[MTD] [OneNAND] Use oob buffer instead of main one in oob functions
[deliverable/linux.git] / drivers / mtd / onenand / onenand_base.c
CommitLineData
cd5f6346
KP
1/*
2 * linux/drivers/mtd/onenand/onenand_base.c
3 *
75384b0d 4 * Copyright (C) 2005-2007 Samsung Electronics
cd5f6346
KP
5 * Kyungmin Park <kyungmin.park@samsung.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#include <linux/kernel.h>
13#include <linux/module.h>
14#include <linux/init.h>
015953d7 15#include <linux/sched.h>
2c22120f 16#include <linux/interrupt.h>
015953d7 17#include <linux/jiffies.h>
cd5f6346
KP
18#include <linux/mtd/mtd.h>
19#include <linux/mtd/onenand.h>
20#include <linux/mtd/partitions.h>
21
22#include <asm/io.h>
23
24/**
25 * onenand_oob_64 - oob info for large (2KB) page
26 */
5bd34c09 27static struct nand_ecclayout onenand_oob_64 = {
cd5f6346
KP
28 .eccbytes = 20,
29 .eccpos = {
30 8, 9, 10, 11, 12,
31 24, 25, 26, 27, 28,
32 40, 41, 42, 43, 44,
33 56, 57, 58, 59, 60,
34 },
35 .oobfree = {
36 {2, 3}, {14, 2}, {18, 3}, {30, 2},
d9777f1c
JL
37 {34, 3}, {46, 2}, {50, 3}, {62, 2}
38 }
cd5f6346
KP
39};
40
41/**
42 * onenand_oob_32 - oob info for middle (1KB) page
43 */
5bd34c09 44static struct nand_ecclayout onenand_oob_32 = {
cd5f6346
KP
45 .eccbytes = 10,
46 .eccpos = {
47 8, 9, 10, 11, 12,
48 24, 25, 26, 27, 28,
49 },
50 .oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
51};
52
53static const unsigned char ffchars[] = {
54 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
55 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
56 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
57 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
58 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
59 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
60 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
61 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
62};
63
64/**
65 * onenand_readw - [OneNAND Interface] Read OneNAND register
66 * @param addr address to read
67 *
68 * Read OneNAND register
69 */
70static unsigned short onenand_readw(void __iomem *addr)
71{
72 return readw(addr);
73}
74
75/**
76 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
77 * @param value value to write
78 * @param addr address to write
79 *
80 * Write OneNAND register with value
81 */
82static void onenand_writew(unsigned short value, void __iomem *addr)
83{
84 writew(value, addr);
85}
86
87/**
88 * onenand_block_address - [DEFAULT] Get block address
83a36838 89 * @param this onenand chip data structure
cd5f6346
KP
90 * @param block the block
91 * @return translated block address if DDP, otherwise same
92 *
93 * Setup Start Address 1 Register (F100h)
94 */
83a36838 95static int onenand_block_address(struct onenand_chip *this, int block)
cd5f6346 96{
738d61f5
KP
97 /* Device Flash Core select, NAND Flash Block Address */
98 if (block & this->density_mask)
99 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
cd5f6346
KP
100
101 return block;
102}
103
104/**
105 * onenand_bufferram_address - [DEFAULT] Get bufferram address
83a36838 106 * @param this onenand chip data structure
cd5f6346
KP
107 * @param block the block
108 * @return set DBS value if DDP, otherwise 0
109 *
110 * Setup Start Address 2 Register (F101h) for DDP
111 */
83a36838 112static int onenand_bufferram_address(struct onenand_chip *this, int block)
cd5f6346 113{
738d61f5
KP
114 /* Device BufferRAM Select */
115 if (block & this->density_mask)
116 return ONENAND_DDP_CHIP1;
cd5f6346 117
738d61f5 118 return ONENAND_DDP_CHIP0;
cd5f6346
KP
119}
120
121/**
122 * onenand_page_address - [DEFAULT] Get page address
123 * @param page the page address
124 * @param sector the sector address
125 * @return combined page and sector address
126 *
127 * Setup Start Address 8 Register (F107h)
128 */
129static int onenand_page_address(int page, int sector)
130{
131 /* Flash Page Address, Flash Sector Address */
132 int fpa, fsa;
133
134 fpa = page & ONENAND_FPA_MASK;
135 fsa = sector & ONENAND_FSA_MASK;
136
137 return ((fpa << ONENAND_FPA_SHIFT) | fsa);
138}
139
140/**
141 * onenand_buffer_address - [DEFAULT] Get buffer address
142 * @param dataram1 DataRAM index
143 * @param sectors the sector address
144 * @param count the number of sectors
145 * @return the start buffer value
146 *
147 * Setup Start Buffer Register (F200h)
148 */
149static int onenand_buffer_address(int dataram1, int sectors, int count)
150{
151 int bsa, bsc;
152
153 /* BufferRAM Sector Address */
154 bsa = sectors & ONENAND_BSA_MASK;
155
156 if (dataram1)
157 bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */
158 else
159 bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */
160
161 /* BufferRAM Sector Count */
162 bsc = count & ONENAND_BSC_MASK;
163
164 return ((bsa << ONENAND_BSA_SHIFT) | bsc);
165}
166
167/**
168 * onenand_command - [DEFAULT] Send command to OneNAND device
169 * @param mtd MTD device structure
170 * @param cmd the command to be sent
171 * @param addr offset to read from or write to
172 * @param len number of bytes to read or write
173 *
174 * Send command to OneNAND device. This function is used for middle/large page
175 * devices (1KB/2KB Bytes per page)
176 */
177static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
178{
179 struct onenand_chip *this = mtd->priv;
493c6460 180 int value, readcmd = 0, block_cmd = 0;
cd5f6346 181 int block, page;
cd5f6346
KP
182
183 /* Address translation */
184 switch (cmd) {
185 case ONENAND_CMD_UNLOCK:
186 case ONENAND_CMD_LOCK:
187 case ONENAND_CMD_LOCK_TIGHT:
28b79ff9 188 case ONENAND_CMD_UNLOCK_ALL:
cd5f6346
KP
189 block = -1;
190 page = -1;
191 break;
192
193 case ONENAND_CMD_ERASE:
194 case ONENAND_CMD_BUFFERRAM:
493c6460
KP
195 case ONENAND_CMD_OTP_ACCESS:
196 block_cmd = 1;
cd5f6346
KP
197 block = (int) (addr >> this->erase_shift);
198 page = -1;
199 break;
200
201 default:
202 block = (int) (addr >> this->erase_shift);
203 page = (int) (addr >> this->page_shift);
204 page &= this->page_mask;
205 break;
206 }
207
208 /* NOTE: The setting order of the registers is very important! */
209 if (cmd == ONENAND_CMD_BUFFERRAM) {
210 /* Select DataRAM for DDP */
83a36838 211 value = onenand_bufferram_address(this, block);
cd5f6346
KP
212 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
213
214 /* Switch to the next data buffer */
215 ONENAND_SET_NEXT_BUFFERRAM(this);
216
217 return 0;
218 }
219
220 if (block != -1) {
221 /* Write 'DFS, FBA' of Flash */
83a36838 222 value = onenand_block_address(this, block);
cd5f6346 223 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
3cecf69e 224
75287070 225 if (block_cmd) {
3cecf69e
KP
226 /* Select DataRAM for DDP */
227 value = onenand_bufferram_address(this, block);
228 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
229 }
cd5f6346
KP
230 }
231
232 if (page != -1) {
60d84f97
KP
233 /* Now we use page size operation */
234 int sectors = 4, count = 4;
cd5f6346
KP
235 int dataram;
236
237 switch (cmd) {
238 case ONENAND_CMD_READ:
239 case ONENAND_CMD_READOOB:
240 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
241 readcmd = 1;
242 break;
243
244 default:
245 dataram = ONENAND_CURRENT_BUFFERRAM(this);
246 break;
247 }
248
249 /* Write 'FPA, FSA' of Flash */
250 value = onenand_page_address(page, sectors);
251 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
252
253 /* Write 'BSA, BSC' of DataRAM */
254 value = onenand_buffer_address(dataram, sectors, count);
255 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
d5c5e78a 256
cd5f6346
KP
257 if (readcmd) {
258 /* Select DataRAM for DDP */
83a36838 259 value = onenand_bufferram_address(this, block);
cd5f6346
KP
260 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
261 }
262 }
263
264 /* Interrupt clear */
265 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
266
267 /* Write command */
268 this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
269
270 return 0;
271}
272
273/**
274 * onenand_wait - [DEFAULT] wait until the command is done
275 * @param mtd MTD device structure
276 * @param state state to select the max. timeout value
277 *
278 * Wait for command done. This applies to all OneNAND command
279 * Read can take up to 30us, erase up to 2ms and program up to 350us
280 * according to general OneNAND specs
281 */
282static int onenand_wait(struct mtd_info *mtd, int state)
283{
284 struct onenand_chip * this = mtd->priv;
285 unsigned long timeout;
286 unsigned int flags = ONENAND_INT_MASTER;
287 unsigned int interrupt = 0;
2fd32d4a 288 unsigned int ctrl;
cd5f6346
KP
289
290 /* The 20 msec is enough */
291 timeout = jiffies + msecs_to_jiffies(20);
292 while (time_before(jiffies, timeout)) {
293 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
294
295 if (interrupt & flags)
296 break;
297
298 if (state != FL_READING)
299 cond_resched();
300 }
301 /* To get correct interrupt status in timeout case */
302 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
303
304 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
305
306 if (ctrl & ONENAND_CTRL_ERROR) {
211ac75f 307 printk(KERN_ERR "onenand_wait: controller error = 0x%04x\n", ctrl);
f6272487 308 if (ctrl & ONENAND_CTRL_LOCK)
211ac75f 309 printk(KERN_ERR "onenand_wait: it's locked error.\n");
f6272487 310 return ctrl;
cd5f6346
KP
311 }
312
313 if (interrupt & ONENAND_INT_READ) {
2fd32d4a 314 int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
f4f91ac3 315 if (ecc) {
211ac75f 316 printk(KERN_ERR "onenand_wait: ECC error = 0x%04x\n", ecc);
b3c9f8bf 317 if (ecc & ONENAND_ECC_2BIT_ALL) {
f4f91ac3 318 mtd->ecc_stats.failed++;
b3c9f8bf
KP
319 return ecc;
320 } else if (ecc & ONENAND_ECC_1BIT_ALL)
f4f91ac3 321 mtd->ecc_stats.corrected++;
cd5f6346 322 }
9d032801
AH
323 } else if (state == FL_READING) {
324 printk(KERN_ERR "onenand_wait: read timeout! ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
325 return -EIO;
cd5f6346
KP
326 }
327
328 return 0;
329}
330
2c22120f
KP
331/*
332 * onenand_interrupt - [DEFAULT] onenand interrupt handler
333 * @param irq onenand interrupt number
334 * @param dev_id interrupt data
335 *
336 * complete the work
337 */
338static irqreturn_t onenand_interrupt(int irq, void *data)
339{
340 struct onenand_chip *this = (struct onenand_chip *) data;
341
342 /* To handle shared interrupt */
343 if (!this->complete.done)
344 complete(&this->complete);
345
346 return IRQ_HANDLED;
347}
348
349/*
350 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
351 * @param mtd MTD device structure
352 * @param state state to select the max. timeout value
353 *
354 * Wait for command done.
355 */
356static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
357{
358 struct onenand_chip *this = mtd->priv;
359
2c22120f
KP
360 wait_for_completion(&this->complete);
361
362 return onenand_wait(mtd, state);
363}
364
365/*
366 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
367 * @param mtd MTD device structure
368 * @param state state to select the max. timeout value
369 *
370 * Try interrupt based wait (It is used one-time)
371 */
372static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
373{
374 struct onenand_chip *this = mtd->priv;
375 unsigned long remain, timeout;
376
377 /* We use interrupt wait first */
378 this->wait = onenand_interrupt_wait;
379
2c22120f
KP
380 timeout = msecs_to_jiffies(100);
381 remain = wait_for_completion_timeout(&this->complete, timeout);
382 if (!remain) {
383 printk(KERN_INFO "OneNAND: There's no interrupt. "
384 "We use the normal wait\n");
385
386 /* Release the irq */
387 free_irq(this->irq, this);
c9ac5977 388
2c22120f
KP
389 this->wait = onenand_wait;
390 }
391
392 return onenand_wait(mtd, state);
393}
394
395/*
396 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
397 * @param mtd MTD device structure
398 *
399 * There's two method to wait onenand work
400 * 1. polling - read interrupt status register
401 * 2. interrupt - use the kernel interrupt method
402 */
403static void onenand_setup_wait(struct mtd_info *mtd)
404{
405 struct onenand_chip *this = mtd->priv;
406 int syscfg;
407
408 init_completion(&this->complete);
409
410 if (this->irq <= 0) {
411 this->wait = onenand_wait;
412 return;
413 }
414
415 if (request_irq(this->irq, &onenand_interrupt,
416 IRQF_SHARED, "onenand", this)) {
417 /* If we can't get irq, use the normal wait */
418 this->wait = onenand_wait;
419 return;
420 }
421
422 /* Enable interrupt */
423 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
424 syscfg |= ONENAND_SYS_CFG1_IOBE;
425 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
426
427 this->wait = onenand_try_interrupt_wait;
428}
429
cd5f6346
KP
430/**
431 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
432 * @param mtd MTD data structure
433 * @param area BufferRAM area
434 * @return offset given area
435 *
436 * Return BufferRAM offset given area
437 */
438static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
439{
440 struct onenand_chip *this = mtd->priv;
441
442 if (ONENAND_CURRENT_BUFFERRAM(this)) {
443 if (area == ONENAND_DATARAM)
28318776 444 return mtd->writesize;
cd5f6346
KP
445 if (area == ONENAND_SPARERAM)
446 return mtd->oobsize;
447 }
448
449 return 0;
450}
451
452/**
453 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
454 * @param mtd MTD data structure
455 * @param area BufferRAM area
456 * @param buffer the databuffer to put/get data
457 * @param offset offset to read from or write to
458 * @param count number of bytes to read/write
459 *
460 * Read the BufferRAM area
461 */
462static int onenand_read_bufferram(struct mtd_info *mtd, int area,
463 unsigned char *buffer, int offset, size_t count)
464{
465 struct onenand_chip *this = mtd->priv;
466 void __iomem *bufferram;
467
468 bufferram = this->base + area;
469
470 bufferram += onenand_bufferram_offset(mtd, area);
471
9c01f87d
KP
472 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
473 unsigned short word;
474
475 /* Align with word(16-bit) size */
476 count--;
477
478 /* Read word and save byte */
479 word = this->read_word(bufferram + offset + count);
480 buffer[count] = (word & 0xff);
481 }
482
cd5f6346
KP
483 memcpy(buffer, bufferram + offset, count);
484
485 return 0;
486}
487
52b0eea7
KP
488/**
489 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
490 * @param mtd MTD data structure
491 * @param area BufferRAM area
492 * @param buffer the databuffer to put/get data
493 * @param offset offset to read from or write to
494 * @param count number of bytes to read/write
495 *
496 * Read the BufferRAM area with Sync. Burst Mode
497 */
498static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
499 unsigned char *buffer, int offset, size_t count)
500{
501 struct onenand_chip *this = mtd->priv;
502 void __iomem *bufferram;
503
504 bufferram = this->base + area;
505
506 bufferram += onenand_bufferram_offset(mtd, area);
507
508 this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
509
9c01f87d
KP
510 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
511 unsigned short word;
512
513 /* Align with word(16-bit) size */
514 count--;
515
516 /* Read word and save byte */
517 word = this->read_word(bufferram + offset + count);
518 buffer[count] = (word & 0xff);
519 }
520
52b0eea7
KP
521 memcpy(buffer, bufferram + offset, count);
522
523 this->mmcontrol(mtd, 0);
524
525 return 0;
526}
527
cd5f6346
KP
528/**
529 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
530 * @param mtd MTD data structure
531 * @param area BufferRAM area
532 * @param buffer the databuffer to put/get data
533 * @param offset offset to read from or write to
534 * @param count number of bytes to read/write
535 *
536 * Write the BufferRAM area
537 */
538static int onenand_write_bufferram(struct mtd_info *mtd, int area,
539 const unsigned char *buffer, int offset, size_t count)
540{
541 struct onenand_chip *this = mtd->priv;
542 void __iomem *bufferram;
543
544 bufferram = this->base + area;
545
546 bufferram += onenand_bufferram_offset(mtd, area);
547
9c01f87d
KP
548 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
549 unsigned short word;
550 int byte_offset;
551
552 /* Align with word(16-bit) size */
553 count--;
554
555 /* Calculate byte access offset */
556 byte_offset = offset + count;
557
558 /* Read word and save byte */
559 word = this->read_word(bufferram + byte_offset);
560 word = (word & ~0xff) | buffer[count];
561 this->write_word(word, bufferram + byte_offset);
562 }
563
cd5f6346
KP
564 memcpy(bufferram + offset, buffer, count);
565
566 return 0;
567}
568
569/**
570 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
571 * @param mtd MTD data structure
572 * @param addr address to check
d5c5e78a 573 * @return 1 if there are valid data, otherwise 0
cd5f6346
KP
574 *
575 * Check bufferram if there is data we required
576 */
577static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
578{
579 struct onenand_chip *this = mtd->priv;
cde36b37 580 int blockpage, found = 0;
abf3c0f2 581 unsigned int i;
d5c5e78a 582
abf3c0f2 583 blockpage = (int) (addr >> this->page_shift);
cd5f6346 584
abf3c0f2 585 /* Is there valid data? */
cd5f6346 586 i = ONENAND_CURRENT_BUFFERRAM(this);
abf3c0f2 587 if (this->bufferram[i].blockpage == blockpage)
cde36b37
AH
588 found = 1;
589 else {
590 /* Check another BufferRAM */
591 i = ONENAND_NEXT_BUFFERRAM(this);
592 if (this->bufferram[i].blockpage == blockpage) {
593 ONENAND_SET_NEXT_BUFFERRAM(this);
594 found = 1;
595 }
596 }
cd5f6346 597
cde36b37
AH
598 if (found && ONENAND_IS_DDP(this)) {
599 /* Select DataRAM for DDP */
600 int block = (int) (addr >> this->erase_shift);
601 int value = onenand_bufferram_address(this, block);
602 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
abf3c0f2 603 }
cd5f6346 604
cde36b37 605 return found;
cd5f6346
KP
606}
607
608/**
609 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
610 * @param mtd MTD data structure
611 * @param addr address to update
612 * @param valid valid flag
613 *
614 * Update BufferRAM information
615 */
abf3c0f2 616static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
cd5f6346
KP
617 int valid)
618{
619 struct onenand_chip *this = mtd->priv;
abf3c0f2
KP
620 int blockpage;
621 unsigned int i;
d5c5e78a 622
abf3c0f2 623 blockpage = (int) (addr >> this->page_shift);
cd5f6346 624
abf3c0f2
KP
625 /* Invalidate another BufferRAM */
626 i = ONENAND_NEXT_BUFFERRAM(this);
5b4246f1 627 if (this->bufferram[i].blockpage == blockpage)
abf3c0f2 628 this->bufferram[i].blockpage = -1;
cd5f6346
KP
629
630 /* Update BufferRAM */
631 i = ONENAND_CURRENT_BUFFERRAM(this);
abf3c0f2
KP
632 if (valid)
633 this->bufferram[i].blockpage = blockpage;
634 else
635 this->bufferram[i].blockpage = -1;
cd5f6346
KP
636}
637
480b9dfb
AH
638/**
639 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
640 * @param mtd MTD data structure
641 * @param addr start address to invalidate
642 * @param len length to invalidate
643 *
644 * Invalidate BufferRAM information
645 */
646static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
647 unsigned int len)
648{
649 struct onenand_chip *this = mtd->priv;
650 int i;
651 loff_t end_addr = addr + len;
652
653 /* Invalidate BufferRAM */
654 for (i = 0; i < MAX_BUFFERRAM; i++) {
655 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
656 if (buf_addr >= addr && buf_addr < end_addr)
657 this->bufferram[i].blockpage = -1;
658 }
659}
660
cd5f6346
KP
661/**
662 * onenand_get_device - [GENERIC] Get chip for selected access
663 * @param mtd MTD device structure
664 * @param new_state the state which is requested
665 *
666 * Get the device and lock it for exclusive access
667 */
a41371eb 668static int onenand_get_device(struct mtd_info *mtd, int new_state)
cd5f6346
KP
669{
670 struct onenand_chip *this = mtd->priv;
671 DECLARE_WAITQUEUE(wait, current);
672
673 /*
674 * Grab the lock and see if the device is available
675 */
676 while (1) {
677 spin_lock(&this->chip_lock);
678 if (this->state == FL_READY) {
679 this->state = new_state;
680 spin_unlock(&this->chip_lock);
681 break;
682 }
a41371eb
KP
683 if (new_state == FL_PM_SUSPENDED) {
684 spin_unlock(&this->chip_lock);
685 return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
686 }
cd5f6346
KP
687 set_current_state(TASK_UNINTERRUPTIBLE);
688 add_wait_queue(&this->wq, &wait);
689 spin_unlock(&this->chip_lock);
690 schedule();
691 remove_wait_queue(&this->wq, &wait);
692 }
a41371eb
KP
693
694 return 0;
cd5f6346
KP
695}
696
697/**
698 * onenand_release_device - [GENERIC] release chip
699 * @param mtd MTD device structure
700 *
701 * Deselect, release chip lock and wake up anyone waiting on the device
702 */
703static void onenand_release_device(struct mtd_info *mtd)
704{
705 struct onenand_chip *this = mtd->priv;
706
707 /* Release the chip */
708 spin_lock(&this->chip_lock);
709 this->state = FL_READY;
710 wake_up(&this->wq);
711 spin_unlock(&this->chip_lock);
712}
713
714/**
9223a456 715 * onenand_read - [MTD Interface] Read data from flash
cd5f6346
KP
716 * @param mtd MTD device structure
717 * @param from offset to read from
718 * @param len number of bytes to read
719 * @param retlen pointer to variable to store the number of read bytes
720 * @param buf the databuffer to put data
cd5f6346 721 *
9223a456
TG
722 * Read with ecc
723*/
724static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
725 size_t *retlen, u_char *buf)
cd5f6346
KP
726{
727 struct onenand_chip *this = mtd->priv;
f4f91ac3 728 struct mtd_ecc_stats stats;
cd5f6346
KP
729 int read = 0, column;
730 int thislen;
0fc2ccea 731 int ret = 0, boundary = 0;
cd5f6346 732
9223a456 733 DEBUG(MTD_DEBUG_LEVEL3, "onenand_read: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
cd5f6346
KP
734
735 /* Do not allow reads past end of device */
736 if ((from + len) > mtd->size) {
211ac75f 737 printk(KERN_ERR "onenand_read: Attempt read beyond end of device\n");
cd5f6346
KP
738 *retlen = 0;
739 return -EINVAL;
740 }
741
742 /* Grab the lock and see if the device is available */
743 onenand_get_device(mtd, FL_READING);
744
f4f91ac3 745 stats = mtd->ecc_stats;
61a7e198 746
a8de85d5
AH
747 /* Read-while-load method */
748
749 /* Do first load to bufferRAM */
750 if (read < len) {
751 if (!onenand_check_bufferram(mtd, from)) {
752 this->command(mtd, ONENAND_CMD_READ, from, mtd->writesize);
753 ret = this->wait(mtd, FL_READING);
754 onenand_update_bufferram(mtd, from, !ret);
755 }
756 }
757
758 thislen = min_t(int, mtd->writesize, len - read);
759 column = from & (mtd->writesize - 1);
760 if (column + thislen > mtd->writesize)
761 thislen = mtd->writesize - column;
762
763 while (!ret) {
764 /* If there is more to load then start next load */
765 from += thislen;
766 if (read + thislen < len) {
767 this->command(mtd, ONENAND_CMD_READ, from, mtd->writesize);
0fc2ccea
AH
768 /*
769 * Chip boundary handling in DDP
770 * Now we issued chip 1 read and pointed chip 1
771 * bufferam so we have to point chip 0 bufferam.
772 */
738d61f5
KP
773 if (ONENAND_IS_DDP(this) &&
774 unlikely(from == (this->chipsize >> 1))) {
775 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
0fc2ccea
AH
776 boundary = 1;
777 } else
778 boundary = 0;
a8de85d5
AH
779 ONENAND_SET_PREV_BUFFERRAM(this);
780 }
781 /* While load is going, read from last bufferRAM */
782 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
783 /* See if we are done */
784 read += thislen;
785 if (read == len)
786 break;
787 /* Set up for next read from bufferRAM */
0fc2ccea 788 if (unlikely(boundary))
738d61f5 789 this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
a8de85d5
AH
790 ONENAND_SET_NEXT_BUFFERRAM(this);
791 buf += thislen;
792 thislen = min_t(int, mtd->writesize, len - read);
793 column = 0;
794 cond_resched();
795 /* Now wait for load */
796 ret = this->wait(mtd, FL_READING);
797 onenand_update_bufferram(mtd, from, !ret);
798 }
cd5f6346 799
cd5f6346
KP
800 /* Deselect and wake up anyone waiting on the device */
801 onenand_release_device(mtd);
802
803 /*
804 * Return success, if no ECC failures, else -EBADMSG
805 * fs driver will take care of that, because
806 * retlen == desired len and result == -EBADMSG
807 */
808 *retlen = read;
f4f91ac3
KP
809
810 if (mtd->ecc_stats.failed - stats.failed)
811 return -EBADMSG;
812
a8de85d5
AH
813 if (ret)
814 return ret;
815
f4f91ac3 816 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
cd5f6346
KP
817}
818
a5e7c7b4
AH
819/**
820 * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
821 * @param mtd MTD device structure
822 * @param buf destination address
823 * @param column oob offset to read from
824 * @param thislen oob length to read
825 */
826static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
827 int thislen)
828{
829 struct onenand_chip *this = mtd->priv;
830 struct nand_oobfree *free;
831 int readcol = column;
832 int readend = column + thislen;
833 int lastgap = 0;
834 uint8_t *oob_buf = this->page_buf + mtd->writesize;
835
836 for (free = this->ecclayout->oobfree; free->length; ++free) {
837 if (readcol >= lastgap)
838 readcol += free->offset - lastgap;
839 if (readend >= lastgap)
840 readend += free->offset - lastgap;
841 lastgap = free->offset + free->length;
842 }
4f4fad27 843 this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
a5e7c7b4
AH
844 for (free = this->ecclayout->oobfree; free->length; ++free) {
845 int free_end = free->offset + free->length;
846 if (free->offset < readend && free_end > readcol) {
847 int st = max_t(int,free->offset,readcol);
848 int ed = min_t(int,free_end,readend);
849 int n = ed - st;
850 memcpy(buf, oob_buf + st, n);
851 buf += n;
852 }
853 }
854 return 0;
855}
856
cd5f6346 857/**
8593fbc6 858 * onenand_do_read_oob - [MTD Interface] OneNAND read out-of-band
cd5f6346
KP
859 * @param mtd MTD device structure
860 * @param from offset to read from
861 * @param len number of bytes to read
862 * @param retlen pointer to variable to store the number of read bytes
863 * @param buf the databuffer to put data
a5e7c7b4 864 * @param mode operation mode
cd5f6346
KP
865 *
866 * OneNAND read out-of-band data from the spare area
867 */
211ac75f 868static int onenand_do_read_oob(struct mtd_info *mtd, loff_t from, size_t len,
a5e7c7b4 869 size_t *retlen, u_char *buf, mtd_oob_mode_t mode)
cd5f6346
KP
870{
871 struct onenand_chip *this = mtd->priv;
a5e7c7b4 872 int read = 0, thislen, column, oobsize;
cd5f6346
KP
873 int ret = 0;
874
875 DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
876
877 /* Initialize return length value */
878 *retlen = 0;
879
a5e7c7b4
AH
880 if (mode == MTD_OOB_AUTO)
881 oobsize = this->ecclayout->oobavail;
882 else
883 oobsize = mtd->oobsize;
884
885 column = from & (mtd->oobsize - 1);
886
887 if (unlikely(column >= oobsize)) {
211ac75f 888 printk(KERN_ERR "onenand_read_oob: Attempted to start read outside oob\n");
a5e7c7b4
AH
889 return -EINVAL;
890 }
891
cd5f6346 892 /* Do not allow reads past end of device */
a5e7c7b4
AH
893 if (unlikely(from >= mtd->size ||
894 column + len > ((mtd->size >> this->page_shift) -
895 (from >> this->page_shift)) * oobsize)) {
211ac75f 896 printk(KERN_ERR "onenand_read_oob: Attempted to read beyond end of device\n");
cd5f6346
KP
897 return -EINVAL;
898 }
899
900 /* Grab the lock and see if the device is available */
901 onenand_get_device(mtd, FL_READING);
902
cd5f6346 903 while (read < len) {
61a7e198
AB
904 cond_resched();
905
a5e7c7b4 906 thislen = oobsize - column;
cd5f6346
KP
907 thislen = min_t(int, thislen, len);
908
909 this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
910
911 onenand_update_bufferram(mtd, from, 0);
912
913 ret = this->wait(mtd, FL_READING);
914 /* First copy data and check return value for ECC handling */
915
a5e7c7b4
AH
916 if (mode == MTD_OOB_AUTO)
917 onenand_transfer_auto_oob(mtd, buf, column, thislen);
918 else
919 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
cd5f6346 920
f6272487 921 if (ret) {
211ac75f 922 printk(KERN_ERR "onenand_read_oob: read failed = 0x%x\n", ret);
5b4246f1 923 break;
f6272487
KP
924 }
925
cd5f6346
KP
926 read += thislen;
927
928 if (read == len)
929 break;
930
cd5f6346
KP
931 buf += thislen;
932
933 /* Read more? */
934 if (read < len) {
935 /* Page size */
28318776 936 from += mtd->writesize;
cd5f6346
KP
937 column = 0;
938 }
939 }
940
cd5f6346
KP
941 /* Deselect and wake up anyone waiting on the device */
942 onenand_release_device(mtd);
943
944 *retlen = read;
945 return ret;
946}
947
8593fbc6
TG
948/**
949 * onenand_read_oob - [MTD Interface] NAND write data and/or out-of-band
950 * @mtd: MTD device structure
951 * @from: offset to read from
952 * @ops: oob operation description structure
953 */
954static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
955 struct mtd_oob_ops *ops)
956{
4f4fad27 957 switch (ops->mode) {
a5e7c7b4
AH
958 case MTD_OOB_PLACE:
959 case MTD_OOB_AUTO:
960 break;
961 case MTD_OOB_RAW:
4f4fad27 962 /* Not implemented yet */
a5e7c7b4
AH
963 default:
964 return -EINVAL;
965 }
66a1e421 966 return onenand_do_read_oob(mtd, from + ops->ooboffs, ops->ooblen,
a5e7c7b4 967 &ops->oobretlen, ops->oobbuf, ops->mode);
8593fbc6
TG
968}
969
211ac75f
KP
970/**
971 * onenand_bbt_wait - [DEFAULT] wait until the command is done
972 * @param mtd MTD device structure
973 * @param state state to select the max. timeout value
974 *
975 * Wait for command done.
976 */
977static int onenand_bbt_wait(struct mtd_info *mtd, int state)
978{
979 struct onenand_chip *this = mtd->priv;
980 unsigned long timeout;
981 unsigned int interrupt;
982 unsigned int ctrl;
983
984 /* The 20 msec is enough */
985 timeout = jiffies + msecs_to_jiffies(20);
986 while (time_before(jiffies, timeout)) {
987 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
988 if (interrupt & ONENAND_INT_MASTER)
989 break;
990 }
991 /* To get correct interrupt status in timeout case */
992 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
993 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
994
995 if (ctrl & ONENAND_CTRL_ERROR) {
996 printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
997 /* Initial bad block case */
998 if (ctrl & ONENAND_CTRL_LOAD)
999 return ONENAND_BBT_READ_ERROR;
1000 return ONENAND_BBT_READ_FATAL_ERROR;
1001 }
1002
1003 if (interrupt & ONENAND_INT_READ) {
1004 int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
1005 if (ecc & ONENAND_ECC_2BIT_ALL)
1006 return ONENAND_BBT_READ_ERROR;
1007 } else {
1008 printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1009 "ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1010 return ONENAND_BBT_READ_FATAL_ERROR;
1011 }
1012
1013 return 0;
1014}
1015
1016/**
1017 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1018 * @param mtd MTD device structure
1019 * @param from offset to read from
1020 * @param @ops oob operation description structure
1021 *
1022 * OneNAND read out-of-band data from the spare area for bbt scan
1023 */
1024int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1025 struct mtd_oob_ops *ops)
1026{
1027 struct onenand_chip *this = mtd->priv;
1028 int read = 0, thislen, column;
1029 int ret = 0;
1030 size_t len = ops->ooblen;
1031 u_char *buf = ops->oobbuf;
1032
5785bdd6 1033 DEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
211ac75f
KP
1034
1035 /* Initialize return value */
1036 ops->oobretlen = 0;
1037
1038 /* Do not allow reads past end of device */
1039 if (unlikely((from + len) > mtd->size)) {
1040 printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1041 return ONENAND_BBT_READ_FATAL_ERROR;
1042 }
1043
1044 /* Grab the lock and see if the device is available */
1045 onenand_get_device(mtd, FL_READING);
1046
1047 column = from & (mtd->oobsize - 1);
1048
1049 while (read < len) {
1050 cond_resched();
1051
1052 thislen = mtd->oobsize - column;
1053 thislen = min_t(int, thislen, len);
1054
1055 this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
1056
1057 onenand_update_bufferram(mtd, from, 0);
1058
1059 ret = onenand_bbt_wait(mtd, FL_READING);
1060 if (ret)
1061 break;
1062
1063 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1064 read += thislen;
1065 if (read == len)
1066 break;
1067
1068 buf += thislen;
1069
1070 /* Read more? */
1071 if (read < len) {
1072 /* Update Page size */
1073 from += mtd->writesize;
1074 column = 0;
1075 }
1076 }
1077
1078 /* Deselect and wake up anyone waiting on the device */
1079 onenand_release_device(mtd);
1080
1081 ops->oobretlen = read;
1082 return ret;
1083}
1084
cd5f6346 1085#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
8e6ec690
KP
1086/**
1087 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1088 * @param mtd MTD device structure
1089 * @param buf the databuffer to verify
1090 * @param to offset to read from
8e6ec690
KP
1091 *
1092 */
a5e7c7b4 1093static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
8e6ec690
KP
1094{
1095 struct onenand_chip *this = mtd->priv;
91014e9b 1096 char oobbuf[64];
8e6ec690
KP
1097 int status, i;
1098
1099 this->command(mtd, ONENAND_CMD_READOOB, to, mtd->oobsize);
1100 onenand_update_bufferram(mtd, to, 0);
1101 status = this->wait(mtd, FL_READING);
1102 if (status)
1103 return status;
1104
91014e9b
KP
1105 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1106 for (i = 0; i < mtd->oobsize; i++)
1107 if (buf[i] != 0xFF && buf[i] != oobbuf[i])
8e6ec690
KP
1108 return -EBADMSG;
1109
1110 return 0;
1111}
1112
cd5f6346 1113/**
8b29c0b6
AH
1114 * onenand_verify - [GENERIC] verify the chip contents after a write
1115 * @param mtd MTD device structure
1116 * @param buf the databuffer to verify
1117 * @param addr offset to read from
1118 * @param len number of bytes to read and compare
cd5f6346 1119 *
cd5f6346 1120 */
8b29c0b6 1121static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
cd5f6346
KP
1122{
1123 struct onenand_chip *this = mtd->priv;
8b29c0b6 1124 void __iomem *dataram;
cd5f6346 1125 int ret = 0;
8b29c0b6 1126 int thislen, column;
cd5f6346 1127
8b29c0b6
AH
1128 while (len != 0) {
1129 thislen = min_t(int, mtd->writesize, len);
1130 column = addr & (mtd->writesize - 1);
1131 if (column + thislen > mtd->writesize)
1132 thislen = mtd->writesize - column;
60d84f97 1133
8b29c0b6 1134 this->command(mtd, ONENAND_CMD_READ, addr, mtd->writesize);
cd5f6346 1135
8b29c0b6
AH
1136 onenand_update_bufferram(mtd, addr, 0);
1137
1138 ret = this->wait(mtd, FL_READING);
1139 if (ret)
1140 return ret;
cd5f6346 1141
8b29c0b6 1142 onenand_update_bufferram(mtd, addr, 1);
cd5f6346 1143
8b29c0b6
AH
1144 dataram = this->base + ONENAND_DATARAM;
1145 dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
cd5f6346 1146
8b29c0b6
AH
1147 if (memcmp(buf, dataram + column, thislen))
1148 return -EBADMSG;
1149
1150 len -= thislen;
1151 buf += thislen;
1152 addr += thislen;
1153 }
d5c5e78a 1154
cd5f6346
KP
1155 return 0;
1156}
1157#else
8b29c0b6 1158#define onenand_verify(...) (0)
8e6ec690 1159#define onenand_verify_oob(...) (0)
cd5f6346
KP
1160#endif
1161
60d84f97 1162#define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
cd5f6346
KP
1163
1164/**
9223a456 1165 * onenand_write - [MTD Interface] write buffer to FLASH
cd5f6346
KP
1166 * @param mtd MTD device structure
1167 * @param to offset to write to
1168 * @param len number of bytes to write
1169 * @param retlen pointer to variable to store the number of written bytes
1170 * @param buf the data to write
cd5f6346 1171 *
9223a456 1172 * Write with ECC
cd5f6346 1173 */
9223a456
TG
1174static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1175 size_t *retlen, const u_char *buf)
cd5f6346
KP
1176{
1177 struct onenand_chip *this = mtd->priv;
1178 int written = 0;
1179 int ret = 0;
60d84f97 1180 int column, subpage;
cd5f6346 1181
9223a456 1182 DEBUG(MTD_DEBUG_LEVEL3, "onenand_write: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
cd5f6346
KP
1183
1184 /* Initialize retlen, in case of early exit */
1185 *retlen = 0;
1186
1187 /* Do not allow writes past end of device */
1188 if (unlikely((to + len) > mtd->size)) {
211ac75f 1189 printk(KERN_ERR "onenand_write: Attempt write to past end of device\n");
cd5f6346
KP
1190 return -EINVAL;
1191 }
1192
1193 /* Reject writes, which are not page aligned */
1194 if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(len))) {
211ac75f 1195 printk(KERN_ERR "onenand_write: Attempt to write not page aligned data\n");
cd5f6346
KP
1196 return -EINVAL;
1197 }
1198
60d84f97 1199 column = to & (mtd->writesize - 1);
60d84f97 1200
cd5f6346
KP
1201 /* Grab the lock and see if the device is available */
1202 onenand_get_device(mtd, FL_WRITING);
1203
1204 /* Loop until all data write */
1205 while (written < len) {
81f38e11 1206 int thislen = min_t(int, mtd->writesize - column, len - written);
60d84f97
KP
1207 u_char *wbuf = (u_char *) buf;
1208
61a7e198
AB
1209 cond_resched();
1210
81f38e11 1211 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
60d84f97
KP
1212
1213 /* Partial page write */
81f38e11 1214 subpage = thislen < mtd->writesize;
60d84f97 1215 if (subpage) {
60d84f97 1216 memset(this->page_buf, 0xff, mtd->writesize);
81f38e11 1217 memcpy(this->page_buf + column, buf, thislen);
60d84f97 1218 wbuf = this->page_buf;
60d84f97 1219 }
cd5f6346 1220
81f38e11 1221 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
cd5f6346
KP
1222 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1223
28318776 1224 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
cd5f6346 1225
81f38e11
AH
1226 ret = this->wait(mtd, FL_WRITING);
1227
60d84f97 1228 /* In partial page write we don't update bufferram */
81f38e11 1229 onenand_update_bufferram(mtd, to, !ret && !subpage);
cd5f6346 1230
cd5f6346 1231 if (ret) {
211ac75f 1232 printk(KERN_ERR "onenand_write: write filaed %d\n", ret);
60d84f97 1233 break;
cd5f6346
KP
1234 }
1235
cd5f6346 1236 /* Only check verify write turn on */
8b29c0b6 1237 ret = onenand_verify(mtd, (u_char *) wbuf, to, thislen);
cd5f6346 1238 if (ret) {
211ac75f 1239 printk(KERN_ERR "onenand_write: verify failed %d\n", ret);
60d84f97 1240 break;
cd5f6346
KP
1241 }
1242
60d84f97 1243 written += thislen;
81f38e11 1244
cd5f6346
KP
1245 if (written == len)
1246 break;
1247
60d84f97 1248 column = 0;
cd5f6346
KP
1249 to += thislen;
1250 buf += thislen;
1251 }
1252
cd5f6346
KP
1253 /* Deselect and wake up anyone waiting on the device */
1254 onenand_release_device(mtd);
1255
1256 *retlen = written;
d5c5e78a 1257
cd5f6346
KP
1258 return ret;
1259}
1260
a5e7c7b4
AH
1261/**
1262 * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1263 * @param mtd MTD device structure
1264 * @param oob_buf oob buffer
1265 * @param buf source address
1266 * @param column oob offset to write to
1267 * @param thislen oob length to write
1268 */
1269static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1270 const u_char *buf, int column, int thislen)
1271{
1272 struct onenand_chip *this = mtd->priv;
1273 struct nand_oobfree *free;
1274 int writecol = column;
1275 int writeend = column + thislen;
1276 int lastgap = 0;
1277
1278 for (free = this->ecclayout->oobfree; free->length; ++free) {
1279 if (writecol >= lastgap)
1280 writecol += free->offset - lastgap;
1281 if (writeend >= lastgap)
1282 writeend += free->offset - lastgap;
1283 lastgap = free->offset + free->length;
1284 }
a5e7c7b4
AH
1285 for (free = this->ecclayout->oobfree; free->length; ++free) {
1286 int free_end = free->offset + free->length;
1287 if (free->offset < writeend && free_end > writecol) {
1288 int st = max_t(int,free->offset,writecol);
1289 int ed = min_t(int,free_end,writeend);
1290 int n = ed - st;
1291 memcpy(oob_buf + st, buf, n);
1292 buf += n;
1293 }
1294 }
1295 return 0;
1296}
1297
cd5f6346 1298/**
8593fbc6 1299 * onenand_do_write_oob - [Internal] OneNAND write out-of-band
cd5f6346
KP
1300 * @param mtd MTD device structure
1301 * @param to offset to write to
1302 * @param len number of bytes to write
1303 * @param retlen pointer to variable to store the number of written bytes
1304 * @param buf the data to write
a5e7c7b4 1305 * @param mode operation mode
cd5f6346
KP
1306 *
1307 * OneNAND write out-of-band
1308 */
8593fbc6 1309static int onenand_do_write_oob(struct mtd_info *mtd, loff_t to, size_t len,
a5e7c7b4 1310 size_t *retlen, const u_char *buf, mtd_oob_mode_t mode)
cd5f6346
KP
1311{
1312 struct onenand_chip *this = mtd->priv;
a5e7c7b4 1313 int column, ret = 0, oobsize;
cd5f6346 1314 int written = 0;
91014e9b 1315 u_char *oobbuf;
cd5f6346
KP
1316
1317 DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1318
1319 /* Initialize retlen, in case of early exit */
1320 *retlen = 0;
1321
a5e7c7b4
AH
1322 if (mode == MTD_OOB_AUTO)
1323 oobsize = this->ecclayout->oobavail;
1324 else
1325 oobsize = mtd->oobsize;
1326
1327 column = to & (mtd->oobsize - 1);
1328
1329 if (unlikely(column >= oobsize)) {
211ac75f 1330 printk(KERN_ERR "onenand_write_oob: Attempted to start write outside oob\n");
a5e7c7b4
AH
1331 return -EINVAL;
1332 }
1333
52e4200a 1334 /* For compatibility with NAND: Do not allow write past end of page */
91014e9b 1335 if (unlikely(column + len > oobsize)) {
211ac75f 1336 printk(KERN_ERR "onenand_write_oob: "
52e4200a
AH
1337 "Attempt to write past end of page\n");
1338 return -EINVAL;
1339 }
1340
a5e7c7b4
AH
1341 /* Do not allow reads past end of device */
1342 if (unlikely(to >= mtd->size ||
1343 column + len > ((mtd->size >> this->page_shift) -
1344 (to >> this->page_shift)) * oobsize)) {
211ac75f 1345 printk(KERN_ERR "onenand_write_oob: Attempted to write past end of device\n");
cd5f6346
KP
1346 return -EINVAL;
1347 }
1348
1349 /* Grab the lock and see if the device is available */
1350 onenand_get_device(mtd, FL_WRITING);
1351
91014e9b
KP
1352 oobbuf = this->page_buf + mtd->writesize;
1353
cd5f6346
KP
1354 /* Loop until all data write */
1355 while (written < len) {
a5e7c7b4 1356 int thislen = min_t(int, oobsize, len - written);
cd5f6346 1357
61a7e198
AB
1358 cond_resched();
1359
cd5f6346
KP
1360 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1361
34c10609
KP
1362 /* We send data to spare ram with oobsize
1363 * to prevent byte access */
91014e9b 1364 memset(oobbuf, 0xff, mtd->oobsize);
a5e7c7b4 1365 if (mode == MTD_OOB_AUTO)
91014e9b 1366 onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
a5e7c7b4 1367 else
91014e9b
KP
1368 memcpy(oobbuf + column, buf, thislen);
1369 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
cd5f6346
KP
1370
1371 this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
1372
1373 onenand_update_bufferram(mtd, to, 0);
1374
8e6ec690
KP
1375 ret = this->wait(mtd, FL_WRITING);
1376 if (ret) {
211ac75f 1377 printk(KERN_ERR "onenand_write_oob: write failed %d\n", ret);
5b4246f1 1378 break;
8e6ec690
KP
1379 }
1380
91014e9b 1381 ret = onenand_verify_oob(mtd, oobbuf, to);
8e6ec690 1382 if (ret) {
211ac75f 1383 printk(KERN_ERR "onenand_write_oob: verify failed %d\n", ret);
5b4246f1 1384 break;
8e6ec690 1385 }
cd5f6346
KP
1386
1387 written += thislen;
cd5f6346
KP
1388 if (written == len)
1389 break;
1390
a5e7c7b4 1391 to += mtd->writesize;
cd5f6346 1392 buf += thislen;
a5e7c7b4 1393 column = 0;
cd5f6346
KP
1394 }
1395
cd5f6346
KP
1396 /* Deselect and wake up anyone waiting on the device */
1397 onenand_release_device(mtd);
1398
1399 *retlen = written;
d5c5e78a 1400
8e6ec690 1401 return ret;
cd5f6346
KP
1402}
1403
8593fbc6
TG
1404/**
1405 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1406 * @mtd: MTD device structure
1407 * @from: offset to read from
1408 * @ops: oob operation description structure
1409 */
1410static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1411 struct mtd_oob_ops *ops)
1412{
4f4fad27 1413 switch (ops->mode) {
a5e7c7b4
AH
1414 case MTD_OOB_PLACE:
1415 case MTD_OOB_AUTO:
1416 break;
1417 case MTD_OOB_RAW:
4f4fad27 1418 /* Not implemented yet */
a5e7c7b4
AH
1419 default:
1420 return -EINVAL;
1421 }
66a1e421 1422 return onenand_do_write_oob(mtd, to + ops->ooboffs, ops->ooblen,
a5e7c7b4 1423 &ops->oobretlen, ops->oobbuf, ops->mode);
8593fbc6
TG
1424}
1425
cdc00130
KP
1426/**
1427 * onenand_block_checkbad - [GENERIC] Check if a block is marked bad
1428 * @param mtd MTD device structure
1429 * @param ofs offset from device start
1430 * @param getchip 0, if the chip is already selected
1431 * @param allowbbt 1, if its allowed to access the bbt area
1432 *
1433 * Check, if the block is bad. Either by reading the bad block table or
1434 * calling of the scan function.
1435 */
1436static int onenand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
1437{
1438 struct onenand_chip *this = mtd->priv;
1439 struct bbm_info *bbm = this->bbm;
1440
1441 /* Return info from the table */
1442 return bbm->isbad_bbt(mtd, ofs, allowbbt);
1443}
1444
cd5f6346
KP
1445/**
1446 * onenand_erase - [MTD Interface] erase block(s)
1447 * @param mtd MTD device structure
1448 * @param instr erase instruction
1449 *
1450 * Erase one ore more blocks
1451 */
1452static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1453{
1454 struct onenand_chip *this = mtd->priv;
1455 unsigned int block_size;
1456 loff_t addr;
1457 int len;
1458 int ret = 0;
1459
1460 DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
1461
1462 block_size = (1 << this->erase_shift);
1463
1464 /* Start address must align on block boundary */
1465 if (unlikely(instr->addr & (block_size - 1))) {
211ac75f 1466 printk(KERN_ERR "onenand_erase: Unaligned address\n");
cd5f6346
KP
1467 return -EINVAL;
1468 }
1469
1470 /* Length must align on block boundary */
1471 if (unlikely(instr->len & (block_size - 1))) {
211ac75f 1472 printk(KERN_ERR "onenand_erase: Length not block aligned\n");
cd5f6346
KP
1473 return -EINVAL;
1474 }
1475
1476 /* Do not allow erase past end of device */
1477 if (unlikely((instr->len + instr->addr) > mtd->size)) {
211ac75f 1478 printk(KERN_ERR "onenand_erase: Erase past end of device\n");
cd5f6346
KP
1479 return -EINVAL;
1480 }
1481
1482 instr->fail_addr = 0xffffffff;
1483
1484 /* Grab the lock and see if the device is available */
1485 onenand_get_device(mtd, FL_ERASING);
1486
1487 /* Loop throught the pages */
1488 len = instr->len;
1489 addr = instr->addr;
1490
1491 instr->state = MTD_ERASING;
1492
1493 while (len) {
61a7e198 1494 cond_resched();
cd5f6346 1495
cdc00130
KP
1496 /* Check if we have a bad block, we do not erase bad blocks */
1497 if (onenand_block_checkbad(mtd, addr, 0, 0)) {
1498 printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%08x\n", (unsigned int) addr);
1499 instr->state = MTD_ERASE_FAILED;
1500 goto erase_exit;
1501 }
cd5f6346
KP
1502
1503 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1504
480b9dfb
AH
1505 onenand_invalidate_bufferram(mtd, addr, block_size);
1506
cd5f6346
KP
1507 ret = this->wait(mtd, FL_ERASING);
1508 /* Check, if it is write protected */
1509 if (ret) {
211ac75f 1510 printk(KERN_ERR "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift));
cd5f6346
KP
1511 instr->state = MTD_ERASE_FAILED;
1512 instr->fail_addr = addr;
1513 goto erase_exit;
1514 }
1515
1516 len -= block_size;
1517 addr += block_size;
1518 }
1519
1520 instr->state = MTD_ERASE_DONE;
1521
1522erase_exit:
1523
1524 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1525 /* Do call back function */
1526 if (!ret)
1527 mtd_erase_callback(instr);
1528
1529 /* Deselect and wake up anyone waiting on the device */
1530 onenand_release_device(mtd);
1531
1532 return ret;
1533}
1534
1535/**
1536 * onenand_sync - [MTD Interface] sync
1537 * @param mtd MTD device structure
1538 *
1539 * Sync is actually a wait for chip ready function
1540 */
1541static void onenand_sync(struct mtd_info *mtd)
1542{
1543 DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1544
1545 /* Grab the lock and see if the device is available */
1546 onenand_get_device(mtd, FL_SYNCING);
1547
1548 /* Release it and go back */
1549 onenand_release_device(mtd);
1550}
1551
1552/**
1553 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1554 * @param mtd MTD device structure
1555 * @param ofs offset relative to mtd start
cdc00130
KP
1556 *
1557 * Check whether the block is bad
cd5f6346
KP
1558 */
1559static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1560{
cdc00130
KP
1561 /* Check for invalid offset */
1562 if (ofs > mtd->size)
1563 return -EINVAL;
1564
1565 return onenand_block_checkbad(mtd, ofs, 1, 0);
1566}
1567
1568/**
1569 * onenand_default_block_markbad - [DEFAULT] mark a block bad
1570 * @param mtd MTD device structure
1571 * @param ofs offset from device start
1572 *
1573 * This is the default implementation, which can be overridden by
1574 * a hardware specific driver.
1575 */
1576static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1577{
1578 struct onenand_chip *this = mtd->priv;
1579 struct bbm_info *bbm = this->bbm;
1580 u_char buf[2] = {0, 0};
1581 size_t retlen;
1582 int block;
1583
1584 /* Get block number */
1585 block = ((int) ofs) >> bbm->bbt_erase_shift;
1586 if (bbm->bbt)
1587 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1588
1589 /* We write two bytes, so we dont have to mess with 16 bit access */
1590 ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
a5e7c7b4 1591 return onenand_do_write_oob(mtd, ofs , 2, &retlen, buf, MTD_OOB_PLACE);
cd5f6346
KP
1592}
1593
1594/**
1595 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1596 * @param mtd MTD device structure
1597 * @param ofs offset relative to mtd start
cdc00130
KP
1598 *
1599 * Mark the block as bad
cd5f6346
KP
1600 */
1601static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1602{
cdc00130
KP
1603 struct onenand_chip *this = mtd->priv;
1604 int ret;
1605
1606 ret = onenand_block_isbad(mtd, ofs);
1607 if (ret) {
1608 /* If it was bad already, return success and do nothing */
1609 if (ret > 0)
1610 return 0;
1611 return ret;
1612 }
1613
1614 return this->block_markbad(mtd, ofs);
cd5f6346
KP
1615}
1616
1617/**
08f782b6 1618 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
cd5f6346
KP
1619 * @param mtd MTD device structure
1620 * @param ofs offset relative to mtd start
08f782b6 1621 * @param len number of bytes to lock or unlock
cd5f6346 1622 *
08f782b6 1623 * Lock or unlock one or more blocks
cd5f6346 1624 */
08f782b6 1625static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
cd5f6346
KP
1626{
1627 struct onenand_chip *this = mtd->priv;
1628 int start, end, block, value, status;
08f782b6 1629 int wp_status_mask;
cd5f6346
KP
1630
1631 start = ofs >> this->erase_shift;
1632 end = len >> this->erase_shift;
1633
08f782b6
KP
1634 if (cmd == ONENAND_CMD_LOCK)
1635 wp_status_mask = ONENAND_WP_LS;
1636 else
1637 wp_status_mask = ONENAND_WP_US;
1638
cd5f6346 1639 /* Continuous lock scheme */
28b79ff9 1640 if (this->options & ONENAND_HAS_CONT_LOCK) {
cd5f6346
KP
1641 /* Set start block address */
1642 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1643 /* Set end block address */
28b79ff9 1644 this->write_word(start + end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
08f782b6
KP
1645 /* Write lock command */
1646 this->command(mtd, cmd, 0, 0);
cd5f6346
KP
1647
1648 /* There's no return value */
08f782b6 1649 this->wait(mtd, FL_LOCKING);
cd5f6346
KP
1650
1651 /* Sanity check */
1652 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1653 & ONENAND_CTRL_ONGO)
1654 continue;
1655
1656 /* Check lock status */
1657 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
08f782b6 1658 if (!(status & wp_status_mask))
cd5f6346
KP
1659 printk(KERN_ERR "wp status = 0x%x\n", status);
1660
1661 return 0;
1662 }
1663
1664 /* Block lock scheme */
28b79ff9 1665 for (block = start; block < start + end; block++) {
20ba89a3
KP
1666 /* Set block address */
1667 value = onenand_block_address(this, block);
1668 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1669 /* Select DataRAM for DDP */
1670 value = onenand_bufferram_address(this, block);
1671 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
cd5f6346
KP
1672 /* Set start block address */
1673 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
08f782b6
KP
1674 /* Write lock command */
1675 this->command(mtd, cmd, 0, 0);
cd5f6346
KP
1676
1677 /* There's no return value */
08f782b6 1678 this->wait(mtd, FL_LOCKING);
cd5f6346
KP
1679
1680 /* Sanity check */
1681 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1682 & ONENAND_CTRL_ONGO)
1683 continue;
1684
cd5f6346
KP
1685 /* Check lock status */
1686 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
08f782b6 1687 if (!(status & wp_status_mask))
cd5f6346
KP
1688 printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
1689 }
d5c5e78a 1690
cd5f6346
KP
1691 return 0;
1692}
1693
08f782b6
KP
1694/**
1695 * onenand_lock - [MTD Interface] Lock block(s)
1696 * @param mtd MTD device structure
1697 * @param ofs offset relative to mtd start
1698 * @param len number of bytes to unlock
1699 *
1700 * Lock one or more blocks
1701 */
1702static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
1703{
1704 return onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
1705}
1706
08f782b6
KP
1707/**
1708 * onenand_unlock - [MTD Interface] Unlock block(s)
1709 * @param mtd MTD device structure
1710 * @param ofs offset relative to mtd start
1711 * @param len number of bytes to unlock
1712 *
1713 * Unlock one or more blocks
1714 */
1715static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1716{
1717 return onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
1718}
1719
28b79ff9
KP
1720/**
1721 * onenand_check_lock_status - [OneNAND Interface] Check lock status
1722 * @param this onenand chip data structure
1723 *
1724 * Check lock status
1725 */
1726static void onenand_check_lock_status(struct onenand_chip *this)
1727{
1728 unsigned int value, block, status;
1729 unsigned int end;
1730
1731 end = this->chipsize >> this->erase_shift;
1732 for (block = 0; block < end; block++) {
1733 /* Set block address */
1734 value = onenand_block_address(this, block);
1735 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1736 /* Select DataRAM for DDP */
1737 value = onenand_bufferram_address(this, block);
1738 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1739 /* Set start block address */
1740 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1741
1742 /* Check lock status */
1743 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1744 if (!(status & ONENAND_WP_US))
1745 printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
1746 }
1747}
1748
1749/**
1750 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
1751 * @param mtd MTD device structure
1752 *
1753 * Unlock all blocks
1754 */
1755static int onenand_unlock_all(struct mtd_info *mtd)
1756{
1757 struct onenand_chip *this = mtd->priv;
1758
1759 if (this->options & ONENAND_HAS_UNLOCK_ALL) {
10b7a2bd
KP
1760 /* Set start block address */
1761 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
28b79ff9
KP
1762 /* Write unlock command */
1763 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
1764
1765 /* There's no return value */
08f782b6 1766 this->wait(mtd, FL_LOCKING);
28b79ff9
KP
1767
1768 /* Sanity check */
1769 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1770 & ONENAND_CTRL_ONGO)
1771 continue;
1772
1773 /* Workaround for all block unlock in DDP */
738d61f5 1774 if (ONENAND_IS_DDP(this)) {
28b79ff9 1775 /* 1st block on another chip */
10b7a2bd
KP
1776 loff_t ofs = this->chipsize >> 1;
1777 size_t len = mtd->erasesize;
28b79ff9
KP
1778
1779 onenand_unlock(mtd, ofs, len);
1780 }
1781
1782 onenand_check_lock_status(this);
1783
1784 return 0;
1785 }
1786
08f782b6 1787 onenand_unlock(mtd, 0x0, this->chipsize);
28b79ff9
KP
1788
1789 return 0;
1790}
1791
493c6460
KP
1792#ifdef CONFIG_MTD_ONENAND_OTP
1793
1794/* Interal OTP operation */
1795typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
1796 size_t *retlen, u_char *buf);
1797
1798/**
1799 * do_otp_read - [DEFAULT] Read OTP block area
1800 * @param mtd MTD device structure
1801 * @param from The offset to read
1802 * @param len number of bytes to read
1803 * @param retlen pointer to variable to store the number of readbytes
1804 * @param buf the databuffer to put/get data
1805 *
1806 * Read OTP block area.
1807 */
1808static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
1809 size_t *retlen, u_char *buf)
1810{
1811 struct onenand_chip *this = mtd->priv;
1812 int ret;
1813
1814 /* Enter OTP access mode */
1815 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1816 this->wait(mtd, FL_OTPING);
1817
1818 ret = mtd->read(mtd, from, len, retlen, buf);
1819
1820 /* Exit OTP access mode */
1821 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1822 this->wait(mtd, FL_RESETING);
1823
1824 return ret;
1825}
1826
1827/**
1828 * do_otp_write - [DEFAULT] Write OTP block area
1829 * @param mtd MTD device structure
1830 * @param from The offset to write
1831 * @param len number of bytes to write
1832 * @param retlen pointer to variable to store the number of write bytes
1833 * @param buf the databuffer to put/get data
1834 *
1835 * Write OTP block area.
1836 */
1837static int do_otp_write(struct mtd_info *mtd, loff_t from, size_t len,
1838 size_t *retlen, u_char *buf)
1839{
1840 struct onenand_chip *this = mtd->priv;
1841 unsigned char *pbuf = buf;
1842 int ret;
1843
1844 /* Force buffer page aligned */
28318776 1845 if (len < mtd->writesize) {
493c6460 1846 memcpy(this->page_buf, buf, len);
28318776 1847 memset(this->page_buf + len, 0xff, mtd->writesize - len);
493c6460 1848 pbuf = this->page_buf;
28318776 1849 len = mtd->writesize;
493c6460
KP
1850 }
1851
1852 /* Enter OTP access mode */
1853 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1854 this->wait(mtd, FL_OTPING);
1855
1856 ret = mtd->write(mtd, from, len, retlen, pbuf);
1857
1858 /* Exit OTP access mode */
1859 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1860 this->wait(mtd, FL_RESETING);
1861
1862 return ret;
1863}
1864
1865/**
1866 * do_otp_lock - [DEFAULT] Lock OTP block area
1867 * @param mtd MTD device structure
1868 * @param from The offset to lock
1869 * @param len number of bytes to lock
1870 * @param retlen pointer to variable to store the number of lock bytes
1871 * @param buf the databuffer to put/get data
1872 *
1873 * Lock OTP block area.
1874 */
1875static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
1876 size_t *retlen, u_char *buf)
1877{
1878 struct onenand_chip *this = mtd->priv;
1879 int ret;
1880
1881 /* Enter OTP access mode */
1882 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1883 this->wait(mtd, FL_OTPING);
1884
a5e7c7b4 1885 ret = onenand_do_write_oob(mtd, from, len, retlen, buf, MTD_OOB_PLACE);
493c6460
KP
1886
1887 /* Exit OTP access mode */
1888 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1889 this->wait(mtd, FL_RESETING);
1890
1891 return ret;
1892}
1893
1894/**
1895 * onenand_otp_walk - [DEFAULT] Handle OTP operation
1896 * @param mtd MTD device structure
1897 * @param from The offset to read/write
1898 * @param len number of bytes to read/write
1899 * @param retlen pointer to variable to store the number of read bytes
1900 * @param buf the databuffer to put/get data
1901 * @param action do given action
1902 * @param mode specify user and factory
1903 *
1904 * Handle OTP operation.
1905 */
1906static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1907 size_t *retlen, u_char *buf,
1908 otp_op_t action, int mode)
1909{
1910 struct onenand_chip *this = mtd->priv;
1911 int otp_pages;
1912 int density;
1913 int ret = 0;
1914
1915 *retlen = 0;
1916
1917 density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
1918 if (density < ONENAND_DEVICE_DENSITY_512Mb)
1919 otp_pages = 20;
1920 else
1921 otp_pages = 10;
1922
1923 if (mode == MTD_OTP_FACTORY) {
28318776 1924 from += mtd->writesize * otp_pages;
493c6460
KP
1925 otp_pages = 64 - otp_pages;
1926 }
1927
1928 /* Check User/Factory boundary */
28318776 1929 if (((mtd->writesize * otp_pages) - (from + len)) < 0)
493c6460
KP
1930 return 0;
1931
1932 while (len > 0 && otp_pages > 0) {
1933 if (!action) { /* OTP Info functions */
1934 struct otp_info *otpinfo;
1935
1936 len -= sizeof(struct otp_info);
1937 if (len <= 0)
1938 return -ENOSPC;
1939
1940 otpinfo = (struct otp_info *) buf;
1941 otpinfo->start = from;
28318776 1942 otpinfo->length = mtd->writesize;
493c6460
KP
1943 otpinfo->locked = 0;
1944
28318776 1945 from += mtd->writesize;
493c6460
KP
1946 buf += sizeof(struct otp_info);
1947 *retlen += sizeof(struct otp_info);
1948 } else {
1949 size_t tmp_retlen;
1950 int size = len;
1951
1952 ret = action(mtd, from, len, &tmp_retlen, buf);
1953
1954 buf += size;
1955 len -= size;
1956 *retlen += size;
1957
1958 if (ret < 0)
1959 return ret;
1960 }
1961 otp_pages--;
1962 }
1963
1964 return 0;
1965}
1966
1967/**
1968 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
1969 * @param mtd MTD device structure
1970 * @param buf the databuffer to put/get data
1971 * @param len number of bytes to read
1972 *
1973 * Read factory OTP info.
1974 */
1975static int onenand_get_fact_prot_info(struct mtd_info *mtd,
1976 struct otp_info *buf, size_t len)
1977{
1978 size_t retlen;
1979 int ret;
1980
1981 ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
1982
1983 return ret ? : retlen;
1984}
1985
1986/**
1987 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
1988 * @param mtd MTD device structure
1989 * @param from The offset to read
1990 * @param len number of bytes to read
1991 * @param retlen pointer to variable to store the number of read bytes
1992 * @param buf the databuffer to put/get data
1993 *
1994 * Read factory OTP area.
1995 */
1996static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1997 size_t len, size_t *retlen, u_char *buf)
1998{
1999 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
2000}
2001
2002/**
2003 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
2004 * @param mtd MTD device structure
2005 * @param buf the databuffer to put/get data
2006 * @param len number of bytes to read
2007 *
2008 * Read user OTP info.
2009 */
2010static int onenand_get_user_prot_info(struct mtd_info *mtd,
2011 struct otp_info *buf, size_t len)
2012{
2013 size_t retlen;
2014 int ret;
2015
2016 ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
2017
2018 return ret ? : retlen;
2019}
2020
2021/**
2022 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
2023 * @param mtd MTD device structure
2024 * @param from The offset to read
2025 * @param len number of bytes to read
2026 * @param retlen pointer to variable to store the number of read bytes
2027 * @param buf the databuffer to put/get data
2028 *
2029 * Read user OTP area.
2030 */
2031static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2032 size_t len, size_t *retlen, u_char *buf)
2033{
2034 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
2035}
2036
2037/**
2038 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
2039 * @param mtd MTD device structure
2040 * @param from The offset to write
2041 * @param len number of bytes to write
2042 * @param retlen pointer to variable to store the number of write bytes
2043 * @param buf the databuffer to put/get data
2044 *
2045 * Write user OTP area.
2046 */
2047static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2048 size_t len, size_t *retlen, u_char *buf)
2049{
2050 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
2051}
2052
2053/**
2054 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
2055 * @param mtd MTD device structure
2056 * @param from The offset to lock
2057 * @param len number of bytes to unlock
2058 *
2059 * Write lock mark on spare area in page 0 in OTP block
2060 */
2061static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
2062 size_t len)
2063{
2064 unsigned char oob_buf[64];
2065 size_t retlen;
2066 int ret;
2067
2068 memset(oob_buf, 0xff, mtd->oobsize);
2069 /*
2070 * Note: OTP lock operation
2071 * OTP block : 0xXXFC
2072 * 1st block : 0xXXF3 (If chip support)
2073 * Both : 0xXXF0 (If chip support)
2074 */
2075 oob_buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;
2076
2077 /*
2078 * Write lock mark to 8th word of sector0 of page0 of the spare0.
2079 * We write 16 bytes spare area instead of 2 bytes.
2080 */
2081 from = 0;
2082 len = 16;
2083
2084 ret = onenand_otp_walk(mtd, from, len, &retlen, oob_buf, do_otp_lock, MTD_OTP_USER);
2085
2086 return ret ? : retlen;
2087}
2088#endif /* CONFIG_MTD_ONENAND_OTP */
2089
28b79ff9 2090/**
75384b0d 2091 * onenand_check_features - Check and set OneNAND features
28b79ff9
KP
2092 * @param mtd MTD data structure
2093 *
75384b0d
KP
2094 * Check and set OneNAND features
2095 * - lock scheme
28b79ff9 2096 */
75384b0d 2097static void onenand_check_features(struct mtd_info *mtd)
28b79ff9
KP
2098{
2099 struct onenand_chip *this = mtd->priv;
2100 unsigned int density, process;
2101
2102 /* Lock scheme depends on density and process */
2103 density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
2104 process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2105
2106 /* Lock scheme */
2107 if (density >= ONENAND_DEVICE_DENSITY_1Gb) {
2108 /* A-Die has all block unlock */
2109 if (process) {
2110 printk(KERN_DEBUG "Chip support all block unlock\n");
2111 this->options |= ONENAND_HAS_UNLOCK_ALL;
2112 }
2113 } else {
2114 /* Some OneNAND has continues lock scheme */
2115 if (!process) {
2116 printk(KERN_DEBUG "Lock scheme is Continues Lock\n");
2117 this->options |= ONENAND_HAS_CONT_LOCK;
2118 }
2119 }
2120}
2121
cd5f6346
KP
2122/**
2123 * onenand_print_device_info - Print device ID
2124 * @param device device ID
2125 *
2126 * Print device ID
2127 */
28b79ff9 2128static void onenand_print_device_info(int device, int version)
cd5f6346
KP
2129{
2130 int vcc, demuxed, ddp, density;
2131
2132 vcc = device & ONENAND_DEVICE_VCC_MASK;
2133 demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2134 ddp = device & ONENAND_DEVICE_IS_DDP;
2135 density = device >> ONENAND_DEVICE_DENSITY_SHIFT;
2136 printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
2137 demuxed ? "" : "Muxed ",
2138 ddp ? "(DDP)" : "",
2139 (16 << density),
2140 vcc ? "2.65/3.3" : "1.8",
2141 device);
28b79ff9 2142 printk(KERN_DEBUG "OneNAND version = 0x%04x\n", version);
cd5f6346
KP
2143}
2144
2145static const struct onenand_manufacturers onenand_manuf_ids[] = {
2146 {ONENAND_MFR_SAMSUNG, "Samsung"},
cd5f6346
KP
2147};
2148
2149/**
2150 * onenand_check_maf - Check manufacturer ID
2151 * @param manuf manufacturer ID
2152 *
2153 * Check manufacturer ID
2154 */
2155static int onenand_check_maf(int manuf)
2156{
37b1cc39
KP
2157 int size = ARRAY_SIZE(onenand_manuf_ids);
2158 char *name;
cd5f6346
KP
2159 int i;
2160
37b1cc39 2161 for (i = 0; i < size; i++)
cd5f6346
KP
2162 if (manuf == onenand_manuf_ids[i].id)
2163 break;
cd5f6346 2164
37b1cc39
KP
2165 if (i < size)
2166 name = onenand_manuf_ids[i].name;
2167 else
2168 name = "Unknown";
2169
2170 printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
cd5f6346 2171
37b1cc39 2172 return (i == size);
cd5f6346
KP
2173}
2174
2175/**
2176 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2177 * @param mtd MTD device structure
2178 *
2179 * OneNAND detection method:
2180 * Compare the the values from command with ones from register
2181 */
2182static int onenand_probe(struct mtd_info *mtd)
2183{
2184 struct onenand_chip *this = mtd->priv;
28b79ff9 2185 int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
cd5f6346 2186 int density;
47e777e0
KP
2187 int syscfg;
2188
2189 /* Save system configuration 1 */
2190 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2191 /* Clear Sync. Burst Read mode to read BootRAM */
2192 this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), this->base + ONENAND_REG_SYS_CFG1);
cd5f6346
KP
2193
2194 /* Send the command for reading device ID from BootRAM */
2195 this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2196
2197 /* Read manufacturer and device IDs from BootRAM */
2198 bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2199 bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2200
47e777e0
KP
2201 /* Reset OneNAND to read default register values */
2202 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2203 /* Wait reset */
2204 this->wait(mtd, FL_RESETING);
2205
2206 /* Restore system configuration 1 */
2207 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2208
cd5f6346
KP
2209 /* Check manufacturer ID */
2210 if (onenand_check_maf(bram_maf_id))
2211 return -ENXIO;
2212
cd5f6346
KP
2213 /* Read manufacturer and device IDs from Register */
2214 maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2215 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
f4f91ac3 2216 ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
cd5f6346
KP
2217
2218 /* Check OneNAND device */
2219 if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2220 return -ENXIO;
2221
2222 /* Flash device information */
28b79ff9 2223 onenand_print_device_info(dev_id, ver_id);
cd5f6346 2224 this->device_id = dev_id;
28b79ff9 2225 this->version_id = ver_id;
cd5f6346
KP
2226
2227 density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
2228 this->chipsize = (16 << density) << 20;
83a36838 2229 /* Set density mask. it is used for DDP */
738d61f5
KP
2230 if (ONENAND_IS_DDP(this))
2231 this->density_mask = (1 << (density + 6));
2232 else
2233 this->density_mask = 0;
cd5f6346
KP
2234
2235 /* OneNAND page size & block size */
2236 /* The data buffer size is equal to page size */
28318776
JE
2237 mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2238 mtd->oobsize = mtd->writesize >> 5;
9bfbc9b2 2239 /* Pages per a block are always 64 in OneNAND */
28318776 2240 mtd->erasesize = mtd->writesize << 6;
cd5f6346
KP
2241
2242 this->erase_shift = ffs(mtd->erasesize) - 1;
28318776 2243 this->page_shift = ffs(mtd->writesize) - 1;
9bfbc9b2 2244 this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
cd5f6346
KP
2245
2246 /* REVIST: Multichip handling */
2247
2248 mtd->size = this->chipsize;
2249
75384b0d
KP
2250 /* Check OneNAND features */
2251 onenand_check_features(mtd);
d5c5e78a 2252
cd5f6346
KP
2253 return 0;
2254}
2255
a41371eb
KP
2256/**
2257 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
2258 * @param mtd MTD device structure
2259 */
2260static int onenand_suspend(struct mtd_info *mtd)
2261{
2262 return onenand_get_device(mtd, FL_PM_SUSPENDED);
2263}
2264
2265/**
2266 * onenand_resume - [MTD Interface] Resume the OneNAND flash
2267 * @param mtd MTD device structure
2268 */
2269static void onenand_resume(struct mtd_info *mtd)
2270{
2271 struct onenand_chip *this = mtd->priv;
2272
2273 if (this->state == FL_PM_SUSPENDED)
2274 onenand_release_device(mtd);
2275 else
2276 printk(KERN_ERR "resume() called for the chip which is not"
2277 "in suspended state\n");
2278}
2279
cd5f6346
KP
2280/**
2281 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2282 * @param mtd MTD device structure
2283 * @param maxchips Number of chips to scan for
2284 *
2285 * This fills out all the not initialized function pointers
2286 * with the defaults.
2287 * The flash ID is read and the mtd/chip structures are
2288 * filled with the appropriate values.
2289 */
2290int onenand_scan(struct mtd_info *mtd, int maxchips)
2291{
a5e7c7b4 2292 int i;
cd5f6346
KP
2293 struct onenand_chip *this = mtd->priv;
2294
2295 if (!this->read_word)
2296 this->read_word = onenand_readw;
2297 if (!this->write_word)
2298 this->write_word = onenand_writew;
2299
2300 if (!this->command)
2301 this->command = onenand_command;
2302 if (!this->wait)
2c22120f 2303 onenand_setup_wait(mtd);
cd5f6346
KP
2304
2305 if (!this->read_bufferram)
2306 this->read_bufferram = onenand_read_bufferram;
2307 if (!this->write_bufferram)
2308 this->write_bufferram = onenand_write_bufferram;
2309
cdc00130
KP
2310 if (!this->block_markbad)
2311 this->block_markbad = onenand_default_block_markbad;
2312 if (!this->scan_bbt)
2313 this->scan_bbt = onenand_default_bbt;
2314
cd5f6346
KP
2315 if (onenand_probe(mtd))
2316 return -ENXIO;
2317
52b0eea7
KP
2318 /* Set Sync. Burst Read after probing */
2319 if (this->mmcontrol) {
2320 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2321 this->read_bufferram = onenand_sync_read_bufferram;
2322 }
2323
532a37cf
KP
2324 /* Allocate buffers, if necessary */
2325 if (!this->page_buf) {
2326 size_t len;
28318776 2327 len = mtd->writesize + mtd->oobsize;
532a37cf
KP
2328 this->page_buf = kmalloc(len, GFP_KERNEL);
2329 if (!this->page_buf) {
2330 printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2331 return -ENOMEM;
2332 }
2333 this->options |= ONENAND_PAGEBUF_ALLOC;
2334 }
2335
cd5f6346
KP
2336 this->state = FL_READY;
2337 init_waitqueue_head(&this->wq);
2338 spin_lock_init(&this->chip_lock);
2339
60d84f97
KP
2340 /*
2341 * Allow subpage writes up to oobsize.
2342 */
cd5f6346
KP
2343 switch (mtd->oobsize) {
2344 case 64:
5bd34c09 2345 this->ecclayout = &onenand_oob_64;
60d84f97 2346 mtd->subpage_sft = 2;
cd5f6346
KP
2347 break;
2348
2349 case 32:
5bd34c09 2350 this->ecclayout = &onenand_oob_32;
60d84f97 2351 mtd->subpage_sft = 1;
cd5f6346
KP
2352 break;
2353
2354 default:
2355 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2356 mtd->oobsize);
60d84f97 2357 mtd->subpage_sft = 0;
cd5f6346 2358 /* To prevent kernel oops */
5bd34c09 2359 this->ecclayout = &onenand_oob_32;
cd5f6346
KP
2360 break;
2361 }
2362
60d84f97 2363 this->subpagesize = mtd->writesize >> mtd->subpage_sft;
a5e7c7b4
AH
2364
2365 /*
2366 * The number of bytes available for a client to place data into
2367 * the out of band area
2368 */
2369 this->ecclayout->oobavail = 0;
2370 for (i = 0; this->ecclayout->oobfree[i].length; i++)
2371 this->ecclayout->oobavail +=
2372 this->ecclayout->oobfree[i].length;
1f92267c 2373 mtd->oobavail = this->ecclayout->oobavail;
a5e7c7b4 2374
5bd34c09 2375 mtd->ecclayout = this->ecclayout;
d5c5e78a 2376
cd5f6346
KP
2377 /* Fill in remaining MTD driver data */
2378 mtd->type = MTD_NANDFLASH;
5fa43394 2379 mtd->flags = MTD_CAP_NANDFLASH;
cd5f6346
KP
2380 mtd->erase = onenand_erase;
2381 mtd->point = NULL;
2382 mtd->unpoint = NULL;
2383 mtd->read = onenand_read;
2384 mtd->write = onenand_write;
cd5f6346
KP
2385 mtd->read_oob = onenand_read_oob;
2386 mtd->write_oob = onenand_write_oob;
493c6460
KP
2387#ifdef CONFIG_MTD_ONENAND_OTP
2388 mtd->get_fact_prot_info = onenand_get_fact_prot_info;
2389 mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
2390 mtd->get_user_prot_info = onenand_get_user_prot_info;
2391 mtd->read_user_prot_reg = onenand_read_user_prot_reg;
2392 mtd->write_user_prot_reg = onenand_write_user_prot_reg;
2393 mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
2394#endif
cd5f6346 2395 mtd->sync = onenand_sync;
08f782b6 2396 mtd->lock = onenand_lock;
cd5f6346 2397 mtd->unlock = onenand_unlock;
a41371eb
KP
2398 mtd->suspend = onenand_suspend;
2399 mtd->resume = onenand_resume;
cd5f6346
KP
2400 mtd->block_isbad = onenand_block_isbad;
2401 mtd->block_markbad = onenand_block_markbad;
2402 mtd->owner = THIS_MODULE;
2403
2404 /* Unlock whole block */
28b79ff9 2405 onenand_unlock_all(mtd);
cd5f6346 2406
cdc00130 2407 return this->scan_bbt(mtd);
cd5f6346
KP
2408}
2409
2410/**
2411 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2412 * @param mtd MTD device structure
2413 */
2414void onenand_release(struct mtd_info *mtd)
2415{
532a37cf
KP
2416 struct onenand_chip *this = mtd->priv;
2417
cd5f6346
KP
2418#ifdef CONFIG_MTD_PARTITIONS
2419 /* Deregister partitions */
2420 del_mtd_partitions (mtd);
2421#endif
2422 /* Deregister the device */
2423 del_mtd_device (mtd);
532a37cf
KP
2424
2425 /* Free bad block table memory, if allocated */
f00b0046
AH
2426 if (this->bbm) {
2427 struct bbm_info *bbm = this->bbm;
2428 kfree(bbm->bbt);
532a37cf 2429 kfree(this->bbm);
f00b0046 2430 }
532a37cf
KP
2431 /* Buffer allocated by onenand_scan */
2432 if (this->options & ONENAND_PAGEBUF_ALLOC)
2433 kfree(this->page_buf);
cd5f6346
KP
2434}
2435
2436EXPORT_SYMBOL_GPL(onenand_scan);
2437EXPORT_SYMBOL_GPL(onenand_release);
2438
2439MODULE_LICENSE("GPL");
2440MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
2441MODULE_DESCRIPTION("Generic OneNAND flash driver code");
This page took 0.344214 seconds and 5 git commands to generate.