673 if (!weakblocks)
674 return 0;
675 w = weakblocks;
676 do {
677 zero_ok = (*w == '0' ? 1 : 0);
678 erase_block_no = simple_strtoul(w, &w, 0);
679 if (!zero_ok && !erase_block_no) {
680 NS_ERR("invalid weakblocks.\n");
681 return -EINVAL;
682 }
683 max_erases = 3;
684 if (*w == ':') {
685 w += 1;
686 max_erases = simple_strtoul(w, &w, 0);
687 }
688 if (*w == ',')
689 w += 1;
690 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
691 if (!wb) {
692 NS_ERR("unable to allocate memory.\n");
693 return -ENOMEM;
694 }
695 wb->erase_block_no = erase_block_no;
696 wb->max_erases = max_erases;
697 list_add(&wb->list, &weak_blocks);
698 } while (*w);
699 return 0;
700}
701
702static int erase_error(unsigned int erase_block_no)
703{
704 struct weak_block *wb;
705
706 list_for_each_entry(wb, &weak_blocks, list)
707 if (wb->erase_block_no == erase_block_no) {
708 if (wb->erases_done >= wb->max_erases)
709 return 1;
710 wb->erases_done += 1;
711 return 0;
712 }
713 return 0;
714}
715
716static int parse_weakpages(void)
717{
718 char *w;
719 int zero_ok;
720 unsigned int page_no;
721 unsigned int max_writes;
722 struct weak_page *wp;
723
724 if (!weakpages)
725 return 0;
726 w = weakpages;
727 do {
728 zero_ok = (*w == '0' ? 1 : 0);
729 page_no = simple_strtoul(w, &w, 0);
730 if (!zero_ok && !page_no) {
731 NS_ERR("invalid weakpagess.\n");
732 return -EINVAL;
733 }
734 max_writes = 3;
735 if (*w == ':') {
736 w += 1;
737 max_writes = simple_strtoul(w, &w, 0);
738 }
739 if (*w == ',')
740 w += 1;
741 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
742 if (!wp) {
743 NS_ERR("unable to allocate memory.\n");
744 return -ENOMEM;
745 }
746 wp->page_no = page_no;
747 wp->max_writes = max_writes;
748 list_add(&wp->list, &weak_pages);
749 } while (*w);
750 return 0;
751}
752
753static int write_error(unsigned int page_no)
754{
755 struct weak_page *wp;
756
757 list_for_each_entry(wp, &weak_pages, list)
758 if (wp->page_no == page_no) {
759 if (wp->writes_done >= wp->max_writes)
760 return 1;
761 wp->writes_done += 1;
762 return 0;
763 }
764 return 0;
765}
766
767static int parse_gravepages(void)
768{
769 char *g;
770 int zero_ok;
771 unsigned int page_no;
772 unsigned int max_reads;
773 struct grave_page *gp;
774
775 if (!gravepages)
776 return 0;
777 g = gravepages;
778 do {
779 zero_ok = (*g == '0' ? 1 : 0);
780 page_no = simple_strtoul(g, &g, 0);
781 if (!zero_ok && !page_no) {
782 NS_ERR("invalid gravepagess.\n");
783 return -EINVAL;
784 }
785 max_reads = 3;
786 if (*g == ':') {
787 g += 1;
788 max_reads = simple_strtoul(g, &g, 0);
789 }
790 if (*g == ',')
791 g += 1;
792 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
793 if (!gp) {
794 NS_ERR("unable to allocate memory.\n");
795 return -ENOMEM;
796 }
797 gp->page_no = page_no;
798 gp->max_reads = max_reads;
799 list_add(&gp->list, &grave_pages);
800 } while (*g);
801 return 0;
802}
803
804static int read_error(unsigned int page_no)
805{
806 struct grave_page *gp;
807
808 list_for_each_entry(gp, &grave_pages, list)
809 if (gp->page_no == page_no) {
810 if (gp->reads_done >= gp->max_reads)
811 return 1;
812 gp->reads_done += 1;
813 return 0;
814 }
815 return 0;
816}
817
818static void free_lists(void)
819{
820 struct list_head *pos, *n;
821 list_for_each_safe(pos, n, &weak_blocks) {
822 list_del(pos);
823 kfree(list_entry(pos, struct weak_block, list));
824 }
825 list_for_each_safe(pos, n, &weak_pages) {
826 list_del(pos);
827 kfree(list_entry(pos, struct weak_page, list));
828 }
829 list_for_each_safe(pos, n, &grave_pages) {
830 list_del(pos);
831 kfree(list_entry(pos, struct grave_page, list));
832 }
57aa6b54
AH
833 kfree(erase_block_wear);
834}
835
836static int setup_wear_reporting(struct mtd_info *mtd)
837{
838 size_t mem;
839
840 if (!rptwear)
841 return 0;
6eda7a55 842 wear_eb_count = divide(mtd->size, mtd->erasesize);
57aa6b54
AH
843 mem = wear_eb_count * sizeof(unsigned long);
844 if (mem / sizeof(unsigned long) != wear_eb_count) {
845 NS_ERR("Too many erase blocks for wear reporting\n");
846 return -ENOMEM;
847 }
848 erase_block_wear = kzalloc(mem, GFP_KERNEL);
849 if (!erase_block_wear) {
850 NS_ERR("Too many erase blocks for wear reporting\n");
851 return -ENOMEM;
852 }
853 return 0;
854}
855
856static void update_wear(unsigned int erase_block_no)
857{
858 unsigned long wmin = -1, wmax = 0, avg;
859 unsigned long deciles[10], decile_max[10], tot = 0;
860 unsigned int i;
861
862 if (!erase_block_wear)
863 return;
864 total_wear += 1;
865 if (total_wear == 0)
866 NS_ERR("Erase counter total overflow\n");
867 erase_block_wear[erase_block_no] += 1;
868 if (erase_block_wear[erase_block_no] == 0)
869 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
870 rptwear_cnt += 1;
871 if (rptwear_cnt < rptwear)
872 return;
873 rptwear_cnt = 0;
874 /* Calc wear stats */
875 for (i = 0; i < wear_eb_count; ++i) {
876 unsigned long wear = erase_block_wear[i];
877 if (wear < wmin)
878 wmin = wear;
879 if (wear > wmax)
880 wmax = wear;
881 tot += wear;
882 }
883 for (i = 0; i < 9; ++i) {
884 deciles[i] = 0;
885 decile_max[i] = (wmax * (i + 1) + 5) / 10;
886 }
887 deciles[9] = 0;
888 decile_max[9] = wmax;
889 for (i = 0; i < wear_eb_count; ++i) {
890 int d;
891 unsigned long wear = erase_block_wear[i];
892 for (d = 0; d < 10; ++d)
893 if (wear <= decile_max[d]) {
894 deciles[d] += 1;
895 break;
896 }
897 }
898 avg = tot / wear_eb_count;
899 /* Output wear report */
900 NS_INFO("*** Wear Report ***\n");
901 NS_INFO("Total numbers of erases: %lu\n", tot);
902 NS_INFO("Number of erase blocks: %u\n", wear_eb_count);
903 NS_INFO("Average number of erases: %lu\n", avg);
904 NS_INFO("Maximum number of erases: %lu\n", wmax);
905 NS_INFO("Minimum number of erases: %lu\n", wmin);
906 for (i = 0; i < 10; ++i) {
907 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
908 if (from > decile_max[i])
909 continue;
910 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
911 from,
912 decile_max[i],
913 deciles[i]);
914 }
915 NS_INFO("*** End of Wear Report ***\n");
514087e7
AH
916}
917
1da177e4
LT
918/*
919 * Returns the string representation of 'state' state.
920 */
a5602146 921static char *get_state_name(uint32_t state)
1da177e4
LT
922{
923 switch (NS_STATE(state)) {
924 case STATE_CMD_READ0:
925 return "STATE_CMD_READ0";
926 case STATE_CMD_READ1:
927 return "STATE_CMD_READ1";
928 case STATE_CMD_PAGEPROG:
929 return "STATE_CMD_PAGEPROG";
930 case STATE_CMD_READOOB:
931 return "STATE_CMD_READOOB";
932 case STATE_CMD_READSTART:
933 return "STATE_CMD_READSTART";
934 case STATE_CMD_ERASE1:
935 return "STATE_CMD_ERASE1";
936 case STATE_CMD_STATUS:
937 return "STATE_CMD_STATUS";
938 case STATE_CMD_STATUS_M:
939 return "STATE_CMD_STATUS_M";
940 case STATE_CMD_SEQIN:
941 return "STATE_CMD_SEQIN";
942 case STATE_CMD_READID:
943 return "STATE_CMD_READID";
944 case STATE_CMD_ERASE2:
945 return "STATE_CMD_ERASE2";
946 case STATE_CMD_RESET:
947 return "STATE_CMD_RESET";
74216be4
AB
948 case STATE_CMD_RNDOUT:
949 return "STATE_CMD_RNDOUT";
950 case STATE_CMD_RNDOUTSTART:
951 return "STATE_CMD_RNDOUTSTART";
1da177e4
LT
952 case STATE_ADDR_PAGE:
953 return "STATE_ADDR_PAGE";
954 case STATE_ADDR_SEC:
955 return "STATE_ADDR_SEC";
956 case STATE_ADDR_ZERO:
957 return "STATE_ADDR_ZERO";
74216be4
AB
958 case STATE_ADDR_COLUMN:
959 return "STATE_ADDR_COLUMN";
1da177e4
LT
960 case STATE_DATAIN:
961 return "STATE_DATAIN";
962 case STATE_DATAOUT:
963 return "STATE_DATAOUT";
964 case STATE_DATAOUT_ID:
965 return "STATE_DATAOUT_ID";
966 case STATE_DATAOUT_STATUS:
967 return "STATE_DATAOUT_STATUS";
968 case STATE_DATAOUT_STATUS_M:
969 return "STATE_DATAOUT_STATUS_M";
970 case STATE_READY:
971 return "STATE_READY";
972 case STATE_UNKNOWN:
973 return "STATE_UNKNOWN";
974 }
975
976 NS_ERR("get_state_name: unknown state, BUG\n");
977 return NULL;
978}
979
980/*
981 * Check if command is valid.
982 *
983 * RETURNS: 1 if wrong command, 0 if right.
984 */
a5602146 985static int check_command(int cmd)
1da177e4
LT
986{
987 switch (cmd) {
61b03bd7 988
1da177e4 989 case NAND_CMD_READ0:
74216be4 990 case NAND_CMD_READ1:
1da177e4
LT
991 case NAND_CMD_READSTART:
992 case NAND_CMD_PAGEPROG:
993 case NAND_CMD_READOOB:
994 case NAND_CMD_ERASE1:
995 case NAND_CMD_STATUS:
996 case NAND_CMD_SEQIN:
997 case NAND_CMD_READID:
998 case NAND_CMD_ERASE2:
999 case NAND_CMD_RESET:
74216be4
AB
1000 case NAND_CMD_RNDOUT:
1001 case NAND_CMD_RNDOUTSTART:
1da177e4 1002 return 0;
61b03bd7 1003
1da177e4
LT
1004 case NAND_CMD_STATUS_MULTI:
1005 default:
1006 return 1;
1007 }
1008}
1009
1010/*
1011 * Returns state after command is accepted by command number.
1012 */
a5602146 1013static uint32_t get_state_by_command(unsigned command)
1da177e4
LT
1014{
1015 switch (command) {
1016 case NAND_CMD_READ0:
1017 return STATE_CMD_READ0;
1018 case NAND_CMD_READ1:
1019 return STATE_CMD_READ1;
1020 case NAND_CMD_PAGEPROG:
1021 return STATE_CMD_PAGEPROG;
1022 case NAND_CMD_READSTART:
1023 return STATE_CMD_READSTART;
1024 case NAND_CMD_READOOB:
1025 return STATE_CMD_READOOB;
1026 case NAND_CMD_ERASE1:
1027 return STATE_CMD_ERASE1;
1028 case NAND_CMD_STATUS:
1029 return STATE_CMD_STATUS;
1030 case NAND_CMD_STATUS_MULTI:
1031 return STATE_CMD_STATUS_M;
1032 case NAND_CMD_SEQIN:
1033 return STATE_CMD_SEQIN;
1034 case NAND_CMD_READID:
1035 return STATE_CMD_READID;
1036 case NAND_CMD_ERASE2:
1037 return STATE_CMD_ERASE2;
1038 case NAND_CMD_RESET:
1039 return STATE_CMD_RESET;
74216be4
AB
1040 case NAND_CMD_RNDOUT:
1041 return STATE_CMD_RNDOUT;
1042 case NAND_CMD_RNDOUTSTART:
1043 return STATE_CMD_RNDOUTSTART;
1da177e4
LT
1044 }
1045
1046 NS_ERR("get_state_by_command: unknown command, BUG\n");
1047 return 0;
1048}
1049
1050/*
1051 * Move an address byte to the correspondent internal register.
1052 */
a5602146 1053static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1da177e4
LT
1054{
1055 uint byte = (uint)bt;
61b03bd7 1056
1da177e4
LT
1057 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1058 ns->regs.column |= (byte << 8 * ns->regs.count);
1059 else {
1060 ns->regs.row |= (byte << 8 * (ns->regs.count -
1061 ns->geom.pgaddrbytes +
1062 ns->geom.secaddrbytes));
1063 }
1064
1065 return;
1066}
61b03bd7 1067
1da177e4
LT
1068/*
1069 * Switch to STATE_READY state.
1070 */
a5602146 1071static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1da177e4
LT
1072{
1073 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1074
1075 ns->state = STATE_READY;
1076 ns->nxstate = STATE_UNKNOWN;
1077 ns->op = NULL;
1078 ns->npstates = 0;
1079 ns->stateidx = 0;
1080 ns->regs.num = 0;
1081 ns->regs.count = 0;
1082 ns->regs.off = 0;
1083 ns->regs.row = 0;
1084 ns->regs.column = 0;
1085 ns->regs.status = status;
1086}
1087
1088/*
1089 * If the operation isn't known yet, try to find it in the global array
1090 * of supported operations.
1091 *
1092 * Operation can be unknown because of the following.
1093 * 1. New command was accepted and this is the firs call to find the
1094 * correspondent states chain. In this case ns->npstates = 0;
1095 * 2. There is several operations which begin with the same command(s)
1096 * (for example program from the second half and read from the
1097 * second half operations both begin with the READ1 command). In this
1098 * case the ns->pstates[] array contains previous states.
61b03bd7 1099 *
1da177e4
LT
1100 * Thus, the function tries to find operation containing the following
1101 * states (if the 'flag' parameter is 0):
1102 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1103 *
1104 * If (one and only one) matching operation is found, it is accepted (
1105 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1106 * zeroed).
61b03bd7 1107 *
1da177e4
LT
1108 * If there are several maches, the current state is pushed to the
1109 * ns->pstates.
1110 *
1111 * The operation can be unknown only while commands are input to the chip.
1112 * As soon as address command is accepted, the operation must be known.
1113 * In such situation the function is called with 'flag' != 0, and the
1114 * operation is searched using the following pattern:
1115 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
61b03bd7 1116 *
1da177e4
LT
1117 * It is supposed that this pattern must either match one operation on
1118 * none. There can't be ambiguity in that case.
1119 *
1120 * If no matches found, the functions does the following:
1121 * 1. if there are saved states present, try to ignore them and search
1122 * again only using the last command. If nothing was found, switch
1123 * to the STATE_READY state.
1124 * 2. if there are no saved states, switch to the STATE_READY state.
1125 *
1126 * RETURNS: -2 - no matched operations found.
1127 * -1 - several matches.
1128 * 0 - operation is found.
1129 */
a5602146 1130static int find_operation(struct nandsim *ns, uint32_t flag)
1da177e4
LT
1131{
1132 int opsfound = 0;
1133 int i, j, idx = 0;
61b03bd7 1134
1da177e4
LT
1135 for (i = 0; i < NS_OPER_NUM; i++) {
1136
1137 int found = 1;
61b03bd7 1138
1da177e4
LT
1139 if (!(ns->options & ops[i].reqopts))
1140 /* Ignore operations we can't perform */
1141 continue;
61b03bd7 1142
1da177e4
LT
1143 if (flag) {
1144 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1145 continue;
1146 } else {
1147 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1148 continue;
1149 }
1150
61b03bd7 1151 for (j = 0; j < ns->npstates; j++)
1da177e4
LT
1152 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1153 && (ns->options & ops[idx].reqopts)) {
1154 found = 0;
1155 break;
1156 }
1157
1158 if (found) {
1159 idx = i;
1160 opsfound += 1;
1161 }
1162 }
1163
1164 if (opsfound == 1) {
1165 /* Exact match */
1166 ns->op = &ops[idx].states[0];
1167 if (flag) {
61b03bd7 1168 /*
1da177e4
LT
1169 * In this case the find_operation function was
1170 * called when address has just began input. But it isn't
1171 * yet fully input and the current state must
1172 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1173 * state must be the next state (ns->nxstate).
1174 */
1175 ns->stateidx = ns->npstates - 1;
1176 } else {
1177 ns->stateidx = ns->npstates;
1178 }
1179 ns->npstates = 0;
1180 ns->state = ns->op[ns->stateidx];
1181 ns->nxstate = ns->op[ns->stateidx + 1];
1182 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1183 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1184 return 0;
1185 }
61b03bd7 1186
1da177e4
LT
1187 if (opsfound == 0) {
1188 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1189 if (ns->npstates != 0) {
1190 NS_DBG("find_operation: no operation found, try again with state %s\n",
1191 get_state_name(ns->state));
1192 ns->npstates = 0;
1193 return find_operation(ns, 0);
1194
1195 }
1196 NS_DBG("find_operation: no operations found\n");
1197 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1198 return -2;
1199 }
61b03bd7 1200
1da177e4
LT
1201 if (flag) {
1202 /* This shouldn't happen */
1203 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1204 return -2;
1205 }
61b03bd7 1206
1da177e4
LT
1207 NS_DBG("find_operation: there is still ambiguity\n");
1208
1209 ns->pstates[ns->npstates++] = ns->state;
1210
1211 return -1;
1212}
1213
d086d436
VK
1214/*
1215 * Returns a pointer to the current page.
1216 */
1217static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1218{
1219 return &(ns->pages[ns->regs.row]);
1220}
1221
1222/*
1223 * Retuns a pointer to the current byte, within the current page.
1224 */
1225static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1226{
1227 return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1228}
1229
1230/*
1231 * Fill the NAND buffer with data read from the specified page.
1232 */
1233static void read_page(struct nandsim *ns, int num)
1234{
1235 union ns_mem *mypage;
1236
1237 mypage = NS_GET_PAGE(ns);
1238 if (mypage->byte == NULL) {
1239 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1240 memset(ns->buf.byte, 0xFF, num);
1241 } else {
514087e7 1242 unsigned int page_no = ns->regs.row;
d086d436
VK
1243 NS_DBG("read_page: page %d allocated, reading from %d\n",
1244 ns->regs.row, ns->regs.column + ns->regs.off);
514087e7
AH
1245 if (read_error(page_no)) {
1246 int i;
1247 memset(ns->buf.byte, 0xFF, num);
1248 for (i = 0; i < num; ++i)
1249 ns->buf.byte[i] = random32();
1250 NS_WARN("simulating read error in page %u\n", page_no);
1251 return;
1252 }
d086d436 1253 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
514087e7
AH
1254 if (bitflips && random32() < (1 << 22)) {
1255 int flips = 1;
1256 if (bitflips > 1)
1257 flips = (random32() % (int) bitflips) + 1;
1258 while (flips--) {
1259 int pos = random32() % (num * 8);
1260 ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1261 NS_WARN("read_page: flipping bit %d in page %d "
1262 "reading from %d ecc: corrected=%u failed=%u\n",
1263 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1264 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1265 }
1266 }
d086d436
VK
1267 }
1268}
1269
1270/*
1271 * Erase all pages in the specified sector.
1272 */
1273static void erase_sector(struct nandsim *ns)
1274{
1275 union ns_mem *mypage;
1276 int i;
1277
1278 mypage = NS_GET_PAGE(ns);
1279 for (i = 0; i < ns->geom.pgsec; i++) {
1280 if (mypage->byte != NULL) {
1281 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1282 kfree(mypage->byte);
1283 mypage->byte = NULL;
1284 }
1285 mypage++;
1286 }
1287}
1288
1289/*
1290 * Program the specified page with the contents from the NAND buffer.
1291 */
1292static int prog_page(struct nandsim *ns, int num)
1293{
82810b7b 1294 int i;
d086d436
VK
1295 union ns_mem *mypage;
1296 u_char *pg_off;
1297
1298 mypage = NS_GET_PAGE(ns);
1299 if (mypage->byte == NULL) {
1300 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
98b830d2
AB
1301 /*
1302 * We allocate memory with GFP_NOFS because a flash FS may
1303 * utilize this. If it is holding an FS lock, then gets here,
1304 * then kmalloc runs writeback which goes to the FS again
1305 * and deadlocks. This was seen in practice.
1306 */
1307 mypage->byte = kmalloc(ns->geom.pgszoob, GFP_NOFS);
d086d436
VK
1308 if (mypage->byte == NULL) {
1309 NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1310 return -1;
1311 }
1312 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1313 }
1314
1315 pg_off = NS_PAGE_BYTE_OFF(ns);
82810b7b
AB
1316 for (i = 0; i < num; i++)
1317 pg_off[i] &= ns->buf.byte[i];
d086d436
VK
1318
1319 return 0;
1320}
1321
1da177e4
LT
1322/*
1323 * If state has any action bit, perform this action.
1324 *
1325 * RETURNS: 0 if success, -1 if error.
1326 */
a5602146 1327static int do_state_action(struct nandsim *ns, uint32_t action)
1da177e4 1328{
d086d436 1329 int num;
1da177e4 1330 int busdiv = ns->busw == 8 ? 1 : 2;
514087e7 1331 unsigned int erase_block_no, page_no;
1da177e4
LT
1332
1333 action &= ACTION_MASK;
61b03bd7 1334
1da177e4
LT
1335 /* Check that page address input is correct */
1336 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1337 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1338 return -1;
1339 }
1340
1341 switch (action) {
1342
1343 case ACTION_CPY:
1344 /*
1345 * Copy page data to the internal buffer.
1346 */
1347
1348 /* Column shouldn't be very large */
1349 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1350 NS_ERR("do_state_action: column number is too large\n");
1351 break;
1352 }
1353 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
d086d436 1354 read_page(ns, num);
1da177e4
LT
1355
1356 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1357 num, NS_RAW_OFFSET(ns) + ns->regs.off);
61b03bd7 1358
1da177e4
LT
1359 if (ns->regs.off == 0)
1360 NS_LOG("read page %d\n", ns->regs.row);
1361 else if (ns->regs.off < ns->geom.pgsz)
1362 NS_LOG("read page %d (second half)\n", ns->regs.row);
1363 else
1364 NS_LOG("read OOB of page %d\n", ns->regs.row);
61b03bd7 1365
1da177e4
LT
1366 NS_UDELAY(access_delay);
1367 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1368
1369 break;
1370
1371 case ACTION_SECERASE:
1372 /*
1373 * Erase sector.
1374 */
61b03bd7 1375
1da177e4
LT
1376 if (ns->lines.wp) {
1377 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1378 return -1;
1379 }
61b03bd7 1380
1da177e4
LT
1381 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1382 || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1383 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1384 return -1;
1385 }
61b03bd7 1386
1da177e4
LT
1387 ns->regs.row = (ns->regs.row <<
1388 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1389 ns->regs.column = 0;
61b03bd7 1390
514087e7
AH
1391 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1392
1da177e4
LT
1393 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1394 ns->regs.row, NS_RAW_OFFSET(ns));
514087e7 1395 NS_LOG("erase sector %u\n", erase_block_no);
1da177e4 1396
d086d436 1397 erase_sector(ns);
61b03bd7 1398
1da177e4 1399 NS_MDELAY(erase_delay);
61b03bd7 1400
57aa6b54
AH
1401 if (erase_block_wear)
1402 update_wear(erase_block_no);
1403
514087e7
AH
1404 if (erase_error(erase_block_no)) {
1405 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1406 return -1;
1407 }
1408
1da177e4
LT
1409 break;
1410
1411 case ACTION_PRGPAGE:
1412 /*
1413 * Programm page - move internal buffer data to the page.
1414 */
1415
1416 if (ns->lines.wp) {
1417 NS_WARN("do_state_action: device is write-protected, programm\n");
1418 return -1;
1419 }
1420
1421 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1422 if (num != ns->regs.count) {
1423 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1424 ns->regs.count, num);
1425 return -1;
1426 }
1427
d086d436
VK
1428 if (prog_page(ns, num) == -1)
1429 return -1;
1da177e4 1430
514087e7
AH
1431 page_no = ns->regs.row;
1432
1da177e4
LT
1433 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1434 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1435 NS_LOG("programm page %d\n", ns->regs.row);
61b03bd7 1436
1da177e4
LT
1437 NS_UDELAY(programm_delay);
1438 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
61b03bd7 1439
514087e7
AH
1440 if (write_error(page_no)) {
1441 NS_WARN("simulating write failure in page %u\n", page_no);
1442 return -1;
1443 }
1444
1da177e4 1445 break;
61b03bd7 1446
1da177e4
LT
1447 case ACTION_ZEROOFF:
1448 NS_DBG("do_state_action: set internal offset to 0\n");
1449 ns->regs.off = 0;
1450 break;
1451
1452 case ACTION_HALFOFF:
1453 if (!(ns->options & OPT_PAGE512_8BIT)) {
1454 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1455 "byte page size 8x chips\n");
1456 return -1;
1457 }
1458 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1459 ns->regs.off = ns->geom.pgsz/2;
1460 break;
1461
1462 case ACTION_OOBOFF:
1463 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1464 ns->regs.off = ns->geom.pgsz;
1465 break;
61b03bd7 1466
1da177e4
LT
1467 default:
1468 NS_DBG("do_state_action: BUG! unknown action\n");
1469 }
1470
1471 return 0;
1472}
1473
1474/*
1475 * Switch simulator's state.
1476 */
a5602146 1477static void switch_state(struct nandsim *ns)
1da177e4
LT
1478{
1479 if (ns->op) {
1480 /*
1481 * The current operation have already been identified.
1482 * Just follow the states chain.
1483 */
61b03bd7 1484
1da177e4
LT
1485 ns->stateidx += 1;
1486 ns->state = ns->nxstate;
1487 ns->nxstate = ns->op[ns->stateidx + 1];
1488
1489 NS_DBG("switch_state: operation is known, switch to the next state, "
1490 "state: %s, nxstate: %s\n",
1491 get_state_name(ns->state), get_state_name(ns->nxstate));
1492
1493 /* See, whether we need to do some action */
1494 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1495 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1496 return;
1497 }
61b03bd7 1498
1da177e4
LT
1499 } else {
1500 /*
1501 * We don't yet know which operation we perform.
1502 * Try to identify it.
1503 */
1504
61b03bd7 1505 /*
1da177e4
LT
1506 * The only event causing the switch_state function to
1507 * be called with yet unknown operation is new command.
1508 */
1509 ns->state = get_state_by_command(ns->regs.command);
1510
1511 NS_DBG("switch_state: operation is unknown, try to find it\n");
1512
1513 if (find_operation(ns, 0) != 0)
1514 return;
1515
1516 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1517 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1518 return;
1519 }
1520 }
1521
1522 /* For 16x devices column means the page offset in words */
1523 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1524 NS_DBG("switch_state: double the column number for 16x device\n");
1525 ns->regs.column <<= 1;
1526 }
1527
1528 if (NS_STATE(ns->nxstate) == STATE_READY) {
1529 /*
1530 * The current state is the last. Return to STATE_READY
1531 */
1532
1533 u_char status = NS_STATUS_OK(ns);
61b03bd7 1534
1da177e4
LT
1535 /* In case of data states, see if all bytes were input/output */
1536 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1537 && ns->regs.count != ns->regs.num) {
1538 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1539 ns->regs.num - ns->regs.count);
1540 status = NS_STATUS_FAILED(ns);
1541 }
61b03bd7 1542
1da177e4
LT
1543 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1544
1545 switch_to_ready_state(ns, status);
1546
1547 return;
1548 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
61b03bd7 1549 /*
1da177e4
LT
1550 * If the next state is data input/output, switch to it now
1551 */
61b03bd7 1552
1da177e4
LT
1553 ns->state = ns->nxstate;
1554 ns->nxstate = ns->op[++ns->stateidx + 1];
1555 ns->regs.num = ns->regs.count = 0;
1556
1557 NS_DBG("switch_state: the next state is data I/O, switch, "
1558 "state: %s, nxstate: %s\n",
1559 get_state_name(ns->state), get_state_name(ns->nxstate));
1560
1561 /*
1562 * Set the internal register to the count of bytes which
1563 * are expected to be input or output
1564 */
1565 switch (NS_STATE(ns->state)) {
1566 case STATE_DATAIN:
1567 case STATE_DATAOUT:
1568 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1569 break;
61b03bd7 1570
1da177e4
LT
1571 case STATE_DATAOUT_ID:
1572 ns->regs.num = ns->geom.idbytes;
1573 break;
61b03bd7 1574
1da177e4
LT
1575 case STATE_DATAOUT_STATUS:
1576 case STATE_DATAOUT_STATUS_M:
1577 ns->regs.count = ns->regs.num = 0;
1578 break;
61b03bd7 1579
1da177e4
LT
1580 default:
1581 NS_ERR("switch_state: BUG! unknown data state\n");
1582 }
1583
1584 } else if (ns->nxstate & STATE_ADDR_MASK) {
1585 /*
1586 * If the next state is address input, set the internal
1587 * register to the number of expected address bytes
1588 */
1589
1590 ns->regs.count = 0;
61b03bd7 1591
1da177e4
LT
1592 switch (NS_STATE(ns->nxstate)) {
1593 case STATE_ADDR_PAGE:
1594 ns->regs.num = ns->geom.pgaddrbytes;
61b03bd7 1595
1da177e4
LT
1596 break;
1597 case STATE_ADDR_SEC:
1598 ns->regs.num = ns->geom.secaddrbytes;
1599 break;
61b03bd7 1600
1da177e4
LT
1601 case STATE_ADDR_ZERO:
1602 ns->regs.num = 1;
1603 break;
1604
74216be4
AB
1605 case STATE_ADDR_COLUMN:
1606 /* Column address is always 2 bytes */
1607 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1608 break;
1609
1da177e4
LT
1610 default:
1611 NS_ERR("switch_state: BUG! unknown address state\n");
1612 }
1613 } else {
61b03bd7 1614 /*
1da177e4
LT
1615 * Just reset internal counters.
1616 */
1617
1618 ns->regs.num = 0;
1619 ns->regs.count = 0;
1620 }
1621}
1622
a5602146 1623static u_char ns_nand_read_byte(struct mtd_info *mtd)
1da177e4
LT
1624{
1625 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1626 u_char outb = 0x00;
1627
1628 /* Sanity and correctness checks */
1629 if (!ns->lines.ce) {
1630 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1631 return outb;
1632 }
1633 if (ns->lines.ale || ns->lines.cle) {
1634 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1635 return outb;
1636 }
1637 if (!(ns->state & STATE_DATAOUT_MASK)) {
1638 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1639 "return %#x\n", get_state_name(ns->state), (uint)outb);
1640 return outb;
1641 }
1642
1643 /* Status register may be read as many times as it is wanted */
1644 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1645 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1646 return ns->regs.status;
1647 }
1648
1649 /* Check if there is any data in the internal buffer which may be read */
1650 if (ns->regs.count == ns->regs.num) {
1651 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1652 return outb;
1653 }
1654
1655 switch (NS_STATE(ns->state)) {
1656 case STATE_DATAOUT:
1657 if (ns->busw == 8) {
1658 outb = ns->buf.byte[ns->regs.count];
1659 ns->regs.count += 1;
1660 } else {
1661 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1662 ns->regs.count += 2;
1663 }
1664 break;
1665 case STATE_DATAOUT_ID:
1666 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1667 outb = ns->ids[ns->regs.count];
1668 ns->regs.count += 1;
1669 break;
1670 default:
1671 BUG();
1672 }
61b03bd7 1673
1da177e4
LT
1674 if (ns->regs.count == ns->regs.num) {
1675 NS_DBG("read_byte: all bytes were read\n");
1676
1677 /*
1678 * The OPT_AUTOINCR allows to read next conseqitive pages without
1679 * new read operation cycle.
1680 */
1681 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1682 ns->regs.count = 0;
1683 if (ns->regs.row + 1 < ns->geom.pgnum)
1684 ns->regs.row += 1;
1685 NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1686 do_state_action(ns, ACTION_CPY);
1687 }
1688 else if (NS_STATE(ns->nxstate) == STATE_READY)
1689 switch_state(ns);
61b03bd7 1690
1da177e4 1691 }
61b03bd7 1692
1da177e4
LT
1693 return outb;
1694}
1695
a5602146 1696static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1da177e4
LT
1697{
1698 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
61b03bd7 1699
1da177e4
LT
1700 /* Sanity and correctness checks */
1701 if (!ns->lines.ce) {
1702 NS_ERR("write_byte: chip is disabled, ignore write\n");
1703 return;
1704 }
1705 if (ns->lines.ale && ns->lines.cle) {
1706 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1707 return;
1708 }
61b03bd7 1709
1da177e4
LT
1710 if (ns->lines.cle == 1) {
1711 /*
1712 * The byte written is a command.
1713 */
1714
1715 if (byte == NAND_CMD_RESET) {
1716 NS_LOG("reset chip\n");
1717 switch_to_ready_state(ns, NS_STATUS_OK(ns));
1718 return;
1719 }
1720
74216be4
AB
1721 /* Check that the command byte is correct */
1722 if (check_command(byte)) {
1723 NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1724 return;
1725 }
1726
1da177e4
LT
1727 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1728 || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
74216be4
AB
1729 || NS_STATE(ns->state) == STATE_DATAOUT) {
1730 int row = ns->regs.row;
1731
1da177e4 1732 switch_state(ns);
74216be4
AB
1733 if (byte == NAND_CMD_RNDOUT)
1734 ns->regs.row = row;
1735 }
1da177e4
LT
1736
1737 /* Check if chip is expecting command */
1738 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
9359ea46
AH
1739 /* Do not warn if only 2 id bytes are read */
1740 if (!(ns->regs.command == NAND_CMD_READID &&
1741 NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
1742 /*
1743 * We are in situation when something else (not command)
1744 * was expected but command was input. In this case ignore
1745 * previous command(s)/state(s) and accept the last one.
1746 */
1747 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1748 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1749 }
1da177e4
LT
1750 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1751 }
61b03bd7 1752
1da177e4
LT
1753 NS_DBG("command byte corresponding to %s state accepted\n",
1754 get_state_name(get_state_by_command(byte)));
1755 ns->regs.command = byte;
1756 switch_state(ns);
1757
1758 } else if (ns->lines.ale == 1) {
1759 /*
1760 * The byte written is an address.
1761 */
1762
1763 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
1764
1765 NS_DBG("write_byte: operation isn't known yet, identify it\n");
1766
1767 if (find_operation(ns, 1) < 0)
1768 return;
61b03bd7 1769
1da177e4
LT
1770 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1771 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1772 return;
1773 }
61b03bd7 1774
1da177e4
LT
1775 ns->regs.count = 0;
1776 switch (NS_STATE(ns->nxstate)) {
1777 case STATE_ADDR_PAGE:
1778 ns->regs.num = ns->geom.pgaddrbytes;
1779 break;
1780 case STATE_ADDR_SEC:
1781 ns->regs.num = ns->geom.secaddrbytes;
1782 break;
1783 case STATE_ADDR_ZERO:
1784 ns->regs.num = 1;
1785 break;
1786 default:
1787 BUG();
1788 }
1789 }
1790
1791 /* Check that chip is expecting address */
1792 if (!(ns->nxstate & STATE_ADDR_MASK)) {
1793 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
1794 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
1795 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1796 return;
1797 }
61b03bd7 1798
1da177e4
LT
1799 /* Check if this is expected byte */
1800 if (ns->regs.count == ns->regs.num) {
1801 NS_ERR("write_byte: no more address bytes expected\n");
1802 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1803 return;
1804 }
1805
1806 accept_addr_byte(ns, byte);
1807
1808 ns->regs.count += 1;
1809
1810 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
1811 (uint)byte, ns->regs.count, ns->regs.num);
1812
1813 if (ns->regs.count == ns->regs.num) {
1814 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
1815 switch_state(ns);
1816 }
61b03bd7 1817
1da177e4
LT
1818 } else {
1819 /*
1820 * The byte written is an input data.
1821 */
61b03bd7 1822
1da177e4
LT
1823 /* Check that chip is expecting data input */
1824 if (!(ns->state & STATE_DATAIN_MASK)) {
1825 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
1826 "switch to %s\n", (uint)byte,
1827 get_state_name(ns->state), get_state_name(STATE_READY));
1828 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1829 return;
1830 }
1831
1832 /* Check if this is expected byte */
1833 if (ns->regs.count == ns->regs.num) {
1834 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
1835 ns->regs.num);
1836 return;
1837 }
1838
1839 if (ns->busw == 8) {
1840 ns->buf.byte[ns->regs.count] = byte;
1841 ns->regs.count += 1;
1842 } else {
1843 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
1844 ns->regs.count += 2;
1845 }
1846 }
1847
1848 return;
1849}
1850
7abd3ef9
TG
1851static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
1852{
1853 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1854
1855 ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
1856 ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
1857 ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
1858
1859 if (cmd != NAND_CMD_NONE)
1860 ns_nand_write_byte(mtd, cmd);
1861}
1862
a5602146 1863static int ns_device_ready(struct mtd_info *mtd)
1da177e4
LT
1864{
1865 NS_DBG("device_ready\n");
1866 return 1;
1867}
1868
a5602146 1869static uint16_t ns_nand_read_word(struct mtd_info *mtd)
1da177e4
LT
1870{
1871 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
1872
1873 NS_DBG("read_word\n");
61b03bd7 1874
1da177e4
LT
1875 return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
1876}
1877
a5602146 1878static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
1da177e4
LT
1879{
1880 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1881
1882 /* Check that chip is expecting data input */
1883 if (!(ns->state & STATE_DATAIN_MASK)) {
1884 NS_ERR("write_buf: data input isn't expected, state is %s, "
1885 "switch to STATE_READY\n", get_state_name(ns->state));
1886 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1887 return;
1888 }
1889
1890 /* Check if these are expected bytes */
1891 if (ns->regs.count + len > ns->regs.num) {
1892 NS_ERR("write_buf: too many input bytes\n");
1893 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1894 return;
1895 }
1896
1897 memcpy(ns->buf.byte + ns->regs.count, buf, len);
1898 ns->regs.count += len;
61b03bd7 1899
1da177e4
LT
1900 if (ns->regs.count == ns->regs.num) {
1901 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
1902 }
1903}
1904
a5602146 1905static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
1da177e4
LT
1906{
1907 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1908
1909 /* Sanity and correctness checks */
1910 if (!ns->lines.ce) {
1911 NS_ERR("read_buf: chip is disabled\n");
1912 return;
1913 }
1914 if (ns->lines.ale || ns->lines.cle) {
1915 NS_ERR("read_buf: ALE or CLE pin is high\n");
1916 return;
1917 }
1918 if (!(ns->state & STATE_DATAOUT_MASK)) {
1919 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
1920 get_state_name(ns->state));
1921 return;
1922 }
1923
1924 if (NS_STATE(ns->state) != STATE_DATAOUT) {
1925 int i;
1926
1927 for (i = 0; i < len; i++)
1928 buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
1929
1930 return;
1931 }
1932
1933 /* Check if these are expected bytes */
1934 if (ns->regs.count + len > ns->regs.num) {
1935 NS_ERR("read_buf: too many bytes to read\n");
1936 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1937 return;
1938 }
1939
1940 memcpy(buf, ns->buf.byte + ns->regs.count, len);
1941 ns->regs.count += len;
61b03bd7 1942
1da177e4
LT
1943 if (ns->regs.count == ns->regs.num) {
1944 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1945 ns->regs.count = 0;
1946 if (ns->regs.row + 1 < ns->geom.pgnum)
1947 ns->regs.row += 1;
1948 NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
1949 do_state_action(ns, ACTION_CPY);
1950 }
1951 else if (NS_STATE(ns->nxstate) == STATE_READY)
1952 switch_state(ns);
1953 }
61b03bd7 1954
1da177e4
LT
1955 return;
1956}
1957
a5602146 1958static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
1da177e4
LT
1959{
1960 ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
1961
1962 if (!memcmp(buf, &ns_verify_buf[0], len)) {
1963 NS_DBG("verify_buf: the buffer is OK\n");
1964 return 0;
1965 } else {
1966 NS_DBG("verify_buf: the buffer is wrong\n");
1967 return -EFAULT;
1968 }
1969}
1970
1da177e4
LT
1971/*
1972 * Module initialization function
1973 */
2b9175c1 1974static int __init ns_init_module(void)
1da177e4
LT
1975{
1976 struct nand_chip *chip;
1977 struct nandsim *nand;
2b77a0ed 1978 int retval = -ENOMEM, i;
1da177e4
LT
1979
1980 if (bus_width != 8 && bus_width != 16) {
1981 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
1982 return -EINVAL;
1983 }
61b03bd7 1984
1da177e4 1985 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
95b93a0c 1986 nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
1da177e4
LT
1987 + sizeof(struct nandsim), GFP_KERNEL);
1988 if (!nsmtd) {
1989 NS_ERR("unable to allocate core structures.\n");
1990 return -ENOMEM;
1991 }
1da177e4
LT
1992 chip = (struct nand_chip *)(nsmtd + 1);
1993 nsmtd->priv = (void *)chip;
1994 nand = (struct nandsim *)(chip + 1);
61b03bd7 1995 chip->priv = (void *)nand;
1da177e4
LT
1996
1997 /*
1998 * Register simulator's callbacks.
1999 */
7abd3ef9 2000 chip->cmd_ctrl = ns_hwcontrol;
1da177e4
LT
2001 chip->read_byte = ns_nand_read_byte;
2002 chip->dev_ready = ns_device_ready;
1da177e4
LT
2003 chip->write_buf = ns_nand_write_buf;
2004 chip->read_buf = ns_nand_read_buf;
2005 chip->verify_buf = ns_nand_verify_buf;
1da177e4 2006 chip->read_word = ns_nand_read_word;
6dfc6d25 2007 chip->ecc.mode = NAND_ECC_SOFT;
a5ac8aeb
AH
2008 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2009 /* and 'badblocks' parameters to work */
51502287 2010 chip->options |= NAND_SKIP_BBTSCAN;
1da177e4 2011
61b03bd7 2012 /*
1da177e4 2013 * Perform minimum nandsim structure initialization to handle
61b03bd7 2014 * the initial ID read command correctly
1da177e4
LT
2015 */
2016 if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2017 nand->geom.idbytes = 4;
2018 else
2019 nand->geom.idbytes = 2;
2020 nand->regs.status = NS_STATUS_OK(nand);
2021 nand->nxstate = STATE_UNKNOWN;
2022 nand->options |= OPT_PAGE256; /* temporary value */
2023 nand->ids[0] = first_id_byte;
2024 nand->ids[1] = second_id_byte;
2025 nand->ids[2] = third_id_byte;
2026 nand->ids[3] = fourth_id_byte;
2027 if (bus_width == 16) {
2028 nand->busw = 16;
2029 chip->options |= NAND_BUSWIDTH_16;
2030 }
2031
552d9205
DW
2032 nsmtd->owner = THIS_MODULE;
2033
514087e7
AH
2034 if ((retval = parse_weakblocks()) != 0)
2035 goto error;
2036
2037 if ((retval = parse_weakpages()) != 0)
2038 goto error;
2039
2040 if ((retval = parse_gravepages()) != 0)
2041 goto error;
2042
1da177e4
LT
2043 if ((retval = nand_scan(nsmtd, 1)) != 0) {
2044 NS_ERR("can't register NAND Simulator\n");
2045 if (retval > 0)
2046 retval = -ENXIO;
2047 goto error;
2048 }
2049
a5ac8aeb 2050 if (overridesize) {
6eda7a55 2051 u_int64_t new_size = (u_int64_t)nsmtd->erasesize << overridesize;
a5ac8aeb
AH
2052 if (new_size >> overridesize != nsmtd->erasesize) {
2053 NS_ERR("overridesize is too big\n");
2054 goto err_exit;
2055 }
2056 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2057 nsmtd->size = new_size;
2058 chip->chipsize = new_size;
6eda7a55 2059 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
07293b20 2060 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
a5ac8aeb
AH
2061 }
2062
57aa6b54
AH
2063 if ((retval = setup_wear_reporting(nsmtd)) != 0)
2064 goto err_exit;
2065
2b77a0ed
AH
2066 if ((retval = init_nandsim(nsmtd)) != 0)
2067 goto err_exit;
61b03bd7 2068
514087e7
AH
2069 if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2070 goto err_exit;
2071
2b77a0ed
AH
2072 if ((retval = nand_default_bbt(nsmtd)) != 0)
2073 goto err_exit;
51502287 2074
2b77a0ed
AH
2075 /* Register NAND partitions */
2076 if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0)
2077 goto err_exit;
1da177e4
LT
2078
2079 return 0;
2080
2b77a0ed
AH
2081err_exit:
2082 free_nandsim(nand);
2083 nand_release(nsmtd);
2084 for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2085 kfree(nand->partitions[i].name);
1da177e4
LT
2086error:
2087 kfree(nsmtd);
514087e7 2088 free_lists();
1da177e4
LT
2089
2090 return retval;
2091}
2092
2093module_init(ns_init_module);
2094
2095/*
2096 * Module clean-up function
2097 */
2098static void __exit ns_cleanup_module(void)
2099{
2100 struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
2b77a0ed 2101 int i;
1da177e4
LT
2102
2103 free_nandsim(ns); /* Free nandsim private resources */
2b77a0ed
AH
2104 nand_release(nsmtd); /* Unregister driver */
2105 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2106 kfree(ns->partitions[i].name);
1da177e4 2107 kfree(nsmtd); /* Free other structures */
514087e7 2108 free_lists();
1da177e4
LT
2109}
2110
2111module_exit(ns_cleanup_module);
2112
2113MODULE_LICENSE ("GPL");
2114MODULE_AUTHOR ("Artem B. Bityuckiy");
2115MODULE_DESCRIPTION ("The NAND flash simulator");
This page took 0.388883 seconds and 5 git commands to generate.