mtd: denali_dt: Use devm_ioremap_resource()
[deliverable/linux.git] / drivers / mtd / nand / omap2.c
CommitLineData
67ce04bf
VS
1/*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/platform_device.h>
763e7359 12#include <linux/dmaengine.h>
67ce04bf
VS
13#include <linux/dma-mapping.h>
14#include <linux/delay.h>
a0e5cc58 15#include <linux/module.h>
4e070376 16#include <linux/interrupt.h>
c276aca4 17#include <linux/jiffies.h>
18#include <linux/sched.h>
67ce04bf
VS
19#include <linux/mtd/mtd.h>
20#include <linux/mtd/nand.h>
21#include <linux/mtd/partitions.h>
763e7359 22#include <linux/omap-dma.h>
67ce04bf 23#include <linux/io.h>
5a0e3ad6 24#include <linux/slab.h>
62116e51
PA
25#include <linux/of.h>
26#include <linux/of_device.h>
67ce04bf 27
32d42a85 28#include <linux/mtd/nand_bch.h>
62116e51 29#include <linux/platform_data/elm.h>
0e618ef0 30
2203747c 31#include <linux/platform_data/mtd-nand-omap2.h>
67ce04bf 32
67ce04bf 33#define DRIVER_NAME "omap2-nand"
4e070376 34#define OMAP_NAND_TIMEOUT_MS 5000
67ce04bf 35
67ce04bf
VS
36#define NAND_Ecc_P1e (1 << 0)
37#define NAND_Ecc_P2e (1 << 1)
38#define NAND_Ecc_P4e (1 << 2)
39#define NAND_Ecc_P8e (1 << 3)
40#define NAND_Ecc_P16e (1 << 4)
41#define NAND_Ecc_P32e (1 << 5)
42#define NAND_Ecc_P64e (1 << 6)
43#define NAND_Ecc_P128e (1 << 7)
44#define NAND_Ecc_P256e (1 << 8)
45#define NAND_Ecc_P512e (1 << 9)
46#define NAND_Ecc_P1024e (1 << 10)
47#define NAND_Ecc_P2048e (1 << 11)
48
49#define NAND_Ecc_P1o (1 << 16)
50#define NAND_Ecc_P2o (1 << 17)
51#define NAND_Ecc_P4o (1 << 18)
52#define NAND_Ecc_P8o (1 << 19)
53#define NAND_Ecc_P16o (1 << 20)
54#define NAND_Ecc_P32o (1 << 21)
55#define NAND_Ecc_P64o (1 << 22)
56#define NAND_Ecc_P128o (1 << 23)
57#define NAND_Ecc_P256o (1 << 24)
58#define NAND_Ecc_P512o (1 << 25)
59#define NAND_Ecc_P1024o (1 << 26)
60#define NAND_Ecc_P2048o (1 << 27)
61
62#define TF(value) (value ? 1 : 0)
63
64#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
65#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
66#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
67#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
68#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
69#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
70#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
71#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
72
73#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
74#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
75#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
76#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
77#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
78#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
79#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
80#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
81
82#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
83#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
84#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
85#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
86#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
87#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
88#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
89#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
90
91#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
92#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
93#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
94#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
95#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
96#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
97#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
98#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
99
100#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
101#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
102
65b97cf6
AM
103#define PREFETCH_CONFIG1_CS_SHIFT 24
104#define ECC_CONFIG_CS_SHIFT 1
105#define CS_MASK 0x7
106#define ENABLE_PREFETCH (0x1 << 7)
107#define DMA_MPU_MODE_SHIFT 2
2ef9f3dd 108#define ECCSIZE0_SHIFT 12
65b97cf6
AM
109#define ECCSIZE1_SHIFT 22
110#define ECC1RESULTSIZE 0x1
111#define ECCCLEAR 0x100
112#define ECC1 0x1
47f88af4
AM
113#define PREFETCH_FIFOTHRESHOLD_MAX 0x40
114#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
115#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
116#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
117#define STATUS_BUFF_EMPTY 0x00000001
65b97cf6 118
d5e7c864
LV
119#define OMAP24XX_DMA_GPMC 4
120
62116e51
PA
121#define SECTOR_BYTES 512
122/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
123#define BCH4_BIT_PAD 4
62116e51
PA
124
125/* GPMC ecc engine settings for read */
126#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
127#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
128#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
129#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
130#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
131
132/* GPMC ecc engine settings for write */
133#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
134#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
135#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
136
b491da72 137#define BADBLOCK_MARKER_LENGTH 2
a919e511 138
62116e51
PA
139#ifdef CONFIG_MTD_NAND_OMAP_BCH
140static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
141 0xac, 0x6b, 0xff, 0x99, 0x7b};
142static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
143#endif
144
f040d332
SG
145/* oob info generated runtime depending on ecc algorithm and layout selected */
146static struct nand_ecclayout omap_oobinfo;
59e9c5ae 147
67ce04bf
VS
148struct omap_nand_info {
149 struct nand_hw_control controller;
150 struct omap_nand_platform_data *pdata;
151 struct mtd_info mtd;
67ce04bf
VS
152 struct nand_chip nand;
153 struct platform_device *pdev;
154
155 int gpmc_cs;
156 unsigned long phys_base;
9c4c2f8b 157 unsigned long mem_size;
4e558072 158 enum omap_ecc ecc_opt;
dfe32893 159 struct completion comp;
763e7359 160 struct dma_chan *dma;
5c468455
AM
161 int gpmc_irq_fifo;
162 int gpmc_irq_count;
4e070376
SG
163 enum {
164 OMAP_NAND_IO_READ = 0, /* read */
165 OMAP_NAND_IO_WRITE, /* write */
166 } iomode;
167 u_char *buf;
168 int buf_len;
65b97cf6 169 struct gpmc_nand_regs reg;
a919e511 170 /* fields specific for BCHx_HW ECC scheme */
62116e51
PA
171 struct device *elm_dev;
172 struct device_node *of_node;
67ce04bf
VS
173};
174
65b97cf6
AM
175/**
176 * omap_prefetch_enable - configures and starts prefetch transfer
177 * @cs: cs (chip select) number
178 * @fifo_th: fifo threshold to be used for read/ write
179 * @dma_mode: dma mode enable (1) or disable (0)
180 * @u32_count: number of bytes to be transferred
181 * @is_write: prefetch read(0) or write post(1) mode
182 */
183static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
184 unsigned int u32_count, int is_write, struct omap_nand_info *info)
185{
186 u32 val;
187
188 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
189 return -1;
190
191 if (readl(info->reg.gpmc_prefetch_control))
192 return -EBUSY;
193
194 /* Set the amount of bytes to be prefetched */
195 writel(u32_count, info->reg.gpmc_prefetch_config2);
196
197 /* Set dma/mpu mode, the prefetch read / post write and
198 * enable the engine. Set which cs is has requested for.
199 */
200 val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
201 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
202 (dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
203 writel(val, info->reg.gpmc_prefetch_config1);
204
205 /* Start the prefetch engine */
206 writel(0x1, info->reg.gpmc_prefetch_control);
207
208 return 0;
209}
210
211/**
212 * omap_prefetch_reset - disables and stops the prefetch engine
213 */
214static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
215{
216 u32 config1;
217
218 /* check if the same module/cs is trying to reset */
219 config1 = readl(info->reg.gpmc_prefetch_config1);
220 if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
221 return -EINVAL;
222
223 /* Stop the PFPW engine */
224 writel(0x0, info->reg.gpmc_prefetch_control);
225
226 /* Reset/disable the PFPW engine */
227 writel(0x0, info->reg.gpmc_prefetch_config1);
228
229 return 0;
230}
231
67ce04bf
VS
232/**
233 * omap_hwcontrol - hardware specific access to control-lines
234 * @mtd: MTD device structure
235 * @cmd: command to device
236 * @ctrl:
237 * NAND_NCE: bit 0 -> don't care
238 * NAND_CLE: bit 1 -> Command Latch
239 * NAND_ALE: bit 2 -> Address Latch
240 *
241 * NOTE: boards may use different bits for these!!
242 */
243static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
244{
245 struct omap_nand_info *info = container_of(mtd,
246 struct omap_nand_info, mtd);
67ce04bf 247
2c01946c
SG
248 if (cmd != NAND_CMD_NONE) {
249 if (ctrl & NAND_CLE)
65b97cf6 250 writeb(cmd, info->reg.gpmc_nand_command);
2c01946c
SG
251
252 else if (ctrl & NAND_ALE)
65b97cf6 253 writeb(cmd, info->reg.gpmc_nand_address);
2c01946c
SG
254
255 else /* NAND_NCE */
65b97cf6 256 writeb(cmd, info->reg.gpmc_nand_data);
2c01946c 257 }
67ce04bf
VS
258}
259
59e9c5ae 260/**
261 * omap_read_buf8 - read data from NAND controller into buffer
262 * @mtd: MTD device structure
263 * @buf: buffer to store date
264 * @len: number of bytes to read
265 */
266static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
267{
268 struct nand_chip *nand = mtd->priv;
269
270 ioread8_rep(nand->IO_ADDR_R, buf, len);
271}
272
273/**
274 * omap_write_buf8 - write buffer to NAND controller
275 * @mtd: MTD device structure
276 * @buf: data buffer
277 * @len: number of bytes to write
278 */
279static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
280{
281 struct omap_nand_info *info = container_of(mtd,
282 struct omap_nand_info, mtd);
283 u_char *p = (u_char *)buf;
2c01946c 284 u32 status = 0;
59e9c5ae 285
286 while (len--) {
287 iowrite8(*p++, info->nand.IO_ADDR_W);
2c01946c
SG
288 /* wait until buffer is available for write */
289 do {
65b97cf6 290 status = readl(info->reg.gpmc_status) &
47f88af4 291 STATUS_BUFF_EMPTY;
2c01946c 292 } while (!status);
59e9c5ae 293 }
294}
295
67ce04bf
VS
296/**
297 * omap_read_buf16 - read data from NAND controller into buffer
298 * @mtd: MTD device structure
299 * @buf: buffer to store date
300 * @len: number of bytes to read
301 */
302static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
303{
304 struct nand_chip *nand = mtd->priv;
305
59e9c5ae 306 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
67ce04bf
VS
307}
308
309/**
310 * omap_write_buf16 - write buffer to NAND controller
311 * @mtd: MTD device structure
312 * @buf: data buffer
313 * @len: number of bytes to write
314 */
315static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
316{
317 struct omap_nand_info *info = container_of(mtd,
318 struct omap_nand_info, mtd);
319 u16 *p = (u16 *) buf;
2c01946c 320 u32 status = 0;
67ce04bf
VS
321 /* FIXME try bursts of writesw() or DMA ... */
322 len >>= 1;
323
324 while (len--) {
59e9c5ae 325 iowrite16(*p++, info->nand.IO_ADDR_W);
2c01946c
SG
326 /* wait until buffer is available for write */
327 do {
65b97cf6 328 status = readl(info->reg.gpmc_status) &
47f88af4 329 STATUS_BUFF_EMPTY;
2c01946c 330 } while (!status);
67ce04bf
VS
331 }
332}
59e9c5ae 333
334/**
335 * omap_read_buf_pref - read data from NAND controller into buffer
336 * @mtd: MTD device structure
337 * @buf: buffer to store date
338 * @len: number of bytes to read
339 */
340static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
341{
342 struct omap_nand_info *info = container_of(mtd,
343 struct omap_nand_info, mtd);
2c01946c 344 uint32_t r_count = 0;
59e9c5ae 345 int ret = 0;
346 u32 *p = (u32 *)buf;
347
348 /* take care of subpage reads */
c3341d0c
VS
349 if (len % 4) {
350 if (info->nand.options & NAND_BUSWIDTH_16)
351 omap_read_buf16(mtd, buf, len % 4);
352 else
353 omap_read_buf8(mtd, buf, len % 4);
354 p = (u32 *) (buf + len % 4);
355 len -= len % 4;
59e9c5ae 356 }
59e9c5ae 357
358 /* configure and start prefetch transfer */
65b97cf6
AM
359 ret = omap_prefetch_enable(info->gpmc_cs,
360 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
59e9c5ae 361 if (ret) {
362 /* PFPW engine is busy, use cpu copy method */
363 if (info->nand.options & NAND_BUSWIDTH_16)
c5d8c0ca 364 omap_read_buf16(mtd, (u_char *)p, len);
59e9c5ae 365 else
c5d8c0ca 366 omap_read_buf8(mtd, (u_char *)p, len);
59e9c5ae 367 } else {
368 do {
65b97cf6 369 r_count = readl(info->reg.gpmc_prefetch_status);
47f88af4 370 r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
2c01946c
SG
371 r_count = r_count >> 2;
372 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
59e9c5ae 373 p += r_count;
374 len -= r_count << 2;
375 } while (len);
59e9c5ae 376 /* disable and stop the PFPW engine */
65b97cf6 377 omap_prefetch_reset(info->gpmc_cs, info);
59e9c5ae 378 }
379}
380
381/**
382 * omap_write_buf_pref - write buffer to NAND controller
383 * @mtd: MTD device structure
384 * @buf: data buffer
385 * @len: number of bytes to write
386 */
387static void omap_write_buf_pref(struct mtd_info *mtd,
388 const u_char *buf, int len)
389{
390 struct omap_nand_info *info = container_of(mtd,
391 struct omap_nand_info, mtd);
4e070376 392 uint32_t w_count = 0;
59e9c5ae 393 int i = 0, ret = 0;
c5d8c0ca 394 u16 *p = (u16 *)buf;
4e070376 395 unsigned long tim, limit;
65b97cf6 396 u32 val;
59e9c5ae 397
398 /* take care of subpage writes */
399 if (len % 2 != 0) {
2c01946c 400 writeb(*buf, info->nand.IO_ADDR_W);
59e9c5ae 401 p = (u16 *)(buf + 1);
402 len--;
403 }
404
405 /* configure and start prefetch transfer */
65b97cf6
AM
406 ret = omap_prefetch_enable(info->gpmc_cs,
407 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
59e9c5ae 408 if (ret) {
409 /* PFPW engine is busy, use cpu copy method */
410 if (info->nand.options & NAND_BUSWIDTH_16)
c5d8c0ca 411 omap_write_buf16(mtd, (u_char *)p, len);
59e9c5ae 412 else
c5d8c0ca 413 omap_write_buf8(mtd, (u_char *)p, len);
59e9c5ae 414 } else {
2c01946c 415 while (len) {
65b97cf6 416 w_count = readl(info->reg.gpmc_prefetch_status);
47f88af4 417 w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
2c01946c 418 w_count = w_count >> 1;
59e9c5ae 419 for (i = 0; (i < w_count) && len; i++, len -= 2)
2c01946c 420 iowrite16(*p++, info->nand.IO_ADDR_W);
59e9c5ae 421 }
2c01946c 422 /* wait for data to flushed-out before reset the prefetch */
4e070376
SG
423 tim = 0;
424 limit = (loops_per_jiffy *
425 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
65b97cf6 426 do {
4e070376 427 cpu_relax();
65b97cf6 428 val = readl(info->reg.gpmc_prefetch_status);
47f88af4 429 val = PREFETCH_STATUS_COUNT(val);
65b97cf6 430 } while (val && (tim++ < limit));
4e070376 431
59e9c5ae 432 /* disable and stop the PFPW engine */
65b97cf6 433 omap_prefetch_reset(info->gpmc_cs, info);
59e9c5ae 434 }
435}
436
dfe32893 437/*
2df41d05 438 * omap_nand_dma_callback: callback on the completion of dma transfer
dfe32893 439 * @data: pointer to completion data structure
440 */
763e7359
RK
441static void omap_nand_dma_callback(void *data)
442{
443 complete((struct completion *) data);
444}
dfe32893 445
446/*
4cacbe22 447 * omap_nand_dma_transfer: configure and start dma transfer
dfe32893 448 * @mtd: MTD device structure
449 * @addr: virtual address in RAM of source/destination
450 * @len: number of data bytes to be transferred
451 * @is_write: flag for read/write operation
452 */
453static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
454 unsigned int len, int is_write)
455{
456 struct omap_nand_info *info = container_of(mtd,
457 struct omap_nand_info, mtd);
2df41d05 458 struct dma_async_tx_descriptor *tx;
dfe32893 459 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
460 DMA_FROM_DEVICE;
2df41d05 461 struct scatterlist sg;
4e070376 462 unsigned long tim, limit;
2df41d05
RK
463 unsigned n;
464 int ret;
65b97cf6 465 u32 val;
dfe32893 466
467 if (addr >= high_memory) {
468 struct page *p1;
469
470 if (((size_t)addr & PAGE_MASK) !=
471 ((size_t)(addr + len - 1) & PAGE_MASK))
472 goto out_copy;
473 p1 = vmalloc_to_page(addr);
474 if (!p1)
475 goto out_copy;
476 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
477 }
478
2df41d05
RK
479 sg_init_one(&sg, addr, len);
480 n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
481 if (n == 0) {
dfe32893 482 dev_err(&info->pdev->dev,
483 "Couldn't DMA map a %d byte buffer\n", len);
484 goto out_copy;
485 }
486
2df41d05
RK
487 tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
488 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
489 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
490 if (!tx)
491 goto out_copy_unmap;
492
493 tx->callback = omap_nand_dma_callback;
494 tx->callback_param = &info->comp;
495 dmaengine_submit(tx);
496
65b97cf6
AM
497 /* configure and start prefetch transfer */
498 ret = omap_prefetch_enable(info->gpmc_cs,
499 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
dfe32893 500 if (ret)
4e070376 501 /* PFPW engine is busy, use cpu copy method */
d7efe228 502 goto out_copy_unmap;
dfe32893 503
504 init_completion(&info->comp);
2df41d05 505 dma_async_issue_pending(info->dma);
dfe32893 506
507 /* setup and start DMA using dma_addr */
508 wait_for_completion(&info->comp);
4e070376
SG
509 tim = 0;
510 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
65b97cf6
AM
511
512 do {
4e070376 513 cpu_relax();
65b97cf6 514 val = readl(info->reg.gpmc_prefetch_status);
47f88af4 515 val = PREFETCH_STATUS_COUNT(val);
65b97cf6 516 } while (val && (tim++ < limit));
dfe32893 517
dfe32893 518 /* disable and stop the PFPW engine */
65b97cf6 519 omap_prefetch_reset(info->gpmc_cs, info);
dfe32893 520
2df41d05 521 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
dfe32893 522 return 0;
523
d7efe228 524out_copy_unmap:
2df41d05 525 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
dfe32893 526out_copy:
527 if (info->nand.options & NAND_BUSWIDTH_16)
528 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
529 : omap_write_buf16(mtd, (u_char *) addr, len);
530 else
531 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
532 : omap_write_buf8(mtd, (u_char *) addr, len);
533 return 0;
534}
dfe32893 535
536/**
537 * omap_read_buf_dma_pref - read data from NAND controller into buffer
538 * @mtd: MTD device structure
539 * @buf: buffer to store date
540 * @len: number of bytes to read
541 */
542static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
543{
544 if (len <= mtd->oobsize)
545 omap_read_buf_pref(mtd, buf, len);
546 else
547 /* start transfer in DMA mode */
548 omap_nand_dma_transfer(mtd, buf, len, 0x0);
549}
550
551/**
552 * omap_write_buf_dma_pref - write buffer to NAND controller
553 * @mtd: MTD device structure
554 * @buf: data buffer
555 * @len: number of bytes to write
556 */
557static void omap_write_buf_dma_pref(struct mtd_info *mtd,
558 const u_char *buf, int len)
559{
560 if (len <= mtd->oobsize)
561 omap_write_buf_pref(mtd, buf, len);
562 else
563 /* start transfer in DMA mode */
bdaefc41 564 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
dfe32893 565}
566
4e070376 567/*
4cacbe22 568 * omap_nand_irq - GPMC irq handler
4e070376
SG
569 * @this_irq: gpmc irq number
570 * @dev: omap_nand_info structure pointer is passed here
571 */
572static irqreturn_t omap_nand_irq(int this_irq, void *dev)
573{
574 struct omap_nand_info *info = (struct omap_nand_info *) dev;
575 u32 bytes;
4e070376 576
65b97cf6 577 bytes = readl(info->reg.gpmc_prefetch_status);
47f88af4 578 bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
4e070376
SG
579 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
580 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
5c468455 581 if (this_irq == info->gpmc_irq_count)
4e070376
SG
582 goto done;
583
584 if (info->buf_len && (info->buf_len < bytes))
585 bytes = info->buf_len;
586 else if (!info->buf_len)
587 bytes = 0;
588 iowrite32_rep(info->nand.IO_ADDR_W,
589 (u32 *)info->buf, bytes >> 2);
590 info->buf = info->buf + bytes;
591 info->buf_len -= bytes;
592
593 } else {
594 ioread32_rep(info->nand.IO_ADDR_R,
595 (u32 *)info->buf, bytes >> 2);
596 info->buf = info->buf + bytes;
597
5c468455 598 if (this_irq == info->gpmc_irq_count)
4e070376
SG
599 goto done;
600 }
4e070376
SG
601
602 return IRQ_HANDLED;
603
604done:
605 complete(&info->comp);
4e070376 606
5c468455
AM
607 disable_irq_nosync(info->gpmc_irq_fifo);
608 disable_irq_nosync(info->gpmc_irq_count);
4e070376
SG
609
610 return IRQ_HANDLED;
611}
612
613/*
614 * omap_read_buf_irq_pref - read data from NAND controller into buffer
615 * @mtd: MTD device structure
616 * @buf: buffer to store date
617 * @len: number of bytes to read
618 */
619static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
620{
621 struct omap_nand_info *info = container_of(mtd,
622 struct omap_nand_info, mtd);
623 int ret = 0;
624
625 if (len <= mtd->oobsize) {
626 omap_read_buf_pref(mtd, buf, len);
627 return;
628 }
629
630 info->iomode = OMAP_NAND_IO_READ;
631 info->buf = buf;
632 init_completion(&info->comp);
633
634 /* configure and start prefetch transfer */
65b97cf6
AM
635 ret = omap_prefetch_enable(info->gpmc_cs,
636 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
4e070376
SG
637 if (ret)
638 /* PFPW engine is busy, use cpu copy method */
639 goto out_copy;
640
641 info->buf_len = len;
5c468455
AM
642
643 enable_irq(info->gpmc_irq_count);
644 enable_irq(info->gpmc_irq_fifo);
4e070376
SG
645
646 /* waiting for read to complete */
647 wait_for_completion(&info->comp);
648
649 /* disable and stop the PFPW engine */
65b97cf6 650 omap_prefetch_reset(info->gpmc_cs, info);
4e070376
SG
651 return;
652
653out_copy:
654 if (info->nand.options & NAND_BUSWIDTH_16)
655 omap_read_buf16(mtd, buf, len);
656 else
657 omap_read_buf8(mtd, buf, len);
658}
659
660/*
661 * omap_write_buf_irq_pref - write buffer to NAND controller
662 * @mtd: MTD device structure
663 * @buf: data buffer
664 * @len: number of bytes to write
665 */
666static void omap_write_buf_irq_pref(struct mtd_info *mtd,
667 const u_char *buf, int len)
668{
669 struct omap_nand_info *info = container_of(mtd,
670 struct omap_nand_info, mtd);
671 int ret = 0;
672 unsigned long tim, limit;
65b97cf6 673 u32 val;
4e070376
SG
674
675 if (len <= mtd->oobsize) {
676 omap_write_buf_pref(mtd, buf, len);
677 return;
678 }
679
680 info->iomode = OMAP_NAND_IO_WRITE;
681 info->buf = (u_char *) buf;
682 init_completion(&info->comp);
683
317379a9 684 /* configure and start prefetch transfer : size=24 */
65b97cf6
AM
685 ret = omap_prefetch_enable(info->gpmc_cs,
686 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
4e070376
SG
687 if (ret)
688 /* PFPW engine is busy, use cpu copy method */
689 goto out_copy;
690
691 info->buf_len = len;
5c468455
AM
692
693 enable_irq(info->gpmc_irq_count);
694 enable_irq(info->gpmc_irq_fifo);
4e070376
SG
695
696 /* waiting for write to complete */
697 wait_for_completion(&info->comp);
5c468455 698
4e070376
SG
699 /* wait for data to flushed-out before reset the prefetch */
700 tim = 0;
701 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
65b97cf6
AM
702 do {
703 val = readl(info->reg.gpmc_prefetch_status);
47f88af4 704 val = PREFETCH_STATUS_COUNT(val);
4e070376 705 cpu_relax();
65b97cf6 706 } while (val && (tim++ < limit));
4e070376
SG
707
708 /* disable and stop the PFPW engine */
65b97cf6 709 omap_prefetch_reset(info->gpmc_cs, info);
4e070376
SG
710 return;
711
712out_copy:
713 if (info->nand.options & NAND_BUSWIDTH_16)
714 omap_write_buf16(mtd, buf, len);
715 else
716 omap_write_buf8(mtd, buf, len);
717}
718
67ce04bf
VS
719/**
720 * gen_true_ecc - This function will generate true ECC value
721 * @ecc_buf: buffer to store ecc code
722 *
723 * This generated true ECC value can be used when correcting
724 * data read from NAND flash memory core
725 */
726static void gen_true_ecc(u8 *ecc_buf)
727{
728 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
729 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
730
731 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
732 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
733 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
734 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
735 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
736 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
737}
738
739/**
740 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
741 * @ecc_data1: ecc code from nand spare area
742 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
743 * @page_data: page data
744 *
745 * This function compares two ECC's and indicates if there is an error.
746 * If the error can be corrected it will be corrected to the buffer.
74f1b724
JO
747 * If there is no error, %0 is returned. If there is an error but it
748 * was corrected, %1 is returned. Otherwise, %-1 is returned.
67ce04bf
VS
749 */
750static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
751 u8 *ecc_data2, /* read from register */
752 u8 *page_data)
753{
754 uint i;
755 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
756 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
757 u8 ecc_bit[24];
758 u8 ecc_sum = 0;
759 u8 find_bit = 0;
760 uint find_byte = 0;
761 int isEccFF;
762
763 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
764
765 gen_true_ecc(ecc_data1);
766 gen_true_ecc(ecc_data2);
767
768 for (i = 0; i <= 2; i++) {
769 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
770 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
771 }
772
773 for (i = 0; i < 8; i++) {
774 tmp0_bit[i] = *ecc_data1 % 2;
775 *ecc_data1 = *ecc_data1 / 2;
776 }
777
778 for (i = 0; i < 8; i++) {
779 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
780 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
781 }
782
783 for (i = 0; i < 8; i++) {
784 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
785 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
786 }
787
788 for (i = 0; i < 8; i++) {
789 comp0_bit[i] = *ecc_data2 % 2;
790 *ecc_data2 = *ecc_data2 / 2;
791 }
792
793 for (i = 0; i < 8; i++) {
794 comp1_bit[i] = *(ecc_data2 + 1) % 2;
795 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
796 }
797
798 for (i = 0; i < 8; i++) {
799 comp2_bit[i] = *(ecc_data2 + 2) % 2;
800 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
801 }
802
803 for (i = 0; i < 6; i++)
804 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
805
806 for (i = 0; i < 8; i++)
807 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
808
809 for (i = 0; i < 8; i++)
810 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
811
812 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
813 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
814
815 for (i = 0; i < 24; i++)
816 ecc_sum += ecc_bit[i];
817
818 switch (ecc_sum) {
819 case 0:
820 /* Not reached because this function is not called if
821 * ECC values are equal
822 */
823 return 0;
824
825 case 1:
826 /* Uncorrectable error */
289c0522 827 pr_debug("ECC UNCORRECTED_ERROR 1\n");
67ce04bf
VS
828 return -1;
829
830 case 11:
831 /* UN-Correctable error */
289c0522 832 pr_debug("ECC UNCORRECTED_ERROR B\n");
67ce04bf
VS
833 return -1;
834
835 case 12:
836 /* Correctable error */
837 find_byte = (ecc_bit[23] << 8) +
838 (ecc_bit[21] << 7) +
839 (ecc_bit[19] << 6) +
840 (ecc_bit[17] << 5) +
841 (ecc_bit[15] << 4) +
842 (ecc_bit[13] << 3) +
843 (ecc_bit[11] << 2) +
844 (ecc_bit[9] << 1) +
845 ecc_bit[7];
846
847 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
848
0a32a102
BN
849 pr_debug("Correcting single bit ECC error at offset: "
850 "%d, bit: %d\n", find_byte, find_bit);
67ce04bf
VS
851
852 page_data[find_byte] ^= (1 << find_bit);
853
74f1b724 854 return 1;
67ce04bf
VS
855 default:
856 if (isEccFF) {
857 if (ecc_data2[0] == 0 &&
858 ecc_data2[1] == 0 &&
859 ecc_data2[2] == 0)
860 return 0;
861 }
289c0522 862 pr_debug("UNCORRECTED_ERROR default\n");
67ce04bf
VS
863 return -1;
864 }
865}
866
867/**
868 * omap_correct_data - Compares the ECC read with HW generated ECC
869 * @mtd: MTD device structure
870 * @dat: page data
871 * @read_ecc: ecc read from nand flash
872 * @calc_ecc: ecc read from HW ECC registers
873 *
874 * Compares the ecc read from nand spare area with ECC registers values
74f1b724
JO
875 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
876 * detection and correction. If there are no errors, %0 is returned. If
877 * there were errors and all of the errors were corrected, the number of
878 * corrected errors is returned. If uncorrectable errors exist, %-1 is
879 * returned.
67ce04bf
VS
880 */
881static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
882 u_char *read_ecc, u_char *calc_ecc)
883{
884 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
885 mtd);
886 int blockCnt = 0, i = 0, ret = 0;
74f1b724 887 int stat = 0;
67ce04bf
VS
888
889 /* Ex NAND_ECC_HW12_2048 */
890 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
891 (info->nand.ecc.size == 2048))
892 blockCnt = 4;
893 else
894 blockCnt = 1;
895
896 for (i = 0; i < blockCnt; i++) {
897 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
898 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
899 if (ret < 0)
900 return ret;
74f1b724
JO
901 /* keep track of the number of corrected errors */
902 stat += ret;
67ce04bf
VS
903 }
904 read_ecc += 3;
905 calc_ecc += 3;
906 dat += 512;
907 }
74f1b724 908 return stat;
67ce04bf
VS
909}
910
911/**
912 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
913 * @mtd: MTD device structure
914 * @dat: The pointer to data on which ecc is computed
915 * @ecc_code: The ecc_code buffer
916 *
917 * Using noninverted ECC can be considered ugly since writing a blank
918 * page ie. padding will clear the ECC bytes. This is no problem as long
919 * nobody is trying to write data on the seemingly unused page. Reading
920 * an erased page will produce an ECC mismatch between generated and read
921 * ECC bytes that has to be dealt with separately.
922 */
923static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
924 u_char *ecc_code)
925{
926 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
927 mtd);
65b97cf6
AM
928 u32 val;
929
930 val = readl(info->reg.gpmc_ecc_config);
931 if (((val >> ECC_CONFIG_CS_SHIFT) & ~CS_MASK) != info->gpmc_cs)
932 return -EINVAL;
933
934 /* read ecc result */
935 val = readl(info->reg.gpmc_ecc1_result);
936 *ecc_code++ = val; /* P128e, ..., P1e */
937 *ecc_code++ = val >> 16; /* P128o, ..., P1o */
938 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
939 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
940
941 return 0;
67ce04bf
VS
942}
943
944/**
945 * omap_enable_hwecc - This function enables the hardware ecc functionality
946 * @mtd: MTD device structure
947 * @mode: Read/Write mode
948 */
949static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
950{
951 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
952 mtd);
953 struct nand_chip *chip = mtd->priv;
954 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
65b97cf6
AM
955 u32 val;
956
957 /* clear ecc and enable bits */
958 val = ECCCLEAR | ECC1;
959 writel(val, info->reg.gpmc_ecc_control);
67ce04bf 960
65b97cf6
AM
961 /* program ecc and result sizes */
962 val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
963 ECC1RESULTSIZE);
964 writel(val, info->reg.gpmc_ecc_size_config);
965
966 switch (mode) {
967 case NAND_ECC_READ:
968 case NAND_ECC_WRITE:
969 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
970 break;
971 case NAND_ECC_READSYN:
972 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
973 break;
974 default:
975 dev_info(&info->pdev->dev,
976 "error: unrecognized Mode[%d]!\n", mode);
977 break;
978 }
67ce04bf 979
65b97cf6
AM
980 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
981 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
982 writel(val, info->reg.gpmc_ecc_config);
67ce04bf 983}
2c01946c 984
67ce04bf
VS
985/**
986 * omap_wait - wait until the command is done
987 * @mtd: MTD device structure
988 * @chip: NAND Chip structure
989 *
990 * Wait function is called during Program and erase operations and
991 * the way it is called from MTD layer, we should wait till the NAND
992 * chip is ready after the programming/erase operation has completed.
993 *
994 * Erase can take up to 400ms and program up to 20ms according to
995 * general NAND and SmartMedia specs
996 */
997static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
998{
999 struct nand_chip *this = mtd->priv;
1000 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1001 mtd);
1002 unsigned long timeo = jiffies;
a9c465f0 1003 int status, state = this->state;
67ce04bf
VS
1004
1005 if (state == FL_ERASING)
4ff6772b 1006 timeo += msecs_to_jiffies(400);
67ce04bf 1007 else
4ff6772b 1008 timeo += msecs_to_jiffies(20);
67ce04bf 1009
65b97cf6 1010 writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
67ce04bf 1011 while (time_before(jiffies, timeo)) {
65b97cf6 1012 status = readb(info->reg.gpmc_nand_data);
c276aca4 1013 if (status & NAND_STATUS_READY)
67ce04bf 1014 break;
c276aca4 1015 cond_resched();
67ce04bf 1016 }
a9c465f0 1017
4ea1e4ba 1018 status = readb(info->reg.gpmc_nand_data);
67ce04bf
VS
1019 return status;
1020}
1021
1022/**
1023 * omap_dev_ready - calls the platform specific dev_ready function
1024 * @mtd: MTD device structure
1025 */
1026static int omap_dev_ready(struct mtd_info *mtd)
1027{
2c01946c 1028 unsigned int val = 0;
67ce04bf
VS
1029 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1030 mtd);
67ce04bf 1031
65b97cf6
AM
1032 val = readl(info->reg.gpmc_status);
1033
67ce04bf 1034 if ((val & 0x100) == 0x100) {
65b97cf6 1035 return 1;
67ce04bf 1036 } else {
65b97cf6 1037 return 0;
67ce04bf 1038 }
67ce04bf
VS
1039}
1040
0e618ef0 1041/**
7c977c3e 1042 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
0e618ef0
ID
1043 * @mtd: MTD device structure
1044 * @mode: Read/Write mode
62116e51
PA
1045 *
1046 * When using BCH, sector size is hardcoded to 512 bytes.
1047 * Using wrapping mode 6 both for reading and writing if ELM module not uses
1048 * for error correction.
1049 * On writing,
1050 * eccsize0 = 0 (no additional protected byte in spare area)
1051 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
0e618ef0 1052 */
7c977c3e 1053static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
0e618ef0 1054{
16e69322 1055 unsigned int bch_type;
2ef9f3dd 1056 unsigned int dev_width, nsectors;
0e618ef0
ID
1057 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1058 mtd);
c5957a32 1059 enum omap_ecc ecc_opt = info->ecc_opt;
0e618ef0 1060 struct nand_chip *chip = mtd->priv;
62116e51
PA
1061 u32 val, wr_mode;
1062 unsigned int ecc_size1, ecc_size0;
1063
c5957a32
PG
1064 /* GPMC configurations for calculating ECC */
1065 switch (ecc_opt) {
1066 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
16e69322
PG
1067 bch_type = 0;
1068 nsectors = 1;
c5957a32
PG
1069 if (mode == NAND_ECC_READ) {
1070 wr_mode = BCH_WRAPMODE_6;
1071 ecc_size0 = BCH_ECC_SIZE0;
1072 ecc_size1 = BCH_ECC_SIZE1;
1073 } else {
1074 wr_mode = BCH_WRAPMODE_6;
1075 ecc_size0 = BCH_ECC_SIZE0;
1076 ecc_size1 = BCH_ECC_SIZE1;
1077 }
1078 break;
1079 case OMAP_ECC_BCH4_CODE_HW:
16e69322
PG
1080 bch_type = 0;
1081 nsectors = chip->ecc.steps;
c5957a32
PG
1082 if (mode == NAND_ECC_READ) {
1083 wr_mode = BCH_WRAPMODE_1;
1084 ecc_size0 = BCH4R_ECC_SIZE0;
1085 ecc_size1 = BCH4R_ECC_SIZE1;
1086 } else {
1087 wr_mode = BCH_WRAPMODE_6;
1088 ecc_size0 = BCH_ECC_SIZE0;
1089 ecc_size1 = BCH_ECC_SIZE1;
1090 }
1091 break;
1092 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
16e69322
PG
1093 bch_type = 1;
1094 nsectors = 1;
c5957a32
PG
1095 if (mode == NAND_ECC_READ) {
1096 wr_mode = BCH_WRAPMODE_6;
1097 ecc_size0 = BCH_ECC_SIZE0;
1098 ecc_size1 = BCH_ECC_SIZE1;
1099 } else {
1100 wr_mode = BCH_WRAPMODE_6;
1101 ecc_size0 = BCH_ECC_SIZE0;
1102 ecc_size1 = BCH_ECC_SIZE1;
1103 }
1104 break;
1105 case OMAP_ECC_BCH8_CODE_HW:
16e69322
PG
1106 bch_type = 1;
1107 nsectors = chip->ecc.steps;
c5957a32
PG
1108 if (mode == NAND_ECC_READ) {
1109 wr_mode = BCH_WRAPMODE_1;
1110 ecc_size0 = BCH8R_ECC_SIZE0;
1111 ecc_size1 = BCH8R_ECC_SIZE1;
1112 } else {
1113 wr_mode = BCH_WRAPMODE_6;
1114 ecc_size0 = BCH_ECC_SIZE0;
1115 ecc_size1 = BCH_ECC_SIZE1;
1116 }
1117 break;
1118 default:
1119 return;
1120 }
2ef9f3dd
AM
1121
1122 writel(ECC1, info->reg.gpmc_ecc_control);
1123
62116e51
PA
1124 /* Configure ecc size for BCH */
1125 val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
2ef9f3dd
AM
1126 writel(val, info->reg.gpmc_ecc_size_config);
1127
62116e51
PA
1128 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1129
2ef9f3dd
AM
1130 /* BCH configuration */
1131 val = ((1 << 16) | /* enable BCH */
16e69322 1132 (bch_type << 12) | /* BCH4/BCH8/BCH16 */
62116e51 1133 (wr_mode << 8) | /* wrap mode */
2ef9f3dd
AM
1134 (dev_width << 7) | /* bus width */
1135 (((nsectors-1) & 0x7) << 4) | /* number of sectors */
1136 (info->gpmc_cs << 1) | /* ECC CS */
1137 (0x1)); /* enable ECC */
1138
1139 writel(val, info->reg.gpmc_ecc_config);
1140
62116e51 1141 /* Clear ecc and enable bits */
2ef9f3dd 1142 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
0e618ef0 1143}
7c977c3e 1144
2c9f2365 1145static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
7bcd1dca
PG
1146static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1147 0x97, 0x79, 0xe5, 0x24, 0xb5};
0e618ef0 1148
62116e51 1149/**
a4c7ca00 1150 * omap_calculate_ecc_bch - Generate bytes of ECC bytes
62116e51
PA
1151 * @mtd: MTD device structure
1152 * @dat: The pointer to data on which ecc is computed
1153 * @ecc_code: The ecc_code buffer
1154 *
1155 * Support calculating of BCH4/8 ecc vectors for the page
1156 */
a4c7ca00 1157static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
f5dc06fb 1158 const u_char *dat, u_char *ecc_calc)
62116e51
PA
1159{
1160 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1161 mtd);
f5dc06fb
PG
1162 int eccbytes = info->nand.ecc.bytes;
1163 struct gpmc_nand_regs *gpmc_regs = &info->reg;
1164 u8 *ecc_code;
62116e51 1165 unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
f5dc06fb 1166 int i;
62116e51
PA
1167
1168 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
62116e51 1169 for (i = 0; i < nsectors; i++) {
f5dc06fb
PG
1170 ecc_code = ecc_calc;
1171 switch (info->ecc_opt) {
7bcd1dca 1172 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
f5dc06fb
PG
1173 case OMAP_ECC_BCH8_CODE_HW:
1174 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1175 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1176 bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1177 bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
62116e51
PA
1178 *ecc_code++ = (bch_val4 & 0xFF);
1179 *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1180 *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1181 *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1182 *ecc_code++ = (bch_val3 & 0xFF);
1183 *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1184 *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1185 *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1186 *ecc_code++ = (bch_val2 & 0xFF);
1187 *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1188 *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1189 *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1190 *ecc_code++ = (bch_val1 & 0xFF);
f5dc06fb 1191 break;
2c9f2365 1192 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
f5dc06fb
PG
1193 case OMAP_ECC_BCH4_CODE_HW:
1194 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1195 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
62116e51
PA
1196 *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1197 *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1198 *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1199 ((bch_val1 >> 28) & 0xF);
1200 *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1201 *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1202 *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1203 *ecc_code++ = ((bch_val1 & 0xF) << 4);
f5dc06fb
PG
1204 break;
1205 default:
1206 return -EINVAL;
62116e51 1207 }
f5dc06fb
PG
1208
1209 /* ECC scheme specific syndrome customizations */
1210 switch (info->ecc_opt) {
2c9f2365
PG
1211 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1212 /* Add constant polynomial to remainder, so that
1213 * ECC of blank pages results in 0x0 on reading back */
1214 for (i = 0; i < eccbytes; i++)
1215 ecc_calc[i] ^= bch4_polynomial[i];
1216 break;
f5dc06fb
PG
1217 case OMAP_ECC_BCH4_CODE_HW:
1218 /* Set 8th ECC byte as 0x0 for ROM compatibility */
1219 ecc_calc[eccbytes - 1] = 0x0;
1220 break;
7bcd1dca
PG
1221 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1222 /* Add constant polynomial to remainder, so that
1223 * ECC of blank pages results in 0x0 on reading back */
1224 for (i = 0; i < eccbytes; i++)
1225 ecc_calc[i] ^= bch8_polynomial[i];
1226 break;
f5dc06fb
PG
1227 case OMAP_ECC_BCH8_CODE_HW:
1228 /* Set 14th ECC byte as 0x0 for ROM compatibility */
1229 ecc_calc[eccbytes - 1] = 0x0;
1230 break;
1231 default:
1232 return -EINVAL;
1233 }
1234
1235 ecc_calc += eccbytes;
62116e51
PA
1236 }
1237
1238 return 0;
1239}
1240
1241/**
1242 * erased_sector_bitflips - count bit flips
1243 * @data: data sector buffer
1244 * @oob: oob buffer
1245 * @info: omap_nand_info
1246 *
1247 * Check the bit flips in erased page falls below correctable level.
1248 * If falls below, report the page as erased with correctable bit
1249 * flip, else report as uncorrectable page.
1250 */
1251static int erased_sector_bitflips(u_char *data, u_char *oob,
1252 struct omap_nand_info *info)
1253{
1254 int flip_bits = 0, i;
1255
1256 for (i = 0; i < info->nand.ecc.size; i++) {
1257 flip_bits += hweight8(~data[i]);
1258 if (flip_bits > info->nand.ecc.strength)
1259 return 0;
1260 }
1261
1262 for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1263 flip_bits += hweight8(~oob[i]);
1264 if (flip_bits > info->nand.ecc.strength)
1265 return 0;
1266 }
1267
1268 /*
1269 * Bit flips falls in correctable level.
1270 * Fill data area with 0xFF
1271 */
1272 if (flip_bits) {
1273 memset(data, 0xFF, info->nand.ecc.size);
1274 memset(oob, 0xFF, info->nand.ecc.bytes);
1275 }
1276
1277 return flip_bits;
1278}
1279
2c9f2365 1280#ifdef CONFIG_MTD_NAND_OMAP_BCH
62116e51
PA
1281/**
1282 * omap_elm_correct_data - corrects page data area in case error reported
1283 * @mtd: MTD device structure
1284 * @data: page data
1285 * @read_ecc: ecc read from nand flash
1286 * @calc_ecc: ecc read from HW ECC registers
1287 *
1288 * Calculated ecc vector reported as zero in case of non-error pages.
78f43c53
PG
1289 * In case of non-zero ecc vector, first filter out erased-pages, and
1290 * then process data via ELM to detect bit-flips.
62116e51
PA
1291 */
1292static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1293 u_char *read_ecc, u_char *calc_ecc)
1294{
1295 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1296 mtd);
de0a4d69 1297 struct nand_ecc_ctrl *ecc = &info->nand.ecc;
62116e51
PA
1298 int eccsteps = info->nand.ecc.steps;
1299 int i , j, stat = 0;
de0a4d69 1300 int eccflag, actual_eccbytes;
62116e51
PA
1301 struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1302 u_char *ecc_vec = calc_ecc;
1303 u_char *spare_ecc = read_ecc;
1304 u_char *erased_ecc_vec;
78f43c53
PG
1305 u_char *buf;
1306 int bitflip_count;
62116e51 1307 bool is_error_reported = false;
b08e1f63 1308 u32 bit_pos, byte_pos, error_max, pos;
13fbe064 1309 int err;
62116e51 1310
de0a4d69
PG
1311 switch (info->ecc_opt) {
1312 case OMAP_ECC_BCH4_CODE_HW:
1313 /* omit 7th ECC byte reserved for ROM code compatibility */
1314 actual_eccbytes = ecc->bytes - 1;
78f43c53 1315 erased_ecc_vec = bch4_vector;
de0a4d69
PG
1316 break;
1317 case OMAP_ECC_BCH8_CODE_HW:
1318 /* omit 14th ECC byte reserved for ROM code compatibility */
1319 actual_eccbytes = ecc->bytes - 1;
78f43c53 1320 erased_ecc_vec = bch8_vector;
de0a4d69
PG
1321 break;
1322 default:
1323 pr_err("invalid driver configuration\n");
1324 return -EINVAL;
1325 }
1326
62116e51
PA
1327 /* Initialize elm error vector to zero */
1328 memset(err_vec, 0, sizeof(err_vec));
1329
62116e51
PA
1330 for (i = 0; i < eccsteps ; i++) {
1331 eccflag = 0; /* initialize eccflag */
1332
1333 /*
1334 * Check any error reported,
1335 * In case of error, non zero ecc reported.
1336 */
de0a4d69 1337 for (j = 0; j < actual_eccbytes; j++) {
62116e51
PA
1338 if (calc_ecc[j] != 0) {
1339 eccflag = 1; /* non zero ecc, error present */
1340 break;
1341 }
1342 }
1343
1344 if (eccflag == 1) {
78f43c53
PG
1345 if (memcmp(calc_ecc, erased_ecc_vec,
1346 actual_eccbytes) == 0) {
62116e51 1347 /*
78f43c53
PG
1348 * calc_ecc[] matches pattern for ECC(all 0xff)
1349 * so this is definitely an erased-page
62116e51 1350 */
62116e51 1351 } else {
78f43c53
PG
1352 buf = &data[info->nand.ecc.size * i];
1353 /*
1354 * count number of 0-bits in read_buf.
1355 * This check can be removed once a similar
1356 * check is introduced in generic NAND driver
1357 */
1358 bitflip_count = erased_sector_bitflips(
1359 buf, read_ecc, info);
1360 if (bitflip_count) {
1361 /*
1362 * number of 0-bits within ECC limits
1363 * So this may be an erased-page
1364 */
1365 stat += bitflip_count;
1366 } else {
1367 /*
1368 * Too many 0-bits. It may be a
1369 * - programmed-page, OR
1370 * - erased-page with many bit-flips
1371 * So this page requires check by ELM
1372 */
1373 err_vec[i].error_reported = true;
1374 is_error_reported = true;
62116e51
PA
1375 }
1376 }
1377 }
1378
1379 /* Update the ecc vector */
de0a4d69
PG
1380 calc_ecc += ecc->bytes;
1381 read_ecc += ecc->bytes;
62116e51
PA
1382 }
1383
1384 /* Check if any error reported */
1385 if (!is_error_reported)
1386 return 0;
1387
1388 /* Decode BCH error using ELM module */
1389 elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1390
13fbe064 1391 err = 0;
62116e51 1392 for (i = 0; i < eccsteps; i++) {
13fbe064
PG
1393 if (err_vec[i].error_uncorrectable) {
1394 pr_err("nand: uncorrectable bit-flips found\n");
1395 err = -EBADMSG;
1396 } else if (err_vec[i].error_reported) {
62116e51 1397 for (j = 0; j < err_vec[i].error_count; j++) {
b08e1f63
PG
1398 switch (info->ecc_opt) {
1399 case OMAP_ECC_BCH4_CODE_HW:
1400 /* Add 4 bits to take care of padding */
62116e51
PA
1401 pos = err_vec[i].error_loc[j] +
1402 BCH4_BIT_PAD;
b08e1f63
PG
1403 break;
1404 case OMAP_ECC_BCH8_CODE_HW:
1405 pos = err_vec[i].error_loc[j];
1406 break;
1407 default:
1408 return -EINVAL;
1409 }
1410 error_max = (ecc->size + actual_eccbytes) * 8;
62116e51
PA
1411 /* Calculate bit position of error */
1412 bit_pos = pos % 8;
1413
1414 /* Calculate byte position of error */
1415 byte_pos = (error_max - pos - 1) / 8;
1416
1417 if (pos < error_max) {
13fbe064
PG
1418 if (byte_pos < 512) {
1419 pr_debug("bitflip@dat[%d]=%x\n",
1420 byte_pos, data[byte_pos]);
62116e51 1421 data[byte_pos] ^= 1 << bit_pos;
13fbe064
PG
1422 } else {
1423 pr_debug("bitflip@oob[%d]=%x\n",
1424 (byte_pos - 512),
1425 spare_ecc[byte_pos - 512]);
62116e51
PA
1426 spare_ecc[byte_pos - 512] ^=
1427 1 << bit_pos;
13fbe064
PG
1428 }
1429 } else {
1430 pr_err("invalid bit-flip @ %d:%d\n",
1431 byte_pos, bit_pos);
1432 err = -EBADMSG;
62116e51 1433 }
62116e51
PA
1434 }
1435 }
1436
1437 /* Update number of correctable errors */
1438 stat += err_vec[i].error_count;
1439
1440 /* Update page data with sector size */
b08e1f63 1441 data += ecc->size;
de0a4d69 1442 spare_ecc += ecc->bytes;
62116e51
PA
1443 }
1444
13fbe064 1445 return (err) ? err : stat;
62116e51
PA
1446}
1447
62116e51
PA
1448/**
1449 * omap_write_page_bch - BCH ecc based write page function for entire page
1450 * @mtd: mtd info structure
1451 * @chip: nand chip info structure
1452 * @buf: data buffer
1453 * @oob_required: must write chip->oob_poi to OOB
1454 *
1455 * Custom write page method evolved to support multi sector writing in one shot
1456 */
1457static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1458 const uint8_t *buf, int oob_required)
1459{
1460 int i;
1461 uint8_t *ecc_calc = chip->buffers->ecccalc;
1462 uint32_t *eccpos = chip->ecc.layout->eccpos;
1463
1464 /* Enable GPMC ecc engine */
1465 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1466
1467 /* Write data */
1468 chip->write_buf(mtd, buf, mtd->writesize);
1469
1470 /* Update ecc vector from GPMC result registers */
1471 chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
1472
1473 for (i = 0; i < chip->ecc.total; i++)
1474 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1475
1476 /* Write ecc vector to OOB area */
1477 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1478 return 0;
1479}
1480
1481/**
1482 * omap_read_page_bch - BCH ecc based page read function for entire page
1483 * @mtd: mtd info structure
1484 * @chip: nand chip info structure
1485 * @buf: buffer to store read data
1486 * @oob_required: caller requires OOB data read to chip->oob_poi
1487 * @page: page number to read
1488 *
1489 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1490 * used for error correction.
1491 * Custom method evolved to support ELM error correction & multi sector
1492 * reading. On reading page data area is read along with OOB data with
1493 * ecc engine enabled. ecc vector updated after read of OOB data.
1494 * For non error pages ecc vector reported as zero.
1495 */
1496static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1497 uint8_t *buf, int oob_required, int page)
1498{
1499 uint8_t *ecc_calc = chip->buffers->ecccalc;
1500 uint8_t *ecc_code = chip->buffers->ecccode;
1501 uint32_t *eccpos = chip->ecc.layout->eccpos;
1502 uint8_t *oob = &chip->oob_poi[eccpos[0]];
1503 uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0];
1504 int stat;
1505 unsigned int max_bitflips = 0;
1506
1507 /* Enable GPMC ecc engine */
1508 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1509
1510 /* Read data */
1511 chip->read_buf(mtd, buf, mtd->writesize);
1512
1513 /* Read oob bytes */
1514 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
1515 chip->read_buf(mtd, oob, chip->ecc.total);
1516
1517 /* Calculate ecc bytes */
1518 chip->ecc.calculate(mtd, buf, ecc_calc);
1519
1520 memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total);
1521
1522 stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
1523
1524 if (stat < 0) {
1525 mtd->ecc_stats.failed++;
1526 } else {
1527 mtd->ecc_stats.corrected += stat;
1528 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1529 }
1530
1531 return max_bitflips;
1532}
1533
0e618ef0 1534/**
a919e511
PG
1535 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1536 * @omap_nand_info: NAND device structure containing platform data
1537 * @bch_type: 0x0=BCH4, 0x1=BCH8, 0x2=BCH16
0e618ef0 1538 */
a919e511
PG
1539static int is_elm_present(struct omap_nand_info *info,
1540 struct device_node *elm_node, enum bch_ecc bch_type)
0e618ef0 1541{
a919e511 1542 struct platform_device *pdev;
3f4eb14b
PG
1543 struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1544 int err;
a919e511
PG
1545 /* check whether elm-id is passed via DT */
1546 if (!elm_node) {
1547 pr_err("nand: error: ELM DT node not found\n");
1548 return -ENODEV;
1549 }
1550 pdev = of_find_device_by_node(elm_node);
1551 /* check whether ELM device is registered */
1552 if (!pdev) {
1553 pr_err("nand: error: ELM device not found\n");
1554 return -ENODEV;
0e618ef0 1555 }
a919e511
PG
1556 /* ELM module available, now configure it */
1557 info->elm_dev = &pdev->dev;
3f4eb14b
PG
1558 err = elm_config(info->elm_dev, bch_type,
1559 (info->mtd.writesize / ecc->size), ecc->size, ecc->bytes);
1560
1561 return err;
0e618ef0 1562}
a919e511 1563#endif /* CONFIG_MTD_NAND_ECC_BCH */
0e618ef0 1564
06f25510 1565static int omap_nand_probe(struct platform_device *pdev)
67ce04bf
VS
1566{
1567 struct omap_nand_info *info;
1568 struct omap_nand_platform_data *pdata;
633deb58
PG
1569 struct mtd_info *mtd;
1570 struct nand_chip *nand_chip;
b491da72 1571 struct nand_ecclayout *ecclayout;
67ce04bf 1572 int err;
b491da72 1573 int i;
633deb58
PG
1574 dma_cap_mask_t mask;
1575 unsigned sig;
eae39cb4 1576 unsigned oob_index;
9c4c2f8b 1577 struct resource *res;
ccf04c51 1578 struct mtd_part_parser_data ppdata = {};
67ce04bf 1579
453810b7 1580 pdata = dev_get_platdata(&pdev->dev);
67ce04bf
VS
1581 if (pdata == NULL) {
1582 dev_err(&pdev->dev, "platform data missing\n");
1583 return -ENODEV;
1584 }
1585
70ba6d71
PG
1586 info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
1587 GFP_KERNEL);
67ce04bf
VS
1588 if (!info)
1589 return -ENOMEM;
1590
1591 platform_set_drvdata(pdev, info);
1592
1593 spin_lock_init(&info->controller.lock);
1594 init_waitqueue_head(&info->controller.wq);
1595
633deb58 1596 info->pdev = pdev;
67ce04bf 1597 info->gpmc_cs = pdata->cs;
65b97cf6 1598 info->reg = pdata->reg;
a919e511 1599 info->of_node = pdata->of_node;
4e558072 1600 info->ecc_opt = pdata->ecc_opt;
633deb58
PG
1601 mtd = &info->mtd;
1602 mtd->priv = &info->nand;
1603 mtd->name = dev_name(&pdev->dev);
1604 mtd->owner = THIS_MODULE;
1605 nand_chip = &info->nand;
32d42a85 1606 nand_chip->ecc.priv = NULL;
633deb58 1607 nand_chip->options |= NAND_SKIP_BBTSCAN;
67ce04bf 1608
9c4c2f8b
AM
1609 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1610 if (res == NULL) {
1611 err = -EINVAL;
1612 dev_err(&pdev->dev, "error getting memory resource\n");
70ba6d71 1613 goto return_error;
9c4c2f8b 1614 }
67ce04bf 1615
9c4c2f8b
AM
1616 info->phys_base = res->start;
1617 info->mem_size = resource_size(res);
1618
70ba6d71
PG
1619 if (!devm_request_mem_region(&pdev->dev, info->phys_base,
1620 info->mem_size, pdev->dev.driver->name)) {
67ce04bf 1621 err = -EBUSY;
70ba6d71 1622 goto return_error;
67ce04bf
VS
1623 }
1624
70ba6d71
PG
1625 nand_chip->IO_ADDR_R = devm_ioremap(&pdev->dev, info->phys_base,
1626 info->mem_size);
633deb58 1627 if (!nand_chip->IO_ADDR_R) {
67ce04bf 1628 err = -ENOMEM;
70ba6d71 1629 goto return_error;
67ce04bf 1630 }
59e9c5ae 1631
633deb58 1632 nand_chip->controller = &info->controller;
67ce04bf 1633
633deb58
PG
1634 nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
1635 nand_chip->cmd_ctrl = omap_hwcontrol;
67ce04bf 1636
67ce04bf
VS
1637 /*
1638 * If RDY/BSY line is connected to OMAP then use the omap ready
4cacbe22
PM
1639 * function and the generic nand_wait function which reads the status
1640 * register after monitoring the RDY/BSY line. Otherwise use a standard
67ce04bf
VS
1641 * chip delay which is slightly more than tR (AC Timing) of the NAND
1642 * device and read status register until you get a failure or success
1643 */
1644 if (pdata->dev_ready) {
633deb58
PG
1645 nand_chip->dev_ready = omap_dev_ready;
1646 nand_chip->chip_delay = 0;
67ce04bf 1647 } else {
633deb58
PG
1648 nand_chip->waitfunc = omap_wait;
1649 nand_chip->chip_delay = 50;
67ce04bf
VS
1650 }
1651
f18befb5
PG
1652 /* scan NAND device connected to chip controller */
1653 nand_chip->options |= pdata->devsize & NAND_BUSWIDTH_16;
1654 if (nand_scan_ident(mtd, 1, NULL)) {
1655 pr_err("nand device scan failed, may be bus-width mismatch\n");
1656 err = -ENXIO;
70ba6d71 1657 goto return_error;
f18befb5
PG
1658 }
1659
b491da72
PG
1660 /* check for small page devices */
1661 if ((mtd->oobsize < 64) && (pdata->ecc_opt != OMAP_ECC_HAM1_CODE_HW)) {
1662 pr_err("small page devices are not supported\n");
1663 err = -EINVAL;
70ba6d71 1664 goto return_error;
b491da72
PG
1665 }
1666
f18befb5 1667 /* re-populate low-level callbacks based on xfer modes */
1b0b323c
SG
1668 switch (pdata->xfer_type) {
1669 case NAND_OMAP_PREFETCH_POLLED:
633deb58
PG
1670 nand_chip->read_buf = omap_read_buf_pref;
1671 nand_chip->write_buf = omap_write_buf_pref;
1b0b323c
SG
1672 break;
1673
1674 case NAND_OMAP_POLLED:
cf0e4d2b 1675 /* Use nand_base defaults for {read,write}_buf */
1b0b323c
SG
1676 break;
1677
1678 case NAND_OMAP_PREFETCH_DMA:
763e7359
RK
1679 dma_cap_zero(mask);
1680 dma_cap_set(DMA_SLAVE, mask);
1681 sig = OMAP24XX_DMA_GPMC;
1682 info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
1683 if (!info->dma) {
2df41d05
RK
1684 dev_err(&pdev->dev, "DMA engine request failed\n");
1685 err = -ENXIO;
70ba6d71 1686 goto return_error;
763e7359
RK
1687 } else {
1688 struct dma_slave_config cfg;
763e7359
RK
1689
1690 memset(&cfg, 0, sizeof(cfg));
1691 cfg.src_addr = info->phys_base;
1692 cfg.dst_addr = info->phys_base;
1693 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1694 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1695 cfg.src_maxburst = 16;
1696 cfg.dst_maxburst = 16;
d680e2c1
AB
1697 err = dmaengine_slave_config(info->dma, &cfg);
1698 if (err) {
763e7359 1699 dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
d680e2c1 1700 err);
70ba6d71 1701 goto return_error;
763e7359 1702 }
633deb58
PG
1703 nand_chip->read_buf = omap_read_buf_dma_pref;
1704 nand_chip->write_buf = omap_write_buf_dma_pref;
1b0b323c
SG
1705 }
1706 break;
1707
4e070376 1708 case NAND_OMAP_PREFETCH_IRQ:
5c468455
AM
1709 info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1710 if (info->gpmc_irq_fifo <= 0) {
1711 dev_err(&pdev->dev, "error getting fifo irq\n");
1712 err = -ENODEV;
70ba6d71 1713 goto return_error;
5c468455 1714 }
70ba6d71
PG
1715 err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
1716 omap_nand_irq, IRQF_SHARED,
1717 "gpmc-nand-fifo", info);
4e070376
SG
1718 if (err) {
1719 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
5c468455
AM
1720 info->gpmc_irq_fifo, err);
1721 info->gpmc_irq_fifo = 0;
70ba6d71 1722 goto return_error;
5c468455
AM
1723 }
1724
1725 info->gpmc_irq_count = platform_get_irq(pdev, 1);
1726 if (info->gpmc_irq_count <= 0) {
1727 dev_err(&pdev->dev, "error getting count irq\n");
1728 err = -ENODEV;
70ba6d71 1729 goto return_error;
5c468455 1730 }
70ba6d71
PG
1731 err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
1732 omap_nand_irq, IRQF_SHARED,
1733 "gpmc-nand-count", info);
5c468455
AM
1734 if (err) {
1735 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1736 info->gpmc_irq_count, err);
1737 info->gpmc_irq_count = 0;
70ba6d71 1738 goto return_error;
4e070376 1739 }
5c468455 1740
633deb58
PG
1741 nand_chip->read_buf = omap_read_buf_irq_pref;
1742 nand_chip->write_buf = omap_write_buf_irq_pref;
5c468455 1743
4e070376
SG
1744 break;
1745
1b0b323c
SG
1746 default:
1747 dev_err(&pdev->dev,
1748 "xfer_type(%d) not supported!\n", pdata->xfer_type);
1749 err = -EINVAL;
70ba6d71 1750 goto return_error;
59e9c5ae 1751 }
59e9c5ae 1752
a919e511 1753 /* populate MTD interface based on ECC scheme */
b491da72
PG
1754 nand_chip->ecc.layout = &omap_oobinfo;
1755 ecclayout = &omap_oobinfo;
4e558072 1756 switch (info->ecc_opt) {
a919e511
PG
1757 case OMAP_ECC_HAM1_CODE_HW:
1758 pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
1759 nand_chip->ecc.mode = NAND_ECC_HW;
633deb58
PG
1760 nand_chip->ecc.bytes = 3;
1761 nand_chip->ecc.size = 512;
1762 nand_chip->ecc.strength = 1;
1763 nand_chip->ecc.calculate = omap_calculate_ecc;
1764 nand_chip->ecc.hwctl = omap_enable_hwecc;
1765 nand_chip->ecc.correct = omap_correct_data;
b491da72
PG
1766 /* define ECC layout */
1767 ecclayout->eccbytes = nand_chip->ecc.bytes *
1768 (mtd->writesize /
1769 nand_chip->ecc.size);
1770 if (nand_chip->options & NAND_BUSWIDTH_16)
eae39cb4 1771 oob_index = BADBLOCK_MARKER_LENGTH;
b491da72 1772 else
eae39cb4
PG
1773 oob_index = 1;
1774 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1775 ecclayout->eccpos[i] = oob_index;
aa6092f9
PG
1776 /* no reserved-marker in ecclayout for this ecc-scheme */
1777 ecclayout->oobfree->offset =
1778 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
a919e511
PG
1779 break;
1780
1781 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1782#ifdef CONFIG_MTD_NAND_ECC_BCH
1783 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
1784 nand_chip->ecc.mode = NAND_ECC_HW;
1785 nand_chip->ecc.size = 512;
1786 nand_chip->ecc.bytes = 7;
1787 nand_chip->ecc.strength = 4;
7c977c3e 1788 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
32d42a85 1789 nand_chip->ecc.correct = nand_bch_correct_data;
2c9f2365 1790 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
b491da72
PG
1791 /* define ECC layout */
1792 ecclayout->eccbytes = nand_chip->ecc.bytes *
1793 (mtd->writesize /
1794 nand_chip->ecc.size);
eae39cb4
PG
1795 oob_index = BADBLOCK_MARKER_LENGTH;
1796 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
1797 ecclayout->eccpos[i] = oob_index;
1798 if (((i + 1) % nand_chip->ecc.bytes) == 0)
1799 oob_index++;
1800 }
aa6092f9
PG
1801 /* include reserved-marker in ecclayout->oobfree calculation */
1802 ecclayout->oobfree->offset = 1 +
1803 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
a919e511 1804 /* software bch library is used for locating errors */
32d42a85
PG
1805 nand_chip->ecc.priv = nand_bch_init(mtd,
1806 nand_chip->ecc.size,
1807 nand_chip->ecc.bytes,
1808 &nand_chip->ecc.layout);
1809 if (!nand_chip->ecc.priv) {
a919e511 1810 pr_err("nand: error: unable to use s/w BCH library\n");
0e618ef0 1811 err = -EINVAL;
a919e511
PG
1812 }
1813 break;
1814#else
1815 pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1816 err = -EINVAL;
70ba6d71 1817 goto return_error;
a919e511
PG
1818#endif
1819
1820 case OMAP_ECC_BCH4_CODE_HW:
1821#ifdef CONFIG_MTD_NAND_OMAP_BCH
1822 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
1823 nand_chip->ecc.mode = NAND_ECC_HW;
1824 nand_chip->ecc.size = 512;
1825 /* 14th bit is kept reserved for ROM-code compatibility */
1826 nand_chip->ecc.bytes = 7 + 1;
1827 nand_chip->ecc.strength = 4;
7c977c3e 1828 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
a919e511 1829 nand_chip->ecc.correct = omap_elm_correct_data;
a4c7ca00 1830 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
a919e511
PG
1831 nand_chip->ecc.read_page = omap_read_page_bch;
1832 nand_chip->ecc.write_page = omap_write_page_bch;
b491da72
PG
1833 /* define ECC layout */
1834 ecclayout->eccbytes = nand_chip->ecc.bytes *
1835 (mtd->writesize /
1836 nand_chip->ecc.size);
eae39cb4
PG
1837 oob_index = BADBLOCK_MARKER_LENGTH;
1838 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1839 ecclayout->eccpos[i] = oob_index;
aa6092f9
PG
1840 /* reserved marker already included in ecclayout->eccbytes */
1841 ecclayout->oobfree->offset =
1842 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
a919e511
PG
1843 /* This ECC scheme requires ELM H/W block */
1844 if (is_elm_present(info, pdata->elm_of_node, BCH4_ECC) < 0) {
1845 pr_err("nand: error: could not initialize ELM\n");
1846 err = -ENODEV;
70ba6d71 1847 goto return_error;
0e618ef0 1848 }
a919e511
PG
1849 break;
1850#else
1851 pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1852 err = -EINVAL;
70ba6d71 1853 goto return_error;
a919e511
PG
1854#endif
1855
1856 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1857#ifdef CONFIG_MTD_NAND_ECC_BCH
1858 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
1859 nand_chip->ecc.mode = NAND_ECC_HW;
1860 nand_chip->ecc.size = 512;
1861 nand_chip->ecc.bytes = 13;
1862 nand_chip->ecc.strength = 8;
7c977c3e 1863 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
32d42a85 1864 nand_chip->ecc.correct = nand_bch_correct_data;
7bcd1dca 1865 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
b491da72
PG
1866 /* define ECC layout */
1867 ecclayout->eccbytes = nand_chip->ecc.bytes *
1868 (mtd->writesize /
1869 nand_chip->ecc.size);
eae39cb4
PG
1870 oob_index = BADBLOCK_MARKER_LENGTH;
1871 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
1872 ecclayout->eccpos[i] = oob_index;
1873 if (((i + 1) % nand_chip->ecc.bytes) == 0)
1874 oob_index++;
1875 }
aa6092f9
PG
1876 /* include reserved-marker in ecclayout->oobfree calculation */
1877 ecclayout->oobfree->offset = 1 +
1878 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
a919e511 1879 /* software bch library is used for locating errors */
32d42a85
PG
1880 nand_chip->ecc.priv = nand_bch_init(mtd,
1881 nand_chip->ecc.size,
1882 nand_chip->ecc.bytes,
1883 &nand_chip->ecc.layout);
1884 if (!nand_chip->ecc.priv) {
a919e511
PG
1885 pr_err("nand: error: unable to use s/w BCH library\n");
1886 err = -EINVAL;
70ba6d71 1887 goto return_error;
a919e511
PG
1888 }
1889 break;
1890#else
1891 pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1892 err = -EINVAL;
70ba6d71 1893 goto return_error;
a919e511
PG
1894#endif
1895
1896 case OMAP_ECC_BCH8_CODE_HW:
1897#ifdef CONFIG_MTD_NAND_OMAP_BCH
1898 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
1899 nand_chip->ecc.mode = NAND_ECC_HW;
1900 nand_chip->ecc.size = 512;
1901 /* 14th bit is kept reserved for ROM-code compatibility */
1902 nand_chip->ecc.bytes = 13 + 1;
1903 nand_chip->ecc.strength = 8;
7c977c3e 1904 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
a919e511 1905 nand_chip->ecc.correct = omap_elm_correct_data;
a4c7ca00 1906 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
a919e511
PG
1907 nand_chip->ecc.read_page = omap_read_page_bch;
1908 nand_chip->ecc.write_page = omap_write_page_bch;
1909 /* This ECC scheme requires ELM H/W block */
9211439b
WY
1910 err = is_elm_present(info, pdata->elm_of_node, BCH8_ECC);
1911 if (err < 0) {
a919e511 1912 pr_err("nand: error: could not initialize ELM\n");
70ba6d71 1913 goto return_error;
a919e511 1914 }
b491da72
PG
1915 /* define ECC layout */
1916 ecclayout->eccbytes = nand_chip->ecc.bytes *
1917 (mtd->writesize /
1918 nand_chip->ecc.size);
eae39cb4
PG
1919 oob_index = BADBLOCK_MARKER_LENGTH;
1920 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1921 ecclayout->eccpos[i] = oob_index;
aa6092f9
PG
1922 /* reserved marker already included in ecclayout->eccbytes */
1923 ecclayout->oobfree->offset =
1924 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
a919e511
PG
1925 break;
1926#else
1927 pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1928 err = -EINVAL;
70ba6d71 1929 goto return_error;
a919e511
PG
1930#endif
1931
1932 default:
1933 pr_err("nand: error: invalid or unsupported ECC scheme\n");
1934 err = -EINVAL;
70ba6d71 1935 goto return_error;
f3d73f36 1936 }
67ce04bf 1937
bb38eefb
PG
1938 /* all OOB bytes from oobfree->offset till end off OOB are free */
1939 ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
b491da72
PG
1940 /* check if NAND device's OOB is enough to store ECC signatures */
1941 if (mtd->oobsize < (ecclayout->eccbytes + BADBLOCK_MARKER_LENGTH)) {
1942 pr_err("not enough OOB bytes required = %d, available=%d\n",
1943 ecclayout->eccbytes, mtd->oobsize);
1944 err = -EINVAL;
70ba6d71 1945 goto return_error;
f040d332 1946 }
1b0b323c 1947
a80f1c1f 1948 /* second phase scan */
633deb58 1949 if (nand_scan_tail(mtd)) {
a80f1c1f 1950 err = -ENXIO;
70ba6d71 1951 goto return_error;
a80f1c1f
JW
1952 }
1953
ccf04c51 1954 ppdata.of_node = pdata->of_node;
633deb58 1955 mtd_device_parse_register(mtd, NULL, &ppdata, pdata->parts,
42d7fbe2 1956 pdata->nr_parts);
67ce04bf 1957
633deb58 1958 platform_set_drvdata(pdev, mtd);
67ce04bf
VS
1959
1960 return 0;
1961
70ba6d71 1962return_error:
763e7359
RK
1963 if (info->dma)
1964 dma_release_channel(info->dma);
32d42a85
PG
1965 if (nand_chip->ecc.priv) {
1966 nand_bch_free(nand_chip->ecc.priv);
1967 nand_chip->ecc.priv = NULL;
1968 }
67ce04bf
VS
1969 return err;
1970}
1971
1972static int omap_nand_remove(struct platform_device *pdev)
1973{
1974 struct mtd_info *mtd = platform_get_drvdata(pdev);
633deb58 1975 struct nand_chip *nand_chip = mtd->priv;
f35b6eda
VS
1976 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1977 mtd);
32d42a85
PG
1978 if (nand_chip->ecc.priv) {
1979 nand_bch_free(nand_chip->ecc.priv);
1980 nand_chip->ecc.priv = NULL;
1981 }
763e7359
RK
1982 if (info->dma)
1983 dma_release_channel(info->dma);
633deb58 1984 nand_release(mtd);
67ce04bf
VS
1985 return 0;
1986}
1987
1988static struct platform_driver omap_nand_driver = {
1989 .probe = omap_nand_probe,
1990 .remove = omap_nand_remove,
1991 .driver = {
1992 .name = DRIVER_NAME,
1993 .owner = THIS_MODULE,
1994 },
1995};
1996
f99640de 1997module_platform_driver(omap_nand_driver);
67ce04bf 1998
c804c733 1999MODULE_ALIAS("platform:" DRIVER_NAME);
67ce04bf
VS
2000MODULE_LICENSE("GPL");
2001MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
This page took 0.344898 seconds and 5 git commands to generate.