net: trans_start cleanups
[deliverable/linux.git] / drivers / net / cris / eth_v10.c
CommitLineData
5efa1d1c 1/*
1da177e4
LT
2 * e100net.c: A network driver for the ETRAX 100LX network controller.
3 *
4 * Copyright (c) 1998-2002 Axis Communications AB.
5 *
6 * The outline of this driver comes from skeleton.c.
7 *
1da177e4
LT
8 */
9
1da177e4
LT
10
11#include <linux/module.h>
12
13#include <linux/kernel.h>
1da177e4
LT
14#include <linux/delay.h>
15#include <linux/types.h>
16#include <linux/fcntl.h>
17#include <linux/interrupt.h>
18#include <linux/ptrace.h>
19#include <linux/ioport.h>
20#include <linux/in.h>
1da177e4
LT
21#include <linux/string.h>
22#include <linux/spinlock.h>
23#include <linux/errno.h>
24#include <linux/init.h>
1977f032 25#include <linux/bitops.h>
1da177e4
LT
26
27#include <linux/if.h>
28#include <linux/mii.h>
29#include <linux/netdevice.h>
30#include <linux/etherdevice.h>
31#include <linux/skbuff.h>
32#include <linux/ethtool.h>
33
556dcee7 34#include <arch/svinto.h>/* DMA and register descriptions */
5efa1d1c 35#include <asm/io.h> /* CRIS_LED_* I/O functions */
1da177e4
LT
36#include <asm/irq.h>
37#include <asm/dma.h>
38#include <asm/system.h>
1da177e4
LT
39#include <asm/ethernet.h>
40#include <asm/cache.h>
556dcee7 41#include <arch/io_interface_mux.h>
1da177e4
LT
42
43//#define ETHDEBUG
44#define D(x)
45
46/*
47 * The name of the card. Is used for messages and in the requests for
48 * io regions, irqs and dma channels
49 */
50
51static const char* cardname = "ETRAX 100LX built-in ethernet controller";
52
53/* A default ethernet address. Highlevel SW will set the real one later */
54
55static struct sockaddr default_mac = {
56 0,
57 { 0x00, 0x40, 0x8C, 0xCD, 0x00, 0x00 }
58};
59
60/* Information that need to be kept for each board. */
61struct net_local {
62 struct net_device_stats stats;
63 struct mii_if_info mii_if;
64
65 /* Tx control lock. This protects the transmit buffer ring
66 * state along with the "tx full" state of the driver. This
67 * means all netif_queue flow control actions are protected
68 * by this lock as well.
69 */
70 spinlock_t lock;
bafef0ae
JN
71
72 spinlock_t led_lock; /* Protect LED state */
73 spinlock_t transceiver_lock; /* Protect transceiver state. */
1da177e4
LT
74};
75
76typedef struct etrax_eth_descr
77{
78 etrax_dma_descr descr;
79 struct sk_buff* skb;
80} etrax_eth_descr;
81
82/* Some transceivers requires special handling */
83struct transceiver_ops
84{
85 unsigned int oui;
86 void (*check_speed)(struct net_device* dev);
87 void (*check_duplex)(struct net_device* dev);
88};
89
1da177e4
LT
90/* Duplex settings */
91enum duplex
92{
93 half,
94 full,
95 autoneg
96};
97
98/* Dma descriptors etc. */
99
bafef0ae 100#define MAX_MEDIA_DATA_SIZE 1522
1da177e4
LT
101
102#define MIN_PACKET_LEN 46
103#define ETHER_HEAD_LEN 14
104
105/*
106** MDIO constants.
107*/
108#define MDIO_START 0x1
109#define MDIO_READ 0x2
110#define MDIO_WRITE 0x1
111#define MDIO_PREAMBLE 0xfffffffful
112
113/* Broadcom specific */
114#define MDIO_AUX_CTRL_STATUS_REG 0x18
115#define MDIO_BC_FULL_DUPLEX_IND 0x1
116#define MDIO_BC_SPEED 0x2
117
118/* TDK specific */
119#define MDIO_TDK_DIAGNOSTIC_REG 18
120#define MDIO_TDK_DIAGNOSTIC_RATE 0x400
121#define MDIO_TDK_DIAGNOSTIC_DPLX 0x800
122
123/*Intel LXT972A specific*/
124#define MDIO_INT_STATUS_REG_2 0x0011
bafef0ae
JN
125#define MDIO_INT_FULL_DUPLEX_IND (1 << 9)
126#define MDIO_INT_SPEED (1 << 14)
1da177e4
LT
127
128/* Network flash constants */
129#define NET_FLASH_TIME (HZ/50) /* 20 ms */
130#define NET_FLASH_PAUSE (HZ/100) /* 10 ms */
131#define NET_LINK_UP_CHECK_INTERVAL (2*HZ) /* 2 s */
132#define NET_DUPLEX_CHECK_INTERVAL (2*HZ) /* 2 s */
133
134#define NO_NETWORK_ACTIVITY 0
135#define NETWORK_ACTIVITY 1
136
bafef0ae
JN
137#define NBR_OF_RX_DESC 32
138#define NBR_OF_TX_DESC 16
1da177e4
LT
139
140/* Large packets are sent directly to upper layers while small packets are */
141/* copied (to reduce memory waste). The following constant decides the breakpoint */
142#define RX_COPYBREAK 256
143
144/* Due to a chip bug we need to flush the cache when descriptors are returned */
145/* to the DMA. To decrease performance impact we return descriptors in chunks. */
146/* The following constant determines the number of descriptors to return. */
147#define RX_QUEUE_THRESHOLD NBR_OF_RX_DESC/2
148
149#define GET_BIT(bit,val) (((val) >> (bit)) & 0x01)
150
151/* Define some macros to access ETRAX 100 registers */
152#define SETF(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
153 IO_FIELD_(reg##_, field##_, val)
154#define SETS(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
155 IO_STATE_(reg##_, field##_, _##val)
156
157static etrax_eth_descr *myNextRxDesc; /* Points to the next descriptor to
158 to be processed */
159static etrax_eth_descr *myLastRxDesc; /* The last processed descriptor */
1da177e4
LT
160
161static etrax_eth_descr RxDescList[NBR_OF_RX_DESC] __attribute__ ((aligned(32)));
162
163static etrax_eth_descr* myFirstTxDesc; /* First packet not yet sent */
164static etrax_eth_descr* myLastTxDesc; /* End of send queue */
165static etrax_eth_descr* myNextTxDesc; /* Next descriptor to use */
166static etrax_eth_descr TxDescList[NBR_OF_TX_DESC] __attribute__ ((aligned(32)));
167
168static unsigned int network_rec_config_shadow = 0;
1da177e4
LT
169
170static unsigned int network_tr_ctrl_shadow = 0;
171
172/* Network speed indication. */
8d06afab
IM
173static DEFINE_TIMER(speed_timer, NULL, 0, 0);
174static DEFINE_TIMER(clear_led_timer, NULL, 0, 0);
1da177e4
LT
175static int current_speed; /* Speed read from transceiver */
176static int current_speed_selection; /* Speed selected by user */
177static unsigned long led_next_time;
178static int led_active;
179static int rx_queue_len;
180
181/* Duplex */
8d06afab 182static DEFINE_TIMER(duplex_timer, NULL, 0, 0);
1da177e4
LT
183static int full_duplex;
184static enum duplex current_duplex;
185
186/* Index to functions, as function prototypes. */
187
188static int etrax_ethernet_init(void);
189
190static int e100_open(struct net_device *dev);
191static int e100_set_mac_address(struct net_device *dev, void *addr);
192static int e100_send_packet(struct sk_buff *skb, struct net_device *dev);
7d12e780
DH
193static irqreturn_t e100rxtx_interrupt(int irq, void *dev_id);
194static irqreturn_t e100nw_interrupt(int irq, void *dev_id);
1da177e4
LT
195static void e100_rx(struct net_device *dev);
196static int e100_close(struct net_device *dev);
197static int e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
1da177e4
LT
198static int e100_set_config(struct net_device* dev, struct ifmap* map);
199static void e100_tx_timeout(struct net_device *dev);
200static struct net_device_stats *e100_get_stats(struct net_device *dev);
201static void set_multicast_list(struct net_device *dev);
bafef0ae 202static void e100_hardware_send_packet(struct net_local* np, char *buf, int length);
1da177e4
LT
203static void update_rx_stats(struct net_device_stats *);
204static void update_tx_stats(struct net_device_stats *);
205static int e100_probe_transceiver(struct net_device* dev);
206
207static void e100_check_speed(unsigned long priv);
208static void e100_set_speed(struct net_device* dev, unsigned long speed);
209static void e100_check_duplex(unsigned long priv);
210static void e100_set_duplex(struct net_device* dev, enum duplex);
211static void e100_negotiate(struct net_device* dev);
212
213static int e100_get_mdio_reg(struct net_device *dev, int phy_id, int location);
214static void e100_set_mdio_reg(struct net_device *dev, int phy_id, int location, int value);
215
216static void e100_send_mdio_cmd(unsigned short cmd, int write_cmd);
217static void e100_send_mdio_bit(unsigned char bit);
218static unsigned char e100_receive_mdio_bit(void);
219static void e100_reset_transceiver(struct net_device* net);
220
221static void e100_clear_network_leds(unsigned long dummy);
222static void e100_set_network_leds(int active);
223
7282d491 224static const struct ethtool_ops e100_ethtool_ops;
bafef0ae
JN
225#if defined(CONFIG_ETRAX_NO_PHY)
226static void dummy_check_speed(struct net_device* dev);
227static void dummy_check_duplex(struct net_device* dev);
228#else
1da177e4
LT
229static void broadcom_check_speed(struct net_device* dev);
230static void broadcom_check_duplex(struct net_device* dev);
231static void tdk_check_speed(struct net_device* dev);
232static void tdk_check_duplex(struct net_device* dev);
233static void intel_check_speed(struct net_device* dev);
234static void intel_check_duplex(struct net_device* dev);
235static void generic_check_speed(struct net_device* dev);
236static void generic_check_duplex(struct net_device* dev);
bafef0ae
JN
237#endif
238#ifdef CONFIG_NET_POLL_CONTROLLER
239static void e100_netpoll(struct net_device* dev);
240#endif
241
242static int autoneg_normal = 1;
1da177e4
LT
243
244struct transceiver_ops transceivers[] =
245{
bafef0ae
JN
246#if defined(CONFIG_ETRAX_NO_PHY)
247 {0x0000, dummy_check_speed, dummy_check_duplex} /* Dummy */
248#else
1da177e4
LT
249 {0x1018, broadcom_check_speed, broadcom_check_duplex}, /* Broadcom */
250 {0xC039, tdk_check_speed, tdk_check_duplex}, /* TDK 2120 */
251 {0x039C, tdk_check_speed, tdk_check_duplex}, /* TDK 2120C */
252 {0x04de, intel_check_speed, intel_check_duplex}, /* Intel LXT972A*/
253 {0x0000, generic_check_speed, generic_check_duplex} /* Generic, must be last */
bafef0ae 254#endif
1da177e4
LT
255};
256
bafef0ae
JN
257struct transceiver_ops* transceiver = &transceivers[0];
258
a95c2a3b
AB
259static const struct net_device_ops e100_netdev_ops = {
260 .ndo_open = e100_open,
261 .ndo_stop = e100_close,
262 .ndo_start_xmit = e100_send_packet,
263 .ndo_tx_timeout = e100_tx_timeout,
264 .ndo_get_stats = e100_get_stats,
265 .ndo_set_multicast_list = set_multicast_list,
266 .ndo_do_ioctl = e100_ioctl,
267 .ndo_set_mac_address = e100_set_mac_address,
268 .ndo_validate_addr = eth_validate_addr,
269 .ndo_change_mtu = eth_change_mtu,
270 .ndo_set_config = e100_set_config,
271#ifdef CONFIG_NET_POLL_CONTROLLER
272 .ndo_poll_controller = e100_netpoll,
273#endif
274};
275
1da177e4
LT
276#define tx_done(dev) (*R_DMA_CH0_CMD == 0)
277
278/*
279 * Check for a network adaptor of this type, and return '0' if one exists.
280 * If dev->base_addr == 0, probe all likely locations.
281 * If dev->base_addr == 1, always return failure.
282 * If dev->base_addr == 2, allocate space for the device and return success
283 * (detachable devices only).
284 */
285
286static int __init
287etrax_ethernet_init(void)
288{
289 struct net_device *dev;
290 struct net_local* np;
291 int i, err;
292
293 printk(KERN_INFO
bafef0ae 294 "ETRAX 100LX 10/100MBit ethernet v2.0 (c) 1998-2007 Axis Communications AB\n");
1da177e4 295
bafef0ae
JN
296 if (cris_request_io_interface(if_eth, cardname)) {
297 printk(KERN_CRIT "etrax_ethernet_init failed to get IO interface\n");
298 return -EBUSY;
299 }
1da177e4 300
bafef0ae 301 dev = alloc_etherdev(sizeof(struct net_local));
1da177e4
LT
302 if (!dev)
303 return -ENOMEM;
304
bafef0ae
JN
305 np = netdev_priv(dev);
306
307 /* we do our own locking */
308 dev->features |= NETIF_F_LLTX;
309
1da177e4
LT
310 dev->base_addr = (unsigned int)R_NETWORK_SA_0; /* just to have something to show */
311
312 /* now setup our etrax specific stuff */
313
314 dev->irq = NETWORK_DMA_RX_IRQ_NBR; /* we really use DMATX as well... */
315 dev->dma = NETWORK_RX_DMA_NBR;
316
317 /* fill in our handlers so the network layer can talk to us in the future */
318
76f2b4d9 319 dev->ethtool_ops = &e100_ethtool_ops;
a95c2a3b 320 dev->netdev_ops = &e100_netdev_ops;
bafef0ae
JN
321
322 spin_lock_init(&np->lock);
323 spin_lock_init(&np->led_lock);
324 spin_lock_init(&np->transceiver_lock);
1da177e4
LT
325
326 /* Initialise the list of Etrax DMA-descriptors */
327
328 /* Initialise receive descriptors */
329
330 for (i = 0; i < NBR_OF_RX_DESC; i++) {
bafef0ae
JN
331 /* Allocate two extra cachelines to make sure that buffer used
332 * by DMA does not share cacheline with any other data (to
333 * avoid cache bug)
1da177e4
LT
334 */
335 RxDescList[i].skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES);
92b1f905
DR
336 if (!RxDescList[i].skb)
337 return -ENOMEM;
1da177e4
LT
338 RxDescList[i].descr.ctrl = 0;
339 RxDescList[i].descr.sw_len = MAX_MEDIA_DATA_SIZE;
340 RxDescList[i].descr.next = virt_to_phys(&RxDescList[i + 1]);
341 RxDescList[i].descr.buf = L1_CACHE_ALIGN(virt_to_phys(RxDescList[i].skb->data));
342 RxDescList[i].descr.status = 0;
343 RxDescList[i].descr.hw_len = 0;
344 prepare_rx_descriptor(&RxDescList[i].descr);
345 }
346
347 RxDescList[NBR_OF_RX_DESC - 1].descr.ctrl = d_eol;
348 RxDescList[NBR_OF_RX_DESC - 1].descr.next = virt_to_phys(&RxDescList[0]);
349 rx_queue_len = 0;
350
351 /* Initialize transmit descriptors */
352 for (i = 0; i < NBR_OF_TX_DESC; i++) {
353 TxDescList[i].descr.ctrl = 0;
354 TxDescList[i].descr.sw_len = 0;
355 TxDescList[i].descr.next = virt_to_phys(&TxDescList[i + 1].descr);
356 TxDescList[i].descr.buf = 0;
357 TxDescList[i].descr.status = 0;
358 TxDescList[i].descr.hw_len = 0;
359 TxDescList[i].skb = 0;
360 }
361
362 TxDescList[NBR_OF_TX_DESC - 1].descr.ctrl = d_eol;
363 TxDescList[NBR_OF_TX_DESC - 1].descr.next = virt_to_phys(&TxDescList[0].descr);
364
365 /* Initialise initial pointers */
366
367 myNextRxDesc = &RxDescList[0];
368 myLastRxDesc = &RxDescList[NBR_OF_RX_DESC - 1];
1da177e4
LT
369 myFirstTxDesc = &TxDescList[0];
370 myNextTxDesc = &TxDescList[0];
371 myLastTxDesc = &TxDescList[NBR_OF_TX_DESC - 1];
372
373 /* Register device */
374 err = register_netdev(dev);
375 if (err) {
376 free_netdev(dev);
377 return err;
378 }
379
380 /* set the default MAC address */
381
382 e100_set_mac_address(dev, &default_mac);
383
384 /* Initialize speed indicator stuff. */
385
386 current_speed = 10;
387 current_speed_selection = 0; /* Auto */
388 speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
bafef0ae 389 speed_timer.data = (unsigned long)dev;
1da177e4
LT
390 speed_timer.function = e100_check_speed;
391
392 clear_led_timer.function = e100_clear_network_leds;
bafef0ae 393 clear_led_timer.data = (unsigned long)dev;
1da177e4
LT
394
395 full_duplex = 0;
396 current_duplex = autoneg;
397 duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
398 duplex_timer.data = (unsigned long)dev;
399 duplex_timer.function = e100_check_duplex;
400
401 /* Initialize mii interface */
1da177e4
LT
402 np->mii_if.phy_id_mask = 0x1f;
403 np->mii_if.reg_num_mask = 0x1f;
404 np->mii_if.dev = dev;
405 np->mii_if.mdio_read = e100_get_mdio_reg;
406 np->mii_if.mdio_write = e100_set_mdio_reg;
407
408 /* Initialize group address registers to make sure that no */
409 /* unwanted addresses are matched */
410 *R_NETWORK_GA_0 = 0x00000000;
411 *R_NETWORK_GA_1 = 0x00000000;
bafef0ae
JN
412
413 /* Initialize next time the led can flash */
414 led_next_time = jiffies;
1da177e4
LT
415 return 0;
416}
417
418/* set MAC address of the interface. called from the core after a
419 * SIOCSIFADDR ioctl, and from the bootup above.
420 */
421
422static int
423e100_set_mac_address(struct net_device *dev, void *p)
424{
bafef0ae 425 struct net_local *np = netdev_priv(dev);
1da177e4 426 struct sockaddr *addr = p;
1da177e4
LT
427
428 spin_lock(&np->lock); /* preemption protection */
429
430 /* remember it */
431
432 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
433
434 /* Write it to the hardware.
435 * Note the way the address is wrapped:
436 * *R_NETWORK_SA_0 = a0_0 | (a0_1 << 8) | (a0_2 << 16) | (a0_3 << 24);
437 * *R_NETWORK_SA_1 = a0_4 | (a0_5 << 8);
438 */
439
440 *R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
441 (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
442 *R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
443 *R_NETWORK_SA_2 = 0;
444
445 /* show it in the log as well */
446
e174961c 447 printk(KERN_INFO "%s: changed MAC to %pM\n", dev->name, dev->dev_addr);
1da177e4
LT
448
449 spin_unlock(&np->lock);
450
451 return 0;
452}
453
454/*
455 * Open/initialize the board. This is called (in the current kernel)
456 * sometime after booting when the 'ifconfig' program is run.
457 *
458 * This routine should set everything up anew at each open, even
459 * registers that "should" only need to be set once at boot, so that
460 * there is non-reboot way to recover if something goes wrong.
461 */
462
463static int
464e100_open(struct net_device *dev)
465{
466 unsigned long flags;
467
468 /* enable the MDIO output pin */
469
470 *R_NETWORK_MGM_CTRL = IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable);
471
472 *R_IRQ_MASK0_CLR =
473 IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
474 IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
475 IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);
476
477 /* clear dma0 and 1 eop and descr irq masks */
478 *R_IRQ_MASK2_CLR =
479 IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
480 IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
481 IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
482 IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
483
484 /* Reset and wait for the DMA channels */
485
486 RESET_DMA(NETWORK_TX_DMA_NBR);
487 RESET_DMA(NETWORK_RX_DMA_NBR);
488 WAIT_DMA(NETWORK_TX_DMA_NBR);
489 WAIT_DMA(NETWORK_RX_DMA_NBR);
490
491 /* Initialise the etrax network controller */
492
493 /* allocate the irq corresponding to the receiving DMA */
494
495 if (request_irq(NETWORK_DMA_RX_IRQ_NBR, e100rxtx_interrupt,
1fb9df5d 496 IRQF_SAMPLE_RANDOM, cardname, (void *)dev)) {
1da177e4
LT
497 goto grace_exit0;
498 }
499
500 /* allocate the irq corresponding to the transmitting DMA */
501
502 if (request_irq(NETWORK_DMA_TX_IRQ_NBR, e100rxtx_interrupt, 0,
503 cardname, (void *)dev)) {
504 goto grace_exit1;
505 }
506
507 /* allocate the irq corresponding to the network errors etc */
508
509 if (request_irq(NETWORK_STATUS_IRQ_NBR, e100nw_interrupt, 0,
510 cardname, (void *)dev)) {
511 goto grace_exit2;
512 }
513
bafef0ae
JN
514 /*
515 * Always allocate the DMA channels after the IRQ,
516 * and clean up on failure.
517 */
518
519 if (cris_request_dma(NETWORK_TX_DMA_NBR,
520 cardname,
521 DMA_VERBOSE_ON_ERROR,
522 dma_eth)) {
523 goto grace_exit3;
524 }
525
526 if (cris_request_dma(NETWORK_RX_DMA_NBR,
527 cardname,
528 DMA_VERBOSE_ON_ERROR,
529 dma_eth)) {
530 goto grace_exit4;
531 }
532
1da177e4
LT
533 /* give the HW an idea of what MAC address we want */
534
535 *R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
536 (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
537 *R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
538 *R_NETWORK_SA_2 = 0;
539
540#if 0
541 /* use promiscuous mode for testing */
542 *R_NETWORK_GA_0 = 0xffffffff;
543 *R_NETWORK_GA_1 = 0xffffffff;
544
545 *R_NETWORK_REC_CONFIG = 0xd; /* broadcast rec, individ. rec, ma0 enabled */
546#else
bafef0ae 547 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, max_size, size1522);
1da177e4
LT
548 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, broadcast, receive);
549 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, ma0, enable);
550 SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
551 *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
552#endif
553
554 *R_NETWORK_GEN_CONFIG =
555 IO_STATE(R_NETWORK_GEN_CONFIG, phy, mii_clk) |
556 IO_STATE(R_NETWORK_GEN_CONFIG, enable, on);
557
558 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
559 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, delay, none);
560 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, cancel, dont);
561 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, cd, enable);
562 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, retry, enable);
563 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, pad, enable);
564 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, crc, enable);
565 *R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
566
bafef0ae 567 local_irq_save(flags);
1da177e4
LT
568
569 /* enable the irq's for ethernet DMA */
570
571 *R_IRQ_MASK2_SET =
572 IO_STATE(R_IRQ_MASK2_SET, dma0_eop, set) |
573 IO_STATE(R_IRQ_MASK2_SET, dma1_eop, set);
574
575 *R_IRQ_MASK0_SET =
576 IO_STATE(R_IRQ_MASK0_SET, overrun, set) |
577 IO_STATE(R_IRQ_MASK0_SET, underrun, set) |
578 IO_STATE(R_IRQ_MASK0_SET, excessive_col, set);
579
580 /* make sure the irqs are cleared */
581
582 *R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
583 *R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
584
585 /* make sure the rec and transmit error counters are cleared */
586
587 (void)*R_REC_COUNTERS; /* dummy read */
588 (void)*R_TR_COUNTERS; /* dummy read */
589
590 /* start the receiving DMA channel so we can receive packets from now on */
591
592 *R_DMA_CH1_FIRST = virt_to_phys(myNextRxDesc);
593 *R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, start);
594
595 /* Set up transmit DMA channel so it can be restarted later */
596
597 *R_DMA_CH0_FIRST = 0;
598 *R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc);
bafef0ae 599 netif_start_queue(dev);
1da177e4 600
bafef0ae 601 local_irq_restore(flags);
1da177e4
LT
602
603 /* Probe for transceiver */
604 if (e100_probe_transceiver(dev))
bafef0ae 605 goto grace_exit5;
1da177e4
LT
606
607 /* Start duplex/speed timers */
608 add_timer(&speed_timer);
609 add_timer(&duplex_timer);
610
611 /* We are now ready to accept transmit requeusts from
612 * the queueing layer of the networking.
613 */
bafef0ae 614 netif_carrier_on(dev);
1da177e4
LT
615
616 return 0;
617
bafef0ae
JN
618grace_exit5:
619 cris_free_dma(NETWORK_RX_DMA_NBR, cardname);
620grace_exit4:
621 cris_free_dma(NETWORK_TX_DMA_NBR, cardname);
1da177e4
LT
622grace_exit3:
623 free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
624grace_exit2:
625 free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
626grace_exit1:
627 free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
628grace_exit0:
629 return -EAGAIN;
630}
631
bafef0ae
JN
632#if defined(CONFIG_ETRAX_NO_PHY)
633static void
634dummy_check_speed(struct net_device* dev)
635{
636 current_speed = 100;
637}
638#else
1da177e4
LT
639static void
640generic_check_speed(struct net_device* dev)
641{
642 unsigned long data;
bafef0ae
JN
643 struct net_local *np = netdev_priv(dev);
644
645 data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE);
1da177e4
LT
646 if ((data & ADVERTISE_100FULL) ||
647 (data & ADVERTISE_100HALF))
648 current_speed = 100;
649 else
650 current_speed = 10;
651}
652
653static void
654tdk_check_speed(struct net_device* dev)
655{
656 unsigned long data;
bafef0ae
JN
657 struct net_local *np = netdev_priv(dev);
658
659 data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
660 MDIO_TDK_DIAGNOSTIC_REG);
1da177e4
LT
661 current_speed = (data & MDIO_TDK_DIAGNOSTIC_RATE ? 100 : 10);
662}
663
664static void
665broadcom_check_speed(struct net_device* dev)
666{
667 unsigned long data;
bafef0ae
JN
668 struct net_local *np = netdev_priv(dev);
669
670 data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
671 MDIO_AUX_CTRL_STATUS_REG);
1da177e4
LT
672 current_speed = (data & MDIO_BC_SPEED ? 100 : 10);
673}
674
675static void
676intel_check_speed(struct net_device* dev)
677{
678 unsigned long data;
bafef0ae
JN
679 struct net_local *np = netdev_priv(dev);
680
681 data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
682 MDIO_INT_STATUS_REG_2);
1da177e4
LT
683 current_speed = (data & MDIO_INT_SPEED ? 100 : 10);
684}
bafef0ae 685#endif
1da177e4
LT
686static void
687e100_check_speed(unsigned long priv)
688{
689 struct net_device* dev = (struct net_device*)priv;
bafef0ae 690 struct net_local *np = netdev_priv(dev);
1da177e4
LT
691 static int led_initiated = 0;
692 unsigned long data;
693 int old_speed = current_speed;
694
bafef0ae
JN
695 spin_lock(&np->transceiver_lock);
696
697 data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMSR);
1da177e4
LT
698 if (!(data & BMSR_LSTATUS)) {
699 current_speed = 0;
700 } else {
701 transceiver->check_speed(dev);
702 }
703
bafef0ae 704 spin_lock(&np->led_lock);
1da177e4
LT
705 if ((old_speed != current_speed) || !led_initiated) {
706 led_initiated = 1;
707 e100_set_network_leds(NO_NETWORK_ACTIVITY);
bafef0ae
JN
708 if (current_speed)
709 netif_carrier_on(dev);
710 else
711 netif_carrier_off(dev);
1da177e4 712 }
bafef0ae 713 spin_unlock(&np->led_lock);
1da177e4
LT
714
715 /* Reinitialize the timer. */
716 speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
717 add_timer(&speed_timer);
bafef0ae
JN
718
719 spin_unlock(&np->transceiver_lock);
1da177e4
LT
720}
721
722static void
723e100_negotiate(struct net_device* dev)
724{
bafef0ae
JN
725 struct net_local *np = netdev_priv(dev);
726 unsigned short data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
727 MII_ADVERTISE);
1da177e4
LT
728
729 /* Discard old speed and duplex settings */
730 data &= ~(ADVERTISE_100HALF | ADVERTISE_100FULL |
731 ADVERTISE_10HALF | ADVERTISE_10FULL);
732
733 switch (current_speed_selection) {
bafef0ae 734 case 10:
1da177e4
LT
735 if (current_duplex == full)
736 data |= ADVERTISE_10FULL;
737 else if (current_duplex == half)
738 data |= ADVERTISE_10HALF;
739 else
740 data |= ADVERTISE_10HALF | ADVERTISE_10FULL;
741 break;
742
bafef0ae 743 case 100:
1da177e4
LT
744 if (current_duplex == full)
745 data |= ADVERTISE_100FULL;
746 else if (current_duplex == half)
747 data |= ADVERTISE_100HALF;
748 else
749 data |= ADVERTISE_100HALF | ADVERTISE_100FULL;
750 break;
751
bafef0ae 752 case 0: /* Auto */
1da177e4
LT
753 if (current_duplex == full)
754 data |= ADVERTISE_100FULL | ADVERTISE_10FULL;
755 else if (current_duplex == half)
756 data |= ADVERTISE_100HALF | ADVERTISE_10HALF;
757 else
758 data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
759 ADVERTISE_100HALF | ADVERTISE_100FULL;
760 break;
761
bafef0ae 762 default: /* assume autoneg speed and duplex */
1da177e4
LT
763 data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
764 ADVERTISE_100HALF | ADVERTISE_100FULL;
bafef0ae 765 break;
1da177e4
LT
766 }
767
bafef0ae 768 e100_set_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE, data);
1da177e4 769
e6cd1974 770 data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR);
bafef0ae 771 if (autoneg_normal) {
e6cd1974
JN
772 /* Renegotiate with link partner */
773 data |= BMCR_ANENABLE | BMCR_ANRESTART;
774 } else {
775 /* Don't negotiate speed or duplex */
776 data &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
777
778 /* Set speed and duplex static */
779 if (current_speed_selection == 10)
780 data &= ~BMCR_SPEED100;
781 else
782 data |= BMCR_SPEED100;
783
784 if (current_duplex != full)
785 data &= ~BMCR_FULLDPLX;
786 else
787 data |= BMCR_FULLDPLX;
bafef0ae
JN
788 }
789 e100_set_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR, data);
1da177e4
LT
790}
791
792static void
793e100_set_speed(struct net_device* dev, unsigned long speed)
794{
bafef0ae
JN
795 struct net_local *np = netdev_priv(dev);
796
797 spin_lock(&np->transceiver_lock);
1da177e4
LT
798 if (speed != current_speed_selection) {
799 current_speed_selection = speed;
800 e100_negotiate(dev);
801 }
bafef0ae 802 spin_unlock(&np->transceiver_lock);
1da177e4
LT
803}
804
805static void
806e100_check_duplex(unsigned long priv)
807{
808 struct net_device *dev = (struct net_device *)priv;
bafef0ae
JN
809 struct net_local *np = netdev_priv(dev);
810 int old_duplex;
811
812 spin_lock(&np->transceiver_lock);
813 old_duplex = full_duplex;
1da177e4
LT
814 transceiver->check_duplex(dev);
815 if (old_duplex != full_duplex) {
816 /* Duplex changed */
817 SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
818 *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
819 }
820
821 /* Reinitialize the timer. */
822 duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
823 add_timer(&duplex_timer);
824 np->mii_if.full_duplex = full_duplex;
bafef0ae 825 spin_unlock(&np->transceiver_lock);
1da177e4 826}
bafef0ae
JN
827#if defined(CONFIG_ETRAX_NO_PHY)
828static void
829dummy_check_duplex(struct net_device* dev)
830{
831 full_duplex = 1;
832}
833#else
1da177e4
LT
834static void
835generic_check_duplex(struct net_device* dev)
836{
837 unsigned long data;
bafef0ae
JN
838 struct net_local *np = netdev_priv(dev);
839
840 data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE);
1da177e4
LT
841 if ((data & ADVERTISE_10FULL) ||
842 (data & ADVERTISE_100FULL))
843 full_duplex = 1;
844 else
845 full_duplex = 0;
846}
847
848static void
849tdk_check_duplex(struct net_device* dev)
850{
851 unsigned long data;
bafef0ae
JN
852 struct net_local *np = netdev_priv(dev);
853
854 data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
855 MDIO_TDK_DIAGNOSTIC_REG);
1da177e4
LT
856 full_duplex = (data & MDIO_TDK_DIAGNOSTIC_DPLX) ? 1 : 0;
857}
858
859static void
860broadcom_check_duplex(struct net_device* dev)
861{
862 unsigned long data;
bafef0ae
JN
863 struct net_local *np = netdev_priv(dev);
864
865 data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
866 MDIO_AUX_CTRL_STATUS_REG);
1da177e4
LT
867 full_duplex = (data & MDIO_BC_FULL_DUPLEX_IND) ? 1 : 0;
868}
869
870static void
871intel_check_duplex(struct net_device* dev)
872{
873 unsigned long data;
bafef0ae
JN
874 struct net_local *np = netdev_priv(dev);
875
876 data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
877 MDIO_INT_STATUS_REG_2);
1da177e4
LT
878 full_duplex = (data & MDIO_INT_FULL_DUPLEX_IND) ? 1 : 0;
879}
bafef0ae 880#endif
1da177e4
LT
881static void
882e100_set_duplex(struct net_device* dev, enum duplex new_duplex)
883{
bafef0ae
JN
884 struct net_local *np = netdev_priv(dev);
885
886 spin_lock(&np->transceiver_lock);
1da177e4
LT
887 if (new_duplex != current_duplex) {
888 current_duplex = new_duplex;
889 e100_negotiate(dev);
890 }
bafef0ae 891 spin_unlock(&np->transceiver_lock);
1da177e4
LT
892}
893
894static int
895e100_probe_transceiver(struct net_device* dev)
896{
633edf5a
AM
897 int ret = 0;
898
bafef0ae 899#if !defined(CONFIG_ETRAX_NO_PHY)
1da177e4
LT
900 unsigned int phyid_high;
901 unsigned int phyid_low;
902 unsigned int oui;
903 struct transceiver_ops* ops = NULL;
bafef0ae
JN
904 struct net_local *np = netdev_priv(dev);
905
906 spin_lock(&np->transceiver_lock);
1da177e4
LT
907
908 /* Probe MDIO physical address */
bafef0ae
JN
909 for (np->mii_if.phy_id = 0; np->mii_if.phy_id <= 31;
910 np->mii_if.phy_id++) {
911 if (e100_get_mdio_reg(dev,
912 np->mii_if.phy_id, MII_BMSR) != 0xffff)
1da177e4
LT
913 break;
914 }
633edf5a
AM
915 if (np->mii_if.phy_id == 32) {
916 ret = -ENODEV;
917 goto out;
918 }
1da177e4
LT
919
920 /* Get manufacturer */
bafef0ae
JN
921 phyid_high = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_PHYSID1);
922 phyid_low = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_PHYSID2);
1da177e4
LT
923 oui = (phyid_high << 6) | (phyid_low >> 10);
924
925 for (ops = &transceivers[0]; ops->oui; ops++) {
926 if (ops->oui == oui)
927 break;
928 }
929 transceiver = ops;
633edf5a 930out:
bafef0ae
JN
931 spin_unlock(&np->transceiver_lock);
932#endif
633edf5a 933 return ret;
1da177e4
LT
934}
935
936static int
937e100_get_mdio_reg(struct net_device *dev, int phy_id, int location)
938{
939 unsigned short cmd; /* Data to be sent on MDIO port */
940 int data; /* Data read from MDIO */
941 int bitCounter;
942
943 /* Start of frame, OP Code, Physical Address, Register Address */
944 cmd = (MDIO_START << 14) | (MDIO_READ << 12) | (phy_id << 7) |
945 (location << 2);
946
947 e100_send_mdio_cmd(cmd, 0);
948
949 data = 0;
950
951 /* Data... */
952 for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
953 data |= (e100_receive_mdio_bit() << bitCounter);
954 }
955
956 return data;
957}
958
959static void
960e100_set_mdio_reg(struct net_device *dev, int phy_id, int location, int value)
961{
962 int bitCounter;
963 unsigned short cmd;
964
965 cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (phy_id << 7) |
966 (location << 2);
967
968 e100_send_mdio_cmd(cmd, 1);
969
970 /* Data... */
971 for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
972 e100_send_mdio_bit(GET_BIT(bitCounter, value));
973 }
974
975}
976
977static void
978e100_send_mdio_cmd(unsigned short cmd, int write_cmd)
979{
980 int bitCounter;
981 unsigned char data = 0x2;
982
983 /* Preamble */
984 for (bitCounter = 31; bitCounter>= 0; bitCounter--)
985 e100_send_mdio_bit(GET_BIT(bitCounter, MDIO_PREAMBLE));
986
987 for (bitCounter = 15; bitCounter >= 2; bitCounter--)
988 e100_send_mdio_bit(GET_BIT(bitCounter, cmd));
989
990 /* Turnaround */
991 for (bitCounter = 1; bitCounter >= 0 ; bitCounter--)
992 if (write_cmd)
993 e100_send_mdio_bit(GET_BIT(bitCounter, data));
994 else
995 e100_receive_mdio_bit();
996}
997
998static void
999e100_send_mdio_bit(unsigned char bit)
1000{
1001 *R_NETWORK_MGM_CTRL =
1002 IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
1003 IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
1004 udelay(1);
1005 *R_NETWORK_MGM_CTRL =
1006 IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
1007 IO_MASK(R_NETWORK_MGM_CTRL, mdck) |
1008 IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
1009 udelay(1);
1010}
1011
1012static unsigned char
1013e100_receive_mdio_bit()
1014{
1015 unsigned char bit;
1016 *R_NETWORK_MGM_CTRL = 0;
1017 bit = IO_EXTRACT(R_NETWORK_STAT, mdio, *R_NETWORK_STAT);
1018 udelay(1);
1019 *R_NETWORK_MGM_CTRL = IO_MASK(R_NETWORK_MGM_CTRL, mdck);
1020 udelay(1);
1021 return bit;
1022}
1023
1024static void
1025e100_reset_transceiver(struct net_device* dev)
1026{
bafef0ae 1027 struct net_local *np = netdev_priv(dev);
1da177e4
LT
1028 unsigned short cmd;
1029 unsigned short data;
1030 int bitCounter;
1031
bafef0ae 1032 data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR);
1da177e4 1033
bafef0ae 1034 cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (np->mii_if.phy_id << 7) | (MII_BMCR << 2);
1da177e4
LT
1035
1036 e100_send_mdio_cmd(cmd, 1);
1037
1038 data |= 0x8000;
1039
1040 for (bitCounter = 15; bitCounter >= 0 ; bitCounter--) {
1041 e100_send_mdio_bit(GET_BIT(bitCounter, data));
1042 }
1043}
1044
1045/* Called by upper layers if they decide it took too long to complete
1046 * sending a packet - we need to reset and stuff.
1047 */
1048
1049static void
1050e100_tx_timeout(struct net_device *dev)
1051{
bafef0ae 1052 struct net_local *np = netdev_priv(dev);
1da177e4
LT
1053 unsigned long flags;
1054
1055 spin_lock_irqsave(&np->lock, flags);
1056
1057 printk(KERN_WARNING "%s: transmit timed out, %s?\n", dev->name,
1058 tx_done(dev) ? "IRQ problem" : "network cable problem");
1059
1060 /* remember we got an error */
1061
1062 np->stats.tx_errors++;
1063
1064 /* reset the TX DMA in case it has hung on something */
1065
1066 RESET_DMA(NETWORK_TX_DMA_NBR);
1067 WAIT_DMA(NETWORK_TX_DMA_NBR);
1068
1069 /* Reset the transceiver. */
1070
1071 e100_reset_transceiver(dev);
1072
1073 /* and get rid of the packets that never got an interrupt */
bafef0ae 1074 while (myFirstTxDesc != myNextTxDesc) {
1da177e4
LT
1075 dev_kfree_skb(myFirstTxDesc->skb);
1076 myFirstTxDesc->skb = 0;
1077 myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next);
1078 }
1079
1080 /* Set up transmit DMA channel so it can be restarted later */
1081 *R_DMA_CH0_FIRST = 0;
1082 *R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc);
1083
1084 /* tell the upper layers we're ok again */
1085
1086 netif_wake_queue(dev);
1087 spin_unlock_irqrestore(&np->lock, flags);
1088}
1089
1090
1091/* This will only be invoked if the driver is _not_ in XOFF state.
1092 * What this means is that we need not check it, and that this
1093 * invariant will hold if we make sure that the netif_*_queue()
1094 * calls are done at the proper times.
1095 */
1096
1097static int
1098e100_send_packet(struct sk_buff *skb, struct net_device *dev)
1099{
bafef0ae 1100 struct net_local *np = netdev_priv(dev);
1da177e4
LT
1101 unsigned char *buf = skb->data;
1102 unsigned long flags;
1103
1104#ifdef ETHDEBUG
1105 printk("send packet len %d\n", length);
1106#endif
1107 spin_lock_irqsave(&np->lock, flags); /* protect from tx_interrupt and ourself */
1108
1109 myNextTxDesc->skb = skb;
1110
1ae5dc34 1111 dev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
1da177e4 1112
bafef0ae 1113 e100_hardware_send_packet(np, buf, skb->len);
1da177e4
LT
1114
1115 myNextTxDesc = phys_to_virt(myNextTxDesc->descr.next);
1116
1117 /* Stop queue if full */
1118 if (myNextTxDesc == myFirstTxDesc) {
1119 netif_stop_queue(dev);
1120 }
1121
1122 spin_unlock_irqrestore(&np->lock, flags);
1123
6ed10654 1124 return NETDEV_TX_OK;
1da177e4
LT
1125}
1126
1127/*
1128 * The typical workload of the driver:
1129 * Handle the network interface interrupts.
1130 */
1131
1132static irqreturn_t
7d12e780 1133e100rxtx_interrupt(int irq, void *dev_id)
1da177e4
LT
1134{
1135 struct net_device *dev = (struct net_device *)dev_id;
bafef0ae
JN
1136 struct net_local *np = netdev_priv(dev);
1137 unsigned long irqbits;
1da177e4 1138
bafef0ae
JN
1139 /*
1140 * Note that both rx and tx interrupts are blocked at this point,
1141 * regardless of which got us here.
1142 */
1143
1144 irqbits = *R_IRQ_MASK2_RD;
1da177e4
LT
1145
1146 /* Handle received packets */
1147 if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma1_eop, active)) {
1148 /* acknowledge the eop interrupt */
1149
1150 *R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
1151
1152 /* check if one or more complete packets were indeed received */
1153
1154 while ((*R_DMA_CH1_FIRST != virt_to_phys(myNextRxDesc)) &&
1155 (myNextRxDesc != myLastRxDesc)) {
1156 /* Take out the buffer and give it to the OS, then
1157 * allocate a new buffer to put a packet in.
1158 */
1159 e100_rx(dev);
bafef0ae 1160 np->stats.rx_packets++;
1da177e4
LT
1161 /* restart/continue on the channel, for safety */
1162 *R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, restart);
1163 /* clear dma channel 1 eop/descr irq bits */
1164 *R_DMA_CH1_CLR_INTR =
1165 IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do) |
1166 IO_STATE(R_DMA_CH1_CLR_INTR, clr_descr, do);
1167
1168 /* now, we might have gotten another packet
1169 so we have to loop back and check if so */
1170 }
1171 }
1172
1173 /* Report any packets that have been sent */
bafef0ae
JN
1174 while (virt_to_phys(myFirstTxDesc) != *R_DMA_CH0_FIRST &&
1175 (netif_queue_stopped(dev) || myFirstTxDesc != myNextTxDesc)) {
1da177e4
LT
1176 np->stats.tx_bytes += myFirstTxDesc->skb->len;
1177 np->stats.tx_packets++;
1178
1179 /* dma is ready with the transmission of the data in tx_skb, so now
1180 we can release the skb memory */
1181 dev_kfree_skb_irq(myFirstTxDesc->skb);
1182 myFirstTxDesc->skb = 0;
1183 myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next);
bafef0ae
JN
1184 /* Wake up queue. */
1185 netif_wake_queue(dev);
1da177e4
LT
1186 }
1187
1188 if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma0_eop, active)) {
bafef0ae 1189 /* acknowledge the eop interrupt. */
1da177e4 1190 *R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
1da177e4
LT
1191 }
1192
1da177e4
LT
1193 return IRQ_HANDLED;
1194}
1195
1196static irqreturn_t
7d12e780 1197e100nw_interrupt(int irq, void *dev_id)
1da177e4
LT
1198{
1199 struct net_device *dev = (struct net_device *)dev_id;
bafef0ae 1200 struct net_local *np = netdev_priv(dev);
1da177e4
LT
1201 unsigned long irqbits = *R_IRQ_MASK0_RD;
1202
1203 /* check for underrun irq */
1204 if (irqbits & IO_STATE(R_IRQ_MASK0_RD, underrun, active)) {
1205 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
1206 *R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
1207 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, nop);
1208 np->stats.tx_errors++;
1209 D(printk("ethernet receiver underrun!\n"));
1210 }
1211
1212 /* check for overrun irq */
1213 if (irqbits & IO_STATE(R_IRQ_MASK0_RD, overrun, active)) {
1214 update_rx_stats(&np->stats); /* this will ack the irq */
1215 D(printk("ethernet receiver overrun!\n"));
1216 }
1217 /* check for excessive collision irq */
1218 if (irqbits & IO_STATE(R_IRQ_MASK0_RD, excessive_col, active)) {
1219 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
1220 *R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
1221 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, nop);
1da177e4
LT
1222 np->stats.tx_errors++;
1223 D(printk("ethernet excessive collisions!\n"));
1224 }
1225 return IRQ_HANDLED;
1226}
1227
1228/* We have a good packet(s), get it/them out of the buffers. */
1229static void
1230e100_rx(struct net_device *dev)
1231{
1232 struct sk_buff *skb;
1233 int length = 0;
bafef0ae 1234 struct net_local *np = netdev_priv(dev);
1da177e4
LT
1235 unsigned char *skb_data_ptr;
1236#ifdef ETHDEBUG
1237 int i;
1238#endif
bafef0ae
JN
1239 etrax_eth_descr *prevRxDesc; /* The descriptor right before myNextRxDesc */
1240 spin_lock(&np->led_lock);
1da177e4
LT
1241 if (!led_active && time_after(jiffies, led_next_time)) {
1242 /* light the network leds depending on the current speed. */
1243 e100_set_network_leds(NETWORK_ACTIVITY);
1244
1245 /* Set the earliest time we may clear the LED */
1246 led_next_time = jiffies + NET_FLASH_TIME;
1247 led_active = 1;
1248 mod_timer(&clear_led_timer, jiffies + HZ/10);
1249 }
bafef0ae 1250 spin_unlock(&np->led_lock);
1da177e4
LT
1251
1252 length = myNextRxDesc->descr.hw_len - 4;
bafef0ae 1253 np->stats.rx_bytes += length;
1da177e4
LT
1254
1255#ifdef ETHDEBUG
1256 printk("Got a packet of length %d:\n", length);
1257 /* dump the first bytes in the packet */
1258 skb_data_ptr = (unsigned char *)phys_to_virt(myNextRxDesc->descr.buf);
1259 for (i = 0; i < 8; i++) {
1260 printk("%d: %.2x %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", i * 8,
1261 skb_data_ptr[0],skb_data_ptr[1],skb_data_ptr[2],skb_data_ptr[3],
1262 skb_data_ptr[4],skb_data_ptr[5],skb_data_ptr[6],skb_data_ptr[7]);
1263 skb_data_ptr += 8;
1264 }
1265#endif
1266
1267 if (length < RX_COPYBREAK) {
1268 /* Small packet, copy data */
1269 skb = dev_alloc_skb(length - ETHER_HEAD_LEN);
1270 if (!skb) {
1271 np->stats.rx_errors++;
1272 printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
bafef0ae 1273 goto update_nextrxdesc;
1da177e4
LT
1274 }
1275
1276 skb_put(skb, length - ETHER_HEAD_LEN); /* allocate room for the packet body */
1277 skb_data_ptr = skb_push(skb, ETHER_HEAD_LEN); /* allocate room for the header */
1278
1279#ifdef ETHDEBUG
1280 printk("head = 0x%x, data = 0x%x, tail = 0x%x, end = 0x%x\n",
4305b541
ACM
1281 skb->head, skb->data, skb_tail_pointer(skb),
1282 skb_end_pointer(skb));
1da177e4
LT
1283 printk("copying packet to 0x%x.\n", skb_data_ptr);
1284#endif
1285
1286 memcpy(skb_data_ptr, phys_to_virt(myNextRxDesc->descr.buf), length);
1287 }
1288 else {
1289 /* Large packet, send directly to upper layers and allocate new
1290 * memory (aligned to cache line boundary to avoid bug).
bafef0ae
JN
1291 * Before sending the skb to upper layers we must make sure
1292 * that skb->data points to the aligned start of the packet.
1da177e4
LT
1293 */
1294 int align;
1295 struct sk_buff *new_skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES);
1296 if (!new_skb) {
1297 np->stats.rx_errors++;
1298 printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
bafef0ae 1299 goto update_nextrxdesc;
1da177e4
LT
1300 }
1301 skb = myNextRxDesc->skb;
1302 align = (int)phys_to_virt(myNextRxDesc->descr.buf) - (int)skb->data;
1303 skb_put(skb, length + align);
1304 skb_pull(skb, align); /* Remove alignment bytes */
1305 myNextRxDesc->skb = new_skb;
1306 myNextRxDesc->descr.buf = L1_CACHE_ALIGN(virt_to_phys(myNextRxDesc->skb->data));
1307 }
1308
1da177e4
LT
1309 skb->protocol = eth_type_trans(skb, dev);
1310
1311 /* Send the packet to the upper layers */
1312 netif_rx(skb);
1313
bafef0ae 1314 update_nextrxdesc:
1da177e4
LT
1315 /* Prepare for next packet */
1316 myNextRxDesc->descr.status = 0;
bafef0ae 1317 prevRxDesc = myNextRxDesc;
1da177e4
LT
1318 myNextRxDesc = phys_to_virt(myNextRxDesc->descr.next);
1319
1320 rx_queue_len++;
1321
1322 /* Check if descriptors should be returned */
1323 if (rx_queue_len == RX_QUEUE_THRESHOLD) {
1324 flush_etrax_cache();
bafef0ae 1325 prevRxDesc->descr.ctrl |= d_eol;
1da177e4 1326 myLastRxDesc->descr.ctrl &= ~d_eol;
bafef0ae 1327 myLastRxDesc = prevRxDesc;
1da177e4
LT
1328 rx_queue_len = 0;
1329 }
1330}
1331
1332/* The inverse routine to net_open(). */
1333static int
1334e100_close(struct net_device *dev)
1335{
bafef0ae 1336 struct net_local *np = netdev_priv(dev);
1da177e4
LT
1337
1338 printk(KERN_INFO "Closing %s.\n", dev->name);
1339
1340 netif_stop_queue(dev);
1341
1342 *R_IRQ_MASK0_CLR =
1343 IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
1344 IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
1345 IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);
1346
1347 *R_IRQ_MASK2_CLR =
1348 IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
1349 IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
1350 IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
1351 IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
1352
1353 /* Stop the receiver and the transmitter */
1354
1355 RESET_DMA(NETWORK_TX_DMA_NBR);
1356 RESET_DMA(NETWORK_RX_DMA_NBR);
1357
1358 /* Flush the Tx and disable Rx here. */
1359
1360 free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
1361 free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
1362 free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
1363
bafef0ae
JN
1364 cris_free_dma(NETWORK_TX_DMA_NBR, cardname);
1365 cris_free_dma(NETWORK_RX_DMA_NBR, cardname);
1366
1da177e4
LT
1367 /* Update the statistics here. */
1368
1369 update_rx_stats(&np->stats);
1370 update_tx_stats(&np->stats);
1371
1372 /* Stop speed/duplex timers */
1373 del_timer(&speed_timer);
1374 del_timer(&duplex_timer);
1375
1376 return 0;
1377}
1378
1379static int
1380e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1381{
1382 struct mii_ioctl_data *data = if_mii(ifr);
1383 struct net_local *np = netdev_priv(dev);
bafef0ae
JN
1384 int rc = 0;
1385 int old_autoneg;
1da177e4
LT
1386
1387 spin_lock(&np->lock); /* Preempt protection */
1388 switch (cmd) {
1da177e4
LT
1389 /* The ioctls below should be considered obsolete but are */
1390 /* still present for compatability with old scripts/apps */
1391 case SET_ETH_SPEED_10: /* 10 Mbps */
1392 e100_set_speed(dev, 10);
1393 break;
1394 case SET_ETH_SPEED_100: /* 100 Mbps */
1395 e100_set_speed(dev, 100);
1396 break;
bafef0ae 1397 case SET_ETH_SPEED_AUTO: /* Auto-negotiate speed */
1da177e4
LT
1398 e100_set_speed(dev, 0);
1399 break;
bafef0ae 1400 case SET_ETH_DUPLEX_HALF: /* Half duplex */
1da177e4
LT
1401 e100_set_duplex(dev, half);
1402 break;
bafef0ae 1403 case SET_ETH_DUPLEX_FULL: /* Full duplex */
1da177e4
LT
1404 e100_set_duplex(dev, full);
1405 break;
bafef0ae 1406 case SET_ETH_DUPLEX_AUTO: /* Auto-negotiate duplex */
1da177e4
LT
1407 e100_set_duplex(dev, autoneg);
1408 break;
bafef0ae
JN
1409 case SET_ETH_AUTONEG:
1410 old_autoneg = autoneg_normal;
1411 autoneg_normal = *(int*)data;
1412 if (autoneg_normal != old_autoneg)
1413 e100_negotiate(dev);
1414 break;
1da177e4 1415 default:
bafef0ae
JN
1416 rc = generic_mii_ioctl(&np->mii_if, if_mii(ifr),
1417 cmd, NULL);
1418 break;
1da177e4
LT
1419 }
1420 spin_unlock(&np->lock);
bafef0ae 1421 return rc;
1da177e4
LT
1422}
1423
bafef0ae
JN
1424static int e100_get_settings(struct net_device *dev,
1425 struct ethtool_cmd *cmd)
1da177e4 1426{
bafef0ae
JN
1427 struct net_local *np = netdev_priv(dev);
1428 int err;
76f2b4d9 1429
bafef0ae
JN
1430 spin_lock_irq(&np->lock);
1431 err = mii_ethtool_gset(&np->mii_if, cmd);
1432 spin_unlock_irq(&np->lock);
76f2b4d9 1433
bafef0ae
JN
1434 /* The PHY may support 1000baseT, but the Etrax100 does not. */
1435 cmd->supported &= ~(SUPPORTED_1000baseT_Half
1436 | SUPPORTED_1000baseT_Full);
1437 return err;
76f2b4d9
CH
1438}
1439
1440static int e100_set_settings(struct net_device *dev,
1441 struct ethtool_cmd *ecmd)
1442{
1443 if (ecmd->autoneg == AUTONEG_ENABLE) {
1444 e100_set_duplex(dev, autoneg);
1445 e100_set_speed(dev, 0);
1446 } else {
1447 e100_set_duplex(dev, ecmd->duplex == DUPLEX_HALF ? half : full);
1448 e100_set_speed(dev, ecmd->speed == SPEED_10 ? 10: 100);
1da177e4 1449 }
76f2b4d9
CH
1450
1451 return 0;
1452}
1453
1454static void e100_get_drvinfo(struct net_device *dev,
1455 struct ethtool_drvinfo *info)
1456{
1457 strncpy(info->driver, "ETRAX 100LX", sizeof(info->driver) - 1);
1458 strncpy(info->version, "$Revision: 1.31 $", sizeof(info->version) - 1);
1459 strncpy(info->fw_version, "N/A", sizeof(info->fw_version) - 1);
1460 strncpy(info->bus_info, "N/A", sizeof(info->bus_info) - 1);
1461}
1462
1463static int e100_nway_reset(struct net_device *dev)
1464{
1465 if (current_duplex == autoneg && current_speed_selection == 0)
1466 e100_negotiate(dev);
1da177e4
LT
1467 return 0;
1468}
1469
7282d491 1470static const struct ethtool_ops e100_ethtool_ops = {
76f2b4d9
CH
1471 .get_settings = e100_get_settings,
1472 .set_settings = e100_set_settings,
1473 .get_drvinfo = e100_get_drvinfo,
1474 .nway_reset = e100_nway_reset,
1475 .get_link = ethtool_op_get_link,
1476};
1477
1da177e4
LT
1478static int
1479e100_set_config(struct net_device *dev, struct ifmap *map)
1480{
bafef0ae
JN
1481 struct net_local *np = netdev_priv(dev);
1482
1da177e4
LT
1483 spin_lock(&np->lock); /* Preempt protection */
1484
1485 switch(map->port) {
1486 case IF_PORT_UNKNOWN:
1487 /* Use autoneg */
1488 e100_set_speed(dev, 0);
1489 e100_set_duplex(dev, autoneg);
1490 break;
1491 case IF_PORT_10BASET:
1492 e100_set_speed(dev, 10);
1493 e100_set_duplex(dev, autoneg);
1494 break;
1495 case IF_PORT_100BASET:
1496 case IF_PORT_100BASETX:
1497 e100_set_speed(dev, 100);
1498 e100_set_duplex(dev, autoneg);
1499 break;
1500 case IF_PORT_100BASEFX:
1501 case IF_PORT_10BASE2:
1502 case IF_PORT_AUI:
1503 spin_unlock(&np->lock);
1504 return -EOPNOTSUPP;
1505 break;
1506 default:
1507 printk(KERN_ERR "%s: Invalid media selected", dev->name);
1508 spin_unlock(&np->lock);
1509 return -EINVAL;
1510 }
1511 spin_unlock(&np->lock);
1512 return 0;
1513}
1514
1515static void
1516update_rx_stats(struct net_device_stats *es)
1517{
1518 unsigned long r = *R_REC_COUNTERS;
1519 /* update stats relevant to reception errors */
1520 es->rx_fifo_errors += IO_EXTRACT(R_REC_COUNTERS, congestion, r);
1521 es->rx_crc_errors += IO_EXTRACT(R_REC_COUNTERS, crc_error, r);
1522 es->rx_frame_errors += IO_EXTRACT(R_REC_COUNTERS, alignment_error, r);
1523 es->rx_length_errors += IO_EXTRACT(R_REC_COUNTERS, oversize, r);
1524}
1525
1526static void
1527update_tx_stats(struct net_device_stats *es)
1528{
1529 unsigned long r = *R_TR_COUNTERS;
1530 /* update stats relevant to transmission errors */
1531 es->collisions +=
1532 IO_EXTRACT(R_TR_COUNTERS, single_col, r) +
1533 IO_EXTRACT(R_TR_COUNTERS, multiple_col, r);
1da177e4
LT
1534}
1535
1536/*
1537 * Get the current statistics.
1538 * This may be called with the card open or closed.
1539 */
1540static struct net_device_stats *
1541e100_get_stats(struct net_device *dev)
1542{
bafef0ae 1543 struct net_local *lp = netdev_priv(dev);
1da177e4 1544 unsigned long flags;
bafef0ae 1545
1da177e4
LT
1546 spin_lock_irqsave(&lp->lock, flags);
1547
1548 update_rx_stats(&lp->stats);
1549 update_tx_stats(&lp->stats);
1550
1551 spin_unlock_irqrestore(&lp->lock, flags);
1552 return &lp->stats;
1553}
1554
1555/*
1556 * Set or clear the multicast filter for this adaptor.
1557 * num_addrs == -1 Promiscuous mode, receive all packets
1558 * num_addrs == 0 Normal mode, clear multicast list
1559 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1560 * and do best-effort filtering.
1561 */
1562static void
1563set_multicast_list(struct net_device *dev)
1564{
bafef0ae 1565 struct net_local *lp = netdev_priv(dev);
4cd24eaf 1566 int num_addr = netdev_mc_count(dev);
1da177e4
LT
1567 unsigned long int lo_bits;
1568 unsigned long int hi_bits;
bafef0ae 1569
1da177e4 1570 spin_lock(&lp->lock);
bafef0ae 1571 if (dev->flags & IFF_PROMISC) {
1da177e4
LT
1572 /* promiscuous mode */
1573 lo_bits = 0xfffffffful;
1574 hi_bits = 0xfffffffful;
1575
1576 /* Enable individual receive */
1577 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, receive);
1578 *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1579 } else if (dev->flags & IFF_ALLMULTI) {
1580 /* enable all multicasts */
1581 lo_bits = 0xfffffffful;
1582 hi_bits = 0xfffffffful;
1583
1584 /* Disable individual receive */
1585 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1586 *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1587 } else if (num_addr == 0) {
1588 /* Normal, clear the mc list */
1589 lo_bits = 0x00000000ul;
1590 hi_bits = 0x00000000ul;
1591
1592 /* Disable individual receive */
1593 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1594 *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1595 } else {
1596 /* MC mode, receive normal and MC packets */
1597 char hash_ix;
22bedad3 1598 struct netdev_hw_addr *ha;
1da177e4 1599 char *baddr;
bafef0ae 1600
1da177e4
LT
1601 lo_bits = 0x00000000ul;
1602 hi_bits = 0x00000000ul;
22bedad3 1603 netdev_for_each_mc_addr(ha, dev) {
1da177e4
LT
1604 /* Calculate the hash index for the GA registers */
1605
1606 hash_ix = 0;
22bedad3 1607 baddr = ha->addr;
1da177e4
LT
1608 hash_ix ^= (*baddr) & 0x3f;
1609 hash_ix ^= ((*baddr) >> 6) & 0x03;
1610 ++baddr;
1611 hash_ix ^= ((*baddr) << 2) & 0x03c;
1612 hash_ix ^= ((*baddr) >> 4) & 0xf;
1613 ++baddr;
1614 hash_ix ^= ((*baddr) << 4) & 0x30;
1615 hash_ix ^= ((*baddr) >> 2) & 0x3f;
1616 ++baddr;
1617 hash_ix ^= (*baddr) & 0x3f;
1618 hash_ix ^= ((*baddr) >> 6) & 0x03;
1619 ++baddr;
1620 hash_ix ^= ((*baddr) << 2) & 0x03c;
1621 hash_ix ^= ((*baddr) >> 4) & 0xf;
1622 ++baddr;
1623 hash_ix ^= ((*baddr) << 4) & 0x30;
1624 hash_ix ^= ((*baddr) >> 2) & 0x3f;
1625
1626 hash_ix &= 0x3f;
1627
1628 if (hash_ix >= 32) {
1629 hi_bits |= (1 << (hash_ix-32));
bafef0ae 1630 } else {
1da177e4
LT
1631 lo_bits |= (1 << hash_ix);
1632 }
1da177e4
LT
1633 }
1634 /* Disable individual receive */
1635 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1636 *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1637 }
1638 *R_NETWORK_GA_0 = lo_bits;
1639 *R_NETWORK_GA_1 = hi_bits;
1640 spin_unlock(&lp->lock);
1641}
1642
1643void
bafef0ae 1644e100_hardware_send_packet(struct net_local *np, char *buf, int length)
1da177e4
LT
1645{
1646 D(printk("e100 send pack, buf 0x%x len %d\n", buf, length));
1647
bafef0ae 1648 spin_lock(&np->led_lock);
1da177e4
LT
1649 if (!led_active && time_after(jiffies, led_next_time)) {
1650 /* light the network leds depending on the current speed. */
1651 e100_set_network_leds(NETWORK_ACTIVITY);
1652
1653 /* Set the earliest time we may clear the LED */
1654 led_next_time = jiffies + NET_FLASH_TIME;
1655 led_active = 1;
1656 mod_timer(&clear_led_timer, jiffies + HZ/10);
1657 }
bafef0ae 1658 spin_unlock(&np->led_lock);
1da177e4
LT
1659
1660 /* configure the tx dma descriptor */
1661 myNextTxDesc->descr.sw_len = length;
1662 myNextTxDesc->descr.ctrl = d_eop | d_eol | d_wait;
1663 myNextTxDesc->descr.buf = virt_to_phys(buf);
1664
1665 /* Move end of list */
1666 myLastTxDesc->descr.ctrl &= ~d_eol;
1667 myLastTxDesc = myNextTxDesc;
1668
1669 /* Restart DMA channel */
1670 *R_DMA_CH0_CMD = IO_STATE(R_DMA_CH0_CMD, cmd, restart);
1671}
1672
1673static void
1674e100_clear_network_leds(unsigned long dummy)
1675{
bafef0ae
JN
1676 struct net_device *dev = (struct net_device *)dummy;
1677 struct net_local *np = netdev_priv(dev);
1678
1679 spin_lock(&np->led_lock);
1680
1da177e4
LT
1681 if (led_active && time_after(jiffies, led_next_time)) {
1682 e100_set_network_leds(NO_NETWORK_ACTIVITY);
1683
1684 /* Set the earliest time we may set the LED */
1685 led_next_time = jiffies + NET_FLASH_PAUSE;
1686 led_active = 0;
1687 }
bafef0ae
JN
1688
1689 spin_unlock(&np->led_lock);
1da177e4
LT
1690}
1691
1692static void
1693e100_set_network_leds(int active)
1694{
1695#if defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK)
1696 int light_leds = (active == NO_NETWORK_ACTIVITY);
1697#elif defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY)
1698 int light_leds = (active == NETWORK_ACTIVITY);
1699#else
1700#error "Define either CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK or CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY"
1701#endif
1702
1703 if (!current_speed) {
1704 /* Make LED red, link is down */
1705#if defined(CONFIG_ETRAX_NETWORK_RED_ON_NO_CONNECTION)
5efa1d1c 1706 CRIS_LED_NETWORK_SET(CRIS_LED_RED);
1da177e4 1707#else
5efa1d1c 1708 CRIS_LED_NETWORK_SET(CRIS_LED_OFF);
1da177e4 1709#endif
bafef0ae 1710 } else if (light_leds) {
1da177e4 1711 if (current_speed == 10) {
5efa1d1c 1712 CRIS_LED_NETWORK_SET(CRIS_LED_ORANGE);
1da177e4 1713 } else {
5efa1d1c 1714 CRIS_LED_NETWORK_SET(CRIS_LED_GREEN);
1da177e4 1715 }
bafef0ae 1716 } else {
5efa1d1c 1717 CRIS_LED_NETWORK_SET(CRIS_LED_OFF);
1da177e4
LT
1718 }
1719}
1720
bafef0ae
JN
1721#ifdef CONFIG_NET_POLL_CONTROLLER
1722static void
1723e100_netpoll(struct net_device* netdev)
1724{
1725 e100rxtx_interrupt(NETWORK_DMA_TX_IRQ_NBR, netdev, NULL);
1726}
1727#endif
1728
1da177e4
LT
1729static int
1730etrax_init_module(void)
1731{
1732 return etrax_ethernet_init();
1733}
1734
1735static int __init
1736e100_boot_setup(char* str)
1737{
1738 struct sockaddr sa = {0};
1739 int i;
1740
1741 /* Parse the colon separated Ethernet station address */
1742 for (i = 0; i < ETH_ALEN; i++) {
1743 unsigned int tmp;
1744 if (sscanf(str + 3*i, "%2x", &tmp) != 1) {
1745 printk(KERN_WARNING "Malformed station address");
1746 return 0;
1747 }
1748 sa.sa_data[i] = (char)tmp;
1749 }
1750
1751 default_mac = sa;
1752 return 1;
1753}
1754
1755__setup("etrax100_eth=", e100_boot_setup);
1756
1757module_init(etrax_init_module);
This page took 0.672129 seconds and 5 git commands to generate.