mtd: nand: omap: ecc.calculate: rename omap3_calculate_ecc_bch to omap_calculate_ecc_bch
[deliverable/linux.git] / drivers / mtd / nand / omap2.c
CommitLineData
67ce04bf
VS
1/*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/platform_device.h>
763e7359 12#include <linux/dmaengine.h>
67ce04bf
VS
13#include <linux/dma-mapping.h>
14#include <linux/delay.h>
a0e5cc58 15#include <linux/module.h>
4e070376 16#include <linux/interrupt.h>
c276aca4 17#include <linux/jiffies.h>
18#include <linux/sched.h>
67ce04bf
VS
19#include <linux/mtd/mtd.h>
20#include <linux/mtd/nand.h>
21#include <linux/mtd/partitions.h>
763e7359 22#include <linux/omap-dma.h>
67ce04bf 23#include <linux/io.h>
5a0e3ad6 24#include <linux/slab.h>
62116e51
PA
25#include <linux/of.h>
26#include <linux/of_device.h>
67ce04bf 27
32d42a85 28#include <linux/mtd/nand_bch.h>
62116e51 29#include <linux/platform_data/elm.h>
0e618ef0 30
2203747c 31#include <linux/platform_data/mtd-nand-omap2.h>
67ce04bf 32
67ce04bf 33#define DRIVER_NAME "omap2-nand"
4e070376 34#define OMAP_NAND_TIMEOUT_MS 5000
67ce04bf 35
67ce04bf
VS
36#define NAND_Ecc_P1e (1 << 0)
37#define NAND_Ecc_P2e (1 << 1)
38#define NAND_Ecc_P4e (1 << 2)
39#define NAND_Ecc_P8e (1 << 3)
40#define NAND_Ecc_P16e (1 << 4)
41#define NAND_Ecc_P32e (1 << 5)
42#define NAND_Ecc_P64e (1 << 6)
43#define NAND_Ecc_P128e (1 << 7)
44#define NAND_Ecc_P256e (1 << 8)
45#define NAND_Ecc_P512e (1 << 9)
46#define NAND_Ecc_P1024e (1 << 10)
47#define NAND_Ecc_P2048e (1 << 11)
48
49#define NAND_Ecc_P1o (1 << 16)
50#define NAND_Ecc_P2o (1 << 17)
51#define NAND_Ecc_P4o (1 << 18)
52#define NAND_Ecc_P8o (1 << 19)
53#define NAND_Ecc_P16o (1 << 20)
54#define NAND_Ecc_P32o (1 << 21)
55#define NAND_Ecc_P64o (1 << 22)
56#define NAND_Ecc_P128o (1 << 23)
57#define NAND_Ecc_P256o (1 << 24)
58#define NAND_Ecc_P512o (1 << 25)
59#define NAND_Ecc_P1024o (1 << 26)
60#define NAND_Ecc_P2048o (1 << 27)
61
62#define TF(value) (value ? 1 : 0)
63
64#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
65#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
66#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
67#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
68#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
69#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
70#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
71#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
72
73#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
74#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
75#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
76#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
77#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
78#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
79#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
80#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
81
82#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
83#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
84#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
85#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
86#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
87#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
88#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
89#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
90
91#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
92#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
93#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
94#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
95#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
96#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
97#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
98#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
99
100#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
101#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
102
65b97cf6
AM
103#define PREFETCH_CONFIG1_CS_SHIFT 24
104#define ECC_CONFIG_CS_SHIFT 1
105#define CS_MASK 0x7
106#define ENABLE_PREFETCH (0x1 << 7)
107#define DMA_MPU_MODE_SHIFT 2
2ef9f3dd 108#define ECCSIZE0_SHIFT 12
65b97cf6
AM
109#define ECCSIZE1_SHIFT 22
110#define ECC1RESULTSIZE 0x1
111#define ECCCLEAR 0x100
112#define ECC1 0x1
47f88af4
AM
113#define PREFETCH_FIFOTHRESHOLD_MAX 0x40
114#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
115#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
116#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
117#define STATUS_BUFF_EMPTY 0x00000001
65b97cf6 118
d5e7c864
LV
119#define OMAP24XX_DMA_GPMC 4
120
62116e51
PA
121#define SECTOR_BYTES 512
122/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
123#define BCH4_BIT_PAD 4
62116e51
PA
124
125/* GPMC ecc engine settings for read */
126#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
127#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
128#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
129#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
130#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
131
132/* GPMC ecc engine settings for write */
133#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
134#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
135#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
136
b491da72 137#define BADBLOCK_MARKER_LENGTH 2
a919e511 138
62116e51
PA
139#ifdef CONFIG_MTD_NAND_OMAP_BCH
140static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
141 0xac, 0x6b, 0xff, 0x99, 0x7b};
142static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
143#endif
144
f040d332
SG
145/* oob info generated runtime depending on ecc algorithm and layout selected */
146static struct nand_ecclayout omap_oobinfo;
59e9c5ae 147
67ce04bf
VS
148struct omap_nand_info {
149 struct nand_hw_control controller;
150 struct omap_nand_platform_data *pdata;
151 struct mtd_info mtd;
67ce04bf
VS
152 struct nand_chip nand;
153 struct platform_device *pdev;
154
155 int gpmc_cs;
156 unsigned long phys_base;
9c4c2f8b 157 unsigned long mem_size;
4e558072 158 enum omap_ecc ecc_opt;
dfe32893 159 struct completion comp;
763e7359 160 struct dma_chan *dma;
5c468455
AM
161 int gpmc_irq_fifo;
162 int gpmc_irq_count;
4e070376
SG
163 enum {
164 OMAP_NAND_IO_READ = 0, /* read */
165 OMAP_NAND_IO_WRITE, /* write */
166 } iomode;
167 u_char *buf;
168 int buf_len;
65b97cf6 169 struct gpmc_nand_regs reg;
a919e511 170 /* fields specific for BCHx_HW ECC scheme */
62116e51
PA
171 bool is_elm_used;
172 struct device *elm_dev;
173 struct device_node *of_node;
67ce04bf
VS
174};
175
65b97cf6
AM
176/**
177 * omap_prefetch_enable - configures and starts prefetch transfer
178 * @cs: cs (chip select) number
179 * @fifo_th: fifo threshold to be used for read/ write
180 * @dma_mode: dma mode enable (1) or disable (0)
181 * @u32_count: number of bytes to be transferred
182 * @is_write: prefetch read(0) or write post(1) mode
183 */
184static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
185 unsigned int u32_count, int is_write, struct omap_nand_info *info)
186{
187 u32 val;
188
189 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
190 return -1;
191
192 if (readl(info->reg.gpmc_prefetch_control))
193 return -EBUSY;
194
195 /* Set the amount of bytes to be prefetched */
196 writel(u32_count, info->reg.gpmc_prefetch_config2);
197
198 /* Set dma/mpu mode, the prefetch read / post write and
199 * enable the engine. Set which cs is has requested for.
200 */
201 val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
202 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
203 (dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
204 writel(val, info->reg.gpmc_prefetch_config1);
205
206 /* Start the prefetch engine */
207 writel(0x1, info->reg.gpmc_prefetch_control);
208
209 return 0;
210}
211
212/**
213 * omap_prefetch_reset - disables and stops the prefetch engine
214 */
215static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
216{
217 u32 config1;
218
219 /* check if the same module/cs is trying to reset */
220 config1 = readl(info->reg.gpmc_prefetch_config1);
221 if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
222 return -EINVAL;
223
224 /* Stop the PFPW engine */
225 writel(0x0, info->reg.gpmc_prefetch_control);
226
227 /* Reset/disable the PFPW engine */
228 writel(0x0, info->reg.gpmc_prefetch_config1);
229
230 return 0;
231}
232
67ce04bf
VS
233/**
234 * omap_hwcontrol - hardware specific access to control-lines
235 * @mtd: MTD device structure
236 * @cmd: command to device
237 * @ctrl:
238 * NAND_NCE: bit 0 -> don't care
239 * NAND_CLE: bit 1 -> Command Latch
240 * NAND_ALE: bit 2 -> Address Latch
241 *
242 * NOTE: boards may use different bits for these!!
243 */
244static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
245{
246 struct omap_nand_info *info = container_of(mtd,
247 struct omap_nand_info, mtd);
67ce04bf 248
2c01946c
SG
249 if (cmd != NAND_CMD_NONE) {
250 if (ctrl & NAND_CLE)
65b97cf6 251 writeb(cmd, info->reg.gpmc_nand_command);
2c01946c
SG
252
253 else if (ctrl & NAND_ALE)
65b97cf6 254 writeb(cmd, info->reg.gpmc_nand_address);
2c01946c
SG
255
256 else /* NAND_NCE */
65b97cf6 257 writeb(cmd, info->reg.gpmc_nand_data);
2c01946c 258 }
67ce04bf
VS
259}
260
59e9c5ae 261/**
262 * omap_read_buf8 - read data from NAND controller into buffer
263 * @mtd: MTD device structure
264 * @buf: buffer to store date
265 * @len: number of bytes to read
266 */
267static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
268{
269 struct nand_chip *nand = mtd->priv;
270
271 ioread8_rep(nand->IO_ADDR_R, buf, len);
272}
273
274/**
275 * omap_write_buf8 - write buffer to NAND controller
276 * @mtd: MTD device structure
277 * @buf: data buffer
278 * @len: number of bytes to write
279 */
280static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
281{
282 struct omap_nand_info *info = container_of(mtd,
283 struct omap_nand_info, mtd);
284 u_char *p = (u_char *)buf;
2c01946c 285 u32 status = 0;
59e9c5ae 286
287 while (len--) {
288 iowrite8(*p++, info->nand.IO_ADDR_W);
2c01946c
SG
289 /* wait until buffer is available for write */
290 do {
65b97cf6 291 status = readl(info->reg.gpmc_status) &
47f88af4 292 STATUS_BUFF_EMPTY;
2c01946c 293 } while (!status);
59e9c5ae 294 }
295}
296
67ce04bf
VS
297/**
298 * omap_read_buf16 - read data from NAND controller into buffer
299 * @mtd: MTD device structure
300 * @buf: buffer to store date
301 * @len: number of bytes to read
302 */
303static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
304{
305 struct nand_chip *nand = mtd->priv;
306
59e9c5ae 307 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
67ce04bf
VS
308}
309
310/**
311 * omap_write_buf16 - write buffer to NAND controller
312 * @mtd: MTD device structure
313 * @buf: data buffer
314 * @len: number of bytes to write
315 */
316static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
317{
318 struct omap_nand_info *info = container_of(mtd,
319 struct omap_nand_info, mtd);
320 u16 *p = (u16 *) buf;
2c01946c 321 u32 status = 0;
67ce04bf
VS
322 /* FIXME try bursts of writesw() or DMA ... */
323 len >>= 1;
324
325 while (len--) {
59e9c5ae 326 iowrite16(*p++, info->nand.IO_ADDR_W);
2c01946c
SG
327 /* wait until buffer is available for write */
328 do {
65b97cf6 329 status = readl(info->reg.gpmc_status) &
47f88af4 330 STATUS_BUFF_EMPTY;
2c01946c 331 } while (!status);
67ce04bf
VS
332 }
333}
59e9c5ae 334
335/**
336 * omap_read_buf_pref - read data from NAND controller into buffer
337 * @mtd: MTD device structure
338 * @buf: buffer to store date
339 * @len: number of bytes to read
340 */
341static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
342{
343 struct omap_nand_info *info = container_of(mtd,
344 struct omap_nand_info, mtd);
2c01946c 345 uint32_t r_count = 0;
59e9c5ae 346 int ret = 0;
347 u32 *p = (u32 *)buf;
348
349 /* take care of subpage reads */
c3341d0c
VS
350 if (len % 4) {
351 if (info->nand.options & NAND_BUSWIDTH_16)
352 omap_read_buf16(mtd, buf, len % 4);
353 else
354 omap_read_buf8(mtd, buf, len % 4);
355 p = (u32 *) (buf + len % 4);
356 len -= len % 4;
59e9c5ae 357 }
59e9c5ae 358
359 /* configure and start prefetch transfer */
65b97cf6
AM
360 ret = omap_prefetch_enable(info->gpmc_cs,
361 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
59e9c5ae 362 if (ret) {
363 /* PFPW engine is busy, use cpu copy method */
364 if (info->nand.options & NAND_BUSWIDTH_16)
c5d8c0ca 365 omap_read_buf16(mtd, (u_char *)p, len);
59e9c5ae 366 else
c5d8c0ca 367 omap_read_buf8(mtd, (u_char *)p, len);
59e9c5ae 368 } else {
369 do {
65b97cf6 370 r_count = readl(info->reg.gpmc_prefetch_status);
47f88af4 371 r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
2c01946c
SG
372 r_count = r_count >> 2;
373 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
59e9c5ae 374 p += r_count;
375 len -= r_count << 2;
376 } while (len);
59e9c5ae 377 /* disable and stop the PFPW engine */
65b97cf6 378 omap_prefetch_reset(info->gpmc_cs, info);
59e9c5ae 379 }
380}
381
382/**
383 * omap_write_buf_pref - write buffer to NAND controller
384 * @mtd: MTD device structure
385 * @buf: data buffer
386 * @len: number of bytes to write
387 */
388static void omap_write_buf_pref(struct mtd_info *mtd,
389 const u_char *buf, int len)
390{
391 struct omap_nand_info *info = container_of(mtd,
392 struct omap_nand_info, mtd);
4e070376 393 uint32_t w_count = 0;
59e9c5ae 394 int i = 0, ret = 0;
c5d8c0ca 395 u16 *p = (u16 *)buf;
4e070376 396 unsigned long tim, limit;
65b97cf6 397 u32 val;
59e9c5ae 398
399 /* take care of subpage writes */
400 if (len % 2 != 0) {
2c01946c 401 writeb(*buf, info->nand.IO_ADDR_W);
59e9c5ae 402 p = (u16 *)(buf + 1);
403 len--;
404 }
405
406 /* configure and start prefetch transfer */
65b97cf6
AM
407 ret = omap_prefetch_enable(info->gpmc_cs,
408 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
59e9c5ae 409 if (ret) {
410 /* PFPW engine is busy, use cpu copy method */
411 if (info->nand.options & NAND_BUSWIDTH_16)
c5d8c0ca 412 omap_write_buf16(mtd, (u_char *)p, len);
59e9c5ae 413 else
c5d8c0ca 414 omap_write_buf8(mtd, (u_char *)p, len);
59e9c5ae 415 } else {
2c01946c 416 while (len) {
65b97cf6 417 w_count = readl(info->reg.gpmc_prefetch_status);
47f88af4 418 w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
2c01946c 419 w_count = w_count >> 1;
59e9c5ae 420 for (i = 0; (i < w_count) && len; i++, len -= 2)
2c01946c 421 iowrite16(*p++, info->nand.IO_ADDR_W);
59e9c5ae 422 }
2c01946c 423 /* wait for data to flushed-out before reset the prefetch */
4e070376
SG
424 tim = 0;
425 limit = (loops_per_jiffy *
426 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
65b97cf6 427 do {
4e070376 428 cpu_relax();
65b97cf6 429 val = readl(info->reg.gpmc_prefetch_status);
47f88af4 430 val = PREFETCH_STATUS_COUNT(val);
65b97cf6 431 } while (val && (tim++ < limit));
4e070376 432
59e9c5ae 433 /* disable and stop the PFPW engine */
65b97cf6 434 omap_prefetch_reset(info->gpmc_cs, info);
59e9c5ae 435 }
436}
437
dfe32893 438/*
2df41d05 439 * omap_nand_dma_callback: callback on the completion of dma transfer
dfe32893 440 * @data: pointer to completion data structure
441 */
763e7359
RK
442static void omap_nand_dma_callback(void *data)
443{
444 complete((struct completion *) data);
445}
dfe32893 446
447/*
4cacbe22 448 * omap_nand_dma_transfer: configure and start dma transfer
dfe32893 449 * @mtd: MTD device structure
450 * @addr: virtual address in RAM of source/destination
451 * @len: number of data bytes to be transferred
452 * @is_write: flag for read/write operation
453 */
454static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
455 unsigned int len, int is_write)
456{
457 struct omap_nand_info *info = container_of(mtd,
458 struct omap_nand_info, mtd);
2df41d05 459 struct dma_async_tx_descriptor *tx;
dfe32893 460 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
461 DMA_FROM_DEVICE;
2df41d05 462 struct scatterlist sg;
4e070376 463 unsigned long tim, limit;
2df41d05
RK
464 unsigned n;
465 int ret;
65b97cf6 466 u32 val;
dfe32893 467
468 if (addr >= high_memory) {
469 struct page *p1;
470
471 if (((size_t)addr & PAGE_MASK) !=
472 ((size_t)(addr + len - 1) & PAGE_MASK))
473 goto out_copy;
474 p1 = vmalloc_to_page(addr);
475 if (!p1)
476 goto out_copy;
477 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
478 }
479
2df41d05
RK
480 sg_init_one(&sg, addr, len);
481 n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
482 if (n == 0) {
dfe32893 483 dev_err(&info->pdev->dev,
484 "Couldn't DMA map a %d byte buffer\n", len);
485 goto out_copy;
486 }
487
2df41d05
RK
488 tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
489 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
490 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
491 if (!tx)
492 goto out_copy_unmap;
493
494 tx->callback = omap_nand_dma_callback;
495 tx->callback_param = &info->comp;
496 dmaengine_submit(tx);
497
65b97cf6
AM
498 /* configure and start prefetch transfer */
499 ret = omap_prefetch_enable(info->gpmc_cs,
500 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
dfe32893 501 if (ret)
4e070376 502 /* PFPW engine is busy, use cpu copy method */
d7efe228 503 goto out_copy_unmap;
dfe32893 504
505 init_completion(&info->comp);
2df41d05 506 dma_async_issue_pending(info->dma);
dfe32893 507
508 /* setup and start DMA using dma_addr */
509 wait_for_completion(&info->comp);
4e070376
SG
510 tim = 0;
511 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
65b97cf6
AM
512
513 do {
4e070376 514 cpu_relax();
65b97cf6 515 val = readl(info->reg.gpmc_prefetch_status);
47f88af4 516 val = PREFETCH_STATUS_COUNT(val);
65b97cf6 517 } while (val && (tim++ < limit));
dfe32893 518
dfe32893 519 /* disable and stop the PFPW engine */
65b97cf6 520 omap_prefetch_reset(info->gpmc_cs, info);
dfe32893 521
2df41d05 522 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
dfe32893 523 return 0;
524
d7efe228 525out_copy_unmap:
2df41d05 526 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
dfe32893 527out_copy:
528 if (info->nand.options & NAND_BUSWIDTH_16)
529 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
530 : omap_write_buf16(mtd, (u_char *) addr, len);
531 else
532 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
533 : omap_write_buf8(mtd, (u_char *) addr, len);
534 return 0;
535}
dfe32893 536
537/**
538 * omap_read_buf_dma_pref - read data from NAND controller into buffer
539 * @mtd: MTD device structure
540 * @buf: buffer to store date
541 * @len: number of bytes to read
542 */
543static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
544{
545 if (len <= mtd->oobsize)
546 omap_read_buf_pref(mtd, buf, len);
547 else
548 /* start transfer in DMA mode */
549 omap_nand_dma_transfer(mtd, buf, len, 0x0);
550}
551
552/**
553 * omap_write_buf_dma_pref - write buffer to NAND controller
554 * @mtd: MTD device structure
555 * @buf: data buffer
556 * @len: number of bytes to write
557 */
558static void omap_write_buf_dma_pref(struct mtd_info *mtd,
559 const u_char *buf, int len)
560{
561 if (len <= mtd->oobsize)
562 omap_write_buf_pref(mtd, buf, len);
563 else
564 /* start transfer in DMA mode */
bdaefc41 565 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
dfe32893 566}
567
4e070376 568/*
4cacbe22 569 * omap_nand_irq - GPMC irq handler
4e070376
SG
570 * @this_irq: gpmc irq number
571 * @dev: omap_nand_info structure pointer is passed here
572 */
573static irqreturn_t omap_nand_irq(int this_irq, void *dev)
574{
575 struct omap_nand_info *info = (struct omap_nand_info *) dev;
576 u32 bytes;
4e070376 577
65b97cf6 578 bytes = readl(info->reg.gpmc_prefetch_status);
47f88af4 579 bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
4e070376
SG
580 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
581 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
5c468455 582 if (this_irq == info->gpmc_irq_count)
4e070376
SG
583 goto done;
584
585 if (info->buf_len && (info->buf_len < bytes))
586 bytes = info->buf_len;
587 else if (!info->buf_len)
588 bytes = 0;
589 iowrite32_rep(info->nand.IO_ADDR_W,
590 (u32 *)info->buf, bytes >> 2);
591 info->buf = info->buf + bytes;
592 info->buf_len -= bytes;
593
594 } else {
595 ioread32_rep(info->nand.IO_ADDR_R,
596 (u32 *)info->buf, bytes >> 2);
597 info->buf = info->buf + bytes;
598
5c468455 599 if (this_irq == info->gpmc_irq_count)
4e070376
SG
600 goto done;
601 }
4e070376
SG
602
603 return IRQ_HANDLED;
604
605done:
606 complete(&info->comp);
4e070376 607
5c468455
AM
608 disable_irq_nosync(info->gpmc_irq_fifo);
609 disable_irq_nosync(info->gpmc_irq_count);
4e070376
SG
610
611 return IRQ_HANDLED;
612}
613
614/*
615 * omap_read_buf_irq_pref - read data from NAND controller into buffer
616 * @mtd: MTD device structure
617 * @buf: buffer to store date
618 * @len: number of bytes to read
619 */
620static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
621{
622 struct omap_nand_info *info = container_of(mtd,
623 struct omap_nand_info, mtd);
624 int ret = 0;
625
626 if (len <= mtd->oobsize) {
627 omap_read_buf_pref(mtd, buf, len);
628 return;
629 }
630
631 info->iomode = OMAP_NAND_IO_READ;
632 info->buf = buf;
633 init_completion(&info->comp);
634
635 /* configure and start prefetch transfer */
65b97cf6
AM
636 ret = omap_prefetch_enable(info->gpmc_cs,
637 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
4e070376
SG
638 if (ret)
639 /* PFPW engine is busy, use cpu copy method */
640 goto out_copy;
641
642 info->buf_len = len;
5c468455
AM
643
644 enable_irq(info->gpmc_irq_count);
645 enable_irq(info->gpmc_irq_fifo);
4e070376
SG
646
647 /* waiting for read to complete */
648 wait_for_completion(&info->comp);
649
650 /* disable and stop the PFPW engine */
65b97cf6 651 omap_prefetch_reset(info->gpmc_cs, info);
4e070376
SG
652 return;
653
654out_copy:
655 if (info->nand.options & NAND_BUSWIDTH_16)
656 omap_read_buf16(mtd, buf, len);
657 else
658 omap_read_buf8(mtd, buf, len);
659}
660
661/*
662 * omap_write_buf_irq_pref - write buffer to NAND controller
663 * @mtd: MTD device structure
664 * @buf: data buffer
665 * @len: number of bytes to write
666 */
667static void omap_write_buf_irq_pref(struct mtd_info *mtd,
668 const u_char *buf, int len)
669{
670 struct omap_nand_info *info = container_of(mtd,
671 struct omap_nand_info, mtd);
672 int ret = 0;
673 unsigned long tim, limit;
65b97cf6 674 u32 val;
4e070376
SG
675
676 if (len <= mtd->oobsize) {
677 omap_write_buf_pref(mtd, buf, len);
678 return;
679 }
680
681 info->iomode = OMAP_NAND_IO_WRITE;
682 info->buf = (u_char *) buf;
683 init_completion(&info->comp);
684
317379a9 685 /* configure and start prefetch transfer : size=24 */
65b97cf6
AM
686 ret = omap_prefetch_enable(info->gpmc_cs,
687 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
4e070376
SG
688 if (ret)
689 /* PFPW engine is busy, use cpu copy method */
690 goto out_copy;
691
692 info->buf_len = len;
5c468455
AM
693
694 enable_irq(info->gpmc_irq_count);
695 enable_irq(info->gpmc_irq_fifo);
4e070376
SG
696
697 /* waiting for write to complete */
698 wait_for_completion(&info->comp);
5c468455 699
4e070376
SG
700 /* wait for data to flushed-out before reset the prefetch */
701 tim = 0;
702 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
65b97cf6
AM
703 do {
704 val = readl(info->reg.gpmc_prefetch_status);
47f88af4 705 val = PREFETCH_STATUS_COUNT(val);
4e070376 706 cpu_relax();
65b97cf6 707 } while (val && (tim++ < limit));
4e070376
SG
708
709 /* disable and stop the PFPW engine */
65b97cf6 710 omap_prefetch_reset(info->gpmc_cs, info);
4e070376
SG
711 return;
712
713out_copy:
714 if (info->nand.options & NAND_BUSWIDTH_16)
715 omap_write_buf16(mtd, buf, len);
716 else
717 omap_write_buf8(mtd, buf, len);
718}
719
67ce04bf
VS
720/**
721 * gen_true_ecc - This function will generate true ECC value
722 * @ecc_buf: buffer to store ecc code
723 *
724 * This generated true ECC value can be used when correcting
725 * data read from NAND flash memory core
726 */
727static void gen_true_ecc(u8 *ecc_buf)
728{
729 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
730 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
731
732 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
733 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
734 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
735 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
736 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
737 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
738}
739
740/**
741 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
742 * @ecc_data1: ecc code from nand spare area
743 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
744 * @page_data: page data
745 *
746 * This function compares two ECC's and indicates if there is an error.
747 * If the error can be corrected it will be corrected to the buffer.
74f1b724
JO
748 * If there is no error, %0 is returned. If there is an error but it
749 * was corrected, %1 is returned. Otherwise, %-1 is returned.
67ce04bf
VS
750 */
751static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
752 u8 *ecc_data2, /* read from register */
753 u8 *page_data)
754{
755 uint i;
756 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
757 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
758 u8 ecc_bit[24];
759 u8 ecc_sum = 0;
760 u8 find_bit = 0;
761 uint find_byte = 0;
762 int isEccFF;
763
764 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
765
766 gen_true_ecc(ecc_data1);
767 gen_true_ecc(ecc_data2);
768
769 for (i = 0; i <= 2; i++) {
770 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
771 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
772 }
773
774 for (i = 0; i < 8; i++) {
775 tmp0_bit[i] = *ecc_data1 % 2;
776 *ecc_data1 = *ecc_data1 / 2;
777 }
778
779 for (i = 0; i < 8; i++) {
780 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
781 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
782 }
783
784 for (i = 0; i < 8; i++) {
785 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
786 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
787 }
788
789 for (i = 0; i < 8; i++) {
790 comp0_bit[i] = *ecc_data2 % 2;
791 *ecc_data2 = *ecc_data2 / 2;
792 }
793
794 for (i = 0; i < 8; i++) {
795 comp1_bit[i] = *(ecc_data2 + 1) % 2;
796 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
797 }
798
799 for (i = 0; i < 8; i++) {
800 comp2_bit[i] = *(ecc_data2 + 2) % 2;
801 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
802 }
803
804 for (i = 0; i < 6; i++)
805 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
806
807 for (i = 0; i < 8; i++)
808 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
809
810 for (i = 0; i < 8; i++)
811 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
812
813 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
814 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
815
816 for (i = 0; i < 24; i++)
817 ecc_sum += ecc_bit[i];
818
819 switch (ecc_sum) {
820 case 0:
821 /* Not reached because this function is not called if
822 * ECC values are equal
823 */
824 return 0;
825
826 case 1:
827 /* Uncorrectable error */
289c0522 828 pr_debug("ECC UNCORRECTED_ERROR 1\n");
67ce04bf
VS
829 return -1;
830
831 case 11:
832 /* UN-Correctable error */
289c0522 833 pr_debug("ECC UNCORRECTED_ERROR B\n");
67ce04bf
VS
834 return -1;
835
836 case 12:
837 /* Correctable error */
838 find_byte = (ecc_bit[23] << 8) +
839 (ecc_bit[21] << 7) +
840 (ecc_bit[19] << 6) +
841 (ecc_bit[17] << 5) +
842 (ecc_bit[15] << 4) +
843 (ecc_bit[13] << 3) +
844 (ecc_bit[11] << 2) +
845 (ecc_bit[9] << 1) +
846 ecc_bit[7];
847
848 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
849
0a32a102
BN
850 pr_debug("Correcting single bit ECC error at offset: "
851 "%d, bit: %d\n", find_byte, find_bit);
67ce04bf
VS
852
853 page_data[find_byte] ^= (1 << find_bit);
854
74f1b724 855 return 1;
67ce04bf
VS
856 default:
857 if (isEccFF) {
858 if (ecc_data2[0] == 0 &&
859 ecc_data2[1] == 0 &&
860 ecc_data2[2] == 0)
861 return 0;
862 }
289c0522 863 pr_debug("UNCORRECTED_ERROR default\n");
67ce04bf
VS
864 return -1;
865 }
866}
867
868/**
869 * omap_correct_data - Compares the ECC read with HW generated ECC
870 * @mtd: MTD device structure
871 * @dat: page data
872 * @read_ecc: ecc read from nand flash
873 * @calc_ecc: ecc read from HW ECC registers
874 *
875 * Compares the ecc read from nand spare area with ECC registers values
74f1b724
JO
876 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
877 * detection and correction. If there are no errors, %0 is returned. If
878 * there were errors and all of the errors were corrected, the number of
879 * corrected errors is returned. If uncorrectable errors exist, %-1 is
880 * returned.
67ce04bf
VS
881 */
882static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
883 u_char *read_ecc, u_char *calc_ecc)
884{
885 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
886 mtd);
887 int blockCnt = 0, i = 0, ret = 0;
74f1b724 888 int stat = 0;
67ce04bf
VS
889
890 /* Ex NAND_ECC_HW12_2048 */
891 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
892 (info->nand.ecc.size == 2048))
893 blockCnt = 4;
894 else
895 blockCnt = 1;
896
897 for (i = 0; i < blockCnt; i++) {
898 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
899 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
900 if (ret < 0)
901 return ret;
74f1b724
JO
902 /* keep track of the number of corrected errors */
903 stat += ret;
67ce04bf
VS
904 }
905 read_ecc += 3;
906 calc_ecc += 3;
907 dat += 512;
908 }
74f1b724 909 return stat;
67ce04bf
VS
910}
911
912/**
913 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
914 * @mtd: MTD device structure
915 * @dat: The pointer to data on which ecc is computed
916 * @ecc_code: The ecc_code buffer
917 *
918 * Using noninverted ECC can be considered ugly since writing a blank
919 * page ie. padding will clear the ECC bytes. This is no problem as long
920 * nobody is trying to write data on the seemingly unused page. Reading
921 * an erased page will produce an ECC mismatch between generated and read
922 * ECC bytes that has to be dealt with separately.
923 */
924static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
925 u_char *ecc_code)
926{
927 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
928 mtd);
65b97cf6
AM
929 u32 val;
930
931 val = readl(info->reg.gpmc_ecc_config);
932 if (((val >> ECC_CONFIG_CS_SHIFT) & ~CS_MASK) != info->gpmc_cs)
933 return -EINVAL;
934
935 /* read ecc result */
936 val = readl(info->reg.gpmc_ecc1_result);
937 *ecc_code++ = val; /* P128e, ..., P1e */
938 *ecc_code++ = val >> 16; /* P128o, ..., P1o */
939 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
940 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
941
942 return 0;
67ce04bf
VS
943}
944
945/**
946 * omap_enable_hwecc - This function enables the hardware ecc functionality
947 * @mtd: MTD device structure
948 * @mode: Read/Write mode
949 */
950static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
951{
952 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
953 mtd);
954 struct nand_chip *chip = mtd->priv;
955 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
65b97cf6
AM
956 u32 val;
957
958 /* clear ecc and enable bits */
959 val = ECCCLEAR | ECC1;
960 writel(val, info->reg.gpmc_ecc_control);
67ce04bf 961
65b97cf6
AM
962 /* program ecc and result sizes */
963 val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
964 ECC1RESULTSIZE);
965 writel(val, info->reg.gpmc_ecc_size_config);
966
967 switch (mode) {
968 case NAND_ECC_READ:
969 case NAND_ECC_WRITE:
970 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
971 break;
972 case NAND_ECC_READSYN:
973 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
974 break;
975 default:
976 dev_info(&info->pdev->dev,
977 "error: unrecognized Mode[%d]!\n", mode);
978 break;
979 }
67ce04bf 980
65b97cf6
AM
981 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
982 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
983 writel(val, info->reg.gpmc_ecc_config);
67ce04bf 984}
2c01946c 985
67ce04bf
VS
986/**
987 * omap_wait - wait until the command is done
988 * @mtd: MTD device structure
989 * @chip: NAND Chip structure
990 *
991 * Wait function is called during Program and erase operations and
992 * the way it is called from MTD layer, we should wait till the NAND
993 * chip is ready after the programming/erase operation has completed.
994 *
995 * Erase can take up to 400ms and program up to 20ms according to
996 * general NAND and SmartMedia specs
997 */
998static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
999{
1000 struct nand_chip *this = mtd->priv;
1001 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1002 mtd);
1003 unsigned long timeo = jiffies;
a9c465f0 1004 int status, state = this->state;
67ce04bf
VS
1005
1006 if (state == FL_ERASING)
4ff6772b 1007 timeo += msecs_to_jiffies(400);
67ce04bf 1008 else
4ff6772b 1009 timeo += msecs_to_jiffies(20);
67ce04bf 1010
65b97cf6 1011 writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
67ce04bf 1012 while (time_before(jiffies, timeo)) {
65b97cf6 1013 status = readb(info->reg.gpmc_nand_data);
c276aca4 1014 if (status & NAND_STATUS_READY)
67ce04bf 1015 break;
c276aca4 1016 cond_resched();
67ce04bf 1017 }
a9c465f0 1018
4ea1e4ba 1019 status = readb(info->reg.gpmc_nand_data);
67ce04bf
VS
1020 return status;
1021}
1022
1023/**
1024 * omap_dev_ready - calls the platform specific dev_ready function
1025 * @mtd: MTD device structure
1026 */
1027static int omap_dev_ready(struct mtd_info *mtd)
1028{
2c01946c 1029 unsigned int val = 0;
67ce04bf
VS
1030 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1031 mtd);
67ce04bf 1032
65b97cf6
AM
1033 val = readl(info->reg.gpmc_status);
1034
67ce04bf 1035 if ((val & 0x100) == 0x100) {
65b97cf6 1036 return 1;
67ce04bf 1037 } else {
65b97cf6 1038 return 0;
67ce04bf 1039 }
67ce04bf
VS
1040}
1041
a919e511 1042#if defined(CONFIG_MTD_NAND_ECC_BCH) || defined(CONFIG_MTD_NAND_OMAP_BCH)
0e618ef0
ID
1043/**
1044 * omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction
1045 * @mtd: MTD device structure
1046 * @mode: Read/Write mode
62116e51
PA
1047 *
1048 * When using BCH, sector size is hardcoded to 512 bytes.
1049 * Using wrapping mode 6 both for reading and writing if ELM module not uses
1050 * for error correction.
1051 * On writing,
1052 * eccsize0 = 0 (no additional protected byte in spare area)
1053 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
0e618ef0
ID
1054 */
1055static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1056{
1057 int nerrors;
2ef9f3dd 1058 unsigned int dev_width, nsectors;
0e618ef0
ID
1059 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1060 mtd);
1061 struct nand_chip *chip = mtd->priv;
62116e51
PA
1062 u32 val, wr_mode;
1063 unsigned int ecc_size1, ecc_size0;
1064
1065 /* Using wrapping mode 6 for writing */
1066 wr_mode = BCH_WRAPMODE_6;
0e618ef0 1067
0e618ef0 1068 /*
62116e51
PA
1069 * ECC engine enabled for valid ecc_size0 nibbles
1070 * and disabled for ecc_size1 nibbles.
0e618ef0 1071 */
62116e51
PA
1072 ecc_size0 = BCH_ECC_SIZE0;
1073 ecc_size1 = BCH_ECC_SIZE1;
1074
1075 /* Perform ecc calculation on 512-byte sector */
1076 nsectors = 1;
1077
1078 /* Update number of error correction */
1079 nerrors = info->nand.ecc.strength;
1080
1081 /* Multi sector reading/writing for NAND flash with page size < 4096 */
1082 if (info->is_elm_used && (mtd->writesize <= 4096)) {
1083 if (mode == NAND_ECC_READ) {
1084 /* Using wrapping mode 1 for reading */
1085 wr_mode = BCH_WRAPMODE_1;
1086
1087 /*
1088 * ECC engine enabled for ecc_size0 nibbles
1089 * and disabled for ecc_size1 nibbles.
1090 */
1091 ecc_size0 = (nerrors == 8) ?
1092 BCH8R_ECC_SIZE0 : BCH4R_ECC_SIZE0;
1093 ecc_size1 = (nerrors == 8) ?
1094 BCH8R_ECC_SIZE1 : BCH4R_ECC_SIZE1;
1095 }
1096
1097 /* Perform ecc calculation for one page (< 4096) */
1098 nsectors = info->nand.ecc.steps;
1099 }
2ef9f3dd
AM
1100
1101 writel(ECC1, info->reg.gpmc_ecc_control);
1102
62116e51
PA
1103 /* Configure ecc size for BCH */
1104 val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
2ef9f3dd
AM
1105 writel(val, info->reg.gpmc_ecc_size_config);
1106
62116e51
PA
1107 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1108
2ef9f3dd
AM
1109 /* BCH configuration */
1110 val = ((1 << 16) | /* enable BCH */
1111 (((nerrors == 8) ? 1 : 0) << 12) | /* 8 or 4 bits */
62116e51 1112 (wr_mode << 8) | /* wrap mode */
2ef9f3dd
AM
1113 (dev_width << 7) | /* bus width */
1114 (((nsectors-1) & 0x7) << 4) | /* number of sectors */
1115 (info->gpmc_cs << 1) | /* ECC CS */
1116 (0x1)); /* enable ECC */
1117
1118 writel(val, info->reg.gpmc_ecc_config);
1119
62116e51 1120 /* Clear ecc and enable bits */
2ef9f3dd 1121 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
0e618ef0 1122}
a919e511 1123#endif
0e618ef0 1124
a919e511 1125#ifdef CONFIG_MTD_NAND_ECC_BCH
0e618ef0
ID
1126/**
1127 * omap3_calculate_ecc_bch4 - Generate 7 bytes of ECC bytes
1128 * @mtd: MTD device structure
1129 * @dat: The pointer to data on which ecc is computed
1130 * @ecc_code: The ecc_code buffer
1131 */
1132static int omap3_calculate_ecc_bch4(struct mtd_info *mtd, const u_char *dat,
1133 u_char *ecc_code)
1134{
1135 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1136 mtd);
2ef9f3dd
AM
1137 unsigned long nsectors, val1, val2;
1138 int i;
1139
1140 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1141
1142 for (i = 0; i < nsectors; i++) {
1143
1144 /* Read hw-computed remainder */
1145 val1 = readl(info->reg.gpmc_bch_result0[i]);
1146 val2 = readl(info->reg.gpmc_bch_result1[i]);
1147
1148 /*
1149 * Add constant polynomial to remainder, in order to get an ecc
1150 * sequence of 0xFFs for a buffer filled with 0xFFs; and
1151 * left-justify the resulting polynomial.
1152 */
1153 *ecc_code++ = 0x28 ^ ((val2 >> 12) & 0xFF);
1154 *ecc_code++ = 0x13 ^ ((val2 >> 4) & 0xFF);
1155 *ecc_code++ = 0xcc ^ (((val2 & 0xF) << 4)|((val1 >> 28) & 0xF));
1156 *ecc_code++ = 0x39 ^ ((val1 >> 20) & 0xFF);
1157 *ecc_code++ = 0x96 ^ ((val1 >> 12) & 0xFF);
1158 *ecc_code++ = 0xac ^ ((val1 >> 4) & 0xFF);
1159 *ecc_code++ = 0x7f ^ ((val1 & 0xF) << 4);
1160 }
1161
1162 return 0;
0e618ef0
ID
1163}
1164
1165/**
1166 * omap3_calculate_ecc_bch8 - Generate 13 bytes of ECC bytes
1167 * @mtd: MTD device structure
1168 * @dat: The pointer to data on which ecc is computed
1169 * @ecc_code: The ecc_code buffer
1170 */
1171static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat,
1172 u_char *ecc_code)
1173{
1174 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1175 mtd);
2ef9f3dd
AM
1176 unsigned long nsectors, val1, val2, val3, val4;
1177 int i;
1178
1179 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1180
1181 for (i = 0; i < nsectors; i++) {
1182
1183 /* Read hw-computed remainder */
1184 val1 = readl(info->reg.gpmc_bch_result0[i]);
1185 val2 = readl(info->reg.gpmc_bch_result1[i]);
1186 val3 = readl(info->reg.gpmc_bch_result2[i]);
1187 val4 = readl(info->reg.gpmc_bch_result3[i]);
1188
1189 /*
1190 * Add constant polynomial to remainder, in order to get an ecc
1191 * sequence of 0xFFs for a buffer filled with 0xFFs.
1192 */
1193 *ecc_code++ = 0xef ^ (val4 & 0xFF);
1194 *ecc_code++ = 0x51 ^ ((val3 >> 24) & 0xFF);
1195 *ecc_code++ = 0x2e ^ ((val3 >> 16) & 0xFF);
1196 *ecc_code++ = 0x09 ^ ((val3 >> 8) & 0xFF);
1197 *ecc_code++ = 0xed ^ (val3 & 0xFF);
1198 *ecc_code++ = 0x93 ^ ((val2 >> 24) & 0xFF);
1199 *ecc_code++ = 0x9a ^ ((val2 >> 16) & 0xFF);
1200 *ecc_code++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
1201 *ecc_code++ = 0x97 ^ (val2 & 0xFF);
1202 *ecc_code++ = 0x79 ^ ((val1 >> 24) & 0xFF);
1203 *ecc_code++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
1204 *ecc_code++ = 0x24 ^ ((val1 >> 8) & 0xFF);
1205 *ecc_code++ = 0xb5 ^ (val1 & 0xFF);
1206 }
1207
1208 return 0;
0e618ef0 1209}
a919e511 1210#endif /* CONFIG_MTD_NAND_ECC_BCH */
0e618ef0 1211
a919e511 1212#ifdef CONFIG_MTD_NAND_OMAP_BCH
62116e51 1213/**
a4c7ca00 1214 * omap_calculate_ecc_bch - Generate bytes of ECC bytes
62116e51
PA
1215 * @mtd: MTD device structure
1216 * @dat: The pointer to data on which ecc is computed
1217 * @ecc_code: The ecc_code buffer
1218 *
1219 * Support calculating of BCH4/8 ecc vectors for the page
1220 */
a4c7ca00
PG
1221static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
1222 const u_char *dat, u_char *ecc_code)
62116e51
PA
1223{
1224 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1225 mtd);
1226 unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
1227 int i, eccbchtsel;
1228
1229 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1230 /*
1231 * find BCH scheme used
1232 * 0 -> BCH4
1233 * 1 -> BCH8
1234 */
1235 eccbchtsel = ((readl(info->reg.gpmc_ecc_config) >> 12) & 0x3);
1236
1237 for (i = 0; i < nsectors; i++) {
1238
1239 /* Read hw-computed remainder */
1240 bch_val1 = readl(info->reg.gpmc_bch_result0[i]);
1241 bch_val2 = readl(info->reg.gpmc_bch_result1[i]);
1242 if (eccbchtsel) {
1243 bch_val3 = readl(info->reg.gpmc_bch_result2[i]);
1244 bch_val4 = readl(info->reg.gpmc_bch_result3[i]);
1245 }
1246
1247 if (eccbchtsel) {
1248 /* BCH8 ecc scheme */
1249 *ecc_code++ = (bch_val4 & 0xFF);
1250 *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1251 *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1252 *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1253 *ecc_code++ = (bch_val3 & 0xFF);
1254 *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1255 *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1256 *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1257 *ecc_code++ = (bch_val2 & 0xFF);
1258 *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1259 *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1260 *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1261 *ecc_code++ = (bch_val1 & 0xFF);
1262 /*
1263 * Setting 14th byte to zero to handle
1264 * erased page & maintain compatibility
1265 * with RBL
1266 */
1267 *ecc_code++ = 0x0;
1268 } else {
1269 /* BCH4 ecc scheme */
1270 *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1271 *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1272 *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1273 ((bch_val1 >> 28) & 0xF);
1274 *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1275 *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1276 *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1277 *ecc_code++ = ((bch_val1 & 0xF) << 4);
1278 /*
1279 * Setting 8th byte to zero to handle
1280 * erased page
1281 */
1282 *ecc_code++ = 0x0;
1283 }
1284 }
1285
1286 return 0;
1287}
1288
1289/**
1290 * erased_sector_bitflips - count bit flips
1291 * @data: data sector buffer
1292 * @oob: oob buffer
1293 * @info: omap_nand_info
1294 *
1295 * Check the bit flips in erased page falls below correctable level.
1296 * If falls below, report the page as erased with correctable bit
1297 * flip, else report as uncorrectable page.
1298 */
1299static int erased_sector_bitflips(u_char *data, u_char *oob,
1300 struct omap_nand_info *info)
1301{
1302 int flip_bits = 0, i;
1303
1304 for (i = 0; i < info->nand.ecc.size; i++) {
1305 flip_bits += hweight8(~data[i]);
1306 if (flip_bits > info->nand.ecc.strength)
1307 return 0;
1308 }
1309
1310 for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1311 flip_bits += hweight8(~oob[i]);
1312 if (flip_bits > info->nand.ecc.strength)
1313 return 0;
1314 }
1315
1316 /*
1317 * Bit flips falls in correctable level.
1318 * Fill data area with 0xFF
1319 */
1320 if (flip_bits) {
1321 memset(data, 0xFF, info->nand.ecc.size);
1322 memset(oob, 0xFF, info->nand.ecc.bytes);
1323 }
1324
1325 return flip_bits;
1326}
1327
1328/**
1329 * omap_elm_correct_data - corrects page data area in case error reported
1330 * @mtd: MTD device structure
1331 * @data: page data
1332 * @read_ecc: ecc read from nand flash
1333 * @calc_ecc: ecc read from HW ECC registers
1334 *
1335 * Calculated ecc vector reported as zero in case of non-error pages.
78f43c53
PG
1336 * In case of non-zero ecc vector, first filter out erased-pages, and
1337 * then process data via ELM to detect bit-flips.
62116e51
PA
1338 */
1339static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1340 u_char *read_ecc, u_char *calc_ecc)
1341{
1342 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1343 mtd);
de0a4d69 1344 struct nand_ecc_ctrl *ecc = &info->nand.ecc;
62116e51
PA
1345 int eccsteps = info->nand.ecc.steps;
1346 int i , j, stat = 0;
de0a4d69 1347 int eccflag, actual_eccbytes;
62116e51
PA
1348 struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1349 u_char *ecc_vec = calc_ecc;
1350 u_char *spare_ecc = read_ecc;
1351 u_char *erased_ecc_vec;
78f43c53
PG
1352 u_char *buf;
1353 int bitflip_count;
62116e51 1354 bool is_error_reported = false;
b08e1f63 1355 u32 bit_pos, byte_pos, error_max, pos;
13fbe064 1356 int err;
62116e51 1357
de0a4d69
PG
1358 switch (info->ecc_opt) {
1359 case OMAP_ECC_BCH4_CODE_HW:
1360 /* omit 7th ECC byte reserved for ROM code compatibility */
1361 actual_eccbytes = ecc->bytes - 1;
78f43c53 1362 erased_ecc_vec = bch4_vector;
de0a4d69
PG
1363 break;
1364 case OMAP_ECC_BCH8_CODE_HW:
1365 /* omit 14th ECC byte reserved for ROM code compatibility */
1366 actual_eccbytes = ecc->bytes - 1;
78f43c53 1367 erased_ecc_vec = bch8_vector;
de0a4d69
PG
1368 break;
1369 default:
1370 pr_err("invalid driver configuration\n");
1371 return -EINVAL;
1372 }
1373
62116e51
PA
1374 /* Initialize elm error vector to zero */
1375 memset(err_vec, 0, sizeof(err_vec));
1376
62116e51
PA
1377 for (i = 0; i < eccsteps ; i++) {
1378 eccflag = 0; /* initialize eccflag */
1379
1380 /*
1381 * Check any error reported,
1382 * In case of error, non zero ecc reported.
1383 */
de0a4d69 1384 for (j = 0; j < actual_eccbytes; j++) {
62116e51
PA
1385 if (calc_ecc[j] != 0) {
1386 eccflag = 1; /* non zero ecc, error present */
1387 break;
1388 }
1389 }
1390
1391 if (eccflag == 1) {
78f43c53
PG
1392 if (memcmp(calc_ecc, erased_ecc_vec,
1393 actual_eccbytes) == 0) {
62116e51 1394 /*
78f43c53
PG
1395 * calc_ecc[] matches pattern for ECC(all 0xff)
1396 * so this is definitely an erased-page
62116e51 1397 */
62116e51 1398 } else {
78f43c53
PG
1399 buf = &data[info->nand.ecc.size * i];
1400 /*
1401 * count number of 0-bits in read_buf.
1402 * This check can be removed once a similar
1403 * check is introduced in generic NAND driver
1404 */
1405 bitflip_count = erased_sector_bitflips(
1406 buf, read_ecc, info);
1407 if (bitflip_count) {
1408 /*
1409 * number of 0-bits within ECC limits
1410 * So this may be an erased-page
1411 */
1412 stat += bitflip_count;
1413 } else {
1414 /*
1415 * Too many 0-bits. It may be a
1416 * - programmed-page, OR
1417 * - erased-page with many bit-flips
1418 * So this page requires check by ELM
1419 */
1420 err_vec[i].error_reported = true;
1421 is_error_reported = true;
62116e51
PA
1422 }
1423 }
1424 }
1425
1426 /* Update the ecc vector */
de0a4d69
PG
1427 calc_ecc += ecc->bytes;
1428 read_ecc += ecc->bytes;
62116e51
PA
1429 }
1430
1431 /* Check if any error reported */
1432 if (!is_error_reported)
1433 return 0;
1434
1435 /* Decode BCH error using ELM module */
1436 elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1437
13fbe064 1438 err = 0;
62116e51 1439 for (i = 0; i < eccsteps; i++) {
13fbe064
PG
1440 if (err_vec[i].error_uncorrectable) {
1441 pr_err("nand: uncorrectable bit-flips found\n");
1442 err = -EBADMSG;
1443 } else if (err_vec[i].error_reported) {
62116e51 1444 for (j = 0; j < err_vec[i].error_count; j++) {
b08e1f63
PG
1445 switch (info->ecc_opt) {
1446 case OMAP_ECC_BCH4_CODE_HW:
1447 /* Add 4 bits to take care of padding */
62116e51
PA
1448 pos = err_vec[i].error_loc[j] +
1449 BCH4_BIT_PAD;
b08e1f63
PG
1450 break;
1451 case OMAP_ECC_BCH8_CODE_HW:
1452 pos = err_vec[i].error_loc[j];
1453 break;
1454 default:
1455 return -EINVAL;
1456 }
1457 error_max = (ecc->size + actual_eccbytes) * 8;
62116e51
PA
1458 /* Calculate bit position of error */
1459 bit_pos = pos % 8;
1460
1461 /* Calculate byte position of error */
1462 byte_pos = (error_max - pos - 1) / 8;
1463
1464 if (pos < error_max) {
13fbe064
PG
1465 if (byte_pos < 512) {
1466 pr_debug("bitflip@dat[%d]=%x\n",
1467 byte_pos, data[byte_pos]);
62116e51 1468 data[byte_pos] ^= 1 << bit_pos;
13fbe064
PG
1469 } else {
1470 pr_debug("bitflip@oob[%d]=%x\n",
1471 (byte_pos - 512),
1472 spare_ecc[byte_pos - 512]);
62116e51
PA
1473 spare_ecc[byte_pos - 512] ^=
1474 1 << bit_pos;
13fbe064
PG
1475 }
1476 } else {
1477 pr_err("invalid bit-flip @ %d:%d\n",
1478 byte_pos, bit_pos);
1479 err = -EBADMSG;
62116e51 1480 }
62116e51
PA
1481 }
1482 }
1483
1484 /* Update number of correctable errors */
1485 stat += err_vec[i].error_count;
1486
1487 /* Update page data with sector size */
b08e1f63 1488 data += ecc->size;
de0a4d69 1489 spare_ecc += ecc->bytes;
62116e51
PA
1490 }
1491
13fbe064 1492 return (err) ? err : stat;
62116e51
PA
1493}
1494
62116e51
PA
1495/**
1496 * omap_write_page_bch - BCH ecc based write page function for entire page
1497 * @mtd: mtd info structure
1498 * @chip: nand chip info structure
1499 * @buf: data buffer
1500 * @oob_required: must write chip->oob_poi to OOB
1501 *
1502 * Custom write page method evolved to support multi sector writing in one shot
1503 */
1504static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1505 const uint8_t *buf, int oob_required)
1506{
1507 int i;
1508 uint8_t *ecc_calc = chip->buffers->ecccalc;
1509 uint32_t *eccpos = chip->ecc.layout->eccpos;
1510
1511 /* Enable GPMC ecc engine */
1512 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1513
1514 /* Write data */
1515 chip->write_buf(mtd, buf, mtd->writesize);
1516
1517 /* Update ecc vector from GPMC result registers */
1518 chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
1519
1520 for (i = 0; i < chip->ecc.total; i++)
1521 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1522
1523 /* Write ecc vector to OOB area */
1524 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1525 return 0;
1526}
1527
1528/**
1529 * omap_read_page_bch - BCH ecc based page read function for entire page
1530 * @mtd: mtd info structure
1531 * @chip: nand chip info structure
1532 * @buf: buffer to store read data
1533 * @oob_required: caller requires OOB data read to chip->oob_poi
1534 * @page: page number to read
1535 *
1536 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1537 * used for error correction.
1538 * Custom method evolved to support ELM error correction & multi sector
1539 * reading. On reading page data area is read along with OOB data with
1540 * ecc engine enabled. ecc vector updated after read of OOB data.
1541 * For non error pages ecc vector reported as zero.
1542 */
1543static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1544 uint8_t *buf, int oob_required, int page)
1545{
1546 uint8_t *ecc_calc = chip->buffers->ecccalc;
1547 uint8_t *ecc_code = chip->buffers->ecccode;
1548 uint32_t *eccpos = chip->ecc.layout->eccpos;
1549 uint8_t *oob = &chip->oob_poi[eccpos[0]];
1550 uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0];
1551 int stat;
1552 unsigned int max_bitflips = 0;
1553
1554 /* Enable GPMC ecc engine */
1555 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1556
1557 /* Read data */
1558 chip->read_buf(mtd, buf, mtd->writesize);
1559
1560 /* Read oob bytes */
1561 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
1562 chip->read_buf(mtd, oob, chip->ecc.total);
1563
1564 /* Calculate ecc bytes */
1565 chip->ecc.calculate(mtd, buf, ecc_calc);
1566
1567 memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total);
1568
1569 stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
1570
1571 if (stat < 0) {
1572 mtd->ecc_stats.failed++;
1573 } else {
1574 mtd->ecc_stats.corrected += stat;
1575 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1576 }
1577
1578 return max_bitflips;
1579}
1580
0e618ef0 1581/**
a919e511
PG
1582 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1583 * @omap_nand_info: NAND device structure containing platform data
1584 * @bch_type: 0x0=BCH4, 0x1=BCH8, 0x2=BCH16
0e618ef0 1585 */
a919e511
PG
1586static int is_elm_present(struct omap_nand_info *info,
1587 struct device_node *elm_node, enum bch_ecc bch_type)
0e618ef0 1588{
a919e511
PG
1589 struct platform_device *pdev;
1590 info->is_elm_used = false;
1591 /* check whether elm-id is passed via DT */
1592 if (!elm_node) {
1593 pr_err("nand: error: ELM DT node not found\n");
1594 return -ENODEV;
1595 }
1596 pdev = of_find_device_by_node(elm_node);
1597 /* check whether ELM device is registered */
1598 if (!pdev) {
1599 pr_err("nand: error: ELM device not found\n");
1600 return -ENODEV;
0e618ef0 1601 }
a919e511
PG
1602 /* ELM module available, now configure it */
1603 info->elm_dev = &pdev->dev;
1604 if (elm_config(info->elm_dev, bch_type))
1605 return -ENODEV;
1606 info->is_elm_used = true;
1607 return 0;
0e618ef0 1608}
a919e511 1609#endif /* CONFIG_MTD_NAND_ECC_BCH */
0e618ef0 1610
06f25510 1611static int omap_nand_probe(struct platform_device *pdev)
67ce04bf
VS
1612{
1613 struct omap_nand_info *info;
1614 struct omap_nand_platform_data *pdata;
633deb58
PG
1615 struct mtd_info *mtd;
1616 struct nand_chip *nand_chip;
b491da72 1617 struct nand_ecclayout *ecclayout;
67ce04bf 1618 int err;
b491da72 1619 int i;
633deb58
PG
1620 dma_cap_mask_t mask;
1621 unsigned sig;
eae39cb4 1622 unsigned oob_index;
9c4c2f8b 1623 struct resource *res;
ccf04c51 1624 struct mtd_part_parser_data ppdata = {};
67ce04bf 1625
453810b7 1626 pdata = dev_get_platdata(&pdev->dev);
67ce04bf
VS
1627 if (pdata == NULL) {
1628 dev_err(&pdev->dev, "platform data missing\n");
1629 return -ENODEV;
1630 }
1631
70ba6d71
PG
1632 info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
1633 GFP_KERNEL);
67ce04bf
VS
1634 if (!info)
1635 return -ENOMEM;
1636
1637 platform_set_drvdata(pdev, info);
1638
1639 spin_lock_init(&info->controller.lock);
1640 init_waitqueue_head(&info->controller.wq);
1641
633deb58 1642 info->pdev = pdev;
67ce04bf 1643 info->gpmc_cs = pdata->cs;
65b97cf6 1644 info->reg = pdata->reg;
a919e511 1645 info->of_node = pdata->of_node;
4e558072 1646 info->ecc_opt = pdata->ecc_opt;
633deb58
PG
1647 mtd = &info->mtd;
1648 mtd->priv = &info->nand;
1649 mtd->name = dev_name(&pdev->dev);
1650 mtd->owner = THIS_MODULE;
1651 nand_chip = &info->nand;
32d42a85 1652 nand_chip->ecc.priv = NULL;
633deb58 1653 nand_chip->options |= NAND_SKIP_BBTSCAN;
67ce04bf 1654
9c4c2f8b
AM
1655 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1656 if (res == NULL) {
1657 err = -EINVAL;
1658 dev_err(&pdev->dev, "error getting memory resource\n");
70ba6d71 1659 goto return_error;
9c4c2f8b 1660 }
67ce04bf 1661
9c4c2f8b
AM
1662 info->phys_base = res->start;
1663 info->mem_size = resource_size(res);
1664
70ba6d71
PG
1665 if (!devm_request_mem_region(&pdev->dev, info->phys_base,
1666 info->mem_size, pdev->dev.driver->name)) {
67ce04bf 1667 err = -EBUSY;
70ba6d71 1668 goto return_error;
67ce04bf
VS
1669 }
1670
70ba6d71
PG
1671 nand_chip->IO_ADDR_R = devm_ioremap(&pdev->dev, info->phys_base,
1672 info->mem_size);
633deb58 1673 if (!nand_chip->IO_ADDR_R) {
67ce04bf 1674 err = -ENOMEM;
70ba6d71 1675 goto return_error;
67ce04bf 1676 }
59e9c5ae 1677
633deb58 1678 nand_chip->controller = &info->controller;
67ce04bf 1679
633deb58
PG
1680 nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
1681 nand_chip->cmd_ctrl = omap_hwcontrol;
67ce04bf 1682
67ce04bf
VS
1683 /*
1684 * If RDY/BSY line is connected to OMAP then use the omap ready
4cacbe22
PM
1685 * function and the generic nand_wait function which reads the status
1686 * register after monitoring the RDY/BSY line. Otherwise use a standard
67ce04bf
VS
1687 * chip delay which is slightly more than tR (AC Timing) of the NAND
1688 * device and read status register until you get a failure or success
1689 */
1690 if (pdata->dev_ready) {
633deb58
PG
1691 nand_chip->dev_ready = omap_dev_ready;
1692 nand_chip->chip_delay = 0;
67ce04bf 1693 } else {
633deb58
PG
1694 nand_chip->waitfunc = omap_wait;
1695 nand_chip->chip_delay = 50;
67ce04bf
VS
1696 }
1697
f18befb5
PG
1698 /* scan NAND device connected to chip controller */
1699 nand_chip->options |= pdata->devsize & NAND_BUSWIDTH_16;
1700 if (nand_scan_ident(mtd, 1, NULL)) {
1701 pr_err("nand device scan failed, may be bus-width mismatch\n");
1702 err = -ENXIO;
70ba6d71 1703 goto return_error;
f18befb5
PG
1704 }
1705
b491da72
PG
1706 /* check for small page devices */
1707 if ((mtd->oobsize < 64) && (pdata->ecc_opt != OMAP_ECC_HAM1_CODE_HW)) {
1708 pr_err("small page devices are not supported\n");
1709 err = -EINVAL;
70ba6d71 1710 goto return_error;
b491da72
PG
1711 }
1712
f18befb5 1713 /* re-populate low-level callbacks based on xfer modes */
1b0b323c
SG
1714 switch (pdata->xfer_type) {
1715 case NAND_OMAP_PREFETCH_POLLED:
633deb58
PG
1716 nand_chip->read_buf = omap_read_buf_pref;
1717 nand_chip->write_buf = omap_write_buf_pref;
1b0b323c
SG
1718 break;
1719
1720 case NAND_OMAP_POLLED:
cf0e4d2b 1721 /* Use nand_base defaults for {read,write}_buf */
1b0b323c
SG
1722 break;
1723
1724 case NAND_OMAP_PREFETCH_DMA:
763e7359
RK
1725 dma_cap_zero(mask);
1726 dma_cap_set(DMA_SLAVE, mask);
1727 sig = OMAP24XX_DMA_GPMC;
1728 info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
1729 if (!info->dma) {
2df41d05
RK
1730 dev_err(&pdev->dev, "DMA engine request failed\n");
1731 err = -ENXIO;
70ba6d71 1732 goto return_error;
763e7359
RK
1733 } else {
1734 struct dma_slave_config cfg;
763e7359
RK
1735
1736 memset(&cfg, 0, sizeof(cfg));
1737 cfg.src_addr = info->phys_base;
1738 cfg.dst_addr = info->phys_base;
1739 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1740 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1741 cfg.src_maxburst = 16;
1742 cfg.dst_maxburst = 16;
d680e2c1
AB
1743 err = dmaengine_slave_config(info->dma, &cfg);
1744 if (err) {
763e7359 1745 dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
d680e2c1 1746 err);
70ba6d71 1747 goto return_error;
763e7359 1748 }
633deb58
PG
1749 nand_chip->read_buf = omap_read_buf_dma_pref;
1750 nand_chip->write_buf = omap_write_buf_dma_pref;
1b0b323c
SG
1751 }
1752 break;
1753
4e070376 1754 case NAND_OMAP_PREFETCH_IRQ:
5c468455
AM
1755 info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1756 if (info->gpmc_irq_fifo <= 0) {
1757 dev_err(&pdev->dev, "error getting fifo irq\n");
1758 err = -ENODEV;
70ba6d71 1759 goto return_error;
5c468455 1760 }
70ba6d71
PG
1761 err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
1762 omap_nand_irq, IRQF_SHARED,
1763 "gpmc-nand-fifo", info);
4e070376
SG
1764 if (err) {
1765 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
5c468455
AM
1766 info->gpmc_irq_fifo, err);
1767 info->gpmc_irq_fifo = 0;
70ba6d71 1768 goto return_error;
5c468455
AM
1769 }
1770
1771 info->gpmc_irq_count = platform_get_irq(pdev, 1);
1772 if (info->gpmc_irq_count <= 0) {
1773 dev_err(&pdev->dev, "error getting count irq\n");
1774 err = -ENODEV;
70ba6d71 1775 goto return_error;
5c468455 1776 }
70ba6d71
PG
1777 err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
1778 omap_nand_irq, IRQF_SHARED,
1779 "gpmc-nand-count", info);
5c468455
AM
1780 if (err) {
1781 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1782 info->gpmc_irq_count, err);
1783 info->gpmc_irq_count = 0;
70ba6d71 1784 goto return_error;
4e070376 1785 }
5c468455 1786
633deb58
PG
1787 nand_chip->read_buf = omap_read_buf_irq_pref;
1788 nand_chip->write_buf = omap_write_buf_irq_pref;
5c468455 1789
4e070376
SG
1790 break;
1791
1b0b323c
SG
1792 default:
1793 dev_err(&pdev->dev,
1794 "xfer_type(%d) not supported!\n", pdata->xfer_type);
1795 err = -EINVAL;
70ba6d71 1796 goto return_error;
59e9c5ae 1797 }
59e9c5ae 1798
a919e511 1799 /* populate MTD interface based on ECC scheme */
b491da72
PG
1800 nand_chip->ecc.layout = &omap_oobinfo;
1801 ecclayout = &omap_oobinfo;
4e558072 1802 switch (info->ecc_opt) {
a919e511
PG
1803 case OMAP_ECC_HAM1_CODE_HW:
1804 pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
1805 nand_chip->ecc.mode = NAND_ECC_HW;
633deb58
PG
1806 nand_chip->ecc.bytes = 3;
1807 nand_chip->ecc.size = 512;
1808 nand_chip->ecc.strength = 1;
1809 nand_chip->ecc.calculate = omap_calculate_ecc;
1810 nand_chip->ecc.hwctl = omap_enable_hwecc;
1811 nand_chip->ecc.correct = omap_correct_data;
b491da72
PG
1812 /* define ECC layout */
1813 ecclayout->eccbytes = nand_chip->ecc.bytes *
1814 (mtd->writesize /
1815 nand_chip->ecc.size);
1816 if (nand_chip->options & NAND_BUSWIDTH_16)
eae39cb4 1817 oob_index = BADBLOCK_MARKER_LENGTH;
b491da72 1818 else
eae39cb4
PG
1819 oob_index = 1;
1820 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1821 ecclayout->eccpos[i] = oob_index;
aa6092f9
PG
1822 /* no reserved-marker in ecclayout for this ecc-scheme */
1823 ecclayout->oobfree->offset =
1824 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
a919e511
PG
1825 break;
1826
1827 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1828#ifdef CONFIG_MTD_NAND_ECC_BCH
1829 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
1830 nand_chip->ecc.mode = NAND_ECC_HW;
1831 nand_chip->ecc.size = 512;
1832 nand_chip->ecc.bytes = 7;
1833 nand_chip->ecc.strength = 4;
1834 nand_chip->ecc.hwctl = omap3_enable_hwecc_bch;
32d42a85 1835 nand_chip->ecc.correct = nand_bch_correct_data;
a919e511 1836 nand_chip->ecc.calculate = omap3_calculate_ecc_bch4;
b491da72
PG
1837 /* define ECC layout */
1838 ecclayout->eccbytes = nand_chip->ecc.bytes *
1839 (mtd->writesize /
1840 nand_chip->ecc.size);
eae39cb4
PG
1841 oob_index = BADBLOCK_MARKER_LENGTH;
1842 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
1843 ecclayout->eccpos[i] = oob_index;
1844 if (((i + 1) % nand_chip->ecc.bytes) == 0)
1845 oob_index++;
1846 }
aa6092f9
PG
1847 /* include reserved-marker in ecclayout->oobfree calculation */
1848 ecclayout->oobfree->offset = 1 +
1849 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
a919e511 1850 /* software bch library is used for locating errors */
32d42a85
PG
1851 nand_chip->ecc.priv = nand_bch_init(mtd,
1852 nand_chip->ecc.size,
1853 nand_chip->ecc.bytes,
1854 &nand_chip->ecc.layout);
1855 if (!nand_chip->ecc.priv) {
a919e511 1856 pr_err("nand: error: unable to use s/w BCH library\n");
0e618ef0 1857 err = -EINVAL;
a919e511
PG
1858 }
1859 break;
1860#else
1861 pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1862 err = -EINVAL;
70ba6d71 1863 goto return_error;
a919e511
PG
1864#endif
1865
1866 case OMAP_ECC_BCH4_CODE_HW:
1867#ifdef CONFIG_MTD_NAND_OMAP_BCH
1868 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
1869 nand_chip->ecc.mode = NAND_ECC_HW;
1870 nand_chip->ecc.size = 512;
1871 /* 14th bit is kept reserved for ROM-code compatibility */
1872 nand_chip->ecc.bytes = 7 + 1;
1873 nand_chip->ecc.strength = 4;
1874 nand_chip->ecc.hwctl = omap3_enable_hwecc_bch;
1875 nand_chip->ecc.correct = omap_elm_correct_data;
a4c7ca00 1876 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
a919e511
PG
1877 nand_chip->ecc.read_page = omap_read_page_bch;
1878 nand_chip->ecc.write_page = omap_write_page_bch;
b491da72
PG
1879 /* define ECC layout */
1880 ecclayout->eccbytes = nand_chip->ecc.bytes *
1881 (mtd->writesize /
1882 nand_chip->ecc.size);
eae39cb4
PG
1883 oob_index = BADBLOCK_MARKER_LENGTH;
1884 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1885 ecclayout->eccpos[i] = oob_index;
aa6092f9
PG
1886 /* reserved marker already included in ecclayout->eccbytes */
1887 ecclayout->oobfree->offset =
1888 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
a919e511
PG
1889 /* This ECC scheme requires ELM H/W block */
1890 if (is_elm_present(info, pdata->elm_of_node, BCH4_ECC) < 0) {
1891 pr_err("nand: error: could not initialize ELM\n");
1892 err = -ENODEV;
70ba6d71 1893 goto return_error;
0e618ef0 1894 }
a919e511
PG
1895 break;
1896#else
1897 pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1898 err = -EINVAL;
70ba6d71 1899 goto return_error;
a919e511
PG
1900#endif
1901
1902 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1903#ifdef CONFIG_MTD_NAND_ECC_BCH
1904 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
1905 nand_chip->ecc.mode = NAND_ECC_HW;
1906 nand_chip->ecc.size = 512;
1907 nand_chip->ecc.bytes = 13;
1908 nand_chip->ecc.strength = 8;
1909 nand_chip->ecc.hwctl = omap3_enable_hwecc_bch;
32d42a85 1910 nand_chip->ecc.correct = nand_bch_correct_data;
a919e511 1911 nand_chip->ecc.calculate = omap3_calculate_ecc_bch8;
b491da72
PG
1912 /* define ECC layout */
1913 ecclayout->eccbytes = nand_chip->ecc.bytes *
1914 (mtd->writesize /
1915 nand_chip->ecc.size);
eae39cb4
PG
1916 oob_index = BADBLOCK_MARKER_LENGTH;
1917 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
1918 ecclayout->eccpos[i] = oob_index;
1919 if (((i + 1) % nand_chip->ecc.bytes) == 0)
1920 oob_index++;
1921 }
aa6092f9
PG
1922 /* include reserved-marker in ecclayout->oobfree calculation */
1923 ecclayout->oobfree->offset = 1 +
1924 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
a919e511 1925 /* software bch library is used for locating errors */
32d42a85
PG
1926 nand_chip->ecc.priv = nand_bch_init(mtd,
1927 nand_chip->ecc.size,
1928 nand_chip->ecc.bytes,
1929 &nand_chip->ecc.layout);
1930 if (!nand_chip->ecc.priv) {
a919e511
PG
1931 pr_err("nand: error: unable to use s/w BCH library\n");
1932 err = -EINVAL;
70ba6d71 1933 goto return_error;
a919e511
PG
1934 }
1935 break;
1936#else
1937 pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1938 err = -EINVAL;
70ba6d71 1939 goto return_error;
a919e511
PG
1940#endif
1941
1942 case OMAP_ECC_BCH8_CODE_HW:
1943#ifdef CONFIG_MTD_NAND_OMAP_BCH
1944 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
1945 nand_chip->ecc.mode = NAND_ECC_HW;
1946 nand_chip->ecc.size = 512;
1947 /* 14th bit is kept reserved for ROM-code compatibility */
1948 nand_chip->ecc.bytes = 13 + 1;
1949 nand_chip->ecc.strength = 8;
1950 nand_chip->ecc.hwctl = omap3_enable_hwecc_bch;
1951 nand_chip->ecc.correct = omap_elm_correct_data;
a4c7ca00 1952 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
a919e511
PG
1953 nand_chip->ecc.read_page = omap_read_page_bch;
1954 nand_chip->ecc.write_page = omap_write_page_bch;
1955 /* This ECC scheme requires ELM H/W block */
9211439b
WY
1956 err = is_elm_present(info, pdata->elm_of_node, BCH8_ECC);
1957 if (err < 0) {
a919e511 1958 pr_err("nand: error: could not initialize ELM\n");
70ba6d71 1959 goto return_error;
a919e511 1960 }
b491da72
PG
1961 /* define ECC layout */
1962 ecclayout->eccbytes = nand_chip->ecc.bytes *
1963 (mtd->writesize /
1964 nand_chip->ecc.size);
eae39cb4
PG
1965 oob_index = BADBLOCK_MARKER_LENGTH;
1966 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1967 ecclayout->eccpos[i] = oob_index;
aa6092f9
PG
1968 /* reserved marker already included in ecclayout->eccbytes */
1969 ecclayout->oobfree->offset =
1970 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
a919e511
PG
1971 break;
1972#else
1973 pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1974 err = -EINVAL;
70ba6d71 1975 goto return_error;
a919e511
PG
1976#endif
1977
1978 default:
1979 pr_err("nand: error: invalid or unsupported ECC scheme\n");
1980 err = -EINVAL;
70ba6d71 1981 goto return_error;
f3d73f36 1982 }
67ce04bf 1983
bb38eefb
PG
1984 /* all OOB bytes from oobfree->offset till end off OOB are free */
1985 ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
b491da72
PG
1986 /* check if NAND device's OOB is enough to store ECC signatures */
1987 if (mtd->oobsize < (ecclayout->eccbytes + BADBLOCK_MARKER_LENGTH)) {
1988 pr_err("not enough OOB bytes required = %d, available=%d\n",
1989 ecclayout->eccbytes, mtd->oobsize);
1990 err = -EINVAL;
70ba6d71 1991 goto return_error;
f040d332 1992 }
1b0b323c 1993
a80f1c1f 1994 /* second phase scan */
633deb58 1995 if (nand_scan_tail(mtd)) {
a80f1c1f 1996 err = -ENXIO;
70ba6d71 1997 goto return_error;
a80f1c1f
JW
1998 }
1999
ccf04c51 2000 ppdata.of_node = pdata->of_node;
633deb58 2001 mtd_device_parse_register(mtd, NULL, &ppdata, pdata->parts,
42d7fbe2 2002 pdata->nr_parts);
67ce04bf 2003
633deb58 2004 platform_set_drvdata(pdev, mtd);
67ce04bf
VS
2005
2006 return 0;
2007
70ba6d71 2008return_error:
763e7359
RK
2009 if (info->dma)
2010 dma_release_channel(info->dma);
32d42a85
PG
2011 if (nand_chip->ecc.priv) {
2012 nand_bch_free(nand_chip->ecc.priv);
2013 nand_chip->ecc.priv = NULL;
2014 }
67ce04bf
VS
2015 return err;
2016}
2017
2018static int omap_nand_remove(struct platform_device *pdev)
2019{
2020 struct mtd_info *mtd = platform_get_drvdata(pdev);
633deb58 2021 struct nand_chip *nand_chip = mtd->priv;
f35b6eda
VS
2022 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
2023 mtd);
32d42a85
PG
2024 if (nand_chip->ecc.priv) {
2025 nand_bch_free(nand_chip->ecc.priv);
2026 nand_chip->ecc.priv = NULL;
2027 }
763e7359
RK
2028 if (info->dma)
2029 dma_release_channel(info->dma);
633deb58 2030 nand_release(mtd);
67ce04bf
VS
2031 return 0;
2032}
2033
2034static struct platform_driver omap_nand_driver = {
2035 .probe = omap_nand_probe,
2036 .remove = omap_nand_remove,
2037 .driver = {
2038 .name = DRIVER_NAME,
2039 .owner = THIS_MODULE,
2040 },
2041};
2042
f99640de 2043module_platform_driver(omap_nand_driver);
67ce04bf 2044
c804c733 2045MODULE_ALIAS("platform:" DRIVER_NAME);
67ce04bf
VS
2046MODULE_LICENSE("GPL");
2047MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
This page took 0.351313 seconds and 5 git commands to generate.