Merge tag 'drm-intel-next-fixes-2016-05-25' of git://anongit.freedesktop.org/drm...
[deliverable/linux.git] / drivers / mtd / onenand / onenand_base.c
CommitLineData
cd5f6346
KP
1/*
2 * linux/drivers/mtd/onenand/onenand_base.c
3 *
3cf60253
AKS
4 * Copyright © 2005-2009 Samsung Electronics
5 * Copyright © 2007 Nokia Corporation
6 *
cd5f6346
KP
7 * Kyungmin Park <kyungmin.park@samsung.com>
8 *
81280d58
AH
9 * Credits:
10 * Adrian Hunter <ext-adrian.hunter@nokia.com>:
11 * auto-placement support, read-while load support, various fixes
81280d58 12 *
5988af23
RH
13 * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
14 * Flex-OneNAND support
3cf60253
AKS
15 * Amul Kumar Saha <amul.saha at samsung.com>
16 * OTP support
5988af23 17 *
cd5f6346
KP
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License version 2 as
20 * published by the Free Software Foundation.
21 */
22
23#include <linux/kernel.h>
24#include <linux/module.h>
c90173f0 25#include <linux/moduleparam.h>
5a0e3ad6 26#include <linux/slab.h>
015953d7 27#include <linux/sched.h>
6c77fd64 28#include <linux/delay.h>
2c22120f 29#include <linux/interrupt.h>
015953d7 30#include <linux/jiffies.h>
cd5f6346
KP
31#include <linux/mtd/mtd.h>
32#include <linux/mtd/onenand.h>
33#include <linux/mtd/partitions.h>
34
35#include <asm/io.h>
36
72073027
MK
37/*
38 * Multiblock erase if number of blocks to erase is 2 or more.
39 * Maximum number of blocks for simultaneous erase is 64.
40 */
41#define MB_ERASE_MIN_BLK_COUNT 2
42#define MB_ERASE_MAX_BLK_COUNT 64
43
5988af23
RH
44/* Default Flex-OneNAND boundary and lock respectively */
45static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
46
c90173f0
AS
47module_param_array(flex_bdry, int, NULL, 0400);
48MODULE_PARM_DESC(flex_bdry, "SLC Boundary information for Flex-OneNAND"
49 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
50 "DIE_BDRY: SLC boundary of the die"
51 "LOCK: Locking information for SLC boundary"
52 " : 0->Set boundary in unlocked status"
53 " : 1->Set boundary in locked status");
54
3cf60253
AKS
55/* Default OneNAND/Flex-OneNAND OTP options*/
56static int otp;
57
58module_param(otp, int, 0400);
59MODULE_PARM_DESC(otp, "Corresponding behaviour of OneNAND in OTP"
60 "Syntax : otp=LOCK_TYPE"
61 "LOCK_TYPE : Keys issued, for specific OTP Lock type"
62 " : 0 -> Default (No Blocks Locked)"
63 " : 1 -> OTP Block lock"
64 " : 2 -> 1st Block lock"
65 " : 3 -> BOTH OTP Block and 1st Block lock");
66
99b17c08
RT
67/*
68 * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
69 * For now, we expose only 64 out of 80 ecc bytes
5988af23 70 */
99b17c08 71static struct nand_ecclayout flexonenand_oob_128 = {
5988af23
RH
72 .eccbytes = 64,
73 .eccpos = {
74 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
75 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
76 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
77 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
78 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
79 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
80 102, 103, 104, 105
81 },
82 .oobfree = {
83 {2, 4}, {18, 4}, {34, 4}, {50, 4},
84 {66, 4}, {82, 4}, {98, 4}, {114, 4}
85 }
86};
87
99b17c08
RT
88/*
89 * onenand_oob_128 - oob info for OneNAND with 4KB page
90 *
91 * Based on specification:
92 * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
93 *
94 * For eccpos we expose only 64 bytes out of 72 (see struct nand_ecclayout)
95 *
96 * oobfree uses the spare area fields marked as
97 * "Managed by internal ECC logic for Logical Sector Number area"
98 */
99static struct nand_ecclayout onenand_oob_128 = {
100 .eccbytes = 64,
101 .eccpos = {
102 7, 8, 9, 10, 11, 12, 13, 14, 15,
103 23, 24, 25, 26, 27, 28, 29, 30, 31,
104 39, 40, 41, 42, 43, 44, 45, 46, 47,
105 55, 56, 57, 58, 59, 60, 61, 62, 63,
106 71, 72, 73, 74, 75, 76, 77, 78, 79,
107 87, 88, 89, 90, 91, 92, 93, 94, 95,
108 103, 104, 105, 106, 107, 108, 109, 110, 111,
109 119
110 },
111 .oobfree = {
112 {2, 3}, {18, 3}, {34, 3}, {50, 3},
113 {66, 3}, {82, 3}, {98, 3}, {114, 3}
114 }
115};
116
cd5f6346
KP
117/**
118 * onenand_oob_64 - oob info for large (2KB) page
119 */
5bd34c09 120static struct nand_ecclayout onenand_oob_64 = {
cd5f6346
KP
121 .eccbytes = 20,
122 .eccpos = {
123 8, 9, 10, 11, 12,
124 24, 25, 26, 27, 28,
125 40, 41, 42, 43, 44,
126 56, 57, 58, 59, 60,
127 },
128 .oobfree = {
129 {2, 3}, {14, 2}, {18, 3}, {30, 2},
d9777f1c
JL
130 {34, 3}, {46, 2}, {50, 3}, {62, 2}
131 }
cd5f6346
KP
132};
133
134/**
135 * onenand_oob_32 - oob info for middle (1KB) page
136 */
5bd34c09 137static struct nand_ecclayout onenand_oob_32 = {
cd5f6346
KP
138 .eccbytes = 10,
139 .eccpos = {
140 8, 9, 10, 11, 12,
141 24, 25, 26, 27, 28,
142 },
143 .oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
144};
145
146static const unsigned char ffchars[] = {
147 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
148 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
149 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
150 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
151 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
152 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
153 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
154 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
5988af23
RH
155 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
156 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
157 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
158 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
159 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
160 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
161 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
162 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
cd5f6346
KP
163};
164
165/**
166 * onenand_readw - [OneNAND Interface] Read OneNAND register
167 * @param addr address to read
168 *
169 * Read OneNAND register
170 */
171static unsigned short onenand_readw(void __iomem *addr)
172{
173 return readw(addr);
174}
175
176/**
177 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
178 * @param value value to write
179 * @param addr address to write
180 *
181 * Write OneNAND register with value
182 */
183static void onenand_writew(unsigned short value, void __iomem *addr)
184{
185 writew(value, addr);
186}
187
188/**
189 * onenand_block_address - [DEFAULT] Get block address
83a36838 190 * @param this onenand chip data structure
cd5f6346
KP
191 * @param block the block
192 * @return translated block address if DDP, otherwise same
193 *
194 * Setup Start Address 1 Register (F100h)
195 */
83a36838 196static int onenand_block_address(struct onenand_chip *this, int block)
cd5f6346 197{
738d61f5
KP
198 /* Device Flash Core select, NAND Flash Block Address */
199 if (block & this->density_mask)
200 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
cd5f6346
KP
201
202 return block;
203}
204
205/**
206 * onenand_bufferram_address - [DEFAULT] Get bufferram address
83a36838 207 * @param this onenand chip data structure
cd5f6346
KP
208 * @param block the block
209 * @return set DBS value if DDP, otherwise 0
210 *
211 * Setup Start Address 2 Register (F101h) for DDP
212 */
83a36838 213static int onenand_bufferram_address(struct onenand_chip *this, int block)
cd5f6346 214{
738d61f5
KP
215 /* Device BufferRAM Select */
216 if (block & this->density_mask)
217 return ONENAND_DDP_CHIP1;
cd5f6346 218
738d61f5 219 return ONENAND_DDP_CHIP0;
cd5f6346
KP
220}
221
222/**
223 * onenand_page_address - [DEFAULT] Get page address
224 * @param page the page address
225 * @param sector the sector address
226 * @return combined page and sector address
227 *
228 * Setup Start Address 8 Register (F107h)
229 */
230static int onenand_page_address(int page, int sector)
231{
232 /* Flash Page Address, Flash Sector Address */
233 int fpa, fsa;
234
235 fpa = page & ONENAND_FPA_MASK;
236 fsa = sector & ONENAND_FSA_MASK;
237
238 return ((fpa << ONENAND_FPA_SHIFT) | fsa);
239}
240
241/**
242 * onenand_buffer_address - [DEFAULT] Get buffer address
243 * @param dataram1 DataRAM index
244 * @param sectors the sector address
245 * @param count the number of sectors
246 * @return the start buffer value
247 *
248 * Setup Start Buffer Register (F200h)
249 */
250static int onenand_buffer_address(int dataram1, int sectors, int count)
251{
252 int bsa, bsc;
253
254 /* BufferRAM Sector Address */
255 bsa = sectors & ONENAND_BSA_MASK;
256
257 if (dataram1)
258 bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */
259 else
260 bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */
261
262 /* BufferRAM Sector Count */
263 bsc = count & ONENAND_BSC_MASK;
264
265 return ((bsa << ONENAND_BSA_SHIFT) | bsc);
266}
267
5988af23
RH
268/**
269 * flexonenand_block- For given address return block number
270 * @param this - OneNAND device structure
271 * @param addr - Address for which block number is needed
272 */
273static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
274{
275 unsigned boundary, blk, die = 0;
276
277 if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
278 die = 1;
279 addr -= this->diesize[0];
280 }
281
282 boundary = this->boundary[die];
283
284 blk = addr >> (this->erase_shift - 1);
285 if (blk > boundary)
286 blk = (blk + boundary + 1) >> 1;
287
288 blk += die ? this->density_mask : 0;
289 return blk;
290}
291
292inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
293{
294 if (!FLEXONENAND(this))
295 return addr >> this->erase_shift;
296 return flexonenand_block(this, addr);
297}
298
299/**
300 * flexonenand_addr - Return address of the block
301 * @this: OneNAND device structure
302 * @block: Block number on Flex-OneNAND
303 *
304 * Return address of the block
305 */
306static loff_t flexonenand_addr(struct onenand_chip *this, int block)
307{
308 loff_t ofs = 0;
309 int die = 0, boundary;
310
311 if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
312 block -= this->density_mask;
313 die = 1;
314 ofs = this->diesize[0];
315 }
316
317 boundary = this->boundary[die];
318 ofs += (loff_t)block << (this->erase_shift - 1);
319 if (block > (boundary + 1))
320 ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
321 return ofs;
322}
323
324loff_t onenand_addr(struct onenand_chip *this, int block)
325{
326 if (!FLEXONENAND(this))
327 return (loff_t)block << this->erase_shift;
328 return flexonenand_addr(this, block);
329}
330EXPORT_SYMBOL(onenand_addr);
331
e71f04fc
KP
332/**
333 * onenand_get_density - [DEFAULT] Get OneNAND density
334 * @param dev_id OneNAND device ID
335 *
336 * Get OneNAND density from device ID
337 */
338static inline int onenand_get_density(int dev_id)
339{
340 int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
341 return (density & ONENAND_DEVICE_DENSITY_MASK);
342}
343
5988af23
RH
344/**
345 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
346 * @param mtd MTD device structure
347 * @param addr address whose erase region needs to be identified
348 */
349int flexonenand_region(struct mtd_info *mtd, loff_t addr)
350{
351 int i;
352
353 for (i = 0; i < mtd->numeraseregions; i++)
354 if (addr < mtd->eraseregions[i].offset)
355 break;
356 return i - 1;
357}
358EXPORT_SYMBOL(flexonenand_region);
359
cd5f6346
KP
360/**
361 * onenand_command - [DEFAULT] Send command to OneNAND device
362 * @param mtd MTD device structure
363 * @param cmd the command to be sent
364 * @param addr offset to read from or write to
365 * @param len number of bytes to read or write
366 *
367 * Send command to OneNAND device. This function is used for middle/large page
368 * devices (1KB/2KB Bytes per page)
369 */
370static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
371{
372 struct onenand_chip *this = mtd->priv;
b21b72cf 373 int value, block, page;
cd5f6346
KP
374
375 /* Address translation */
376 switch (cmd) {
377 case ONENAND_CMD_UNLOCK:
378 case ONENAND_CMD_LOCK:
379 case ONENAND_CMD_LOCK_TIGHT:
28b79ff9 380 case ONENAND_CMD_UNLOCK_ALL:
cd5f6346
KP
381 block = -1;
382 page = -1;
383 break;
384
5988af23
RH
385 case FLEXONENAND_CMD_PI_ACCESS:
386 /* addr contains die index */
387 block = addr * this->density_mask;
388 page = -1;
389 break;
390
cd5f6346 391 case ONENAND_CMD_ERASE:
72073027
MK
392 case ONENAND_CMD_MULTIBLOCK_ERASE:
393 case ONENAND_CMD_ERASE_VERIFY:
cd5f6346 394 case ONENAND_CMD_BUFFERRAM:
493c6460 395 case ONENAND_CMD_OTP_ACCESS:
5988af23 396 block = onenand_block(this, addr);
cd5f6346
KP
397 page = -1;
398 break;
399
5988af23
RH
400 case FLEXONENAND_CMD_READ_PI:
401 cmd = ONENAND_CMD_READ;
402 block = addr * this->density_mask;
403 page = 0;
404 break;
405
cd5f6346 406 default:
5988af23 407 block = onenand_block(this, addr);
42b0aab1
RHS
408 if (FLEXONENAND(this))
409 page = (int) (addr - onenand_addr(this, block))>>\
410 this->page_shift;
411 else
412 page = (int) (addr >> this->page_shift);
ee9745fc
KP
413 if (ONENAND_IS_2PLANE(this)) {
414 /* Make the even block number */
415 block &= ~1;
416 /* Is it the odd plane? */
417 if (addr & this->writesize)
418 block++;
419 page >>= 1;
420 }
cd5f6346
KP
421 page &= this->page_mask;
422 break;
423 }
424
425 /* NOTE: The setting order of the registers is very important! */
426 if (cmd == ONENAND_CMD_BUFFERRAM) {
427 /* Select DataRAM for DDP */
83a36838 428 value = onenand_bufferram_address(this, block);
cd5f6346
KP
429 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
430
8a8f632d 431 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
ee9745fc
KP
432 /* It is always BufferRAM0 */
433 ONENAND_SET_BUFFERRAM0(this);
434 else
435 /* Switch to the next data buffer */
436 ONENAND_SET_NEXT_BUFFERRAM(this);
cd5f6346
KP
437
438 return 0;
439 }
440
441 if (block != -1) {
442 /* Write 'DFS, FBA' of Flash */
83a36838 443 value = onenand_block_address(this, block);
cd5f6346 444 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
3cecf69e 445
b21b72cf
KP
446 /* Select DataRAM for DDP */
447 value = onenand_bufferram_address(this, block);
448 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
cd5f6346
KP
449 }
450
451 if (page != -1) {
60d84f97 452 /* Now we use page size operation */
5988af23 453 int sectors = 0, count = 0;
cd5f6346
KP
454 int dataram;
455
456 switch (cmd) {
5988af23 457 case FLEXONENAND_CMD_RECOVER_LSB:
cd5f6346
KP
458 case ONENAND_CMD_READ:
459 case ONENAND_CMD_READOOB:
8a8f632d 460 if (ONENAND_IS_4KB_PAGE(this))
5988af23
RH
461 /* It is always BufferRAM0 */
462 dataram = ONENAND_SET_BUFFERRAM0(this);
463 else
464 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
cd5f6346
KP
465 break;
466
467 default:
ee9745fc
KP
468 if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
469 cmd = ONENAND_CMD_2X_PROG;
cd5f6346
KP
470 dataram = ONENAND_CURRENT_BUFFERRAM(this);
471 break;
472 }
473
474 /* Write 'FPA, FSA' of Flash */
475 value = onenand_page_address(page, sectors);
476 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
477
478 /* Write 'BSA, BSC' of DataRAM */
479 value = onenand_buffer_address(dataram, sectors, count);
480 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
cd5f6346
KP
481 }
482
483 /* Interrupt clear */
484 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
485
486 /* Write command */
487 this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
488
489 return 0;
490}
491
5988af23
RH
492/**
493 * onenand_read_ecc - return ecc status
494 * @param this onenand chip structure
495 */
496static inline int onenand_read_ecc(struct onenand_chip *this)
497{
498 int ecc, i, result = 0;
499
6a88c47b 500 if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
5988af23
RH
501 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
502
503 for (i = 0; i < 4; i++) {
6a88c47b 504 ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
5988af23
RH
505 if (likely(!ecc))
506 continue;
507 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
508 return ONENAND_ECC_2BIT_ALL;
509 else
510 result = ONENAND_ECC_1BIT_ALL;
511 }
512
513 return result;
514}
515
cd5f6346
KP
516/**
517 * onenand_wait - [DEFAULT] wait until the command is done
518 * @param mtd MTD device structure
519 * @param state state to select the max. timeout value
520 *
521 * Wait for command done. This applies to all OneNAND command
522 * Read can take up to 30us, erase up to 2ms and program up to 350us
523 * according to general OneNAND specs
524 */
525static int onenand_wait(struct mtd_info *mtd, int state)
526{
527 struct onenand_chip * this = mtd->priv;
528 unsigned long timeout;
529 unsigned int flags = ONENAND_INT_MASTER;
530 unsigned int interrupt = 0;
2fd32d4a 531 unsigned int ctrl;
cd5f6346
KP
532
533 /* The 20 msec is enough */
534 timeout = jiffies + msecs_to_jiffies(20);
535 while (time_before(jiffies, timeout)) {
536 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
537
538 if (interrupt & flags)
539 break;
540
72073027 541 if (state != FL_READING && state != FL_PREPARING_ERASE)
cd5f6346
KP
542 cond_resched();
543 }
544 /* To get correct interrupt status in timeout case */
545 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
546
547 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
548
83973b87
KP
549 /*
550 * In the Spec. it checks the controller status first
551 * However if you get the correct information in case of
552 * power off recovery (POR) test, it should read ECC status first
553 */
cd5f6346 554 if (interrupt & ONENAND_INT_READ) {
5988af23 555 int ecc = onenand_read_ecc(this);
f4f91ac3 556 if (ecc) {
b3c9f8bf 557 if (ecc & ONENAND_ECC_2BIT_ALL) {
297758f8
AKS
558 printk(KERN_ERR "%s: ECC error = 0x%04x\n",
559 __func__, ecc);
f4f91ac3 560 mtd->ecc_stats.failed++;
30a7eb29 561 return -EBADMSG;
49dc08ee 562 } else if (ecc & ONENAND_ECC_1BIT_ALL) {
297758f8
AKS
563 printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
564 __func__, ecc);
f4f91ac3 565 mtd->ecc_stats.corrected++;
49dc08ee 566 }
cd5f6346 567 }
9d032801 568 } else if (state == FL_READING) {
297758f8
AKS
569 printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
570 __func__, ctrl, interrupt);
9d032801 571 return -EIO;
cd5f6346
KP
572 }
573
72073027
MK
574 if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
575 printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
576 __func__, ctrl, interrupt);
577 return -EIO;
578 }
579
580 if (!(interrupt & ONENAND_INT_MASTER)) {
581 printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
582 __func__, ctrl, interrupt);
583 return -EIO;
584 }
585
83973b87
KP
586 /* If there's controller error, it's a real error */
587 if (ctrl & ONENAND_CTRL_ERROR) {
297758f8
AKS
588 printk(KERN_ERR "%s: controller error = 0x%04x\n",
589 __func__, ctrl);
83973b87 590 if (ctrl & ONENAND_CTRL_LOCK)
297758f8 591 printk(KERN_ERR "%s: it's locked error.\n", __func__);
83973b87
KP
592 return -EIO;
593 }
594
cd5f6346
KP
595 return 0;
596}
597
2c22120f
KP
598/*
599 * onenand_interrupt - [DEFAULT] onenand interrupt handler
600 * @param irq onenand interrupt number
601 * @param dev_id interrupt data
602 *
603 * complete the work
604 */
605static irqreturn_t onenand_interrupt(int irq, void *data)
606{
06efcad0 607 struct onenand_chip *this = data;
2c22120f
KP
608
609 /* To handle shared interrupt */
610 if (!this->complete.done)
611 complete(&this->complete);
612
613 return IRQ_HANDLED;
614}
615
616/*
617 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
618 * @param mtd MTD device structure
619 * @param state state to select the max. timeout value
620 *
621 * Wait for command done.
622 */
623static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
624{
625 struct onenand_chip *this = mtd->priv;
626
2c22120f
KP
627 wait_for_completion(&this->complete);
628
629 return onenand_wait(mtd, state);
630}
631
632/*
633 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
634 * @param mtd MTD device structure
635 * @param state state to select the max. timeout value
636 *
637 * Try interrupt based wait (It is used one-time)
638 */
639static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
640{
641 struct onenand_chip *this = mtd->priv;
642 unsigned long remain, timeout;
643
644 /* We use interrupt wait first */
645 this->wait = onenand_interrupt_wait;
646
2c22120f
KP
647 timeout = msecs_to_jiffies(100);
648 remain = wait_for_completion_timeout(&this->complete, timeout);
649 if (!remain) {
650 printk(KERN_INFO "OneNAND: There's no interrupt. "
651 "We use the normal wait\n");
652
653 /* Release the irq */
654 free_irq(this->irq, this);
c9ac5977 655
2c22120f
KP
656 this->wait = onenand_wait;
657 }
658
659 return onenand_wait(mtd, state);
660}
661
662/*
663 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
664 * @param mtd MTD device structure
665 *
666 * There's two method to wait onenand work
667 * 1. polling - read interrupt status register
668 * 2. interrupt - use the kernel interrupt method
669 */
670static void onenand_setup_wait(struct mtd_info *mtd)
671{
672 struct onenand_chip *this = mtd->priv;
673 int syscfg;
674
675 init_completion(&this->complete);
676
677 if (this->irq <= 0) {
678 this->wait = onenand_wait;
679 return;
680 }
681
682 if (request_irq(this->irq, &onenand_interrupt,
683 IRQF_SHARED, "onenand", this)) {
684 /* If we can't get irq, use the normal wait */
685 this->wait = onenand_wait;
686 return;
687 }
688
689 /* Enable interrupt */
690 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
691 syscfg |= ONENAND_SYS_CFG1_IOBE;
692 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
693
694 this->wait = onenand_try_interrupt_wait;
695}
696
cd5f6346
KP
697/**
698 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
699 * @param mtd MTD data structure
700 * @param area BufferRAM area
701 * @return offset given area
702 *
703 * Return BufferRAM offset given area
704 */
705static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
706{
707 struct onenand_chip *this = mtd->priv;
708
709 if (ONENAND_CURRENT_BUFFERRAM(this)) {
ee9745fc 710 /* Note: the 'this->writesize' is a real page size */
cd5f6346 711 if (area == ONENAND_DATARAM)
ee9745fc 712 return this->writesize;
cd5f6346
KP
713 if (area == ONENAND_SPARERAM)
714 return mtd->oobsize;
715 }
716
717 return 0;
718}
719
720/**
721 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
722 * @param mtd MTD data structure
723 * @param area BufferRAM area
724 * @param buffer the databuffer to put/get data
725 * @param offset offset to read from or write to
726 * @param count number of bytes to read/write
727 *
728 * Read the BufferRAM area
729 */
730static int onenand_read_bufferram(struct mtd_info *mtd, int area,
731 unsigned char *buffer, int offset, size_t count)
732{
733 struct onenand_chip *this = mtd->priv;
734 void __iomem *bufferram;
735
736 bufferram = this->base + area;
737
738 bufferram += onenand_bufferram_offset(mtd, area);
739
9c01f87d
KP
740 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
741 unsigned short word;
742
743 /* Align with word(16-bit) size */
744 count--;
745
746 /* Read word and save byte */
747 word = this->read_word(bufferram + offset + count);
748 buffer[count] = (word & 0xff);
749 }
750
cd5f6346
KP
751 memcpy(buffer, bufferram + offset, count);
752
753 return 0;
754}
755
52b0eea7
KP
756/**
757 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
758 * @param mtd MTD data structure
759 * @param area BufferRAM area
760 * @param buffer the databuffer to put/get data
761 * @param offset offset to read from or write to
762 * @param count number of bytes to read/write
763 *
764 * Read the BufferRAM area with Sync. Burst Mode
765 */
766static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
767 unsigned char *buffer, int offset, size_t count)
768{
769 struct onenand_chip *this = mtd->priv;
770 void __iomem *bufferram;
771
772 bufferram = this->base + area;
773
774 bufferram += onenand_bufferram_offset(mtd, area);
775
776 this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
777
9c01f87d
KP
778 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
779 unsigned short word;
780
781 /* Align with word(16-bit) size */
782 count--;
783
784 /* Read word and save byte */
785 word = this->read_word(bufferram + offset + count);
786 buffer[count] = (word & 0xff);
787 }
788
52b0eea7
KP
789 memcpy(buffer, bufferram + offset, count);
790
791 this->mmcontrol(mtd, 0);
792
793 return 0;
794}
795
cd5f6346
KP
796/**
797 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
798 * @param mtd MTD data structure
799 * @param area BufferRAM area
800 * @param buffer the databuffer to put/get data
801 * @param offset offset to read from or write to
802 * @param count number of bytes to read/write
803 *
804 * Write the BufferRAM area
805 */
806static int onenand_write_bufferram(struct mtd_info *mtd, int area,
807 const unsigned char *buffer, int offset, size_t count)
808{
809 struct onenand_chip *this = mtd->priv;
810 void __iomem *bufferram;
811
812 bufferram = this->base + area;
813
814 bufferram += onenand_bufferram_offset(mtd, area);
815
9c01f87d
KP
816 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
817 unsigned short word;
818 int byte_offset;
819
820 /* Align with word(16-bit) size */
821 count--;
822
823 /* Calculate byte access offset */
824 byte_offset = offset + count;
825
826 /* Read word and save byte */
827 word = this->read_word(bufferram + byte_offset);
828 word = (word & ~0xff) | buffer[count];
829 this->write_word(word, bufferram + byte_offset);
830 }
831
cd5f6346
KP
832 memcpy(bufferram + offset, buffer, count);
833
834 return 0;
835}
836
ee9745fc
KP
837/**
838 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
839 * @param mtd MTD data structure
840 * @param addr address to check
841 * @return blockpage address
842 *
843 * Get blockpage address at 2x program mode
844 */
845static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
846{
847 struct onenand_chip *this = mtd->priv;
848 int blockpage, block, page;
849
850 /* Calculate the even block number */
851 block = (int) (addr >> this->erase_shift) & ~1;
852 /* Is it the odd plane? */
853 if (addr & this->writesize)
854 block++;
855 page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
856 blockpage = (block << 7) | page;
857
858 return blockpage;
859}
860
cd5f6346
KP
861/**
862 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
863 * @param mtd MTD data structure
864 * @param addr address to check
d5c5e78a 865 * @return 1 if there are valid data, otherwise 0
cd5f6346
KP
866 *
867 * Check bufferram if there is data we required
868 */
869static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
870{
871 struct onenand_chip *this = mtd->priv;
cde36b37 872 int blockpage, found = 0;
abf3c0f2 873 unsigned int i;
d5c5e78a 874
ee9745fc
KP
875 if (ONENAND_IS_2PLANE(this))
876 blockpage = onenand_get_2x_blockpage(mtd, addr);
877 else
878 blockpage = (int) (addr >> this->page_shift);
cd5f6346 879
abf3c0f2 880 /* Is there valid data? */
cd5f6346 881 i = ONENAND_CURRENT_BUFFERRAM(this);
abf3c0f2 882 if (this->bufferram[i].blockpage == blockpage)
cde36b37
AH
883 found = 1;
884 else {
885 /* Check another BufferRAM */
886 i = ONENAND_NEXT_BUFFERRAM(this);
887 if (this->bufferram[i].blockpage == blockpage) {
888 ONENAND_SET_NEXT_BUFFERRAM(this);
889 found = 1;
890 }
891 }
cd5f6346 892
cde36b37
AH
893 if (found && ONENAND_IS_DDP(this)) {
894 /* Select DataRAM for DDP */
5988af23 895 int block = onenand_block(this, addr);
cde36b37
AH
896 int value = onenand_bufferram_address(this, block);
897 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
abf3c0f2 898 }
cd5f6346 899
cde36b37 900 return found;
cd5f6346
KP
901}
902
903/**
904 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
905 * @param mtd MTD data structure
906 * @param addr address to update
907 * @param valid valid flag
908 *
909 * Update BufferRAM information
910 */
abf3c0f2 911static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
cd5f6346
KP
912 int valid)
913{
914 struct onenand_chip *this = mtd->priv;
abf3c0f2
KP
915 int blockpage;
916 unsigned int i;
d5c5e78a 917
ee9745fc
KP
918 if (ONENAND_IS_2PLANE(this))
919 blockpage = onenand_get_2x_blockpage(mtd, addr);
920 else
921 blockpage = (int) (addr >> this->page_shift);
cd5f6346 922
abf3c0f2
KP
923 /* Invalidate another BufferRAM */
924 i = ONENAND_NEXT_BUFFERRAM(this);
5b4246f1 925 if (this->bufferram[i].blockpage == blockpage)
abf3c0f2 926 this->bufferram[i].blockpage = -1;
cd5f6346
KP
927
928 /* Update BufferRAM */
929 i = ONENAND_CURRENT_BUFFERRAM(this);
abf3c0f2
KP
930 if (valid)
931 this->bufferram[i].blockpage = blockpage;
932 else
933 this->bufferram[i].blockpage = -1;
cd5f6346
KP
934}
935
480b9dfb
AH
936/**
937 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
938 * @param mtd MTD data structure
939 * @param addr start address to invalidate
940 * @param len length to invalidate
941 *
942 * Invalidate BufferRAM information
943 */
944static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
945 unsigned int len)
946{
947 struct onenand_chip *this = mtd->priv;
948 int i;
949 loff_t end_addr = addr + len;
950
951 /* Invalidate BufferRAM */
952 for (i = 0; i < MAX_BUFFERRAM; i++) {
953 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
954 if (buf_addr >= addr && buf_addr < end_addr)
955 this->bufferram[i].blockpage = -1;
956 }
957}
958
cd5f6346
KP
959/**
960 * onenand_get_device - [GENERIC] Get chip for selected access
961 * @param mtd MTD device structure
962 * @param new_state the state which is requested
963 *
964 * Get the device and lock it for exclusive access
965 */
a41371eb 966static int onenand_get_device(struct mtd_info *mtd, int new_state)
cd5f6346
KP
967{
968 struct onenand_chip *this = mtd->priv;
969 DECLARE_WAITQUEUE(wait, current);
970
971 /*
972 * Grab the lock and see if the device is available
973 */
974 while (1) {
975 spin_lock(&this->chip_lock);
976 if (this->state == FL_READY) {
977 this->state = new_state;
978 spin_unlock(&this->chip_lock);
cf24dc85
AH
979 if (new_state != FL_PM_SUSPENDED && this->enable)
980 this->enable(mtd);
cd5f6346
KP
981 break;
982 }
a41371eb
KP
983 if (new_state == FL_PM_SUSPENDED) {
984 spin_unlock(&this->chip_lock);
985 return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
986 }
cd5f6346
KP
987 set_current_state(TASK_UNINTERRUPTIBLE);
988 add_wait_queue(&this->wq, &wait);
989 spin_unlock(&this->chip_lock);
990 schedule();
991 remove_wait_queue(&this->wq, &wait);
992 }
a41371eb
KP
993
994 return 0;
cd5f6346
KP
995}
996
997/**
998 * onenand_release_device - [GENERIC] release chip
999 * @param mtd MTD device structure
1000 *
1001 * Deselect, release chip lock and wake up anyone waiting on the device
1002 */
1003static void onenand_release_device(struct mtd_info *mtd)
1004{
1005 struct onenand_chip *this = mtd->priv;
1006
cf24dc85
AH
1007 if (this->state != FL_PM_SUSPENDED && this->disable)
1008 this->disable(mtd);
cd5f6346
KP
1009 /* Release the chip */
1010 spin_lock(&this->chip_lock);
1011 this->state = FL_READY;
1012 wake_up(&this->wq);
1013 spin_unlock(&this->chip_lock);
1014}
1015
1016/**
7854d3f7 1017 * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
d15057b7
KP
1018 * @param mtd MTD device structure
1019 * @param buf destination address
1020 * @param column oob offset to read from
1021 * @param thislen oob length to read
1022 */
1023static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
1024 int thislen)
1025{
1026 struct onenand_chip *this = mtd->priv;
1027 struct nand_oobfree *free;
1028 int readcol = column;
1029 int readend = column + thislen;
1030 int lastgap = 0;
1031 unsigned int i;
1032 uint8_t *oob_buf = this->oob_buf;
1033
1034 free = this->ecclayout->oobfree;
1035 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1036 if (readcol >= lastgap)
1037 readcol += free->offset - lastgap;
1038 if (readend >= lastgap)
1039 readend += free->offset - lastgap;
1040 lastgap = free->offset + free->length;
1041 }
1042 this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1043 free = this->ecclayout->oobfree;
1044 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1045 int free_end = free->offset + free->length;
1046 if (free->offset < readend && free_end > readcol) {
1047 int st = max_t(int,free->offset,readcol);
1048 int ed = min_t(int,free_end,readend);
1049 int n = ed - st;
1050 memcpy(buf, oob_buf + st, n);
1051 buf += n;
1052 } else if (column == 0)
1053 break;
1054 }
1055 return 0;
1056}
1057
5988af23
RH
1058/**
1059 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1060 * @param mtd MTD device structure
1061 * @param addr address to recover
1062 * @param status return value from onenand_wait / onenand_bbt_wait
1063 *
1064 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1065 * lower page address and MSB page has higher page address in paired pages.
1066 * If power off occurs during MSB page program, the paired LSB page data can
1067 * become corrupt. LSB page recovery read is a way to read LSB page though page
1068 * data are corrupted. When uncorrectable error occurs as a result of LSB page
1069 * read after power up, issue LSB page recovery read.
1070 */
1071static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1072{
1073 struct onenand_chip *this = mtd->priv;
1074 int i;
1075
1076 /* Recovery is only for Flex-OneNAND */
1077 if (!FLEXONENAND(this))
1078 return status;
1079
1080 /* check if we failed due to uncorrectable error */
d57f4054 1081 if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
5988af23
RH
1082 return status;
1083
1084 /* check if address lies in MLC region */
1085 i = flexonenand_region(mtd, addr);
1086 if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1087 return status;
1088
1089 /* We are attempting to reread, so decrement stats.failed
1090 * which was incremented by onenand_wait due to read failure
1091 */
297758f8
AKS
1092 printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1093 __func__);
5988af23
RH
1094 mtd->ecc_stats.failed--;
1095
1096 /* Issue the LSB page recovery command */
1097 this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1098 return this->wait(mtd, FL_READING);
1099}
1100
1101/**
1102 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1103 * @param mtd MTD device structure
1104 * @param from offset to read from
1105 * @param ops: oob operation description structure
1106 *
1107 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1108 * So, read-while-load is not present.
1109 */
1110static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1111 struct mtd_oob_ops *ops)
1112{
1113 struct onenand_chip *this = mtd->priv;
1114 struct mtd_ecc_stats stats;
1115 size_t len = ops->len;
1116 size_t ooblen = ops->ooblen;
1117 u_char *buf = ops->datbuf;
1118 u_char *oobbuf = ops->oobbuf;
1119 int read = 0, column, thislen;
1120 int oobread = 0, oobcolumn, thisooblen, oobsize;
1121 int ret = 0;
1122 int writesize = this->writesize;
1123
0a32a102
BN
1124 pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1125 (int)len);
5988af23 1126
29f1058a 1127 oobsize = mtd_oobavail(mtd, ops);
5988af23
RH
1128 oobcolumn = from & (mtd->oobsize - 1);
1129
1130 /* Do not allow reads past end of device */
1131 if (from + len > mtd->size) {
297758f8
AKS
1132 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1133 __func__);
5988af23
RH
1134 ops->retlen = 0;
1135 ops->oobretlen = 0;
1136 return -EINVAL;
1137 }
1138
1139 stats = mtd->ecc_stats;
1140
1141 while (read < len) {
1142 cond_resched();
1143
1144 thislen = min_t(int, writesize, len - read);
1145
1146 column = from & (writesize - 1);
1147 if (column + thislen > writesize)
1148 thislen = writesize - column;
1149
1150 if (!onenand_check_bufferram(mtd, from)) {
1151 this->command(mtd, ONENAND_CMD_READ, from, writesize);
1152
1153 ret = this->wait(mtd, FL_READING);
1154 if (unlikely(ret))
1155 ret = onenand_recover_lsb(mtd, from, ret);
1156 onenand_update_bufferram(mtd, from, !ret);
d57f4054 1157 if (mtd_is_eccerr(ret))
5988af23 1158 ret = 0;
b085058f
AH
1159 if (ret)
1160 break;
5988af23
RH
1161 }
1162
1163 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1164 if (oobbuf) {
1165 thisooblen = oobsize - oobcolumn;
1166 thisooblen = min_t(int, thisooblen, ooblen - oobread);
1167
0612b9dd 1168 if (ops->mode == MTD_OPS_AUTO_OOB)
5988af23
RH
1169 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1170 else
1171 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1172 oobread += thisooblen;
1173 oobbuf += thisooblen;
1174 oobcolumn = 0;
1175 }
1176
1177 read += thislen;
1178 if (read == len)
1179 break;
1180
1181 from += thislen;
1182 buf += thislen;
1183 }
1184
1185 /*
1186 * Return success, if no ECC failures, else -EBADMSG
1187 * fs driver will take care of that, because
1188 * retlen == desired len and result == -EBADMSG
1189 */
1190 ops->retlen = read;
1191 ops->oobretlen = oobread;
1192
1193 if (ret)
1194 return ret;
1195
1196 if (mtd->ecc_stats.failed - stats.failed)
1197 return -EBADMSG;
1198
edbc4540
MD
1199 /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1200 return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
5988af23
RH
1201}
1202
d15057b7 1203/**
49dc08ee 1204 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
cd5f6346
KP
1205 * @param mtd MTD device structure
1206 * @param from offset to read from
d15057b7 1207 * @param ops: oob operation description structure
cd5f6346 1208 *
d15057b7
KP
1209 * OneNAND read main and/or out-of-band data
1210 */
49dc08ee 1211static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
d15057b7 1212 struct mtd_oob_ops *ops)
cd5f6346
KP
1213{
1214 struct onenand_chip *this = mtd->priv;
f4f91ac3 1215 struct mtd_ecc_stats stats;
d15057b7
KP
1216 size_t len = ops->len;
1217 size_t ooblen = ops->ooblen;
1218 u_char *buf = ops->datbuf;
1219 u_char *oobbuf = ops->oobbuf;
1220 int read = 0, column, thislen;
1221 int oobread = 0, oobcolumn, thisooblen, oobsize;
0fc2ccea 1222 int ret = 0, boundary = 0;
ee9745fc 1223 int writesize = this->writesize;
cd5f6346 1224
0a32a102
BN
1225 pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1226 (int)len);
d15057b7 1227
29f1058a 1228 oobsize = mtd_oobavail(mtd, ops);
d15057b7 1229 oobcolumn = from & (mtd->oobsize - 1);
cd5f6346
KP
1230
1231 /* Do not allow reads past end of device */
1232 if ((from + len) > mtd->size) {
297758f8
AKS
1233 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1234 __func__);
d15057b7
KP
1235 ops->retlen = 0;
1236 ops->oobretlen = 0;
cd5f6346
KP
1237 return -EINVAL;
1238 }
1239
f4f91ac3 1240 stats = mtd->ecc_stats;
61a7e198 1241
a8de85d5
AH
1242 /* Read-while-load method */
1243
1244 /* Do first load to bufferRAM */
1245 if (read < len) {
1246 if (!onenand_check_bufferram(mtd, from)) {
ee9745fc 1247 this->command(mtd, ONENAND_CMD_READ, from, writesize);
a8de85d5
AH
1248 ret = this->wait(mtd, FL_READING);
1249 onenand_update_bufferram(mtd, from, !ret);
d57f4054 1250 if (mtd_is_eccerr(ret))
5f4d47d5 1251 ret = 0;
a8de85d5
AH
1252 }
1253 }
1254
ee9745fc
KP
1255 thislen = min_t(int, writesize, len - read);
1256 column = from & (writesize - 1);
1257 if (column + thislen > writesize)
1258 thislen = writesize - column;
a8de85d5
AH
1259
1260 while (!ret) {
1261 /* If there is more to load then start next load */
1262 from += thislen;
1263 if (read + thislen < len) {
ee9745fc 1264 this->command(mtd, ONENAND_CMD_READ, from, writesize);
0fc2ccea
AH
1265 /*
1266 * Chip boundary handling in DDP
1267 * Now we issued chip 1 read and pointed chip 1
492e1501 1268 * bufferram so we have to point chip 0 bufferram.
0fc2ccea 1269 */
738d61f5
KP
1270 if (ONENAND_IS_DDP(this) &&
1271 unlikely(from == (this->chipsize >> 1))) {
1272 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
0fc2ccea
AH
1273 boundary = 1;
1274 } else
1275 boundary = 0;
a8de85d5
AH
1276 ONENAND_SET_PREV_BUFFERRAM(this);
1277 }
1278 /* While load is going, read from last bufferRAM */
1279 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
d15057b7
KP
1280
1281 /* Read oob area if needed */
1282 if (oobbuf) {
1283 thisooblen = oobsize - oobcolumn;
1284 thisooblen = min_t(int, thisooblen, ooblen - oobread);
1285
0612b9dd 1286 if (ops->mode == MTD_OPS_AUTO_OOB)
d15057b7
KP
1287 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1288 else
1289 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1290 oobread += thisooblen;
1291 oobbuf += thisooblen;
1292 oobcolumn = 0;
1293 }
1294
a8de85d5
AH
1295 /* See if we are done */
1296 read += thislen;
1297 if (read == len)
1298 break;
1299 /* Set up for next read from bufferRAM */
0fc2ccea 1300 if (unlikely(boundary))
738d61f5 1301 this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
a8de85d5
AH
1302 ONENAND_SET_NEXT_BUFFERRAM(this);
1303 buf += thislen;
ee9745fc 1304 thislen = min_t(int, writesize, len - read);
a8de85d5
AH
1305 column = 0;
1306 cond_resched();
1307 /* Now wait for load */
1308 ret = this->wait(mtd, FL_READING);
1309 onenand_update_bufferram(mtd, from, !ret);
d57f4054 1310 if (mtd_is_eccerr(ret))
5f4d47d5 1311 ret = 0;
a8de85d5 1312 }
cd5f6346 1313
cd5f6346
KP
1314 /*
1315 * Return success, if no ECC failures, else -EBADMSG
1316 * fs driver will take care of that, because
1317 * retlen == desired len and result == -EBADMSG
1318 */
d15057b7
KP
1319 ops->retlen = read;
1320 ops->oobretlen = oobread;
f4f91ac3 1321
a8de85d5
AH
1322 if (ret)
1323 return ret;
1324
5f4d47d5
AH
1325 if (mtd->ecc_stats.failed - stats.failed)
1326 return -EBADMSG;
1327
edbc4540
MD
1328 /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1329 return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
cd5f6346
KP
1330}
1331
cd5f6346 1332/**
49dc08ee 1333 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
cd5f6346
KP
1334 * @param mtd MTD device structure
1335 * @param from offset to read from
d15057b7 1336 * @param ops: oob operation description structure
cd5f6346
KP
1337 *
1338 * OneNAND read out-of-band data from the spare area
1339 */
49dc08ee 1340static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
12f77c9e 1341 struct mtd_oob_ops *ops)
cd5f6346
KP
1342{
1343 struct onenand_chip *this = mtd->priv;
5f4d47d5 1344 struct mtd_ecc_stats stats;
a5e7c7b4 1345 int read = 0, thislen, column, oobsize;
12f77c9e 1346 size_t len = ops->ooblen;
905c6bcd 1347 unsigned int mode = ops->mode;
12f77c9e 1348 u_char *buf = ops->oobbuf;
5988af23 1349 int ret = 0, readcmd;
cd5f6346 1350
12f77c9e
KP
1351 from += ops->ooboffs;
1352
0a32a102
BN
1353 pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1354 (int)len);
cd5f6346
KP
1355
1356 /* Initialize return length value */
12f77c9e 1357 ops->oobretlen = 0;
cd5f6346 1358
0612b9dd 1359 if (mode == MTD_OPS_AUTO_OOB)
f5b8aa78 1360 oobsize = mtd->oobavail;
a5e7c7b4
AH
1361 else
1362 oobsize = mtd->oobsize;
1363
1364 column = from & (mtd->oobsize - 1);
1365
1366 if (unlikely(column >= oobsize)) {
297758f8
AKS
1367 printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1368 __func__);
a5e7c7b4
AH
1369 return -EINVAL;
1370 }
1371
cd5f6346 1372 /* Do not allow reads past end of device */
a5e7c7b4
AH
1373 if (unlikely(from >= mtd->size ||
1374 column + len > ((mtd->size >> this->page_shift) -
1375 (from >> this->page_shift)) * oobsize)) {
297758f8
AKS
1376 printk(KERN_ERR "%s: Attempted to read beyond end of device\n",
1377 __func__);
cd5f6346
KP
1378 return -EINVAL;
1379 }
1380
5f4d47d5
AH
1381 stats = mtd->ecc_stats;
1382
8a8f632d 1383 readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
5988af23 1384
cd5f6346 1385 while (read < len) {
61a7e198
AB
1386 cond_resched();
1387
a5e7c7b4 1388 thislen = oobsize - column;
cd5f6346
KP
1389 thislen = min_t(int, thislen, len);
1390
5988af23 1391 this->command(mtd, readcmd, from, mtd->oobsize);
cd5f6346
KP
1392
1393 onenand_update_bufferram(mtd, from, 0);
1394
1395 ret = this->wait(mtd, FL_READING);
5988af23
RH
1396 if (unlikely(ret))
1397 ret = onenand_recover_lsb(mtd, from, ret);
1398
d57f4054 1399 if (ret && !mtd_is_eccerr(ret)) {
297758f8
AKS
1400 printk(KERN_ERR "%s: read failed = 0x%x\n",
1401 __func__, ret);
5f4d47d5
AH
1402 break;
1403 }
cd5f6346 1404
0612b9dd 1405 if (mode == MTD_OPS_AUTO_OOB)
a5e7c7b4
AH
1406 onenand_transfer_auto_oob(mtd, buf, column, thislen);
1407 else
1408 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
cd5f6346
KP
1409
1410 read += thislen;
1411
1412 if (read == len)
1413 break;
1414
cd5f6346
KP
1415 buf += thislen;
1416
1417 /* Read more? */
1418 if (read < len) {
1419 /* Page size */
28318776 1420 from += mtd->writesize;
cd5f6346
KP
1421 column = 0;
1422 }
1423 }
1424
12f77c9e 1425 ops->oobretlen = read;
5f4d47d5
AH
1426
1427 if (ret)
1428 return ret;
1429
1430 if (mtd->ecc_stats.failed - stats.failed)
1431 return -EBADMSG;
1432
1433 return 0;
cd5f6346
KP
1434}
1435
8593fbc6 1436/**
d15057b7
KP
1437 * onenand_read - [MTD Interface] Read data from flash
1438 * @param mtd MTD device structure
1439 * @param from offset to read from
1440 * @param len number of bytes to read
1441 * @param retlen pointer to variable to store the number of read bytes
1442 * @param buf the databuffer to put data
1443 *
1444 * Read with ecc
1445*/
1446static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1447 size_t *retlen, u_char *buf)
1448{
5988af23 1449 struct onenand_chip *this = mtd->priv;
d15057b7
KP
1450 struct mtd_oob_ops ops = {
1451 .len = len,
1452 .ooblen = 0,
1453 .datbuf = buf,
1454 .oobbuf = NULL,
1455 };
1456 int ret;
1457
49dc08ee 1458 onenand_get_device(mtd, FL_READING);
8a8f632d 1459 ret = ONENAND_IS_4KB_PAGE(this) ?
5988af23
RH
1460 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
1461 onenand_read_ops_nolock(mtd, from, &ops);
49dc08ee 1462 onenand_release_device(mtd);
d15057b7 1463
49dc08ee 1464 *retlen = ops.retlen;
d15057b7
KP
1465 return ret;
1466}
1467
1468/**
1469 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
e3da8067
KP
1470 * @param mtd: MTD device structure
1471 * @param from: offset to read from
1472 * @param ops: oob operation description structure
d15057b7
KP
1473
1474 * Read main and/or out-of-band
8593fbc6
TG
1475 */
1476static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1477 struct mtd_oob_ops *ops)
1478{
5988af23 1479 struct onenand_chip *this = mtd->priv;
49dc08ee
AB
1480 int ret;
1481
4f4fad27 1482 switch (ops->mode) {
0612b9dd
BN
1483 case MTD_OPS_PLACE_OOB:
1484 case MTD_OPS_AUTO_OOB:
a5e7c7b4 1485 break;
0612b9dd 1486 case MTD_OPS_RAW:
4f4fad27 1487 /* Not implemented yet */
a5e7c7b4
AH
1488 default:
1489 return -EINVAL;
1490 }
d15057b7 1491
49dc08ee 1492 onenand_get_device(mtd, FL_READING);
d15057b7 1493 if (ops->datbuf)
8a8f632d 1494 ret = ONENAND_IS_4KB_PAGE(this) ?
5988af23
RH
1495 onenand_mlc_read_ops_nolock(mtd, from, ops) :
1496 onenand_read_ops_nolock(mtd, from, ops);
49dc08ee
AB
1497 else
1498 ret = onenand_read_oob_nolock(mtd, from, ops);
1499 onenand_release_device(mtd);
d15057b7 1500
49dc08ee 1501 return ret;
8593fbc6
TG
1502}
1503
211ac75f
KP
1504/**
1505 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1506 * @param mtd MTD device structure
1507 * @param state state to select the max. timeout value
1508 *
1509 * Wait for command done.
1510 */
1511static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1512{
1513 struct onenand_chip *this = mtd->priv;
1514 unsigned long timeout;
e0c1a921 1515 unsigned int interrupt, ctrl, ecc, addr1, addr8;
211ac75f
KP
1516
1517 /* The 20 msec is enough */
1518 timeout = jiffies + msecs_to_jiffies(20);
1519 while (time_before(jiffies, timeout)) {
1520 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1521 if (interrupt & ONENAND_INT_MASTER)
1522 break;
1523 }
1524 /* To get correct interrupt status in timeout case */
1525 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1526 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
e0c1a921
AH
1527 addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1528 addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
211ac75f 1529
211ac75f 1530 if (interrupt & ONENAND_INT_READ) {
e0c1a921 1531 ecc = onenand_read_ecc(this);
83973b87 1532 if (ecc & ONENAND_ECC_2BIT_ALL) {
e0c1a921
AH
1533 printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1534 "intr 0x%04x addr1 %#x addr8 %#x\n",
1535 __func__, ecc, ctrl, interrupt, addr1, addr8);
5988af23 1536 return ONENAND_BBT_READ_ECC_ERROR;
83973b87 1537 }
211ac75f 1538 } else {
e0c1a921
AH
1539 printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1540 "intr 0x%04x addr1 %#x addr8 %#x\n",
1541 __func__, ctrl, interrupt, addr1, addr8);
211ac75f
KP
1542 return ONENAND_BBT_READ_FATAL_ERROR;
1543 }
1544
83973b87
KP
1545 /* Initial bad block case: 0x2400 or 0x0400 */
1546 if (ctrl & ONENAND_CTRL_ERROR) {
e0c1a921
AH
1547 printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1548 "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
83973b87
KP
1549 return ONENAND_BBT_READ_ERROR;
1550 }
1551
211ac75f
KP
1552 return 0;
1553}
1554
1555/**
1556 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1557 * @param mtd MTD device structure
1558 * @param from offset to read from
e3da8067 1559 * @param ops oob operation description structure
211ac75f
KP
1560 *
1561 * OneNAND read out-of-band data from the spare area for bbt scan
1562 */
1563int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1564 struct mtd_oob_ops *ops)
1565{
1566 struct onenand_chip *this = mtd->priv;
1567 int read = 0, thislen, column;
5988af23 1568 int ret = 0, readcmd;
211ac75f
KP
1569 size_t len = ops->ooblen;
1570 u_char *buf = ops->oobbuf;
1571
0a32a102
BN
1572 pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
1573 len);
211ac75f
KP
1574
1575 /* Initialize return value */
1576 ops->oobretlen = 0;
1577
1578 /* Do not allow reads past end of device */
1579 if (unlikely((from + len) > mtd->size)) {
297758f8
AKS
1580 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1581 __func__);
211ac75f
KP
1582 return ONENAND_BBT_READ_FATAL_ERROR;
1583 }
1584
1585 /* Grab the lock and see if the device is available */
1586 onenand_get_device(mtd, FL_READING);
1587
1588 column = from & (mtd->oobsize - 1);
1589
8a8f632d 1590 readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
5988af23 1591
211ac75f
KP
1592 while (read < len) {
1593 cond_resched();
1594
1595 thislen = mtd->oobsize - column;
1596 thislen = min_t(int, thislen, len);
1597
5988af23 1598 this->command(mtd, readcmd, from, mtd->oobsize);
211ac75f
KP
1599
1600 onenand_update_bufferram(mtd, from, 0);
1601
31bb999e 1602 ret = this->bbt_wait(mtd, FL_READING);
5988af23
RH
1603 if (unlikely(ret))
1604 ret = onenand_recover_lsb(mtd, from, ret);
1605
211ac75f
KP
1606 if (ret)
1607 break;
1608
1609 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1610 read += thislen;
1611 if (read == len)
1612 break;
1613
1614 buf += thislen;
1615
1616 /* Read more? */
1617 if (read < len) {
1618 /* Update Page size */
ee9745fc 1619 from += this->writesize;
211ac75f
KP
1620 column = 0;
1621 }
1622 }
1623
1624 /* Deselect and wake up anyone waiting on the device */
1625 onenand_release_device(mtd);
1626
1627 ops->oobretlen = read;
1628 return ret;
1629}
1630
cd5f6346 1631#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
8e6ec690
KP
1632/**
1633 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1634 * @param mtd MTD device structure
1635 * @param buf the databuffer to verify
1636 * @param to offset to read from
8e6ec690 1637 */
a5e7c7b4 1638static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
8e6ec690
KP
1639{
1640 struct onenand_chip *this = mtd->priv;
69d79186 1641 u_char *oob_buf = this->oob_buf;
5988af23
RH
1642 int status, i, readcmd;
1643
8a8f632d 1644 readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
8e6ec690 1645
5988af23 1646 this->command(mtd, readcmd, to, mtd->oobsize);
8e6ec690
KP
1647 onenand_update_bufferram(mtd, to, 0);
1648 status = this->wait(mtd, FL_READING);
1649 if (status)
1650 return status;
1651
69d79186 1652 this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
91014e9b 1653 for (i = 0; i < mtd->oobsize; i++)
69d79186 1654 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
8e6ec690
KP
1655 return -EBADMSG;
1656
1657 return 0;
1658}
1659
cd5f6346 1660/**
8b29c0b6
AH
1661 * onenand_verify - [GENERIC] verify the chip contents after a write
1662 * @param mtd MTD device structure
1663 * @param buf the databuffer to verify
1664 * @param addr offset to read from
1665 * @param len number of bytes to read and compare
cd5f6346 1666 */
8b29c0b6 1667static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
cd5f6346
KP
1668{
1669 struct onenand_chip *this = mtd->priv;
cd5f6346 1670 int ret = 0;
8b29c0b6 1671 int thislen, column;
cd5f6346 1672
e6da8568
RT
1673 column = addr & (this->writesize - 1);
1674
8b29c0b6 1675 while (len != 0) {
e6da8568 1676 thislen = min_t(int, this->writesize - column, len);
60d84f97 1677
ee9745fc 1678 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
cd5f6346 1679
8b29c0b6
AH
1680 onenand_update_bufferram(mtd, addr, 0);
1681
1682 ret = this->wait(mtd, FL_READING);
1683 if (ret)
1684 return ret;
cd5f6346 1685
8b29c0b6 1686 onenand_update_bufferram(mtd, addr, 1);
cd5f6346 1687
3328dc31 1688 this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
cd5f6346 1689
e6da8568 1690 if (memcmp(buf, this->verify_buf + column, thislen))
8b29c0b6
AH
1691 return -EBADMSG;
1692
1693 len -= thislen;
1694 buf += thislen;
1695 addr += thislen;
e6da8568 1696 column = 0;
8b29c0b6 1697 }
d5c5e78a 1698
cd5f6346
KP
1699 return 0;
1700}
1701#else
8b29c0b6 1702#define onenand_verify(...) (0)
8e6ec690 1703#define onenand_verify_oob(...) (0)
cd5f6346
KP
1704#endif
1705
60d84f97 1706#define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
cd5f6346 1707
6c77fd64
RP
1708static void onenand_panic_wait(struct mtd_info *mtd)
1709{
1710 struct onenand_chip *this = mtd->priv;
1711 unsigned int interrupt;
1712 int i;
1713
1714 for (i = 0; i < 2000; i++) {
1715 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1716 if (interrupt & ONENAND_INT_MASTER)
1717 break;
1718 udelay(10);
1719 }
1720}
1721
1722/**
1723 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1724 * @param mtd MTD device structure
1725 * @param to offset to write to
1726 * @param len number of bytes to write
1727 * @param retlen pointer to variable to store the number of written bytes
1728 * @param buf the data to write
1729 *
1730 * Write with ECC
1731 */
1732static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1733 size_t *retlen, const u_char *buf)
1734{
1735 struct onenand_chip *this = mtd->priv;
1736 int column, subpage;
1737 int written = 0;
6c77fd64
RP
1738
1739 if (this->state == FL_PM_SUSPENDED)
1740 return -EBUSY;
1741
1742 /* Wait for any existing operation to clear */
1743 onenand_panic_wait(mtd);
1744
0a32a102
BN
1745 pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1746 (int)len);
6c77fd64 1747
6c77fd64 1748 /* Reject writes, which are not page aligned */
b73d7e43 1749 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
297758f8
AKS
1750 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1751 __func__);
6c77fd64
RP
1752 return -EINVAL;
1753 }
1754
1755 column = to & (mtd->writesize - 1);
1756
1757 /* Loop until all data write */
1758 while (written < len) {
1759 int thislen = min_t(int, mtd->writesize - column, len - written);
1760 u_char *wbuf = (u_char *) buf;
1761
1762 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1763
1764 /* Partial page write */
1765 subpage = thislen < mtd->writesize;
1766 if (subpage) {
1767 memset(this->page_buf, 0xff, mtd->writesize);
1768 memcpy(this->page_buf + column, buf, thislen);
1769 wbuf = this->page_buf;
1770 }
1771
1772 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1773 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1774
1775 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1776
1777 onenand_panic_wait(mtd);
1778
1779 /* In partial page write we don't update bufferram */
7f2a7ce1 1780 onenand_update_bufferram(mtd, to, !subpage);
6c77fd64
RP
1781 if (ONENAND_IS_2PLANE(this)) {
1782 ONENAND_SET_BUFFERRAM1(this);
7f2a7ce1 1783 onenand_update_bufferram(mtd, to + this->writesize, !subpage);
6c77fd64
RP
1784 }
1785
1786 written += thislen;
1787
1788 if (written == len)
1789 break;
1790
1791 column = 0;
1792 to += thislen;
1793 buf += thislen;
1794 }
1795
1796 *retlen = written;
7f2a7ce1 1797 return 0;
6c77fd64
RP
1798}
1799
cd5f6346 1800/**
7854d3f7 1801 * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
d15057b7
KP
1802 * @param mtd MTD device structure
1803 * @param oob_buf oob buffer
1804 * @param buf source address
1805 * @param column oob offset to write to
1806 * @param thislen oob length to write
1807 */
1808static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1809 const u_char *buf, int column, int thislen)
1810{
1811 struct onenand_chip *this = mtd->priv;
1812 struct nand_oobfree *free;
1813 int writecol = column;
1814 int writeend = column + thislen;
1815 int lastgap = 0;
1816 unsigned int i;
1817
1818 free = this->ecclayout->oobfree;
1819 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1820 if (writecol >= lastgap)
1821 writecol += free->offset - lastgap;
1822 if (writeend >= lastgap)
1823 writeend += free->offset - lastgap;
1824 lastgap = free->offset + free->length;
1825 }
1826 free = this->ecclayout->oobfree;
1827 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1828 int free_end = free->offset + free->length;
1829 if (free->offset < writeend && free_end > writecol) {
1830 int st = max_t(int,free->offset,writecol);
1831 int ed = min_t(int,free_end,writeend);
1832 int n = ed - st;
1833 memcpy(oob_buf + st, buf, n);
1834 buf += n;
1835 } else if (column == 0)
1836 break;
1837 }
1838 return 0;
1839}
1840
1841/**
49dc08ee 1842 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
cd5f6346
KP
1843 * @param mtd MTD device structure
1844 * @param to offset to write to
d15057b7 1845 * @param ops oob operation description structure
cd5f6346 1846 *
d15057b7 1847 * Write main and/or oob with ECC
cd5f6346 1848 */
49dc08ee 1849static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
d15057b7 1850 struct mtd_oob_ops *ops)
cd5f6346
KP
1851{
1852 struct onenand_chip *this = mtd->priv;
9ce96908
KP
1853 int written = 0, column, thislen = 0, subpage = 0;
1854 int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
d15057b7
KP
1855 int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1856 size_t len = ops->len;
1857 size_t ooblen = ops->ooblen;
1858 const u_char *buf = ops->datbuf;
1859 const u_char *oob = ops->oobbuf;
1860 u_char *oobbuf;
ac80dac0 1861 int ret = 0, cmd;
cd5f6346 1862
0a32a102
BN
1863 pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1864 (int)len);
cd5f6346
KP
1865
1866 /* Initialize retlen, in case of early exit */
d15057b7
KP
1867 ops->retlen = 0;
1868 ops->oobretlen = 0;
cd5f6346 1869
cd5f6346 1870 /* Reject writes, which are not page aligned */
b73d7e43 1871 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
297758f8
AKS
1872 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1873 __func__);
cd5f6346
KP
1874 return -EINVAL;
1875 }
1876
9ce96908
KP
1877 /* Check zero length */
1878 if (!len)
1879 return 0;
29f1058a 1880 oobsize = mtd_oobavail(mtd, ops);
d15057b7
KP
1881 oobcolumn = to & (mtd->oobsize - 1);
1882
60d84f97 1883 column = to & (mtd->writesize - 1);
60d84f97 1884
cd5f6346 1885 /* Loop until all data write */
9ce96908
KP
1886 while (1) {
1887 if (written < len) {
1888 u_char *wbuf = (u_char *) buf;
60d84f97 1889
9ce96908
KP
1890 thislen = min_t(int, mtd->writesize - column, len - written);
1891 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
d15057b7 1892
9ce96908 1893 cond_resched();
61a7e198 1894
9ce96908 1895 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
60d84f97 1896
9ce96908
KP
1897 /* Partial page write */
1898 subpage = thislen < mtd->writesize;
1899 if (subpage) {
1900 memset(this->page_buf, 0xff, mtd->writesize);
1901 memcpy(this->page_buf + column, buf, thislen);
1902 wbuf = this->page_buf;
1903 }
cd5f6346 1904
9ce96908 1905 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
d15057b7 1906
9ce96908
KP
1907 if (oob) {
1908 oobbuf = this->oob_buf;
d15057b7 1909
9ce96908
KP
1910 /* We send data to spare ram with oobsize
1911 * to prevent byte access */
1912 memset(oobbuf, 0xff, mtd->oobsize);
0612b9dd 1913 if (ops->mode == MTD_OPS_AUTO_OOB)
9ce96908
KP
1914 onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1915 else
1916 memcpy(oobbuf + oobcolumn, oob, thisooblen);
d15057b7 1917
9ce96908
KP
1918 oobwritten += thisooblen;
1919 oob += thisooblen;
1920 oobcolumn = 0;
1921 } else
1922 oobbuf = (u_char *) ffchars;
1923
1924 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
d15057b7 1925 } else
9ce96908 1926 ONENAND_SET_NEXT_BUFFERRAM(this);
d15057b7 1927
9ce96908 1928 /*
492e1501
MK
1929 * 2 PLANE, MLC, and Flex-OneNAND do not support
1930 * write-while-program feature.
9ce96908 1931 */
6a88c47b 1932 if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
9ce96908
KP
1933 ONENAND_SET_PREV_BUFFERRAM(this);
1934
1935 ret = this->wait(mtd, FL_WRITING);
1936
1937 /* In partial page write we don't update bufferram */
1938 onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1939 if (ret) {
1940 written -= prevlen;
297758f8
AKS
1941 printk(KERN_ERR "%s: write failed %d\n",
1942 __func__, ret);
9ce96908
KP
1943 break;
1944 }
cd5f6346 1945
9ce96908
KP
1946 if (written == len) {
1947 /* Only check verify write turn on */
1948 ret = onenand_verify(mtd, buf - len, to - len, len);
1949 if (ret)
297758f8
AKS
1950 printk(KERN_ERR "%s: verify failed %d\n",
1951 __func__, ret);
9ce96908
KP
1952 break;
1953 }
cd5f6346 1954
9ce96908
KP
1955 ONENAND_SET_NEXT_BUFFERRAM(this);
1956 }
81f38e11 1957
ac80dac0
RT
1958 this->ongoing = 0;
1959 cmd = ONENAND_CMD_PROG;
1960
1961 /* Exclude 1st OTP and OTP blocks for cache program feature */
1962 if (ONENAND_IS_CACHE_PROGRAM(this) &&
1963 likely(onenand_block(this, to) != 0) &&
1964 ONENAND_IS_4KB_PAGE(this) &&
1965 ((written + thislen) < len)) {
1966 cmd = ONENAND_CMD_2X_CACHE_PROG;
1967 this->ongoing = 1;
1968 }
1969
1970 this->command(mtd, cmd, to, mtd->writesize);
9ce96908
KP
1971
1972 /*
1973 * 2 PLANE, MLC, and Flex-OneNAND wait here
1974 */
6a88c47b 1975 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
9ce96908 1976 ret = this->wait(mtd, FL_WRITING);
cd5f6346 1977
9ce96908
KP
1978 /* In partial page write we don't update bufferram */
1979 onenand_update_bufferram(mtd, to, !ret && !subpage);
1980 if (ret) {
297758f8
AKS
1981 printk(KERN_ERR "%s: write failed %d\n",
1982 __func__, ret);
9ce96908
KP
1983 break;
1984 }
cd5f6346 1985
9ce96908
KP
1986 /* Only check verify write turn on */
1987 ret = onenand_verify(mtd, buf, to, thislen);
1988 if (ret) {
297758f8
AKS
1989 printk(KERN_ERR "%s: verify failed %d\n",
1990 __func__, ret);
9ce96908
KP
1991 break;
1992 }
cd5f6346 1993
9ce96908 1994 written += thislen;
81f38e11 1995
9ce96908
KP
1996 if (written == len)
1997 break;
1998
1999 } else
2000 written += thislen;
cd5f6346 2001
60d84f97 2002 column = 0;
9ce96908
KP
2003 prev_subpage = subpage;
2004 prev = to;
2005 prevlen = thislen;
cd5f6346
KP
2006 to += thislen;
2007 buf += thislen;
9ce96908 2008 first = 0;
cd5f6346
KP
2009 }
2010
9ce96908
KP
2011 /* In error case, clear all bufferrams */
2012 if (written != len)
2013 onenand_invalidate_bufferram(mtd, 0, -1);
2014
d15057b7 2015 ops->retlen = written;
9ce96908 2016 ops->oobretlen = oobwritten;
d5c5e78a 2017
cd5f6346
KP
2018 return ret;
2019}
2020
a5e7c7b4 2021
cd5f6346 2022/**
7854d3f7 2023 * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
cd5f6346
KP
2024 * @param mtd MTD device structure
2025 * @param to offset to write to
2026 * @param len number of bytes to write
2027 * @param retlen pointer to variable to store the number of written bytes
2028 * @param buf the data to write
a5e7c7b4 2029 * @param mode operation mode
cd5f6346
KP
2030 *
2031 * OneNAND write out-of-band
2032 */
49dc08ee
AB
2033static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2034 struct mtd_oob_ops *ops)
cd5f6346
KP
2035{
2036 struct onenand_chip *this = mtd->priv;
a5e7c7b4 2037 int column, ret = 0, oobsize;
5988af23 2038 int written = 0, oobcmd;
91014e9b 2039 u_char *oobbuf;
12f77c9e
KP
2040 size_t len = ops->ooblen;
2041 const u_char *buf = ops->oobbuf;
905c6bcd 2042 unsigned int mode = ops->mode;
12f77c9e
KP
2043
2044 to += ops->ooboffs;
cd5f6346 2045
0a32a102
BN
2046 pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
2047 (int)len);
cd5f6346
KP
2048
2049 /* Initialize retlen, in case of early exit */
12f77c9e 2050 ops->oobretlen = 0;
cd5f6346 2051
0612b9dd 2052 if (mode == MTD_OPS_AUTO_OOB)
f5b8aa78 2053 oobsize = mtd->oobavail;
a5e7c7b4
AH
2054 else
2055 oobsize = mtd->oobsize;
2056
2057 column = to & (mtd->oobsize - 1);
2058
2059 if (unlikely(column >= oobsize)) {
297758f8
AKS
2060 printk(KERN_ERR "%s: Attempted to start write outside oob\n",
2061 __func__);
a5e7c7b4
AH
2062 return -EINVAL;
2063 }
2064
52e4200a 2065 /* For compatibility with NAND: Do not allow write past end of page */
91014e9b 2066 if (unlikely(column + len > oobsize)) {
297758f8
AKS
2067 printk(KERN_ERR "%s: Attempt to write past end of page\n",
2068 __func__);
52e4200a
AH
2069 return -EINVAL;
2070 }
2071
a5e7c7b4
AH
2072 /* Do not allow reads past end of device */
2073 if (unlikely(to >= mtd->size ||
2074 column + len > ((mtd->size >> this->page_shift) -
2075 (to >> this->page_shift)) * oobsize)) {
8032747e
DW
2076 printk(KERN_ERR "%s: Attempted to write past end of device\n",
2077 __func__);
cd5f6346
KP
2078 return -EINVAL;
2079 }
2080
470bc844 2081 oobbuf = this->oob_buf;
91014e9b 2082
8a8f632d 2083 oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
5988af23 2084
cd5f6346
KP
2085 /* Loop until all data write */
2086 while (written < len) {
a5e7c7b4 2087 int thislen = min_t(int, oobsize, len - written);
cd5f6346 2088
61a7e198
AB
2089 cond_resched();
2090
cd5f6346
KP
2091 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2092
34c10609
KP
2093 /* We send data to spare ram with oobsize
2094 * to prevent byte access */
91014e9b 2095 memset(oobbuf, 0xff, mtd->oobsize);
0612b9dd 2096 if (mode == MTD_OPS_AUTO_OOB)
91014e9b 2097 onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
a5e7c7b4 2098 else
91014e9b
KP
2099 memcpy(oobbuf + column, buf, thislen);
2100 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
cd5f6346 2101
8a8f632d 2102 if (ONENAND_IS_4KB_PAGE(this)) {
5988af23
RH
2103 /* Set main area of DataRAM to 0xff*/
2104 memset(this->page_buf, 0xff, mtd->writesize);
2105 this->write_bufferram(mtd, ONENAND_DATARAM,
2106 this->page_buf, 0, mtd->writesize);
2107 }
2108
2109 this->command(mtd, oobcmd, to, mtd->oobsize);
cd5f6346
KP
2110
2111 onenand_update_bufferram(mtd, to, 0);
ee9745fc
KP
2112 if (ONENAND_IS_2PLANE(this)) {
2113 ONENAND_SET_BUFFERRAM1(this);
2114 onenand_update_bufferram(mtd, to + this->writesize, 0);
2115 }
cd5f6346 2116
8e6ec690
KP
2117 ret = this->wait(mtd, FL_WRITING);
2118 if (ret) {
297758f8 2119 printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
5b4246f1 2120 break;
8e6ec690
KP
2121 }
2122
91014e9b 2123 ret = onenand_verify_oob(mtd, oobbuf, to);
8e6ec690 2124 if (ret) {
297758f8
AKS
2125 printk(KERN_ERR "%s: verify failed %d\n",
2126 __func__, ret);
5b4246f1 2127 break;
8e6ec690 2128 }
cd5f6346
KP
2129
2130 written += thislen;
cd5f6346
KP
2131 if (written == len)
2132 break;
2133
a5e7c7b4 2134 to += mtd->writesize;
cd5f6346 2135 buf += thislen;
a5e7c7b4 2136 column = 0;
cd5f6346
KP
2137 }
2138
12f77c9e 2139 ops->oobretlen = written;
d5c5e78a 2140
8e6ec690 2141 return ret;
cd5f6346
KP
2142}
2143
d15057b7
KP
2144/**
2145 * onenand_write - [MTD Interface] write buffer to FLASH
2146 * @param mtd MTD device structure
2147 * @param to offset to write to
2148 * @param len number of bytes to write
2149 * @param retlen pointer to variable to store the number of written bytes
2150 * @param buf the data to write
2151 *
2152 * Write with ECC
2153 */
2154static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
2155 size_t *retlen, const u_char *buf)
2156{
2157 struct mtd_oob_ops ops = {
2158 .len = len,
2159 .ooblen = 0,
2160 .datbuf = (u_char *) buf,
2161 .oobbuf = NULL,
2162 };
2163 int ret;
2164
49dc08ee
AB
2165 onenand_get_device(mtd, FL_WRITING);
2166 ret = onenand_write_ops_nolock(mtd, to, &ops);
2167 onenand_release_device(mtd);
d15057b7 2168
49dc08ee 2169 *retlen = ops.retlen;
d15057b7
KP
2170 return ret;
2171}
2172
8593fbc6
TG
2173/**
2174 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
e3da8067
KP
2175 * @param mtd: MTD device structure
2176 * @param to: offset to write
2177 * @param ops: oob operation description structure
8593fbc6
TG
2178 */
2179static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2180 struct mtd_oob_ops *ops)
2181{
49dc08ee
AB
2182 int ret;
2183
4f4fad27 2184 switch (ops->mode) {
0612b9dd
BN
2185 case MTD_OPS_PLACE_OOB:
2186 case MTD_OPS_AUTO_OOB:
a5e7c7b4 2187 break;
0612b9dd 2188 case MTD_OPS_RAW:
4f4fad27 2189 /* Not implemented yet */
a5e7c7b4
AH
2190 default:
2191 return -EINVAL;
2192 }
d15057b7 2193
49dc08ee 2194 onenand_get_device(mtd, FL_WRITING);
d15057b7 2195 if (ops->datbuf)
49dc08ee
AB
2196 ret = onenand_write_ops_nolock(mtd, to, ops);
2197 else
2198 ret = onenand_write_oob_nolock(mtd, to, ops);
2199 onenand_release_device(mtd);
d15057b7 2200
49dc08ee 2201 return ret;
8593fbc6
TG
2202}
2203
cdc00130 2204/**
49dc08ee 2205 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
cdc00130
KP
2206 * @param mtd MTD device structure
2207 * @param ofs offset from device start
cdc00130
KP
2208 * @param allowbbt 1, if its allowed to access the bbt area
2209 *
2210 * Check, if the block is bad. Either by reading the bad block table or
2211 * calling of the scan function.
2212 */
49dc08ee 2213static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
cdc00130
KP
2214{
2215 struct onenand_chip *this = mtd->priv;
2216 struct bbm_info *bbm = this->bbm;
2217
2218 /* Return info from the table */
2219 return bbm->isbad_bbt(mtd, ofs, allowbbt);
2220}
2221
72073027
MK
2222
2223static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2224 struct erase_info *instr)
2225{
2226 struct onenand_chip *this = mtd->priv;
2227 loff_t addr = instr->addr;
2228 int len = instr->len;
2229 unsigned int block_size = (1 << this->erase_shift);
2230 int ret = 0;
2231
2232 while (len) {
2233 this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2234 ret = this->wait(mtd, FL_VERIFYING_ERASE);
2235 if (ret) {
2236 printk(KERN_ERR "%s: Failed verify, block %d\n",
2237 __func__, onenand_block(this, addr));
2238 instr->state = MTD_ERASE_FAILED;
2239 instr->fail_addr = addr;
2240 return -1;
2241 }
2242 len -= block_size;
2243 addr += block_size;
2244 }
2245 return 0;
2246}
2247
2248/**
7854d3f7 2249 * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
72073027
MK
2250 * @param mtd MTD device structure
2251 * @param instr erase instruction
2252 * @param region erase region
2253 *
2254 * Erase one or more blocks up to 64 block at a time
2255 */
2256static int onenand_multiblock_erase(struct mtd_info *mtd,
2257 struct erase_info *instr,
2258 unsigned int block_size)
2259{
2260 struct onenand_chip *this = mtd->priv;
2261 loff_t addr = instr->addr;
2262 int len = instr->len;
2263 int eb_count = 0;
2264 int ret = 0;
2265 int bdry_block = 0;
2266
2267 instr->state = MTD_ERASING;
2268
2269 if (ONENAND_IS_DDP(this)) {
2270 loff_t bdry_addr = this->chipsize >> 1;
2271 if (addr < bdry_addr && (addr + len) > bdry_addr)
2272 bdry_block = bdry_addr >> this->erase_shift;
2273 }
2274
2275 /* Pre-check bbs */
2276 while (len) {
2277 /* Check if we have a bad block, we do not erase bad blocks */
2278 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2279 printk(KERN_WARNING "%s: attempt to erase a bad block "
2280 "at addr 0x%012llx\n",
2281 __func__, (unsigned long long) addr);
2282 instr->state = MTD_ERASE_FAILED;
2283 return -EIO;
2284 }
2285 len -= block_size;
2286 addr += block_size;
2287 }
2288
2289 len = instr->len;
2290 addr = instr->addr;
2291
2292 /* loop over 64 eb batches */
2293 while (len) {
2294 struct erase_info verify_instr = *instr;
2295 int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2296
2297 verify_instr.addr = addr;
2298 verify_instr.len = 0;
2299
2300 /* do not cross chip boundary */
2301 if (bdry_block) {
2302 int this_block = (addr >> this->erase_shift);
2303
2304 if (this_block < bdry_block) {
2305 max_eb_count = min(max_eb_count,
2306 (bdry_block - this_block));
2307 }
2308 }
2309
2310 eb_count = 0;
2311
2312 while (len > block_size && eb_count < (max_eb_count - 1)) {
2313 this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2314 addr, block_size);
2315 onenand_invalidate_bufferram(mtd, addr, block_size);
2316
2317 ret = this->wait(mtd, FL_PREPARING_ERASE);
2318 if (ret) {
2319 printk(KERN_ERR "%s: Failed multiblock erase, "
2320 "block %d\n", __func__,
2321 onenand_block(this, addr));
2322 instr->state = MTD_ERASE_FAILED;
2323 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2324 return -EIO;
2325 }
2326
2327 len -= block_size;
2328 addr += block_size;
2329 eb_count++;
2330 }
2331
2332 /* last block of 64-eb series */
2333 cond_resched();
2334 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2335 onenand_invalidate_bufferram(mtd, addr, block_size);
2336
2337 ret = this->wait(mtd, FL_ERASING);
2338 /* Check if it is write protected */
2339 if (ret) {
2340 printk(KERN_ERR "%s: Failed erase, block %d\n",
2341 __func__, onenand_block(this, addr));
2342 instr->state = MTD_ERASE_FAILED;
2343 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2344 return -EIO;
2345 }
2346
2347 len -= block_size;
2348 addr += block_size;
2349 eb_count++;
2350
2351 /* verify */
2352 verify_instr.len = eb_count * block_size;
2353 if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2354 instr->state = verify_instr.state;
2355 instr->fail_addr = verify_instr.fail_addr;
2356 return -EIO;
2357 }
2358
2359 }
2360 return 0;
2361}
2362
2363
cd5f6346 2364/**
7854d3f7 2365 * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
cd5f6346
KP
2366 * @param mtd MTD device structure
2367 * @param instr erase instruction
73885aea
MK
2368 * @param region erase region
2369 * @param block_size erase block size
cd5f6346 2370 *
73885aea 2371 * Erase one or more blocks one block at a time
cd5f6346 2372 */
73885aea
MK
2373static int onenand_block_by_block_erase(struct mtd_info *mtd,
2374 struct erase_info *instr,
2375 struct mtd_erase_region_info *region,
2376 unsigned int block_size)
cd5f6346
KP
2377{
2378 struct onenand_chip *this = mtd->priv;
5988af23 2379 loff_t addr = instr->addr;
73885aea 2380 int len = instr->len;
5988af23 2381 loff_t region_end = 0;
73885aea 2382 int ret = 0;
cd5f6346 2383
73885aea
MK
2384 if (region) {
2385 /* region is set for Flex-OneNAND */
5988af23 2386 region_end = region->offset + region->erasesize * region->numblocks;
cd5f6346
KP
2387 }
2388
cd5f6346
KP
2389 instr->state = MTD_ERASING;
2390
73885aea 2391 /* Loop through the blocks */
cd5f6346 2392 while (len) {
61a7e198 2393 cond_resched();
cd5f6346 2394
cdc00130 2395 /* Check if we have a bad block, we do not erase bad blocks */
49dc08ee 2396 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
297758f8
AKS
2397 printk(KERN_WARNING "%s: attempt to erase a bad block "
2398 "at addr 0x%012llx\n",
2399 __func__, (unsigned long long) addr);
cdc00130 2400 instr->state = MTD_ERASE_FAILED;
73885aea 2401 return -EIO;
cdc00130 2402 }
cd5f6346
KP
2403
2404 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2405
480b9dfb
AH
2406 onenand_invalidate_bufferram(mtd, addr, block_size);
2407
cd5f6346
KP
2408 ret = this->wait(mtd, FL_ERASING);
2409 /* Check, if it is write protected */
2410 if (ret) {
297758f8
AKS
2411 printk(KERN_ERR "%s: Failed erase, block %d\n",
2412 __func__, onenand_block(this, addr));
cd5f6346
KP
2413 instr->state = MTD_ERASE_FAILED;
2414 instr->fail_addr = addr;
73885aea 2415 return -EIO;
cd5f6346
KP
2416 }
2417
2418 len -= block_size;
2419 addr += block_size;
5988af23 2420
eff3bba6 2421 if (region && addr == region_end) {
5988af23
RH
2422 if (!len)
2423 break;
2424 region++;
2425
2426 block_size = region->erasesize;
2427 region_end = region->offset + region->erasesize * region->numblocks;
2428
2429 if (len & (block_size - 1)) {
2430 /* FIXME: This should be handled at MTD partitioning level. */
297758f8
AKS
2431 printk(KERN_ERR "%s: Unaligned address\n",
2432 __func__);
73885aea 2433 return -EIO;
5988af23
RH
2434 }
2435 }
73885aea
MK
2436 }
2437 return 0;
2438}
5988af23 2439
73885aea
MK
2440/**
2441 * onenand_erase - [MTD Interface] erase block(s)
2442 * @param mtd MTD device structure
2443 * @param instr erase instruction
2444 *
2445 * Erase one or more blocks
2446 */
2447static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2448{
2449 struct onenand_chip *this = mtd->priv;
2450 unsigned int block_size;
2451 loff_t addr = instr->addr;
2452 loff_t len = instr->len;
2453 int ret = 0;
2454 struct mtd_erase_region_info *region = NULL;
2455 loff_t region_offset = 0;
2456
289c0522 2457 pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
0a32a102
BN
2458 (unsigned long long)instr->addr,
2459 (unsigned long long)instr->len);
73885aea 2460
73885aea
MK
2461 if (FLEXONENAND(this)) {
2462 /* Find the eraseregion of this address */
2463 int i = flexonenand_region(mtd, addr);
cd5f6346 2464
73885aea
MK
2465 region = &mtd->eraseregions[i];
2466 block_size = region->erasesize;
cd5f6346 2467
73885aea
MK
2468 /* Start address within region must align on block boundary.
2469 * Erase region's start offset is always block start address.
2470 */
2471 region_offset = region->offset;
2472 } else
2473 block_size = 1 << this->erase_shift;
2474
2475 /* Start address must align on block boundary */
2476 if (unlikely((addr - region_offset) & (block_size - 1))) {
2477 printk(KERN_ERR "%s: Unaligned address\n", __func__);
2478 return -EINVAL;
2479 }
2480
2481 /* Length must align on block boundary */
2482 if (unlikely(len & (block_size - 1))) {
2483 printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2484 return -EINVAL;
2485 }
2486
73885aea
MK
2487 /* Grab the lock and see if the device is available */
2488 onenand_get_device(mtd, FL_ERASING);
2489
d983c54e
KP
2490 if (ONENAND_IS_4KB_PAGE(this) || region ||
2491 instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
72073027
MK
2492 /* region is set for Flex-OneNAND (no mb erase) */
2493 ret = onenand_block_by_block_erase(mtd, instr,
2494 region, block_size);
2495 } else {
2496 ret = onenand_multiblock_erase(mtd, instr, block_size);
2497 }
cd5f6346
KP
2498
2499 /* Deselect and wake up anyone waiting on the device */
2500 onenand_release_device(mtd);
2501
3cd3a86b 2502 /* Do call back function */
73885aea
MK
2503 if (!ret) {
2504 instr->state = MTD_ERASE_DONE;
3cd3a86b 2505 mtd_erase_callback(instr);
73885aea 2506 }
3cd3a86b 2507
cd5f6346
KP
2508 return ret;
2509}
2510
2511/**
2512 * onenand_sync - [MTD Interface] sync
2513 * @param mtd MTD device structure
2514 *
2515 * Sync is actually a wait for chip ready function
2516 */
2517static void onenand_sync(struct mtd_info *mtd)
2518{
289c0522 2519 pr_debug("%s: called\n", __func__);
cd5f6346
KP
2520
2521 /* Grab the lock and see if the device is available */
2522 onenand_get_device(mtd, FL_SYNCING);
2523
2524 /* Release it and go back */
2525 onenand_release_device(mtd);
2526}
2527
2528/**
2529 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2530 * @param mtd MTD device structure
2531 * @param ofs offset relative to mtd start
cdc00130
KP
2532 *
2533 * Check whether the block is bad
cd5f6346
KP
2534 */
2535static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2536{
49dc08ee
AB
2537 int ret;
2538
49dc08ee
AB
2539 onenand_get_device(mtd, FL_READING);
2540 ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2541 onenand_release_device(mtd);
2542 return ret;
cdc00130
KP
2543}
2544
2545/**
2546 * onenand_default_block_markbad - [DEFAULT] mark a block bad
2547 * @param mtd MTD device structure
2548 * @param ofs offset from device start
2549 *
2550 * This is the default implementation, which can be overridden by
2551 * a hardware specific driver.
2552 */
2553static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2554{
2555 struct onenand_chip *this = mtd->priv;
2556 struct bbm_info *bbm = this->bbm;
2557 u_char buf[2] = {0, 0};
12f77c9e 2558 struct mtd_oob_ops ops = {
0612b9dd 2559 .mode = MTD_OPS_PLACE_OOB,
12f77c9e
KP
2560 .ooblen = 2,
2561 .oobbuf = buf,
2562 .ooboffs = 0,
2563 };
cdc00130
KP
2564 int block;
2565
2566 /* Get block number */
5988af23 2567 block = onenand_block(this, ofs);
cdc00130
KP
2568 if (bbm->bbt)
2569 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2570
492e1501 2571 /* We write two bytes, so we don't have to mess with 16-bit access */
cdc00130 2572 ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
5988af23
RH
2573 /* FIXME : What to do when marking SLC block in partition
2574 * with MLC erasesize? For now, it is not advisable to
2575 * create partitions containing both SLC and MLC regions.
2576 */
2577 return onenand_write_oob_nolock(mtd, ofs, &ops);
cd5f6346
KP
2578}
2579
2580/**
2581 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2582 * @param mtd MTD device structure
2583 * @param ofs offset relative to mtd start
cdc00130
KP
2584 *
2585 * Mark the block as bad
cd5f6346
KP
2586 */
2587static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2588{
5e64c29e 2589 struct onenand_chip *this = mtd->priv;
cdc00130
KP
2590 int ret;
2591
2592 ret = onenand_block_isbad(mtd, ofs);
2593 if (ret) {
2594 /* If it was bad already, return success and do nothing */
2595 if (ret > 0)
2596 return 0;
2597 return ret;
2598 }
2599
49dc08ee 2600 onenand_get_device(mtd, FL_WRITING);
5e64c29e 2601 ret = this->block_markbad(mtd, ofs);
49dc08ee
AB
2602 onenand_release_device(mtd);
2603 return ret;
cd5f6346
KP
2604}
2605
2606/**
08f782b6 2607 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
cd5f6346
KP
2608 * @param mtd MTD device structure
2609 * @param ofs offset relative to mtd start
08f782b6 2610 * @param len number of bytes to lock or unlock
e3da8067 2611 * @param cmd lock or unlock command
cd5f6346 2612 *
08f782b6 2613 * Lock or unlock one or more blocks
cd5f6346 2614 */
08f782b6 2615static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
cd5f6346
KP
2616{
2617 struct onenand_chip *this = mtd->priv;
2618 int start, end, block, value, status;
08f782b6 2619 int wp_status_mask;
cd5f6346 2620
5988af23
RH
2621 start = onenand_block(this, ofs);
2622 end = onenand_block(this, ofs + len) - 1;
cd5f6346 2623
08f782b6
KP
2624 if (cmd == ONENAND_CMD_LOCK)
2625 wp_status_mask = ONENAND_WP_LS;
2626 else
2627 wp_status_mask = ONENAND_WP_US;
2628
cd5f6346 2629 /* Continuous lock scheme */
28b79ff9 2630 if (this->options & ONENAND_HAS_CONT_LOCK) {
cd5f6346
KP
2631 /* Set start block address */
2632 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2633 /* Set end block address */
5988af23 2634 this->write_word(end, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
08f782b6
KP
2635 /* Write lock command */
2636 this->command(mtd, cmd, 0, 0);
cd5f6346
KP
2637
2638 /* There's no return value */
08f782b6 2639 this->wait(mtd, FL_LOCKING);
cd5f6346
KP
2640
2641 /* Sanity check */
2642 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2643 & ONENAND_CTRL_ONGO)
2644 continue;
2645
2646 /* Check lock status */
2647 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
08f782b6 2648 if (!(status & wp_status_mask))
297758f8
AKS
2649 printk(KERN_ERR "%s: wp status = 0x%x\n",
2650 __func__, status);
cd5f6346
KP
2651
2652 return 0;
2653 }
2654
2655 /* Block lock scheme */
5988af23 2656 for (block = start; block < end + 1; block++) {
20ba89a3
KP
2657 /* Set block address */
2658 value = onenand_block_address(this, block);
2659 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2660 /* Select DataRAM for DDP */
2661 value = onenand_bufferram_address(this, block);
2662 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
cd5f6346
KP
2663 /* Set start block address */
2664 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
08f782b6
KP
2665 /* Write lock command */
2666 this->command(mtd, cmd, 0, 0);
cd5f6346
KP
2667
2668 /* There's no return value */
08f782b6 2669 this->wait(mtd, FL_LOCKING);
cd5f6346
KP
2670
2671 /* Sanity check */
2672 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2673 & ONENAND_CTRL_ONGO)
2674 continue;
2675
cd5f6346
KP
2676 /* Check lock status */
2677 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
08f782b6 2678 if (!(status & wp_status_mask))
297758f8
AKS
2679 printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2680 __func__, block, status);
cd5f6346 2681 }
d5c5e78a 2682
cd5f6346
KP
2683 return 0;
2684}
2685
08f782b6
KP
2686/**
2687 * onenand_lock - [MTD Interface] Lock block(s)
2688 * @param mtd MTD device structure
2689 * @param ofs offset relative to mtd start
2690 * @param len number of bytes to unlock
2691 *
2692 * Lock one or more blocks
2693 */
69423d99 2694static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
08f782b6 2695{
34627f0e
AH
2696 int ret;
2697
2698 onenand_get_device(mtd, FL_LOCKING);
2699 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2700 onenand_release_device(mtd);
2701 return ret;
08f782b6
KP
2702}
2703
08f782b6
KP
2704/**
2705 * onenand_unlock - [MTD Interface] Unlock block(s)
2706 * @param mtd MTD device structure
2707 * @param ofs offset relative to mtd start
2708 * @param len number of bytes to unlock
2709 *
2710 * Unlock one or more blocks
2711 */
69423d99 2712static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
08f782b6 2713{
34627f0e
AH
2714 int ret;
2715
2716 onenand_get_device(mtd, FL_LOCKING);
2717 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2718 onenand_release_device(mtd);
2719 return ret;
08f782b6
KP
2720}
2721
28b79ff9
KP
2722/**
2723 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2724 * @param this onenand chip data structure
2725 *
2726 * Check lock status
2727 */
66a10506 2728static int onenand_check_lock_status(struct onenand_chip *this)
28b79ff9
KP
2729{
2730 unsigned int value, block, status;
2731 unsigned int end;
2732
2733 end = this->chipsize >> this->erase_shift;
2734 for (block = 0; block < end; block++) {
2735 /* Set block address */
2736 value = onenand_block_address(this, block);
2737 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2738 /* Select DataRAM for DDP */
2739 value = onenand_bufferram_address(this, block);
2740 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2741 /* Set start block address */
2742 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2743
2744 /* Check lock status */
2745 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
66a10506 2746 if (!(status & ONENAND_WP_US)) {
297758f8
AKS
2747 printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2748 __func__, block, status);
66a10506
KP
2749 return 0;
2750 }
28b79ff9 2751 }
66a10506
KP
2752
2753 return 1;
28b79ff9
KP
2754}
2755
2756/**
2757 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2758 * @param mtd MTD device structure
2759 *
2760 * Unlock all blocks
2761 */
66a10506 2762static void onenand_unlock_all(struct mtd_info *mtd)
28b79ff9
KP
2763{
2764 struct onenand_chip *this = mtd->priv;
66a10506 2765 loff_t ofs = 0;
5988af23 2766 loff_t len = mtd->size;
28b79ff9
KP
2767
2768 if (this->options & ONENAND_HAS_UNLOCK_ALL) {
10b7a2bd
KP
2769 /* Set start block address */
2770 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
28b79ff9
KP
2771 /* Write unlock command */
2772 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2773
2774 /* There's no return value */
08f782b6 2775 this->wait(mtd, FL_LOCKING);
28b79ff9
KP
2776
2777 /* Sanity check */
2778 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2779 & ONENAND_CTRL_ONGO)
2780 continue;
2781
31bb999e
KP
2782 /* Don't check lock status */
2783 if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2784 return;
2785
66a10506
KP
2786 /* Check lock status */
2787 if (onenand_check_lock_status(this))
2788 return;
2789
28b79ff9 2790 /* Workaround for all block unlock in DDP */
5988af23 2791 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
66a10506
KP
2792 /* All blocks on another chip */
2793 ofs = this->chipsize >> 1;
2794 len = this->chipsize >> 1;
28b79ff9 2795 }
28b79ff9
KP
2796 }
2797
66a10506 2798 onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
28b79ff9
KP
2799}
2800
493c6460
KP
2801#ifdef CONFIG_MTD_ONENAND_OTP
2802
3cf60253
AKS
2803/**
2804 * onenand_otp_command - Send OTP specific command to OneNAND device
2805 * @param mtd MTD device structure
2806 * @param cmd the command to be sent
2807 * @param addr offset to read from or write to
2808 * @param len number of bytes to read or write
2809 */
2810static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2811 size_t len)
2812{
2813 struct onenand_chip *this = mtd->priv;
2814 int value, block, page;
2815
2816 /* Address translation */
2817 switch (cmd) {
2818 case ONENAND_CMD_OTP_ACCESS:
2819 block = (int) (addr >> this->erase_shift);
2820 page = -1;
2821 break;
2822
2823 default:
2824 block = (int) (addr >> this->erase_shift);
2825 page = (int) (addr >> this->page_shift);
2826
2827 if (ONENAND_IS_2PLANE(this)) {
2828 /* Make the even block number */
2829 block &= ~1;
2830 /* Is it the odd plane? */
2831 if (addr & this->writesize)
2832 block++;
2833 page >>= 1;
2834 }
2835 page &= this->page_mask;
2836 break;
2837 }
2838
2839 if (block != -1) {
2840 /* Write 'DFS, FBA' of Flash */
2841 value = onenand_block_address(this, block);
2842 this->write_word(value, this->base +
2843 ONENAND_REG_START_ADDRESS1);
2844 }
2845
2846 if (page != -1) {
2847 /* Now we use page size operation */
2848 int sectors = 4, count = 4;
2849 int dataram;
2850
2851 switch (cmd) {
2852 default:
2853 if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2854 cmd = ONENAND_CMD_2X_PROG;
2855 dataram = ONENAND_CURRENT_BUFFERRAM(this);
2856 break;
2857 }
2858
2859 /* Write 'FPA, FSA' of Flash */
2860 value = onenand_page_address(page, sectors);
2861 this->write_word(value, this->base +
2862 ONENAND_REG_START_ADDRESS8);
2863
2864 /* Write 'BSA, BSC' of DataRAM */
2865 value = onenand_buffer_address(dataram, sectors, count);
2866 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2867 }
2868
2869 /* Interrupt clear */
2870 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2871
2872 /* Write command */
2873 this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2874
2875 return 0;
2876}
2877
2878/**
7854d3f7 2879 * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
3cf60253
AKS
2880 * @param mtd MTD device structure
2881 * @param to offset to write to
2882 * @param len number of bytes to write
2883 * @param retlen pointer to variable to store the number of written bytes
2884 * @param buf the data to write
2885 *
2886 * OneNAND write out-of-band only for OTP
2887 */
2888static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2889 struct mtd_oob_ops *ops)
2890{
2891 struct onenand_chip *this = mtd->priv;
2892 int column, ret = 0, oobsize;
2893 int written = 0;
2894 u_char *oobbuf;
2895 size_t len = ops->ooblen;
2896 const u_char *buf = ops->oobbuf;
2897 int block, value, status;
2898
2899 to += ops->ooboffs;
2900
2901 /* Initialize retlen, in case of early exit */
2902 ops->oobretlen = 0;
2903
2904 oobsize = mtd->oobsize;
2905
2906 column = to & (mtd->oobsize - 1);
2907
2908 oobbuf = this->oob_buf;
2909
2910 /* Loop until all data write */
2911 while (written < len) {
2912 int thislen = min_t(int, oobsize, len - written);
2913
2914 cond_resched();
2915
2916 block = (int) (to >> this->erase_shift);
2917 /*
2918 * Write 'DFS, FBA' of Flash
2919 * Add: F100h DQ=DFS, FBA
2920 */
2921
2922 value = onenand_block_address(this, block);
2923 this->write_word(value, this->base +
2924 ONENAND_REG_START_ADDRESS1);
2925
2926 /*
2927 * Select DataRAM for DDP
2928 * Add: F101h DQ=DBS
2929 */
2930
2931 value = onenand_bufferram_address(this, block);
2932 this->write_word(value, this->base +
2933 ONENAND_REG_START_ADDRESS2);
2934 ONENAND_SET_NEXT_BUFFERRAM(this);
2935
2936 /*
2937 * Enter OTP access mode
2938 */
2939 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2940 this->wait(mtd, FL_OTPING);
2941
2942 /* We send data to spare ram with oobsize
2943 * to prevent byte access */
2944 memcpy(oobbuf + column, buf, thislen);
2945
2946 /*
2947 * Write Data into DataRAM
2948 * Add: 8th Word
2949 * in sector0/spare/page0
2950 * DQ=XXFCh
2951 */
2952 this->write_bufferram(mtd, ONENAND_SPARERAM,
2953 oobbuf, 0, mtd->oobsize);
2954
2955 onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2956 onenand_update_bufferram(mtd, to, 0);
2957 if (ONENAND_IS_2PLANE(this)) {
2958 ONENAND_SET_BUFFERRAM1(this);
2959 onenand_update_bufferram(mtd, to + this->writesize, 0);
2960 }
2961
2962 ret = this->wait(mtd, FL_WRITING);
2963 if (ret) {
2964 printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2965 break;
2966 }
2967
2968 /* Exit OTP access mode */
2969 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2970 this->wait(mtd, FL_RESETING);
2971
2972 status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2973 status &= 0x60;
2974
2975 if (status == 0x60) {
2976 printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2977 printk(KERN_DEBUG "1st Block\tLOCKED\n");
2978 printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2979 } else if (status == 0x20) {
2980 printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2981 printk(KERN_DEBUG "1st Block\tLOCKED\n");
2982 printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
2983 } else if (status == 0x40) {
2984 printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2985 printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
2986 printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2987 } else {
2988 printk(KERN_DEBUG "Reboot to check\n");
2989 }
2990
2991 written += thislen;
2992 if (written == len)
2993 break;
2994
2995 to += mtd->writesize;
2996 buf += thislen;
2997 column = 0;
2998 }
2999
3000 ops->oobretlen = written;
3001
3002 return ret;
3003}
3004
492e1501 3005/* Internal OTP operation */
493c6460
KP
3006typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
3007 size_t *retlen, u_char *buf);
3008
3009/**
3010 * do_otp_read - [DEFAULT] Read OTP block area
3011 * @param mtd MTD device structure
3012 * @param from The offset to read
3013 * @param len number of bytes to read
3014 * @param retlen pointer to variable to store the number of readbytes
3015 * @param buf the databuffer to put/get data
3016 *
3017 * Read OTP block area.
3018 */
3019static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
3020 size_t *retlen, u_char *buf)
3021{
3022 struct onenand_chip *this = mtd->priv;
49dc08ee
AB
3023 struct mtd_oob_ops ops = {
3024 .len = len,
3025 .ooblen = 0,
3026 .datbuf = buf,
3027 .oobbuf = NULL,
3028 };
493c6460
KP
3029 int ret;
3030
3031 /* Enter OTP access mode */
3032 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3033 this->wait(mtd, FL_OTPING);
3034
8a8f632d 3035 ret = ONENAND_IS_4KB_PAGE(this) ?
5988af23
RH
3036 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
3037 onenand_read_ops_nolock(mtd, from, &ops);
493c6460
KP
3038
3039 /* Exit OTP access mode */
3040 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3041 this->wait(mtd, FL_RESETING);
3042
3043 return ret;
3044}
3045
3046/**
3047 * do_otp_write - [DEFAULT] Write OTP block area
3048 * @param mtd MTD device structure
49dc08ee 3049 * @param to The offset to write
493c6460
KP
3050 * @param len number of bytes to write
3051 * @param retlen pointer to variable to store the number of write bytes
3052 * @param buf the databuffer to put/get data
3053 *
3054 * Write OTP block area.
3055 */
49dc08ee 3056static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
493c6460
KP
3057 size_t *retlen, u_char *buf)
3058{
3059 struct onenand_chip *this = mtd->priv;
3060 unsigned char *pbuf = buf;
3061 int ret;
49dc08ee 3062 struct mtd_oob_ops ops;
493c6460
KP
3063
3064 /* Force buffer page aligned */
28318776 3065 if (len < mtd->writesize) {
493c6460 3066 memcpy(this->page_buf, buf, len);
28318776 3067 memset(this->page_buf + len, 0xff, mtd->writesize - len);
493c6460 3068 pbuf = this->page_buf;
28318776 3069 len = mtd->writesize;
493c6460
KP
3070 }
3071
3072 /* Enter OTP access mode */
3073 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3074 this->wait(mtd, FL_OTPING);
3075
49dc08ee
AB
3076 ops.len = len;
3077 ops.ooblen = 0;
1437085c 3078 ops.datbuf = pbuf;
49dc08ee
AB
3079 ops.oobbuf = NULL;
3080 ret = onenand_write_ops_nolock(mtd, to, &ops);
3081 *retlen = ops.retlen;
493c6460
KP
3082
3083 /* Exit OTP access mode */
3084 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3085 this->wait(mtd, FL_RESETING);
3086
3087 return ret;
3088}
3089
3090/**
3091 * do_otp_lock - [DEFAULT] Lock OTP block area
3092 * @param mtd MTD device structure
3093 * @param from The offset to lock
3094 * @param len number of bytes to lock
3095 * @param retlen pointer to variable to store the number of lock bytes
3096 * @param buf the databuffer to put/get data
3097 *
3098 * Lock OTP block area.
3099 */
3100static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
3101 size_t *retlen, u_char *buf)
3102{
3103 struct onenand_chip *this = mtd->priv;
5988af23 3104 struct mtd_oob_ops ops;
493c6460
KP
3105 int ret;
3106
5988af23 3107 if (FLEXONENAND(this)) {
3cf60253
AKS
3108
3109 /* Enter OTP access mode */
3110 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3111 this->wait(mtd, FL_OTPING);
5988af23
RH
3112 /*
3113 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3114 * main area of page 49.
3115 */
3116 ops.len = mtd->writesize;
3117 ops.ooblen = 0;
3118 ops.datbuf = buf;
3119 ops.oobbuf = NULL;
3120 ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3121 *retlen = ops.retlen;
3cf60253
AKS
3122
3123 /* Exit OTP access mode */
3124 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3125 this->wait(mtd, FL_RESETING);
5988af23 3126 } else {
0612b9dd 3127 ops.mode = MTD_OPS_PLACE_OOB;
5988af23
RH
3128 ops.ooblen = len;
3129 ops.oobbuf = buf;
3130 ops.ooboffs = 0;
3cf60253 3131 ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
5988af23
RH
3132 *retlen = ops.oobretlen;
3133 }
493c6460 3134
493c6460
KP
3135 return ret;
3136}
3137
3138/**
3139 * onenand_otp_walk - [DEFAULT] Handle OTP operation
3140 * @param mtd MTD device structure
3141 * @param from The offset to read/write
3142 * @param len number of bytes to read/write
3143 * @param retlen pointer to variable to store the number of read bytes
3144 * @param buf the databuffer to put/get data
3145 * @param action do given action
3146 * @param mode specify user and factory
3147 *
3148 * Handle OTP operation.
3149 */
3150static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3151 size_t *retlen, u_char *buf,
3152 otp_op_t action, int mode)
3153{
3154 struct onenand_chip *this = mtd->priv;
3155 int otp_pages;
3156 int density;
3157 int ret = 0;
3158
3159 *retlen = 0;
3160
e71f04fc 3161 density = onenand_get_density(this->device_id);
493c6460
KP
3162 if (density < ONENAND_DEVICE_DENSITY_512Mb)
3163 otp_pages = 20;
3164 else
3cf60253 3165 otp_pages = 50;
493c6460
KP
3166
3167 if (mode == MTD_OTP_FACTORY) {
28318776 3168 from += mtd->writesize * otp_pages;
3cf60253 3169 otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
493c6460
KP
3170 }
3171
3172 /* Check User/Factory boundary */
3cf60253 3173 if (mode == MTD_OTP_USER) {
0a032a4d 3174 if (mtd->writesize * otp_pages < from + len)
3cf60253
AKS
3175 return 0;
3176 } else {
0a032a4d 3177 if (mtd->writesize * otp_pages < len)
3cf60253
AKS
3178 return 0;
3179 }
493c6460 3180
49dc08ee 3181 onenand_get_device(mtd, FL_OTPING);
493c6460
KP
3182 while (len > 0 && otp_pages > 0) {
3183 if (!action) { /* OTP Info functions */
3184 struct otp_info *otpinfo;
3185
3186 len -= sizeof(struct otp_info);
49dc08ee
AB
3187 if (len <= 0) {
3188 ret = -ENOSPC;
3189 break;
3190 }
493c6460
KP
3191
3192 otpinfo = (struct otp_info *) buf;
3193 otpinfo->start = from;
28318776 3194 otpinfo->length = mtd->writesize;
493c6460
KP
3195 otpinfo->locked = 0;
3196
28318776 3197 from += mtd->writesize;
493c6460
KP
3198 buf += sizeof(struct otp_info);
3199 *retlen += sizeof(struct otp_info);
3200 } else {
3201 size_t tmp_retlen;
493c6460
KP
3202
3203 ret = action(mtd, from, len, &tmp_retlen, buf);
3204
3cf60253
AKS
3205 buf += tmp_retlen;
3206 len -= tmp_retlen;
3207 *retlen += tmp_retlen;
493c6460 3208
49dc08ee
AB
3209 if (ret)
3210 break;
493c6460
KP
3211 }
3212 otp_pages--;
3213 }
49dc08ee 3214 onenand_release_device(mtd);
493c6460 3215
49dc08ee 3216 return ret;
493c6460
KP
3217}
3218
3219/**
3220 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3221 * @param mtd MTD device structure
493c6460 3222 * @param len number of bytes to read
4b78fc42
CR
3223 * @param retlen pointer to variable to store the number of read bytes
3224 * @param buf the databuffer to put/get data
493c6460
KP
3225 *
3226 * Read factory OTP info.
3227 */
4b78fc42
CR
3228static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len,
3229 size_t *retlen, struct otp_info *buf)
493c6460 3230{
4b78fc42
CR
3231 return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3232 MTD_OTP_FACTORY);
493c6460
KP
3233}
3234
3235/**
3236 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3237 * @param mtd MTD device structure
3238 * @param from The offset to read
3239 * @param len number of bytes to read
3240 * @param retlen pointer to variable to store the number of read bytes
3241 * @param buf the databuffer to put/get data
3242 *
3243 * Read factory OTP area.
3244 */
3245static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3246 size_t len, size_t *retlen, u_char *buf)
3247{
3248 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3249}
3250
3251/**
3252 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3253 * @param mtd MTD device structure
4b78fc42 3254 * @param retlen pointer to variable to store the number of read bytes
493c6460 3255 * @param len number of bytes to read
4b78fc42 3256 * @param buf the databuffer to put/get data
493c6460
KP
3257 *
3258 * Read user OTP info.
3259 */
4b78fc42
CR
3260static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len,
3261 size_t *retlen, struct otp_info *buf)
493c6460 3262{
4b78fc42
CR
3263 return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3264 MTD_OTP_USER);
493c6460
KP
3265}
3266
3267/**
3268 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3269 * @param mtd MTD device structure
3270 * @param from The offset to read
3271 * @param len number of bytes to read
3272 * @param retlen pointer to variable to store the number of read bytes
3273 * @param buf the databuffer to put/get data
3274 *
3275 * Read user OTP area.
3276 */
3277static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3278 size_t len, size_t *retlen, u_char *buf)
3279{
3280 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3281}
3282
3283/**
3284 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3285 * @param mtd MTD device structure
3286 * @param from The offset to write
3287 * @param len number of bytes to write
3288 * @param retlen pointer to variable to store the number of write bytes
3289 * @param buf the databuffer to put/get data
3290 *
3291 * Write user OTP area.
3292 */
3293static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3294 size_t len, size_t *retlen, u_char *buf)
3295{
3296 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
3297}
3298
3299/**
3300 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3301 * @param mtd MTD device structure
3302 * @param from The offset to lock
3303 * @param len number of bytes to unlock
3304 *
3305 * Write lock mark on spare area in page 0 in OTP block
3306 */
3307static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3308 size_t len)
3309{
69d79186 3310 struct onenand_chip *this = mtd->priv;
5988af23 3311 u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
493c6460
KP
3312 size_t retlen;
3313 int ret;
3cf60253 3314 unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
493c6460 3315
5988af23
RH
3316 memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3317 : mtd->oobsize);
493c6460
KP
3318 /*
3319 * Write lock mark to 8th word of sector0 of page0 of the spare0.
3320 * We write 16 bytes spare area instead of 2 bytes.
5988af23
RH
3321 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3322 * main area of page 49.
493c6460 3323 */
5988af23 3324
493c6460 3325 from = 0;
5988af23 3326 len = FLEXONENAND(this) ? mtd->writesize : 16;
493c6460 3327
3cf60253
AKS
3328 /*
3329 * Note: OTP lock operation
3330 * OTP block : 0xXXFC XX 1111 1100
3331 * 1st block : 0xXXF3 (If chip support) XX 1111 0011
3332 * Both : 0xXXF0 (If chip support) XX 1111 0000
3333 */
3334 if (FLEXONENAND(this))
3335 otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3336
3337 /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3338 if (otp == 1)
3339 buf[otp_lock_offset] = 0xFC;
3340 else if (otp == 2)
3341 buf[otp_lock_offset] = 0xF3;
3342 else if (otp == 3)
3343 buf[otp_lock_offset] = 0xF0;
3344 else if (otp != 0)
3345 printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3346
5988af23 3347 ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
493c6460
KP
3348
3349 return ret ? : retlen;
3350}
3cf60253 3351
493c6460
KP
3352#endif /* CONFIG_MTD_ONENAND_OTP */
3353
28b79ff9 3354/**
75384b0d 3355 * onenand_check_features - Check and set OneNAND features
28b79ff9
KP
3356 * @param mtd MTD data structure
3357 *
75384b0d
KP
3358 * Check and set OneNAND features
3359 * - lock scheme
ee9745fc 3360 * - two plane
28b79ff9 3361 */
75384b0d 3362static void onenand_check_features(struct mtd_info *mtd)
28b79ff9
KP
3363{
3364 struct onenand_chip *this = mtd->priv;
edb44b9b 3365 unsigned int density, process, numbufs;
28b79ff9
KP
3366
3367 /* Lock scheme depends on density and process */
e71f04fc 3368 density = onenand_get_density(this->device_id);
28b79ff9 3369 process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
edb44b9b 3370 numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
28b79ff9
KP
3371
3372 /* Lock scheme */
ee9745fc
KP
3373 switch (density) {
3374 case ONENAND_DEVICE_DENSITY_4Gb:
6a88c47b
KP
3375 if (ONENAND_IS_DDP(this))
3376 this->options |= ONENAND_HAS_2PLANE;
ac80dac0 3377 else if (numbufs == 1) {
6a88c47b 3378 this->options |= ONENAND_HAS_4KB_PAGE;
ac80dac0 3379 this->options |= ONENAND_HAS_CACHE_PROGRAM;
e1c10243
KP
3380 /*
3381 * There are two different 4KiB pagesize chips
3382 * and no way to detect it by H/W config values.
3383 *
3384 * To detect the correct NOP for each chips,
3385 * It should check the version ID as workaround.
3386 *
3387 * Now it has as following
3388 * KFM4G16Q4M has NOP 4 with version ID 0x0131
3389 * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3390 */
3391 if ((this->version_id & 0xf) == 0xe)
3392 this->options |= ONENAND_HAS_NOP_1;
ac80dac0 3393 }
ee9745fc
KP
3394
3395 case ONENAND_DEVICE_DENSITY_2Gb:
492e1501 3396 /* 2Gb DDP does not have 2 plane */
ee9745fc
KP
3397 if (!ONENAND_IS_DDP(this))
3398 this->options |= ONENAND_HAS_2PLANE;
3399 this->options |= ONENAND_HAS_UNLOCK_ALL;
3400
3401 case ONENAND_DEVICE_DENSITY_1Gb:
28b79ff9 3402 /* A-Die has all block unlock */
ee9745fc 3403 if (process)
28b79ff9 3404 this->options |= ONENAND_HAS_UNLOCK_ALL;
ee9745fc
KP
3405 break;
3406
3407 default:
3408 /* Some OneNAND has continuous lock scheme */
3409 if (!process)
28b79ff9 3410 this->options |= ONENAND_HAS_CONT_LOCK;
ee9745fc 3411 break;
28b79ff9 3412 }
ee9745fc 3413
8a8f632d
KP
3414 /* The MLC has 4KiB pagesize. */
3415 if (ONENAND_IS_MLC(this))
3416 this->options |= ONENAND_HAS_4KB_PAGE;
3417
3418 if (ONENAND_IS_4KB_PAGE(this))
5988af23
RH
3419 this->options &= ~ONENAND_HAS_2PLANE;
3420
3421 if (FLEXONENAND(this)) {
3422 this->options &= ~ONENAND_HAS_CONT_LOCK;
3423 this->options |= ONENAND_HAS_UNLOCK_ALL;
3424 }
3425
ee9745fc
KP
3426 if (this->options & ONENAND_HAS_CONT_LOCK)
3427 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3428 if (this->options & ONENAND_HAS_UNLOCK_ALL)
3429 printk(KERN_DEBUG "Chip support all block unlock\n");
3430 if (this->options & ONENAND_HAS_2PLANE)
3431 printk(KERN_DEBUG "Chip has 2 plane\n");
6a88c47b
KP
3432 if (this->options & ONENAND_HAS_4KB_PAGE)
3433 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
ac80dac0
RT
3434 if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3435 printk(KERN_DEBUG "Chip has cache program feature\n");
28b79ff9
KP
3436}
3437
cd5f6346 3438/**
e3da8067 3439 * onenand_print_device_info - Print device & version ID
cd5f6346 3440 * @param device device ID
e3da8067 3441 * @param version version ID
cd5f6346 3442 *
e3da8067 3443 * Print device & version ID
cd5f6346 3444 */
28b79ff9 3445static void onenand_print_device_info(int device, int version)
cd5f6346 3446{
5988af23 3447 int vcc, demuxed, ddp, density, flexonenand;
cd5f6346
KP
3448
3449 vcc = device & ONENAND_DEVICE_VCC_MASK;
3450 demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3451 ddp = device & ONENAND_DEVICE_IS_DDP;
e71f04fc 3452 density = onenand_get_density(device);
5988af23
RH
3453 flexonenand = device & DEVICE_IS_FLEXONENAND;
3454 printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3455 demuxed ? "" : "Muxed ",
3456 flexonenand ? "Flex-" : "",
cd5f6346
KP
3457 ddp ? "(DDP)" : "",
3458 (16 << density),
3459 vcc ? "2.65/3.3" : "1.8",
3460 device);
49dc08ee 3461 printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
cd5f6346
KP
3462}
3463
3464static const struct onenand_manufacturers onenand_manuf_ids[] = {
3465 {ONENAND_MFR_SAMSUNG, "Samsung"},
ee8f3768 3466 {ONENAND_MFR_NUMONYX, "Numonyx"},
cd5f6346
KP
3467};
3468
3469/**
3470 * onenand_check_maf - Check manufacturer ID
3471 * @param manuf manufacturer ID
3472 *
3473 * Check manufacturer ID
3474 */
3475static int onenand_check_maf(int manuf)
3476{
37b1cc39
KP
3477 int size = ARRAY_SIZE(onenand_manuf_ids);
3478 char *name;
cd5f6346
KP
3479 int i;
3480
37b1cc39 3481 for (i = 0; i < size; i++)
cd5f6346
KP
3482 if (manuf == onenand_manuf_ids[i].id)
3483 break;
cd5f6346 3484
37b1cc39
KP
3485 if (i < size)
3486 name = onenand_manuf_ids[i].name;
3487 else
3488 name = "Unknown";
3489
3490 printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
cd5f6346 3491
37b1cc39 3492 return (i == size);
cd5f6346
KP
3493}
3494
5988af23
RH
3495/**
3496* flexonenand_get_boundary - Reads the SLC boundary
3497* @param onenand_info - onenand info structure
3498**/
3499static int flexonenand_get_boundary(struct mtd_info *mtd)
3500{
3501 struct onenand_chip *this = mtd->priv;
3502 unsigned die, bdry;
6b7368c2 3503 int syscfg, locked;
5988af23
RH
3504
3505 /* Disable ECC */
3506 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3507 this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3508
3509 for (die = 0; die < this->dies; die++) {
3510 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3511 this->wait(mtd, FL_SYNCING);
3512
3513 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
6b7368c2 3514 this->wait(mtd, FL_READING);
5988af23
RH
3515
3516 bdry = this->read_word(this->base + ONENAND_DATARAM);
3517 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3518 locked = 0;
3519 else
3520 locked = 1;
3521 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3522
3523 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
6b7368c2 3524 this->wait(mtd, FL_RESETING);
5988af23
RH
3525
3526 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3527 this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3528 }
3529
3530 /* Enable ECC */
3531 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3532 return 0;
3533}
3534
3535/**
3536 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3537 * boundary[], diesize[], mtd->size, mtd->erasesize
3538 * @param mtd - MTD device structure
3539 */
3540static void flexonenand_get_size(struct mtd_info *mtd)
3541{
3542 struct onenand_chip *this = mtd->priv;
3543 int die, i, eraseshift, density;
3544 int blksperdie, maxbdry;
3545 loff_t ofs;
3546
3547 density = onenand_get_density(this->device_id);
3548 blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3549 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3550 maxbdry = blksperdie - 1;
3551 eraseshift = this->erase_shift - 1;
3552
3553 mtd->numeraseregions = this->dies << 1;
3554
3555 /* This fills up the device boundary */
3556 flexonenand_get_boundary(mtd);
3557 die = ofs = 0;
3558 i = -1;
3559 for (; die < this->dies; die++) {
3560 if (!die || this->boundary[die-1] != maxbdry) {
3561 i++;
3562 mtd->eraseregions[i].offset = ofs;
3563 mtd->eraseregions[i].erasesize = 1 << eraseshift;
3564 mtd->eraseregions[i].numblocks =
3565 this->boundary[die] + 1;
3566 ofs += mtd->eraseregions[i].numblocks << eraseshift;
3567 eraseshift++;
3568 } else {
3569 mtd->numeraseregions -= 1;
3570 mtd->eraseregions[i].numblocks +=
3571 this->boundary[die] + 1;
3572 ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3573 }
3574 if (this->boundary[die] != maxbdry) {
3575 i++;
3576 mtd->eraseregions[i].offset = ofs;
3577 mtd->eraseregions[i].erasesize = 1 << eraseshift;
3578 mtd->eraseregions[i].numblocks = maxbdry ^
3579 this->boundary[die];
3580 ofs += mtd->eraseregions[i].numblocks << eraseshift;
3581 eraseshift--;
3582 } else
3583 mtd->numeraseregions -= 1;
3584 }
3585
3586 /* Expose MLC erase size except when all blocks are SLC */
3587 mtd->erasesize = 1 << this->erase_shift;
3588 if (mtd->numeraseregions == 1)
3589 mtd->erasesize >>= 1;
3590
3591 printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3592 for (i = 0; i < mtd->numeraseregions; i++)
3593 printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3594 " numblocks: %04u]\n",
3595 (unsigned int) mtd->eraseregions[i].offset,
3596 mtd->eraseregions[i].erasesize,
3597 mtd->eraseregions[i].numblocks);
3598
3599 for (die = 0, mtd->size = 0; die < this->dies; die++) {
3600 this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3601 this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3602 << (this->erase_shift - 1);
3603 mtd->size += this->diesize[die];
3604 }
3605}
3606
3607/**
3608 * flexonenand_check_blocks_erased - Check if blocks are erased
3609 * @param mtd_info - mtd info structure
3610 * @param start - first erase block to check
3611 * @param end - last erase block to check
3612 *
3613 * Converting an unerased block from MLC to SLC
3614 * causes byte values to change. Since both data and its ECC
3615 * have changed, reads on the block give uncorrectable error.
3616 * This might lead to the block being detected as bad.
3617 *
3618 * Avoid this by ensuring that the block to be converted is
3619 * erased.
3620 */
3621static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3622{
3623 struct onenand_chip *this = mtd->priv;
3624 int i, ret;
3625 int block;
3626 struct mtd_oob_ops ops = {
0612b9dd 3627 .mode = MTD_OPS_PLACE_OOB,
5988af23
RH
3628 .ooboffs = 0,
3629 .ooblen = mtd->oobsize,
3630 .datbuf = NULL,
3631 .oobbuf = this->oob_buf,
3632 };
3633 loff_t addr;
3634
3635 printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3636
3637 for (block = start; block <= end; block++) {
3638 addr = flexonenand_addr(this, block);
3639 if (onenand_block_isbad_nolock(mtd, addr, 0))
3640 continue;
3641
3642 /*
3643 * Since main area write results in ECC write to spare,
3644 * it is sufficient to check only ECC bytes for change.
3645 */
3646 ret = onenand_read_oob_nolock(mtd, addr, &ops);
3647 if (ret)
3648 return ret;
3649
3650 for (i = 0; i < mtd->oobsize; i++)
3651 if (this->oob_buf[i] != 0xff)
3652 break;
3653
3654 if (i != mtd->oobsize) {
297758f8
AKS
3655 printk(KERN_WARNING "%s: Block %d not erased.\n",
3656 __func__, block);
5988af23
RH
3657 return 1;
3658 }
3659 }
3660
3661 return 0;
3662}
3663
3664/**
3665 * flexonenand_set_boundary - Writes the SLC boundary
3666 * @param mtd - mtd info structure
3667 */
0131950e 3668static int flexonenand_set_boundary(struct mtd_info *mtd, int die,
5988af23
RH
3669 int boundary, int lock)
3670{
3671 struct onenand_chip *this = mtd->priv;
3672 int ret, density, blksperdie, old, new, thisboundary;
3673 loff_t addr;
3674
3675 /* Change only once for SDP Flex-OneNAND */
3676 if (die && (!ONENAND_IS_DDP(this)))
3677 return 0;
3678
3679 /* boundary value of -1 indicates no required change */
3680 if (boundary < 0 || boundary == this->boundary[die])
3681 return 0;
3682
3683 density = onenand_get_density(this->device_id);
3684 blksperdie = ((16 << density) << 20) >> this->erase_shift;
3685 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3686
3687 if (boundary >= blksperdie) {
297758f8
AKS
3688 printk(KERN_ERR "%s: Invalid boundary value. "
3689 "Boundary not changed.\n", __func__);
5988af23
RH
3690 return -EINVAL;
3691 }
3692
3693 /* Check if converting blocks are erased */
3694 old = this->boundary[die] + (die * this->density_mask);
3695 new = boundary + (die * this->density_mask);
3696 ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3697 if (ret) {
297758f8
AKS
3698 printk(KERN_ERR "%s: Please erase blocks "
3699 "before boundary change\n", __func__);
5988af23
RH
3700 return ret;
3701 }
3702
3703 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3704 this->wait(mtd, FL_SYNCING);
3705
3706 /* Check is boundary is locked */
3707 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
6b7368c2 3708 this->wait(mtd, FL_READING);
5988af23
RH
3709
3710 thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3711 if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
297758f8 3712 printk(KERN_ERR "%s: boundary locked\n", __func__);
5988af23
RH
3713 ret = 1;
3714 goto out;
3715 }
3716
297758f8 3717 printk(KERN_INFO "Changing die %d boundary: %d%s\n",
5988af23
RH
3718 die, boundary, lock ? "(Locked)" : "(Unlocked)");
3719
3720 addr = die ? this->diesize[0] : 0;
3721
3722 boundary &= FLEXONENAND_PI_MASK;
3723 boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3724
3725 this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3726 ret = this->wait(mtd, FL_ERASING);
3727 if (ret) {
f369c7ec
MK
3728 printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3729 __func__, die);
5988af23
RH
3730 goto out;
3731 }
3732
3733 this->write_word(boundary, this->base + ONENAND_DATARAM);
3734 this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3735 ret = this->wait(mtd, FL_WRITING);
3736 if (ret) {
297758f8
AKS
3737 printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3738 __func__, die);
5988af23
RH
3739 goto out;
3740 }
3741
3742 this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3743 ret = this->wait(mtd, FL_WRITING);
3744out:
3745 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3746 this->wait(mtd, FL_RESETING);
3747 if (!ret)
3748 /* Recalculate device size on boundary change*/
3749 flexonenand_get_size(mtd);
3750
3751 return ret;
3752}
3753
cd5f6346 3754/**
ad0d363b 3755 * onenand_chip_probe - [OneNAND Interface] The generic chip probe
cd5f6346
KP
3756 * @param mtd MTD device structure
3757 *
3758 * OneNAND detection method:
59c51591 3759 * Compare the values from command with ones from register
cd5f6346 3760 */
ad0d363b 3761static int onenand_chip_probe(struct mtd_info *mtd)
cd5f6346
KP
3762{
3763 struct onenand_chip *this = mtd->priv;
ad0d363b 3764 int bram_maf_id, bram_dev_id, maf_id, dev_id;
47e777e0
KP
3765 int syscfg;
3766
3767 /* Save system configuration 1 */
3768 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3769 /* Clear Sync. Burst Read mode to read BootRAM */
ee8f3768 3770 this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
cd5f6346
KP
3771
3772 /* Send the command for reading device ID from BootRAM */
3773 this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3774
3775 /* Read manufacturer and device IDs from BootRAM */
3776 bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3777 bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3778
47e777e0
KP
3779 /* Reset OneNAND to read default register values */
3780 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3781 /* Wait reset */
3782 this->wait(mtd, FL_RESETING);
3783
3784 /* Restore system configuration 1 */
3785 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3786
cd5f6346
KP
3787 /* Check manufacturer ID */
3788 if (onenand_check_maf(bram_maf_id))
3789 return -ENXIO;
3790
cd5f6346
KP
3791 /* Read manufacturer and device IDs from Register */
3792 maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3793 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3794
3795 /* Check OneNAND device */
3796 if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3797 return -ENXIO;
3798
ad0d363b
KP
3799 return 0;
3800}
3801
3802/**
3803 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3804 * @param mtd MTD device structure
3805 */
3806static int onenand_probe(struct mtd_info *mtd)
3807{
3808 struct onenand_chip *this = mtd->priv;
6b7368c2 3809 int dev_id, ver_id;
ad0d363b
KP
3810 int density;
3811 int ret;
3812
3813 ret = this->chip_probe(mtd);
3814 if (ret)
3815 return ret;
3816
6b7368c2 3817 /* Device and version IDs from Register */
ad0d363b
KP
3818 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3819 ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3820 this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3821
cd5f6346 3822 /* Flash device information */
28b79ff9 3823 onenand_print_device_info(dev_id, ver_id);
cd5f6346 3824 this->device_id = dev_id;
28b79ff9 3825 this->version_id = ver_id;
cd5f6346 3826
c37cb56f
KP
3827 /* Check OneNAND features */
3828 onenand_check_features(mtd);
3829
e71f04fc 3830 density = onenand_get_density(dev_id);
5988af23
RH
3831 if (FLEXONENAND(this)) {
3832 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3833 /* Maximum possible erase regions */
3834 mtd->numeraseregions = this->dies << 1;
3835 mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
3836 * (this->dies << 1), GFP_KERNEL);
3837 if (!mtd->eraseregions)
3838 return -ENOMEM;
3839 }
3840
3841 /*
3842 * For Flex-OneNAND, chipsize represents maximum possible device size.
3843 * mtd->size represents the actual device size.
3844 */
cd5f6346
KP
3845 this->chipsize = (16 << density) << 20;
3846
3847 /* OneNAND page size & block size */
3848 /* The data buffer size is equal to page size */
28318776 3849 mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
5988af23 3850 /* We use the full BufferRAM */
8a8f632d 3851 if (ONENAND_IS_4KB_PAGE(this))
5988af23
RH
3852 mtd->writesize <<= 1;
3853
28318776 3854 mtd->oobsize = mtd->writesize >> 5;
9bfbc9b2 3855 /* Pages per a block are always 64 in OneNAND */
28318776 3856 mtd->erasesize = mtd->writesize << 6;
5988af23
RH
3857 /*
3858 * Flex-OneNAND SLC area has 64 pages per block.
3859 * Flex-OneNAND MLC area has 128 pages per block.
3860 * Expose MLC erase size to find erase_shift and page_mask.
3861 */
3862 if (FLEXONENAND(this))
3863 mtd->erasesize <<= 1;
cd5f6346
KP
3864
3865 this->erase_shift = ffs(mtd->erasesize) - 1;
28318776 3866 this->page_shift = ffs(mtd->writesize) - 1;
9bfbc9b2 3867 this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
5988af23
RH
3868 /* Set density mask. it is used for DDP */
3869 if (ONENAND_IS_DDP(this))
3870 this->density_mask = this->chipsize >> (this->erase_shift + 1);
ee9745fc
KP
3871 /* It's real page size */
3872 this->writesize = mtd->writesize;
cd5f6346 3873
492e1501 3874 /* REVISIT: Multichip handling */
cd5f6346 3875
5988af23
RH
3876 if (FLEXONENAND(this))
3877 flexonenand_get_size(mtd);
3878 else
3879 mtd->size = this->chipsize;
cd5f6346 3880
ee9745fc
KP
3881 /*
3882 * We emulate the 4KiB page and 256KiB erase block size
3883 * But oobsize is still 64 bytes.
3884 * It is only valid if you turn on 2X program support,
3885 * Otherwise it will be ignored by compiler.
3886 */
3887 if (ONENAND_IS_2PLANE(this)) {
3888 mtd->writesize <<= 1;
3889 mtd->erasesize <<= 1;
3890 }
3891
cd5f6346
KP
3892 return 0;
3893}
3894
a41371eb
KP
3895/**
3896 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3897 * @param mtd MTD device structure
3898 */
3899static int onenand_suspend(struct mtd_info *mtd)
3900{
3901 return onenand_get_device(mtd, FL_PM_SUSPENDED);
3902}
3903
3904/**
3905 * onenand_resume - [MTD Interface] Resume the OneNAND flash
3906 * @param mtd MTD device structure
3907 */
3908static void onenand_resume(struct mtd_info *mtd)
3909{
3910 struct onenand_chip *this = mtd->priv;
3911
3912 if (this->state == FL_PM_SUSPENDED)
3913 onenand_release_device(mtd);
3914 else
297758f8
AKS
3915 printk(KERN_ERR "%s: resume() called for the chip which is not "
3916 "in suspended state\n", __func__);
a41371eb
KP
3917}
3918
cd5f6346
KP
3919/**
3920 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3921 * @param mtd MTD device structure
3922 * @param maxchips Number of chips to scan for
3923 *
3924 * This fills out all the not initialized function pointers
3925 * with the defaults.
3926 * The flash ID is read and the mtd/chip structures are
3927 * filled with the appropriate values.
3928 */
3929int onenand_scan(struct mtd_info *mtd, int maxchips)
3930{
5988af23 3931 int i, ret;
cd5f6346
KP
3932 struct onenand_chip *this = mtd->priv;
3933
3934 if (!this->read_word)
3935 this->read_word = onenand_readw;
3936 if (!this->write_word)
3937 this->write_word = onenand_writew;
3938
3939 if (!this->command)
3940 this->command = onenand_command;
3941 if (!this->wait)
2c22120f 3942 onenand_setup_wait(mtd);
31bb999e
KP
3943 if (!this->bbt_wait)
3944 this->bbt_wait = onenand_bbt_wait;
3945 if (!this->unlock_all)
3946 this->unlock_all = onenand_unlock_all;
cd5f6346 3947
ad0d363b
KP
3948 if (!this->chip_probe)
3949 this->chip_probe = onenand_chip_probe;
3950
cd5f6346
KP
3951 if (!this->read_bufferram)
3952 this->read_bufferram = onenand_read_bufferram;
3953 if (!this->write_bufferram)
3954 this->write_bufferram = onenand_write_bufferram;
3955
cdc00130
KP
3956 if (!this->block_markbad)
3957 this->block_markbad = onenand_default_block_markbad;
3958 if (!this->scan_bbt)
3959 this->scan_bbt = onenand_default_bbt;
3960
cd5f6346
KP
3961 if (onenand_probe(mtd))
3962 return -ENXIO;
3963
52b0eea7
KP
3964 /* Set Sync. Burst Read after probing */
3965 if (this->mmcontrol) {
3966 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3967 this->read_bufferram = onenand_sync_read_bufferram;
3968 }
3969
532a37cf
KP
3970 /* Allocate buffers, if necessary */
3971 if (!this->page_buf) {
470bc844 3972 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
e4eec195 3973 if (!this->page_buf)
532a37cf 3974 return -ENOMEM;
4a8ce0b0
KP
3975#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3976 this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3977 if (!this->verify_buf) {
3978 kfree(this->page_buf);
3979 return -ENOMEM;
3980 }
3981#endif
532a37cf
KP
3982 this->options |= ONENAND_PAGEBUF_ALLOC;
3983 }
470bc844
KP
3984 if (!this->oob_buf) {
3985 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3986 if (!this->oob_buf) {
470bc844
KP
3987 if (this->options & ONENAND_PAGEBUF_ALLOC) {
3988 this->options &= ~ONENAND_PAGEBUF_ALLOC;
3989 kfree(this->page_buf);
3990 }
3991 return -ENOMEM;
3992 }
3993 this->options |= ONENAND_OOBBUF_ALLOC;
3994 }
532a37cf 3995
cd5f6346
KP
3996 this->state = FL_READY;
3997 init_waitqueue_head(&this->wq);
3998 spin_lock_init(&this->chip_lock);
3999
60d84f97
KP
4000 /*
4001 * Allow subpage writes up to oobsize.
4002 */
cd5f6346 4003 switch (mtd->oobsize) {
5988af23 4004 case 128:
99b17c08
RT
4005 if (FLEXONENAND(this)) {
4006 this->ecclayout = &flexonenand_oob_128;
4007 mtd->subpage_sft = 0;
4008 } else {
4009 this->ecclayout = &onenand_oob_128;
4010 mtd->subpage_sft = 2;
4011 }
e1c10243
KP
4012 if (ONENAND_IS_NOP_1(this))
4013 mtd->subpage_sft = 0;
5988af23 4014 break;
cd5f6346 4015 case 64:
5bd34c09 4016 this->ecclayout = &onenand_oob_64;
60d84f97 4017 mtd->subpage_sft = 2;
cd5f6346
KP
4018 break;
4019
4020 case 32:
5bd34c09 4021 this->ecclayout = &onenand_oob_32;
60d84f97 4022 mtd->subpage_sft = 1;
cd5f6346
KP
4023 break;
4024
4025 default:
297758f8
AKS
4026 printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
4027 __func__, mtd->oobsize);
60d84f97 4028 mtd->subpage_sft = 0;
cd5f6346 4029 /* To prevent kernel oops */
5bd34c09 4030 this->ecclayout = &onenand_oob_32;
cd5f6346
KP
4031 break;
4032 }
4033
60d84f97 4034 this->subpagesize = mtd->writesize >> mtd->subpage_sft;
a5e7c7b4
AH
4035
4036 /*
4037 * The number of bytes available for a client to place data into
4038 * the out of band area
4039 */
f5b8aa78 4040 mtd->oobavail = 0;
ad286343
KP
4041 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
4042 this->ecclayout->oobfree[i].length; i++)
f5b8aa78 4043 mtd->oobavail += this->ecclayout->oobfree[i].length;
a5e7c7b4 4044
5bd34c09 4045 mtd->ecclayout = this->ecclayout;
6a918bad 4046 mtd->ecc_strength = 1;
d5c5e78a 4047
cd5f6346 4048 /* Fill in remaining MTD driver data */
c7626802 4049 mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
5fa43394 4050 mtd->flags = MTD_CAP_NANDFLASH;
3c3c10bb
AB
4051 mtd->_erase = onenand_erase;
4052 mtd->_point = NULL;
4053 mtd->_unpoint = NULL;
4054 mtd->_read = onenand_read;
4055 mtd->_write = onenand_write;
4056 mtd->_read_oob = onenand_read_oob;
4057 mtd->_write_oob = onenand_write_oob;
4058 mtd->_panic_write = onenand_panic_write;
493c6460 4059#ifdef CONFIG_MTD_ONENAND_OTP
3c3c10bb
AB
4060 mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
4061 mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
4062 mtd->_get_user_prot_info = onenand_get_user_prot_info;
4063 mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
4064 mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
4065 mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
493c6460 4066#endif
3c3c10bb
AB
4067 mtd->_sync = onenand_sync;
4068 mtd->_lock = onenand_lock;
4069 mtd->_unlock = onenand_unlock;
4070 mtd->_suspend = onenand_suspend;
4071 mtd->_resume = onenand_resume;
4072 mtd->_block_isbad = onenand_block_isbad;
4073 mtd->_block_markbad = onenand_block_markbad;
cd5f6346 4074 mtd->owner = THIS_MODULE;
25dcd297 4075 mtd->writebufsize = mtd->writesize;
cd5f6346
KP
4076
4077 /* Unlock whole block */
b3dcfd35
RT
4078 if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
4079 this->unlock_all(mtd);
cd5f6346 4080
5988af23
RH
4081 ret = this->scan_bbt(mtd);
4082 if ((!FLEXONENAND(this)) || ret)
4083 return ret;
4084
4085 /* Change Flex-OneNAND boundaries if required */
4086 for (i = 0; i < MAX_DIES; i++)
4087 flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
4088 flex_bdry[(2 * i) + 1]);
4089
4090 return 0;
cd5f6346
KP
4091}
4092
4093/**
4094 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
4095 * @param mtd MTD device structure
4096 */
4097void onenand_release(struct mtd_info *mtd)
4098{
532a37cf
KP
4099 struct onenand_chip *this = mtd->priv;
4100
cd5f6346 4101 /* Deregister partitions */
711a632d 4102 mtd_device_unregister(mtd);
532a37cf
KP
4103
4104 /* Free bad block table memory, if allocated */
f00b0046
AH
4105 if (this->bbm) {
4106 struct bbm_info *bbm = this->bbm;
4107 kfree(bbm->bbt);
532a37cf 4108 kfree(this->bbm);
f00b0046 4109 }
470bc844 4110 /* Buffers allocated by onenand_scan */
4a8ce0b0 4111 if (this->options & ONENAND_PAGEBUF_ALLOC) {
532a37cf 4112 kfree(this->page_buf);
4a8ce0b0
KP
4113#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4114 kfree(this->verify_buf);
4115#endif
4116 }
470bc844
KP
4117 if (this->options & ONENAND_OOBBUF_ALLOC)
4118 kfree(this->oob_buf);
5988af23 4119 kfree(mtd->eraseregions);
cd5f6346
KP
4120}
4121
4122EXPORT_SYMBOL_GPL(onenand_scan);
4123EXPORT_SYMBOL_GPL(onenand_release);
4124
4125MODULE_LICENSE("GPL");
4126MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4127MODULE_DESCRIPTION("Generic OneNAND flash driver code");
This page took 0.758719 seconds and 5 git commands to generate.