chelsio: spaces, tabs and friends
[deliverable/linux.git] / drivers / net / chelsio / sge.c
CommitLineData
8199d3a7
CL
1/*****************************************************************************
2 * *
3 * File: sge.c *
559fb51b
SB
4 * $Revision: 1.26 $ *
5 * $Date: 2005/06/21 18:29:48 $ *
8199d3a7
CL
6 * Description: *
7 * DMA engine. *
8 * part of the Chelsio 10Gb Ethernet Driver. *
9 * *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
13 * *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, write to the Free Software Foundation, Inc., *
16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
17 * *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
21 * *
22 * http://www.chelsio.com *
23 * *
24 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
25 * All rights reserved. *
26 * *
27 * Maintainers: maintainers@chelsio.com *
28 * *
29 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
30 * Tina Yang <tainay@chelsio.com> *
31 * Felix Marti <felix@chelsio.com> *
32 * Scott Bardone <sbardone@chelsio.com> *
33 * Kurt Ottaway <kottaway@chelsio.com> *
34 * Frank DiMambro <frank@chelsio.com> *
35 * *
36 * History: *
37 * *
38 ****************************************************************************/
39
40#include "common.h"
41
8199d3a7
CL
42#include <linux/types.h>
43#include <linux/errno.h>
44#include <linux/pci.h>
f1d3d38a 45#include <linux/ktime.h>
8199d3a7
CL
46#include <linux/netdevice.h>
47#include <linux/etherdevice.h>
48#include <linux/if_vlan.h>
49#include <linux/skbuff.h>
50#include <linux/init.h>
51#include <linux/mm.h>
f1d3d38a 52#include <linux/tcp.h>
8199d3a7
CL
53#include <linux/ip.h>
54#include <linux/in.h>
55#include <linux/if_arp.h>
56
57#include "cpl5_cmd.h"
58#include "sge.h"
59#include "regs.h"
60#include "espi.h"
61
f1d3d38a
SH
62/* This belongs in if_ether.h */
63#define ETH_P_CPL5 0xf
8199d3a7
CL
64
65#define SGE_CMDQ_N 2
66#define SGE_FREELQ_N 2
559fb51b 67#define SGE_CMDQ0_E_N 1024
8199d3a7
CL
68#define SGE_CMDQ1_E_N 128
69#define SGE_FREEL_SIZE 4096
70#define SGE_JUMBO_FREEL_SIZE 512
71#define SGE_FREEL_REFILL_THRESH 16
72#define SGE_RESPQ_E_N 1024
559fb51b
SB
73#define SGE_INTRTIMER_NRES 1000
74#define SGE_RX_COPY_THRES 256
8199d3a7 75#define SGE_RX_SM_BUF_SIZE 1536
f1d3d38a 76#define SGE_TX_DESC_MAX_PLEN 16384
8199d3a7 77
559fb51b
SB
78# define SGE_RX_DROP_THRES 2
79
80#define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
81
82/*
83 * Period of the TX buffer reclaim timer. This timer does not need to run
84 * frequently as TX buffers are usually reclaimed by new TX packets.
85 */
86#define TX_RECLAIM_PERIOD (HZ / 4)
8199d3a7 87
8199d3a7 88#ifndef NET_IP_ALIGN
559fb51b 89# define NET_IP_ALIGN 2
8199d3a7
CL
90#endif
91
559fb51b
SB
92#define M_CMD_LEN 0x7fffffff
93#define V_CMD_LEN(v) (v)
94#define G_CMD_LEN(v) ((v) & M_CMD_LEN)
95#define V_CMD_GEN1(v) ((v) << 31)
96#define V_CMD_GEN2(v) (v)
97#define F_CMD_DATAVALID (1 << 1)
98#define F_CMD_SOP (1 << 2)
99#define V_CMD_EOP(v) ((v) << 3)
100
8199d3a7 101/*
559fb51b 102 * Command queue, receive buffer list, and response queue descriptors.
8199d3a7
CL
103 */
104#if defined(__BIG_ENDIAN_BITFIELD)
105struct cmdQ_e {
559fb51b
SB
106 u32 addr_lo;
107 u32 len_gen;
108 u32 flags;
109 u32 addr_hi;
8199d3a7
CL
110};
111
112struct freelQ_e {
559fb51b
SB
113 u32 addr_lo;
114 u32 len_gen;
115 u32 gen2;
116 u32 addr_hi;
8199d3a7
CL
117};
118
119struct respQ_e {
120 u32 Qsleeping : 4;
121 u32 Cmdq1CreditReturn : 5;
122 u32 Cmdq1DmaComplete : 5;
123 u32 Cmdq0CreditReturn : 5;
124 u32 Cmdq0DmaComplete : 5;
125 u32 FreelistQid : 2;
126 u32 CreditValid : 1;
127 u32 DataValid : 1;
128 u32 Offload : 1;
129 u32 Eop : 1;
130 u32 Sop : 1;
131 u32 GenerationBit : 1;
132 u32 BufferLength;
133};
8199d3a7
CL
134#elif defined(__LITTLE_ENDIAN_BITFIELD)
135struct cmdQ_e {
559fb51b
SB
136 u32 len_gen;
137 u32 addr_lo;
138 u32 addr_hi;
139 u32 flags;
8199d3a7
CL
140};
141
142struct freelQ_e {
559fb51b
SB
143 u32 len_gen;
144 u32 addr_lo;
145 u32 addr_hi;
146 u32 gen2;
8199d3a7
CL
147};
148
149struct respQ_e {
150 u32 BufferLength;
151 u32 GenerationBit : 1;
152 u32 Sop : 1;
153 u32 Eop : 1;
154 u32 Offload : 1;
155 u32 DataValid : 1;
156 u32 CreditValid : 1;
157 u32 FreelistQid : 2;
158 u32 Cmdq0DmaComplete : 5;
159 u32 Cmdq0CreditReturn : 5;
160 u32 Cmdq1DmaComplete : 5;
161 u32 Cmdq1CreditReturn : 5;
162 u32 Qsleeping : 4;
163} ;
164#endif
165
166/*
167 * SW Context Command and Freelist Queue Descriptors
168 */
169struct cmdQ_ce {
170 struct sk_buff *skb;
171 DECLARE_PCI_UNMAP_ADDR(dma_addr);
172 DECLARE_PCI_UNMAP_LEN(dma_len);
8199d3a7
CL
173};
174
175struct freelQ_ce {
176 struct sk_buff *skb;
177 DECLARE_PCI_UNMAP_ADDR(dma_addr);
178 DECLARE_PCI_UNMAP_LEN(dma_len);
179};
180
181/*
559fb51b 182 * SW command, freelist and response rings
8199d3a7
CL
183 */
184struct cmdQ {
559fb51b
SB
185 unsigned long status; /* HW DMA fetch status */
186 unsigned int in_use; /* # of in-use command descriptors */
187 unsigned int size; /* # of descriptors */
f1d3d38a
SH
188 unsigned int processed; /* total # of descs HW has processed */
189 unsigned int cleaned; /* total # of descs SW has reclaimed */
190 unsigned int stop_thres; /* SW TX queue suspend threshold */
559fb51b
SB
191 u16 pidx; /* producer index (SW) */
192 u16 cidx; /* consumer index (HW) */
193 u8 genbit; /* current generation (=valid) bit */
f1d3d38a 194 u8 sop; /* is next entry start of packet? */
559fb51b
SB
195 struct cmdQ_e *entries; /* HW command descriptor Q */
196 struct cmdQ_ce *centries; /* SW command context descriptor Q */
559fb51b 197 dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
356bd146 198 spinlock_t lock; /* Lock to protect cmdQ enqueuing */
8199d3a7
CL
199};
200
201struct freelQ {
559fb51b
SB
202 unsigned int credits; /* # of available RX buffers */
203 unsigned int size; /* free list capacity */
204 u16 pidx; /* producer index (SW) */
205 u16 cidx; /* consumer index (HW) */
8199d3a7 206 u16 rx_buffer_size; /* Buffer size on this free list */
f1d3d38a
SH
207 u16 dma_offset; /* DMA offset to align IP headers */
208 u16 recycleq_idx; /* skb recycle q to use */
559fb51b
SB
209 u8 genbit; /* current generation (=valid) bit */
210 struct freelQ_e *entries; /* HW freelist descriptor Q */
211 struct freelQ_ce *centries; /* SW freelist context descriptor Q */
212 dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
8199d3a7
CL
213};
214
215struct respQ {
559fb51b
SB
216 unsigned int credits; /* credits to be returned to SGE */
217 unsigned int size; /* # of response Q descriptors */
218 u16 cidx; /* consumer index (SW) */
219 u8 genbit; /* current generation(=valid) bit */
8199d3a7 220 struct respQ_e *entries; /* HW response descriptor Q */
559fb51b
SB
221 dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
222};
223
224/* Bit flags for cmdQ.status */
225enum {
226 CMDQ_STAT_RUNNING = 1, /* fetch engine is running */
227 CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */
8199d3a7
CL
228};
229
f1d3d38a
SH
230/* T204 TX SW scheduler */
231
232/* Per T204 TX port */
233struct sched_port {
234 unsigned int avail; /* available bits - quota */
235 unsigned int drain_bits_per_1024ns; /* drain rate */
236 unsigned int speed; /* drain rate, mbps */
237 unsigned int mtu; /* mtu size */
238 struct sk_buff_head skbq; /* pending skbs */
239};
240
241/* Per T204 device */
242struct sched {
243 ktime_t last_updated; /* last time quotas were computed */
356bd146
FR
244 unsigned int max_avail; /* max bits to be sent to any port */
245 unsigned int port; /* port index (round robin ports) */
246 unsigned int num; /* num skbs in per port queues */
f1d3d38a
SH
247 struct sched_port p[MAX_NPORTS];
248 struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
249};
250static void restart_sched(unsigned long);
251
252
8199d3a7
CL
253/*
254 * Main SGE data structure
255 *
256 * Interrupts are handled by a single CPU and it is likely that on a MP system
257 * the application is migrated to another CPU. In that scenario, we try to
258 * seperate the RX(in irq context) and TX state in order to decrease memory
259 * contention.
260 */
261struct sge {
356bd146 262 struct adapter *adapter; /* adapter backpointer */
559fb51b 263 struct net_device *netdev; /* netdevice backpointer */
356bd146
FR
264 struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */
265 struct respQ respQ; /* response Q */
559fb51b 266 unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */
8199d3a7
CL
267 unsigned int rx_pkt_pad; /* RX padding for L2 packets */
268 unsigned int jumbo_fl; /* jumbo freelist Q index */
559fb51b 269 unsigned int intrtimer_nres; /* no-resource interrupt timer */
f1d3d38a 270 unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */
559fb51b
SB
271 struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
272 struct timer_list espibug_timer;
f1d3d38a
SH
273 unsigned long espibug_timeout;
274 struct sk_buff *espibug_skb[MAX_NPORTS];
559fb51b
SB
275 u32 sge_control; /* shadow value of sge control reg */
276 struct sge_intr_counts stats;
56f643c2 277 struct sge_port_stats *port_stats[MAX_NPORTS];
f1d3d38a 278 struct sched *tx_sched;
559fb51b 279 struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
8199d3a7
CL
280};
281
f1d3d38a
SH
282/*
283 * stop tasklet and free all pending skb's
284 */
285static void tx_sched_stop(struct sge *sge)
286{
287 struct sched *s = sge->tx_sched;
288 int i;
289
290 tasklet_kill(&s->sched_tsk);
291
292 for (i = 0; i < MAX_NPORTS; i++)
293 __skb_queue_purge(&s->p[s->port].skbq);
294}
295
296/*
297 * t1_sched_update_parms() is called when the MTU or link speed changes. It
298 * re-computes scheduler parameters to scope with the change.
299 */
300unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
301 unsigned int mtu, unsigned int speed)
302{
303 struct sched *s = sge->tx_sched;
304 struct sched_port *p = &s->p[port];
305 unsigned int max_avail_segs;
306
307 pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
308 if (speed)
309 p->speed = speed;
310 if (mtu)
311 p->mtu = mtu;
312
313 if (speed || mtu) {
314 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
315 do_div(drain, (p->mtu + 50) * 1000);
316 p->drain_bits_per_1024ns = (unsigned int) drain;
317
318 if (p->speed < 1000)
319 p->drain_bits_per_1024ns =
320 90 * p->drain_bits_per_1024ns / 100;
321 }
322
323 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
324 p->drain_bits_per_1024ns -= 16;
325 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
326 max_avail_segs = max(1U, 4096 / (p->mtu - 40));
327 } else {
328 s->max_avail = 16384;
329 max_avail_segs = max(1U, 9000 / (p->mtu - 40));
330 }
331
332 pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
333 "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
334 p->speed, s->max_avail, max_avail_segs,
335 p->drain_bits_per_1024ns);
336
337 return max_avail_segs * (p->mtu - 40);
338}
339
340/*
341 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
342 * data that can be pushed per port.
343 */
344void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
345{
346 struct sched *s = sge->tx_sched;
347 unsigned int i;
348
349 s->max_avail = val;
350 for (i = 0; i < MAX_NPORTS; i++)
351 t1_sched_update_parms(sge, i, 0, 0);
352}
353
354/*
355 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
356 * is draining.
357 */
358void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
359 unsigned int val)
360{
361 struct sched *s = sge->tx_sched;
362 struct sched_port *p = &s->p[port];
363 p->drain_bits_per_1024ns = val * 1024 / 1000;
364 t1_sched_update_parms(sge, port, 0, 0);
365}
366
367
368/*
369 * get_clock() implements a ns clock (see ktime_get)
370 */
371static inline ktime_t get_clock(void)
372{
373 struct timespec ts;
374
375 ktime_get_ts(&ts);
376 return timespec_to_ktime(ts);
377}
378
379/*
380 * tx_sched_init() allocates resources and does basic initialization.
381 */
382static int tx_sched_init(struct sge *sge)
383{
384 struct sched *s;
385 int i;
386
387 s = kzalloc(sizeof (struct sched), GFP_KERNEL);
388 if (!s)
389 return -ENOMEM;
390
391 pr_debug("tx_sched_init\n");
392 tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
393 sge->tx_sched = s;
394
395 for (i = 0; i < MAX_NPORTS; i++) {
396 skb_queue_head_init(&s->p[i].skbq);
397 t1_sched_update_parms(sge, i, 1500, 1000);
398 }
399
400 return 0;
401}
402
403/*
404 * sched_update_avail() computes the delta since the last time it was called
405 * and updates the per port quota (number of bits that can be sent to the any
406 * port).
407 */
408static inline int sched_update_avail(struct sge *sge)
409{
410 struct sched *s = sge->tx_sched;
411 ktime_t now = get_clock();
412 unsigned int i;
413 long long delta_time_ns;
414
415 delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
416
417 pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
418 if (delta_time_ns < 15000)
419 return 0;
420
421 for (i = 0; i < MAX_NPORTS; i++) {
422 struct sched_port *p = &s->p[i];
423 unsigned int delta_avail;
424
425 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
426 p->avail = min(p->avail + delta_avail, s->max_avail);
427 }
428
429 s->last_updated = now;
430
431 return 1;
432}
433
434/*
435 * sched_skb() is called from two different places. In the tx path, any
436 * packet generating load on an output port will call sched_skb()
437 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
438 * context (skb == NULL).
439 * The scheduler only returns a skb (which will then be sent) if the
440 * length of the skb is <= the current quota of the output port.
441 */
442static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
443 unsigned int credits)
444{
445 struct sched *s = sge->tx_sched;
446 struct sk_buff_head *skbq;
447 unsigned int i, len, update = 1;
448
449 pr_debug("sched_skb %p\n", skb);
450 if (!skb) {
451 if (!s->num)
452 return NULL;
453 } else {
454 skbq = &s->p[skb->dev->if_port].skbq;
455 __skb_queue_tail(skbq, skb);
456 s->num++;
457 skb = NULL;
458 }
459
460 if (credits < MAX_SKB_FRAGS + 1)
461 goto out;
462
356bd146 463again:
f1d3d38a
SH
464 for (i = 0; i < MAX_NPORTS; i++) {
465 s->port = ++s->port & (MAX_NPORTS - 1);
466 skbq = &s->p[s->port].skbq;
467
468 skb = skb_peek(skbq);
469
470 if (!skb)
471 continue;
472
473 len = skb->len;
474 if (len <= s->p[s->port].avail) {
475 s->p[s->port].avail -= len;
476 s->num--;
477 __skb_unlink(skb, skbq);
478 goto out;
479 }
480 skb = NULL;
481 }
482
483 if (update-- && sched_update_avail(sge))
484 goto again;
485
356bd146
FR
486out:
487 /* If there are more pending skbs, we use the hardware to schedule us
f1d3d38a
SH
488 * again.
489 */
490 if (s->num && !skb) {
491 struct cmdQ *q = &sge->cmdQ[0];
492 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
493 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
494 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
495 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
496 }
497 }
498 pr_debug("sched_skb ret %p\n", skb);
499
500 return skb;
501}
502
8199d3a7
CL
503/*
504 * PIO to indicate that memory mapped Q contains valid descriptor(s).
505 */
559fb51b 506static inline void doorbell_pio(struct adapter *adapter, u32 val)
8199d3a7
CL
507{
508 wmb();
559fb51b 509 writel(val, adapter->regs + A_SG_DOORBELL);
8199d3a7
CL
510}
511
512/*
513 * Frees all RX buffers on the freelist Q. The caller must make sure that
514 * the SGE is turned off before calling this function.
515 */
559fb51b 516static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
8199d3a7 517{
559fb51b 518 unsigned int cidx = q->cidx;
8199d3a7 519
559fb51b
SB
520 while (q->credits--) {
521 struct freelQ_ce *ce = &q->centries[cidx];
8199d3a7
CL
522
523 pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
524 pci_unmap_len(ce, dma_len),
525 PCI_DMA_FROMDEVICE);
526 dev_kfree_skb(ce->skb);
527 ce->skb = NULL;
559fb51b 528 if (++cidx == q->size)
8199d3a7
CL
529 cidx = 0;
530 }
531}
532
533/*
534 * Free RX free list and response queue resources.
535 */
536static void free_rx_resources(struct sge *sge)
537{
538 struct pci_dev *pdev = sge->adapter->pdev;
539 unsigned int size, i;
540
541 if (sge->respQ.entries) {
559fb51b 542 size = sizeof(struct respQ_e) * sge->respQ.size;
8199d3a7
CL
543 pci_free_consistent(pdev, size, sge->respQ.entries,
544 sge->respQ.dma_addr);
545 }
546
547 for (i = 0; i < SGE_FREELQ_N; i++) {
559fb51b 548 struct freelQ *q = &sge->freelQ[i];
8199d3a7 549
559fb51b
SB
550 if (q->centries) {
551 free_freelQ_buffers(pdev, q);
552 kfree(q->centries);
8199d3a7 553 }
559fb51b
SB
554 if (q->entries) {
555 size = sizeof(struct freelQ_e) * q->size;
556 pci_free_consistent(pdev, size, q->entries,
557 q->dma_addr);
8199d3a7
CL
558 }
559 }
560}
561
562/*
563 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
559fb51b 564 * response queue.
8199d3a7
CL
565 */
566static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
567{
568 struct pci_dev *pdev = sge->adapter->pdev;
569 unsigned int size, i;
570
571 for (i = 0; i < SGE_FREELQ_N; i++) {
559fb51b
SB
572 struct freelQ *q = &sge->freelQ[i];
573
574 q->genbit = 1;
575 q->size = p->freelQ_size[i];
576 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
577 size = sizeof(struct freelQ_e) * q->size;
578 q->entries = (struct freelQ_e *)
579 pci_alloc_consistent(pdev, size, &q->dma_addr);
580 if (!q->entries)
8199d3a7 581 goto err_no_mem;
559fb51b
SB
582 memset(q->entries, 0, size);
583 size = sizeof(struct freelQ_ce) * q->size;
cbee9f91 584 q->centries = kzalloc(size, GFP_KERNEL);
559fb51b 585 if (!q->centries)
8199d3a7
CL
586 goto err_no_mem;
587 }
588
589 /*
590 * Calculate the buffer sizes for the two free lists. FL0 accommodates
591 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
592 * including all the sk_buff overhead.
593 *
594 * Note: For T2 FL0 and FL1 are reversed.
595 */
596 sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
597 sizeof(struct cpl_rx_data) +
598 sge->freelQ[!sge->jumbo_fl].dma_offset;
f1d3d38a
SH
599
600 size = (16 * 1024) -
601 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
602
603 sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
8199d3a7 604
559fb51b
SB
605 /*
606 * Setup which skb recycle Q should be used when recycling buffers from
607 * each free list.
608 */
609 sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
610 sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
611
8199d3a7 612 sge->respQ.genbit = 1;
559fb51b
SB
613 sge->respQ.size = SGE_RESPQ_E_N;
614 sge->respQ.credits = 0;
615 size = sizeof(struct respQ_e) * sge->respQ.size;
8199d3a7
CL
616 sge->respQ.entries = (struct respQ_e *)
617 pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
618 if (!sge->respQ.entries)
619 goto err_no_mem;
620 memset(sge->respQ.entries, 0, size);
621 return 0;
622
623err_no_mem:
624 free_rx_resources(sge);
625 return -ENOMEM;
626}
627
628/*
559fb51b 629 * Reclaims n TX descriptors and frees the buffers associated with them.
8199d3a7 630 */
559fb51b 631static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
8199d3a7 632{
559fb51b 633 struct cmdQ_ce *ce;
8199d3a7 634 struct pci_dev *pdev = sge->adapter->pdev;
559fb51b 635 unsigned int cidx = q->cidx;
8199d3a7 636
559fb51b
SB
637 q->in_use -= n;
638 ce = &q->centries[cidx];
639 while (n--) {
f1d3d38a
SH
640 if (q->sop) {
641 if (likely(pci_unmap_len(ce, dma_len))) {
642 pci_unmap_single(pdev,
643 pci_unmap_addr(ce, dma_addr),
356bd146 644 pci_unmap_len(ce, dma_len),
f1d3d38a
SH
645 PCI_DMA_TODEVICE);
646 q->sop = 0;
647 }
648 } else {
649 if (likely(pci_unmap_len(ce, dma_len))) {
650 pci_unmap_page(pdev, pci_unmap_addr(ce, dma_addr),
356bd146 651 pci_unmap_len(ce, dma_len),
f1d3d38a
SH
652 PCI_DMA_TODEVICE);
653 }
654 }
559fb51b 655 if (ce->skb) {
f1d3d38a 656 dev_kfree_skb_any(ce->skb);
559fb51b
SB
657 q->sop = 1;
658 }
8199d3a7 659 ce++;
559fb51b 660 if (++cidx == q->size) {
8199d3a7 661 cidx = 0;
559fb51b 662 ce = q->centries;
8199d3a7
CL
663 }
664 }
559fb51b 665 q->cidx = cidx;
8199d3a7
CL
666}
667
668/*
669 * Free TX resources.
670 *
671 * Assumes that SGE is stopped and all interrupts are disabled.
672 */
673static void free_tx_resources(struct sge *sge)
674{
675 struct pci_dev *pdev = sge->adapter->pdev;
676 unsigned int size, i;
677
678 for (i = 0; i < SGE_CMDQ_N; i++) {
559fb51b 679 struct cmdQ *q = &sge->cmdQ[i];
8199d3a7 680
559fb51b
SB
681 if (q->centries) {
682 if (q->in_use)
683 free_cmdQ_buffers(sge, q, q->in_use);
684 kfree(q->centries);
8199d3a7 685 }
559fb51b
SB
686 if (q->entries) {
687 size = sizeof(struct cmdQ_e) * q->size;
688 pci_free_consistent(pdev, size, q->entries,
689 q->dma_addr);
8199d3a7
CL
690 }
691 }
692}
693
694/*
695 * Allocates basic TX resources, consisting of memory mapped command Qs.
696 */
697static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
698{
699 struct pci_dev *pdev = sge->adapter->pdev;
700 unsigned int size, i;
701
702 for (i = 0; i < SGE_CMDQ_N; i++) {
559fb51b
SB
703 struct cmdQ *q = &sge->cmdQ[i];
704
705 q->genbit = 1;
706 q->sop = 1;
707 q->size = p->cmdQ_size[i];
708 q->in_use = 0;
709 q->status = 0;
710 q->processed = q->cleaned = 0;
711 q->stop_thres = 0;
712 spin_lock_init(&q->lock);
713 size = sizeof(struct cmdQ_e) * q->size;
714 q->entries = (struct cmdQ_e *)
715 pci_alloc_consistent(pdev, size, &q->dma_addr);
716 if (!q->entries)
8199d3a7 717 goto err_no_mem;
559fb51b
SB
718 memset(q->entries, 0, size);
719 size = sizeof(struct cmdQ_ce) * q->size;
cbee9f91 720 q->centries = kzalloc(size, GFP_KERNEL);
559fb51b 721 if (!q->centries)
8199d3a7
CL
722 goto err_no_mem;
723 }
724
559fb51b
SB
725 /*
726 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
727 * only. For queue 0 set the stop threshold so we can handle one more
728 * packet from each port, plus reserve an additional 24 entries for
729 * Ethernet packets only. Queue 1 never suspends nor do we reserve
730 * space for Ethernet packets.
731 */
732 sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
733 (MAX_SKB_FRAGS + 1);
8199d3a7
CL
734 return 0;
735
736err_no_mem:
737 free_tx_resources(sge);
738 return -ENOMEM;
739}
740
741static inline void setup_ring_params(struct adapter *adapter, u64 addr,
742 u32 size, int base_reg_lo,
743 int base_reg_hi, int size_reg)
744{
559fb51b
SB
745 writel((u32)addr, adapter->regs + base_reg_lo);
746 writel(addr >> 32, adapter->regs + base_reg_hi);
747 writel(size, adapter->regs + size_reg);
8199d3a7
CL
748}
749
750/*
751 * Enable/disable VLAN acceleration.
752 */
753void t1_set_vlan_accel(struct adapter *adapter, int on_off)
754{
755 struct sge *sge = adapter->sge;
756
757 sge->sge_control &= ~F_VLAN_XTRACT;
758 if (on_off)
759 sge->sge_control |= F_VLAN_XTRACT;
760 if (adapter->open_device_map) {
559fb51b 761 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
f1d3d38a 762 readl(adapter->regs + A_SG_CONTROL); /* flush */
8199d3a7
CL
763 }
764}
765
8199d3a7
CL
766/*
767 * Programs the various SGE registers. However, the engine is not yet enabled,
768 * but sge->sge_control is setup and ready to go.
769 */
770static void configure_sge(struct sge *sge, struct sge_params *p)
771{
772 struct adapter *ap = sge->adapter;
356bd146 773
559fb51b
SB
774 writel(0, ap->regs + A_SG_CONTROL);
775 setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
8199d3a7 776 A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
559fb51b 777 setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
8199d3a7
CL
778 A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
779 setup_ring_params(ap, sge->freelQ[0].dma_addr,
559fb51b 780 sge->freelQ[0].size, A_SG_FL0BASELWR,
8199d3a7
CL
781 A_SG_FL0BASEUPR, A_SG_FL0SIZE);
782 setup_ring_params(ap, sge->freelQ[1].dma_addr,
559fb51b 783 sge->freelQ[1].size, A_SG_FL1BASELWR,
8199d3a7
CL
784 A_SG_FL1BASEUPR, A_SG_FL1SIZE);
785
786 /* The threshold comparison uses <. */
559fb51b 787 writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
8199d3a7 788
559fb51b
SB
789 setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
790 A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
791 writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
8199d3a7
CL
792
793 sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
794 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
795 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
796 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
797
798#if defined(__BIG_ENDIAN_BITFIELD)
799 sge->sge_control |= F_ENABLE_BIG_ENDIAN;
800#endif
801
559fb51b
SB
802 /* Initialize no-resource timer */
803 sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
804
805 t1_sge_set_coalesce_params(sge, p);
8199d3a7
CL
806}
807
808/*
809 * Return the payload capacity of the jumbo free-list buffers.
810 */
811static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
812{
813 return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
559fb51b
SB
814 sge->freelQ[sge->jumbo_fl].dma_offset -
815 sizeof(struct cpl_rx_data);
8199d3a7
CL
816}
817
818/*
819 * Frees all SGE related resources and the sge structure itself
820 */
821void t1_sge_destroy(struct sge *sge)
822{
56f643c2
SH
823 int i;
824
825 for_each_port(sge->adapter, i)
826 free_percpu(sge->port_stats[i]);
827
f1d3d38a 828 kfree(sge->tx_sched);
8199d3a7
CL
829 free_tx_resources(sge);
830 free_rx_resources(sge);
831 kfree(sge);
832}
833
834/*
835 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
836 * context Q) until the Q is full or alloc_skb fails.
837 *
838 * It is possible that the generation bits already match, indicating that the
839 * buffer is already valid and nothing needs to be done. This happens when we
840 * copied a received buffer into a new sk_buff during the interrupt processing.
841 *
842 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
843 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
844 * aligned.
845 */
559fb51b 846static void refill_free_list(struct sge *sge, struct freelQ *q)
8199d3a7
CL
847{
848 struct pci_dev *pdev = sge->adapter->pdev;
559fb51b
SB
849 struct freelQ_ce *ce = &q->centries[q->pidx];
850 struct freelQ_e *e = &q->entries[q->pidx];
851 unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
8199d3a7 852
559fb51b
SB
853 while (q->credits < q->size) {
854 struct sk_buff *skb;
855 dma_addr_t mapping;
8199d3a7 856
559fb51b
SB
857 skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
858 if (!skb)
859 break;
860
861 skb_reserve(skb, q->dma_offset);
862 mapping = pci_map_single(pdev, skb->data, dma_len,
863 PCI_DMA_FROMDEVICE);
864 ce->skb = skb;
865 pci_unmap_addr_set(ce, dma_addr, mapping);
866 pci_unmap_len_set(ce, dma_len, dma_len);
867 e->addr_lo = (u32)mapping;
868 e->addr_hi = (u64)mapping >> 32;
869 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
870 wmb();
871 e->gen2 = V_CMD_GEN2(q->genbit);
8199d3a7
CL
872
873 e++;
874 ce++;
559fb51b
SB
875 if (++q->pidx == q->size) {
876 q->pidx = 0;
877 q->genbit ^= 1;
878 ce = q->centries;
879 e = q->entries;
8199d3a7 880 }
559fb51b 881 q->credits++;
8199d3a7 882 }
8199d3a7
CL
883}
884
885/*
559fb51b
SB
886 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
887 * of both rings, we go into 'few interrupt mode' in order to give the system
888 * time to free up resources.
8199d3a7
CL
889 */
890static void freelQs_empty(struct sge *sge)
891{
559fb51b
SB
892 struct adapter *adapter = sge->adapter;
893 u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
8199d3a7
CL
894 u32 irqholdoff_reg;
895
896 refill_free_list(sge, &sge->freelQ[0]);
897 refill_free_list(sge, &sge->freelQ[1]);
898
559fb51b
SB
899 if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
900 sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
8199d3a7 901 irq_reg |= F_FL_EXHAUSTED;
559fb51b 902 irqholdoff_reg = sge->fixed_intrtimer;
8199d3a7
CL
903 } else {
904 /* Clear the F_FL_EXHAUSTED interrupts for now */
905 irq_reg &= ~F_FL_EXHAUSTED;
906 irqholdoff_reg = sge->intrtimer_nres;
907 }
559fb51b
SB
908 writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
909 writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
8199d3a7
CL
910
911 /* We reenable the Qs to force a freelist GTS interrupt later */
559fb51b 912 doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
8199d3a7
CL
913}
914
915#define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
916#define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
917#define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
918 F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
919
920/*
921 * Disable SGE Interrupts
922 */
923void t1_sge_intr_disable(struct sge *sge)
924{
559fb51b 925 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
8199d3a7 926
559fb51b
SB
927 writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
928 writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
8199d3a7
CL
929}
930
931/*
932 * Enable SGE interrupts.
933 */
934void t1_sge_intr_enable(struct sge *sge)
935{
936 u32 en = SGE_INT_ENABLE;
559fb51b 937 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
8199d3a7
CL
938
939 if (sge->adapter->flags & TSO_CAPABLE)
940 en &= ~F_PACKET_TOO_BIG;
559fb51b
SB
941 writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
942 writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
8199d3a7
CL
943}
944
945/*
946 * Clear SGE interrupts.
947 */
948void t1_sge_intr_clear(struct sge *sge)
949{
559fb51b
SB
950 writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
951 writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
8199d3a7
CL
952}
953
954/*
955 * SGE 'Error' interrupt handler
956 */
957int t1_sge_intr_error_handler(struct sge *sge)
958{
959 struct adapter *adapter = sge->adapter;
559fb51b 960 u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
8199d3a7
CL
961
962 if (adapter->flags & TSO_CAPABLE)
963 cause &= ~F_PACKET_TOO_BIG;
964 if (cause & F_RESPQ_EXHAUSTED)
559fb51b 965 sge->stats.respQ_empty++;
8199d3a7 966 if (cause & F_RESPQ_OVERFLOW) {
559fb51b 967 sge->stats.respQ_overflow++;
8199d3a7
CL
968 CH_ALERT("%s: SGE response queue overflow\n",
969 adapter->name);
970 }
971 if (cause & F_FL_EXHAUSTED) {
559fb51b 972 sge->stats.freelistQ_empty++;
8199d3a7
CL
973 freelQs_empty(sge);
974 }
975 if (cause & F_PACKET_TOO_BIG) {
559fb51b 976 sge->stats.pkt_too_big++;
8199d3a7
CL
977 CH_ALERT("%s: SGE max packet size exceeded\n",
978 adapter->name);
979 }
980 if (cause & F_PACKET_MISMATCH) {
559fb51b 981 sge->stats.pkt_mismatch++;
8199d3a7
CL
982 CH_ALERT("%s: SGE packet mismatch\n", adapter->name);
983 }
984 if (cause & SGE_INT_FATAL)
985 t1_fatal_err(adapter);
986
559fb51b 987 writel(cause, adapter->regs + A_SG_INT_CAUSE);
8199d3a7
CL
988 return 0;
989}
990
56f643c2 991const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
559fb51b
SB
992{
993 return &sge->stats;
994}
995
56f643c2
SH
996void t1_sge_get_port_stats(const struct sge *sge, int port,
997 struct sge_port_stats *ss)
559fb51b 998{
56f643c2
SH
999 int cpu;
1000
1001 memset(ss, 0, sizeof(*ss));
1002 for_each_possible_cpu(cpu) {
1003 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
1004
1005 ss->rx_packets += st->rx_packets;
1006 ss->rx_cso_good += st->rx_cso_good;
1007 ss->tx_packets += st->tx_packets;
1008 ss->tx_cso += st->tx_cso;
1009 ss->tx_tso += st->tx_tso;
1010 ss->vlan_xtract += st->vlan_xtract;
1011 ss->vlan_insert += st->vlan_insert;
1012 }
559fb51b
SB
1013}
1014
1015/**
1016 * recycle_fl_buf - recycle a free list buffer
1017 * @fl: the free list
1018 * @idx: index of buffer to recycle
8199d3a7 1019 *
559fb51b
SB
1020 * Recycles the specified buffer on the given free list by adding it at
1021 * the next available slot on the list.
8199d3a7 1022 */
559fb51b 1023static void recycle_fl_buf(struct freelQ *fl, int idx)
8199d3a7 1024{
559fb51b
SB
1025 struct freelQ_e *from = &fl->entries[idx];
1026 struct freelQ_e *to = &fl->entries[fl->pidx];
8199d3a7 1027
559fb51b
SB
1028 fl->centries[fl->pidx] = fl->centries[idx];
1029 to->addr_lo = from->addr_lo;
1030 to->addr_hi = from->addr_hi;
1031 to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1032 wmb();
1033 to->gen2 = V_CMD_GEN2(fl->genbit);
1034 fl->credits++;
8199d3a7 1035
559fb51b
SB
1036 if (++fl->pidx == fl->size) {
1037 fl->pidx = 0;
1038 fl->genbit ^= 1;
8199d3a7 1039 }
559fb51b 1040}
8199d3a7 1041
559fb51b
SB
1042/**
1043 * get_packet - return the next ingress packet buffer
1044 * @pdev: the PCI device that received the packet
1045 * @fl: the SGE free list holding the packet
1046 * @len: the actual packet length, excluding any SGE padding
1047 * @dma_pad: padding at beginning of buffer left by SGE DMA
1048 * @skb_pad: padding to be used if the packet is copied
1049 * @copy_thres: length threshold under which a packet should be copied
1050 * @drop_thres: # of remaining buffers before we start dropping packets
1051 *
1052 * Get the next packet from a free list and complete setup of the
1053 * sk_buff. If the packet is small we make a copy and recycle the
1054 * original buffer, otherwise we use the original buffer itself. If a
1055 * positive drop threshold is supplied packets are dropped and their
1056 * buffers recycled if (a) the number of remaining buffers is under the
1057 * threshold and the packet is too big to copy, or (b) the packet should
1058 * be copied but there is no memory for the copy.
1059 */
1060static inline struct sk_buff *get_packet(struct pci_dev *pdev,
1061 struct freelQ *fl, unsigned int len,
1062 int dma_pad, int skb_pad,
1063 unsigned int copy_thres,
1064 unsigned int drop_thres)
1065{
1066 struct sk_buff *skb;
1067 struct freelQ_ce *ce = &fl->centries[fl->cidx];
1068
1069 if (len < copy_thres) {
1070 skb = alloc_skb(len + skb_pad, GFP_ATOMIC);
1071 if (likely(skb != NULL)) {
1072 skb_reserve(skb, skb_pad);
1073 skb_put(skb, len);
1074 pci_dma_sync_single_for_cpu(pdev,
1075 pci_unmap_addr(ce, dma_addr),
356bd146 1076 pci_unmap_len(ce, dma_len),
559fb51b
SB
1077 PCI_DMA_FROMDEVICE);
1078 memcpy(skb->data, ce->skb->data + dma_pad, len);
1079 pci_dma_sync_single_for_device(pdev,
1080 pci_unmap_addr(ce, dma_addr),
356bd146 1081 pci_unmap_len(ce, dma_len),
559fb51b
SB
1082 PCI_DMA_FROMDEVICE);
1083 } else if (!drop_thres)
1084 goto use_orig_buf;
8199d3a7 1085
559fb51b
SB
1086 recycle_fl_buf(fl, fl->cidx);
1087 return skb;
8199d3a7
CL
1088 }
1089
559fb51b
SB
1090 if (fl->credits < drop_thres) {
1091 recycle_fl_buf(fl, fl->cidx);
1092 return NULL;
1093 }
8199d3a7 1094
559fb51b
SB
1095use_orig_buf:
1096 pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
1097 pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1098 skb = ce->skb;
1099 skb_reserve(skb, dma_pad);
1100 skb_put(skb, len);
1101 return skb;
1102}
8199d3a7 1103
559fb51b
SB
1104/**
1105 * unexpected_offload - handle an unexpected offload packet
1106 * @adapter: the adapter
1107 * @fl: the free list that received the packet
1108 *
1109 * Called when we receive an unexpected offload packet (e.g., the TOE
1110 * function is disabled or the card is a NIC). Prints a message and
1111 * recycles the buffer.
1112 */
1113static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1114{
1115 struct freelQ_ce *ce = &fl->centries[fl->cidx];
1116 struct sk_buff *skb = ce->skb;
1117
1118 pci_dma_sync_single_for_cpu(adapter->pdev, pci_unmap_addr(ce, dma_addr),
1119 pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1120 CH_ERR("%s: unexpected offload packet, cmd %u\n",
1121 adapter->name, *skb->data);
1122 recycle_fl_buf(fl, fl->cidx);
8199d3a7
CL
1123}
1124
f1d3d38a
SH
1125/*
1126 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1127 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1128 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1129 * Note that the *_large_page_tx_descs stuff will be optimized out when
1130 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1131 *
1132 * compute_large_page_descs() computes how many additional descriptors are
1133 * required to break down the stack's request.
1134 */
1135static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1136{
1137 unsigned int count = 0;
356bd146 1138
f1d3d38a
SH
1139 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1140 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1141 unsigned int i, len = skb->len - skb->data_len;
1142 while (len > SGE_TX_DESC_MAX_PLEN) {
1143 count++;
1144 len -= SGE_TX_DESC_MAX_PLEN;
1145 }
1146 for (i = 0; nfrags--; i++) {
1147 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1148 len = frag->size;
1149 while (len > SGE_TX_DESC_MAX_PLEN) {
1150 count++;
1151 len -= SGE_TX_DESC_MAX_PLEN;
1152 }
1153 }
1154 }
1155 return count;
1156}
1157
1158/*
1159 * Write a cmdQ entry.
1160 *
1161 * Since this function writes the 'flags' field, it must not be used to
1162 * write the first cmdQ entry.
1163 */
1164static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1165 unsigned int len, unsigned int gen,
1166 unsigned int eop)
1167{
1168 if (unlikely(len > SGE_TX_DESC_MAX_PLEN))
1169 BUG();
1170 e->addr_lo = (u32)mapping;
1171 e->addr_hi = (u64)mapping >> 32;
1172 e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1173 e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1174}
1175
1176/*
1177 * See comment for previous function.
1178 *
1179 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1180 * *desc_len exceeds HW's capability.
1181 */
1182static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1183 struct cmdQ_e **e,
1184 struct cmdQ_ce **ce,
1185 unsigned int *gen,
1186 dma_addr_t *desc_mapping,
1187 unsigned int *desc_len,
1188 unsigned int nfrags,
1189 struct cmdQ *q)
1190{
1191 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1192 struct cmdQ_e *e1 = *e;
1193 struct cmdQ_ce *ce1 = *ce;
1194
1195 while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1196 *desc_len -= SGE_TX_DESC_MAX_PLEN;
1197 write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1198 *gen, nfrags == 0 && *desc_len == 0);
1199 ce1->skb = NULL;
1200 pci_unmap_len_set(ce1, dma_len, 0);
1201 *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1202 if (*desc_len) {
1203 ce1++;
1204 e1++;
1205 if (++pidx == q->size) {
1206 pidx = 0;
1207 *gen ^= 1;
1208 ce1 = q->centries;
1209 e1 = q->entries;
1210 }
1211 }
1212 }
1213 *e = e1;
1214 *ce = ce1;
1215 }
1216 return pidx;
1217}
1218
8199d3a7 1219/*
559fb51b
SB
1220 * Write the command descriptors to transmit the given skb starting at
1221 * descriptor pidx with the given generation.
8199d3a7 1222 */
559fb51b
SB
1223static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1224 unsigned int pidx, unsigned int gen,
1225 struct cmdQ *q)
8199d3a7 1226{
f1d3d38a 1227 dma_addr_t mapping, desc_mapping;
559fb51b
SB
1228 struct cmdQ_e *e, *e1;
1229 struct cmdQ_ce *ce;
f1d3d38a
SH
1230 unsigned int i, flags, first_desc_len, desc_len,
1231 nfrags = skb_shinfo(skb)->nr_frags;
559fb51b 1232
f1d3d38a 1233 e = e1 = &q->entries[pidx];
559fb51b 1234 ce = &q->centries[pidx];
f1d3d38a
SH
1235
1236 mapping = pci_map_single(adapter->pdev, skb->data,
1237 skb->len - skb->data_len, PCI_DMA_TODEVICE);
1238
1239 desc_mapping = mapping;
1240 desc_len = skb->len - skb->data_len;
1241
1242 flags = F_CMD_DATAVALID | F_CMD_SOP |
1243 V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1244 V_CMD_GEN2(gen);
1245 first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1246 desc_len : SGE_TX_DESC_MAX_PLEN;
1247 e->addr_lo = (u32)desc_mapping;
1248 e->addr_hi = (u64)desc_mapping >> 32;
1249 e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1250 ce->skb = NULL;
1251 pci_unmap_len_set(ce, dma_len, 0);
1252
1253 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1254 desc_len > SGE_TX_DESC_MAX_PLEN) {
1255 desc_mapping += first_desc_len;
1256 desc_len -= first_desc_len;
1257 e1++;
1258 ce++;
1259 if (++pidx == q->size) {
1260 pidx = 0;
1261 gen ^= 1;
1262 e1 = q->entries;
1263 ce = q->centries;
1264 }
1265 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1266 &desc_mapping, &desc_len,
1267 nfrags, q);
1268
1269 if (likely(desc_len))
1270 write_tx_desc(e1, desc_mapping, desc_len, gen,
1271 nfrags == 0);
1272 }
1273
559fb51b
SB
1274 ce->skb = NULL;
1275 pci_unmap_addr_set(ce, dma_addr, mapping);
1276 pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len);
8199d3a7 1277
f1d3d38a 1278 for (i = 0; nfrags--; i++) {
559fb51b 1279 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
559fb51b 1280 e1++;
f1d3d38a 1281 ce++;
559fb51b
SB
1282 if (++pidx == q->size) {
1283 pidx = 0;
1284 gen ^= 1;
559fb51b 1285 e1 = q->entries;
f1d3d38a 1286 ce = q->centries;
8199d3a7 1287 }
8199d3a7 1288
559fb51b
SB
1289 mapping = pci_map_page(adapter->pdev, frag->page,
1290 frag->page_offset, frag->size,
1291 PCI_DMA_TODEVICE);
f1d3d38a
SH
1292 desc_mapping = mapping;
1293 desc_len = frag->size;
1294
1295 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1296 &desc_mapping, &desc_len,
1297 nfrags, q);
1298 if (likely(desc_len))
1299 write_tx_desc(e1, desc_mapping, desc_len, gen,
1300 nfrags == 0);
559fb51b
SB
1301 ce->skb = NULL;
1302 pci_unmap_addr_set(ce, dma_addr, mapping);
1303 pci_unmap_len_set(ce, dma_len, frag->size);
8199d3a7 1304 }
559fb51b
SB
1305 ce->skb = skb;
1306 wmb();
1307 e->flags = flags;
1308}
8199d3a7 1309
559fb51b
SB
1310/*
1311 * Clean up completed Tx buffers.
1312 */
1313static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1314{
1315 unsigned int reclaim = q->processed - q->cleaned;
8199d3a7 1316
559fb51b 1317 if (reclaim) {
f1d3d38a
SH
1318 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1319 q->processed, q->cleaned);
559fb51b
SB
1320 free_cmdQ_buffers(sge, q, reclaim);
1321 q->cleaned += reclaim;
8199d3a7 1322 }
559fb51b 1323}
8199d3a7 1324
f1d3d38a
SH
1325/*
1326 * Called from tasklet. Checks the scheduler for any
1327 * pending skbs that can be sent.
1328 */
1329static void restart_sched(unsigned long arg)
1330{
1331 struct sge *sge = (struct sge *) arg;
1332 struct adapter *adapter = sge->adapter;
1333 struct cmdQ *q = &sge->cmdQ[0];
1334 struct sk_buff *skb;
1335 unsigned int credits, queued_skb = 0;
1336
1337 spin_lock(&q->lock);
1338 reclaim_completed_tx(sge, q);
1339
1340 credits = q->size - q->in_use;
1341 pr_debug("restart_sched credits=%d\n", credits);
1342 while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1343 unsigned int genbit, pidx, count;
1344 count = 1 + skb_shinfo(skb)->nr_frags;
356bd146 1345 count += compute_large_page_tx_descs(skb);
f1d3d38a
SH
1346 q->in_use += count;
1347 genbit = q->genbit;
1348 pidx = q->pidx;
1349 q->pidx += count;
1350 if (q->pidx >= q->size) {
1351 q->pidx -= q->size;
1352 q->genbit ^= 1;
1353 }
1354 write_tx_descs(adapter, skb, pidx, genbit, q);
1355 credits = q->size - q->in_use;
1356 queued_skb = 1;
1357 }
1358
1359 if (queued_skb) {
1360 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1361 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1362 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1363 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1364 }
1365 }
1366 spin_unlock(&q->lock);
1367}
8199d3a7 1368
559fb51b
SB
1369/**
1370 * sge_rx - process an ingress ethernet packet
1371 * @sge: the sge structure
1372 * @fl: the free list that contains the packet buffer
1373 * @len: the packet length
8199d3a7 1374 *
559fb51b 1375 * Process an ingress ethernet pakcet and deliver it to the stack.
8199d3a7 1376 */
559fb51b 1377static int sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
8199d3a7 1378{
559fb51b
SB
1379 struct sk_buff *skb;
1380 struct cpl_rx_pkt *p;
1381 struct adapter *adapter = sge->adapter;
56f643c2 1382 struct sge_port_stats *st;
8199d3a7 1383
559fb51b
SB
1384 skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad,
1385 sge->rx_pkt_pad, 2, SGE_RX_COPY_THRES,
1386 SGE_RX_DROP_THRES);
56f643c2
SH
1387 if (unlikely(!skb)) {
1388 sge->stats.rx_drops++;
559fb51b 1389 return 0;
8199d3a7 1390 }
559fb51b
SB
1391
1392 p = (struct cpl_rx_pkt *)skb->data;
1393 skb_pull(skb, sizeof(*p));
f1d3d38a
SH
1394 if (p->iff >= adapter->params.nports) {
1395 kfree_skb(skb);
1396 return 0;
1397 }
1398
56f643c2 1399 skb->dev = adapter->port[p->iff].dev;
559fb51b 1400 skb->dev->last_rx = jiffies;
56f643c2
SH
1401 st = per_cpu_ptr(sge->port_stats[p->iff], smp_processor_id());
1402 st->rx_packets++;
1403
559fb51b
SB
1404 skb->protocol = eth_type_trans(skb, skb->dev);
1405 if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
1406 skb->protocol == htons(ETH_P_IP) &&
1407 (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
56f643c2 1408 ++st->rx_cso_good;
559fb51b
SB
1409 skb->ip_summed = CHECKSUM_UNNECESSARY;
1410 } else
1411 skb->ip_summed = CHECKSUM_NONE;
1412
1413 if (unlikely(adapter->vlan_grp && p->vlan_valid)) {
56f643c2 1414 st->vlan_xtract++;
7fe26a60 1415#ifdef CONFIG_CHELSIO_T1_NAPI
559fb51b
SB
1416 vlan_hwaccel_receive_skb(skb, adapter->vlan_grp,
1417 ntohs(p->vlan));
7fe26a60 1418#else
559fb51b
SB
1419 vlan_hwaccel_rx(skb, adapter->vlan_grp,
1420 ntohs(p->vlan));
7fe26a60
SH
1421#endif
1422 } else {
1423#ifdef CONFIG_CHELSIO_T1_NAPI
559fb51b 1424 netif_receive_skb(skb);
7fe26a60 1425#else
559fb51b 1426 netif_rx(skb);
7fe26a60
SH
1427#endif
1428 }
559fb51b 1429 return 0;
8199d3a7
CL
1430}
1431
1432/*
559fb51b 1433 * Returns true if a command queue has enough available descriptors that
8199d3a7
CL
1434 * we can resume Tx operation after temporarily disabling its packet queue.
1435 */
559fb51b 1436static inline int enough_free_Tx_descs(const struct cmdQ *q)
8199d3a7 1437{
559fb51b
SB
1438 unsigned int r = q->processed - q->cleaned;
1439
1440 return q->in_use - r < (q->size >> 1);
8199d3a7
CL
1441}
1442
1443/*
559fb51b
SB
1444 * Called when sufficient space has become available in the SGE command queues
1445 * after the Tx packet schedulers have been suspended to restart the Tx path.
8199d3a7 1446 */
559fb51b 1447static void restart_tx_queues(struct sge *sge)
8199d3a7 1448{
559fb51b 1449 struct adapter *adap = sge->adapter;
8199d3a7 1450
559fb51b
SB
1451 if (enough_free_Tx_descs(&sge->cmdQ[0])) {
1452 int i;
1453
1454 for_each_port(adap, i) {
1455 struct net_device *nd = adap->port[i].dev;
1456
1457 if (test_and_clear_bit(nd->if_port,
1458 &sge->stopped_tx_queues) &&
1459 netif_running(nd)) {
232a347a 1460 sge->stats.cmdQ_restarted[2]++;
559fb51b
SB
1461 netif_wake_queue(nd);
1462 }
1463 }
1464 }
1465}
1466
1467/*
356bd146 1468 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
559fb51b
SB
1469 * information.
1470 */
356bd146
FR
1471static unsigned int update_tx_info(struct adapter *adapter,
1472 unsigned int flags,
559fb51b
SB
1473 unsigned int pr0)
1474{
1475 struct sge *sge = adapter->sge;
1476 struct cmdQ *cmdq = &sge->cmdQ[0];
8199d3a7 1477
559fb51b 1478 cmdq->processed += pr0;
f1d3d38a
SH
1479 if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1480 freelQs_empty(sge);
1481 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1482 }
559fb51b
SB
1483 if (flags & F_CMDQ0_ENABLE) {
1484 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
f1d3d38a 1485
559fb51b
SB
1486 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1487 !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1488 set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1489 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1490 }
f1d3d38a
SH
1491 if (sge->tx_sched)
1492 tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1493
1494 flags &= ~F_CMDQ0_ENABLE;
559fb51b 1495 }
f1d3d38a 1496
559fb51b
SB
1497 if (unlikely(sge->stopped_tx_queues != 0))
1498 restart_tx_queues(sge);
8199d3a7 1499
559fb51b
SB
1500 return flags;
1501}
8199d3a7 1502
559fb51b
SB
1503/*
1504 * Process SGE responses, up to the supplied budget. Returns the number of
1505 * responses processed. A negative budget is effectively unlimited.
1506 */
1507static int process_responses(struct adapter *adapter, int budget)
1508{
1509 struct sge *sge = adapter->sge;
1510 struct respQ *q = &sge->respQ;
1511 struct respQ_e *e = &q->entries[q->cidx];
1512 int budget_left = budget;
1513 unsigned int flags = 0;
1514 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
356bd146 1515
559fb51b
SB
1516
1517 while (likely(budget_left && e->GenerationBit == q->genbit)) {
1518 flags |= e->Qsleeping;
356bd146 1519
559fb51b
SB
1520 cmdq_processed[0] += e->Cmdq0CreditReturn;
1521 cmdq_processed[1] += e->Cmdq1CreditReturn;
356bd146 1522
559fb51b
SB
1523 /* We batch updates to the TX side to avoid cacheline
1524 * ping-pong of TX state information on MP where the sender
1525 * might run on a different CPU than this function...
1526 */
1527 if (unlikely(flags & F_CMDQ0_ENABLE || cmdq_processed[0] > 64)) {
1528 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1529 cmdq_processed[0] = 0;
1530 }
1531 if (unlikely(cmdq_processed[1] > 16)) {
1532 sge->cmdQ[1].processed += cmdq_processed[1];
1533 cmdq_processed[1] = 0;
8199d3a7
CL
1534 }
1535 if (likely(e->DataValid)) {
559fb51b
SB
1536 struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1537
5d9428de 1538 BUG_ON(!e->Sop || !e->Eop);
559fb51b
SB
1539 if (unlikely(e->Offload))
1540 unexpected_offload(adapter, fl);
1541 else
1542 sge_rx(sge, fl, e->BufferLength);
1543
1544 /*
1545 * Note: this depends on each packet consuming a
1546 * single free-list buffer; cf. the BUG above.
1547 */
1548 if (++fl->cidx == fl->size)
1549 fl->cidx = 0;
1550 if (unlikely(--fl->credits <
1551 fl->size - SGE_FREEL_REFILL_THRESH))
1552 refill_free_list(sge, fl);
1553 } else
1554 sge->stats.pure_rsps++;
8199d3a7 1555
8199d3a7 1556 e++;
559fb51b
SB
1557 if (unlikely(++q->cidx == q->size)) {
1558 q->cidx = 0;
1559 q->genbit ^= 1;
1560 e = q->entries;
1561 }
1562 prefetch(e);
1563
1564 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1565 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1566 q->credits = 0;
8199d3a7 1567 }
559fb51b 1568 --budget_left;
8199d3a7
CL
1569 }
1570
356bd146 1571 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
559fb51b 1572 sge->cmdQ[1].processed += cmdq_processed[1];
8199d3a7 1573
559fb51b
SB
1574 budget -= budget_left;
1575 return budget;
1576}
8199d3a7 1577
7fe26a60 1578#ifdef CONFIG_CHELSIO_T1_NAPI
559fb51b
SB
1579/*
1580 * A simpler version of process_responses() that handles only pure (i.e.,
1581 * non data-carrying) responses. Such respones are too light-weight to justify
1582 * calling a softirq when using NAPI, so we handle them specially in hard
1583 * interrupt context. The function is called with a pointer to a response,
1584 * which the caller must ensure is a valid pure response. Returns 1 if it
1585 * encounters a valid data-carrying response, 0 otherwise.
1586 */
1587static int process_pure_responses(struct adapter *adapter, struct respQ_e *e)
1588{
1589 struct sge *sge = adapter->sge;
1590 struct respQ *q = &sge->respQ;
1591 unsigned int flags = 0;
1592 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
8199d3a7 1593
559fb51b
SB
1594 do {
1595 flags |= e->Qsleeping;
8199d3a7 1596
559fb51b
SB
1597 cmdq_processed[0] += e->Cmdq0CreditReturn;
1598 cmdq_processed[1] += e->Cmdq1CreditReturn;
356bd146 1599
559fb51b
SB
1600 e++;
1601 if (unlikely(++q->cidx == q->size)) {
1602 q->cidx = 0;
1603 q->genbit ^= 1;
1604 e = q->entries;
8199d3a7 1605 }
559fb51b 1606 prefetch(e);
8199d3a7 1607
559fb51b
SB
1608 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1609 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1610 q->credits = 0;
8199d3a7 1611 }
559fb51b
SB
1612 sge->stats.pure_rsps++;
1613 } while (e->GenerationBit == q->genbit && !e->DataValid);
8199d3a7 1614
356bd146 1615 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
559fb51b 1616 sge->cmdQ[1].processed += cmdq_processed[1];
8199d3a7 1617
559fb51b 1618 return e->GenerationBit == q->genbit;
8199d3a7
CL
1619}
1620
1621/*
559fb51b
SB
1622 * Handler for new data events when using NAPI. This does not need any locking
1623 * or protection from interrupts as data interrupts are off at this point and
1624 * other adapter interrupts do not interfere.
8199d3a7 1625 */
7fe26a60 1626int t1_poll(struct net_device *dev, int *budget)
8199d3a7 1627{
559fb51b
SB
1628 struct adapter *adapter = dev->priv;
1629 int effective_budget = min(*budget, dev->quota);
559fb51b 1630 int work_done = process_responses(adapter, effective_budget);
7fe26a60 1631
559fb51b
SB
1632 *budget -= work_done;
1633 dev->quota -= work_done;
8199d3a7 1634
559fb51b
SB
1635 if (work_done >= effective_budget)
1636 return 1;
1637
356bd146 1638 spin_lock_irq(&adapter->async_lock);
559fb51b 1639 __netif_rx_complete(dev);
559fb51b 1640 writel(adapter->sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
7fe26a60
SH
1641 writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA,
1642 adapter->regs + A_PL_ENABLE);
356bd146 1643 spin_unlock_irq(&adapter->async_lock);
8199d3a7 1644
7fe26a60 1645 return 0;
559fb51b 1646}
8199d3a7 1647
559fb51b
SB
1648/*
1649 * NAPI version of the main interrupt handler.
1650 */
7fe26a60 1651irqreturn_t t1_interrupt(int irq, void *data)
559fb51b 1652{
559fb51b 1653 struct adapter *adapter = data;
356bd146 1654 struct net_device *dev = adapter->sge->netdev;
559fb51b 1655 struct sge *sge = adapter->sge;
356bd146 1656 u32 cause;
7fe26a60 1657 int handled = 0;
8199d3a7 1658
7fe26a60
SH
1659 cause = readl(adapter->regs + A_PL_CAUSE);
1660 if (cause == 0 || cause == ~0)
1661 return IRQ_NONE;
559fb51b
SB
1662
1663 spin_lock(&adapter->async_lock);
356bd146 1664 if (cause & F_PL_INTR_SGE_DATA) {
7fe26a60 1665 struct respQ *q = &adapter->sge->respQ;
559fb51b
SB
1666 struct respQ_e *e = &q->entries[q->cidx];
1667
356bd146
FR
1668 handled = 1;
1669 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
7fe26a60
SH
1670
1671 if (e->GenerationBit == q->genbit &&
1672 __netif_rx_schedule_prep(dev)) {
1673 if (e->DataValid || process_pure_responses(adapter, e)) {
1674 /* mask off data IRQ */
1675 writel(adapter->slow_intr_mask,
1676 adapter->regs + A_PL_ENABLE);
1677 __netif_rx_schedule(sge->netdev);
1678 goto unlock;
1679 }
1680 /* no data, no NAPI needed */
1681 netif_poll_enable(dev);
1682
1683 }
1684 writel(q->cidx, adapter->regs + A_SG_SLEEPING);
1685 } else
1686 handled = t1_slow_intr_handler(adapter);
1687
559fb51b
SB
1688 if (!handled)
1689 sge->stats.unhandled_irqs++;
7fe26a60 1690unlock:
559fb51b
SB
1691 spin_unlock(&adapter->async_lock);
1692 return IRQ_RETVAL(handled != 0);
1693}
8199d3a7 1694
7fe26a60 1695#else
559fb51b
SB
1696/*
1697 * Main interrupt handler, optimized assuming that we took a 'DATA'
1698 * interrupt.
1699 *
1700 * 1. Clear the interrupt
1701 * 2. Loop while we find valid descriptors and process them; accumulate
1702 * information that can be processed after the loop
1703 * 3. Tell the SGE at which index we stopped processing descriptors
1704 * 4. Bookkeeping; free TX buffers, ring doorbell if there are any
1705 * outstanding TX buffers waiting, replenish RX buffers, potentially
1706 * reenable upper layers if they were turned off due to lack of TX
1707 * resources which are available again.
1708 * 5. If we took an interrupt, but no valid respQ descriptors was found we
1709 * let the slow_intr_handler run and do error handling.
1710 */
7fe26a60 1711irqreturn_t t1_interrupt(int irq, void *cookie)
559fb51b
SB
1712{
1713 int work_done;
1714 struct respQ_e *e;
1715 struct adapter *adapter = cookie;
1716 struct respQ *Q = &adapter->sge->respQ;
8199d3a7 1717
559fb51b
SB
1718 spin_lock(&adapter->async_lock);
1719 e = &Q->entries[Q->cidx];
1720 prefetch(e);
8199d3a7 1721
559fb51b 1722 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
8199d3a7 1723
559fb51b
SB
1724 if (likely(e->GenerationBit == Q->genbit))
1725 work_done = process_responses(adapter, -1);
1726 else
1727 work_done = t1_slow_intr_handler(adapter);
8199d3a7 1728
559fb51b
SB
1729 /*
1730 * The unconditional clearing of the PL_CAUSE above may have raced
1731 * with DMA completion and the corresponding generation of a response
1732 * to cause us to miss the resulting data interrupt. The next write
1733 * is also unconditional to recover the missed interrupt and render
1734 * this race harmless.
1735 */
1736 writel(Q->cidx, adapter->regs + A_SG_SLEEPING);
1737
1738 if (!work_done)
1739 adapter->sge->stats.unhandled_irqs++;
1740 spin_unlock(&adapter->async_lock);
1741 return IRQ_RETVAL(work_done != 0);
1742}
7fe26a60 1743#endif
559fb51b
SB
1744
1745/*
1746 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1747 *
1748 * The code figures out how many entries the sk_buff will require in the
1749 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1750 * has complete. Then, it doesn't access the global structure anymore, but
1751 * uses the corresponding fields on the stack. In conjuction with a spinlock
1752 * around that code, we can make the function reentrant without holding the
1753 * lock when we actually enqueue (which might be expensive, especially on
1754 * architectures with IO MMUs).
1755 *
1756 * This runs with softirqs disabled.
1757 */
aa84505f
SH
1758static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1759 unsigned int qid, struct net_device *dev)
559fb51b
SB
1760{
1761 struct sge *sge = adapter->sge;
1762 struct cmdQ *q = &sge->cmdQ[qid];
f1d3d38a 1763 unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
559fb51b 1764
cabdfb37
SH
1765 if (!spin_trylock(&q->lock))
1766 return NETDEV_TX_LOCKED;
1767
559fb51b
SB
1768 reclaim_completed_tx(sge, q);
1769
1770 pidx = q->pidx;
1771 credits = q->size - q->in_use;
1772 count = 1 + skb_shinfo(skb)->nr_frags;
f1d3d38a 1773 count += compute_large_page_tx_descs(skb);
559fb51b 1774
f1d3d38a
SH
1775 /* Ethernet packet */
1776 if (unlikely(credits < count)) {
1777 if (!netif_queue_stopped(dev)) {
559fb51b
SB
1778 netif_stop_queue(dev);
1779 set_bit(dev->if_port, &sge->stopped_tx_queues);
232a347a 1780 sge->stats.cmdQ_full[2]++;
f1d3d38a
SH
1781 CH_ERR("%s: Tx ring full while queue awake!\n",
1782 adapter->name);
8199d3a7 1783 }
f1d3d38a
SH
1784 spin_unlock(&q->lock);
1785 return NETDEV_TX_BUSY;
1786 }
1787
1788 if (unlikely(credits - count < q->stop_thres)) {
1789 netif_stop_queue(dev);
1790 set_bit(dev->if_port, &sge->stopped_tx_queues);
1791 sge->stats.cmdQ_full[2]++;
1792 }
1793
1794 /* T204 cmdQ0 skbs that are destined for a certain port have to go
1795 * through the scheduler.
1796 */
1797 if (sge->tx_sched && !qid && skb->dev) {
356bd146 1798use_sched:
f1d3d38a
SH
1799 use_sched_skb = 1;
1800 /* Note that the scheduler might return a different skb than
1801 * the one passed in.
1802 */
1803 skb = sched_skb(sge, skb, credits);
1804 if (!skb) {
1805 spin_unlock(&q->lock);
1806 return NETDEV_TX_OK;
559fb51b 1807 }
f1d3d38a
SH
1808 pidx = q->pidx;
1809 count = 1 + skb_shinfo(skb)->nr_frags;
1810 count += compute_large_page_tx_descs(skb);
559fb51b 1811 }
f1d3d38a 1812
559fb51b
SB
1813 q->in_use += count;
1814 genbit = q->genbit;
f1d3d38a 1815 pidx = q->pidx;
559fb51b
SB
1816 q->pidx += count;
1817 if (q->pidx >= q->size) {
1818 q->pidx -= q->size;
1819 q->genbit ^= 1;
8199d3a7 1820 }
559fb51b 1821 spin_unlock(&q->lock);
8199d3a7 1822
559fb51b 1823 write_tx_descs(adapter, skb, pidx, genbit, q);
8199d3a7
CL
1824
1825 /*
1826 * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
1827 * the doorbell if the Q is asleep. There is a natural race, where
1828 * the hardware is going to sleep just after we checked, however,
1829 * then the interrupt handler will detect the outstanding TX packet
1830 * and ring the doorbell for us.
1831 */
559fb51b
SB
1832 if (qid)
1833 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1834 else {
1835 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1836 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1837 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1838 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1839 }
8199d3a7 1840 }
f1d3d38a
SH
1841
1842 if (use_sched_skb) {
1843 if (spin_trylock(&q->lock)) {
1844 credits = q->size - q->in_use;
1845 skb = NULL;
1846 goto use_sched;
1847 }
1848 }
aa84505f 1849 return NETDEV_TX_OK;
8199d3a7
CL
1850}
1851
1852#define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1853
559fb51b
SB
1854/*
1855 * eth_hdr_len - return the length of an Ethernet header
1856 * @data: pointer to the start of the Ethernet header
1857 *
1858 * Returns the length of an Ethernet header, including optional VLAN tag.
1859 */
1860static inline int eth_hdr_len(const void *data)
1861{
1862 const struct ethhdr *e = data;
1863
1864 return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1865}
1866
8199d3a7
CL
1867/*
1868 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1869 */
1870int t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1871{
1872 struct adapter *adapter = dev->priv;
559fb51b 1873 struct sge *sge = adapter->sge;
56f643c2 1874 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[dev->if_port], smp_processor_id());
8199d3a7 1875 struct cpl_tx_pkt *cpl;
cabdfb37
SH
1876 struct sk_buff *orig_skb = skb;
1877 int ret;
8199d3a7 1878
f1d3d38a
SH
1879 if (skb->protocol == htons(ETH_P_CPL5))
1880 goto send;
1881
1882 if (skb_shinfo(skb)->gso_size) {
8199d3a7
CL
1883 int eth_type;
1884 struct cpl_tx_pkt_lso *hdr;
1885
56f643c2 1886 ++st->tx_tso;
559fb51b 1887
8199d3a7
CL
1888 eth_type = skb->nh.raw - skb->data == ETH_HLEN ?
1889 CPL_ETH_II : CPL_ETH_II_VLAN;
1890
1891 hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
1892 hdr->opcode = CPL_TX_PKT_LSO;
1893 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1894 hdr->ip_hdr_words = skb->nh.iph->ihl;
1895 hdr->tcp_hdr_words = skb->h.th->doff;
1896 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
f1d3d38a 1897 skb_shinfo(skb)->gso_size));
8199d3a7
CL
1898 hdr->len = htonl(skb->len - sizeof(*hdr));
1899 cpl = (struct cpl_tx_pkt *)hdr;
f1d3d38a 1900 } else {
8199d3a7 1901 /*
356bd146 1902 * Packets shorter than ETH_HLEN can break the MAC, drop them
559fb51b
SB
1903 * early. Also, we may get oversized packets because some
1904 * parts of the kernel don't handle our unusual hard_header_len
1905 * right, drop those too.
8199d3a7 1906 */
559fb51b
SB
1907 if (unlikely(skb->len < ETH_HLEN ||
1908 skb->len > dev->mtu + eth_hdr_len(skb->data))) {
f1d3d38a
SH
1909 pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name,
1910 skb->len, eth_hdr_len(skb->data), dev->mtu);
559fb51b 1911 dev_kfree_skb_any(skb);
aa84505f 1912 return NETDEV_TX_OK;
559fb51b
SB
1913 }
1914
1915 /*
1916 * We are using a non-standard hard_header_len and some kernel
1917 * components, such as pktgen, do not handle it right.
1918 * Complain when this happens but try to fix things up.
1919 */
f1d3d38a 1920 if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
f1d3d38a
SH
1921 pr_debug("%s: headroom %d header_len %d\n", dev->name,
1922 skb_headroom(skb), dev->hard_header_len);
1923
559fb51b
SB
1924 if (net_ratelimit())
1925 printk(KERN_ERR "%s: inadequate headroom in "
1926 "Tx packet\n", dev->name);
1927 skb = skb_realloc_headroom(skb, sizeof(*cpl));
1928 dev_kfree_skb_any(orig_skb);
1929 if (!skb)
aa84505f 1930 return NETDEV_TX_OK;
559fb51b 1931 }
8199d3a7
CL
1932
1933 if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
84fa7933 1934 skb->ip_summed == CHECKSUM_PARTIAL &&
f1d3d38a 1935 skb->nh.iph->protocol == IPPROTO_UDP) {
84fa7933 1936 if (unlikely(skb_checksum_help(skb))) {
f1d3d38a 1937 pr_debug("%s: unable to do udp checksum\n", dev->name);
559fb51b 1938 dev_kfree_skb_any(skb);
aa84505f 1939 return NETDEV_TX_OK;
559fb51b 1940 }
f1d3d38a 1941 }
8199d3a7 1942
559fb51b
SB
1943 /* Hmmm, assuming to catch the gratious arp... and we'll use
1944 * it to flush out stuck espi packets...
f1d3d38a
SH
1945 */
1946 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
8199d3a7 1947 if (skb->protocol == htons(ETH_P_ARP) &&
559fb51b 1948 skb->nh.arph->ar_op == htons(ARPOP_REQUEST)) {
f1d3d38a 1949 adapter->sge->espibug_skb[dev->if_port] = skb;
559fb51b
SB
1950 /* We want to re-use this skb later. We
1951 * simply bump the reference count and it
1952 * will not be freed...
1953 */
1954 skb = skb_get(skb);
1955 }
8199d3a7 1956 }
559fb51b
SB
1957
1958 cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
8199d3a7
CL
1959 cpl->opcode = CPL_TX_PKT;
1960 cpl->ip_csum_dis = 1; /* SW calculates IP csum */
84fa7933 1961 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
8199d3a7 1962 /* the length field isn't used so don't bother setting it */
559fb51b 1963
84fa7933 1964 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
8199d3a7
CL
1965 }
1966 cpl->iff = dev->if_port;
1967
1968#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1969 if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
1970 cpl->vlan_valid = 1;
1971 cpl->vlan = htons(vlan_tx_tag_get(skb));
559fb51b 1972 st->vlan_insert++;
8199d3a7
CL
1973 } else
1974#endif
1975 cpl->vlan_valid = 0;
1976
f1d3d38a 1977send:
56f643c2 1978 st->tx_packets++;
8199d3a7 1979 dev->trans_start = jiffies;
cabdfb37
SH
1980 ret = t1_sge_tx(skb, adapter, 0, dev);
1981
1982 /* If transmit busy, and we reallocated skb's due to headroom limit,
1983 * then silently discard to avoid leak.
1984 */
1985 if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
356bd146 1986 dev_kfree_skb_any(skb);
cabdfb37 1987 ret = NETDEV_TX_OK;
356bd146 1988 }
cabdfb37 1989 return ret;
559fb51b 1990}
8199d3a7 1991
559fb51b
SB
1992/*
1993 * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
1994 */
1995static void sge_tx_reclaim_cb(unsigned long data)
1996{
1997 int i;
1998 struct sge *sge = (struct sge *)data;
1999
2000 for (i = 0; i < SGE_CMDQ_N; ++i) {
2001 struct cmdQ *q = &sge->cmdQ[i];
2002
2003 if (!spin_trylock(&q->lock))
2004 continue;
8199d3a7 2005
559fb51b 2006 reclaim_completed_tx(sge, q);
f1d3d38a
SH
2007 if (i == 0 && q->in_use) { /* flush pending credits */
2008 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
2009 }
559fb51b
SB
2010 spin_unlock(&q->lock);
2011 }
2012 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2013}
2014
2015/*
2016 * Propagate changes of the SGE coalescing parameters to the HW.
2017 */
2018int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
2019{
559fb51b
SB
2020 sge->fixed_intrtimer = p->rx_coalesce_usecs *
2021 core_ticks_per_usec(sge->adapter);
2022 writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
8199d3a7
CL
2023 return 0;
2024}
2025
559fb51b
SB
2026/*
2027 * Allocates both RX and TX resources and configures the SGE. However,
2028 * the hardware is not enabled yet.
2029 */
2030int t1_sge_configure(struct sge *sge, struct sge_params *p)
8199d3a7 2031{
559fb51b
SB
2032 if (alloc_rx_resources(sge, p))
2033 return -ENOMEM;
2034 if (alloc_tx_resources(sge, p)) {
2035 free_rx_resources(sge);
2036 return -ENOMEM;
2037 }
2038 configure_sge(sge, p);
2039
2040 /*
2041 * Now that we have sized the free lists calculate the payload
2042 * capacity of the large buffers. Other parts of the driver use
2043 * this to set the max offload coalescing size so that RX packets
2044 * do not overflow our large buffers.
2045 */
2046 p->large_buf_capacity = jumbo_payload_capacity(sge);
2047 return 0;
2048}
8199d3a7 2049
559fb51b
SB
2050/*
2051 * Disables the DMA engine.
2052 */
2053void t1_sge_stop(struct sge *sge)
2054{
f1d3d38a 2055 int i;
559fb51b 2056 writel(0, sge->adapter->regs + A_SG_CONTROL);
f1d3d38a
SH
2057 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
2058
559fb51b
SB
2059 if (is_T2(sge->adapter))
2060 del_timer_sync(&sge->espibug_timer);
f1d3d38a 2061
559fb51b 2062 del_timer_sync(&sge->tx_reclaim_timer);
f1d3d38a
SH
2063 if (sge->tx_sched)
2064 tx_sched_stop(sge);
2065
2066 for (i = 0; i < MAX_NPORTS; i++)
2067 if (sge->espibug_skb[i])
2068 kfree_skb(sge->espibug_skb[i]);
8199d3a7
CL
2069}
2070
559fb51b
SB
2071/*
2072 * Enables the DMA engine.
2073 */
2074void t1_sge_start(struct sge *sge)
8199d3a7 2075{
559fb51b
SB
2076 refill_free_list(sge, &sge->freelQ[0]);
2077 refill_free_list(sge, &sge->freelQ[1]);
2078
2079 writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
2080 doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
f1d3d38a 2081 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
559fb51b
SB
2082
2083 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2084
f1d3d38a 2085 if (is_T2(sge->adapter))
559fb51b
SB
2086 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2087}
2088
2089/*
2090 * Callback for the T2 ESPI 'stuck packet feature' workaorund
2091 */
f1d3d38a 2092static void espibug_workaround_t204(unsigned long data)
559fb51b
SB
2093{
2094 struct adapter *adapter = (struct adapter *)data;
8199d3a7 2095 struct sge *sge = adapter->sge;
f1d3d38a
SH
2096 unsigned int nports = adapter->params.nports;
2097 u32 seop[MAX_NPORTS];
8199d3a7 2098
f1d3d38a
SH
2099 if (adapter->open_device_map & PORT_MASK) {
2100 int i;
356bd146
FR
2101
2102 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
f1d3d38a 2103 return;
356bd146 2104
f1d3d38a 2105 for (i = 0; i < nports; i++) {
356bd146
FR
2106 struct sk_buff *skb = sge->espibug_skb[i];
2107
2108 if (!netif_running(adapter->port[i].dev) ||
2109 netif_queue_stopped(adapter->port[i].dev) ||
2110 !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2111 continue;
2112
2113 if (!skb->cb[0]) {
2114 u8 ch_mac_addr[ETH_ALEN] = {
2115 0x0, 0x7, 0x43, 0x0, 0x0, 0x0
2116 };
2117
2118 memcpy(skb->data + sizeof(struct cpl_tx_pkt),
2119 ch_mac_addr, ETH_ALEN);
2120 memcpy(skb->data + skb->len - 10,
2121 ch_mac_addr, ETH_ALEN);
2122 skb->cb[0] = 0xff;
559fb51b 2123 }
356bd146
FR
2124
2125 /* bump the reference count to avoid freeing of
2126 * the skb once the DMA has completed.
2127 */
2128 skb = skb_get(skb);
2129 t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
559fb51b
SB
2130 }
2131 }
2132 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
8199d3a7
CL
2133}
2134
f1d3d38a
SH
2135static void espibug_workaround(unsigned long data)
2136{
2137 struct adapter *adapter = (struct adapter *)data;
2138 struct sge *sge = adapter->sge;
2139
2140 if (netif_running(adapter->port[0].dev)) {
2141 struct sk_buff *skb = sge->espibug_skb[0];
2142 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2143
2144 if ((seop & 0xfff0fff) == 0xfff && skb) {
2145 if (!skb->cb[0]) {
2146 u8 ch_mac_addr[ETH_ALEN] =
2147 {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
2148 memcpy(skb->data + sizeof(struct cpl_tx_pkt),
2149 ch_mac_addr, ETH_ALEN);
2150 memcpy(skb->data + skb->len - 10, ch_mac_addr,
2151 ETH_ALEN);
2152 skb->cb[0] = 0xff;
2153 }
2154
2155 /* bump the reference count to avoid freeing of the
2156 * skb once the DMA has completed.
2157 */
2158 skb = skb_get(skb);
2159 t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2160 }
2161 }
2162 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2163}
2164
559fb51b
SB
2165/*
2166 * Creates a t1_sge structure and returns suggested resource parameters.
2167 */
2168struct sge * __devinit t1_sge_create(struct adapter *adapter,
2169 struct sge_params *p)
2170{
cbee9f91 2171 struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
56f643c2 2172 int i;
559fb51b
SB
2173
2174 if (!sge)
2175 return NULL;
559fb51b
SB
2176
2177 sge->adapter = adapter;
2178 sge->netdev = adapter->port[0].dev;
2179 sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2180 sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2181
56f643c2
SH
2182 for_each_port(adapter, i) {
2183 sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2184 if (!sge->port_stats[i])
2185 goto nomem_port;
2186 }
2187
559fb51b
SB
2188 init_timer(&sge->tx_reclaim_timer);
2189 sge->tx_reclaim_timer.data = (unsigned long)sge;
2190 sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
2191
2192 if (is_T2(sge->adapter)) {
2193 init_timer(&sge->espibug_timer);
f1d3d38a
SH
2194
2195 if (adapter->params.nports > 1) {
2196 tx_sched_init(sge);
2197 sge->espibug_timer.function = espibug_workaround_t204;
2198 } else {
2199 sge->espibug_timer.function = espibug_workaround;
2200 }
559fb51b 2201 sge->espibug_timer.data = (unsigned long)sge->adapter;
f1d3d38a 2202
559fb51b 2203 sge->espibug_timeout = 1;
f1d3d38a
SH
2204 /* for T204, every 10ms */
2205 if (adapter->params.nports > 1)
2206 sge->espibug_timeout = HZ/100;
559fb51b 2207 }
356bd146 2208
559fb51b
SB
2209
2210 p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2211 p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2212 p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2213 p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
f1d3d38a
SH
2214 if (sge->tx_sched) {
2215 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2216 p->rx_coalesce_usecs = 15;
2217 else
2218 p->rx_coalesce_usecs = 50;
2219 } else
2220 p->rx_coalesce_usecs = 50;
2221
559fb51b
SB
2222 p->coalesce_enable = 0;
2223 p->sample_interval_usecs = 0;
559fb51b
SB
2224
2225 return sge;
56f643c2
SH
2226nomem_port:
2227 while (i >= 0) {
2228 free_percpu(sge->port_stats[i]);
2229 --i;
2230 }
2231 kfree(sge);
2232 return NULL;
2233
559fb51b 2234}
This page took 0.297162 seconds and 5 git commands to generate.