Merge tag 'wireless-drivers-for-davem-2016-04-13' of git://git.kernel.org/pub/scm...
[deliverable/linux.git] / drivers / mtd / nand / qcom_nandc.c
CommitLineData
c76b78d8
AT
1/*
2 * Copyright (c) 2016, The Linux Foundation. All rights reserved.
3 *
4 * This software is licensed under the terms of the GNU General Public
5 * License version 2, as published by the Free Software Foundation, and
6 * may be copied, distributed, and modified under those terms.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13
14#include <linux/clk.h>
15#include <linux/slab.h>
16#include <linux/bitops.h>
17#include <linux/dma-mapping.h>
18#include <linux/dmaengine.h>
19#include <linux/module.h>
20#include <linux/mtd/nand.h>
21#include <linux/mtd/partitions.h>
22#include <linux/of.h>
23#include <linux/of_device.h>
24#include <linux/of_mtd.h>
25#include <linux/delay.h>
26
27/* NANDc reg offsets */
28#define NAND_FLASH_CMD 0x00
29#define NAND_ADDR0 0x04
30#define NAND_ADDR1 0x08
31#define NAND_FLASH_CHIP_SELECT 0x0c
32#define NAND_EXEC_CMD 0x10
33#define NAND_FLASH_STATUS 0x14
34#define NAND_BUFFER_STATUS 0x18
35#define NAND_DEV0_CFG0 0x20
36#define NAND_DEV0_CFG1 0x24
37#define NAND_DEV0_ECC_CFG 0x28
38#define NAND_DEV1_ECC_CFG 0x2c
39#define NAND_DEV1_CFG0 0x30
40#define NAND_DEV1_CFG1 0x34
41#define NAND_READ_ID 0x40
42#define NAND_READ_STATUS 0x44
43#define NAND_DEV_CMD0 0xa0
44#define NAND_DEV_CMD1 0xa4
45#define NAND_DEV_CMD2 0xa8
46#define NAND_DEV_CMD_VLD 0xac
47#define SFLASHC_BURST_CFG 0xe0
48#define NAND_ERASED_CW_DETECT_CFG 0xe8
49#define NAND_ERASED_CW_DETECT_STATUS 0xec
50#define NAND_EBI2_ECC_BUF_CFG 0xf0
51#define FLASH_BUF_ACC 0x100
52
53#define NAND_CTRL 0xf00
54#define NAND_VERSION 0xf08
55#define NAND_READ_LOCATION_0 0xf20
56#define NAND_READ_LOCATION_1 0xf24
57
58/* dummy register offsets, used by write_reg_dma */
59#define NAND_DEV_CMD1_RESTORE 0xdead
60#define NAND_DEV_CMD_VLD_RESTORE 0xbeef
61
62/* NAND_FLASH_CMD bits */
63#define PAGE_ACC BIT(4)
64#define LAST_PAGE BIT(5)
65
66/* NAND_FLASH_CHIP_SELECT bits */
67#define NAND_DEV_SEL 0
68#define DM_EN BIT(2)
69
70/* NAND_FLASH_STATUS bits */
71#define FS_OP_ERR BIT(4)
72#define FS_READY_BSY_N BIT(5)
73#define FS_MPU_ERR BIT(8)
74#define FS_DEVICE_STS_ERR BIT(16)
75#define FS_DEVICE_WP BIT(23)
76
77/* NAND_BUFFER_STATUS bits */
78#define BS_UNCORRECTABLE_BIT BIT(8)
79#define BS_CORRECTABLE_ERR_MSK 0x1f
80
81/* NAND_DEVn_CFG0 bits */
82#define DISABLE_STATUS_AFTER_WRITE 4
83#define CW_PER_PAGE 6
84#define UD_SIZE_BYTES 9
85#define ECC_PARITY_SIZE_BYTES_RS 19
86#define SPARE_SIZE_BYTES 23
87#define NUM_ADDR_CYCLES 27
88#define STATUS_BFR_READ 30
89#define SET_RD_MODE_AFTER_STATUS 31
90
91/* NAND_DEVn_CFG0 bits */
92#define DEV0_CFG1_ECC_DISABLE 0
93#define WIDE_FLASH 1
94#define NAND_RECOVERY_CYCLES 2
95#define CS_ACTIVE_BSY 5
96#define BAD_BLOCK_BYTE_NUM 6
97#define BAD_BLOCK_IN_SPARE_AREA 16
98#define WR_RD_BSY_GAP 17
99#define ENABLE_BCH_ECC 27
100
101/* NAND_DEV0_ECC_CFG bits */
102#define ECC_CFG_ECC_DISABLE 0
103#define ECC_SW_RESET 1
104#define ECC_MODE 4
105#define ECC_PARITY_SIZE_BYTES_BCH 8
106#define ECC_NUM_DATA_BYTES 16
107#define ECC_FORCE_CLK_OPEN 30
108
109/* NAND_DEV_CMD1 bits */
110#define READ_ADDR 0
111
112/* NAND_DEV_CMD_VLD bits */
113#define READ_START_VLD 0
114
115/* NAND_EBI2_ECC_BUF_CFG bits */
116#define NUM_STEPS 0
117
118/* NAND_ERASED_CW_DETECT_CFG bits */
119#define ERASED_CW_ECC_MASK 1
120#define AUTO_DETECT_RES 0
121#define MASK_ECC (1 << ERASED_CW_ECC_MASK)
122#define RESET_ERASED_DET (1 << AUTO_DETECT_RES)
123#define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES)
124#define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC)
125#define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC)
126
127/* NAND_ERASED_CW_DETECT_STATUS bits */
128#define PAGE_ALL_ERASED BIT(7)
129#define CODEWORD_ALL_ERASED BIT(6)
130#define PAGE_ERASED BIT(5)
131#define CODEWORD_ERASED BIT(4)
132#define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED)
133#define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
134
135/* Version Mask */
136#define NAND_VERSION_MAJOR_MASK 0xf0000000
137#define NAND_VERSION_MAJOR_SHIFT 28
138#define NAND_VERSION_MINOR_MASK 0x0fff0000
139#define NAND_VERSION_MINOR_SHIFT 16
140
141/* NAND OP_CMDs */
142#define PAGE_READ 0x2
143#define PAGE_READ_WITH_ECC 0x3
144#define PAGE_READ_WITH_ECC_SPARE 0x4
145#define PROGRAM_PAGE 0x6
146#define PAGE_PROGRAM_WITH_ECC 0x7
147#define PROGRAM_PAGE_SPARE 0x9
148#define BLOCK_ERASE 0xa
149#define FETCH_ID 0xb
150#define RESET_DEVICE 0xd
151
152/*
153 * the NAND controller performs reads/writes with ECC in 516 byte chunks.
154 * the driver calls the chunks 'step' or 'codeword' interchangeably
155 */
156#define NANDC_STEP_SIZE 512
157
158/*
159 * the largest page size we support is 8K, this will have 16 steps/codewords
160 * of 512 bytes each
161 */
162#define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE)
163
164/* we read at most 3 registers per codeword scan */
165#define MAX_REG_RD (3 * MAX_NUM_STEPS)
166
167/* ECC modes supported by the controller */
168#define ECC_NONE BIT(0)
169#define ECC_RS_4BIT BIT(1)
170#define ECC_BCH_4BIT BIT(2)
171#define ECC_BCH_8BIT BIT(3)
172
173struct desc_info {
174 struct list_head node;
175
176 enum dma_data_direction dir;
177 struct scatterlist sgl;
178 struct dma_async_tx_descriptor *dma_desc;
179};
180
181/*
182 * holds the current register values that we want to write. acts as a contiguous
183 * chunk of memory which we use to write the controller registers through DMA.
184 */
185struct nandc_regs {
186 __le32 cmd;
187 __le32 addr0;
188 __le32 addr1;
189 __le32 chip_sel;
190 __le32 exec;
191
192 __le32 cfg0;
193 __le32 cfg1;
194 __le32 ecc_bch_cfg;
195
196 __le32 clrflashstatus;
197 __le32 clrreadstatus;
198
199 __le32 cmd1;
200 __le32 vld;
201
202 __le32 orig_cmd1;
203 __le32 orig_vld;
204
205 __le32 ecc_buf_cfg;
206};
207
208/*
209 * NAND controller data struct
210 *
211 * @controller: base controller structure
212 * @host_list: list containing all the chips attached to the
213 * controller
214 * @dev: parent device
215 * @base: MMIO base
216 * @base_dma: physical base address of controller registers
217 * @core_clk: controller clock
218 * @aon_clk: another controller clock
219 *
220 * @chan: dma channel
221 * @cmd_crci: ADM DMA CRCI for command flow control
222 * @data_crci: ADM DMA CRCI for data flow control
223 * @desc_list: DMA descriptor list (list of desc_infos)
224 *
225 * @data_buffer: our local DMA buffer for page read/writes,
226 * used when we can't use the buffer provided
227 * by upper layers directly
228 * @buf_size/count/start: markers for chip->read_buf/write_buf functions
229 * @reg_read_buf: local buffer for reading back registers via DMA
230 * @reg_read_pos: marker for data read in reg_read_buf
231 *
232 * @regs: a contiguous chunk of memory for DMA register
233 * writes. contains the register values to be
234 * written to controller
235 * @cmd1/vld: some fixed controller register values
236 * @ecc_modes: supported ECC modes by the current controller,
237 * initialized via DT match data
238 */
239struct qcom_nand_controller {
240 struct nand_hw_control controller;
241 struct list_head host_list;
242
243 struct device *dev;
244
245 void __iomem *base;
246 dma_addr_t base_dma;
247
248 struct clk *core_clk;
249 struct clk *aon_clk;
250
251 struct dma_chan *chan;
252 unsigned int cmd_crci;
253 unsigned int data_crci;
254 struct list_head desc_list;
255
256 u8 *data_buffer;
257 int buf_size;
258 int buf_count;
259 int buf_start;
260
261 __le32 *reg_read_buf;
262 int reg_read_pos;
263
264 struct nandc_regs *regs;
265
266 u32 cmd1, vld;
267 u32 ecc_modes;
268};
269
270/*
271 * NAND chip structure
272 *
273 * @chip: base NAND chip structure
274 * @node: list node to add itself to host_list in
275 * qcom_nand_controller
276 *
277 * @cs: chip select value for this chip
278 * @cw_size: the number of bytes in a single step/codeword
279 * of a page, consisting of all data, ecc, spare
280 * and reserved bytes
281 * @cw_data: the number of bytes within a codeword protected
282 * by ECC
283 * @use_ecc: request the controller to use ECC for the
284 * upcoming read/write
285 * @bch_enabled: flag to tell whether BCH ECC mode is used
286 * @ecc_bytes_hw: ECC bytes used by controller hardware for this
287 * chip
288 * @status: value to be returned if NAND_CMD_STATUS command
289 * is executed
290 * @last_command: keeps track of last command on this chip. used
291 * for reading correct status
292 *
293 * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for
294 * ecc/non-ecc mode for the current nand flash
295 * device
296 */
297struct qcom_nand_host {
298 struct nand_chip chip;
299 struct list_head node;
300
301 int cs;
302 int cw_size;
303 int cw_data;
304 bool use_ecc;
305 bool bch_enabled;
306 int ecc_bytes_hw;
307 int spare_bytes;
308 int bbm_size;
309 u8 status;
310 int last_command;
311
312 u32 cfg0, cfg1;
313 u32 cfg0_raw, cfg1_raw;
314 u32 ecc_buf_cfg;
315 u32 ecc_bch_cfg;
316 u32 clrflashstatus;
317 u32 clrreadstatus;
318};
319
320static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
321{
322 return container_of(chip, struct qcom_nand_host, chip);
323}
324
325static inline struct qcom_nand_controller *
326get_qcom_nand_controller(struct nand_chip *chip)
327{
328 return container_of(chip->controller, struct qcom_nand_controller,
329 controller);
330}
331
332static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
333{
334 return ioread32(nandc->base + offset);
335}
336
337static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
338 u32 val)
339{
340 iowrite32(val, nandc->base + offset);
341}
342
343static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
344{
345 switch (offset) {
346 case NAND_FLASH_CMD:
347 return &regs->cmd;
348 case NAND_ADDR0:
349 return &regs->addr0;
350 case NAND_ADDR1:
351 return &regs->addr1;
352 case NAND_FLASH_CHIP_SELECT:
353 return &regs->chip_sel;
354 case NAND_EXEC_CMD:
355 return &regs->exec;
356 case NAND_FLASH_STATUS:
357 return &regs->clrflashstatus;
358 case NAND_DEV0_CFG0:
359 return &regs->cfg0;
360 case NAND_DEV0_CFG1:
361 return &regs->cfg1;
362 case NAND_DEV0_ECC_CFG:
363 return &regs->ecc_bch_cfg;
364 case NAND_READ_STATUS:
365 return &regs->clrreadstatus;
366 case NAND_DEV_CMD1:
367 return &regs->cmd1;
368 case NAND_DEV_CMD1_RESTORE:
369 return &regs->orig_cmd1;
370 case NAND_DEV_CMD_VLD:
371 return &regs->vld;
372 case NAND_DEV_CMD_VLD_RESTORE:
373 return &regs->orig_vld;
374 case NAND_EBI2_ECC_BUF_CFG:
375 return &regs->ecc_buf_cfg;
376 default:
377 return NULL;
378 }
379}
380
381static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset,
382 u32 val)
383{
384 struct nandc_regs *regs = nandc->regs;
385 __le32 *reg;
386
387 reg = offset_to_nandc_reg(regs, offset);
388
389 if (reg)
390 *reg = cpu_to_le32(val);
391}
392
393/* helper to configure address register values */
394static void set_address(struct qcom_nand_host *host, u16 column, int page)
395{
396 struct nand_chip *chip = &host->chip;
397 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
398
399 if (chip->options & NAND_BUSWIDTH_16)
400 column >>= 1;
401
402 nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column);
403 nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff);
404}
405
406/*
407 * update_rw_regs: set up read/write register values, these will be
408 * written to the NAND controller registers via DMA
409 *
410 * @num_cw: number of steps for the read/write operation
411 * @read: read or write operation
412 */
413static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read)
414{
415 struct nand_chip *chip = &host->chip;
416 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
417 u32 cmd, cfg0, cfg1, ecc_bch_cfg;
418
419 if (read) {
420 if (host->use_ecc)
421 cmd = PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
422 else
423 cmd = PAGE_READ | PAGE_ACC | LAST_PAGE;
424 } else {
425 cmd = PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
426 }
427
428 if (host->use_ecc) {
429 cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
430 (num_cw - 1) << CW_PER_PAGE;
431
432 cfg1 = host->cfg1;
433 ecc_bch_cfg = host->ecc_bch_cfg;
434 } else {
435 cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
436 (num_cw - 1) << CW_PER_PAGE;
437
438 cfg1 = host->cfg1_raw;
439 ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
440 }
441
442 nandc_set_reg(nandc, NAND_FLASH_CMD, cmd);
443 nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0);
444 nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1);
445 nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
446 nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
447 nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
448 nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
449 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
450}
451
452static int prep_dma_desc(struct qcom_nand_controller *nandc, bool read,
453 int reg_off, const void *vaddr, int size,
454 bool flow_control)
455{
456 struct desc_info *desc;
457 struct dma_async_tx_descriptor *dma_desc;
458 struct scatterlist *sgl;
459 struct dma_slave_config slave_conf;
460 enum dma_transfer_direction dir_eng;
461 int ret;
462
463 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
464 if (!desc)
465 return -ENOMEM;
466
467 sgl = &desc->sgl;
468
469 sg_init_one(sgl, vaddr, size);
470
471 if (read) {
472 dir_eng = DMA_DEV_TO_MEM;
473 desc->dir = DMA_FROM_DEVICE;
474 } else {
475 dir_eng = DMA_MEM_TO_DEV;
476 desc->dir = DMA_TO_DEVICE;
477 }
478
479 ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
480 if (ret == 0) {
481 ret = -ENOMEM;
482 goto err;
483 }
484
485 memset(&slave_conf, 0x00, sizeof(slave_conf));
486
487 slave_conf.device_fc = flow_control;
488 if (read) {
489 slave_conf.src_maxburst = 16;
490 slave_conf.src_addr = nandc->base_dma + reg_off;
491 slave_conf.slave_id = nandc->data_crci;
492 } else {
493 slave_conf.dst_maxburst = 16;
494 slave_conf.dst_addr = nandc->base_dma + reg_off;
495 slave_conf.slave_id = nandc->cmd_crci;
496 }
497
498 ret = dmaengine_slave_config(nandc->chan, &slave_conf);
499 if (ret) {
500 dev_err(nandc->dev, "failed to configure dma channel\n");
501 goto err;
502 }
503
504 dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
505 if (!dma_desc) {
506 dev_err(nandc->dev, "failed to prepare desc\n");
507 ret = -EINVAL;
508 goto err;
509 }
510
511 desc->dma_desc = dma_desc;
512
513 list_add_tail(&desc->node, &nandc->desc_list);
514
515 return 0;
516err:
517 kfree(desc);
518
519 return ret;
520}
521
522/*
523 * read_reg_dma: prepares a descriptor to read a given number of
524 * contiguous registers to the reg_read_buf pointer
525 *
526 * @first: offset of the first register in the contiguous block
527 * @num_regs: number of registers to read
528 */
529static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
530 int num_regs)
531{
532 bool flow_control = false;
533 void *vaddr;
534 int size;
535
536 if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
537 flow_control = true;
538
539 size = num_regs * sizeof(u32);
540 vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
541 nandc->reg_read_pos += num_regs;
542
543 return prep_dma_desc(nandc, true, first, vaddr, size, flow_control);
544}
545
546/*
547 * write_reg_dma: prepares a descriptor to write a given number of
548 * contiguous registers
549 *
550 * @first: offset of the first register in the contiguous block
551 * @num_regs: number of registers to write
552 */
553static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
554 int num_regs)
555{
556 bool flow_control = false;
557 struct nandc_regs *regs = nandc->regs;
558 void *vaddr;
559 int size;
560
561 vaddr = offset_to_nandc_reg(regs, first);
562
563 if (first == NAND_FLASH_CMD)
564 flow_control = true;
565
566 if (first == NAND_DEV_CMD1_RESTORE)
567 first = NAND_DEV_CMD1;
568
569 if (first == NAND_DEV_CMD_VLD_RESTORE)
570 first = NAND_DEV_CMD_VLD;
571
572 size = num_regs * sizeof(u32);
573
574 return prep_dma_desc(nandc, false, first, vaddr, size, flow_control);
575}
576
577/*
578 * read_data_dma: prepares a DMA descriptor to transfer data from the
579 * controller's internal buffer to the buffer 'vaddr'
580 *
581 * @reg_off: offset within the controller's data buffer
582 * @vaddr: virtual address of the buffer we want to write to
583 * @size: DMA transaction size in bytes
584 */
585static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
586 const u8 *vaddr, int size)
587{
588 return prep_dma_desc(nandc, true, reg_off, vaddr, size, false);
589}
590
591/*
592 * write_data_dma: prepares a DMA descriptor to transfer data from
593 * 'vaddr' to the controller's internal buffer
594 *
595 * @reg_off: offset within the controller's data buffer
596 * @vaddr: virtual address of the buffer we want to read from
597 * @size: DMA transaction size in bytes
598 */
599static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
600 const u8 *vaddr, int size)
601{
602 return prep_dma_desc(nandc, false, reg_off, vaddr, size, false);
603}
604
605/*
606 * helper to prepare dma descriptors to configure registers needed for reading a
607 * codeword/step in a page
608 */
609static void config_cw_read(struct qcom_nand_controller *nandc)
610{
611 write_reg_dma(nandc, NAND_FLASH_CMD, 3);
612 write_reg_dma(nandc, NAND_DEV0_CFG0, 3);
613 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1);
614
615 write_reg_dma(nandc, NAND_EXEC_CMD, 1);
616
617 read_reg_dma(nandc, NAND_FLASH_STATUS, 2);
618 read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1);
619}
620
621/*
622 * helpers to prepare dma descriptors used to configure registers needed for
623 * writing a codeword/step in a page
624 */
625static void config_cw_write_pre(struct qcom_nand_controller *nandc)
626{
627 write_reg_dma(nandc, NAND_FLASH_CMD, 3);
628 write_reg_dma(nandc, NAND_DEV0_CFG0, 3);
629 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1);
630}
631
632static void config_cw_write_post(struct qcom_nand_controller *nandc)
633{
634 write_reg_dma(nandc, NAND_EXEC_CMD, 1);
635
636 read_reg_dma(nandc, NAND_FLASH_STATUS, 1);
637
638 write_reg_dma(nandc, NAND_FLASH_STATUS, 1);
639 write_reg_dma(nandc, NAND_READ_STATUS, 1);
640}
641
642/*
643 * the following functions are used within chip->cmdfunc() to perform different
644 * NAND_CMD_* commands
645 */
646
647/* sets up descriptors for NAND_CMD_PARAM */
648static int nandc_param(struct qcom_nand_host *host)
649{
650 struct nand_chip *chip = &host->chip;
651 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
652
653 /*
654 * NAND_CMD_PARAM is called before we know much about the FLASH chip
655 * in use. we configure the controller to perform a raw read of 512
656 * bytes to read onfi params
657 */
658 nandc_set_reg(nandc, NAND_FLASH_CMD, PAGE_READ | PAGE_ACC | LAST_PAGE);
659 nandc_set_reg(nandc, NAND_ADDR0, 0);
660 nandc_set_reg(nandc, NAND_ADDR1, 0);
661 nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
662 | 512 << UD_SIZE_BYTES
663 | 5 << NUM_ADDR_CYCLES
664 | 0 << SPARE_SIZE_BYTES);
665 nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
666 | 0 << CS_ACTIVE_BSY
667 | 17 << BAD_BLOCK_BYTE_NUM
668 | 1 << BAD_BLOCK_IN_SPARE_AREA
669 | 2 << WR_RD_BSY_GAP
670 | 0 << WIDE_FLASH
671 | 1 << DEV0_CFG1_ECC_DISABLE);
672 nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
673
674 /* configure CMD1 and VLD for ONFI param probing */
675 nandc_set_reg(nandc, NAND_DEV_CMD_VLD,
676 (nandc->vld & ~(1 << READ_START_VLD))
677 | 0 << READ_START_VLD);
678 nandc_set_reg(nandc, NAND_DEV_CMD1,
679 (nandc->cmd1 & ~(0xFF << READ_ADDR))
680 | NAND_CMD_PARAM << READ_ADDR);
681
682 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
683
684 nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
685 nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
686
687 write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1);
688 write_reg_dma(nandc, NAND_DEV_CMD1, 1);
689
690 nandc->buf_count = 512;
691 memset(nandc->data_buffer, 0xff, nandc->buf_count);
692
693 config_cw_read(nandc);
694
695 read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
696 nandc->buf_count);
697
698 /* restore CMD1 and VLD regs */
699 write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1);
700 write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1);
701
702 return 0;
703}
704
705/* sets up descriptors for NAND_CMD_ERASE1 */
706static int erase_block(struct qcom_nand_host *host, int page_addr)
707{
708 struct nand_chip *chip = &host->chip;
709 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
710
711 nandc_set_reg(nandc, NAND_FLASH_CMD,
712 BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
713 nandc_set_reg(nandc, NAND_ADDR0, page_addr);
714 nandc_set_reg(nandc, NAND_ADDR1, 0);
715 nandc_set_reg(nandc, NAND_DEV0_CFG0,
716 host->cfg0_raw & ~(7 << CW_PER_PAGE));
717 nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw);
718 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
719 nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
720 nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
721
722 write_reg_dma(nandc, NAND_FLASH_CMD, 3);
723 write_reg_dma(nandc, NAND_DEV0_CFG0, 2);
724 write_reg_dma(nandc, NAND_EXEC_CMD, 1);
725
726 read_reg_dma(nandc, NAND_FLASH_STATUS, 1);
727
728 write_reg_dma(nandc, NAND_FLASH_STATUS, 1);
729 write_reg_dma(nandc, NAND_READ_STATUS, 1);
730
731 return 0;
732}
733
734/* sets up descriptors for NAND_CMD_READID */
735static int read_id(struct qcom_nand_host *host, int column)
736{
737 struct nand_chip *chip = &host->chip;
738 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
739
740 if (column == -1)
741 return 0;
742
743 nandc_set_reg(nandc, NAND_FLASH_CMD, FETCH_ID);
744 nandc_set_reg(nandc, NAND_ADDR0, column);
745 nandc_set_reg(nandc, NAND_ADDR1, 0);
746 nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
747 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
748
749 write_reg_dma(nandc, NAND_FLASH_CMD, 4);
750 write_reg_dma(nandc, NAND_EXEC_CMD, 1);
751
752 read_reg_dma(nandc, NAND_READ_ID, 1);
753
754 return 0;
755}
756
757/* sets up descriptors for NAND_CMD_RESET */
758static int reset(struct qcom_nand_host *host)
759{
760 struct nand_chip *chip = &host->chip;
761 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
762
763 nandc_set_reg(nandc, NAND_FLASH_CMD, RESET_DEVICE);
764 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
765
766 write_reg_dma(nandc, NAND_FLASH_CMD, 1);
767 write_reg_dma(nandc, NAND_EXEC_CMD, 1);
768
769 read_reg_dma(nandc, NAND_FLASH_STATUS, 1);
770
771 return 0;
772}
773
774/* helpers to submit/free our list of dma descriptors */
775static int submit_descs(struct qcom_nand_controller *nandc)
776{
777 struct desc_info *desc;
778 dma_cookie_t cookie = 0;
779
780 list_for_each_entry(desc, &nandc->desc_list, node)
781 cookie = dmaengine_submit(desc->dma_desc);
782
783 if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
784 return -ETIMEDOUT;
785
786 return 0;
787}
788
789static void free_descs(struct qcom_nand_controller *nandc)
790{
791 struct desc_info *desc, *n;
792
793 list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
794 list_del(&desc->node);
795 dma_unmap_sg(nandc->dev, &desc->sgl, 1, desc->dir);
796 kfree(desc);
797 }
798}
799
800/* reset the register read buffer for next NAND operation */
801static void clear_read_regs(struct qcom_nand_controller *nandc)
802{
803 nandc->reg_read_pos = 0;
804 memset(nandc->reg_read_buf, 0,
805 MAX_REG_RD * sizeof(*nandc->reg_read_buf));
806}
807
808static void pre_command(struct qcom_nand_host *host, int command)
809{
810 struct nand_chip *chip = &host->chip;
811 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
812
813 nandc->buf_count = 0;
814 nandc->buf_start = 0;
815 host->use_ecc = false;
816 host->last_command = command;
817
818 clear_read_regs(nandc);
819}
820
821/*
822 * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
823 * privately maintained status byte, this status byte can be read after
824 * NAND_CMD_STATUS is called
825 */
826static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
827{
828 struct nand_chip *chip = &host->chip;
829 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
830 struct nand_ecc_ctrl *ecc = &chip->ecc;
831 int num_cw;
832 int i;
833
834 num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
835
836 for (i = 0; i < num_cw; i++) {
837 u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
838
839 if (flash_status & FS_MPU_ERR)
840 host->status &= ~NAND_STATUS_WP;
841
842 if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
843 (flash_status &
844 FS_DEVICE_STS_ERR)))
845 host->status |= NAND_STATUS_FAIL;
846 }
847}
848
849static void post_command(struct qcom_nand_host *host, int command)
850{
851 struct nand_chip *chip = &host->chip;
852 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
853
854 switch (command) {
855 case NAND_CMD_READID:
856 memcpy(nandc->data_buffer, nandc->reg_read_buf,
857 nandc->buf_count);
858 break;
859 case NAND_CMD_PAGEPROG:
860 case NAND_CMD_ERASE1:
861 parse_erase_write_errors(host, command);
862 break;
863 default:
864 break;
865 }
866}
867
868/*
869 * Implements chip->cmdfunc. It's only used for a limited set of commands.
870 * The rest of the commands wouldn't be called by upper layers. For example,
871 * NAND_CMD_READOOB would never be called because we have our own versions
872 * of read_oob ops for nand_ecc_ctrl.
873 */
874static void qcom_nandc_command(struct mtd_info *mtd, unsigned int command,
875 int column, int page_addr)
876{
877 struct nand_chip *chip = mtd_to_nand(mtd);
878 struct qcom_nand_host *host = to_qcom_nand_host(chip);
879 struct nand_ecc_ctrl *ecc = &chip->ecc;
880 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
881 bool wait = false;
882 int ret = 0;
883
884 pre_command(host, command);
885
886 switch (command) {
887 case NAND_CMD_RESET:
888 ret = reset(host);
889 wait = true;
890 break;
891
892 case NAND_CMD_READID:
893 nandc->buf_count = 4;
894 ret = read_id(host, column);
895 wait = true;
896 break;
897
898 case NAND_CMD_PARAM:
899 ret = nandc_param(host);
900 wait = true;
901 break;
902
903 case NAND_CMD_ERASE1:
904 ret = erase_block(host, page_addr);
905 wait = true;
906 break;
907
908 case NAND_CMD_READ0:
909 /* we read the entire page for now */
910 WARN_ON(column != 0);
911
912 host->use_ecc = true;
913 set_address(host, 0, page_addr);
914 update_rw_regs(host, ecc->steps, true);
915 break;
916
917 case NAND_CMD_SEQIN:
918 WARN_ON(column != 0);
919 set_address(host, 0, page_addr);
920 break;
921
922 case NAND_CMD_PAGEPROG:
923 case NAND_CMD_STATUS:
924 case NAND_CMD_NONE:
925 default:
926 break;
927 }
928
929 if (ret) {
930 dev_err(nandc->dev, "failure executing command %d\n",
931 command);
932 free_descs(nandc);
933 return;
934 }
935
936 if (wait) {
937 ret = submit_descs(nandc);
938 if (ret)
939 dev_err(nandc->dev,
940 "failure submitting descs for command %d\n",
941 command);
942 }
943
944 free_descs(nandc);
945
946 post_command(host, command);
947}
948
949/*
950 * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
951 * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
952 *
953 * when using RS ECC, the HW reports the same erros when reading an erased CW,
954 * but it notifies that it is an erased CW by placing special characters at
955 * certain offsets in the buffer.
956 *
957 * verify if the page is erased or not, and fix up the page for RS ECC by
958 * replacing the special characters with 0xff.
959 */
960static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
961{
962 u8 empty1, empty2;
963
964 /*
965 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
966 * is erased by looking for 0x54s at offsets 3 and 175 from the
967 * beginning of each codeword
968 */
969
970 empty1 = data_buf[3];
971 empty2 = data_buf[175];
972
973 /*
974 * if the erased codework markers, if they exist override them with
975 * 0xffs
976 */
977 if ((empty1 == 0x54 && empty2 == 0xff) ||
978 (empty1 == 0xff && empty2 == 0x54)) {
979 data_buf[3] = 0xff;
980 data_buf[175] = 0xff;
981 }
982
983 /*
984 * check if the entire chunk contains 0xffs or not. if it doesn't, then
985 * restore the original values at the special offsets
986 */
987 if (memchr_inv(data_buf, 0xff, data_len)) {
988 data_buf[3] = empty1;
989 data_buf[175] = empty2;
990
991 return false;
992 }
993
994 return true;
995}
996
997struct read_stats {
998 __le32 flash;
999 __le32 buffer;
1000 __le32 erased_cw;
1001};
1002
1003/*
1004 * reads back status registers set by the controller to notify page read
1005 * errors. this is equivalent to what 'ecc->correct()' would do.
1006 */
1007static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1008 u8 *oob_buf)
1009{
1010 struct nand_chip *chip = &host->chip;
1011 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1012 struct mtd_info *mtd = nand_to_mtd(chip);
1013 struct nand_ecc_ctrl *ecc = &chip->ecc;
1014 unsigned int max_bitflips = 0;
1015 struct read_stats *buf;
1016 int i;
1017
1018 buf = (struct read_stats *)nandc->reg_read_buf;
1019
1020 for (i = 0; i < ecc->steps; i++, buf++) {
1021 u32 flash, buffer, erased_cw;
1022 int data_len, oob_len;
1023
1024 if (i == (ecc->steps - 1)) {
1025 data_len = ecc->size - ((ecc->steps - 1) << 2);
1026 oob_len = ecc->steps << 2;
1027 } else {
1028 data_len = host->cw_data;
1029 oob_len = 0;
1030 }
1031
1032 flash = le32_to_cpu(buf->flash);
1033 buffer = le32_to_cpu(buf->buffer);
1034 erased_cw = le32_to_cpu(buf->erased_cw);
1035
1036 if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1037 bool erased;
1038
1039 /* ignore erased codeword errors */
1040 if (host->bch_enabled) {
1041 erased = (erased_cw & ERASED_CW) == ERASED_CW ?
1042 true : false;
1043 } else {
1044 erased = erased_chunk_check_and_fixup(data_buf,
1045 data_len);
1046 }
1047
1048 if (erased) {
1049 data_buf += data_len;
1050 if (oob_buf)
1051 oob_buf += oob_len + ecc->bytes;
1052 continue;
1053 }
1054
1055 if (buffer & BS_UNCORRECTABLE_BIT) {
1056 int ret, ecclen, extraooblen;
1057 void *eccbuf;
1058
1059 eccbuf = oob_buf ? oob_buf + oob_len : NULL;
1060 ecclen = oob_buf ? host->ecc_bytes_hw : 0;
1061 extraooblen = oob_buf ? oob_len : 0;
1062
1063 /*
1064 * make sure it isn't an erased page reported
1065 * as not-erased by HW because of a few bitflips
1066 */
1067 ret = nand_check_erased_ecc_chunk(data_buf,
1068 data_len, eccbuf, ecclen, oob_buf,
1069 extraooblen, ecc->strength);
1070 if (ret < 0) {
1071 mtd->ecc_stats.failed++;
1072 } else {
1073 mtd->ecc_stats.corrected += ret;
1074 max_bitflips =
1075 max_t(unsigned int, max_bitflips, ret);
1076 }
1077 }
1078 } else {
1079 unsigned int stat;
1080
1081 stat = buffer & BS_CORRECTABLE_ERR_MSK;
1082 mtd->ecc_stats.corrected += stat;
1083 max_bitflips = max(max_bitflips, stat);
1084 }
1085
1086 data_buf += data_len;
1087 if (oob_buf)
1088 oob_buf += oob_len + ecc->bytes;
1089 }
1090
1091 return max_bitflips;
1092}
1093
1094/*
1095 * helper to perform the actual page read operation, used by ecc->read_page(),
1096 * ecc->read_oob()
1097 */
1098static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1099 u8 *oob_buf)
1100{
1101 struct nand_chip *chip = &host->chip;
1102 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1103 struct nand_ecc_ctrl *ecc = &chip->ecc;
1104 int i, ret;
1105
1106 /* queue cmd descs for each codeword */
1107 for (i = 0; i < ecc->steps; i++) {
1108 int data_size, oob_size;
1109
1110 if (i == (ecc->steps - 1)) {
1111 data_size = ecc->size - ((ecc->steps - 1) << 2);
1112 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1113 host->spare_bytes;
1114 } else {
1115 data_size = host->cw_data;
1116 oob_size = host->ecc_bytes_hw + host->spare_bytes;
1117 }
1118
1119 config_cw_read(nandc);
1120
1121 if (data_buf)
1122 read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
1123 data_size);
1124
1125 /*
1126 * when ecc is enabled, the controller doesn't read the real
1127 * or dummy bad block markers in each chunk. To maintain a
1128 * consistent layout across RAW and ECC reads, we just
1129 * leave the real/dummy BBM offsets empty (i.e, filled with
1130 * 0xffs)
1131 */
1132 if (oob_buf) {
1133 int j;
1134
1135 for (j = 0; j < host->bbm_size; j++)
1136 *oob_buf++ = 0xff;
1137
1138 read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1139 oob_buf, oob_size);
1140 }
1141
1142 if (data_buf)
1143 data_buf += data_size;
1144 if (oob_buf)
1145 oob_buf += oob_size;
1146 }
1147
1148 ret = submit_descs(nandc);
1149 if (ret)
1150 dev_err(nandc->dev, "failure to read page/oob\n");
1151
1152 free_descs(nandc);
1153
1154 return ret;
1155}
1156
1157/*
1158 * a helper that copies the last step/codeword of a page (containing free oob)
1159 * into our local buffer
1160 */
1161static int copy_last_cw(struct qcom_nand_host *host, int page)
1162{
1163 struct nand_chip *chip = &host->chip;
1164 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1165 struct nand_ecc_ctrl *ecc = &chip->ecc;
1166 int size;
1167 int ret;
1168
1169 clear_read_regs(nandc);
1170
1171 size = host->use_ecc ? host->cw_data : host->cw_size;
1172
1173 /* prepare a clean read buffer */
1174 memset(nandc->data_buffer, 0xff, size);
1175
1176 set_address(host, host->cw_size * (ecc->steps - 1), page);
1177 update_rw_regs(host, 1, true);
1178
1179 config_cw_read(nandc);
1180
1181 read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size);
1182
1183 ret = submit_descs(nandc);
1184 if (ret)
1185 dev_err(nandc->dev, "failed to copy last codeword\n");
1186
1187 free_descs(nandc);
1188
1189 return ret;
1190}
1191
1192/* implements ecc->read_page() */
1193static int qcom_nandc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1194 uint8_t *buf, int oob_required, int page)
1195{
1196 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1197 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1198 u8 *data_buf, *oob_buf = NULL;
1199 int ret;
1200
1201 data_buf = buf;
1202 oob_buf = oob_required ? chip->oob_poi : NULL;
1203
1204 ret = read_page_ecc(host, data_buf, oob_buf);
1205 if (ret) {
1206 dev_err(nandc->dev, "failure to read page\n");
1207 return ret;
1208 }
1209
1210 return parse_read_errors(host, data_buf, oob_buf);
1211}
1212
1213/* implements ecc->read_page_raw() */
1214static int qcom_nandc_read_page_raw(struct mtd_info *mtd,
1215 struct nand_chip *chip, uint8_t *buf,
1216 int oob_required, int page)
1217{
1218 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1219 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1220 u8 *data_buf, *oob_buf;
1221 struct nand_ecc_ctrl *ecc = &chip->ecc;
1222 int i, ret;
1223
1224 data_buf = buf;
1225 oob_buf = chip->oob_poi;
1226
1227 host->use_ecc = false;
1228 update_rw_regs(host, ecc->steps, true);
1229
1230 for (i = 0; i < ecc->steps; i++) {
1231 int data_size1, data_size2, oob_size1, oob_size2;
1232 int reg_off = FLASH_BUF_ACC;
1233
1234 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1235 oob_size1 = host->bbm_size;
1236
1237 if (i == (ecc->steps - 1)) {
1238 data_size2 = ecc->size - data_size1 -
1239 ((ecc->steps - 1) << 2);
1240 oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
1241 host->spare_bytes;
1242 } else {
1243 data_size2 = host->cw_data - data_size1;
1244 oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1245 }
1246
1247 config_cw_read(nandc);
1248
1249 read_data_dma(nandc, reg_off, data_buf, data_size1);
1250 reg_off += data_size1;
1251 data_buf += data_size1;
1252
1253 read_data_dma(nandc, reg_off, oob_buf, oob_size1);
1254 reg_off += oob_size1;
1255 oob_buf += oob_size1;
1256
1257 read_data_dma(nandc, reg_off, data_buf, data_size2);
1258 reg_off += data_size2;
1259 data_buf += data_size2;
1260
1261 read_data_dma(nandc, reg_off, oob_buf, oob_size2);
1262 oob_buf += oob_size2;
1263 }
1264
1265 ret = submit_descs(nandc);
1266 if (ret)
1267 dev_err(nandc->dev, "failure to read raw page\n");
1268
1269 free_descs(nandc);
1270
1271 return 0;
1272}
1273
1274/* implements ecc->read_oob() */
1275static int qcom_nandc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1276 int page)
1277{
1278 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1279 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1280 struct nand_ecc_ctrl *ecc = &chip->ecc;
1281 int ret;
1282
1283 clear_read_regs(nandc);
1284
1285 host->use_ecc = true;
1286 set_address(host, 0, page);
1287 update_rw_regs(host, ecc->steps, true);
1288
1289 ret = read_page_ecc(host, NULL, chip->oob_poi);
1290 if (ret)
1291 dev_err(nandc->dev, "failure to read oob\n");
1292
1293 return ret;
1294}
1295
1296/* implements ecc->write_page() */
1297static int qcom_nandc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1298 const uint8_t *buf, int oob_required, int page)
1299{
1300 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1301 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1302 struct nand_ecc_ctrl *ecc = &chip->ecc;
1303 u8 *data_buf, *oob_buf;
1304 int i, ret;
1305
1306 clear_read_regs(nandc);
1307
1308 data_buf = (u8 *)buf;
1309 oob_buf = chip->oob_poi;
1310
1311 host->use_ecc = true;
1312 update_rw_regs(host, ecc->steps, false);
1313
1314 for (i = 0; i < ecc->steps; i++) {
1315 int data_size, oob_size;
1316
1317 if (i == (ecc->steps - 1)) {
1318 data_size = ecc->size - ((ecc->steps - 1) << 2);
1319 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1320 host->spare_bytes;
1321 } else {
1322 data_size = host->cw_data;
1323 oob_size = ecc->bytes;
1324 }
1325
1326 config_cw_write_pre(nandc);
1327
1328 write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size);
1329
1330 /*
1331 * when ECC is enabled, we don't really need to write anything
1332 * to oob for the first n - 1 codewords since these oob regions
1333 * just contain ECC bytes that's written by the controller
1334 * itself. For the last codeword, we skip the bbm positions and
1335 * write to the free oob area.
1336 */
1337 if (i == (ecc->steps - 1)) {
1338 oob_buf += host->bbm_size;
1339
1340 write_data_dma(nandc, FLASH_BUF_ACC + data_size,
1341 oob_buf, oob_size);
1342 }
1343
1344 config_cw_write_post(nandc);
1345
1346 data_buf += data_size;
1347 oob_buf += oob_size;
1348 }
1349
1350 ret = submit_descs(nandc);
1351 if (ret)
1352 dev_err(nandc->dev, "failure to write page\n");
1353
1354 free_descs(nandc);
1355
1356 return ret;
1357}
1358
1359/* implements ecc->write_page_raw() */
1360static int qcom_nandc_write_page_raw(struct mtd_info *mtd,
1361 struct nand_chip *chip, const uint8_t *buf,
1362 int oob_required, int page)
1363{
1364 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1365 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1366 struct nand_ecc_ctrl *ecc = &chip->ecc;
1367 u8 *data_buf, *oob_buf;
1368 int i, ret;
1369
1370 clear_read_regs(nandc);
1371
1372 data_buf = (u8 *)buf;
1373 oob_buf = chip->oob_poi;
1374
1375 host->use_ecc = false;
1376 update_rw_regs(host, ecc->steps, false);
1377
1378 for (i = 0; i < ecc->steps; i++) {
1379 int data_size1, data_size2, oob_size1, oob_size2;
1380 int reg_off = FLASH_BUF_ACC;
1381
1382 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1383 oob_size1 = host->bbm_size;
1384
1385 if (i == (ecc->steps - 1)) {
1386 data_size2 = ecc->size - data_size1 -
1387 ((ecc->steps - 1) << 2);
1388 oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
1389 host->spare_bytes;
1390 } else {
1391 data_size2 = host->cw_data - data_size1;
1392 oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1393 }
1394
1395 config_cw_write_pre(nandc);
1396
1397 write_data_dma(nandc, reg_off, data_buf, data_size1);
1398 reg_off += data_size1;
1399 data_buf += data_size1;
1400
1401 write_data_dma(nandc, reg_off, oob_buf, oob_size1);
1402 reg_off += oob_size1;
1403 oob_buf += oob_size1;
1404
1405 write_data_dma(nandc, reg_off, data_buf, data_size2);
1406 reg_off += data_size2;
1407 data_buf += data_size2;
1408
1409 write_data_dma(nandc, reg_off, oob_buf, oob_size2);
1410 oob_buf += oob_size2;
1411
1412 config_cw_write_post(nandc);
1413 }
1414
1415 ret = submit_descs(nandc);
1416 if (ret)
1417 dev_err(nandc->dev, "failure to write raw page\n");
1418
1419 free_descs(nandc);
1420
1421 return ret;
1422}
1423
1424/*
1425 * implements ecc->write_oob()
1426 *
1427 * the NAND controller cannot write only data or only oob within a codeword,
1428 * since ecc is calculated for the combined codeword. we first copy the
1429 * entire contents for the last codeword(data + oob), replace the old oob
1430 * with the new one in chip->oob_poi, and then write the entire codeword.
1431 * this read-copy-write operation results in a slight performance loss.
1432 */
1433static int qcom_nandc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1434 int page)
1435{
1436 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1437 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1438 struct nand_ecc_ctrl *ecc = &chip->ecc;
1439 u8 *oob = chip->oob_poi;
1440 int free_boff;
1441 int data_size, oob_size;
1442 int ret, status = 0;
1443
1444 host->use_ecc = true;
1445
1446 ret = copy_last_cw(host, page);
1447 if (ret)
1448 return ret;
1449
1450 clear_read_regs(nandc);
1451
1452 /* calculate the data and oob size for the last codeword/step */
1453 data_size = ecc->size - ((ecc->steps - 1) << 2);
1454 oob_size = ecc->steps << 2;
1455
1456 free_boff = ecc->layout->oobfree[0].offset;
1457
1458 /* override new oob content to last codeword */
1459 memcpy(nandc->data_buffer + data_size, oob + free_boff, oob_size);
1460
1461 set_address(host, host->cw_size * (ecc->steps - 1), page);
1462 update_rw_regs(host, 1, false);
1463
1464 config_cw_write_pre(nandc);
1465 write_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1466 data_size + oob_size);
1467 config_cw_write_post(nandc);
1468
1469 ret = submit_descs(nandc);
1470
1471 free_descs(nandc);
1472
1473 if (ret) {
1474 dev_err(nandc->dev, "failure to write oob\n");
1475 return -EIO;
1476 }
1477
1478 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1479
1480 status = chip->waitfunc(mtd, chip);
1481
1482 return status & NAND_STATUS_FAIL ? -EIO : 0;
1483}
1484
1485static int qcom_nandc_block_bad(struct mtd_info *mtd, loff_t ofs)
1486{
1487 struct nand_chip *chip = mtd_to_nand(mtd);
1488 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1489 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1490 struct nand_ecc_ctrl *ecc = &chip->ecc;
1491 int page, ret, bbpos, bad = 0;
1492 u32 flash_status;
1493
1494 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
1495
1496 /*
1497 * configure registers for a raw sub page read, the address is set to
1498 * the beginning of the last codeword, we don't care about reading ecc
1499 * portion of oob. we just want the first few bytes from this codeword
1500 * that contains the BBM
1501 */
1502 host->use_ecc = false;
1503
1504 ret = copy_last_cw(host, page);
1505 if (ret)
1506 goto err;
1507
1508 flash_status = le32_to_cpu(nandc->reg_read_buf[0]);
1509
1510 if (flash_status & (FS_OP_ERR | FS_MPU_ERR)) {
1511 dev_warn(nandc->dev, "error when trying to read BBM\n");
1512 goto err;
1513 }
1514
1515 bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
1516
1517 bad = nandc->data_buffer[bbpos] != 0xff;
1518
1519 if (chip->options & NAND_BUSWIDTH_16)
1520 bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
1521err:
1522 return bad;
1523}
1524
1525static int qcom_nandc_block_markbad(struct mtd_info *mtd, loff_t ofs)
1526{
1527 struct nand_chip *chip = mtd_to_nand(mtd);
1528 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1529 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1530 struct nand_ecc_ctrl *ecc = &chip->ecc;
1531 int page, ret, status = 0;
1532
1533 clear_read_regs(nandc);
1534
1535 /*
1536 * to mark the BBM as bad, we flash the entire last codeword with 0s.
1537 * we don't care about the rest of the content in the codeword since
1538 * we aren't going to use this block again
1539 */
1540 memset(nandc->data_buffer, 0x00, host->cw_size);
1541
1542 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
1543
1544 /* prepare write */
1545 host->use_ecc = false;
1546 set_address(host, host->cw_size * (ecc->steps - 1), page);
1547 update_rw_regs(host, 1, false);
1548
1549 config_cw_write_pre(nandc);
1550 write_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, host->cw_size);
1551 config_cw_write_post(nandc);
1552
1553 ret = submit_descs(nandc);
1554
1555 free_descs(nandc);
1556
1557 if (ret) {
1558 dev_err(nandc->dev, "failure to update BBM\n");
1559 return -EIO;
1560 }
1561
1562 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1563
1564 status = chip->waitfunc(mtd, chip);
1565
1566 return status & NAND_STATUS_FAIL ? -EIO : 0;
1567}
1568
1569/*
1570 * the three functions below implement chip->read_byte(), chip->read_buf()
1571 * and chip->write_buf() respectively. these aren't used for
1572 * reading/writing page data, they are used for smaller data like reading
1573 * id, status etc
1574 */
1575static uint8_t qcom_nandc_read_byte(struct mtd_info *mtd)
1576{
1577 struct nand_chip *chip = mtd_to_nand(mtd);
1578 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1579 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1580 u8 *buf = nandc->data_buffer;
1581 u8 ret = 0x0;
1582
1583 if (host->last_command == NAND_CMD_STATUS) {
1584 ret = host->status;
1585
1586 host->status = NAND_STATUS_READY | NAND_STATUS_WP;
1587
1588 return ret;
1589 }
1590
1591 if (nandc->buf_start < nandc->buf_count)
1592 ret = buf[nandc->buf_start++];
1593
1594 return ret;
1595}
1596
1597static void qcom_nandc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1598{
1599 struct nand_chip *chip = mtd_to_nand(mtd);
1600 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1601 int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
1602
1603 memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
1604 nandc->buf_start += real_len;
1605}
1606
1607static void qcom_nandc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
1608 int len)
1609{
1610 struct nand_chip *chip = mtd_to_nand(mtd);
1611 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1612 int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
1613
1614 memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
1615
1616 nandc->buf_start += real_len;
1617}
1618
1619/* we support only one external chip for now */
1620static void qcom_nandc_select_chip(struct mtd_info *mtd, int chipnr)
1621{
1622 struct nand_chip *chip = mtd_to_nand(mtd);
1623 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1624
1625 if (chipnr <= 0)
1626 return;
1627
1628 dev_warn(nandc->dev, "invalid chip select\n");
1629}
1630
1631/*
1632 * NAND controller page layout info
1633 *
1634 * Layout with ECC enabled:
1635 *
1636 * |----------------------| |---------------------------------|
1637 * | xx.......yy| | *********xx.......yy|
1638 * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy|
1639 * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy|
1640 * | xx.......yy| | *********xx.......yy|
1641 * |----------------------| |---------------------------------|
1642 * codeword 1,2..n-1 codeword n
1643 * <---(528/532 Bytes)--> <-------(528/532 Bytes)--------->
1644 *
1645 * n = Number of codewords in the page
1646 * . = ECC bytes
1647 * * = Spare/free bytes
1648 * x = Unused byte(s)
1649 * y = Reserved byte(s)
1650 *
1651 * 2K page: n = 4, spare = 16 bytes
1652 * 4K page: n = 8, spare = 32 bytes
1653 * 8K page: n = 16, spare = 64 bytes
1654 *
1655 * the qcom nand controller operates at a sub page/codeword level. each
1656 * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
1657 * the number of ECC bytes vary based on the ECC strength and the bus width.
1658 *
1659 * the first n - 1 codewords contains 516 bytes of user data, the remaining
1660 * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
1661 * both user data and spare(oobavail) bytes that sum up to 516 bytes.
1662 *
1663 * When we access a page with ECC enabled, the reserved bytes(s) are not
1664 * accessible at all. When reading, we fill up these unreadable positions
1665 * with 0xffs. When writing, the controller skips writing the inaccessible
1666 * bytes.
1667 *
1668 * Layout with ECC disabled:
1669 *
1670 * |------------------------------| |---------------------------------------|
1671 * | yy xx.......| | bb *********xx.......|
1672 * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..|
1673 * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......|
1674 * | yy xx.......| | bb *********xx.......|
1675 * |------------------------------| |---------------------------------------|
1676 * codeword 1,2..n-1 codeword n
1677 * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)----------->
1678 *
1679 * n = Number of codewords in the page
1680 * . = ECC bytes
1681 * * = Spare/free bytes
1682 * x = Unused byte(s)
1683 * y = Dummy Bad Bock byte(s)
1684 * b = Real Bad Block byte(s)
1685 * size1/size2 = function of codeword size and 'n'
1686 *
1687 * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
1688 * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
1689 * Block Markers. In the last codeword, this position contains the real BBM
1690 *
1691 * In order to have a consistent layout between RAW and ECC modes, we assume
1692 * the following OOB layout arrangement:
1693 *
1694 * |-----------| |--------------------|
1695 * |yyxx.......| |bb*********xx.......|
1696 * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..|
1697 * |yyxx.......| |bb*********xx.......|
1698 * |yyxx.......| |bb*********xx.......|
1699 * |-----------| |--------------------|
1700 * first n - 1 nth OOB region
1701 * OOB regions
1702 *
1703 * n = Number of codewords in the page
1704 * . = ECC bytes
1705 * * = FREE OOB bytes
1706 * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
1707 * x = Unused byte(s)
1708 * b = Real bad block byte(s) (inaccessible when ECC enabled)
1709 *
1710 * This layout is read as is when ECC is disabled. When ECC is enabled, the
1711 * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
1712 * and assumed as 0xffs when we read a page/oob. The ECC, unused and
1713 * dummy/real bad block bytes are grouped as ecc bytes in nand_ecclayout (i.e,
1714 * ecc->bytes is the sum of the three).
1715 */
1716
1717static struct nand_ecclayout *
1718qcom_nand_create_layout(struct qcom_nand_host *host)
1719{
1720 struct nand_chip *chip = &host->chip;
1721 struct mtd_info *mtd = nand_to_mtd(chip);
1722 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1723 struct nand_ecc_ctrl *ecc = &chip->ecc;
1724 struct nand_ecclayout *layout;
1725 int i, j, steps, pos = 0, shift = 0;
1726
1727 layout = devm_kzalloc(nandc->dev, sizeof(*layout), GFP_KERNEL);
1728 if (!layout)
1729 return NULL;
1730
1731 steps = mtd->writesize / ecc->size;
1732 layout->eccbytes = steps * ecc->bytes;
1733
1734 layout->oobfree[0].offset = (steps - 1) * ecc->bytes + host->bbm_size;
1735 layout->oobfree[0].length = steps << 2;
1736
1737 /*
1738 * the oob bytes in the first n - 1 codewords are all grouped together
1739 * in the format:
1740 * DUMMY_BBM + UNUSED + ECC
1741 */
1742 for (i = 0; i < steps - 1; i++) {
1743 for (j = 0; j < ecc->bytes; j++)
1744 layout->eccpos[pos++] = i * ecc->bytes + j;
1745 }
1746
1747 /*
1748 * the oob bytes in the last codeword are grouped in the format:
1749 * BBM + FREE OOB + UNUSED + ECC
1750 */
1751
1752 /* fill up the bbm positions */
1753 for (j = 0; j < host->bbm_size; j++)
1754 layout->eccpos[pos++] = i * ecc->bytes + j;
1755
1756 /*
1757 * fill up the ecc and reserved positions, their indices are offseted
1758 * by the free oob region
1759 */
1760 shift = layout->oobfree[0].length + host->bbm_size;
1761
1762 for (j = 0; j < (host->ecc_bytes_hw + host->spare_bytes); j++)
1763 layout->eccpos[pos++] = i * ecc->bytes + shift + j;
1764
1765 return layout;
1766}
1767
1768static int qcom_nand_host_setup(struct qcom_nand_host *host)
1769{
1770 struct nand_chip *chip = &host->chip;
1771 struct mtd_info *mtd = nand_to_mtd(chip);
1772 struct nand_ecc_ctrl *ecc = &chip->ecc;
1773 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1774 int cwperpage, bad_block_byte;
1775 bool wide_bus;
1776 int ecc_mode = 1;
1777
1778 /*
1779 * the controller requires each step consists of 512 bytes of data.
1780 * bail out if DT has populated a wrong step size.
1781 */
1782 if (ecc->size != NANDC_STEP_SIZE) {
1783 dev_err(nandc->dev, "invalid ecc size\n");
1784 return -EINVAL;
1785 }
1786
1787 wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
1788
1789 if (ecc->strength >= 8) {
1790 /* 8 bit ECC defaults to BCH ECC on all platforms */
1791 host->bch_enabled = true;
1792 ecc_mode = 1;
1793
1794 if (wide_bus) {
1795 host->ecc_bytes_hw = 14;
1796 host->spare_bytes = 0;
1797 host->bbm_size = 2;
1798 } else {
1799 host->ecc_bytes_hw = 13;
1800 host->spare_bytes = 2;
1801 host->bbm_size = 1;
1802 }
1803 } else {
1804 /*
1805 * if the controller supports BCH for 4 bit ECC, the controller
1806 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
1807 * always 10 bytes
1808 */
1809 if (nandc->ecc_modes & ECC_BCH_4BIT) {
1810 /* BCH */
1811 host->bch_enabled = true;
1812 ecc_mode = 0;
1813
1814 if (wide_bus) {
1815 host->ecc_bytes_hw = 8;
1816 host->spare_bytes = 2;
1817 host->bbm_size = 2;
1818 } else {
1819 host->ecc_bytes_hw = 7;
1820 host->spare_bytes = 4;
1821 host->bbm_size = 1;
1822 }
1823 } else {
1824 /* RS */
1825 host->ecc_bytes_hw = 10;
1826
1827 if (wide_bus) {
1828 host->spare_bytes = 0;
1829 host->bbm_size = 2;
1830 } else {
1831 host->spare_bytes = 1;
1832 host->bbm_size = 1;
1833 }
1834 }
1835 }
1836
1837 /*
1838 * we consider ecc->bytes as the sum of all the non-data content in a
1839 * step. It gives us a clean representation of the oob area (even if
1840 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
1841 * ECC and 12 bytes for 4 bit ECC
1842 */
1843 ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
1844
1845 ecc->read_page = qcom_nandc_read_page;
1846 ecc->read_page_raw = qcom_nandc_read_page_raw;
1847 ecc->read_oob = qcom_nandc_read_oob;
1848 ecc->write_page = qcom_nandc_write_page;
1849 ecc->write_page_raw = qcom_nandc_write_page_raw;
1850 ecc->write_oob = qcom_nandc_write_oob;
1851
1852 ecc->mode = NAND_ECC_HW;
1853
1854 ecc->layout = qcom_nand_create_layout(host);
1855 if (!ecc->layout)
1856 return -ENOMEM;
1857
1858 cwperpage = mtd->writesize / ecc->size;
1859
1860 /*
1861 * DATA_UD_BYTES varies based on whether the read/write command protects
1862 * spare data with ECC too. We protect spare data by default, so we set
1863 * it to main + spare data, which are 512 and 4 bytes respectively.
1864 */
1865 host->cw_data = 516;
1866
1867 /*
1868 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
1869 * for 8 bit ECC
1870 */
1871 host->cw_size = host->cw_data + ecc->bytes;
1872
1873 if (ecc->bytes * (mtd->writesize / ecc->size) > mtd->oobsize) {
1874 dev_err(nandc->dev, "ecc data doesn't fit in OOB area\n");
1875 return -EINVAL;
1876 }
1877
1878 bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
1879
1880 host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
1881 | host->cw_data << UD_SIZE_BYTES
1882 | 0 << DISABLE_STATUS_AFTER_WRITE
1883 | 5 << NUM_ADDR_CYCLES
1884 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
1885 | 0 << STATUS_BFR_READ
1886 | 1 << SET_RD_MODE_AFTER_STATUS
1887 | host->spare_bytes << SPARE_SIZE_BYTES;
1888
1889 host->cfg1 = 7 << NAND_RECOVERY_CYCLES
1890 | 0 << CS_ACTIVE_BSY
1891 | bad_block_byte << BAD_BLOCK_BYTE_NUM
1892 | 0 << BAD_BLOCK_IN_SPARE_AREA
1893 | 2 << WR_RD_BSY_GAP
1894 | wide_bus << WIDE_FLASH
1895 | host->bch_enabled << ENABLE_BCH_ECC;
1896
1897 host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
1898 | host->cw_size << UD_SIZE_BYTES
1899 | 5 << NUM_ADDR_CYCLES
1900 | 0 << SPARE_SIZE_BYTES;
1901
1902 host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
1903 | 0 << CS_ACTIVE_BSY
1904 | 17 << BAD_BLOCK_BYTE_NUM
1905 | 1 << BAD_BLOCK_IN_SPARE_AREA
1906 | 2 << WR_RD_BSY_GAP
1907 | wide_bus << WIDE_FLASH
1908 | 1 << DEV0_CFG1_ECC_DISABLE;
1909
1910 host->ecc_bch_cfg = host->bch_enabled << ECC_CFG_ECC_DISABLE
1911 | 0 << ECC_SW_RESET
1912 | host->cw_data << ECC_NUM_DATA_BYTES
1913 | 1 << ECC_FORCE_CLK_OPEN
1914 | ecc_mode << ECC_MODE
1915 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
1916
1917 host->ecc_buf_cfg = 0x203 << NUM_STEPS;
1918
1919 host->clrflashstatus = FS_READY_BSY_N;
1920 host->clrreadstatus = 0xc0;
1921
1922 dev_dbg(nandc->dev,
1923 "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
1924 host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
1925 host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
1926 cwperpage);
1927
1928 return 0;
1929}
1930
1931static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
1932{
1933 int ret;
1934
1935 ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
1936 if (ret) {
1937 dev_err(nandc->dev, "failed to set DMA mask\n");
1938 return ret;
1939 }
1940
1941 /*
1942 * we use the internal buffer for reading ONFI params, reading small
1943 * data like ID and status, and preforming read-copy-write operations
1944 * when writing to a codeword partially. 532 is the maximum possible
1945 * size of a codeword for our nand controller
1946 */
1947 nandc->buf_size = 532;
1948
1949 nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
1950 GFP_KERNEL);
1951 if (!nandc->data_buffer)
1952 return -ENOMEM;
1953
1954 nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
1955 GFP_KERNEL);
1956 if (!nandc->regs)
1957 return -ENOMEM;
1958
1959 nandc->reg_read_buf = devm_kzalloc(nandc->dev,
1960 MAX_REG_RD * sizeof(*nandc->reg_read_buf),
1961 GFP_KERNEL);
1962 if (!nandc->reg_read_buf)
1963 return -ENOMEM;
1964
1965 nandc->chan = dma_request_slave_channel(nandc->dev, "rxtx");
1966 if (!nandc->chan) {
1967 dev_err(nandc->dev, "failed to request slave channel\n");
1968 return -ENODEV;
1969 }
1970
1971 INIT_LIST_HEAD(&nandc->desc_list);
1972 INIT_LIST_HEAD(&nandc->host_list);
1973
1974 spin_lock_init(&nandc->controller.lock);
1975 init_waitqueue_head(&nandc->controller.wq);
1976
1977 return 0;
1978}
1979
1980static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
1981{
1982 dma_release_channel(nandc->chan);
1983}
1984
1985/* one time setup of a few nand controller registers */
1986static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
1987{
1988 /* kill onenand */
1989 nandc_write(nandc, SFLASHC_BURST_CFG, 0);
1990
1991 /* enable ADM DMA */
1992 nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
1993
1994 /* save the original values of these registers */
1995 nandc->cmd1 = nandc_read(nandc, NAND_DEV_CMD1);
1996 nandc->vld = nandc_read(nandc, NAND_DEV_CMD_VLD);
1997
1998 return 0;
1999}
2000
2001static int qcom_nand_host_init(struct qcom_nand_controller *nandc,
2002 struct qcom_nand_host *host,
2003 struct device_node *dn)
2004{
2005 struct nand_chip *chip = &host->chip;
2006 struct mtd_info *mtd = nand_to_mtd(chip);
2007 struct device *dev = nandc->dev;
2008 int ret;
2009
2010 ret = of_property_read_u32(dn, "reg", &host->cs);
2011 if (ret) {
2012 dev_err(dev, "can't get chip-select\n");
2013 return -ENXIO;
2014 }
2015
2016 nand_set_flash_node(chip, dn);
2017 mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
2018 mtd->owner = THIS_MODULE;
2019 mtd->dev.parent = dev;
2020
2021 chip->cmdfunc = qcom_nandc_command;
2022 chip->select_chip = qcom_nandc_select_chip;
2023 chip->read_byte = qcom_nandc_read_byte;
2024 chip->read_buf = qcom_nandc_read_buf;
2025 chip->write_buf = qcom_nandc_write_buf;
2026
2027 /*
2028 * the bad block marker is readable only when we read the last codeword
2029 * of a page with ECC disabled. currently, the nand_base and nand_bbt
2030 * helpers don't allow us to read BB from a nand chip with ECC
2031 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2032 * and block_markbad helpers until we permanently switch to using
2033 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2034 */
2035 chip->block_bad = qcom_nandc_block_bad;
2036 chip->block_markbad = qcom_nandc_block_markbad;
2037
2038 chip->controller = &nandc->controller;
2039 chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER |
2040 NAND_SKIP_BBTSCAN;
2041
2042 /* set up initial status value */
2043 host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2044
2045 ret = nand_scan_ident(mtd, 1, NULL);
2046 if (ret)
2047 return ret;
2048
2049 ret = qcom_nand_host_setup(host);
2050 if (ret)
2051 return ret;
2052
2053 ret = nand_scan_tail(mtd);
2054 if (ret)
2055 return ret;
2056
2057 return mtd_device_register(mtd, NULL, 0);
2058}
2059
2060/* parse custom DT properties here */
2061static int qcom_nandc_parse_dt(struct platform_device *pdev)
2062{
2063 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2064 struct device_node *np = nandc->dev->of_node;
2065 int ret;
2066
2067 ret = of_property_read_u32(np, "qcom,cmd-crci", &nandc->cmd_crci);
2068 if (ret) {
2069 dev_err(nandc->dev, "command CRCI unspecified\n");
2070 return ret;
2071 }
2072
2073 ret = of_property_read_u32(np, "qcom,data-crci", &nandc->data_crci);
2074 if (ret) {
2075 dev_err(nandc->dev, "data CRCI unspecified\n");
2076 return ret;
2077 }
2078
2079 return 0;
2080}
2081
2082static int qcom_nandc_probe(struct platform_device *pdev)
2083{
2084 struct qcom_nand_controller *nandc;
2085 struct qcom_nand_host *host;
2086 const void *dev_data;
2087 struct device *dev = &pdev->dev;
2088 struct device_node *dn = dev->of_node, *child;
2089 struct resource *res;
2090 int ret;
2091
2092 nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
2093 if (!nandc)
2094 return -ENOMEM;
2095
2096 platform_set_drvdata(pdev, nandc);
2097 nandc->dev = dev;
2098
2099 dev_data = of_device_get_match_data(dev);
2100 if (!dev_data) {
2101 dev_err(&pdev->dev, "failed to get device data\n");
2102 return -ENODEV;
2103 }
2104
2105 nandc->ecc_modes = (unsigned long)dev_data;
2106
2107 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2108 nandc->base = devm_ioremap_resource(dev, res);
2109 if (IS_ERR(nandc->base))
2110 return PTR_ERR(nandc->base);
2111
2112 nandc->base_dma = phys_to_dma(dev, (phys_addr_t)res->start);
2113
2114 nandc->core_clk = devm_clk_get(dev, "core");
2115 if (IS_ERR(nandc->core_clk))
2116 return PTR_ERR(nandc->core_clk);
2117
2118 nandc->aon_clk = devm_clk_get(dev, "aon");
2119 if (IS_ERR(nandc->aon_clk))
2120 return PTR_ERR(nandc->aon_clk);
2121
2122 ret = qcom_nandc_parse_dt(pdev);
2123 if (ret)
2124 return ret;
2125
2126 ret = qcom_nandc_alloc(nandc);
2127 if (ret)
2128 return ret;
2129
2130 ret = clk_prepare_enable(nandc->core_clk);
2131 if (ret)
2132 goto err_core_clk;
2133
2134 ret = clk_prepare_enable(nandc->aon_clk);
2135 if (ret)
2136 goto err_aon_clk;
2137
2138 ret = qcom_nandc_setup(nandc);
2139 if (ret)
2140 goto err_setup;
2141
2142 for_each_available_child_of_node(dn, child) {
2143 if (of_device_is_compatible(child, "qcom,nandcs")) {
2144 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2145 if (!host) {
2146 of_node_put(child);
2147 ret = -ENOMEM;
2148 goto err_cs_init;
2149 }
2150
2151 ret = qcom_nand_host_init(nandc, host, child);
2152 if (ret) {
2153 devm_kfree(dev, host);
2154 continue;
2155 }
2156
2157 list_add_tail(&host->node, &nandc->host_list);
2158 }
2159 }
2160
2161 if (list_empty(&nandc->host_list)) {
2162 ret = -ENODEV;
2163 goto err_cs_init;
2164 }
2165
2166 return 0;
2167
2168err_cs_init:
2169 list_for_each_entry(host, &nandc->host_list, node)
2170 nand_release(nand_to_mtd(&host->chip));
2171err_setup:
2172 clk_disable_unprepare(nandc->aon_clk);
2173err_aon_clk:
2174 clk_disable_unprepare(nandc->core_clk);
2175err_core_clk:
2176 qcom_nandc_unalloc(nandc);
2177
2178 return ret;
2179}
2180
2181static int qcom_nandc_remove(struct platform_device *pdev)
2182{
2183 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2184 struct qcom_nand_host *host;
2185
2186 list_for_each_entry(host, &nandc->host_list, node)
2187 nand_release(nand_to_mtd(&host->chip));
2188
2189 qcom_nandc_unalloc(nandc);
2190
2191 clk_disable_unprepare(nandc->aon_clk);
2192 clk_disable_unprepare(nandc->core_clk);
2193
2194 return 0;
2195}
2196
2197#define EBI2_NANDC_ECC_MODES (ECC_RS_4BIT | ECC_BCH_8BIT)
2198
2199/*
2200 * data will hold a struct pointer containing more differences once we support
2201 * more controller variants
2202 */
2203static const struct of_device_id qcom_nandc_of_match[] = {
2204 { .compatible = "qcom,ipq806x-nand",
2205 .data = (void *)EBI2_NANDC_ECC_MODES,
2206 },
2207 {}
2208};
2209MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
2210
2211static struct platform_driver qcom_nandc_driver = {
2212 .driver = {
2213 .name = "qcom-nandc",
2214 .of_match_table = qcom_nandc_of_match,
2215 },
2216 .probe = qcom_nandc_probe,
2217 .remove = qcom_nandc_remove,
2218};
2219module_platform_driver(qcom_nandc_driver);
2220
2221MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
2222MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
2223MODULE_LICENSE("GPL v2");
This page took 0.109108 seconds and 5 git commands to generate.