can: move can_stats.bus_off++ from can_bus_off into can_change_state
[deliverable/linux.git] / drivers / net / can / spi / mcp251x.c
CommitLineData
e0000163
CP
1/*
2 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
3 *
4 * MCP2510 support and bug fixes by Christian Pellegrin
5 * <chripell@evolware.org>
6 *
7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
8 *
9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10 * Written under contract by:
11 * Chris Elston, Katalix Systems, Ltd.
12 *
13 * Based on Microchip MCP251x CAN controller driver written by
14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
15 *
16 * Based on CAN bus driver for the CCAN controller written by
17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18 * - Simon Kallweit, intefo AG
19 * Copyright 2007
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the version 2 of the GNU General Public License
23 * as published by the Free Software Foundation
24 *
25 * This program is distributed in the hope that it will be useful,
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 * GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
05780d98 31 * along with this program; if not, see <http://www.gnu.org/licenses/>.
e0000163
CP
32 *
33 *
34 *
35 * Your platform definition file should specify something like:
36 *
37 * static struct mcp251x_platform_data mcp251x_info = {
38 * .oscillator_frequency = 8000000,
e0000163
CP
39 * };
40 *
41 * static struct spi_board_info spi_board_info[] = {
42 * {
f1f8c6cb
MKB
43 * .modalias = "mcp2510",
44 * // or "mcp2515" depending on your controller
e0000163
CP
45 * .platform_data = &mcp251x_info,
46 * .irq = IRQ_EINT13,
47 * .max_speed_hz = 2*1000*1000,
48 * .chip_select = 2,
49 * },
50 * };
51 *
52 * Please see mcp251x.h for a description of the fields in
53 * struct mcp251x_platform_data.
54 *
55 */
56
e0000163
CP
57#include <linux/can/core.h>
58#include <linux/can/dev.h>
eb072a9b 59#include <linux/can/led.h>
e0000163 60#include <linux/can/platform/mcp251x.h>
66606aaf 61#include <linux/clk.h>
e0000163
CP
62#include <linux/completion.h>
63#include <linux/delay.h>
64#include <linux/device.h>
65#include <linux/dma-mapping.h>
66#include <linux/freezer.h>
67#include <linux/interrupt.h>
68#include <linux/io.h>
69#include <linux/kernel.h>
70#include <linux/module.h>
71#include <linux/netdevice.h>
66606aaf
AS
72#include <linux/of.h>
73#include <linux/of_device.h>
e0000163 74#include <linux/platform_device.h>
5a0e3ad6 75#include <linux/slab.h>
e0000163
CP
76#include <linux/spi/spi.h>
77#include <linux/uaccess.h>
1ddff7da 78#include <linux/regulator/consumer.h>
e0000163
CP
79
80/* SPI interface instruction set */
81#define INSTRUCTION_WRITE 0x02
82#define INSTRUCTION_READ 0x03
83#define INSTRUCTION_BIT_MODIFY 0x05
84#define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
85#define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
86#define INSTRUCTION_RESET 0xC0
cab32f39
BL
87#define RTS_TXB0 0x01
88#define RTS_TXB1 0x02
89#define RTS_TXB2 0x04
90#define INSTRUCTION_RTS(n) (0x80 | ((n) & 0x07))
91
e0000163
CP
92
93/* MPC251x registers */
94#define CANSTAT 0x0e
95#define CANCTRL 0x0f
96# define CANCTRL_REQOP_MASK 0xe0
97# define CANCTRL_REQOP_CONF 0x80
98# define CANCTRL_REQOP_LISTEN_ONLY 0x60
99# define CANCTRL_REQOP_LOOPBACK 0x40
100# define CANCTRL_REQOP_SLEEP 0x20
101# define CANCTRL_REQOP_NORMAL 0x00
102# define CANCTRL_OSM 0x08
103# define CANCTRL_ABAT 0x10
104#define TEC 0x1c
105#define REC 0x1d
106#define CNF1 0x2a
107# define CNF1_SJW_SHIFT 6
108#define CNF2 0x29
109# define CNF2_BTLMODE 0x80
110# define CNF2_SAM 0x40
111# define CNF2_PS1_SHIFT 3
112#define CNF3 0x28
113# define CNF3_SOF 0x08
114# define CNF3_WAKFIL 0x04
115# define CNF3_PHSEG2_MASK 0x07
116#define CANINTE 0x2b
117# define CANINTE_MERRE 0x80
118# define CANINTE_WAKIE 0x40
119# define CANINTE_ERRIE 0x20
120# define CANINTE_TX2IE 0x10
121# define CANINTE_TX1IE 0x08
122# define CANINTE_TX0IE 0x04
123# define CANINTE_RX1IE 0x02
124# define CANINTE_RX0IE 0x01
125#define CANINTF 0x2c
126# define CANINTF_MERRF 0x80
127# define CANINTF_WAKIF 0x40
128# define CANINTF_ERRIF 0x20
129# define CANINTF_TX2IF 0x10
130# define CANINTF_TX1IF 0x08
131# define CANINTF_TX0IF 0x04
132# define CANINTF_RX1IF 0x02
133# define CANINTF_RX0IF 0x01
5601b2df
MKB
134# define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
135# define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
136# define CANINTF_ERR (CANINTF_ERRIF)
e0000163
CP
137#define EFLG 0x2d
138# define EFLG_EWARN 0x01
139# define EFLG_RXWAR 0x02
140# define EFLG_TXWAR 0x04
141# define EFLG_RXEP 0x08
142# define EFLG_TXEP 0x10
143# define EFLG_TXBO 0x20
144# define EFLG_RX0OVR 0x40
145# define EFLG_RX1OVR 0x80
146#define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
147# define TXBCTRL_ABTF 0x40
148# define TXBCTRL_MLOA 0x20
149# define TXBCTRL_TXERR 0x10
150# define TXBCTRL_TXREQ 0x08
151#define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
152# define SIDH_SHIFT 3
153#define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
154# define SIDL_SID_MASK 7
155# define SIDL_SID_SHIFT 5
156# define SIDL_EXIDE_SHIFT 3
157# define SIDL_EID_SHIFT 16
158# define SIDL_EID_MASK 3
159#define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
160#define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
161#define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
162# define DLC_RTR_SHIFT 6
163#define TXBCTRL_OFF 0
164#define TXBSIDH_OFF 1
165#define TXBSIDL_OFF 2
166#define TXBEID8_OFF 3
167#define TXBEID0_OFF 4
168#define TXBDLC_OFF 5
169#define TXBDAT_OFF 6
170#define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
171# define RXBCTRL_BUKT 0x04
172# define RXBCTRL_RXM0 0x20
173# define RXBCTRL_RXM1 0x40
174#define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
175# define RXBSIDH_SHIFT 3
176#define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
177# define RXBSIDL_IDE 0x08
b9958a95 178# define RXBSIDL_SRR 0x10
e0000163
CP
179# define RXBSIDL_EID 3
180# define RXBSIDL_SHIFT 5
181#define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
182#define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
183#define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
184# define RXBDLC_LEN_MASK 0x0f
185# define RXBDLC_RTR 0x40
186#define RXBCTRL_OFF 0
187#define RXBSIDH_OFF 1
188#define RXBSIDL_OFF 2
189#define RXBEID8_OFF 3
190#define RXBEID0_OFF 4
191#define RXBDLC_OFF 5
192#define RXBDAT_OFF 6
bf66f373
CP
193#define RXFSIDH(n) ((n) * 4)
194#define RXFSIDL(n) ((n) * 4 + 1)
195#define RXFEID8(n) ((n) * 4 + 2)
196#define RXFEID0(n) ((n) * 4 + 3)
197#define RXMSIDH(n) ((n) * 4 + 0x20)
198#define RXMSIDL(n) ((n) * 4 + 0x21)
199#define RXMEID8(n) ((n) * 4 + 0x22)
200#define RXMEID0(n) ((n) * 4 + 0x23)
e0000163
CP
201
202#define GET_BYTE(val, byte) \
203 (((val) >> ((byte) * 8)) & 0xff)
204#define SET_BYTE(val, byte) \
205 (((val) & 0xff) << ((byte) * 8))
206
207/*
208 * Buffer size required for the largest SPI transfer (i.e., reading a
209 * frame)
210 */
211#define CAN_FRAME_MAX_DATA_LEN 8
212#define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
213#define CAN_FRAME_MAX_BITS 128
214
215#define TX_ECHO_SKB_MAX 1
216
ff06d611
AS
217#define MCP251X_OST_DELAY_MS (5)
218
e0000163
CP
219#define DEVICE_NAME "mcp251x"
220
221static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
222module_param(mcp251x_enable_dma, int, S_IRUGO);
223MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
224
194b9a4c 225static const struct can_bittiming_const mcp251x_bittiming_const = {
e0000163
CP
226 .name = DEVICE_NAME,
227 .tseg1_min = 3,
228 .tseg1_max = 16,
229 .tseg2_min = 2,
230 .tseg2_max = 8,
231 .sjw_max = 4,
232 .brp_min = 1,
233 .brp_max = 64,
234 .brp_inc = 1,
235};
236
f1f8c6cb
MKB
237enum mcp251x_model {
238 CAN_MCP251X_MCP2510 = 0x2510,
239 CAN_MCP251X_MCP2515 = 0x2515,
240};
241
e0000163
CP
242struct mcp251x_priv {
243 struct can_priv can;
244 struct net_device *net;
245 struct spi_device *spi;
f1f8c6cb 246 enum mcp251x_model model;
e0000163 247
bf66f373
CP
248 struct mutex mcp_lock; /* SPI device lock */
249
e0000163
CP
250 u8 *spi_tx_buf;
251 u8 *spi_rx_buf;
252 dma_addr_t spi_tx_dma;
253 dma_addr_t spi_rx_dma;
254
255 struct sk_buff *tx_skb;
256 int tx_len;
bf66f373 257
e0000163
CP
258 struct workqueue_struct *wq;
259 struct work_struct tx_work;
bf66f373
CP
260 struct work_struct restart_work;
261
e0000163
CP
262 int force_quit;
263 int after_suspend;
264#define AFTER_SUSPEND_UP 1
265#define AFTER_SUSPEND_DOWN 2
266#define AFTER_SUSPEND_POWER 4
267#define AFTER_SUSPEND_RESTART 8
268 int restart_tx;
1ddff7da
AS
269 struct regulator *power;
270 struct regulator *transceiver;
66606aaf 271 struct clk *clk;
e0000163
CP
272};
273
beab675c
MKB
274#define MCP251X_IS(_model) \
275static inline int mcp251x_is_##_model(struct spi_device *spi) \
276{ \
fce5c293 277 struct mcp251x_priv *priv = spi_get_drvdata(spi); \
beab675c
MKB
278 return priv->model == CAN_MCP251X_MCP##_model; \
279}
280
281MCP251X_IS(2510);
282MCP251X_IS(2515);
283
e0000163
CP
284static void mcp251x_clean(struct net_device *net)
285{
286 struct mcp251x_priv *priv = netdev_priv(net);
287
bf66f373
CP
288 if (priv->tx_skb || priv->tx_len)
289 net->stats.tx_errors++;
e0000163
CP
290 if (priv->tx_skb)
291 dev_kfree_skb(priv->tx_skb);
292 if (priv->tx_len)
293 can_free_echo_skb(priv->net, 0);
294 priv->tx_skb = NULL;
295 priv->tx_len = 0;
296}
297
298/*
299 * Note about handling of error return of mcp251x_spi_trans: accessing
300 * registers via SPI is not really different conceptually than using
301 * normal I/O assembler instructions, although it's much more
302 * complicated from a practical POV. So it's not advisable to always
303 * check the return value of this function. Imagine that every
304 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
305 * error();", it would be a great mess (well there are some situation
306 * when exception handling C++ like could be useful after all). So we
307 * just check that transfers are OK at the beginning of our
308 * conversation with the chip and to avoid doing really nasty things
309 * (like injecting bogus packets in the network stack).
310 */
311static int mcp251x_spi_trans(struct spi_device *spi, int len)
312{
fce5c293 313 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163
CP
314 struct spi_transfer t = {
315 .tx_buf = priv->spi_tx_buf,
316 .rx_buf = priv->spi_rx_buf,
317 .len = len,
318 .cs_change = 0,
319 };
320 struct spi_message m;
321 int ret;
322
323 spi_message_init(&m);
324
325 if (mcp251x_enable_dma) {
326 t.tx_dma = priv->spi_tx_dma;
327 t.rx_dma = priv->spi_rx_dma;
328 m.is_dma_mapped = 1;
329 }
330
331 spi_message_add_tail(&t, &m);
332
333 ret = spi_sync(spi, &m);
334 if (ret)
335 dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
336 return ret;
337}
338
339static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
340{
fce5c293 341 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163
CP
342 u8 val = 0;
343
e0000163
CP
344 priv->spi_tx_buf[0] = INSTRUCTION_READ;
345 priv->spi_tx_buf[1] = reg;
346
347 mcp251x_spi_trans(spi, 3);
348 val = priv->spi_rx_buf[2];
349
e0000163
CP
350 return val;
351}
352
f3a3ed31
SH
353static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
354 uint8_t *v1, uint8_t *v2)
355{
fce5c293 356 struct mcp251x_priv *priv = spi_get_drvdata(spi);
f3a3ed31
SH
357
358 priv->spi_tx_buf[0] = INSTRUCTION_READ;
359 priv->spi_tx_buf[1] = reg;
360
361 mcp251x_spi_trans(spi, 4);
362
363 *v1 = priv->spi_rx_buf[2];
364 *v2 = priv->spi_rx_buf[3];
365}
366
e0000163
CP
367static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
368{
fce5c293 369 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163 370
e0000163
CP
371 priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
372 priv->spi_tx_buf[1] = reg;
373 priv->spi_tx_buf[2] = val;
374
375 mcp251x_spi_trans(spi, 3);
e0000163
CP
376}
377
378static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
379 u8 mask, uint8_t val)
380{
fce5c293 381 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163 382
e0000163
CP
383 priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
384 priv->spi_tx_buf[1] = reg;
385 priv->spi_tx_buf[2] = mask;
386 priv->spi_tx_buf[3] = val;
387
388 mcp251x_spi_trans(spi, 4);
e0000163
CP
389}
390
391static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
392 int len, int tx_buf_idx)
393{
fce5c293 394 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163 395
beab675c 396 if (mcp251x_is_2510(spi)) {
e0000163
CP
397 int i;
398
399 for (i = 1; i < TXBDAT_OFF + len; i++)
400 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
401 buf[i]);
402 } else {
e0000163
CP
403 memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
404 mcp251x_spi_trans(spi, TXBDAT_OFF + len);
e0000163
CP
405 }
406}
407
408static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
409 int tx_buf_idx)
410{
fce5c293 411 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163
CP
412 u32 sid, eid, exide, rtr;
413 u8 buf[SPI_TRANSFER_BUF_LEN];
414
415 exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
416 if (exide)
417 sid = (frame->can_id & CAN_EFF_MASK) >> 18;
418 else
419 sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
420 eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
421 rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
422
423 buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
424 buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
425 buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
426 (exide << SIDL_EXIDE_SHIFT) |
427 ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
428 buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
429 buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
430 buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
431 memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
432 mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
cab32f39
BL
433
434 /* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
435 priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
436 mcp251x_spi_trans(priv->spi, 1);
e0000163
CP
437}
438
439static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
440 int buf_idx)
441{
fce5c293 442 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163 443
beab675c 444 if (mcp251x_is_2510(spi)) {
e0000163
CP
445 int i, len;
446
447 for (i = 1; i < RXBDAT_OFF; i++)
448 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
c7cd606f
OH
449
450 len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
e0000163
CP
451 for (; i < (RXBDAT_OFF + len); i++)
452 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
453 } else {
e0000163
CP
454 priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
455 mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
456 memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
e0000163
CP
457 }
458}
459
460static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
461{
fce5c293 462 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163
CP
463 struct sk_buff *skb;
464 struct can_frame *frame;
465 u8 buf[SPI_TRANSFER_BUF_LEN];
466
467 skb = alloc_can_skb(priv->net, &frame);
468 if (!skb) {
469 dev_err(&spi->dev, "cannot allocate RX skb\n");
470 priv->net->stats.rx_dropped++;
471 return;
472 }
473
474 mcp251x_hw_rx_frame(spi, buf, buf_idx);
475 if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
476 /* Extended ID format */
477 frame->can_id = CAN_EFF_FLAG;
478 frame->can_id |=
479 /* Extended ID part */
480 SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
481 SET_BYTE(buf[RXBEID8_OFF], 1) |
482 SET_BYTE(buf[RXBEID0_OFF], 0) |
483 /* Standard ID part */
484 (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
485 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
486 /* Remote transmission request */
487 if (buf[RXBDLC_OFF] & RXBDLC_RTR)
488 frame->can_id |= CAN_RTR_FLAG;
489 } else {
490 /* Standard ID format */
491 frame->can_id =
492 (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
493 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
b9958a95
MKB
494 if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
495 frame->can_id |= CAN_RTR_FLAG;
e0000163
CP
496 }
497 /* Data length */
c7cd606f 498 frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
e0000163
CP
499 memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
500
501 priv->net->stats.rx_packets++;
502 priv->net->stats.rx_bytes += frame->can_dlc;
eb072a9b
FB
503
504 can_led_event(priv->net, CAN_LED_EVENT_RX);
505
57d3c7b0 506 netif_rx_ni(skb);
e0000163
CP
507}
508
509static void mcp251x_hw_sleep(struct spi_device *spi)
510{
511 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
512}
513
e0000163
CP
514static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
515 struct net_device *net)
516{
517 struct mcp251x_priv *priv = netdev_priv(net);
518 struct spi_device *spi = priv->spi;
519
520 if (priv->tx_skb || priv->tx_len) {
521 dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
e0000163
CP
522 return NETDEV_TX_BUSY;
523 }
524
3ccd4c61 525 if (can_dropped_invalid_skb(net, skb))
e0000163 526 return NETDEV_TX_OK;
e0000163
CP
527
528 netif_stop_queue(net);
529 priv->tx_skb = skb;
e0000163
CP
530 queue_work(priv->wq, &priv->tx_work);
531
532 return NETDEV_TX_OK;
533}
534
535static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
536{
537 struct mcp251x_priv *priv = netdev_priv(net);
538
539 switch (mode) {
540 case CAN_MODE_START:
bf66f373 541 mcp251x_clean(net);
e0000163
CP
542 /* We have to delay work since SPI I/O may sleep */
543 priv->can.state = CAN_STATE_ERROR_ACTIVE;
544 priv->restart_tx = 1;
545 if (priv->can.restart_ms == 0)
546 priv->after_suspend = AFTER_SUSPEND_RESTART;
bf66f373 547 queue_work(priv->wq, &priv->restart_work);
e0000163
CP
548 break;
549 default:
550 return -EOPNOTSUPP;
551 }
552
553 return 0;
554}
555
bf66f373 556static int mcp251x_set_normal_mode(struct spi_device *spi)
e0000163 557{
fce5c293 558 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163
CP
559 unsigned long timeout;
560
561 /* Enable interrupts */
562 mcp251x_write_reg(spi, CANINTE,
563 CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
bf66f373 564 CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
e0000163
CP
565
566 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
567 /* Put device into loopback mode */
568 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
ad72c347
CP
569 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
570 /* Put device into listen-only mode */
571 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
e0000163
CP
572 } else {
573 /* Put device into normal mode */
bf66f373 574 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
e0000163
CP
575
576 /* Wait for the device to enter normal mode */
577 timeout = jiffies + HZ;
578 while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
579 schedule();
580 if (time_after(jiffies, timeout)) {
581 dev_err(&spi->dev, "MCP251x didn't"
582 " enter in normal mode\n");
bf66f373 583 return -EBUSY;
e0000163
CP
584 }
585 }
586 }
587 priv->can.state = CAN_STATE_ERROR_ACTIVE;
bf66f373 588 return 0;
e0000163
CP
589}
590
591static int mcp251x_do_set_bittiming(struct net_device *net)
592{
593 struct mcp251x_priv *priv = netdev_priv(net);
594 struct can_bittiming *bt = &priv->can.bittiming;
595 struct spi_device *spi = priv->spi;
596
597 mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
598 (bt->brp - 1));
599 mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
600 (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
601 CNF2_SAM : 0) |
602 ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
603 (bt->prop_seg - 1));
604 mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
605 (bt->phase_seg2 - 1));
1e6cacdb
AS
606 dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
607 mcp251x_read_reg(spi, CNF1),
608 mcp251x_read_reg(spi, CNF2),
609 mcp251x_read_reg(spi, CNF3));
e0000163
CP
610
611 return 0;
612}
613
614static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
615 struct spi_device *spi)
616{
615534bc 617 mcp251x_do_set_bittiming(net);
e0000163 618
bf66f373
CP
619 mcp251x_write_reg(spi, RXBCTRL(0),
620 RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
621 mcp251x_write_reg(spi, RXBCTRL(1),
622 RXBCTRL_RXM0 | RXBCTRL_RXM1);
e0000163
CP
623 return 0;
624}
625
bf66f373 626static int mcp251x_hw_reset(struct spi_device *spi)
e0000163 627{
fce5c293 628 struct mcp251x_priv *priv = spi_get_drvdata(spi);
ff06d611 629 u8 reg;
e0000163 630 int ret;
ff06d611
AS
631
632 /* Wait for oscillator startup timer after power up */
633 mdelay(MCP251X_OST_DELAY_MS);
e0000163
CP
634
635 priv->spi_tx_buf[0] = INSTRUCTION_RESET;
ff06d611
AS
636 ret = mcp251x_spi_trans(spi, 1);
637 if (ret)
638 return ret;
639
640 /* Wait for oscillator startup timer after reset */
641 mdelay(MCP251X_OST_DELAY_MS);
642
643 reg = mcp251x_read_reg(spi, CANSTAT);
644 if ((reg & CANCTRL_REQOP_MASK) != CANCTRL_REQOP_CONF)
645 return -ENODEV;
bf66f373 646
bf66f373 647 return 0;
e0000163
CP
648}
649
650static int mcp251x_hw_probe(struct spi_device *spi)
651{
ee967fff
AS
652 u8 ctrl;
653 int ret;
654
655 ret = mcp251x_hw_reset(spi);
656 if (ret)
657 return ret;
e0000163 658
ee967fff 659 ctrl = mcp251x_read_reg(spi, CANCTRL);
e0000163 660
ee967fff 661 dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
e0000163 662
ee967fff
AS
663 /* Check for power up default value */
664 if ((ctrl & 0x17) != 0x07)
665 return -ENODEV;
e0000163 666
ee967fff 667 return 0;
e0000163
CP
668}
669
1ddff7da
AS
670static int mcp251x_power_enable(struct regulator *reg, int enable)
671{
76aeec83 672 if (IS_ERR_OR_NULL(reg))
1ddff7da
AS
673 return 0;
674
675 if (enable)
676 return regulator_enable(reg);
677 else
678 return regulator_disable(reg);
679}
680
bf66f373 681static void mcp251x_open_clean(struct net_device *net)
e0000163
CP
682{
683 struct mcp251x_priv *priv = netdev_priv(net);
684 struct spi_device *spi = priv->spi;
615534bc 685
bf66f373
CP
686 free_irq(spi->irq, priv);
687 mcp251x_hw_sleep(spi);
1ddff7da 688 mcp251x_power_enable(priv->transceiver, 0);
bf66f373 689 close_candev(net);
e0000163
CP
690}
691
692static int mcp251x_stop(struct net_device *net)
693{
694 struct mcp251x_priv *priv = netdev_priv(net);
695 struct spi_device *spi = priv->spi;
e0000163
CP
696
697 close_candev(net);
698
bf66f373
CP
699 priv->force_quit = 1;
700 free_irq(spi->irq, priv);
701 destroy_workqueue(priv->wq);
702 priv->wq = NULL;
703
704 mutex_lock(&priv->mcp_lock);
705
e0000163
CP
706 /* Disable and clear pending interrupts */
707 mcp251x_write_reg(spi, CANINTE, 0x00);
708 mcp251x_write_reg(spi, CANINTF, 0x00);
709
e0000163 710 mcp251x_write_reg(spi, TXBCTRL(0), 0);
bf66f373 711 mcp251x_clean(net);
e0000163
CP
712
713 mcp251x_hw_sleep(spi);
714
1ddff7da 715 mcp251x_power_enable(priv->transceiver, 0);
e0000163
CP
716
717 priv->can.state = CAN_STATE_STOPPED;
718
bf66f373
CP
719 mutex_unlock(&priv->mcp_lock);
720
eb072a9b
FB
721 can_led_event(net, CAN_LED_EVENT_STOP);
722
e0000163
CP
723 return 0;
724}
725
bf66f373
CP
726static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
727{
728 struct sk_buff *skb;
729 struct can_frame *frame;
730
731 skb = alloc_can_err_skb(net, &frame);
732 if (skb) {
612eef4f 733 frame->can_id |= can_id;
bf66f373 734 frame->data[1] = data1;
57d3c7b0 735 netif_rx_ni(skb);
bf66f373 736 } else {
aabdfd6a 737 netdev_err(net, "cannot allocate error skb\n");
bf66f373
CP
738 }
739}
740
e0000163
CP
741static void mcp251x_tx_work_handler(struct work_struct *ws)
742{
743 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
744 tx_work);
745 struct spi_device *spi = priv->spi;
746 struct net_device *net = priv->net;
747 struct can_frame *frame;
748
bf66f373 749 mutex_lock(&priv->mcp_lock);
e0000163 750 if (priv->tx_skb) {
e0000163
CP
751 if (priv->can.state == CAN_STATE_BUS_OFF) {
752 mcp251x_clean(net);
bf66f373
CP
753 } else {
754 frame = (struct can_frame *)priv->tx_skb->data;
755
756 if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
757 frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
758 mcp251x_hw_tx(spi, frame, 0);
759 priv->tx_len = 1 + frame->can_dlc;
760 can_put_echo_skb(priv->tx_skb, net, 0);
761 priv->tx_skb = NULL;
e0000163 762 }
e0000163 763 }
bf66f373 764 mutex_unlock(&priv->mcp_lock);
e0000163
CP
765}
766
bf66f373 767static void mcp251x_restart_work_handler(struct work_struct *ws)
e0000163
CP
768{
769 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
bf66f373 770 restart_work);
e0000163
CP
771 struct spi_device *spi = priv->spi;
772 struct net_device *net = priv->net;
e0000163 773
bf66f373 774 mutex_lock(&priv->mcp_lock);
e0000163 775 if (priv->after_suspend) {
e0000163
CP
776 mcp251x_hw_reset(spi);
777 mcp251x_setup(net, priv, spi);
778 if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
779 mcp251x_set_normal_mode(spi);
780 } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
781 netif_device_attach(net);
bf66f373 782 mcp251x_clean(net);
e0000163 783 mcp251x_set_normal_mode(spi);
bf66f373 784 netif_wake_queue(net);
e0000163
CP
785 } else {
786 mcp251x_hw_sleep(spi);
787 }
788 priv->after_suspend = 0;
bf66f373 789 priv->force_quit = 0;
e0000163
CP
790 }
791
bf66f373
CP
792 if (priv->restart_tx) {
793 priv->restart_tx = 0;
794 mcp251x_write_reg(spi, TXBCTRL(0), 0);
795 mcp251x_clean(net);
796 netif_wake_queue(net);
797 mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
798 }
799 mutex_unlock(&priv->mcp_lock);
800}
e0000163 801
bf66f373
CP
802static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
803{
804 struct mcp251x_priv *priv = dev_id;
805 struct spi_device *spi = priv->spi;
806 struct net_device *net = priv->net;
e0000163 807
bf66f373
CP
808 mutex_lock(&priv->mcp_lock);
809 while (!priv->force_quit) {
810 enum can_state new_state;
f3a3ed31 811 u8 intf, eflag;
d3cd1565 812 u8 clear_intf = 0;
bf66f373 813 int can_id = 0, data1 = 0;
e0000163 814
f3a3ed31
SH
815 mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
816
5601b2df
MKB
817 /* mask out flags we don't care about */
818 intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
819
d3cd1565 820 /* receive buffer 0 */
bf66f373
CP
821 if (intf & CANINTF_RX0IF) {
822 mcp251x_hw_rx(spi, 0);
9c473fc3
MKB
823 /*
824 * Free one buffer ASAP
825 * (The MCP2515 does this automatically.)
826 */
827 if (mcp251x_is_2510(spi))
828 mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
e0000163
CP
829 }
830
d3cd1565
MKB
831 /* receive buffer 1 */
832 if (intf & CANINTF_RX1IF) {
bf66f373 833 mcp251x_hw_rx(spi, 1);
9c473fc3
MKB
834 /* the MCP2515 does this automatically */
835 if (mcp251x_is_2510(spi))
836 clear_intf |= CANINTF_RX1IF;
d3cd1565 837 }
e0000163 838
d3cd1565 839 /* any error or tx interrupt we need to clear? */
5601b2df
MKB
840 if (intf & (CANINTF_ERR | CANINTF_TX))
841 clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
d3cd1565
MKB
842 if (clear_intf)
843 mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
e0000163 844
7e15de3a
SH
845 if (eflag)
846 mcp251x_write_bits(spi, EFLG, eflag, 0x00);
bf66f373 847
e0000163
CP
848 /* Update can state */
849 if (eflag & EFLG_TXBO) {
850 new_state = CAN_STATE_BUS_OFF;
851 can_id |= CAN_ERR_BUSOFF;
852 } else if (eflag & EFLG_TXEP) {
853 new_state = CAN_STATE_ERROR_PASSIVE;
854 can_id |= CAN_ERR_CRTL;
855 data1 |= CAN_ERR_CRTL_TX_PASSIVE;
856 } else if (eflag & EFLG_RXEP) {
857 new_state = CAN_STATE_ERROR_PASSIVE;
858 can_id |= CAN_ERR_CRTL;
859 data1 |= CAN_ERR_CRTL_RX_PASSIVE;
860 } else if (eflag & EFLG_TXWAR) {
861 new_state = CAN_STATE_ERROR_WARNING;
862 can_id |= CAN_ERR_CRTL;
863 data1 |= CAN_ERR_CRTL_TX_WARNING;
864 } else if (eflag & EFLG_RXWAR) {
865 new_state = CAN_STATE_ERROR_WARNING;
866 can_id |= CAN_ERR_CRTL;
867 data1 |= CAN_ERR_CRTL_RX_WARNING;
868 } else {
869 new_state = CAN_STATE_ERROR_ACTIVE;
870 }
871
872 /* Update can state statistics */
873 switch (priv->can.state) {
874 case CAN_STATE_ERROR_ACTIVE:
875 if (new_state >= CAN_STATE_ERROR_WARNING &&
876 new_state <= CAN_STATE_BUS_OFF)
877 priv->can.can_stats.error_warning++;
878 case CAN_STATE_ERROR_WARNING: /* fallthrough */
879 if (new_state >= CAN_STATE_ERROR_PASSIVE &&
880 new_state <= CAN_STATE_BUS_OFF)
881 priv->can.can_stats.error_passive++;
882 break;
883 default:
884 break;
885 }
886 priv->can.state = new_state;
887
bf66f373
CP
888 if (intf & CANINTF_ERRIF) {
889 /* Handle overflow counters */
890 if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
711e4d6e 891 if (eflag & EFLG_RX0OVR) {
bf66f373 892 net->stats.rx_over_errors++;
711e4d6e
SH
893 net->stats.rx_errors++;
894 }
895 if (eflag & EFLG_RX1OVR) {
bf66f373 896 net->stats.rx_over_errors++;
711e4d6e
SH
897 net->stats.rx_errors++;
898 }
bf66f373
CP
899 can_id |= CAN_ERR_CRTL;
900 data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
e0000163 901 }
bf66f373 902 mcp251x_error_skb(net, can_id, data1);
e0000163
CP
903 }
904
905 if (priv->can.state == CAN_STATE_BUS_OFF) {
906 if (priv->can.restart_ms == 0) {
bf66f373 907 priv->force_quit = 1;
be38a6f9 908 priv->can.can_stats.bus_off++;
e0000163
CP
909 can_bus_off(net);
910 mcp251x_hw_sleep(spi);
bf66f373 911 break;
e0000163
CP
912 }
913 }
914
915 if (intf == 0)
916 break;
917
5601b2df 918 if (intf & CANINTF_TX) {
e0000163
CP
919 net->stats.tx_packets++;
920 net->stats.tx_bytes += priv->tx_len - 1;
eb072a9b 921 can_led_event(net, CAN_LED_EVENT_TX);
e0000163
CP
922 if (priv->tx_len) {
923 can_get_echo_skb(net, 0);
924 priv->tx_len = 0;
925 }
926 netif_wake_queue(net);
927 }
928
bf66f373
CP
929 }
930 mutex_unlock(&priv->mcp_lock);
931 return IRQ_HANDLED;
932}
e0000163 933
bf66f373
CP
934static int mcp251x_open(struct net_device *net)
935{
936 struct mcp251x_priv *priv = netdev_priv(net);
937 struct spi_device *spi = priv->spi;
ae5d589e 938 unsigned long flags = IRQF_ONESHOT | IRQF_TRIGGER_FALLING;
bf66f373
CP
939 int ret;
940
941 ret = open_candev(net);
942 if (ret) {
943 dev_err(&spi->dev, "unable to set initial baudrate!\n");
944 return ret;
945 }
946
947 mutex_lock(&priv->mcp_lock);
1ddff7da 948 mcp251x_power_enable(priv->transceiver, 1);
bf66f373
CP
949
950 priv->force_quit = 0;
951 priv->tx_skb = NULL;
952 priv->tx_len = 0;
953
954 ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
e1dfefeb 955 flags | IRQF_ONESHOT, DEVICE_NAME, priv);
bf66f373
CP
956 if (ret) {
957 dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
1ddff7da 958 mcp251x_power_enable(priv->transceiver, 0);
bf66f373
CP
959 close_candev(net);
960 goto open_unlock;
961 }
962
58a69cb4 963 priv->wq = create_freezable_workqueue("mcp251x_wq");
bf66f373
CP
964 INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
965 INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
966
967 ret = mcp251x_hw_reset(spi);
968 if (ret) {
969 mcp251x_open_clean(net);
970 goto open_unlock;
971 }
972 ret = mcp251x_setup(net, priv, spi);
973 if (ret) {
974 mcp251x_open_clean(net);
975 goto open_unlock;
e0000163 976 }
bf66f373
CP
977 ret = mcp251x_set_normal_mode(spi);
978 if (ret) {
979 mcp251x_open_clean(net);
980 goto open_unlock;
981 }
eb072a9b
FB
982
983 can_led_event(net, CAN_LED_EVENT_OPEN);
984
bf66f373
CP
985 netif_wake_queue(net);
986
987open_unlock:
988 mutex_unlock(&priv->mcp_lock);
989 return ret;
e0000163
CP
990}
991
992static const struct net_device_ops mcp251x_netdev_ops = {
993 .ndo_open = mcp251x_open,
994 .ndo_stop = mcp251x_stop,
995 .ndo_start_xmit = mcp251x_hard_start_xmit,
c971fa2a 996 .ndo_change_mtu = can_change_mtu,
e0000163
CP
997};
998
66606aaf
AS
999static const struct of_device_id mcp251x_of_match[] = {
1000 {
1001 .compatible = "microchip,mcp2510",
1002 .data = (void *)CAN_MCP251X_MCP2510,
1003 },
1004 {
1005 .compatible = "microchip,mcp2515",
1006 .data = (void *)CAN_MCP251X_MCP2515,
1007 },
1008 { }
1009};
1010MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1011
1012static const struct spi_device_id mcp251x_id_table[] = {
1013 {
1014 .name = "mcp2510",
1015 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP2510,
1016 },
1017 {
1018 .name = "mcp2515",
1019 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP2515,
1020 },
1021 { }
1022};
1023MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1024
3c8ac0f2 1025static int mcp251x_can_probe(struct spi_device *spi)
e0000163 1026{
66606aaf
AS
1027 const struct of_device_id *of_id = of_match_device(mcp251x_of_match,
1028 &spi->dev);
1029 struct mcp251x_platform_data *pdata = dev_get_platdata(&spi->dev);
e0000163
CP
1030 struct net_device *net;
1031 struct mcp251x_priv *priv;
66606aaf 1032 struct clk *clk;
31473c28 1033 int freq, ret;
66606aaf
AS
1034
1035 clk = devm_clk_get(&spi->dev, NULL);
1036 if (IS_ERR(clk)) {
1037 if (pdata)
1038 freq = pdata->oscillator_frequency;
1039 else
1040 return PTR_ERR(clk);
1041 } else {
1042 freq = clk_get_rate(clk);
1043 }
e0000163 1044
66606aaf
AS
1045 /* Sanity check */
1046 if (freq < 1000000 || freq > 25000000)
1047 return -ERANGE;
e0000163
CP
1048
1049 /* Allocate can/net device */
1050 net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
66606aaf
AS
1051 if (!net)
1052 return -ENOMEM;
1053
1054 if (!IS_ERR(clk)) {
1055 ret = clk_prepare_enable(clk);
1056 if (ret)
1057 goto out_free;
e0000163
CP
1058 }
1059
1060 net->netdev_ops = &mcp251x_netdev_ops;
1061 net->flags |= IFF_ECHO;
1062
1063 priv = netdev_priv(net);
1064 priv->can.bittiming_const = &mcp251x_bittiming_const;
1065 priv->can.do_set_mode = mcp251x_do_set_mode;
66606aaf 1066 priv->can.clock.freq = freq / 2;
ad72c347
CP
1067 priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1068 CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
66606aaf
AS
1069 if (of_id)
1070 priv->model = (enum mcp251x_model)of_id->data;
1071 else
1072 priv->model = spi_get_device_id(spi)->driver_data;
e0000163 1073 priv->net = net;
66606aaf 1074 priv->clk = clk;
1ddff7da 1075
31473c28
AS
1076 spi_set_drvdata(spi, priv);
1077
1078 /* Configure the SPI bus */
1079 spi->bits_per_word = 8;
1080 if (mcp251x_is_2510(spi))
1081 spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1082 else
1083 spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1084 ret = spi_setup(spi);
1085 if (ret)
1086 goto out_clk;
1087
1ddff7da
AS
1088 priv->power = devm_regulator_get(&spi->dev, "vdd");
1089 priv->transceiver = devm_regulator_get(&spi->dev, "xceiver");
1090 if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1091 (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1092 ret = -EPROBE_DEFER;
66606aaf 1093 goto out_clk;
1ddff7da
AS
1094 }
1095
1096 ret = mcp251x_power_enable(priv->power, 1);
1097 if (ret)
66606aaf 1098 goto out_clk;
1ddff7da 1099
e0000163 1100 priv->spi = spi;
bf66f373 1101 mutex_init(&priv->mcp_lock);
e0000163
CP
1102
1103 /* If requested, allocate DMA buffers */
1104 if (mcp251x_enable_dma) {
1105 spi->dev.coherent_dma_mask = ~0;
1106
1107 /*
1108 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
1109 * that much and share it between Tx and Rx DMA buffers.
1110 */
3a73aeff
HS
1111 priv->spi_tx_buf = dmam_alloc_coherent(&spi->dev,
1112 PAGE_SIZE,
1113 &priv->spi_tx_dma,
1114 GFP_DMA);
e0000163
CP
1115
1116 if (priv->spi_tx_buf) {
c2fd03a0 1117 priv->spi_rx_buf = (priv->spi_tx_buf + (PAGE_SIZE / 2));
e0000163
CP
1118 priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
1119 (PAGE_SIZE / 2));
1120 } else {
1121 /* Fall back to non-DMA */
1122 mcp251x_enable_dma = 0;
1123 }
1124 }
1125
1126 /* Allocate non-DMA buffers */
1127 if (!mcp251x_enable_dma) {
21629e1a
AS
1128 priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1129 GFP_KERNEL);
e0000163
CP
1130 if (!priv->spi_tx_buf) {
1131 ret = -ENOMEM;
21629e1a 1132 goto error_probe;
e0000163 1133 }
21629e1a
AS
1134 priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1135 GFP_KERNEL);
ce739b47 1136 if (!priv->spi_rx_buf) {
e0000163 1137 ret = -ENOMEM;
21629e1a 1138 goto error_probe;
e0000163
CP
1139 }
1140 }
1141
e0000163
CP
1142 SET_NETDEV_DEV(net, &spi->dev);
1143
bf66f373 1144 /* Here is OK to not lock the MCP, no one knows about it yet */
ee967fff
AS
1145 ret = mcp251x_hw_probe(spi);
1146 if (ret)
e0000163 1147 goto error_probe;
ee967fff 1148
e0000163
CP
1149 mcp251x_hw_sleep(spi);
1150
e0000163 1151 ret = register_candev(net);
eb072a9b
FB
1152 if (ret)
1153 goto error_probe;
1154
1155 devm_can_led_init(net);
1156
ee967fff 1157 return 0;
eb072a9b 1158
e0000163 1159error_probe:
1ddff7da 1160 mcp251x_power_enable(priv->power, 0);
66606aaf
AS
1161
1162out_clk:
1163 if (!IS_ERR(clk))
1164 clk_disable_unprepare(clk);
1165
1166out_free:
1ddff7da 1167 free_candev(net);
66606aaf 1168
e0000163
CP
1169 return ret;
1170}
1171
3c8ac0f2 1172static int mcp251x_can_remove(struct spi_device *spi)
e0000163 1173{
fce5c293 1174 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163
CP
1175 struct net_device *net = priv->net;
1176
1177 unregister_candev(net);
e0000163 1178
1ddff7da
AS
1179 mcp251x_power_enable(priv->power, 0);
1180
66606aaf
AS
1181 if (!IS_ERR(priv->clk))
1182 clk_disable_unprepare(priv->clk);
1183
1ddff7da 1184 free_candev(net);
e0000163
CP
1185
1186 return 0;
1187}
1188
f16a4210 1189static int __maybe_unused mcp251x_can_suspend(struct device *dev)
e0000163 1190{
612b2a97 1191 struct spi_device *spi = to_spi_device(dev);
fce5c293 1192 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163
CP
1193 struct net_device *net = priv->net;
1194
bf66f373
CP
1195 priv->force_quit = 1;
1196 disable_irq(spi->irq);
1197 /*
1198 * Note: at this point neither IST nor workqueues are running.
1199 * open/stop cannot be called anyway so locking is not needed
1200 */
e0000163
CP
1201 if (netif_running(net)) {
1202 netif_device_detach(net);
1203
1204 mcp251x_hw_sleep(spi);
1ddff7da 1205 mcp251x_power_enable(priv->transceiver, 0);
e0000163
CP
1206 priv->after_suspend = AFTER_SUSPEND_UP;
1207 } else {
1208 priv->after_suspend = AFTER_SUSPEND_DOWN;
1209 }
1210
76aeec83 1211 if (!IS_ERR_OR_NULL(priv->power)) {
1ddff7da 1212 regulator_disable(priv->power);
e0000163
CP
1213 priv->after_suspend |= AFTER_SUSPEND_POWER;
1214 }
1215
1216 return 0;
1217}
1218
f16a4210 1219static int __maybe_unused mcp251x_can_resume(struct device *dev)
e0000163 1220{
612b2a97 1221 struct spi_device *spi = to_spi_device(dev);
fce5c293 1222 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163
CP
1223
1224 if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1ddff7da 1225 mcp251x_power_enable(priv->power, 1);
bf66f373 1226 queue_work(priv->wq, &priv->restart_work);
e0000163
CP
1227 } else {
1228 if (priv->after_suspend & AFTER_SUSPEND_UP) {
1ddff7da 1229 mcp251x_power_enable(priv->transceiver, 1);
bf66f373 1230 queue_work(priv->wq, &priv->restart_work);
e0000163
CP
1231 } else {
1232 priv->after_suspend = 0;
1233 }
1234 }
bf66f373
CP
1235 priv->force_quit = 0;
1236 enable_irq(spi->irq);
e0000163
CP
1237 return 0;
1238}
612b2a97
LPC
1239
1240static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1241 mcp251x_can_resume);
e0000163
CP
1242
1243static struct spi_driver mcp251x_can_driver = {
1244 .driver = {
1245 .name = DEVICE_NAME,
e0000163 1246 .owner = THIS_MODULE,
66606aaf 1247 .of_match_table = mcp251x_of_match,
4fcc999e 1248 .pm = &mcp251x_can_pm_ops,
e0000163 1249 },
e446630c 1250 .id_table = mcp251x_id_table,
e0000163 1251 .probe = mcp251x_can_probe,
3c8ac0f2 1252 .remove = mcp251x_can_remove,
e0000163 1253};
01b88070 1254module_spi_driver(mcp251x_can_driver);
e0000163
CP
1255
1256MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1257 "Christian Pellegrin <chripell@evolware.org>");
1258MODULE_DESCRIPTION("Microchip 251x CAN driver");
1259MODULE_LICENSE("GPL v2");
This page took 0.468036 seconds and 5 git commands to generate.