mtd: nand: omap2: clean-up BCHx_HW and BCHx_SW ECC configurations in device_probe
[deliverable/linux.git] / drivers / mtd / nand / omap2.c
CommitLineData
67ce04bf
VS
1/*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/platform_device.h>
763e7359 12#include <linux/dmaengine.h>
67ce04bf
VS
13#include <linux/dma-mapping.h>
14#include <linux/delay.h>
a0e5cc58 15#include <linux/module.h>
4e070376 16#include <linux/interrupt.h>
c276aca4 17#include <linux/jiffies.h>
18#include <linux/sched.h>
67ce04bf
VS
19#include <linux/mtd/mtd.h>
20#include <linux/mtd/nand.h>
21#include <linux/mtd/partitions.h>
763e7359 22#include <linux/omap-dma.h>
67ce04bf 23#include <linux/io.h>
5a0e3ad6 24#include <linux/slab.h>
62116e51
PA
25#include <linux/of.h>
26#include <linux/of_device.h>
67ce04bf 27
0e618ef0 28#include <linux/bch.h>
62116e51 29#include <linux/platform_data/elm.h>
0e618ef0 30
2203747c 31#include <linux/platform_data/mtd-nand-omap2.h>
67ce04bf 32
67ce04bf 33#define DRIVER_NAME "omap2-nand"
4e070376 34#define OMAP_NAND_TIMEOUT_MS 5000
67ce04bf 35
67ce04bf
VS
36#define NAND_Ecc_P1e (1 << 0)
37#define NAND_Ecc_P2e (1 << 1)
38#define NAND_Ecc_P4e (1 << 2)
39#define NAND_Ecc_P8e (1 << 3)
40#define NAND_Ecc_P16e (1 << 4)
41#define NAND_Ecc_P32e (1 << 5)
42#define NAND_Ecc_P64e (1 << 6)
43#define NAND_Ecc_P128e (1 << 7)
44#define NAND_Ecc_P256e (1 << 8)
45#define NAND_Ecc_P512e (1 << 9)
46#define NAND_Ecc_P1024e (1 << 10)
47#define NAND_Ecc_P2048e (1 << 11)
48
49#define NAND_Ecc_P1o (1 << 16)
50#define NAND_Ecc_P2o (1 << 17)
51#define NAND_Ecc_P4o (1 << 18)
52#define NAND_Ecc_P8o (1 << 19)
53#define NAND_Ecc_P16o (1 << 20)
54#define NAND_Ecc_P32o (1 << 21)
55#define NAND_Ecc_P64o (1 << 22)
56#define NAND_Ecc_P128o (1 << 23)
57#define NAND_Ecc_P256o (1 << 24)
58#define NAND_Ecc_P512o (1 << 25)
59#define NAND_Ecc_P1024o (1 << 26)
60#define NAND_Ecc_P2048o (1 << 27)
61
62#define TF(value) (value ? 1 : 0)
63
64#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
65#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
66#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
67#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
68#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
69#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
70#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
71#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
72
73#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
74#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
75#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
76#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
77#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
78#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
79#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
80#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
81
82#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
83#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
84#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
85#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
86#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
87#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
88#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
89#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
90
91#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
92#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
93#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
94#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
95#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
96#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
97#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
98#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
99
100#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
101#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
102
65b97cf6
AM
103#define PREFETCH_CONFIG1_CS_SHIFT 24
104#define ECC_CONFIG_CS_SHIFT 1
105#define CS_MASK 0x7
106#define ENABLE_PREFETCH (0x1 << 7)
107#define DMA_MPU_MODE_SHIFT 2
2ef9f3dd 108#define ECCSIZE0_SHIFT 12
65b97cf6
AM
109#define ECCSIZE1_SHIFT 22
110#define ECC1RESULTSIZE 0x1
111#define ECCCLEAR 0x100
112#define ECC1 0x1
47f88af4
AM
113#define PREFETCH_FIFOTHRESHOLD_MAX 0x40
114#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
115#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
116#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
117#define STATUS_BUFF_EMPTY 0x00000001
65b97cf6 118
d5e7c864
LV
119#define OMAP24XX_DMA_GPMC 4
120
c3e4b995
PA
121#define BCH8_MAX_ERROR 8 /* upto 8 bit correctable */
122#define BCH4_MAX_ERROR 4 /* upto 4 bit correctable */
123
62116e51
PA
124#define SECTOR_BYTES 512
125/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
126#define BCH4_BIT_PAD 4
127#define BCH8_ECC_MAX ((SECTOR_BYTES + BCH8_ECC_OOB_BYTES) * 8)
128#define BCH4_ECC_MAX ((SECTOR_BYTES + BCH4_ECC_OOB_BYTES) * 8)
129
130/* GPMC ecc engine settings for read */
131#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
132#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
133#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
134#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
135#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
136
137/* GPMC ecc engine settings for write */
138#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
139#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
140#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
141
a919e511
PG
142#define OMAP_ECC_BCH8_POLYNOMIAL 0x201b
143
62116e51
PA
144#ifdef CONFIG_MTD_NAND_OMAP_BCH
145static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
146 0xac, 0x6b, 0xff, 0x99, 0x7b};
147static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
148#endif
149
f040d332
SG
150/* oob info generated runtime depending on ecc algorithm and layout selected */
151static struct nand_ecclayout omap_oobinfo;
152/* Define some generic bad / good block scan pattern which are used
153 * while scanning a device for factory marked good / bad blocks
154 */
155static uint8_t scan_ff_pattern[] = { 0xff };
156static struct nand_bbt_descr bb_descrip_flashbased = {
dad22562 157 .options = NAND_BBT_SCANALLPAGES,
f040d332
SG
158 .offs = 0,
159 .len = 1,
160 .pattern = scan_ff_pattern,
161};
dfe32893 162
59e9c5ae 163
67ce04bf
VS
164struct omap_nand_info {
165 struct nand_hw_control controller;
166 struct omap_nand_platform_data *pdata;
167 struct mtd_info mtd;
67ce04bf
VS
168 struct nand_chip nand;
169 struct platform_device *pdev;
170
171 int gpmc_cs;
172 unsigned long phys_base;
9c4c2f8b 173 unsigned long mem_size;
dfe32893 174 struct completion comp;
763e7359 175 struct dma_chan *dma;
5c468455
AM
176 int gpmc_irq_fifo;
177 int gpmc_irq_count;
4e070376
SG
178 enum {
179 OMAP_NAND_IO_READ = 0, /* read */
180 OMAP_NAND_IO_WRITE, /* write */
181 } iomode;
182 u_char *buf;
183 int buf_len;
65b97cf6 184 struct gpmc_nand_regs reg;
a919e511 185 /* fields specific for BCHx_HW ECC scheme */
0e618ef0
ID
186 struct bch_control *bch;
187 struct nand_ecclayout ecclayout;
62116e51
PA
188 bool is_elm_used;
189 struct device *elm_dev;
190 struct device_node *of_node;
67ce04bf
VS
191};
192
65b97cf6
AM
193/**
194 * omap_prefetch_enable - configures and starts prefetch transfer
195 * @cs: cs (chip select) number
196 * @fifo_th: fifo threshold to be used for read/ write
197 * @dma_mode: dma mode enable (1) or disable (0)
198 * @u32_count: number of bytes to be transferred
199 * @is_write: prefetch read(0) or write post(1) mode
200 */
201static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
202 unsigned int u32_count, int is_write, struct omap_nand_info *info)
203{
204 u32 val;
205
206 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
207 return -1;
208
209 if (readl(info->reg.gpmc_prefetch_control))
210 return -EBUSY;
211
212 /* Set the amount of bytes to be prefetched */
213 writel(u32_count, info->reg.gpmc_prefetch_config2);
214
215 /* Set dma/mpu mode, the prefetch read / post write and
216 * enable the engine. Set which cs is has requested for.
217 */
218 val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
219 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
220 (dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
221 writel(val, info->reg.gpmc_prefetch_config1);
222
223 /* Start the prefetch engine */
224 writel(0x1, info->reg.gpmc_prefetch_control);
225
226 return 0;
227}
228
229/**
230 * omap_prefetch_reset - disables and stops the prefetch engine
231 */
232static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
233{
234 u32 config1;
235
236 /* check if the same module/cs is trying to reset */
237 config1 = readl(info->reg.gpmc_prefetch_config1);
238 if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
239 return -EINVAL;
240
241 /* Stop the PFPW engine */
242 writel(0x0, info->reg.gpmc_prefetch_control);
243
244 /* Reset/disable the PFPW engine */
245 writel(0x0, info->reg.gpmc_prefetch_config1);
246
247 return 0;
248}
249
67ce04bf
VS
250/**
251 * omap_hwcontrol - hardware specific access to control-lines
252 * @mtd: MTD device structure
253 * @cmd: command to device
254 * @ctrl:
255 * NAND_NCE: bit 0 -> don't care
256 * NAND_CLE: bit 1 -> Command Latch
257 * NAND_ALE: bit 2 -> Address Latch
258 *
259 * NOTE: boards may use different bits for these!!
260 */
261static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
262{
263 struct omap_nand_info *info = container_of(mtd,
264 struct omap_nand_info, mtd);
67ce04bf 265
2c01946c
SG
266 if (cmd != NAND_CMD_NONE) {
267 if (ctrl & NAND_CLE)
65b97cf6 268 writeb(cmd, info->reg.gpmc_nand_command);
2c01946c
SG
269
270 else if (ctrl & NAND_ALE)
65b97cf6 271 writeb(cmd, info->reg.gpmc_nand_address);
2c01946c
SG
272
273 else /* NAND_NCE */
65b97cf6 274 writeb(cmd, info->reg.gpmc_nand_data);
2c01946c 275 }
67ce04bf
VS
276}
277
59e9c5ae 278/**
279 * omap_read_buf8 - read data from NAND controller into buffer
280 * @mtd: MTD device structure
281 * @buf: buffer to store date
282 * @len: number of bytes to read
283 */
284static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
285{
286 struct nand_chip *nand = mtd->priv;
287
288 ioread8_rep(nand->IO_ADDR_R, buf, len);
289}
290
291/**
292 * omap_write_buf8 - write buffer to NAND controller
293 * @mtd: MTD device structure
294 * @buf: data buffer
295 * @len: number of bytes to write
296 */
297static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
298{
299 struct omap_nand_info *info = container_of(mtd,
300 struct omap_nand_info, mtd);
301 u_char *p = (u_char *)buf;
2c01946c 302 u32 status = 0;
59e9c5ae 303
304 while (len--) {
305 iowrite8(*p++, info->nand.IO_ADDR_W);
2c01946c
SG
306 /* wait until buffer is available for write */
307 do {
65b97cf6 308 status = readl(info->reg.gpmc_status) &
47f88af4 309 STATUS_BUFF_EMPTY;
2c01946c 310 } while (!status);
59e9c5ae 311 }
312}
313
67ce04bf
VS
314/**
315 * omap_read_buf16 - read data from NAND controller into buffer
316 * @mtd: MTD device structure
317 * @buf: buffer to store date
318 * @len: number of bytes to read
319 */
320static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
321{
322 struct nand_chip *nand = mtd->priv;
323
59e9c5ae 324 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
67ce04bf
VS
325}
326
327/**
328 * omap_write_buf16 - write buffer to NAND controller
329 * @mtd: MTD device structure
330 * @buf: data buffer
331 * @len: number of bytes to write
332 */
333static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
334{
335 struct omap_nand_info *info = container_of(mtd,
336 struct omap_nand_info, mtd);
337 u16 *p = (u16 *) buf;
2c01946c 338 u32 status = 0;
67ce04bf
VS
339 /* FIXME try bursts of writesw() or DMA ... */
340 len >>= 1;
341
342 while (len--) {
59e9c5ae 343 iowrite16(*p++, info->nand.IO_ADDR_W);
2c01946c
SG
344 /* wait until buffer is available for write */
345 do {
65b97cf6 346 status = readl(info->reg.gpmc_status) &
47f88af4 347 STATUS_BUFF_EMPTY;
2c01946c 348 } while (!status);
67ce04bf
VS
349 }
350}
59e9c5ae 351
352/**
353 * omap_read_buf_pref - read data from NAND controller into buffer
354 * @mtd: MTD device structure
355 * @buf: buffer to store date
356 * @len: number of bytes to read
357 */
358static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
359{
360 struct omap_nand_info *info = container_of(mtd,
361 struct omap_nand_info, mtd);
2c01946c 362 uint32_t r_count = 0;
59e9c5ae 363 int ret = 0;
364 u32 *p = (u32 *)buf;
365
366 /* take care of subpage reads */
c3341d0c
VS
367 if (len % 4) {
368 if (info->nand.options & NAND_BUSWIDTH_16)
369 omap_read_buf16(mtd, buf, len % 4);
370 else
371 omap_read_buf8(mtd, buf, len % 4);
372 p = (u32 *) (buf + len % 4);
373 len -= len % 4;
59e9c5ae 374 }
59e9c5ae 375
376 /* configure and start prefetch transfer */
65b97cf6
AM
377 ret = omap_prefetch_enable(info->gpmc_cs,
378 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
59e9c5ae 379 if (ret) {
380 /* PFPW engine is busy, use cpu copy method */
381 if (info->nand.options & NAND_BUSWIDTH_16)
c5d8c0ca 382 omap_read_buf16(mtd, (u_char *)p, len);
59e9c5ae 383 else
c5d8c0ca 384 omap_read_buf8(mtd, (u_char *)p, len);
59e9c5ae 385 } else {
386 do {
65b97cf6 387 r_count = readl(info->reg.gpmc_prefetch_status);
47f88af4 388 r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
2c01946c
SG
389 r_count = r_count >> 2;
390 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
59e9c5ae 391 p += r_count;
392 len -= r_count << 2;
393 } while (len);
59e9c5ae 394 /* disable and stop the PFPW engine */
65b97cf6 395 omap_prefetch_reset(info->gpmc_cs, info);
59e9c5ae 396 }
397}
398
399/**
400 * omap_write_buf_pref - write buffer to NAND controller
401 * @mtd: MTD device structure
402 * @buf: data buffer
403 * @len: number of bytes to write
404 */
405static void omap_write_buf_pref(struct mtd_info *mtd,
406 const u_char *buf, int len)
407{
408 struct omap_nand_info *info = container_of(mtd,
409 struct omap_nand_info, mtd);
4e070376 410 uint32_t w_count = 0;
59e9c5ae 411 int i = 0, ret = 0;
c5d8c0ca 412 u16 *p = (u16 *)buf;
4e070376 413 unsigned long tim, limit;
65b97cf6 414 u32 val;
59e9c5ae 415
416 /* take care of subpage writes */
417 if (len % 2 != 0) {
2c01946c 418 writeb(*buf, info->nand.IO_ADDR_W);
59e9c5ae 419 p = (u16 *)(buf + 1);
420 len--;
421 }
422
423 /* configure and start prefetch transfer */
65b97cf6
AM
424 ret = omap_prefetch_enable(info->gpmc_cs,
425 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
59e9c5ae 426 if (ret) {
427 /* PFPW engine is busy, use cpu copy method */
428 if (info->nand.options & NAND_BUSWIDTH_16)
c5d8c0ca 429 omap_write_buf16(mtd, (u_char *)p, len);
59e9c5ae 430 else
c5d8c0ca 431 omap_write_buf8(mtd, (u_char *)p, len);
59e9c5ae 432 } else {
2c01946c 433 while (len) {
65b97cf6 434 w_count = readl(info->reg.gpmc_prefetch_status);
47f88af4 435 w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
2c01946c 436 w_count = w_count >> 1;
59e9c5ae 437 for (i = 0; (i < w_count) && len; i++, len -= 2)
2c01946c 438 iowrite16(*p++, info->nand.IO_ADDR_W);
59e9c5ae 439 }
2c01946c 440 /* wait for data to flushed-out before reset the prefetch */
4e070376
SG
441 tim = 0;
442 limit = (loops_per_jiffy *
443 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
65b97cf6 444 do {
4e070376 445 cpu_relax();
65b97cf6 446 val = readl(info->reg.gpmc_prefetch_status);
47f88af4 447 val = PREFETCH_STATUS_COUNT(val);
65b97cf6 448 } while (val && (tim++ < limit));
4e070376 449
59e9c5ae 450 /* disable and stop the PFPW engine */
65b97cf6 451 omap_prefetch_reset(info->gpmc_cs, info);
59e9c5ae 452 }
453}
454
dfe32893 455/*
2df41d05 456 * omap_nand_dma_callback: callback on the completion of dma transfer
dfe32893 457 * @data: pointer to completion data structure
458 */
763e7359
RK
459static void omap_nand_dma_callback(void *data)
460{
461 complete((struct completion *) data);
462}
dfe32893 463
464/*
4cacbe22 465 * omap_nand_dma_transfer: configure and start dma transfer
dfe32893 466 * @mtd: MTD device structure
467 * @addr: virtual address in RAM of source/destination
468 * @len: number of data bytes to be transferred
469 * @is_write: flag for read/write operation
470 */
471static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
472 unsigned int len, int is_write)
473{
474 struct omap_nand_info *info = container_of(mtd,
475 struct omap_nand_info, mtd);
2df41d05 476 struct dma_async_tx_descriptor *tx;
dfe32893 477 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
478 DMA_FROM_DEVICE;
2df41d05 479 struct scatterlist sg;
4e070376 480 unsigned long tim, limit;
2df41d05
RK
481 unsigned n;
482 int ret;
65b97cf6 483 u32 val;
dfe32893 484
485 if (addr >= high_memory) {
486 struct page *p1;
487
488 if (((size_t)addr & PAGE_MASK) !=
489 ((size_t)(addr + len - 1) & PAGE_MASK))
490 goto out_copy;
491 p1 = vmalloc_to_page(addr);
492 if (!p1)
493 goto out_copy;
494 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
495 }
496
2df41d05
RK
497 sg_init_one(&sg, addr, len);
498 n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
499 if (n == 0) {
dfe32893 500 dev_err(&info->pdev->dev,
501 "Couldn't DMA map a %d byte buffer\n", len);
502 goto out_copy;
503 }
504
2df41d05
RK
505 tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
506 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
507 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
508 if (!tx)
509 goto out_copy_unmap;
510
511 tx->callback = omap_nand_dma_callback;
512 tx->callback_param = &info->comp;
513 dmaengine_submit(tx);
514
65b97cf6
AM
515 /* configure and start prefetch transfer */
516 ret = omap_prefetch_enable(info->gpmc_cs,
517 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
dfe32893 518 if (ret)
4e070376 519 /* PFPW engine is busy, use cpu copy method */
d7efe228 520 goto out_copy_unmap;
dfe32893 521
522 init_completion(&info->comp);
2df41d05 523 dma_async_issue_pending(info->dma);
dfe32893 524
525 /* setup and start DMA using dma_addr */
526 wait_for_completion(&info->comp);
4e070376
SG
527 tim = 0;
528 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
65b97cf6
AM
529
530 do {
4e070376 531 cpu_relax();
65b97cf6 532 val = readl(info->reg.gpmc_prefetch_status);
47f88af4 533 val = PREFETCH_STATUS_COUNT(val);
65b97cf6 534 } while (val && (tim++ < limit));
dfe32893 535
dfe32893 536 /* disable and stop the PFPW engine */
65b97cf6 537 omap_prefetch_reset(info->gpmc_cs, info);
dfe32893 538
2df41d05 539 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
dfe32893 540 return 0;
541
d7efe228 542out_copy_unmap:
2df41d05 543 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
dfe32893 544out_copy:
545 if (info->nand.options & NAND_BUSWIDTH_16)
546 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
547 : omap_write_buf16(mtd, (u_char *) addr, len);
548 else
549 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
550 : omap_write_buf8(mtd, (u_char *) addr, len);
551 return 0;
552}
dfe32893 553
554/**
555 * omap_read_buf_dma_pref - read data from NAND controller into buffer
556 * @mtd: MTD device structure
557 * @buf: buffer to store date
558 * @len: number of bytes to read
559 */
560static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
561{
562 if (len <= mtd->oobsize)
563 omap_read_buf_pref(mtd, buf, len);
564 else
565 /* start transfer in DMA mode */
566 omap_nand_dma_transfer(mtd, buf, len, 0x0);
567}
568
569/**
570 * omap_write_buf_dma_pref - write buffer to NAND controller
571 * @mtd: MTD device structure
572 * @buf: data buffer
573 * @len: number of bytes to write
574 */
575static void omap_write_buf_dma_pref(struct mtd_info *mtd,
576 const u_char *buf, int len)
577{
578 if (len <= mtd->oobsize)
579 omap_write_buf_pref(mtd, buf, len);
580 else
581 /* start transfer in DMA mode */
bdaefc41 582 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
dfe32893 583}
584
4e070376 585/*
4cacbe22 586 * omap_nand_irq - GPMC irq handler
4e070376
SG
587 * @this_irq: gpmc irq number
588 * @dev: omap_nand_info structure pointer is passed here
589 */
590static irqreturn_t omap_nand_irq(int this_irq, void *dev)
591{
592 struct omap_nand_info *info = (struct omap_nand_info *) dev;
593 u32 bytes;
4e070376 594
65b97cf6 595 bytes = readl(info->reg.gpmc_prefetch_status);
47f88af4 596 bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
4e070376
SG
597 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
598 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
5c468455 599 if (this_irq == info->gpmc_irq_count)
4e070376
SG
600 goto done;
601
602 if (info->buf_len && (info->buf_len < bytes))
603 bytes = info->buf_len;
604 else if (!info->buf_len)
605 bytes = 0;
606 iowrite32_rep(info->nand.IO_ADDR_W,
607 (u32 *)info->buf, bytes >> 2);
608 info->buf = info->buf + bytes;
609 info->buf_len -= bytes;
610
611 } else {
612 ioread32_rep(info->nand.IO_ADDR_R,
613 (u32 *)info->buf, bytes >> 2);
614 info->buf = info->buf + bytes;
615
5c468455 616 if (this_irq == info->gpmc_irq_count)
4e070376
SG
617 goto done;
618 }
4e070376
SG
619
620 return IRQ_HANDLED;
621
622done:
623 complete(&info->comp);
4e070376 624
5c468455
AM
625 disable_irq_nosync(info->gpmc_irq_fifo);
626 disable_irq_nosync(info->gpmc_irq_count);
4e070376
SG
627
628 return IRQ_HANDLED;
629}
630
631/*
632 * omap_read_buf_irq_pref - read data from NAND controller into buffer
633 * @mtd: MTD device structure
634 * @buf: buffer to store date
635 * @len: number of bytes to read
636 */
637static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
638{
639 struct omap_nand_info *info = container_of(mtd,
640 struct omap_nand_info, mtd);
641 int ret = 0;
642
643 if (len <= mtd->oobsize) {
644 omap_read_buf_pref(mtd, buf, len);
645 return;
646 }
647
648 info->iomode = OMAP_NAND_IO_READ;
649 info->buf = buf;
650 init_completion(&info->comp);
651
652 /* configure and start prefetch transfer */
65b97cf6
AM
653 ret = omap_prefetch_enable(info->gpmc_cs,
654 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
4e070376
SG
655 if (ret)
656 /* PFPW engine is busy, use cpu copy method */
657 goto out_copy;
658
659 info->buf_len = len;
5c468455
AM
660
661 enable_irq(info->gpmc_irq_count);
662 enable_irq(info->gpmc_irq_fifo);
4e070376
SG
663
664 /* waiting for read to complete */
665 wait_for_completion(&info->comp);
666
667 /* disable and stop the PFPW engine */
65b97cf6 668 omap_prefetch_reset(info->gpmc_cs, info);
4e070376
SG
669 return;
670
671out_copy:
672 if (info->nand.options & NAND_BUSWIDTH_16)
673 omap_read_buf16(mtd, buf, len);
674 else
675 omap_read_buf8(mtd, buf, len);
676}
677
678/*
679 * omap_write_buf_irq_pref - write buffer to NAND controller
680 * @mtd: MTD device structure
681 * @buf: data buffer
682 * @len: number of bytes to write
683 */
684static void omap_write_buf_irq_pref(struct mtd_info *mtd,
685 const u_char *buf, int len)
686{
687 struct omap_nand_info *info = container_of(mtd,
688 struct omap_nand_info, mtd);
689 int ret = 0;
690 unsigned long tim, limit;
65b97cf6 691 u32 val;
4e070376
SG
692
693 if (len <= mtd->oobsize) {
694 omap_write_buf_pref(mtd, buf, len);
695 return;
696 }
697
698 info->iomode = OMAP_NAND_IO_WRITE;
699 info->buf = (u_char *) buf;
700 init_completion(&info->comp);
701
317379a9 702 /* configure and start prefetch transfer : size=24 */
65b97cf6
AM
703 ret = omap_prefetch_enable(info->gpmc_cs,
704 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
4e070376
SG
705 if (ret)
706 /* PFPW engine is busy, use cpu copy method */
707 goto out_copy;
708
709 info->buf_len = len;
5c468455
AM
710
711 enable_irq(info->gpmc_irq_count);
712 enable_irq(info->gpmc_irq_fifo);
4e070376
SG
713
714 /* waiting for write to complete */
715 wait_for_completion(&info->comp);
5c468455 716
4e070376
SG
717 /* wait for data to flushed-out before reset the prefetch */
718 tim = 0;
719 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
65b97cf6
AM
720 do {
721 val = readl(info->reg.gpmc_prefetch_status);
47f88af4 722 val = PREFETCH_STATUS_COUNT(val);
4e070376 723 cpu_relax();
65b97cf6 724 } while (val && (tim++ < limit));
4e070376
SG
725
726 /* disable and stop the PFPW engine */
65b97cf6 727 omap_prefetch_reset(info->gpmc_cs, info);
4e070376
SG
728 return;
729
730out_copy:
731 if (info->nand.options & NAND_BUSWIDTH_16)
732 omap_write_buf16(mtd, buf, len);
733 else
734 omap_write_buf8(mtd, buf, len);
735}
736
67ce04bf
VS
737/**
738 * gen_true_ecc - This function will generate true ECC value
739 * @ecc_buf: buffer to store ecc code
740 *
741 * This generated true ECC value can be used when correcting
742 * data read from NAND flash memory core
743 */
744static void gen_true_ecc(u8 *ecc_buf)
745{
746 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
747 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
748
749 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
750 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
751 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
752 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
753 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
754 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
755}
756
757/**
758 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
759 * @ecc_data1: ecc code from nand spare area
760 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
761 * @page_data: page data
762 *
763 * This function compares two ECC's and indicates if there is an error.
764 * If the error can be corrected it will be corrected to the buffer.
74f1b724
JO
765 * If there is no error, %0 is returned. If there is an error but it
766 * was corrected, %1 is returned. Otherwise, %-1 is returned.
67ce04bf
VS
767 */
768static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
769 u8 *ecc_data2, /* read from register */
770 u8 *page_data)
771{
772 uint i;
773 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
774 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
775 u8 ecc_bit[24];
776 u8 ecc_sum = 0;
777 u8 find_bit = 0;
778 uint find_byte = 0;
779 int isEccFF;
780
781 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
782
783 gen_true_ecc(ecc_data1);
784 gen_true_ecc(ecc_data2);
785
786 for (i = 0; i <= 2; i++) {
787 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
788 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
789 }
790
791 for (i = 0; i < 8; i++) {
792 tmp0_bit[i] = *ecc_data1 % 2;
793 *ecc_data1 = *ecc_data1 / 2;
794 }
795
796 for (i = 0; i < 8; i++) {
797 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
798 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
799 }
800
801 for (i = 0; i < 8; i++) {
802 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
803 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
804 }
805
806 for (i = 0; i < 8; i++) {
807 comp0_bit[i] = *ecc_data2 % 2;
808 *ecc_data2 = *ecc_data2 / 2;
809 }
810
811 for (i = 0; i < 8; i++) {
812 comp1_bit[i] = *(ecc_data2 + 1) % 2;
813 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
814 }
815
816 for (i = 0; i < 8; i++) {
817 comp2_bit[i] = *(ecc_data2 + 2) % 2;
818 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
819 }
820
821 for (i = 0; i < 6; i++)
822 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
823
824 for (i = 0; i < 8; i++)
825 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
826
827 for (i = 0; i < 8; i++)
828 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
829
830 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
831 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
832
833 for (i = 0; i < 24; i++)
834 ecc_sum += ecc_bit[i];
835
836 switch (ecc_sum) {
837 case 0:
838 /* Not reached because this function is not called if
839 * ECC values are equal
840 */
841 return 0;
842
843 case 1:
844 /* Uncorrectable error */
289c0522 845 pr_debug("ECC UNCORRECTED_ERROR 1\n");
67ce04bf
VS
846 return -1;
847
848 case 11:
849 /* UN-Correctable error */
289c0522 850 pr_debug("ECC UNCORRECTED_ERROR B\n");
67ce04bf
VS
851 return -1;
852
853 case 12:
854 /* Correctable error */
855 find_byte = (ecc_bit[23] << 8) +
856 (ecc_bit[21] << 7) +
857 (ecc_bit[19] << 6) +
858 (ecc_bit[17] << 5) +
859 (ecc_bit[15] << 4) +
860 (ecc_bit[13] << 3) +
861 (ecc_bit[11] << 2) +
862 (ecc_bit[9] << 1) +
863 ecc_bit[7];
864
865 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
866
0a32a102
BN
867 pr_debug("Correcting single bit ECC error at offset: "
868 "%d, bit: %d\n", find_byte, find_bit);
67ce04bf
VS
869
870 page_data[find_byte] ^= (1 << find_bit);
871
74f1b724 872 return 1;
67ce04bf
VS
873 default:
874 if (isEccFF) {
875 if (ecc_data2[0] == 0 &&
876 ecc_data2[1] == 0 &&
877 ecc_data2[2] == 0)
878 return 0;
879 }
289c0522 880 pr_debug("UNCORRECTED_ERROR default\n");
67ce04bf
VS
881 return -1;
882 }
883}
884
885/**
886 * omap_correct_data - Compares the ECC read with HW generated ECC
887 * @mtd: MTD device structure
888 * @dat: page data
889 * @read_ecc: ecc read from nand flash
890 * @calc_ecc: ecc read from HW ECC registers
891 *
892 * Compares the ecc read from nand spare area with ECC registers values
74f1b724
JO
893 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
894 * detection and correction. If there are no errors, %0 is returned. If
895 * there were errors and all of the errors were corrected, the number of
896 * corrected errors is returned. If uncorrectable errors exist, %-1 is
897 * returned.
67ce04bf
VS
898 */
899static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
900 u_char *read_ecc, u_char *calc_ecc)
901{
902 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
903 mtd);
904 int blockCnt = 0, i = 0, ret = 0;
74f1b724 905 int stat = 0;
67ce04bf
VS
906
907 /* Ex NAND_ECC_HW12_2048 */
908 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
909 (info->nand.ecc.size == 2048))
910 blockCnt = 4;
911 else
912 blockCnt = 1;
913
914 for (i = 0; i < blockCnt; i++) {
915 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
916 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
917 if (ret < 0)
918 return ret;
74f1b724
JO
919 /* keep track of the number of corrected errors */
920 stat += ret;
67ce04bf
VS
921 }
922 read_ecc += 3;
923 calc_ecc += 3;
924 dat += 512;
925 }
74f1b724 926 return stat;
67ce04bf
VS
927}
928
929/**
930 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
931 * @mtd: MTD device structure
932 * @dat: The pointer to data on which ecc is computed
933 * @ecc_code: The ecc_code buffer
934 *
935 * Using noninverted ECC can be considered ugly since writing a blank
936 * page ie. padding will clear the ECC bytes. This is no problem as long
937 * nobody is trying to write data on the seemingly unused page. Reading
938 * an erased page will produce an ECC mismatch between generated and read
939 * ECC bytes that has to be dealt with separately.
940 */
941static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
942 u_char *ecc_code)
943{
944 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
945 mtd);
65b97cf6
AM
946 u32 val;
947
948 val = readl(info->reg.gpmc_ecc_config);
949 if (((val >> ECC_CONFIG_CS_SHIFT) & ~CS_MASK) != info->gpmc_cs)
950 return -EINVAL;
951
952 /* read ecc result */
953 val = readl(info->reg.gpmc_ecc1_result);
954 *ecc_code++ = val; /* P128e, ..., P1e */
955 *ecc_code++ = val >> 16; /* P128o, ..., P1o */
956 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
957 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
958
959 return 0;
67ce04bf
VS
960}
961
962/**
963 * omap_enable_hwecc - This function enables the hardware ecc functionality
964 * @mtd: MTD device structure
965 * @mode: Read/Write mode
966 */
967static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
968{
969 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
970 mtd);
971 struct nand_chip *chip = mtd->priv;
972 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
65b97cf6
AM
973 u32 val;
974
975 /* clear ecc and enable bits */
976 val = ECCCLEAR | ECC1;
977 writel(val, info->reg.gpmc_ecc_control);
67ce04bf 978
65b97cf6
AM
979 /* program ecc and result sizes */
980 val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
981 ECC1RESULTSIZE);
982 writel(val, info->reg.gpmc_ecc_size_config);
983
984 switch (mode) {
985 case NAND_ECC_READ:
986 case NAND_ECC_WRITE:
987 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
988 break;
989 case NAND_ECC_READSYN:
990 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
991 break;
992 default:
993 dev_info(&info->pdev->dev,
994 "error: unrecognized Mode[%d]!\n", mode);
995 break;
996 }
67ce04bf 997
65b97cf6
AM
998 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
999 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
1000 writel(val, info->reg.gpmc_ecc_config);
67ce04bf 1001}
2c01946c 1002
67ce04bf
VS
1003/**
1004 * omap_wait - wait until the command is done
1005 * @mtd: MTD device structure
1006 * @chip: NAND Chip structure
1007 *
1008 * Wait function is called during Program and erase operations and
1009 * the way it is called from MTD layer, we should wait till the NAND
1010 * chip is ready after the programming/erase operation has completed.
1011 *
1012 * Erase can take up to 400ms and program up to 20ms according to
1013 * general NAND and SmartMedia specs
1014 */
1015static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
1016{
1017 struct nand_chip *this = mtd->priv;
1018 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1019 mtd);
1020 unsigned long timeo = jiffies;
a9c465f0 1021 int status, state = this->state;
67ce04bf
VS
1022
1023 if (state == FL_ERASING)
4ff6772b 1024 timeo += msecs_to_jiffies(400);
67ce04bf 1025 else
4ff6772b 1026 timeo += msecs_to_jiffies(20);
67ce04bf 1027
65b97cf6 1028 writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
67ce04bf 1029 while (time_before(jiffies, timeo)) {
65b97cf6 1030 status = readb(info->reg.gpmc_nand_data);
c276aca4 1031 if (status & NAND_STATUS_READY)
67ce04bf 1032 break;
c276aca4 1033 cond_resched();
67ce04bf 1034 }
a9c465f0 1035
4ea1e4ba 1036 status = readb(info->reg.gpmc_nand_data);
67ce04bf
VS
1037 return status;
1038}
1039
1040/**
1041 * omap_dev_ready - calls the platform specific dev_ready function
1042 * @mtd: MTD device structure
1043 */
1044static int omap_dev_ready(struct mtd_info *mtd)
1045{
2c01946c 1046 unsigned int val = 0;
67ce04bf
VS
1047 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1048 mtd);
67ce04bf 1049
65b97cf6
AM
1050 val = readl(info->reg.gpmc_status);
1051
67ce04bf 1052 if ((val & 0x100) == 0x100) {
65b97cf6 1053 return 1;
67ce04bf 1054 } else {
65b97cf6 1055 return 0;
67ce04bf 1056 }
67ce04bf
VS
1057}
1058
a919e511 1059#if defined(CONFIG_MTD_NAND_ECC_BCH) || defined(CONFIG_MTD_NAND_OMAP_BCH)
0e618ef0
ID
1060/**
1061 * omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction
1062 * @mtd: MTD device structure
1063 * @mode: Read/Write mode
62116e51
PA
1064 *
1065 * When using BCH, sector size is hardcoded to 512 bytes.
1066 * Using wrapping mode 6 both for reading and writing if ELM module not uses
1067 * for error correction.
1068 * On writing,
1069 * eccsize0 = 0 (no additional protected byte in spare area)
1070 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
0e618ef0
ID
1071 */
1072static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1073{
1074 int nerrors;
2ef9f3dd 1075 unsigned int dev_width, nsectors;
0e618ef0
ID
1076 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1077 mtd);
1078 struct nand_chip *chip = mtd->priv;
62116e51
PA
1079 u32 val, wr_mode;
1080 unsigned int ecc_size1, ecc_size0;
1081
1082 /* Using wrapping mode 6 for writing */
1083 wr_mode = BCH_WRAPMODE_6;
0e618ef0 1084
0e618ef0 1085 /*
62116e51
PA
1086 * ECC engine enabled for valid ecc_size0 nibbles
1087 * and disabled for ecc_size1 nibbles.
0e618ef0 1088 */
62116e51
PA
1089 ecc_size0 = BCH_ECC_SIZE0;
1090 ecc_size1 = BCH_ECC_SIZE1;
1091
1092 /* Perform ecc calculation on 512-byte sector */
1093 nsectors = 1;
1094
1095 /* Update number of error correction */
1096 nerrors = info->nand.ecc.strength;
1097
1098 /* Multi sector reading/writing for NAND flash with page size < 4096 */
1099 if (info->is_elm_used && (mtd->writesize <= 4096)) {
1100 if (mode == NAND_ECC_READ) {
1101 /* Using wrapping mode 1 for reading */
1102 wr_mode = BCH_WRAPMODE_1;
1103
1104 /*
1105 * ECC engine enabled for ecc_size0 nibbles
1106 * and disabled for ecc_size1 nibbles.
1107 */
1108 ecc_size0 = (nerrors == 8) ?
1109 BCH8R_ECC_SIZE0 : BCH4R_ECC_SIZE0;
1110 ecc_size1 = (nerrors == 8) ?
1111 BCH8R_ECC_SIZE1 : BCH4R_ECC_SIZE1;
1112 }
1113
1114 /* Perform ecc calculation for one page (< 4096) */
1115 nsectors = info->nand.ecc.steps;
1116 }
2ef9f3dd
AM
1117
1118 writel(ECC1, info->reg.gpmc_ecc_control);
1119
62116e51
PA
1120 /* Configure ecc size for BCH */
1121 val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
2ef9f3dd
AM
1122 writel(val, info->reg.gpmc_ecc_size_config);
1123
62116e51
PA
1124 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1125
2ef9f3dd
AM
1126 /* BCH configuration */
1127 val = ((1 << 16) | /* enable BCH */
1128 (((nerrors == 8) ? 1 : 0) << 12) | /* 8 or 4 bits */
62116e51 1129 (wr_mode << 8) | /* wrap mode */
2ef9f3dd
AM
1130 (dev_width << 7) | /* bus width */
1131 (((nsectors-1) & 0x7) << 4) | /* number of sectors */
1132 (info->gpmc_cs << 1) | /* ECC CS */
1133 (0x1)); /* enable ECC */
1134
1135 writel(val, info->reg.gpmc_ecc_config);
1136
62116e51 1137 /* Clear ecc and enable bits */
2ef9f3dd 1138 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
0e618ef0 1139}
a919e511 1140#endif
0e618ef0 1141
a919e511 1142#ifdef CONFIG_MTD_NAND_ECC_BCH
0e618ef0
ID
1143/**
1144 * omap3_calculate_ecc_bch4 - Generate 7 bytes of ECC bytes
1145 * @mtd: MTD device structure
1146 * @dat: The pointer to data on which ecc is computed
1147 * @ecc_code: The ecc_code buffer
1148 */
1149static int omap3_calculate_ecc_bch4(struct mtd_info *mtd, const u_char *dat,
1150 u_char *ecc_code)
1151{
1152 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1153 mtd);
2ef9f3dd
AM
1154 unsigned long nsectors, val1, val2;
1155 int i;
1156
1157 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1158
1159 for (i = 0; i < nsectors; i++) {
1160
1161 /* Read hw-computed remainder */
1162 val1 = readl(info->reg.gpmc_bch_result0[i]);
1163 val2 = readl(info->reg.gpmc_bch_result1[i]);
1164
1165 /*
1166 * Add constant polynomial to remainder, in order to get an ecc
1167 * sequence of 0xFFs for a buffer filled with 0xFFs; and
1168 * left-justify the resulting polynomial.
1169 */
1170 *ecc_code++ = 0x28 ^ ((val2 >> 12) & 0xFF);
1171 *ecc_code++ = 0x13 ^ ((val2 >> 4) & 0xFF);
1172 *ecc_code++ = 0xcc ^ (((val2 & 0xF) << 4)|((val1 >> 28) & 0xF));
1173 *ecc_code++ = 0x39 ^ ((val1 >> 20) & 0xFF);
1174 *ecc_code++ = 0x96 ^ ((val1 >> 12) & 0xFF);
1175 *ecc_code++ = 0xac ^ ((val1 >> 4) & 0xFF);
1176 *ecc_code++ = 0x7f ^ ((val1 & 0xF) << 4);
1177 }
1178
1179 return 0;
0e618ef0
ID
1180}
1181
1182/**
1183 * omap3_calculate_ecc_bch8 - Generate 13 bytes of ECC bytes
1184 * @mtd: MTD device structure
1185 * @dat: The pointer to data on which ecc is computed
1186 * @ecc_code: The ecc_code buffer
1187 */
1188static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat,
1189 u_char *ecc_code)
1190{
1191 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1192 mtd);
2ef9f3dd
AM
1193 unsigned long nsectors, val1, val2, val3, val4;
1194 int i;
1195
1196 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1197
1198 for (i = 0; i < nsectors; i++) {
1199
1200 /* Read hw-computed remainder */
1201 val1 = readl(info->reg.gpmc_bch_result0[i]);
1202 val2 = readl(info->reg.gpmc_bch_result1[i]);
1203 val3 = readl(info->reg.gpmc_bch_result2[i]);
1204 val4 = readl(info->reg.gpmc_bch_result3[i]);
1205
1206 /*
1207 * Add constant polynomial to remainder, in order to get an ecc
1208 * sequence of 0xFFs for a buffer filled with 0xFFs.
1209 */
1210 *ecc_code++ = 0xef ^ (val4 & 0xFF);
1211 *ecc_code++ = 0x51 ^ ((val3 >> 24) & 0xFF);
1212 *ecc_code++ = 0x2e ^ ((val3 >> 16) & 0xFF);
1213 *ecc_code++ = 0x09 ^ ((val3 >> 8) & 0xFF);
1214 *ecc_code++ = 0xed ^ (val3 & 0xFF);
1215 *ecc_code++ = 0x93 ^ ((val2 >> 24) & 0xFF);
1216 *ecc_code++ = 0x9a ^ ((val2 >> 16) & 0xFF);
1217 *ecc_code++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
1218 *ecc_code++ = 0x97 ^ (val2 & 0xFF);
1219 *ecc_code++ = 0x79 ^ ((val1 >> 24) & 0xFF);
1220 *ecc_code++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
1221 *ecc_code++ = 0x24 ^ ((val1 >> 8) & 0xFF);
1222 *ecc_code++ = 0xb5 ^ (val1 & 0xFF);
1223 }
1224
1225 return 0;
0e618ef0 1226}
a919e511 1227#endif /* CONFIG_MTD_NAND_ECC_BCH */
0e618ef0 1228
a919e511 1229#ifdef CONFIG_MTD_NAND_OMAP_BCH
62116e51
PA
1230/**
1231 * omap3_calculate_ecc_bch - Generate bytes of ECC bytes
1232 * @mtd: MTD device structure
1233 * @dat: The pointer to data on which ecc is computed
1234 * @ecc_code: The ecc_code buffer
1235 *
1236 * Support calculating of BCH4/8 ecc vectors for the page
1237 */
1238static int omap3_calculate_ecc_bch(struct mtd_info *mtd, const u_char *dat,
1239 u_char *ecc_code)
1240{
1241 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1242 mtd);
1243 unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
1244 int i, eccbchtsel;
1245
1246 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1247 /*
1248 * find BCH scheme used
1249 * 0 -> BCH4
1250 * 1 -> BCH8
1251 */
1252 eccbchtsel = ((readl(info->reg.gpmc_ecc_config) >> 12) & 0x3);
1253
1254 for (i = 0; i < nsectors; i++) {
1255
1256 /* Read hw-computed remainder */
1257 bch_val1 = readl(info->reg.gpmc_bch_result0[i]);
1258 bch_val2 = readl(info->reg.gpmc_bch_result1[i]);
1259 if (eccbchtsel) {
1260 bch_val3 = readl(info->reg.gpmc_bch_result2[i]);
1261 bch_val4 = readl(info->reg.gpmc_bch_result3[i]);
1262 }
1263
1264 if (eccbchtsel) {
1265 /* BCH8 ecc scheme */
1266 *ecc_code++ = (bch_val4 & 0xFF);
1267 *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1268 *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1269 *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1270 *ecc_code++ = (bch_val3 & 0xFF);
1271 *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1272 *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1273 *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1274 *ecc_code++ = (bch_val2 & 0xFF);
1275 *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1276 *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1277 *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1278 *ecc_code++ = (bch_val1 & 0xFF);
1279 /*
1280 * Setting 14th byte to zero to handle
1281 * erased page & maintain compatibility
1282 * with RBL
1283 */
1284 *ecc_code++ = 0x0;
1285 } else {
1286 /* BCH4 ecc scheme */
1287 *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1288 *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1289 *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1290 ((bch_val1 >> 28) & 0xF);
1291 *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1292 *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1293 *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1294 *ecc_code++ = ((bch_val1 & 0xF) << 4);
1295 /*
1296 * Setting 8th byte to zero to handle
1297 * erased page
1298 */
1299 *ecc_code++ = 0x0;
1300 }
1301 }
1302
1303 return 0;
1304}
1305
1306/**
1307 * erased_sector_bitflips - count bit flips
1308 * @data: data sector buffer
1309 * @oob: oob buffer
1310 * @info: omap_nand_info
1311 *
1312 * Check the bit flips in erased page falls below correctable level.
1313 * If falls below, report the page as erased with correctable bit
1314 * flip, else report as uncorrectable page.
1315 */
1316static int erased_sector_bitflips(u_char *data, u_char *oob,
1317 struct omap_nand_info *info)
1318{
1319 int flip_bits = 0, i;
1320
1321 for (i = 0; i < info->nand.ecc.size; i++) {
1322 flip_bits += hweight8(~data[i]);
1323 if (flip_bits > info->nand.ecc.strength)
1324 return 0;
1325 }
1326
1327 for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1328 flip_bits += hweight8(~oob[i]);
1329 if (flip_bits > info->nand.ecc.strength)
1330 return 0;
1331 }
1332
1333 /*
1334 * Bit flips falls in correctable level.
1335 * Fill data area with 0xFF
1336 */
1337 if (flip_bits) {
1338 memset(data, 0xFF, info->nand.ecc.size);
1339 memset(oob, 0xFF, info->nand.ecc.bytes);
1340 }
1341
1342 return flip_bits;
1343}
1344
1345/**
1346 * omap_elm_correct_data - corrects page data area in case error reported
1347 * @mtd: MTD device structure
1348 * @data: page data
1349 * @read_ecc: ecc read from nand flash
1350 * @calc_ecc: ecc read from HW ECC registers
1351 *
1352 * Calculated ecc vector reported as zero in case of non-error pages.
1353 * In case of error/erased pages non-zero error vector is reported.
1354 * In case of non-zero ecc vector, check read_ecc at fixed offset
1355 * (x = 13/7 in case of BCH8/4 == 0) to find page programmed or not.
1356 * To handle bit flips in this data, count the number of 0's in
1357 * read_ecc[x] and check if it greater than 4. If it is less, it is
1358 * programmed page, else erased page.
1359 *
1360 * 1. If page is erased, check with standard ecc vector (ecc vector
1361 * for erased page to find any bit flip). If check fails, bit flip
1362 * is present in erased page. Count the bit flips in erased page and
1363 * if it falls under correctable level, report page with 0xFF and
1364 * update the correctable bit information.
1365 * 2. If error is reported on programmed page, update elm error
1366 * vector and correct the page with ELM error correction routine.
1367 *
1368 */
1369static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1370 u_char *read_ecc, u_char *calc_ecc)
1371{
1372 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1373 mtd);
1374 int eccsteps = info->nand.ecc.steps;
1375 int i , j, stat = 0;
1376 int eccsize, eccflag, ecc_vector_size;
1377 struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1378 u_char *ecc_vec = calc_ecc;
1379 u_char *spare_ecc = read_ecc;
1380 u_char *erased_ecc_vec;
1381 enum bch_ecc type;
1382 bool is_error_reported = false;
1383
1384 /* Initialize elm error vector to zero */
1385 memset(err_vec, 0, sizeof(err_vec));
1386
1387 if (info->nand.ecc.strength == BCH8_MAX_ERROR) {
1388 type = BCH8_ECC;
1389 erased_ecc_vec = bch8_vector;
1390 } else {
1391 type = BCH4_ECC;
1392 erased_ecc_vec = bch4_vector;
1393 }
1394
1395 ecc_vector_size = info->nand.ecc.bytes;
1396
1397 /*
1398 * Remove extra byte padding for BCH8 RBL
1399 * compatibility and erased page handling
1400 */
1401 eccsize = ecc_vector_size - 1;
1402
1403 for (i = 0; i < eccsteps ; i++) {
1404 eccflag = 0; /* initialize eccflag */
1405
1406 /*
1407 * Check any error reported,
1408 * In case of error, non zero ecc reported.
1409 */
1410
1411 for (j = 0; (j < eccsize); j++) {
1412 if (calc_ecc[j] != 0) {
1413 eccflag = 1; /* non zero ecc, error present */
1414 break;
1415 }
1416 }
1417
1418 if (eccflag == 1) {
1419 /*
1420 * Set threshold to minimum of 4, half of ecc.strength/2
1421 * to allow max bit flip in byte to 4
1422 */
1423 unsigned int threshold = min_t(unsigned int, 4,
1424 info->nand.ecc.strength / 2);
1425
1426 /*
1427 * Check data area is programmed by counting
1428 * number of 0's at fixed offset in spare area.
1429 * Checking count of 0's against threshold.
1430 * In case programmed page expects at least threshold
1431 * zeros in byte.
1432 * If zeros are less than threshold for programmed page/
1433 * zeros are more than threshold erased page, either
1434 * case page reported as uncorrectable.
1435 */
1436 if (hweight8(~read_ecc[eccsize]) >= threshold) {
1437 /*
1438 * Update elm error vector as
1439 * data area is programmed
1440 */
1441 err_vec[i].error_reported = true;
1442 is_error_reported = true;
1443 } else {
1444 /* Error reported in erased page */
1445 int bitflip_count;
1446 u_char *buf = &data[info->nand.ecc.size * i];
1447
1448 if (memcmp(calc_ecc, erased_ecc_vec, eccsize)) {
1449 bitflip_count = erased_sector_bitflips(
1450 buf, read_ecc, info);
1451
1452 if (bitflip_count)
1453 stat += bitflip_count;
1454 else
1455 return -EINVAL;
1456 }
1457 }
1458 }
1459
1460 /* Update the ecc vector */
1461 calc_ecc += ecc_vector_size;
1462 read_ecc += ecc_vector_size;
1463 }
1464
1465 /* Check if any error reported */
1466 if (!is_error_reported)
1467 return 0;
1468
1469 /* Decode BCH error using ELM module */
1470 elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1471
1472 for (i = 0; i < eccsteps; i++) {
1473 if (err_vec[i].error_reported) {
1474 for (j = 0; j < err_vec[i].error_count; j++) {
1475 u32 bit_pos, byte_pos, error_max, pos;
1476
1477 if (type == BCH8_ECC)
1478 error_max = BCH8_ECC_MAX;
1479 else
1480 error_max = BCH4_ECC_MAX;
1481
1482 if (info->nand.ecc.strength == BCH8_MAX_ERROR)
1483 pos = err_vec[i].error_loc[j];
1484 else
1485 /* Add 4 to take care 4 bit padding */
1486 pos = err_vec[i].error_loc[j] +
1487 BCH4_BIT_PAD;
1488
1489 /* Calculate bit position of error */
1490 bit_pos = pos % 8;
1491
1492 /* Calculate byte position of error */
1493 byte_pos = (error_max - pos - 1) / 8;
1494
1495 if (pos < error_max) {
1496 if (byte_pos < 512)
1497 data[byte_pos] ^= 1 << bit_pos;
1498 else
1499 spare_ecc[byte_pos - 512] ^=
1500 1 << bit_pos;
1501 }
1502 /* else, not interested to correct ecc */
1503 }
1504 }
1505
1506 /* Update number of correctable errors */
1507 stat += err_vec[i].error_count;
1508
1509 /* Update page data with sector size */
1510 data += info->nand.ecc.size;
1511 spare_ecc += ecc_vector_size;
1512 }
1513
1514 for (i = 0; i < eccsteps; i++)
1515 /* Return error if uncorrectable error present */
1516 if (err_vec[i].error_uncorrectable)
1517 return -EINVAL;
1518
1519 return stat;
1520}
a919e511 1521#endif /* CONFIG_MTD_NAND_OMAP_BCH */
62116e51 1522
a919e511 1523#ifdef CONFIG_MTD_NAND_ECC_BCH
0e618ef0
ID
1524/**
1525 * omap3_correct_data_bch - Decode received data and correct errors
1526 * @mtd: MTD device structure
1527 * @data: page data
1528 * @read_ecc: ecc read from nand flash
1529 * @calc_ecc: ecc read from HW ECC registers
1530 */
1531static int omap3_correct_data_bch(struct mtd_info *mtd, u_char *data,
1532 u_char *read_ecc, u_char *calc_ecc)
1533{
1534 int i, count;
1535 /* cannot correct more than 8 errors */
1536 unsigned int errloc[8];
1537 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1538 mtd);
1539
1540 count = decode_bch(info->bch, NULL, 512, read_ecc, calc_ecc, NULL,
1541 errloc);
1542 if (count > 0) {
1543 /* correct errors */
1544 for (i = 0; i < count; i++) {
1545 /* correct data only, not ecc bytes */
1546 if (errloc[i] < 8*512)
1547 data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
1548 pr_debug("corrected bitflip %u\n", errloc[i]);
1549 }
1550 } else if (count < 0) {
1551 pr_err("ecc unrecoverable error\n");
1552 }
1553 return count;
1554}
a919e511 1555#endif /* CONFIG_MTD_NAND_ECC_BCH */
0e618ef0 1556
a919e511 1557#ifdef CONFIG_MTD_NAND_OMAP_BCH
62116e51
PA
1558/**
1559 * omap_write_page_bch - BCH ecc based write page function for entire page
1560 * @mtd: mtd info structure
1561 * @chip: nand chip info structure
1562 * @buf: data buffer
1563 * @oob_required: must write chip->oob_poi to OOB
1564 *
1565 * Custom write page method evolved to support multi sector writing in one shot
1566 */
1567static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1568 const uint8_t *buf, int oob_required)
1569{
1570 int i;
1571 uint8_t *ecc_calc = chip->buffers->ecccalc;
1572 uint32_t *eccpos = chip->ecc.layout->eccpos;
1573
1574 /* Enable GPMC ecc engine */
1575 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1576
1577 /* Write data */
1578 chip->write_buf(mtd, buf, mtd->writesize);
1579
1580 /* Update ecc vector from GPMC result registers */
1581 chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
1582
1583 for (i = 0; i < chip->ecc.total; i++)
1584 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1585
1586 /* Write ecc vector to OOB area */
1587 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1588 return 0;
1589}
1590
1591/**
1592 * omap_read_page_bch - BCH ecc based page read function for entire page
1593 * @mtd: mtd info structure
1594 * @chip: nand chip info structure
1595 * @buf: buffer to store read data
1596 * @oob_required: caller requires OOB data read to chip->oob_poi
1597 * @page: page number to read
1598 *
1599 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1600 * used for error correction.
1601 * Custom method evolved to support ELM error correction & multi sector
1602 * reading. On reading page data area is read along with OOB data with
1603 * ecc engine enabled. ecc vector updated after read of OOB data.
1604 * For non error pages ecc vector reported as zero.
1605 */
1606static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1607 uint8_t *buf, int oob_required, int page)
1608{
1609 uint8_t *ecc_calc = chip->buffers->ecccalc;
1610 uint8_t *ecc_code = chip->buffers->ecccode;
1611 uint32_t *eccpos = chip->ecc.layout->eccpos;
1612 uint8_t *oob = &chip->oob_poi[eccpos[0]];
1613 uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0];
1614 int stat;
1615 unsigned int max_bitflips = 0;
1616
1617 /* Enable GPMC ecc engine */
1618 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1619
1620 /* Read data */
1621 chip->read_buf(mtd, buf, mtd->writesize);
1622
1623 /* Read oob bytes */
1624 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
1625 chip->read_buf(mtd, oob, chip->ecc.total);
1626
1627 /* Calculate ecc bytes */
1628 chip->ecc.calculate(mtd, buf, ecc_calc);
1629
1630 memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total);
1631
1632 stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
1633
1634 if (stat < 0) {
1635 mtd->ecc_stats.failed++;
1636 } else {
1637 mtd->ecc_stats.corrected += stat;
1638 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1639 }
1640
1641 return max_bitflips;
1642}
1643
0e618ef0 1644/**
a919e511
PG
1645 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1646 * @omap_nand_info: NAND device structure containing platform data
1647 * @bch_type: 0x0=BCH4, 0x1=BCH8, 0x2=BCH16
0e618ef0 1648 */
a919e511
PG
1649static int is_elm_present(struct omap_nand_info *info,
1650 struct device_node *elm_node, enum bch_ecc bch_type)
0e618ef0 1651{
a919e511
PG
1652 struct platform_device *pdev;
1653 info->is_elm_used = false;
1654 /* check whether elm-id is passed via DT */
1655 if (!elm_node) {
1656 pr_err("nand: error: ELM DT node not found\n");
1657 return -ENODEV;
1658 }
1659 pdev = of_find_device_by_node(elm_node);
1660 /* check whether ELM device is registered */
1661 if (!pdev) {
1662 pr_err("nand: error: ELM device not found\n");
1663 return -ENODEV;
0e618ef0 1664 }
a919e511
PG
1665 /* ELM module available, now configure it */
1666 info->elm_dev = &pdev->dev;
1667 if (elm_config(info->elm_dev, bch_type))
1668 return -ENODEV;
1669 info->is_elm_used = true;
1670 return 0;
0e618ef0 1671}
a919e511 1672#endif /* CONFIG_MTD_NAND_ECC_BCH */
0e618ef0 1673
a919e511 1674#ifdef CONFIG_MTD_NAND_ECC_BCH
0e618ef0 1675/**
a919e511 1676 * omap3_free_bch - Release BCH ecc resources
0e618ef0 1677 * @mtd: MTD device structure
0e618ef0 1678 */
a919e511 1679static void omap3_free_bch(struct mtd_info *mtd)
0e618ef0 1680{
0e618ef0
ID
1681 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1682 mtd);
a919e511
PG
1683 if (info->bch) {
1684 free_bch(info->bch);
1685 info->bch = NULL;
0e618ef0 1686 }
0e618ef0
ID
1687}
1688
1689/**
1690 * omap3_init_bch_tail - Build an oob layout for BCH ECC correction.
1691 * @mtd: MTD device structure
1692 */
1693static int omap3_init_bch_tail(struct mtd_info *mtd)
1694{
62116e51 1695 int i, steps, offset;
0e618ef0
ID
1696 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1697 mtd);
1698 struct nand_ecclayout *layout = &info->ecclayout;
1699
1700 /* build oob layout */
1701 steps = mtd->writesize/info->nand.ecc.size;
1702 layout->eccbytes = steps*info->nand.ecc.bytes;
1703
1704 /* do not bother creating special oob layouts for small page devices */
1705 if (mtd->oobsize < 64) {
1706 pr_err("BCH ecc is not supported on small page devices\n");
1707 goto fail;
1708 }
1709
1710 /* reserve 2 bytes for bad block marker */
1711 if (layout->eccbytes+2 > mtd->oobsize) {
1712 pr_err("no oob layout available for oobsize %d eccbytes %u\n",
1713 mtd->oobsize, layout->eccbytes);
1714 goto fail;
1715 }
1716
62116e51
PA
1717 /* ECC layout compatible with RBL for BCH8 */
1718 if (info->is_elm_used && (info->nand.ecc.bytes == BCH8_SIZE))
1719 offset = 2;
1720 else
1721 offset = mtd->oobsize - layout->eccbytes;
1722
0e618ef0
ID
1723 /* put ecc bytes at oob tail */
1724 for (i = 0; i < layout->eccbytes; i++)
62116e51
PA
1725 layout->eccpos[i] = offset + i;
1726
1727 if (info->is_elm_used && (info->nand.ecc.bytes == BCH8_SIZE))
1728 layout->oobfree[0].offset = 2 + layout->eccbytes * steps;
1729 else
1730 layout->oobfree[0].offset = 2;
0e618ef0 1731
0e618ef0
ID
1732 layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes;
1733 info->nand.ecc.layout = layout;
1734
1735 if (!(info->nand.options & NAND_BUSWIDTH_16))
1736 info->nand.badblock_pattern = &bb_descrip_flashbased;
1737 return 0;
1738fail:
1739 omap3_free_bch(mtd);
1740 return -1;
1741}
1742
1743#else
0e618ef0
ID
1744static int omap3_init_bch_tail(struct mtd_info *mtd)
1745{
1746 return -1;
1747}
1748static void omap3_free_bch(struct mtd_info *mtd)
1749{
1750}
a919e511 1751#endif /* CONFIG_MTD_NAND_ECC_BCH */
0e618ef0 1752
06f25510 1753static int omap_nand_probe(struct platform_device *pdev)
67ce04bf
VS
1754{
1755 struct omap_nand_info *info;
1756 struct omap_nand_platform_data *pdata;
633deb58
PG
1757 struct mtd_info *mtd;
1758 struct nand_chip *nand_chip;
67ce04bf 1759 int err;
f040d332 1760 int i, offset;
633deb58
PG
1761 dma_cap_mask_t mask;
1762 unsigned sig;
9c4c2f8b 1763 struct resource *res;
ccf04c51 1764 struct mtd_part_parser_data ppdata = {};
67ce04bf 1765
453810b7 1766 pdata = dev_get_platdata(&pdev->dev);
67ce04bf
VS
1767 if (pdata == NULL) {
1768 dev_err(&pdev->dev, "platform data missing\n");
1769 return -ENODEV;
1770 }
1771
1772 info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
1773 if (!info)
1774 return -ENOMEM;
1775
1776 platform_set_drvdata(pdev, info);
1777
1778 spin_lock_init(&info->controller.lock);
1779 init_waitqueue_head(&info->controller.wq);
1780
633deb58 1781 info->pdev = pdev;
67ce04bf 1782 info->gpmc_cs = pdata->cs;
65b97cf6 1783 info->reg = pdata->reg;
a919e511
PG
1784 info->bch = NULL;
1785 info->of_node = pdata->of_node;
633deb58
PG
1786 mtd = &info->mtd;
1787 mtd->priv = &info->nand;
1788 mtd->name = dev_name(&pdev->dev);
1789 mtd->owner = THIS_MODULE;
1790 nand_chip = &info->nand;
633deb58 1791 nand_chip->options |= NAND_SKIP_BBTSCAN;
67ce04bf 1792
9c4c2f8b
AM
1793 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1794 if (res == NULL) {
1795 err = -EINVAL;
1796 dev_err(&pdev->dev, "error getting memory resource\n");
1797 goto out_free_info;
1798 }
67ce04bf 1799
9c4c2f8b
AM
1800 info->phys_base = res->start;
1801 info->mem_size = resource_size(res);
1802
1803 if (!request_mem_region(info->phys_base, info->mem_size,
67ce04bf
VS
1804 pdev->dev.driver->name)) {
1805 err = -EBUSY;
2f70a1e9 1806 goto out_free_info;
67ce04bf
VS
1807 }
1808
633deb58
PG
1809 nand_chip->IO_ADDR_R = ioremap(info->phys_base, info->mem_size);
1810 if (!nand_chip->IO_ADDR_R) {
67ce04bf
VS
1811 err = -ENOMEM;
1812 goto out_release_mem_region;
1813 }
59e9c5ae 1814
633deb58 1815 nand_chip->controller = &info->controller;
67ce04bf 1816
633deb58
PG
1817 nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
1818 nand_chip->cmd_ctrl = omap_hwcontrol;
67ce04bf 1819
67ce04bf
VS
1820 /*
1821 * If RDY/BSY line is connected to OMAP then use the omap ready
4cacbe22
PM
1822 * function and the generic nand_wait function which reads the status
1823 * register after monitoring the RDY/BSY line. Otherwise use a standard
67ce04bf
VS
1824 * chip delay which is slightly more than tR (AC Timing) of the NAND
1825 * device and read status register until you get a failure or success
1826 */
1827 if (pdata->dev_ready) {
633deb58
PG
1828 nand_chip->dev_ready = omap_dev_ready;
1829 nand_chip->chip_delay = 0;
67ce04bf 1830 } else {
633deb58
PG
1831 nand_chip->waitfunc = omap_wait;
1832 nand_chip->chip_delay = 50;
67ce04bf
VS
1833 }
1834
f18befb5
PG
1835 /* scan NAND device connected to chip controller */
1836 nand_chip->options |= pdata->devsize & NAND_BUSWIDTH_16;
1837 if (nand_scan_ident(mtd, 1, NULL)) {
1838 pr_err("nand device scan failed, may be bus-width mismatch\n");
1839 err = -ENXIO;
1840 goto out_release_mem_region;
1841 }
1842
1843 /* re-populate low-level callbacks based on xfer modes */
1b0b323c
SG
1844 switch (pdata->xfer_type) {
1845 case NAND_OMAP_PREFETCH_POLLED:
633deb58
PG
1846 nand_chip->read_buf = omap_read_buf_pref;
1847 nand_chip->write_buf = omap_write_buf_pref;
1b0b323c
SG
1848 break;
1849
1850 case NAND_OMAP_POLLED:
633deb58
PG
1851 if (nand_chip->options & NAND_BUSWIDTH_16) {
1852 nand_chip->read_buf = omap_read_buf16;
1853 nand_chip->write_buf = omap_write_buf16;
59e9c5ae 1854 } else {
633deb58
PG
1855 nand_chip->read_buf = omap_read_buf8;
1856 nand_chip->write_buf = omap_write_buf8;
59e9c5ae 1857 }
1b0b323c
SG
1858 break;
1859
1860 case NAND_OMAP_PREFETCH_DMA:
763e7359
RK
1861 dma_cap_zero(mask);
1862 dma_cap_set(DMA_SLAVE, mask);
1863 sig = OMAP24XX_DMA_GPMC;
1864 info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
1865 if (!info->dma) {
2df41d05
RK
1866 dev_err(&pdev->dev, "DMA engine request failed\n");
1867 err = -ENXIO;
1868 goto out_release_mem_region;
763e7359
RK
1869 } else {
1870 struct dma_slave_config cfg;
763e7359
RK
1871
1872 memset(&cfg, 0, sizeof(cfg));
1873 cfg.src_addr = info->phys_base;
1874 cfg.dst_addr = info->phys_base;
1875 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1876 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1877 cfg.src_maxburst = 16;
1878 cfg.dst_maxburst = 16;
d680e2c1
AB
1879 err = dmaengine_slave_config(info->dma, &cfg);
1880 if (err) {
763e7359 1881 dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
d680e2c1 1882 err);
763e7359
RK
1883 goto out_release_mem_region;
1884 }
633deb58
PG
1885 nand_chip->read_buf = omap_read_buf_dma_pref;
1886 nand_chip->write_buf = omap_write_buf_dma_pref;
1b0b323c
SG
1887 }
1888 break;
1889
4e070376 1890 case NAND_OMAP_PREFETCH_IRQ:
5c468455
AM
1891 info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1892 if (info->gpmc_irq_fifo <= 0) {
1893 dev_err(&pdev->dev, "error getting fifo irq\n");
1894 err = -ENODEV;
1895 goto out_release_mem_region;
1896 }
1897 err = request_irq(info->gpmc_irq_fifo, omap_nand_irq,
1898 IRQF_SHARED, "gpmc-nand-fifo", info);
4e070376
SG
1899 if (err) {
1900 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
5c468455
AM
1901 info->gpmc_irq_fifo, err);
1902 info->gpmc_irq_fifo = 0;
1903 goto out_release_mem_region;
1904 }
1905
1906 info->gpmc_irq_count = platform_get_irq(pdev, 1);
1907 if (info->gpmc_irq_count <= 0) {
1908 dev_err(&pdev->dev, "error getting count irq\n");
1909 err = -ENODEV;
1910 goto out_release_mem_region;
1911 }
1912 err = request_irq(info->gpmc_irq_count, omap_nand_irq,
1913 IRQF_SHARED, "gpmc-nand-count", info);
1914 if (err) {
1915 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1916 info->gpmc_irq_count, err);
1917 info->gpmc_irq_count = 0;
4e070376 1918 goto out_release_mem_region;
4e070376 1919 }
5c468455 1920
633deb58
PG
1921 nand_chip->read_buf = omap_read_buf_irq_pref;
1922 nand_chip->write_buf = omap_write_buf_irq_pref;
5c468455 1923
4e070376
SG
1924 break;
1925
1b0b323c
SG
1926 default:
1927 dev_err(&pdev->dev,
1928 "xfer_type(%d) not supported!\n", pdata->xfer_type);
1929 err = -EINVAL;
1930 goto out_release_mem_region;
59e9c5ae 1931 }
59e9c5ae 1932
a919e511
PG
1933 /* populate MTD interface based on ECC scheme */
1934 switch (pdata->ecc_opt) {
1935 case OMAP_ECC_HAM1_CODE_HW:
1936 pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
1937 nand_chip->ecc.mode = NAND_ECC_HW;
633deb58
PG
1938 nand_chip->ecc.bytes = 3;
1939 nand_chip->ecc.size = 512;
1940 nand_chip->ecc.strength = 1;
1941 nand_chip->ecc.calculate = omap_calculate_ecc;
1942 nand_chip->ecc.hwctl = omap_enable_hwecc;
1943 nand_chip->ecc.correct = omap_correct_data;
a919e511
PG
1944 break;
1945
1946 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1947#ifdef CONFIG_MTD_NAND_ECC_BCH
1948 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
1949 nand_chip->ecc.mode = NAND_ECC_HW;
1950 nand_chip->ecc.size = 512;
1951 nand_chip->ecc.bytes = 7;
1952 nand_chip->ecc.strength = 4;
1953 nand_chip->ecc.hwctl = omap3_enable_hwecc_bch;
1954 nand_chip->ecc.correct = omap3_correct_data_bch;
1955 nand_chip->ecc.calculate = omap3_calculate_ecc_bch4;
1956 /* software bch library is used for locating errors */
1957 info->bch = init_bch(nand_chip->ecc.bytes,
1958 nand_chip->ecc.strength,
1959 OMAP_ECC_BCH8_POLYNOMIAL);
1960 if (!info->bch) {
1961 pr_err("nand: error: unable to use s/w BCH library\n");
0e618ef0 1962 err = -EINVAL;
a919e511
PG
1963 }
1964 break;
1965#else
1966 pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1967 err = -EINVAL;
1968 goto out_release_mem_region;
1969#endif
1970
1971 case OMAP_ECC_BCH4_CODE_HW:
1972#ifdef CONFIG_MTD_NAND_OMAP_BCH
1973 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
1974 nand_chip->ecc.mode = NAND_ECC_HW;
1975 nand_chip->ecc.size = 512;
1976 /* 14th bit is kept reserved for ROM-code compatibility */
1977 nand_chip->ecc.bytes = 7 + 1;
1978 nand_chip->ecc.strength = 4;
1979 nand_chip->ecc.hwctl = omap3_enable_hwecc_bch;
1980 nand_chip->ecc.correct = omap_elm_correct_data;
1981 nand_chip->ecc.calculate = omap3_calculate_ecc_bch;
1982 nand_chip->ecc.read_page = omap_read_page_bch;
1983 nand_chip->ecc.write_page = omap_write_page_bch;
1984 /* This ECC scheme requires ELM H/W block */
1985 if (is_elm_present(info, pdata->elm_of_node, BCH4_ECC) < 0) {
1986 pr_err("nand: error: could not initialize ELM\n");
1987 err = -ENODEV;
0e618ef0
ID
1988 goto out_release_mem_region;
1989 }
a919e511
PG
1990 break;
1991#else
1992 pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1993 err = -EINVAL;
1994 goto out_release_mem_region;
1995#endif
1996
1997 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1998#ifdef CONFIG_MTD_NAND_ECC_BCH
1999 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2000 nand_chip->ecc.mode = NAND_ECC_HW;
2001 nand_chip->ecc.size = 512;
2002 nand_chip->ecc.bytes = 13;
2003 nand_chip->ecc.strength = 8;
2004 nand_chip->ecc.hwctl = omap3_enable_hwecc_bch;
2005 nand_chip->ecc.correct = omap3_correct_data_bch;
2006 nand_chip->ecc.calculate = omap3_calculate_ecc_bch8;
2007 /* software bch library is used for locating errors */
2008 info->bch = init_bch(nand_chip->ecc.bytes,
2009 nand_chip->ecc.strength,
2010 OMAP_ECC_BCH8_POLYNOMIAL);
2011 if (!info->bch) {
2012 pr_err("nand: error: unable to use s/w BCH library\n");
2013 err = -EINVAL;
2014 goto out_release_mem_region;
2015 }
2016 break;
2017#else
2018 pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
2019 err = -EINVAL;
2020 goto out_release_mem_region;
2021#endif
2022
2023 case OMAP_ECC_BCH8_CODE_HW:
2024#ifdef CONFIG_MTD_NAND_OMAP_BCH
2025 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2026 nand_chip->ecc.mode = NAND_ECC_HW;
2027 nand_chip->ecc.size = 512;
2028 /* 14th bit is kept reserved for ROM-code compatibility */
2029 nand_chip->ecc.bytes = 13 + 1;
2030 nand_chip->ecc.strength = 8;
2031 nand_chip->ecc.hwctl = omap3_enable_hwecc_bch;
2032 nand_chip->ecc.correct = omap_elm_correct_data;
2033 nand_chip->ecc.calculate = omap3_calculate_ecc_bch;
2034 nand_chip->ecc.read_page = omap_read_page_bch;
2035 nand_chip->ecc.write_page = omap_write_page_bch;
2036 /* This ECC scheme requires ELM H/W block */
2037 if (is_elm_present(info, pdata->elm_of_node, BCH8_ECC) < 0) {
2038 pr_err("nand: error: could not initialize ELM\n");
2039 goto out_release_mem_region;
2040 }
2041 break;
2042#else
2043 pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
2044 err = -EINVAL;
2045 goto out_release_mem_region;
2046#endif
2047
2048 default:
2049 pr_err("nand: error: invalid or unsupported ECC scheme\n");
2050 err = -EINVAL;
2051 goto out_release_mem_region;
f3d73f36 2052 }
67ce04bf 2053
f040d332 2054 /* rom code layout */
c66d0391 2055 if (pdata->ecc_opt == OMAP_ECC_HAM1_CODE_HW) {
f040d332 2056
633deb58 2057 if (nand_chip->options & NAND_BUSWIDTH_16) {
f040d332 2058 offset = 2;
633deb58 2059 } else {
f040d332 2060 offset = 1;
633deb58 2061 nand_chip->badblock_pattern = &bb_descrip_flashbased;
f040d332 2062 }
633deb58 2063 omap_oobinfo.eccbytes = 3 * (mtd->writesize / 512);
f040d332
SG
2064 for (i = 0; i < omap_oobinfo.eccbytes; i++)
2065 omap_oobinfo.eccpos[i] = i+offset;
2066
2067 omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
633deb58 2068 omap_oobinfo.oobfree->length = mtd->oobsize -
f040d332
SG
2069 (offset + omap_oobinfo.eccbytes);
2070
633deb58 2071 nand_chip->ecc.layout = &omap_oobinfo;
0e618ef0 2072 } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) ||
a919e511
PG
2073 (pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW_DETECTION_SW) ||
2074 (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW_DETECTION_SW) ||
0e618ef0
ID
2075 (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) {
2076 /* build OOB layout for BCH ECC correction */
633deb58 2077 err = omap3_init_bch_tail(mtd);
0e618ef0
ID
2078 if (err) {
2079 err = -EINVAL;
2080 goto out_release_mem_region;
2081 }
f040d332 2082 }
1b0b323c 2083
a80f1c1f 2084 /* second phase scan */
633deb58 2085 if (nand_scan_tail(mtd)) {
a80f1c1f
JW
2086 err = -ENXIO;
2087 goto out_release_mem_region;
2088 }
2089
ccf04c51 2090 ppdata.of_node = pdata->of_node;
633deb58 2091 mtd_device_parse_register(mtd, NULL, &ppdata, pdata->parts,
42d7fbe2 2092 pdata->nr_parts);
67ce04bf 2093
633deb58 2094 platform_set_drvdata(pdev, mtd);
67ce04bf
VS
2095
2096 return 0;
2097
2098out_release_mem_region:
763e7359
RK
2099 if (info->dma)
2100 dma_release_channel(info->dma);
5c468455
AM
2101 if (info->gpmc_irq_count > 0)
2102 free_irq(info->gpmc_irq_count, info);
2103 if (info->gpmc_irq_fifo > 0)
2104 free_irq(info->gpmc_irq_fifo, info);
9c4c2f8b 2105 release_mem_region(info->phys_base, info->mem_size);
67ce04bf 2106out_free_info:
a919e511 2107 omap3_free_bch(mtd);
67ce04bf
VS
2108 kfree(info);
2109
2110 return err;
2111}
2112
2113static int omap_nand_remove(struct platform_device *pdev)
2114{
2115 struct mtd_info *mtd = platform_get_drvdata(pdev);
633deb58 2116 struct nand_chip *nand_chip = mtd->priv;
f35b6eda
VS
2117 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
2118 mtd);
633deb58 2119 omap3_free_bch(mtd);
67ce04bf 2120
763e7359
RK
2121 if (info->dma)
2122 dma_release_channel(info->dma);
2123
5c468455
AM
2124 if (info->gpmc_irq_count > 0)
2125 free_irq(info->gpmc_irq_count, info);
2126 if (info->gpmc_irq_fifo > 0)
2127 free_irq(info->gpmc_irq_fifo, info);
4e070376 2128
67ce04bf 2129 /* Release NAND device, its internal structures and partitions */
633deb58
PG
2130 nand_release(mtd);
2131 iounmap(nand_chip->IO_ADDR_R);
48b51d4d 2132 release_mem_region(info->phys_base, info->mem_size);
7d9b1102 2133 kfree(info);
67ce04bf
VS
2134 return 0;
2135}
2136
2137static struct platform_driver omap_nand_driver = {
2138 .probe = omap_nand_probe,
2139 .remove = omap_nand_remove,
2140 .driver = {
2141 .name = DRIVER_NAME,
2142 .owner = THIS_MODULE,
2143 },
2144};
2145
f99640de 2146module_platform_driver(omap_nand_driver);
67ce04bf 2147
c804c733 2148MODULE_ALIAS("platform:" DRIVER_NAME);
67ce04bf
VS
2149MODULE_LICENSE("GPL");
2150MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
This page took 0.341665 seconds and 5 git commands to generate.