can: c_can: Cleanup c_can_write_msg_object()
[deliverable/linux.git] / drivers / net / can / c_can / c_can.c
CommitLineData
881ff67a
BS
1/*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28#include <linux/kernel.h>
881ff67a
BS
29#include <linux/module.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/netdevice.h>
33#include <linux/if_arp.h>
34#include <linux/if_ether.h>
35#include <linux/list.h>
881ff67a 36#include <linux/io.h>
4cdd34b2 37#include <linux/pm_runtime.h>
881ff67a
BS
38
39#include <linux/can.h>
40#include <linux/can/dev.h>
41#include <linux/can/error.h>
5090f805 42#include <linux/can/led.h>
881ff67a
BS
43
44#include "c_can.h"
45
33f81009
AC
46/* Number of interface registers */
47#define IF_ENUM_REG_LEN 11
48#define C_CAN_IFACE(reg, iface) (C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
49
82120032
AC
50/* control extension register D_CAN specific */
51#define CONTROL_EX_PDR BIT(8)
52
881ff67a
BS
53/* control register */
54#define CONTROL_TEST BIT(7)
55#define CONTROL_CCE BIT(6)
56#define CONTROL_DISABLE_AR BIT(5)
57#define CONTROL_ENABLE_AR (0 << 5)
58#define CONTROL_EIE BIT(3)
59#define CONTROL_SIE BIT(2)
60#define CONTROL_IE BIT(1)
61#define CONTROL_INIT BIT(0)
62
2d5f4f85
TG
63#define CONTROL_IRQMSK (CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
64
881ff67a
BS
65/* test register */
66#define TEST_RX BIT(7)
67#define TEST_TX1 BIT(6)
68#define TEST_TX2 BIT(5)
69#define TEST_LBACK BIT(4)
70#define TEST_SILENT BIT(3)
71#define TEST_BASIC BIT(2)
72
73/* status register */
82120032 74#define STATUS_PDA BIT(10)
881ff67a
BS
75#define STATUS_BOFF BIT(7)
76#define STATUS_EWARN BIT(6)
77#define STATUS_EPASS BIT(5)
78#define STATUS_RXOK BIT(4)
79#define STATUS_TXOK BIT(3)
80
81/* error counter register */
82#define ERR_CNT_TEC_MASK 0xff
83#define ERR_CNT_TEC_SHIFT 0
84#define ERR_CNT_REC_SHIFT 8
85#define ERR_CNT_REC_MASK (0x7f << ERR_CNT_REC_SHIFT)
86#define ERR_CNT_RP_SHIFT 15
87#define ERR_CNT_RP_MASK (0x1 << ERR_CNT_RP_SHIFT)
88
89/* bit-timing register */
90#define BTR_BRP_MASK 0x3f
91#define BTR_BRP_SHIFT 0
92#define BTR_SJW_SHIFT 6
93#define BTR_SJW_MASK (0x3 << BTR_SJW_SHIFT)
94#define BTR_TSEG1_SHIFT 8
95#define BTR_TSEG1_MASK (0xf << BTR_TSEG1_SHIFT)
96#define BTR_TSEG2_SHIFT 12
97#define BTR_TSEG2_MASK (0x7 << BTR_TSEG2_SHIFT)
98
99/* brp extension register */
100#define BRP_EXT_BRPE_MASK 0x0f
101#define BRP_EXT_BRPE_SHIFT 0
102
103/* IFx command request */
104#define IF_COMR_BUSY BIT(15)
105
106/* IFx command mask */
107#define IF_COMM_WR BIT(7)
108#define IF_COMM_MASK BIT(6)
109#define IF_COMM_ARB BIT(5)
110#define IF_COMM_CONTROL BIT(4)
111#define IF_COMM_CLR_INT_PND BIT(3)
112#define IF_COMM_TXRQST BIT(2)
6b48ff8d 113#define IF_COMM_CLR_NEWDAT IF_COMM_TXRQST
881ff67a
BS
114#define IF_COMM_DATAA BIT(1)
115#define IF_COMM_DATAB BIT(0)
23ef0a89
TG
116
117/* TX buffer setup */
118#define IF_COMM_TX (IF_COMM_ARB | IF_COMM_CONTROL | \
119 IF_COMM_TXRQST | \
120 IF_COMM_DATAA | IF_COMM_DATAB)
881ff67a 121
c0a9f4d3
TG
122/* For the low buffers we clear the interrupt bit, but keep newdat */
123#define IF_COMM_RCV_LOW (IF_COMM_MASK | IF_COMM_ARB | \
124 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
125 IF_COMM_DATAA | IF_COMM_DATAB)
126
127/* For the high buffers we clear the interrupt bit and newdat */
6b48ff8d 128#define IF_COMM_RCV_HIGH (IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
c0a9f4d3 129
8ff2de0f
TG
130
131/* Receive setup of message objects */
132#define IF_COMM_RCV_SETUP (IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
133
b07faaaf
TG
134/* Invalidation of message objects */
135#define IF_COMM_INVAL (IF_COMM_ARB | IF_COMM_CONTROL)
136
881ff67a
BS
137/* IFx arbitration */
138#define IF_ARB_MSGVAL BIT(15)
139#define IF_ARB_MSGXTD BIT(14)
140#define IF_ARB_TRANSMIT BIT(13)
141
142/* IFx message control */
143#define IF_MCONT_NEWDAT BIT(15)
144#define IF_MCONT_MSGLST BIT(14)
881ff67a
BS
145#define IF_MCONT_INTPND BIT(13)
146#define IF_MCONT_UMASK BIT(12)
147#define IF_MCONT_TXIE BIT(11)
148#define IF_MCONT_RXIE BIT(10)
149#define IF_MCONT_RMTEN BIT(9)
150#define IF_MCONT_TXRQST BIT(8)
151#define IF_MCONT_EOB BIT(7)
152#define IF_MCONT_DLC_MASK 0xf
153
8ff2de0f
TG
154#define IF_MCONT_RCV (IF_MCONT_RXIE | IF_MCONT_UMASK)
155#define IF_MCONT_RCV_EOB (IF_MCONT_RCV | IF_MCONT_EOB)
156
23ef0a89
TG
157#define IF_MCONT_TX (IF_MCONT_TXIE | IF_MCONT_EOB)
158
881ff67a 159/*
640916db 160 * Use IF1 for RX and IF2 for TX
881ff67a 161 */
640916db
TG
162#define IF_RX 0
163#define IF_TX 1
881ff67a 164
881ff67a
BS
165/* minimum timeout for checking BUSY status */
166#define MIN_TIMEOUT_VALUE 6
167
82120032
AC
168/* Wait for ~1 sec for INIT bit */
169#define INIT_WAIT_MS 1000
170
881ff67a
BS
171/* napi related */
172#define C_CAN_NAPI_WEIGHT C_CAN_MSG_OBJ_RX_NUM
173
174/* c_can lec values */
175enum c_can_lec_type {
176 LEC_NO_ERROR = 0,
177 LEC_STUFF_ERROR,
178 LEC_FORM_ERROR,
179 LEC_ACK_ERROR,
180 LEC_BIT1_ERROR,
181 LEC_BIT0_ERROR,
182 LEC_CRC_ERROR,
183 LEC_UNUSED,
097aec19 184 LEC_MASK = LEC_UNUSED,
881ff67a
BS
185};
186
187/*
188 * c_can error types:
189 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
190 */
191enum c_can_bus_error_types {
192 C_CAN_NO_ERROR = 0,
193 C_CAN_BUS_OFF,
194 C_CAN_ERROR_WARNING,
195 C_CAN_ERROR_PASSIVE,
196};
197
194b9a4c 198static const struct can_bittiming_const c_can_bittiming_const = {
881ff67a
BS
199 .name = KBUILD_MODNAME,
200 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
201 .tseg1_max = 16,
202 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
203 .tseg2_max = 8,
204 .sjw_max = 4,
205 .brp_min = 1,
206 .brp_max = 1024, /* 6-bit BRP field + 4-bit BRPE field*/
207 .brp_inc = 1,
208};
209
4cdd34b2
AC
210static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
211{
212 if (priv->device)
213 pm_runtime_enable(priv->device);
214}
215
216static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
217{
218 if (priv->device)
219 pm_runtime_disable(priv->device);
220}
221
222static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
223{
224 if (priv->device)
225 pm_runtime_get_sync(priv->device);
226}
227
228static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
229{
230 if (priv->device)
231 pm_runtime_put_sync(priv->device);
232}
233
52cde85a
AC
234static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
235{
236 if (priv->raminit)
237 priv->raminit(priv, enable);
238}
239
881ff67a
BS
240static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
241{
242 return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
243 C_CAN_MSG_OBJ_TX_FIRST;
244}
245
5a7513ad 246static inline int get_tx_echo_msg_obj(int txecho)
881ff67a 247{
5a7513ad 248 return (txecho & C_CAN_NEXT_MSG_OBJ_MASK) + C_CAN_MSG_OBJ_TX_FIRST;
881ff67a
BS
249}
250
33f81009 251static u32 c_can_read_reg32(struct c_can_priv *priv, enum reg index)
881ff67a 252{
33f81009
AC
253 u32 val = priv->read_reg(priv, index);
254 val |= ((u32) priv->read_reg(priv, index + 1)) << 16;
881ff67a
BS
255 return val;
256}
257
2d5f4f85 258static void c_can_irq_control(struct c_can_priv *priv, bool enable)
881ff67a 259{
2d5f4f85 260 u32 ctrl = priv->read_reg(priv, C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
881ff67a
BS
261
262 if (enable)
2d5f4f85 263 ctrl |= CONTROL_IRQMSK;
881ff67a 264
2d5f4f85 265 priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
881ff67a
BS
266}
267
7af28630 268static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
881ff67a 269{
7af28630
TG
270 struct c_can_priv *priv = netdev_priv(dev);
271 int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
272
273 priv->write_reg(priv, reg + 1, cmd);
274 priv->write_reg(priv, reg, obj);
881ff67a 275
7af28630
TG
276 for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
277 if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
278 return;
881ff67a
BS
279 udelay(1);
280 }
7af28630 281 netdev_err(dev, "Updating object timed out\n");
881ff67a 282
881ff67a
BS
283}
284
7af28630
TG
285static inline void c_can_object_get(struct net_device *dev, int iface,
286 u32 obj, u32 cmd)
881ff67a 287{
7af28630 288 c_can_obj_update(dev, iface, cmd, obj);
881ff67a
BS
289}
290
7af28630
TG
291static inline void c_can_object_put(struct net_device *dev, int iface,
292 u32 obj, u32 cmd)
881ff67a 293{
7af28630 294 c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
881ff67a
BS
295}
296
23ef0a89
TG
297static void c_can_write_msg_object(struct net_device *dev, int iface,
298 struct can_frame *frame, int obj)
881ff67a 299{
881ff67a 300 struct c_can_priv *priv = netdev_priv(dev);
23ef0a89
TG
301 u16 ctrl = IF_MCONT_TX | frame->can_dlc;
302 u32 arb = IF_ARB_MSGVAL << 16;
303 int i;
881ff67a
BS
304
305 if (frame->can_id & CAN_EFF_FLAG) {
23ef0a89
TG
306 arb |= frame->can_id & CAN_EFF_MASK;
307 arb |= IF_ARB_MSGXTD << 16;
308 } else {
309 arb |= (frame->can_id & CAN_SFF_MASK) << 18;
310 }
311
312 if (!(frame->can_id & CAN_RTR_FLAG))
313 arb |= IF_ARB_TRANSMIT << 16;
881ff67a 314
23ef0a89
TG
315 priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
316 priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), arb >> 16);
881ff67a 317
23ef0a89 318 priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
881ff67a
BS
319
320 for (i = 0; i < frame->can_dlc; i += 2) {
33f81009 321 priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
881ff67a
BS
322 frame->data[i] | (frame->data[i + 1] << 8));
323 }
324
23ef0a89 325 c_can_object_put(dev, iface, obj, IF_COMM_TX);
881ff67a
BS
326}
327
881ff67a 328static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
6b48ff8d 329 int iface)
881ff67a
BS
330{
331 int i;
881ff67a 332
6b48ff8d
TG
333 for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++)
334 c_can_object_get(dev, iface, i, IF_COMM_CLR_NEWDAT);
881ff67a
BS
335}
336
07c7b6f6
TG
337static int c_can_handle_lost_msg_obj(struct net_device *dev,
338 int iface, int objno, u32 ctrl)
881ff67a 339{
881ff67a 340 struct net_device_stats *stats = &dev->stats;
07c7b6f6 341 struct c_can_priv *priv = netdev_priv(dev);
881ff67a 342 struct can_frame *frame;
07c7b6f6 343 struct sk_buff *skb;
881ff67a 344
07c7b6f6
TG
345 ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
346 priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
640916db 347 c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
881ff67a 348
1da394d8
TG
349 stats->rx_errors++;
350 stats->rx_over_errors++;
351
881ff67a
BS
352 /* create an error msg */
353 skb = alloc_can_err_skb(dev, &frame);
354 if (unlikely(!skb))
07c7b6f6 355 return 0;
881ff67a
BS
356
357 frame->can_id |= CAN_ERR_CRTL;
358 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
881ff67a
BS
359
360 netif_receive_skb(skb);
07c7b6f6 361 return 1;
881ff67a
BS
362}
363
4fb6dccd 364static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
881ff67a 365{
881ff67a 366 struct net_device_stats *stats = &dev->stats;
4fb6dccd 367 struct c_can_priv *priv = netdev_priv(dev);
881ff67a 368 struct can_frame *frame;
4fb6dccd
TG
369 struct sk_buff *skb;
370 u32 arb, data;
881ff67a
BS
371
372 skb = alloc_can_skb(dev, &frame);
373 if (!skb) {
374 stats->rx_dropped++;
375 return -ENOMEM;
376 }
377
378 frame->can_dlc = get_can_dlc(ctrl & 0x0F);
379
4fb6dccd
TG
380 arb = priv->read_reg(priv, C_CAN_IFACE(ARB1_REG, iface));
381 arb |= priv->read_reg(priv, C_CAN_IFACE(ARB2_REG, iface)) << 16;
881ff67a 382
4fb6dccd
TG
383 if (arb & (IF_ARB_MSGXTD << 16))
384 frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
881ff67a 385 else
4fb6dccd 386 frame->can_id = (arb >> 18) & CAN_SFF_MASK;
881ff67a 387
4fb6dccd 388 if (arb & (IF_ARB_TRANSMIT << 16)) {
881ff67a 389 frame->can_id |= CAN_RTR_FLAG;
4fb6dccd
TG
390 } else {
391 int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
392
393 for (i = 0; i < frame->can_dlc; i += 2, dreg ++) {
394 data = priv->read_reg(priv, dreg);
881ff67a
BS
395 frame->data[i] = data;
396 frame->data[i + 1] = data >> 8;
397 }
398 }
399
881ff67a
BS
400 stats->rx_packets++;
401 stats->rx_bytes += frame->can_dlc;
9c64863a
TG
402
403 netif_receive_skb(skb);
881ff67a
BS
404 return 0;
405}
406
407static void c_can_setup_receive_object(struct net_device *dev, int iface,
8ff2de0f 408 u32 obj, u32 mask, u32 id, u32 mcont)
881ff67a
BS
409{
410 struct c_can_priv *priv = netdev_priv(dev);
411
8ff2de0f
TG
412 mask |= BIT(29);
413 priv->write_reg(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
414 priv->write_reg(priv, C_CAN_IFACE(MASK2_REG, iface), mask >> 16);
881ff67a 415
8ff2de0f
TG
416 id |= IF_ARB_MSGVAL << 16;
417 priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), id);
418 priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), id >> 16);
881ff67a 419
33f81009 420 priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
8ff2de0f 421 c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
881ff67a
BS
422}
423
b07faaaf 424static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
881ff67a
BS
425{
426 struct c_can_priv *priv = netdev_priv(dev);
427
33f81009
AC
428 priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
429 priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
430 priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
881ff67a 431
b07faaaf 432 c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
881ff67a
BS
433}
434
435static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
436{
33f81009 437 int val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
881ff67a
BS
438
439 /*
440 * as transmission request register's bit n-1 corresponds to
441 * message object n, we need to handle the same properly.
442 */
443 if (val & (1 << (objno - 1)))
444 return 1;
445
446 return 0;
447}
448
449static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
450 struct net_device *dev)
451{
452 u32 msg_obj_no;
453 struct c_can_priv *priv = netdev_priv(dev);
454 struct can_frame *frame = (struct can_frame *)skb->data;
455
456 if (can_dropped_invalid_skb(dev, skb))
457 return NETDEV_TX_OK;
458
bf88a206 459 spin_lock_bh(&priv->xmit_lock);
881ff67a
BS
460 msg_obj_no = get_tx_next_msg_obj(priv);
461
462 /* prepare message object for transmission */
640916db 463 c_can_write_msg_object(dev, IF_TX, frame, msg_obj_no);
90247008 464 priv->dlc[msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST] = frame->can_dlc;
881ff67a
BS
465 can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
466
467 /*
468 * we have to stop the queue in case of a wrap around or
469 * if the next TX message object is still in use
470 */
471 priv->tx_next++;
472 if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
473 (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
474 netif_stop_queue(dev);
bf88a206 475 spin_unlock_bh(&priv->xmit_lock);
881ff67a
BS
476
477 return NETDEV_TX_OK;
478}
479
9fac1d1a
TG
480static int c_can_wait_for_ctrl_init(struct net_device *dev,
481 struct c_can_priv *priv, u32 init)
482{
483 int retry = 0;
484
485 while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
486 udelay(10);
487 if (retry++ > 1000) {
488 netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
489 return -EIO;
490 }
491 }
492 return 0;
493}
494
881ff67a
BS
495static int c_can_set_bittiming(struct net_device *dev)
496{
497 unsigned int reg_btr, reg_brpe, ctrl_save;
498 u8 brp, brpe, sjw, tseg1, tseg2;
499 u32 ten_bit_brp;
500 struct c_can_priv *priv = netdev_priv(dev);
501 const struct can_bittiming *bt = &priv->can.bittiming;
9fac1d1a 502 int res;
881ff67a
BS
503
504 /* c_can provides a 6-bit brp and 4-bit brpe fields */
505 ten_bit_brp = bt->brp - 1;
506 brp = ten_bit_brp & BTR_BRP_MASK;
507 brpe = ten_bit_brp >> 6;
508
509 sjw = bt->sjw - 1;
510 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
511 tseg2 = bt->phase_seg2 - 1;
512 reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
513 (tseg2 << BTR_TSEG2_SHIFT);
514 reg_brpe = brpe & BRP_EXT_BRPE_MASK;
515
516 netdev_info(dev,
517 "setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
518
33f81009 519 ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
9fac1d1a
TG
520 ctrl_save &= ~CONTROL_INIT;
521 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
522 res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
523 if (res)
524 return res;
525
33f81009
AC
526 priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
527 priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
528 priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
881ff67a 529
9fac1d1a 530 return c_can_wait_for_ctrl_init(dev, priv, 0);
881ff67a
BS
531}
532
533/*
534 * Configure C_CAN message objects for Tx and Rx purposes:
535 * C_CAN provides a total of 32 message objects that can be configured
536 * either for Tx or Rx purposes. Here the first 16 message objects are used as
537 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
538 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
539 * See user guide document for further details on configuring message
540 * objects.
541 */
542static void c_can_configure_msg_objects(struct net_device *dev)
543{
544 int i;
545
546 /* first invalidate all message objects */
547 for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
640916db 548 c_can_inval_msg_object(dev, IF_RX, i);
881ff67a
BS
549
550 /* setup receive message objects */
551 for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
8ff2de0f 552 c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
881ff67a 553
640916db 554 c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
8ff2de0f 555 IF_MCONT_RCV_EOB);
881ff67a
BS
556}
557
558/*
559 * Configure C_CAN chip:
560 * - enable/disable auto-retransmission
561 * - set operating mode
562 * - configure message objects
563 */
130a5171 564static int c_can_chip_config(struct net_device *dev)
881ff67a
BS
565{
566 struct c_can_priv *priv = netdev_priv(dev);
567
ee6f0988 568 /* enable automatic retransmission */
bed11db3 569 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
881ff67a 570
d9cb9bd6
DC
571 if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
572 (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
881ff67a 573 /* loopback + silent mode : useful for hot self-test */
bed11db3
TG
574 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
575 priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
881ff67a
BS
576 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
577 /* loopback mode : useful for self-test function */
bed11db3 578 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
33f81009 579 priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
881ff67a
BS
580 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
581 /* silent mode : bus-monitoring mode */
bed11db3 582 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
33f81009 583 priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
bed11db3 584 }
881ff67a
BS
585
586 /* configure message objects */
587 c_can_configure_msg_objects(dev);
588
589 /* set a `lec` value so that we can check for updates later */
33f81009 590 priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
881ff67a
BS
591
592 /* set bittiming params */
130a5171 593 return c_can_set_bittiming(dev);
881ff67a
BS
594}
595
130a5171 596static int c_can_start(struct net_device *dev)
881ff67a
BS
597{
598 struct c_can_priv *priv = netdev_priv(dev);
130a5171 599 int err;
881ff67a 600
881ff67a 601 /* basic c_can configuration */
130a5171
MKB
602 err = c_can_chip_config(dev);
603 if (err)
604 return err;
881ff67a 605
d61d09de
TG
606 /* Setup the command for new messages */
607 priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
608 IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
609
881ff67a
BS
610 priv->can.state = CAN_STATE_ERROR_ACTIVE;
611
fa39b54c 612 /* reset tx helper pointers and the rx mask */
881ff67a 613 priv->tx_next = priv->tx_echo = 0;
fa39b54c 614 priv->rxmasked = 0;
4f2d56c4 615
130a5171 616 return 0;
881ff67a
BS
617}
618
619static void c_can_stop(struct net_device *dev)
620{
621 struct c_can_priv *priv = netdev_priv(dev);
622
2d5f4f85 623 c_can_irq_control(priv, false);
881ff67a
BS
624 priv->can.state = CAN_STATE_STOPPED;
625}
626
627static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
628{
bed11db3 629 struct c_can_priv *priv = netdev_priv(dev);
130a5171
MKB
630 int err;
631
881ff67a
BS
632 switch (mode) {
633 case CAN_MODE_START:
130a5171
MKB
634 err = c_can_start(dev);
635 if (err)
636 return err;
881ff67a 637 netif_wake_queue(dev);
2d5f4f85 638 c_can_irq_control(priv, true);
881ff67a
BS
639 break;
640 default:
641 return -EOPNOTSUPP;
642 }
643
644 return 0;
645}
646
e35d46ad
MKB
647static int __c_can_get_berr_counter(const struct net_device *dev,
648 struct can_berr_counter *bec)
881ff67a
BS
649{
650 unsigned int reg_err_counter;
651 struct c_can_priv *priv = netdev_priv(dev);
652
33f81009 653 reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
881ff67a
BS
654 bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
655 ERR_CNT_REC_SHIFT;
656 bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
657
e35d46ad
MKB
658 return 0;
659}
660
661static int c_can_get_berr_counter(const struct net_device *dev,
662 struct can_berr_counter *bec)
663{
664 struct c_can_priv *priv = netdev_priv(dev);
665 int err;
666
667 c_can_pm_runtime_get_sync(priv);
668 err = __c_can_get_berr_counter(dev, bec);
4cdd34b2
AC
669 c_can_pm_runtime_put_sync(priv);
670
e35d46ad 671 return err;
881ff67a
BS
672}
673
674/*
881ff67a
BS
675 * priv->tx_echo holds the number of the oldest can_frame put for
676 * transmission into the hardware, but not yet ACKed by the CAN tx
677 * complete IRQ.
678 *
679 * We iterate from priv->tx_echo to priv->tx_next and check if the
680 * packet has been transmitted, echo it back to the CAN framework.
617cacce 681 * If we discover a not yet transmitted packet, stop looking for more.
881ff67a
BS
682 */
683static void c_can_do_tx(struct net_device *dev)
684{
881ff67a
BS
685 struct c_can_priv *priv = netdev_priv(dev);
686 struct net_device_stats *stats = &dev->stats;
5a7513ad 687 u32 val, obj, pkts = 0, bytes = 0;
881ff67a 688
bf88a206
TG
689 spin_lock_bh(&priv->xmit_lock);
690
691 for (; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
5a7513ad 692 obj = get_tx_echo_msg_obj(priv->tx_echo);
33f81009 693 val = c_can_read_reg32(priv, C_CAN_TXRQST1_REG);
5a7513ad
TG
694
695 if (val & (1 << (obj - 1)))
617cacce 696 break;
5a7513ad
TG
697
698 can_get_echo_skb(dev, obj - C_CAN_MSG_OBJ_TX_FIRST);
699 bytes += priv->dlc[obj - C_CAN_MSG_OBJ_TX_FIRST];
700 pkts++;
701 c_can_inval_msg_object(dev, IF_TX, obj);
881ff67a
BS
702 }
703
704 /* restart queue if wrap-up or if queue stalled on last pkt */
705 if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
706 ((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
707 netif_wake_queue(dev);
bf88a206
TG
708
709 spin_unlock_bh(&priv->xmit_lock);
5a7513ad
TG
710
711 if (pkts) {
712 stats->tx_bytes += bytes;
713 stats->tx_packets += pkts;
714 can_led_event(dev, CAN_LED_EVENT_TX);
715 }
881ff67a
BS
716}
717
64f08f2f
TG
718/*
719 * If we have a gap in the pending bits, that means we either
720 * raced with the hardware or failed to readout all upper
721 * objects in the last run due to quota limit.
722 */
723static u32 c_can_adjust_pending(u32 pend)
724{
725 u32 weight, lasts;
726
727 if (pend == RECEIVE_OBJECT_BITS)
728 return pend;
729
730 /*
731 * If the last set bit is larger than the number of pending
732 * bits we have a gap.
733 */
734 weight = hweight32(pend);
735 lasts = fls(pend);
736
737 /* If the bits are linear, nothing to do */
738 if (lasts == weight)
739 return pend;
740
741 /*
742 * Find the first set bit after the gap. We walk backwards
743 * from the last set bit.
744 */
745 for (lasts--; pend & (1 << (lasts - 1)); lasts--);
746
747 return pend & ~((1 << lasts) - 1);
748}
749
d61d09de
TG
750static inline void c_can_rx_object_get(struct net_device *dev,
751 struct c_can_priv *priv, u32 obj)
2b9aecdc
TG
752{
753#ifdef CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING
754 if (obj < C_CAN_MSG_RX_LOW_LAST)
755 c_can_object_get(dev, IF_RX, obj, IF_COMM_RCV_LOW);
756 else
757#endif
d61d09de 758 c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
2b9aecdc
TG
759}
760
761static inline void c_can_rx_finalize(struct net_device *dev,
762 struct c_can_priv *priv, u32 obj)
763{
764#ifdef CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING
765 if (obj < C_CAN_MSG_RX_LOW_LAST)
766 priv->rxmasked |= BIT(obj - 1);
767 else if (obj == C_CAN_MSG_RX_LOW_LAST) {
768 priv->rxmasked = 0;
769 /* activate all lower message objects */
770 c_can_activate_all_lower_rx_msg_obj(dev, IF_RX);
771 }
772#endif
d61d09de
TG
773 if (priv->type != BOSCH_D_CAN)
774 c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
2b9aecdc
TG
775}
776
520f570c
TG
777static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
778 u32 pend, int quota)
779{
2b9aecdc 780 u32 pkts = 0, ctrl, obj;
520f570c
TG
781
782 while ((obj = ffs(pend)) && quota > 0) {
783 pend &= ~BIT(obj - 1);
784
d61d09de 785 c_can_rx_object_get(dev, priv, obj);
520f570c
TG
786 ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
787
788 if (ctrl & IF_MCONT_MSGLST) {
789 int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
790
791 pkts += n;
792 quota -= n;
793 continue;
794 }
795
796 /*
797 * This really should not happen, but this covers some
798 * odd HW behaviour. Do not remove that unless you
799 * want to brick your machine.
800 */
801 if (!(ctrl & IF_MCONT_NEWDAT))
802 continue;
803
804 /* read the data from the message object */
805 c_can_read_msg_object(dev, IF_RX, ctrl);
806
2b9aecdc 807 c_can_rx_finalize(dev, priv, obj);
520f570c
TG
808
809 pkts++;
810 quota--;
811 }
812
813 return pkts;
881ff67a
BS
814}
815
2b9aecdc
TG
816static inline u32 c_can_get_pending(struct c_can_priv *priv)
817{
818 u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
819
820#ifdef CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING
821 pend &= ~priv->rxmasked;
822#endif
823 return pend;
824}
825
881ff67a
BS
826/*
827 * theory of operation:
828 *
829 * c_can core saves a received CAN message into the first free message
830 * object it finds free (starting with the lowest). Bits NEWDAT and
831 * INTPND are set for this message object indicating that a new message
832 * has arrived. To work-around this issue, we keep two groups of message
833 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
834 *
2b9aecdc
TG
835 * If CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING = y
836 *
881ff67a
BS
837 * To ensure in-order frame reception we use the following
838 * approach while re-activating a message object to receive further
839 * frames:
840 * - if the current message object number is lower than
841 * C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
842 * the INTPND bit.
843 * - if the current message object number is equal to
844 * C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
845 * receive message objects.
846 * - if the current message object number is greater than
847 * C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
848 * only this message object.
2b9aecdc
TG
849 *
850 * This can cause packet loss!
851 *
852 * If CONFIG_CAN_C_CAN_STRICT_FRAME_ORDERING = n
853 *
854 * We clear the newdat bit right away.
855 *
856 * This can result in packet reordering when the readout is slow.
881ff67a
BS
857 */
858static int c_can_do_rx_poll(struct net_device *dev, int quota)
859{
881ff67a 860 struct c_can_priv *priv = netdev_priv(dev);
520f570c 861 u32 pkts = 0, pend = 0, toread, n;
4ce78a83
MP
862
863 /*
864 * It is faster to read only one 16bit register. This is only possible
865 * for a maximum number of 16 objects.
866 */
867 BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
868 "Implementation does not support more message objects than 16");
869
64f08f2f 870 while (quota > 0) {
64f08f2f 871 if (!pend) {
2b9aecdc 872 pend = c_can_get_pending(priv);
64f08f2f 873 if (!pend)
520f570c 874 break;
64f08f2f
TG
875 /*
876 * If the pending field has a gap, handle the
877 * bits above the gap first.
878 */
520f570c 879 toread = c_can_adjust_pending(pend);
64f08f2f 880 } else {
520f570c 881 toread = pend;
881ff67a 882 }
64f08f2f 883 /* Remove the bits from pend */
520f570c
TG
884 pend &= ~toread;
885 /* Read the objects */
886 n = c_can_read_objects(dev, priv, toread, quota);
887 pkts += n;
888 quota -= n;
881ff67a
BS
889 }
890
b1d8e431
TG
891 if (pkts)
892 can_led_event(dev, CAN_LED_EVENT_RX);
893
520f570c 894 return pkts;
881ff67a
BS
895}
896
881ff67a
BS
897static int c_can_handle_state_change(struct net_device *dev,
898 enum c_can_bus_error_types error_type)
899{
900 unsigned int reg_err_counter;
901 unsigned int rx_err_passive;
902 struct c_can_priv *priv = netdev_priv(dev);
903 struct net_device_stats *stats = &dev->stats;
904 struct can_frame *cf;
905 struct sk_buff *skb;
906 struct can_berr_counter bec;
907
f058d548
TG
908 switch (error_type) {
909 case C_CAN_ERROR_WARNING:
910 /* error warning state */
911 priv->can.can_stats.error_warning++;
912 priv->can.state = CAN_STATE_ERROR_WARNING;
913 break;
914 case C_CAN_ERROR_PASSIVE:
915 /* error passive state */
916 priv->can.can_stats.error_passive++;
917 priv->can.state = CAN_STATE_ERROR_PASSIVE;
918 break;
919 case C_CAN_BUS_OFF:
920 /* bus-off state */
921 priv->can.state = CAN_STATE_BUS_OFF;
922 can_bus_off(dev);
923 break;
924 default:
925 break;
926 }
927
25985edc 928 /* propagate the error condition to the CAN stack */
881ff67a
BS
929 skb = alloc_can_err_skb(dev, &cf);
930 if (unlikely(!skb))
931 return 0;
932
e35d46ad 933 __c_can_get_berr_counter(dev, &bec);
33f81009 934 reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
881ff67a
BS
935 rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
936 ERR_CNT_RP_SHIFT;
937
938 switch (error_type) {
939 case C_CAN_ERROR_WARNING:
940 /* error warning state */
881ff67a
BS
941 cf->can_id |= CAN_ERR_CRTL;
942 cf->data[1] = (bec.txerr > bec.rxerr) ?
943 CAN_ERR_CRTL_TX_WARNING :
944 CAN_ERR_CRTL_RX_WARNING;
945 cf->data[6] = bec.txerr;
946 cf->data[7] = bec.rxerr;
947
948 break;
949 case C_CAN_ERROR_PASSIVE:
950 /* error passive state */
881ff67a
BS
951 cf->can_id |= CAN_ERR_CRTL;
952 if (rx_err_passive)
953 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
954 if (bec.txerr > 127)
955 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
956
957 cf->data[6] = bec.txerr;
958 cf->data[7] = bec.rxerr;
959 break;
960 case C_CAN_BUS_OFF:
961 /* bus-off state */
881ff67a 962 cf->can_id |= CAN_ERR_BUSOFF;
881ff67a
BS
963 can_bus_off(dev);
964 break;
965 default:
966 break;
967 }
968
881ff67a
BS
969 stats->rx_packets++;
970 stats->rx_bytes += cf->can_dlc;
9c64863a 971 netif_receive_skb(skb);
881ff67a
BS
972
973 return 1;
974}
975
976static int c_can_handle_bus_err(struct net_device *dev,
977 enum c_can_lec_type lec_type)
978{
979 struct c_can_priv *priv = netdev_priv(dev);
980 struct net_device_stats *stats = &dev->stats;
981 struct can_frame *cf;
982 struct sk_buff *skb;
983
984 /*
985 * early exit if no lec update or no error.
986 * no lec update means that no CAN bus event has been detected
987 * since CPU wrote 0x7 value to status reg.
988 */
989 if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
990 return 0;
991
097aec19
TG
992 if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
993 return 0;
994
1da394d8
TG
995 /* common for all type of bus errors */
996 priv->can.can_stats.bus_error++;
997 stats->rx_errors++;
998
25985edc 999 /* propagate the error condition to the CAN stack */
881ff67a
BS
1000 skb = alloc_can_err_skb(dev, &cf);
1001 if (unlikely(!skb))
1002 return 0;
1003
1004 /*
1005 * check for 'last error code' which tells us the
1006 * type of the last error to occur on the CAN bus
1007 */
881ff67a
BS
1008 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1009 cf->data[2] |= CAN_ERR_PROT_UNSPEC;
1010
1011 switch (lec_type) {
1012 case LEC_STUFF_ERROR:
1013 netdev_dbg(dev, "stuff error\n");
1014 cf->data[2] |= CAN_ERR_PROT_STUFF;
1015 break;
1016 case LEC_FORM_ERROR:
1017 netdev_dbg(dev, "form error\n");
1018 cf->data[2] |= CAN_ERR_PROT_FORM;
1019 break;
1020 case LEC_ACK_ERROR:
1021 netdev_dbg(dev, "ack error\n");
6ea45886 1022 cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
881ff67a
BS
1023 CAN_ERR_PROT_LOC_ACK_DEL);
1024 break;
1025 case LEC_BIT1_ERROR:
1026 netdev_dbg(dev, "bit1 error\n");
1027 cf->data[2] |= CAN_ERR_PROT_BIT1;
1028 break;
1029 case LEC_BIT0_ERROR:
1030 netdev_dbg(dev, "bit0 error\n");
1031 cf->data[2] |= CAN_ERR_PROT_BIT0;
1032 break;
1033 case LEC_CRC_ERROR:
1034 netdev_dbg(dev, "CRC error\n");
6ea45886 1035 cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
881ff67a
BS
1036 CAN_ERR_PROT_LOC_CRC_DEL);
1037 break;
1038 default:
1039 break;
1040 }
1041
881ff67a
BS
1042 stats->rx_packets++;
1043 stats->rx_bytes += cf->can_dlc;
9c64863a 1044 netif_receive_skb(skb);
881ff67a
BS
1045 return 1;
1046}
1047
1048static int c_can_poll(struct napi_struct *napi, int quota)
1049{
881ff67a
BS
1050 struct net_device *dev = napi->dev;
1051 struct c_can_priv *priv = netdev_priv(dev);
fa39b54c
TG
1052 u16 curr, last = priv->last_status;
1053 int work_done = 0;
881ff67a 1054
fa39b54c
TG
1055 priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
1056 /* Ack status on C_CAN. D_CAN is self clearing */
1057 if (priv->type != BOSCH_D_CAN)
1058 priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
881ff67a 1059
fa39b54c
TG
1060 /* handle state changes */
1061 if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1062 netdev_dbg(dev, "entered error warning state\n");
1063 work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1064 }
881ff67a 1065
fa39b54c
TG
1066 if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1067 netdev_dbg(dev, "entered error passive state\n");
1068 work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1069 }
881ff67a 1070
fa39b54c
TG
1071 if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1072 netdev_dbg(dev, "entered bus off state\n");
1073 work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1074 goto end;
881ff67a
BS
1075 }
1076
fa39b54c
TG
1077 /* handle bus recovery events */
1078 if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1079 netdev_dbg(dev, "left bus off state\n");
1080 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1081 }
1082 if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1083 netdev_dbg(dev, "left error passive state\n");
1084 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1085 }
1086
1087 /* handle lec errors on the bus */
1088 work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1089
1090 /* Handle Tx/Rx events. We do this unconditionally */
1091 work_done += c_can_do_rx_poll(dev, (quota - work_done));
1092 c_can_do_tx(dev);
1093
881ff67a
BS
1094end:
1095 if (work_done < quota) {
1096 napi_complete(napi);
ef1d2e28
TG
1097 /* enable all IRQs if we are not in bus off state */
1098 if (priv->can.state != CAN_STATE_BUS_OFF)
2d5f4f85 1099 c_can_irq_control(priv, true);
881ff67a
BS
1100 }
1101
1102 return work_done;
1103}
1104
1105static irqreturn_t c_can_isr(int irq, void *dev_id)
1106{
881ff67a
BS
1107 struct net_device *dev = (struct net_device *)dev_id;
1108 struct c_can_priv *priv = netdev_priv(dev);
1109
fa39b54c 1110 if (!priv->read_reg(priv, C_CAN_INT_REG))
881ff67a
BS
1111 return IRQ_NONE;
1112
1113 /* disable all interrupts and schedule the NAPI */
2d5f4f85 1114 c_can_irq_control(priv, false);
881ff67a
BS
1115 napi_schedule(&priv->napi);
1116
1117 return IRQ_HANDLED;
1118}
1119
1120static int c_can_open(struct net_device *dev)
1121{
1122 int err;
1123 struct c_can_priv *priv = netdev_priv(dev);
1124
4cdd34b2 1125 c_can_pm_runtime_get_sync(priv);
52cde85a 1126 c_can_reset_ram(priv, true);
4cdd34b2 1127
881ff67a
BS
1128 /* open the can device */
1129 err = open_candev(dev);
1130 if (err) {
1131 netdev_err(dev, "failed to open can device\n");
4cdd34b2 1132 goto exit_open_fail;
881ff67a
BS
1133 }
1134
1135 /* register interrupt handler */
1136 err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1137 dev);
1138 if (err < 0) {
1139 netdev_err(dev, "failed to request interrupt\n");
1140 goto exit_irq_fail;
1141 }
1142
130a5171
MKB
1143 /* start the c_can controller */
1144 err = c_can_start(dev);
1145 if (err)
1146 goto exit_start_fail;
f461f27a 1147
5090f805
FB
1148 can_led_event(dev, CAN_LED_EVENT_OPEN);
1149
130a5171 1150 napi_enable(&priv->napi);
bed11db3 1151 /* enable status change, error and module interrupts */
2d5f4f85 1152 c_can_irq_control(priv, true);
881ff67a
BS
1153 netif_start_queue(dev);
1154
1155 return 0;
1156
130a5171
MKB
1157exit_start_fail:
1158 free_irq(dev->irq, dev);
881ff67a
BS
1159exit_irq_fail:
1160 close_candev(dev);
4cdd34b2 1161exit_open_fail:
52cde85a 1162 c_can_reset_ram(priv, false);
4cdd34b2 1163 c_can_pm_runtime_put_sync(priv);
881ff67a
BS
1164 return err;
1165}
1166
1167static int c_can_close(struct net_device *dev)
1168{
1169 struct c_can_priv *priv = netdev_priv(dev);
1170
1171 netif_stop_queue(dev);
1172 napi_disable(&priv->napi);
1173 c_can_stop(dev);
1174 free_irq(dev->irq, dev);
1175 close_candev(dev);
52cde85a
AC
1176
1177 c_can_reset_ram(priv, false);
4cdd34b2 1178 c_can_pm_runtime_put_sync(priv);
881ff67a 1179
5090f805
FB
1180 can_led_event(dev, CAN_LED_EVENT_STOP);
1181
881ff67a
BS
1182 return 0;
1183}
1184
1185struct net_device *alloc_c_can_dev(void)
1186{
1187 struct net_device *dev;
1188 struct c_can_priv *priv;
1189
1190 dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1191 if (!dev)
1192 return NULL;
1193
1194 priv = netdev_priv(dev);
bf88a206 1195 spin_lock_init(&priv->xmit_lock);
881ff67a
BS
1196 netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1197
1198 priv->dev = dev;
1199 priv->can.bittiming_const = &c_can_bittiming_const;
1200 priv->can.do_set_mode = c_can_set_mode;
1201 priv->can.do_get_berr_counter = c_can_get_berr_counter;
ee6f0988 1202 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
881ff67a
BS
1203 CAN_CTRLMODE_LISTENONLY |
1204 CAN_CTRLMODE_BERR_REPORTING;
1205
1206 return dev;
1207}
1208EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1209
82120032
AC
1210#ifdef CONFIG_PM
1211int c_can_power_down(struct net_device *dev)
1212{
1213 u32 val;
1214 unsigned long time_out;
1215 struct c_can_priv *priv = netdev_priv(dev);
1216
1217 if (!(dev->flags & IFF_UP))
1218 return 0;
1219
1220 WARN_ON(priv->type != BOSCH_D_CAN);
1221
1222 /* set PDR value so the device goes to power down mode */
1223 val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1224 val |= CONTROL_EX_PDR;
1225 priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1226
1227 /* Wait for the PDA bit to get set */
1228 time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1229 while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1230 time_after(time_out, jiffies))
1231 cpu_relax();
1232
1233 if (time_after(jiffies, time_out))
1234 return -ETIMEDOUT;
1235
1236 c_can_stop(dev);
1237
52cde85a 1238 c_can_reset_ram(priv, false);
82120032
AC
1239 c_can_pm_runtime_put_sync(priv);
1240
1241 return 0;
1242}
1243EXPORT_SYMBOL_GPL(c_can_power_down);
1244
1245int c_can_power_up(struct net_device *dev)
1246{
1247 u32 val;
1248 unsigned long time_out;
1249 struct c_can_priv *priv = netdev_priv(dev);
bed11db3 1250 int ret;
82120032
AC
1251
1252 if (!(dev->flags & IFF_UP))
1253 return 0;
1254
1255 WARN_ON(priv->type != BOSCH_D_CAN);
1256
1257 c_can_pm_runtime_get_sync(priv);
52cde85a 1258 c_can_reset_ram(priv, true);
82120032
AC
1259
1260 /* Clear PDR and INIT bits */
1261 val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1262 val &= ~CONTROL_EX_PDR;
1263 priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1264 val = priv->read_reg(priv, C_CAN_CTRL_REG);
1265 val &= ~CONTROL_INIT;
1266 priv->write_reg(priv, C_CAN_CTRL_REG, val);
1267
1268 /* Wait for the PDA bit to get clear */
1269 time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1270 while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1271 time_after(time_out, jiffies))
1272 cpu_relax();
1273
1274 if (time_after(jiffies, time_out))
1275 return -ETIMEDOUT;
1276
bed11db3
TG
1277 ret = c_can_start(dev);
1278 if (!ret)
2d5f4f85 1279 c_can_irq_control(priv, true);
bed11db3
TG
1280
1281 return ret;
82120032
AC
1282}
1283EXPORT_SYMBOL_GPL(c_can_power_up);
1284#endif
1285
881ff67a
BS
1286void free_c_can_dev(struct net_device *dev)
1287{
f29b4238
MKB
1288 struct c_can_priv *priv = netdev_priv(dev);
1289
1290 netif_napi_del(&priv->napi);
881ff67a
BS
1291 free_candev(dev);
1292}
1293EXPORT_SYMBOL_GPL(free_c_can_dev);
1294
1295static const struct net_device_ops c_can_netdev_ops = {
1296 .ndo_open = c_can_open,
1297 .ndo_stop = c_can_close,
1298 .ndo_start_xmit = c_can_start_xmit,
c971fa2a 1299 .ndo_change_mtu = can_change_mtu,
881ff67a
BS
1300};
1301
1302int register_c_can_dev(struct net_device *dev)
1303{
4cdd34b2
AC
1304 struct c_can_priv *priv = netdev_priv(dev);
1305 int err;
1306
1307 c_can_pm_runtime_enable(priv);
1308
881ff67a
BS
1309 dev->flags |= IFF_ECHO; /* we support local echo */
1310 dev->netdev_ops = &c_can_netdev_ops;
1311
4cdd34b2
AC
1312 err = register_candev(dev);
1313 if (err)
1314 c_can_pm_runtime_disable(priv);
5090f805
FB
1315 else
1316 devm_can_led_init(dev);
4cdd34b2
AC
1317
1318 return err;
881ff67a
BS
1319}
1320EXPORT_SYMBOL_GPL(register_c_can_dev);
1321
1322void unregister_c_can_dev(struct net_device *dev)
1323{
1324 struct c_can_priv *priv = netdev_priv(dev);
1325
881ff67a 1326 unregister_candev(dev);
4cdd34b2
AC
1327
1328 c_can_pm_runtime_disable(priv);
881ff67a
BS
1329}
1330EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1331
1332MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1333MODULE_LICENSE("GPL v2");
1334MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
This page took 0.333816 seconds and 5 git commands to generate.