NET/r8169: Rework suspend and resume
[deliverable/linux.git] / drivers / net / cxgb3 / sge.c
CommitLineData
4d22de3e 1/*
a02d44a0 2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
4d22de3e 3 *
1d68e93d
DLR
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
4d22de3e 9 *
1d68e93d
DLR
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
4d22de3e 31 */
4d22de3e
DLR
32#include <linux/skbuff.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/if_vlan.h>
36#include <linux/ip.h>
37#include <linux/tcp.h>
38#include <linux/dma-mapping.h>
a109a5b9 39#include <net/arp.h>
4d22de3e
DLR
40#include "common.h"
41#include "regs.h"
42#include "sge_defs.h"
43#include "t3_cpl.h"
44#include "firmware_exports.h"
45
46#define USE_GTS 0
47
48#define SGE_RX_SM_BUF_SIZE 1536
e0994eb1 49
4d22de3e 50#define SGE_RX_COPY_THRES 256
cf992af5 51#define SGE_RX_PULL_LEN 128
4d22de3e 52
5e68b772 53#define SGE_PG_RSVD SMP_CACHE_BYTES
e0994eb1 54/*
cf992af5
DLR
55 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
56 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
57 * directly.
e0994eb1 58 */
cf992af5 59#define FL0_PG_CHUNK_SIZE 2048
7385ecf3 60#define FL0_PG_ORDER 0
5e68b772 61#define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
7385ecf3
DLR
62#define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
63#define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
5e68b772 64#define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
cf992af5 65
e0994eb1 66#define SGE_RX_DROP_THRES 16
42c8ea17 67#define RX_RECLAIM_PERIOD (HZ/4)
4d22de3e 68
26b3871d
DLR
69/*
70 * Max number of Rx buffers we replenish at a time.
71 */
72#define MAX_RX_REFILL 16U
4d22de3e
DLR
73/*
74 * Period of the Tx buffer reclaim timer. This timer does not need to run
75 * frequently as Tx buffers are usually reclaimed by new Tx packets.
76 */
77#define TX_RECLAIM_PERIOD (HZ / 4)
42c8ea17
DLR
78#define TX_RECLAIM_TIMER_CHUNK 64U
79#define TX_RECLAIM_CHUNK 16U
4d22de3e
DLR
80
81/* WR size in bytes */
82#define WR_LEN (WR_FLITS * 8)
83
84/*
85 * Types of Tx queues in each queue set. Order here matters, do not change.
86 */
87enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
88
89/* Values for sge_txq.flags */
90enum {
91 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
92 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
93};
94
95struct tx_desc {
fb8e4444 96 __be64 flit[TX_DESC_FLITS];
4d22de3e
DLR
97};
98
99struct rx_desc {
100 __be32 addr_lo;
101 __be32 len_gen;
102 __be32 gen2;
103 __be32 addr_hi;
104};
105
106struct tx_sw_desc { /* SW state per Tx descriptor */
107 struct sk_buff *skb;
23561c94
DLR
108 u8 eop; /* set if last descriptor for packet */
109 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
110 u8 fragidx; /* first page fragment associated with descriptor */
111 s8 sflit; /* start flit of first SGL entry in descriptor */
4d22de3e
DLR
112};
113
cf992af5 114struct rx_sw_desc { /* SW state per Rx descriptor */
e0994eb1
DLR
115 union {
116 struct sk_buff *skb;
cf992af5
DLR
117 struct fl_pg_chunk pg_chunk;
118 };
119 DECLARE_PCI_UNMAP_ADDR(dma_addr);
4d22de3e
DLR
120};
121
122struct rsp_desc { /* response queue descriptor */
123 struct rss_header rss_hdr;
124 __be32 flags;
125 __be32 len_cq;
126 u8 imm_data[47];
127 u8 intr_gen;
128};
129
99d7cf30
DLR
130/*
131 * Holds unmapping information for Tx packets that need deferred unmapping.
132 * This structure lives at skb->head and must be allocated by callers.
133 */
134struct deferred_unmap_info {
135 struct pci_dev *pdev;
136 dma_addr_t addr[MAX_SKB_FRAGS + 1];
137};
138
4d22de3e
DLR
139/*
140 * Maps a number of flits to the number of Tx descriptors that can hold them.
141 * The formula is
142 *
143 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
144 *
145 * HW allows up to 4 descriptors to be combined into a WR.
146 */
147static u8 flit_desc_map[] = {
148 0,
149#if SGE_NUM_GENBITS == 1
150 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
151 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
152 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
153 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
154#elif SGE_NUM_GENBITS == 2
155 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
156 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
157 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
158 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
159#else
160# error "SGE_NUM_GENBITS must be 1 or 2"
161#endif
162};
163
164static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
165{
166 return container_of(q, struct sge_qset, fl[qidx]);
167}
168
169static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
170{
171 return container_of(q, struct sge_qset, rspq);
172}
173
174static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
175{
176 return container_of(q, struct sge_qset, txq[qidx]);
177}
178
179/**
180 * refill_rspq - replenish an SGE response queue
181 * @adapter: the adapter
182 * @q: the response queue to replenish
183 * @credits: how many new responses to make available
184 *
185 * Replenishes a response queue by making the supplied number of responses
186 * available to HW.
187 */
188static inline void refill_rspq(struct adapter *adapter,
189 const struct sge_rspq *q, unsigned int credits)
190{
afefce66 191 rmb();
4d22de3e
DLR
192 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
193 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
194}
195
196/**
197 * need_skb_unmap - does the platform need unmapping of sk_buffs?
198 *
199 * Returns true if the platfrom needs sk_buff unmapping. The compiler
200 * optimizes away unecessary code if this returns true.
201 */
202static inline int need_skb_unmap(void)
203{
204 /*
205 * This structure is used to tell if the platfrom needs buffer
206 * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
207 */
208 struct dummy {
209 DECLARE_PCI_UNMAP_ADDR(addr);
210 };
211
212 return sizeof(struct dummy) != 0;
213}
214
215/**
216 * unmap_skb - unmap a packet main body and its page fragments
217 * @skb: the packet
218 * @q: the Tx queue containing Tx descriptors for the packet
219 * @cidx: index of Tx descriptor
220 * @pdev: the PCI device
221 *
222 * Unmap the main body of an sk_buff and its page fragments, if any.
223 * Because of the fairly complicated structure of our SGLs and the desire
23561c94
DLR
224 * to conserve space for metadata, the information necessary to unmap an
225 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
226 * descriptors (the physical addresses of the various data buffers), and
227 * the SW descriptor state (assorted indices). The send functions
228 * initialize the indices for the first packet descriptor so we can unmap
229 * the buffers held in the first Tx descriptor here, and we have enough
230 * information at this point to set the state for the next Tx descriptor.
231 *
232 * Note that it is possible to clean up the first descriptor of a packet
233 * before the send routines have written the next descriptors, but this
234 * race does not cause any problem. We just end up writing the unmapping
235 * info for the descriptor first.
4d22de3e
DLR
236 */
237static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
238 unsigned int cidx, struct pci_dev *pdev)
239{
240 const struct sg_ent *sgp;
23561c94
DLR
241 struct tx_sw_desc *d = &q->sdesc[cidx];
242 int nfrags, frag_idx, curflit, j = d->addr_idx;
4d22de3e 243
23561c94
DLR
244 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
245 frag_idx = d->fragidx;
4d22de3e 246
23561c94
DLR
247 if (frag_idx == 0 && skb_headlen(skb)) {
248 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
249 skb_headlen(skb), PCI_DMA_TODEVICE);
4d22de3e
DLR
250 j = 1;
251 }
252
23561c94 253 curflit = d->sflit + 1 + j;
4d22de3e
DLR
254 nfrags = skb_shinfo(skb)->nr_frags;
255
256 while (frag_idx < nfrags && curflit < WR_FLITS) {
257 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
258 skb_shinfo(skb)->frags[frag_idx].size,
259 PCI_DMA_TODEVICE);
260 j ^= 1;
261 if (j == 0) {
262 sgp++;
263 curflit++;
264 }
265 curflit++;
266 frag_idx++;
267 }
268
23561c94
DLR
269 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
270 d = cidx + 1 == q->size ? q->sdesc : d + 1;
271 d->fragidx = frag_idx;
272 d->addr_idx = j;
273 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
4d22de3e
DLR
274 }
275}
276
277/**
278 * free_tx_desc - reclaims Tx descriptors and their buffers
279 * @adapter: the adapter
280 * @q: the Tx queue to reclaim descriptors from
281 * @n: the number of descriptors to reclaim
282 *
283 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
284 * Tx buffers. Called with the Tx queue lock held.
285 */
286static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
287 unsigned int n)
288{
289 struct tx_sw_desc *d;
290 struct pci_dev *pdev = adapter->pdev;
291 unsigned int cidx = q->cidx;
292
99d7cf30
DLR
293 const int need_unmap = need_skb_unmap() &&
294 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
295
4d22de3e
DLR
296 d = &q->sdesc[cidx];
297 while (n--) {
298 if (d->skb) { /* an SGL is present */
99d7cf30 299 if (need_unmap)
4d22de3e 300 unmap_skb(d->skb, q, cidx, pdev);
23561c94 301 if (d->eop)
4d22de3e
DLR
302 kfree_skb(d->skb);
303 }
304 ++d;
305 if (++cidx == q->size) {
306 cidx = 0;
307 d = q->sdesc;
308 }
309 }
310 q->cidx = cidx;
311}
312
313/**
314 * reclaim_completed_tx - reclaims completed Tx descriptors
315 * @adapter: the adapter
316 * @q: the Tx queue to reclaim completed descriptors from
42c8ea17 317 * @chunk: maximum number of descriptors to reclaim
4d22de3e
DLR
318 *
319 * Reclaims Tx descriptors that the SGE has indicated it has processed,
320 * and frees the associated buffers if possible. Called with the Tx
321 * queue's lock held.
322 */
42c8ea17
DLR
323static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
324 struct sge_txq *q,
325 unsigned int chunk)
4d22de3e
DLR
326{
327 unsigned int reclaim = q->processed - q->cleaned;
328
42c8ea17 329 reclaim = min(chunk, reclaim);
4d22de3e
DLR
330 if (reclaim) {
331 free_tx_desc(adapter, q, reclaim);
332 q->cleaned += reclaim;
333 q->in_use -= reclaim;
334 }
42c8ea17 335 return q->processed - q->cleaned;
4d22de3e
DLR
336}
337
338/**
339 * should_restart_tx - are there enough resources to restart a Tx queue?
340 * @q: the Tx queue
341 *
342 * Checks if there are enough descriptors to restart a suspended Tx queue.
343 */
344static inline int should_restart_tx(const struct sge_txq *q)
345{
346 unsigned int r = q->processed - q->cleaned;
347
348 return q->in_use - r < (q->size >> 1);
349}
350
5e68b772
DLR
351static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
352 struct rx_sw_desc *d)
9bb2b31e 353{
5e68b772
DLR
354 if (q->use_pages && d->pg_chunk.page) {
355 (*d->pg_chunk.p_cnt)--;
356 if (!*d->pg_chunk.p_cnt)
357 pci_unmap_page(pdev,
358 pci_unmap_addr(&d->pg_chunk, mapping),
359 q->alloc_size, PCI_DMA_FROMDEVICE);
360
361 put_page(d->pg_chunk.page);
9bb2b31e
DLR
362 d->pg_chunk.page = NULL;
363 } else {
5e68b772
DLR
364 pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr),
365 q->buf_size, PCI_DMA_FROMDEVICE);
9bb2b31e
DLR
366 kfree_skb(d->skb);
367 d->skb = NULL;
368 }
369}
370
4d22de3e
DLR
371/**
372 * free_rx_bufs - free the Rx buffers on an SGE free list
373 * @pdev: the PCI device associated with the adapter
374 * @rxq: the SGE free list to clean up
375 *
376 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
377 * this queue should be stopped before calling this function.
378 */
379static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
380{
381 unsigned int cidx = q->cidx;
382
383 while (q->credits--) {
384 struct rx_sw_desc *d = &q->sdesc[cidx];
385
5e68b772
DLR
386
387 clear_rx_desc(pdev, q, d);
4d22de3e
DLR
388 if (++cidx == q->size)
389 cidx = 0;
390 }
e0994eb1 391
cf992af5 392 if (q->pg_chunk.page) {
7385ecf3 393 __free_pages(q->pg_chunk.page, q->order);
cf992af5
DLR
394 q->pg_chunk.page = NULL;
395 }
4d22de3e
DLR
396}
397
398/**
399 * add_one_rx_buf - add a packet buffer to a free-buffer list
cf992af5 400 * @va: buffer start VA
4d22de3e
DLR
401 * @len: the buffer length
402 * @d: the HW Rx descriptor to write
403 * @sd: the SW Rx descriptor to write
404 * @gen: the generation bit value
405 * @pdev: the PCI device associated with the adapter
406 *
407 * Add a buffer of the given length to the supplied HW and SW Rx
408 * descriptors.
409 */
b1fb1f28
DLR
410static inline int add_one_rx_buf(void *va, unsigned int len,
411 struct rx_desc *d, struct rx_sw_desc *sd,
412 unsigned int gen, struct pci_dev *pdev)
4d22de3e
DLR
413{
414 dma_addr_t mapping;
415
e0994eb1 416 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
8d8bb39b 417 if (unlikely(pci_dma_mapping_error(pdev, mapping)))
b1fb1f28
DLR
418 return -ENOMEM;
419
4d22de3e
DLR
420 pci_unmap_addr_set(sd, dma_addr, mapping);
421
422 d->addr_lo = cpu_to_be32(mapping);
423 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
424 wmb();
425 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
426 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
b1fb1f28 427 return 0;
4d22de3e
DLR
428}
429
5e68b772
DLR
430static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
431 unsigned int gen)
432{
433 d->addr_lo = cpu_to_be32(mapping);
434 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
435 wmb();
436 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
437 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
438 return 0;
439}
440
441static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
442 struct rx_sw_desc *sd, gfp_t gfp,
7385ecf3 443 unsigned int order)
cf992af5
DLR
444{
445 if (!q->pg_chunk.page) {
5e68b772
DLR
446 dma_addr_t mapping;
447
7385ecf3 448 q->pg_chunk.page = alloc_pages(gfp, order);
cf992af5
DLR
449 if (unlikely(!q->pg_chunk.page))
450 return -ENOMEM;
451 q->pg_chunk.va = page_address(q->pg_chunk.page);
5e68b772
DLR
452 q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
453 SGE_PG_RSVD;
cf992af5 454 q->pg_chunk.offset = 0;
5e68b772
DLR
455 mapping = pci_map_page(adapter->pdev, q->pg_chunk.page,
456 0, q->alloc_size, PCI_DMA_FROMDEVICE);
457 pci_unmap_addr_set(&q->pg_chunk, mapping, mapping);
cf992af5
DLR
458 }
459 sd->pg_chunk = q->pg_chunk;
460
5e68b772
DLR
461 prefetch(sd->pg_chunk.p_cnt);
462
cf992af5 463 q->pg_chunk.offset += q->buf_size;
7385ecf3 464 if (q->pg_chunk.offset == (PAGE_SIZE << order))
cf992af5
DLR
465 q->pg_chunk.page = NULL;
466 else {
467 q->pg_chunk.va += q->buf_size;
468 get_page(q->pg_chunk.page);
469 }
5e68b772
DLR
470
471 if (sd->pg_chunk.offset == 0)
472 *sd->pg_chunk.p_cnt = 1;
473 else
474 *sd->pg_chunk.p_cnt += 1;
475
cf992af5
DLR
476 return 0;
477}
478
26b3871d
DLR
479static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
480{
481 if (q->pend_cred >= q->credits / 4) {
482 q->pend_cred = 0;
483 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
484 }
485}
486
4d22de3e
DLR
487/**
488 * refill_fl - refill an SGE free-buffer list
489 * @adapter: the adapter
490 * @q: the free-list to refill
491 * @n: the number of new buffers to allocate
492 * @gfp: the gfp flags for allocating new buffers
493 *
494 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
495 * allocated with the supplied gfp flags. The caller must assure that
496 * @n does not exceed the queue's capacity.
497 */
b1fb1f28 498static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
4d22de3e
DLR
499{
500 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
501 struct rx_desc *d = &q->desc[q->pidx];
b1fb1f28 502 unsigned int count = 0;
4d22de3e
DLR
503
504 while (n--) {
5e68b772 505 dma_addr_t mapping;
b1fb1f28
DLR
506 int err;
507
cf992af5 508 if (q->use_pages) {
5e68b772
DLR
509 if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
510 q->order))) {
cf992af5 511nomem: q->alloc_failed++;
e0994eb1
DLR
512 break;
513 }
5e68b772
DLR
514 mapping = pci_unmap_addr(&sd->pg_chunk, mapping) +
515 sd->pg_chunk.offset;
516 pci_unmap_addr_set(sd, dma_addr, mapping);
517
518 add_one_rx_chunk(mapping, d, q->gen);
519 pci_dma_sync_single_for_device(adap->pdev, mapping,
520 q->buf_size - SGE_PG_RSVD,
521 PCI_DMA_FROMDEVICE);
e0994eb1 522 } else {
5e68b772 523 void *buf_start;
e0994eb1 524
5e68b772 525 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
cf992af5
DLR
526 if (!skb)
527 goto nomem;
e0994eb1 528
cf992af5
DLR
529 sd->skb = skb;
530 buf_start = skb->data;
5e68b772
DLR
531 err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
532 q->gen, adap->pdev);
533 if (unlikely(err)) {
534 clear_rx_desc(adap->pdev, q, sd);
535 break;
536 }
b1fb1f28
DLR
537 }
538
4d22de3e
DLR
539 d++;
540 sd++;
541 if (++q->pidx == q->size) {
542 q->pidx = 0;
543 q->gen ^= 1;
544 sd = q->sdesc;
545 d = q->desc;
546 }
b1fb1f28 547 count++;
4d22de3e 548 }
26b3871d
DLR
549
550 q->credits += count;
551 q->pend_cred += count;
552 ring_fl_db(adap, q);
b1fb1f28
DLR
553
554 return count;
4d22de3e
DLR
555}
556
557static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
558{
26b3871d 559 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
7385ecf3 560 GFP_ATOMIC | __GFP_COMP);
4d22de3e
DLR
561}
562
563/**
564 * recycle_rx_buf - recycle a receive buffer
565 * @adapter: the adapter
566 * @q: the SGE free list
567 * @idx: index of buffer to recycle
568 *
569 * Recycles the specified buffer on the given free list by adding it at
570 * the next available slot on the list.
571 */
572static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
573 unsigned int idx)
574{
575 struct rx_desc *from = &q->desc[idx];
576 struct rx_desc *to = &q->desc[q->pidx];
577
cf992af5 578 q->sdesc[q->pidx] = q->sdesc[idx];
4d22de3e
DLR
579 to->addr_lo = from->addr_lo; /* already big endian */
580 to->addr_hi = from->addr_hi; /* likewise */
581 wmb();
582 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
583 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
4d22de3e
DLR
584
585 if (++q->pidx == q->size) {
586 q->pidx = 0;
587 q->gen ^= 1;
588 }
26b3871d
DLR
589
590 q->credits++;
591 q->pend_cred++;
592 ring_fl_db(adap, q);
4d22de3e
DLR
593}
594
595/**
596 * alloc_ring - allocate resources for an SGE descriptor ring
597 * @pdev: the PCI device
598 * @nelem: the number of descriptors
599 * @elem_size: the size of each descriptor
600 * @sw_size: the size of the SW state associated with each ring element
601 * @phys: the physical address of the allocated ring
602 * @metadata: address of the array holding the SW state for the ring
603 *
604 * Allocates resources for an SGE descriptor ring, such as Tx queues,
605 * free buffer lists, or response queues. Each SGE ring requires
606 * space for its HW descriptors plus, optionally, space for the SW state
607 * associated with each HW entry (the metadata). The function returns
608 * three values: the virtual address for the HW ring (the return value
609 * of the function), the physical address of the HW ring, and the address
610 * of the SW ring.
611 */
612static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
e0994eb1 613 size_t sw_size, dma_addr_t * phys, void *metadata)
4d22de3e
DLR
614{
615 size_t len = nelem * elem_size;
616 void *s = NULL;
617 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
618
619 if (!p)
620 return NULL;
52565544 621 if (sw_size && metadata) {
4d22de3e
DLR
622 s = kcalloc(nelem, sw_size, GFP_KERNEL);
623
624 if (!s) {
625 dma_free_coherent(&pdev->dev, len, p, *phys);
626 return NULL;
627 }
4d22de3e 628 *(void **)metadata = s;
52565544 629 }
4d22de3e
DLR
630 memset(p, 0, len);
631 return p;
632}
633
204e2f98
DLR
634/**
635 * t3_reset_qset - reset a sge qset
636 * @q: the queue set
637 *
638 * Reset the qset structure.
639 * the NAPI structure is preserved in the event of
640 * the qset's reincarnation, for example during EEH recovery.
641 */
642static void t3_reset_qset(struct sge_qset *q)
643{
644 if (q->adap &&
645 !(q->adap->flags & NAPI_INIT)) {
646 memset(q, 0, sizeof(*q));
647 return;
648 }
649
650 q->adap = NULL;
651 memset(&q->rspq, 0, sizeof(q->rspq));
652 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
653 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
654 q->txq_stopped = 0;
20d3fc11 655 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
42c8ea17 656 q->rx_reclaim_timer.function = NULL;
7be2df45 657 q->lro_frag_tbl.nr_frags = q->lro_frag_tbl.len = 0;
204e2f98
DLR
658}
659
660
4d22de3e
DLR
661/**
662 * free_qset - free the resources of an SGE queue set
663 * @adapter: the adapter owning the queue set
664 * @q: the queue set
665 *
666 * Release the HW and SW resources associated with an SGE queue set, such
667 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
668 * queue set must be quiesced prior to calling this.
669 */
9265fabf 670static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
4d22de3e
DLR
671{
672 int i;
673 struct pci_dev *pdev = adapter->pdev;
674
4d22de3e
DLR
675 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
676 if (q->fl[i].desc) {
b1186dee 677 spin_lock_irq(&adapter->sge.reg_lock);
4d22de3e 678 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
b1186dee 679 spin_unlock_irq(&adapter->sge.reg_lock);
4d22de3e
DLR
680 free_rx_bufs(pdev, &q->fl[i]);
681 kfree(q->fl[i].sdesc);
682 dma_free_coherent(&pdev->dev,
683 q->fl[i].size *
684 sizeof(struct rx_desc), q->fl[i].desc,
685 q->fl[i].phys_addr);
686 }
687
688 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
689 if (q->txq[i].desc) {
b1186dee 690 spin_lock_irq(&adapter->sge.reg_lock);
4d22de3e 691 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
b1186dee 692 spin_unlock_irq(&adapter->sge.reg_lock);
4d22de3e
DLR
693 if (q->txq[i].sdesc) {
694 free_tx_desc(adapter, &q->txq[i],
695 q->txq[i].in_use);
696 kfree(q->txq[i].sdesc);
697 }
698 dma_free_coherent(&pdev->dev,
699 q->txq[i].size *
700 sizeof(struct tx_desc),
701 q->txq[i].desc, q->txq[i].phys_addr);
702 __skb_queue_purge(&q->txq[i].sendq);
703 }
704
705 if (q->rspq.desc) {
b1186dee 706 spin_lock_irq(&adapter->sge.reg_lock);
4d22de3e 707 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
b1186dee 708 spin_unlock_irq(&adapter->sge.reg_lock);
4d22de3e
DLR
709 dma_free_coherent(&pdev->dev,
710 q->rspq.size * sizeof(struct rsp_desc),
711 q->rspq.desc, q->rspq.phys_addr);
712 }
713
204e2f98 714 t3_reset_qset(q);
4d22de3e
DLR
715}
716
717/**
718 * init_qset_cntxt - initialize an SGE queue set context info
719 * @qs: the queue set
720 * @id: the queue set id
721 *
722 * Initializes the TIDs and context ids for the queues of a queue set.
723 */
724static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
725{
726 qs->rspq.cntxt_id = id;
727 qs->fl[0].cntxt_id = 2 * id;
728 qs->fl[1].cntxt_id = 2 * id + 1;
729 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
730 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
731 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
732 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
733 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
734}
735
736/**
737 * sgl_len - calculates the size of an SGL of the given capacity
738 * @n: the number of SGL entries
739 *
740 * Calculates the number of flits needed for a scatter/gather list that
741 * can hold the given number of entries.
742 */
743static inline unsigned int sgl_len(unsigned int n)
744{
745 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
746 return (3 * n) / 2 + (n & 1);
747}
748
749/**
750 * flits_to_desc - returns the num of Tx descriptors for the given flits
751 * @n: the number of flits
752 *
753 * Calculates the number of Tx descriptors needed for the supplied number
754 * of flits.
755 */
756static inline unsigned int flits_to_desc(unsigned int n)
757{
758 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
759 return flit_desc_map[n];
760}
761
cf992af5
DLR
762/**
763 * get_packet - return the next ingress packet buffer from a free list
764 * @adap: the adapter that received the packet
765 * @fl: the SGE free list holding the packet
766 * @len: the packet length including any SGE padding
767 * @drop_thres: # of remaining buffers before we start dropping packets
768 *
769 * Get the next packet from a free list and complete setup of the
770 * sk_buff. If the packet is small we make a copy and recycle the
771 * original buffer, otherwise we use the original buffer itself. If a
772 * positive drop threshold is supplied packets are dropped and their
773 * buffers recycled if (a) the number of remaining buffers is under the
774 * threshold and the packet is too big to copy, or (b) the packet should
775 * be copied but there is no memory for the copy.
776 */
777static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
778 unsigned int len, unsigned int drop_thres)
779{
780 struct sk_buff *skb = NULL;
781 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
782
783 prefetch(sd->skb->data);
784 fl->credits--;
785
786 if (len <= SGE_RX_COPY_THRES) {
787 skb = alloc_skb(len, GFP_ATOMIC);
788 if (likely(skb != NULL)) {
789 __skb_put(skb, len);
790 pci_dma_sync_single_for_cpu(adap->pdev,
791 pci_unmap_addr(sd, dma_addr), len,
792 PCI_DMA_FROMDEVICE);
793 memcpy(skb->data, sd->skb->data, len);
794 pci_dma_sync_single_for_device(adap->pdev,
795 pci_unmap_addr(sd, dma_addr), len,
796 PCI_DMA_FROMDEVICE);
797 } else if (!drop_thres)
798 goto use_orig_buf;
799recycle:
800 recycle_rx_buf(adap, fl, fl->cidx);
801 return skb;
802 }
803
26b3871d
DLR
804 if (unlikely(fl->credits < drop_thres) &&
805 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
806 GFP_ATOMIC | __GFP_COMP) == 0)
cf992af5
DLR
807 goto recycle;
808
809use_orig_buf:
810 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
811 fl->buf_size, PCI_DMA_FROMDEVICE);
812 skb = sd->skb;
813 skb_put(skb, len);
814 __refill_fl(adap, fl);
815 return skb;
816}
817
818/**
819 * get_packet_pg - return the next ingress packet buffer from a free list
820 * @adap: the adapter that received the packet
821 * @fl: the SGE free list holding the packet
822 * @len: the packet length including any SGE padding
823 * @drop_thres: # of remaining buffers before we start dropping packets
824 *
825 * Get the next packet from a free list populated with page chunks.
826 * If the packet is small we make a copy and recycle the original buffer,
827 * otherwise we attach the original buffer as a page fragment to a fresh
828 * sk_buff. If a positive drop threshold is supplied packets are dropped
829 * and their buffers recycled if (a) the number of remaining buffers is
830 * under the threshold and the packet is too big to copy, or (b) there's
831 * no system memory.
832 *
833 * Note: this function is similar to @get_packet but deals with Rx buffers
834 * that are page chunks rather than sk_buffs.
835 */
836static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
7385ecf3
DLR
837 struct sge_rspq *q, unsigned int len,
838 unsigned int drop_thres)
cf992af5 839{
7385ecf3 840 struct sk_buff *newskb, *skb;
cf992af5
DLR
841 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
842
5e68b772 843 dma_addr_t dma_addr = pci_unmap_addr(sd, dma_addr);
7385ecf3 844
5e68b772 845 newskb = skb = q->pg_skb;
7385ecf3
DLR
846 if (!skb && (len <= SGE_RX_COPY_THRES)) {
847 newskb = alloc_skb(len, GFP_ATOMIC);
848 if (likely(newskb != NULL)) {
849 __skb_put(newskb, len);
5e68b772 850 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
cf992af5 851 PCI_DMA_FROMDEVICE);
7385ecf3 852 memcpy(newskb->data, sd->pg_chunk.va, len);
5e68b772
DLR
853 pci_dma_sync_single_for_device(adap->pdev, dma_addr,
854 len,
855 PCI_DMA_FROMDEVICE);
cf992af5
DLR
856 } else if (!drop_thres)
857 return NULL;
858recycle:
859 fl->credits--;
860 recycle_rx_buf(adap, fl, fl->cidx);
7385ecf3
DLR
861 q->rx_recycle_buf++;
862 return newskb;
cf992af5
DLR
863 }
864
7385ecf3 865 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
cf992af5
DLR
866 goto recycle;
867
5e68b772
DLR
868 prefetch(sd->pg_chunk.p_cnt);
869
7385ecf3 870 if (!skb)
b47385bd 871 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
5e68b772 872
7385ecf3 873 if (unlikely(!newskb)) {
cf992af5
DLR
874 if (!drop_thres)
875 return NULL;
876 goto recycle;
877 }
878
5e68b772
DLR
879 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
880 PCI_DMA_FROMDEVICE);
881 (*sd->pg_chunk.p_cnt)--;
882 if (!*sd->pg_chunk.p_cnt)
883 pci_unmap_page(adap->pdev,
884 pci_unmap_addr(&sd->pg_chunk, mapping),
885 fl->alloc_size,
886 PCI_DMA_FROMDEVICE);
7385ecf3
DLR
887 if (!skb) {
888 __skb_put(newskb, SGE_RX_PULL_LEN);
889 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
890 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
891 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
892 len - SGE_RX_PULL_LEN);
893 newskb->len = len;
894 newskb->data_len = len - SGE_RX_PULL_LEN;
8f435804 895 newskb->truesize += newskb->data_len;
7385ecf3
DLR
896 } else {
897 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
898 sd->pg_chunk.page,
899 sd->pg_chunk.offset, len);
900 newskb->len += len;
901 newskb->data_len += len;
8f435804 902 newskb->truesize += len;
7385ecf3 903 }
cf992af5
DLR
904
905 fl->credits--;
906 /*
907 * We do not refill FLs here, we let the caller do it to overlap a
908 * prefetch.
909 */
7385ecf3 910 return newskb;
cf992af5
DLR
911}
912
4d22de3e
DLR
913/**
914 * get_imm_packet - return the next ingress packet buffer from a response
915 * @resp: the response descriptor containing the packet data
916 *
917 * Return a packet containing the immediate data of the given response.
918 */
919static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
920{
921 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
922
923 if (skb) {
924 __skb_put(skb, IMMED_PKT_SIZE);
27d7ff46 925 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
4d22de3e
DLR
926 }
927 return skb;
928}
929
930/**
931 * calc_tx_descs - calculate the number of Tx descriptors for a packet
932 * @skb: the packet
933 *
934 * Returns the number of Tx descriptors needed for the given Ethernet
935 * packet. Ethernet packets require addition of WR and CPL headers.
936 */
937static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
938{
939 unsigned int flits;
940
941 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
942 return 1;
943
944 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
945 if (skb_shinfo(skb)->gso_size)
946 flits++;
947 return flits_to_desc(flits);
948}
949
950/**
951 * make_sgl - populate a scatter/gather list for a packet
952 * @skb: the packet
953 * @sgp: the SGL to populate
954 * @start: start address of skb main body data to include in the SGL
955 * @len: length of skb main body data to include in the SGL
956 * @pdev: the PCI device
957 *
958 * Generates a scatter/gather list for the buffers that make up a packet
959 * and returns the SGL size in 8-byte words. The caller must size the SGL
960 * appropriately.
961 */
962static inline unsigned int make_sgl(const struct sk_buff *skb,
963 struct sg_ent *sgp, unsigned char *start,
964 unsigned int len, struct pci_dev *pdev)
965{
966 dma_addr_t mapping;
967 unsigned int i, j = 0, nfrags;
968
969 if (len) {
970 mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
971 sgp->len[0] = cpu_to_be32(len);
972 sgp->addr[0] = cpu_to_be64(mapping);
973 j = 1;
974 }
975
976 nfrags = skb_shinfo(skb)->nr_frags;
977 for (i = 0; i < nfrags; i++) {
978 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
979
980 mapping = pci_map_page(pdev, frag->page, frag->page_offset,
981 frag->size, PCI_DMA_TODEVICE);
982 sgp->len[j] = cpu_to_be32(frag->size);
983 sgp->addr[j] = cpu_to_be64(mapping);
984 j ^= 1;
985 if (j == 0)
986 ++sgp;
987 }
988 if (j)
989 sgp->len[j] = 0;
990 return ((nfrags + (len != 0)) * 3) / 2 + j;
991}
992
993/**
994 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
995 * @adap: the adapter
996 * @q: the Tx queue
997 *
998 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
999 * where the HW is going to sleep just after we checked, however,
1000 * then the interrupt handler will detect the outstanding TX packet
1001 * and ring the doorbell for us.
1002 *
1003 * When GTS is disabled we unconditionally ring the doorbell.
1004 */
1005static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1006{
1007#if USE_GTS
1008 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1009 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1010 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1011 t3_write_reg(adap, A_SG_KDOORBELL,
1012 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1013 }
1014#else
1015 wmb(); /* write descriptors before telling HW */
1016 t3_write_reg(adap, A_SG_KDOORBELL,
1017 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1018#endif
1019}
1020
1021static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1022{
1023#if SGE_NUM_GENBITS == 2
1024 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1025#endif
1026}
1027
1028/**
1029 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
1030 * @ndesc: number of Tx descriptors spanned by the SGL
1031 * @skb: the packet corresponding to the WR
1032 * @d: first Tx descriptor to be written
1033 * @pidx: index of above descriptors
1034 * @q: the SGE Tx queue
1035 * @sgl: the SGL
1036 * @flits: number of flits to the start of the SGL in the first descriptor
1037 * @sgl_flits: the SGL size in flits
1038 * @gen: the Tx descriptor generation
1039 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
1040 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
1041 *
1042 * Write a work request header and an associated SGL. If the SGL is
1043 * small enough to fit into one Tx descriptor it has already been written
1044 * and we just need to write the WR header. Otherwise we distribute the
1045 * SGL across the number of descriptors it spans.
1046 */
1047static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1048 struct tx_desc *d, unsigned int pidx,
1049 const struct sge_txq *q,
1050 const struct sg_ent *sgl,
1051 unsigned int flits, unsigned int sgl_flits,
fb8e4444
AV
1052 unsigned int gen, __be32 wr_hi,
1053 __be32 wr_lo)
4d22de3e
DLR
1054{
1055 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1056 struct tx_sw_desc *sd = &q->sdesc[pidx];
1057
1058 sd->skb = skb;
1059 if (need_skb_unmap()) {
23561c94
DLR
1060 sd->fragidx = 0;
1061 sd->addr_idx = 0;
1062 sd->sflit = flits;
4d22de3e
DLR
1063 }
1064
1065 if (likely(ndesc == 1)) {
23561c94 1066 sd->eop = 1;
4d22de3e
DLR
1067 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1068 V_WR_SGLSFLT(flits)) | wr_hi;
1069 wmb();
1070 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1071 V_WR_GEN(gen)) | wr_lo;
1072 wr_gen2(d, gen);
1073 } else {
1074 unsigned int ogen = gen;
1075 const u64 *fp = (const u64 *)sgl;
1076 struct work_request_hdr *wp = wrp;
1077
1078 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1079 V_WR_SGLSFLT(flits)) | wr_hi;
1080
1081 while (sgl_flits) {
1082 unsigned int avail = WR_FLITS - flits;
1083
1084 if (avail > sgl_flits)
1085 avail = sgl_flits;
1086 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1087 sgl_flits -= avail;
1088 ndesc--;
1089 if (!sgl_flits)
1090 break;
1091
1092 fp += avail;
1093 d++;
23561c94 1094 sd->eop = 0;
4d22de3e
DLR
1095 sd++;
1096 if (++pidx == q->size) {
1097 pidx = 0;
1098 gen ^= 1;
1099 d = q->desc;
1100 sd = q->sdesc;
1101 }
1102
1103 sd->skb = skb;
1104 wrp = (struct work_request_hdr *)d;
1105 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1106 V_WR_SGLSFLT(1)) | wr_hi;
1107 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1108 sgl_flits + 1)) |
1109 V_WR_GEN(gen)) | wr_lo;
1110 wr_gen2(d, gen);
1111 flits = 1;
1112 }
23561c94 1113 sd->eop = 1;
4d22de3e
DLR
1114 wrp->wr_hi |= htonl(F_WR_EOP);
1115 wmb();
1116 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1117 wr_gen2((struct tx_desc *)wp, ogen);
1118 WARN_ON(ndesc != 0);
1119 }
1120}
1121
1122/**
1123 * write_tx_pkt_wr - write a TX_PKT work request
1124 * @adap: the adapter
1125 * @skb: the packet to send
1126 * @pi: the egress interface
1127 * @pidx: index of the first Tx descriptor to write
1128 * @gen: the generation value to use
1129 * @q: the Tx queue
1130 * @ndesc: number of descriptors the packet will occupy
1131 * @compl: the value of the COMPL bit to use
1132 *
1133 * Generate a TX_PKT work request to send the supplied packet.
1134 */
1135static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1136 const struct port_info *pi,
1137 unsigned int pidx, unsigned int gen,
1138 struct sge_txq *q, unsigned int ndesc,
1139 unsigned int compl)
1140{
1141 unsigned int flits, sgl_flits, cntrl, tso_info;
1142 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1143 struct tx_desc *d = &q->desc[pidx];
1144 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1145
3fa58c88 1146 cpl->len = htonl(skb->len);
4d22de3e
DLR
1147 cntrl = V_TXPKT_INTF(pi->port_id);
1148
1149 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1150 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
1151
1152 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1153 if (tso_info) {
1154 int eth_type;
1155 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1156
1157 d->flit[2] = 0;
1158 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1159 hdr->cntrl = htonl(cntrl);
bbe735e4 1160 eth_type = skb_network_offset(skb) == ETH_HLEN ?
4d22de3e
DLR
1161 CPL_ETH_II : CPL_ETH_II_VLAN;
1162 tso_info |= V_LSO_ETH_TYPE(eth_type) |
eddc9ec5 1163 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
aa8223c7 1164 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
4d22de3e
DLR
1165 hdr->lso_info = htonl(tso_info);
1166 flits = 3;
1167 } else {
1168 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1169 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1170 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1171 cpl->cntrl = htonl(cntrl);
1172
1173 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1174 q->sdesc[pidx].skb = NULL;
1175 if (!skb->data_len)
d626f62b
ACM
1176 skb_copy_from_linear_data(skb, &d->flit[2],
1177 skb->len);
4d22de3e
DLR
1178 else
1179 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1180
1181 flits = (skb->len + 7) / 8 + 2;
1182 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1183 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1184 | F_WR_SOP | F_WR_EOP | compl);
1185 wmb();
1186 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1187 V_WR_TID(q->token));
1188 wr_gen2(d, gen);
1189 kfree_skb(skb);
1190 return;
1191 }
1192
1193 flits = 2;
1194 }
1195
1196 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1197 sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
4d22de3e
DLR
1198
1199 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1200 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1201 htonl(V_WR_TID(q->token)));
1202}
1203
82ad3329
DLR
1204static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1205 struct sge_qset *qs, struct sge_txq *q)
a8cc21f6 1206{
82ad3329 1207 netif_tx_stop_queue(txq);
a8cc21f6
KK
1208 set_bit(TXQ_ETH, &qs->txq_stopped);
1209 q->stops++;
1210}
1211
4d22de3e
DLR
1212/**
1213 * eth_xmit - add a packet to the Ethernet Tx queue
1214 * @skb: the packet
1215 * @dev: the egress net device
1216 *
1217 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1218 */
1219int t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1220{
82ad3329 1221 int qidx;
4d22de3e
DLR
1222 unsigned int ndesc, pidx, credits, gen, compl;
1223 const struct port_info *pi = netdev_priv(dev);
5fbf816f 1224 struct adapter *adap = pi->adapter;
82ad3329
DLR
1225 struct netdev_queue *txq;
1226 struct sge_qset *qs;
1227 struct sge_txq *q;
4d22de3e
DLR
1228
1229 /*
1230 * The chip min packet length is 9 octets but play safe and reject
1231 * anything shorter than an Ethernet header.
1232 */
1233 if (unlikely(skb->len < ETH_HLEN)) {
1234 dev_kfree_skb(skb);
1235 return NETDEV_TX_OK;
1236 }
1237
82ad3329
DLR
1238 qidx = skb_get_queue_mapping(skb);
1239 qs = &pi->qs[qidx];
1240 q = &qs->txq[TXQ_ETH];
1241 txq = netdev_get_tx_queue(dev, qidx);
1242
4d22de3e 1243 spin_lock(&q->lock);
42c8ea17 1244 reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
4d22de3e
DLR
1245
1246 credits = q->size - q->in_use;
1247 ndesc = calc_tx_descs(skb);
1248
1249 if (unlikely(credits < ndesc)) {
82ad3329 1250 t3_stop_tx_queue(txq, qs, q);
a8cc21f6
KK
1251 dev_err(&adap->pdev->dev,
1252 "%s: Tx ring %u full while queue awake!\n",
1253 dev->name, q->cntxt_id & 7);
4d22de3e
DLR
1254 spin_unlock(&q->lock);
1255 return NETDEV_TX_BUSY;
1256 }
1257
1258 q->in_use += ndesc;
cd7e9034 1259 if (unlikely(credits - ndesc < q->stop_thres)) {
82ad3329 1260 t3_stop_tx_queue(txq, qs, q);
cd7e9034
DLR
1261
1262 if (should_restart_tx(q) &&
1263 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1264 q->restarts++;
82ad3329 1265 netif_tx_wake_queue(txq);
cd7e9034
DLR
1266 }
1267 }
4d22de3e
DLR
1268
1269 gen = q->gen;
1270 q->unacked += ndesc;
1271 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1272 q->unacked &= 7;
1273 pidx = q->pidx;
1274 q->pidx += ndesc;
1275 if (q->pidx >= q->size) {
1276 q->pidx -= q->size;
1277 q->gen ^= 1;
1278 }
1279
1280 /* update port statistics */
1281 if (skb->ip_summed == CHECKSUM_COMPLETE)
1282 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1283 if (skb_shinfo(skb)->gso_size)
1284 qs->port_stats[SGE_PSTAT_TSO]++;
1285 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1286 qs->port_stats[SGE_PSTAT_VLANINS]++;
1287
1288 dev->trans_start = jiffies;
1289 spin_unlock(&q->lock);
1290
1291 /*
1292 * We do not use Tx completion interrupts to free DMAd Tx packets.
1293 * This is good for performamce but means that we rely on new Tx
1294 * packets arriving to run the destructors of completed packets,
1295 * which open up space in their sockets' send queues. Sometimes
1296 * we do not get such new packets causing Tx to stall. A single
1297 * UDP transmitter is a good example of this situation. We have
1298 * a clean up timer that periodically reclaims completed packets
1299 * but it doesn't run often enough (nor do we want it to) to prevent
1300 * lengthy stalls. A solution to this problem is to run the
1301 * destructor early, after the packet is queued but before it's DMAd.
1302 * A cons is that we lie to socket memory accounting, but the amount
1303 * of extra memory is reasonable (limited by the number of Tx
1304 * descriptors), the packets do actually get freed quickly by new
1305 * packets almost always, and for protocols like TCP that wait for
1306 * acks to really free up the data the extra memory is even less.
1307 * On the positive side we run the destructors on the sending CPU
1308 * rather than on a potentially different completing CPU, usually a
1309 * good thing. We also run them without holding our Tx queue lock,
1310 * unlike what reclaim_completed_tx() would otherwise do.
1311 *
1312 * Run the destructor before telling the DMA engine about the packet
1313 * to make sure it doesn't complete and get freed prematurely.
1314 */
1315 if (likely(!skb_shared(skb)))
1316 skb_orphan(skb);
1317
1318 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1319 check_ring_tx_db(adap, q);
1320 return NETDEV_TX_OK;
1321}
1322
1323/**
1324 * write_imm - write a packet into a Tx descriptor as immediate data
1325 * @d: the Tx descriptor to write
1326 * @skb: the packet
1327 * @len: the length of packet data to write as immediate data
1328 * @gen: the generation bit value to write
1329 *
1330 * Writes a packet as immediate data into a Tx descriptor. The packet
1331 * contains a work request at its beginning. We must write the packet
27186dc3
DLR
1332 * carefully so the SGE doesn't read it accidentally before it's written
1333 * in its entirety.
4d22de3e
DLR
1334 */
1335static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1336 unsigned int len, unsigned int gen)
1337{
1338 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1339 struct work_request_hdr *to = (struct work_request_hdr *)d;
1340
27186dc3
DLR
1341 if (likely(!skb->data_len))
1342 memcpy(&to[1], &from[1], len - sizeof(*from));
1343 else
1344 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1345
4d22de3e
DLR
1346 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1347 V_WR_BCNTLFLT(len & 7));
1348 wmb();
1349 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1350 V_WR_LEN((len + 7) / 8));
1351 wr_gen2(d, gen);
1352 kfree_skb(skb);
1353}
1354
1355/**
1356 * check_desc_avail - check descriptor availability on a send queue
1357 * @adap: the adapter
1358 * @q: the send queue
1359 * @skb: the packet needing the descriptors
1360 * @ndesc: the number of Tx descriptors needed
1361 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1362 *
1363 * Checks if the requested number of Tx descriptors is available on an
1364 * SGE send queue. If the queue is already suspended or not enough
1365 * descriptors are available the packet is queued for later transmission.
1366 * Must be called with the Tx queue locked.
1367 *
1368 * Returns 0 if enough descriptors are available, 1 if there aren't
1369 * enough descriptors and the packet has been queued, and 2 if the caller
1370 * needs to retry because there weren't enough descriptors at the
1371 * beginning of the call but some freed up in the mean time.
1372 */
1373static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1374 struct sk_buff *skb, unsigned int ndesc,
1375 unsigned int qid)
1376{
1377 if (unlikely(!skb_queue_empty(&q->sendq))) {
1378 addq_exit:__skb_queue_tail(&q->sendq, skb);
1379 return 1;
1380 }
1381 if (unlikely(q->size - q->in_use < ndesc)) {
1382 struct sge_qset *qs = txq_to_qset(q, qid);
1383
1384 set_bit(qid, &qs->txq_stopped);
1385 smp_mb__after_clear_bit();
1386
1387 if (should_restart_tx(q) &&
1388 test_and_clear_bit(qid, &qs->txq_stopped))
1389 return 2;
1390
1391 q->stops++;
1392 goto addq_exit;
1393 }
1394 return 0;
1395}
1396
1397/**
1398 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1399 * @q: the SGE control Tx queue
1400 *
1401 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1402 * that send only immediate data (presently just the control queues) and
1403 * thus do not have any sk_buffs to release.
1404 */
1405static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1406{
1407 unsigned int reclaim = q->processed - q->cleaned;
1408
1409 q->in_use -= reclaim;
1410 q->cleaned += reclaim;
1411}
1412
1413static inline int immediate(const struct sk_buff *skb)
1414{
27186dc3 1415 return skb->len <= WR_LEN;
4d22de3e
DLR
1416}
1417
1418/**
1419 * ctrl_xmit - send a packet through an SGE control Tx queue
1420 * @adap: the adapter
1421 * @q: the control queue
1422 * @skb: the packet
1423 *
1424 * Send a packet through an SGE control Tx queue. Packets sent through
1425 * a control queue must fit entirely as immediate data in a single Tx
1426 * descriptor and have no page fragments.
1427 */
1428static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1429 struct sk_buff *skb)
1430{
1431 int ret;
1432 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1433
1434 if (unlikely(!immediate(skb))) {
1435 WARN_ON(1);
1436 dev_kfree_skb(skb);
1437 return NET_XMIT_SUCCESS;
1438 }
1439
1440 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1441 wrp->wr_lo = htonl(V_WR_TID(q->token));
1442
1443 spin_lock(&q->lock);
1444 again:reclaim_completed_tx_imm(q);
1445
1446 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1447 if (unlikely(ret)) {
1448 if (ret == 1) {
1449 spin_unlock(&q->lock);
1450 return NET_XMIT_CN;
1451 }
1452 goto again;
1453 }
1454
1455 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1456
1457 q->in_use++;
1458 if (++q->pidx >= q->size) {
1459 q->pidx = 0;
1460 q->gen ^= 1;
1461 }
1462 spin_unlock(&q->lock);
1463 wmb();
1464 t3_write_reg(adap, A_SG_KDOORBELL,
1465 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1466 return NET_XMIT_SUCCESS;
1467}
1468
1469/**
1470 * restart_ctrlq - restart a suspended control queue
1471 * @qs: the queue set cotaining the control queue
1472 *
1473 * Resumes transmission on a suspended Tx control queue.
1474 */
1475static void restart_ctrlq(unsigned long data)
1476{
1477 struct sk_buff *skb;
1478 struct sge_qset *qs = (struct sge_qset *)data;
1479 struct sge_txq *q = &qs->txq[TXQ_CTRL];
4d22de3e
DLR
1480
1481 spin_lock(&q->lock);
1482 again:reclaim_completed_tx_imm(q);
1483
bea3348e
SH
1484 while (q->in_use < q->size &&
1485 (skb = __skb_dequeue(&q->sendq)) != NULL) {
4d22de3e
DLR
1486
1487 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1488
1489 if (++q->pidx >= q->size) {
1490 q->pidx = 0;
1491 q->gen ^= 1;
1492 }
1493 q->in_use++;
1494 }
1495
1496 if (!skb_queue_empty(&q->sendq)) {
1497 set_bit(TXQ_CTRL, &qs->txq_stopped);
1498 smp_mb__after_clear_bit();
1499
1500 if (should_restart_tx(q) &&
1501 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1502 goto again;
1503 q->stops++;
1504 }
1505
1506 spin_unlock(&q->lock);
afefce66 1507 wmb();
bea3348e 1508 t3_write_reg(qs->adap, A_SG_KDOORBELL,
4d22de3e
DLR
1509 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1510}
1511
14ab9892
DLR
1512/*
1513 * Send a management message through control queue 0
1514 */
1515int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1516{
204e2f98 1517 int ret;
bc4b6b52
DLR
1518 local_bh_disable();
1519 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1520 local_bh_enable();
1521
1522 return ret;
14ab9892
DLR
1523}
1524
99d7cf30
DLR
1525/**
1526 * deferred_unmap_destructor - unmap a packet when it is freed
1527 * @skb: the packet
1528 *
1529 * This is the packet destructor used for Tx packets that need to remain
1530 * mapped until they are freed rather than until their Tx descriptors are
1531 * freed.
1532 */
1533static void deferred_unmap_destructor(struct sk_buff *skb)
1534{
1535 int i;
1536 const dma_addr_t *p;
1537 const struct skb_shared_info *si;
1538 const struct deferred_unmap_info *dui;
99d7cf30
DLR
1539
1540 dui = (struct deferred_unmap_info *)skb->head;
1541 p = dui->addr;
1542
23561c94
DLR
1543 if (skb->tail - skb->transport_header)
1544 pci_unmap_single(dui->pdev, *p++,
1545 skb->tail - skb->transport_header,
1546 PCI_DMA_TODEVICE);
99d7cf30
DLR
1547
1548 si = skb_shinfo(skb);
1549 for (i = 0; i < si->nr_frags; i++)
1550 pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
1551 PCI_DMA_TODEVICE);
1552}
1553
1554static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1555 const struct sg_ent *sgl, int sgl_flits)
1556{
1557 dma_addr_t *p;
1558 struct deferred_unmap_info *dui;
1559
1560 dui = (struct deferred_unmap_info *)skb->head;
1561 dui->pdev = pdev;
1562 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1563 *p++ = be64_to_cpu(sgl->addr[0]);
1564 *p++ = be64_to_cpu(sgl->addr[1]);
1565 }
1566 if (sgl_flits)
1567 *p = be64_to_cpu(sgl->addr[0]);
1568}
1569
4d22de3e
DLR
1570/**
1571 * write_ofld_wr - write an offload work request
1572 * @adap: the adapter
1573 * @skb: the packet to send
1574 * @q: the Tx queue
1575 * @pidx: index of the first Tx descriptor to write
1576 * @gen: the generation value to use
1577 * @ndesc: number of descriptors the packet will occupy
1578 *
1579 * Write an offload work request to send the supplied packet. The packet
1580 * data already carry the work request with most fields populated.
1581 */
1582static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1583 struct sge_txq *q, unsigned int pidx,
1584 unsigned int gen, unsigned int ndesc)
1585{
1586 unsigned int sgl_flits, flits;
1587 struct work_request_hdr *from;
1588 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1589 struct tx_desc *d = &q->desc[pidx];
1590
1591 if (immediate(skb)) {
1592 q->sdesc[pidx].skb = NULL;
1593 write_imm(d, skb, skb->len, gen);
1594 return;
1595 }
1596
1597 /* Only TX_DATA builds SGLs */
1598
1599 from = (struct work_request_hdr *)skb->data;
ea2ae17d
ACM
1600 memcpy(&d->flit[1], &from[1],
1601 skb_transport_offset(skb) - sizeof(*from));
4d22de3e 1602
ea2ae17d 1603 flits = skb_transport_offset(skb) / 8;
4d22de3e 1604 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
9c70220b 1605 sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
27a884dc 1606 skb->tail - skb->transport_header,
4d22de3e 1607 adap->pdev);
99d7cf30
DLR
1608 if (need_skb_unmap()) {
1609 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1610 skb->destructor = deferred_unmap_destructor;
99d7cf30 1611 }
4d22de3e
DLR
1612
1613 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1614 gen, from->wr_hi, from->wr_lo);
1615}
1616
1617/**
1618 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1619 * @skb: the packet
1620 *
1621 * Returns the number of Tx descriptors needed for the given offload
1622 * packet. These packets are already fully constructed.
1623 */
1624static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1625{
27186dc3 1626 unsigned int flits, cnt;
4d22de3e 1627
27186dc3 1628 if (skb->len <= WR_LEN)
4d22de3e
DLR
1629 return 1; /* packet fits as immediate data */
1630
ea2ae17d 1631 flits = skb_transport_offset(skb) / 8; /* headers */
27186dc3 1632 cnt = skb_shinfo(skb)->nr_frags;
27a884dc 1633 if (skb->tail != skb->transport_header)
4d22de3e
DLR
1634 cnt++;
1635 return flits_to_desc(flits + sgl_len(cnt));
1636}
1637
1638/**
1639 * ofld_xmit - send a packet through an offload queue
1640 * @adap: the adapter
1641 * @q: the Tx offload queue
1642 * @skb: the packet
1643 *
1644 * Send an offload packet through an SGE offload queue.
1645 */
1646static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1647 struct sk_buff *skb)
1648{
1649 int ret;
1650 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1651
1652 spin_lock(&q->lock);
42c8ea17 1653again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
4d22de3e
DLR
1654
1655 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1656 if (unlikely(ret)) {
1657 if (ret == 1) {
1658 skb->priority = ndesc; /* save for restart */
1659 spin_unlock(&q->lock);
1660 return NET_XMIT_CN;
1661 }
1662 goto again;
1663 }
1664
1665 gen = q->gen;
1666 q->in_use += ndesc;
1667 pidx = q->pidx;
1668 q->pidx += ndesc;
1669 if (q->pidx >= q->size) {
1670 q->pidx -= q->size;
1671 q->gen ^= 1;
1672 }
1673 spin_unlock(&q->lock);
1674
1675 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1676 check_ring_tx_db(adap, q);
1677 return NET_XMIT_SUCCESS;
1678}
1679
1680/**
1681 * restart_offloadq - restart a suspended offload queue
1682 * @qs: the queue set cotaining the offload queue
1683 *
1684 * Resumes transmission on a suspended Tx offload queue.
1685 */
1686static void restart_offloadq(unsigned long data)
1687{
1688 struct sk_buff *skb;
1689 struct sge_qset *qs = (struct sge_qset *)data;
1690 struct sge_txq *q = &qs->txq[TXQ_OFLD];
5fbf816f
DLR
1691 const struct port_info *pi = netdev_priv(qs->netdev);
1692 struct adapter *adap = pi->adapter;
4d22de3e
DLR
1693
1694 spin_lock(&q->lock);
42c8ea17 1695again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
4d22de3e
DLR
1696
1697 while ((skb = skb_peek(&q->sendq)) != NULL) {
1698 unsigned int gen, pidx;
1699 unsigned int ndesc = skb->priority;
1700
1701 if (unlikely(q->size - q->in_use < ndesc)) {
1702 set_bit(TXQ_OFLD, &qs->txq_stopped);
1703 smp_mb__after_clear_bit();
1704
1705 if (should_restart_tx(q) &&
1706 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1707 goto again;
1708 q->stops++;
1709 break;
1710 }
1711
1712 gen = q->gen;
1713 q->in_use += ndesc;
1714 pidx = q->pidx;
1715 q->pidx += ndesc;
1716 if (q->pidx >= q->size) {
1717 q->pidx -= q->size;
1718 q->gen ^= 1;
1719 }
1720 __skb_unlink(skb, &q->sendq);
1721 spin_unlock(&q->lock);
1722
1723 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1724 spin_lock(&q->lock);
1725 }
1726 spin_unlock(&q->lock);
1727
1728#if USE_GTS
1729 set_bit(TXQ_RUNNING, &q->flags);
1730 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1731#endif
afefce66 1732 wmb();
4d22de3e
DLR
1733 t3_write_reg(adap, A_SG_KDOORBELL,
1734 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1735}
1736
1737/**
1738 * queue_set - return the queue set a packet should use
1739 * @skb: the packet
1740 *
1741 * Maps a packet to the SGE queue set it should use. The desired queue
1742 * set is carried in bits 1-3 in the packet's priority.
1743 */
1744static inline int queue_set(const struct sk_buff *skb)
1745{
1746 return skb->priority >> 1;
1747}
1748
1749/**
1750 * is_ctrl_pkt - return whether an offload packet is a control packet
1751 * @skb: the packet
1752 *
1753 * Determines whether an offload packet should use an OFLD or a CTRL
1754 * Tx queue. This is indicated by bit 0 in the packet's priority.
1755 */
1756static inline int is_ctrl_pkt(const struct sk_buff *skb)
1757{
1758 return skb->priority & 1;
1759}
1760
1761/**
1762 * t3_offload_tx - send an offload packet
1763 * @tdev: the offload device to send to
1764 * @skb: the packet
1765 *
1766 * Sends an offload packet. We use the packet priority to select the
1767 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1768 * should be sent as regular or control, bits 1-3 select the queue set.
1769 */
1770int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1771{
1772 struct adapter *adap = tdev2adap(tdev);
1773 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1774
1775 if (unlikely(is_ctrl_pkt(skb)))
1776 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1777
1778 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1779}
1780
1781/**
1782 * offload_enqueue - add an offload packet to an SGE offload receive queue
1783 * @q: the SGE response queue
1784 * @skb: the packet
1785 *
1786 * Add a new offload packet to an SGE response queue's offload packet
1787 * queue. If the packet is the first on the queue it schedules the RX
1788 * softirq to process the queue.
1789 */
1790static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1791{
147e70e6
DM
1792 int was_empty = skb_queue_empty(&q->rx_queue);
1793
1794 __skb_queue_tail(&q->rx_queue, skb);
1795
1796 if (was_empty) {
4d22de3e
DLR
1797 struct sge_qset *qs = rspq_to_qset(q);
1798
bea3348e 1799 napi_schedule(&qs->napi);
4d22de3e 1800 }
4d22de3e
DLR
1801}
1802
1803/**
1804 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1805 * @tdev: the offload device that will be receiving the packets
1806 * @q: the SGE response queue that assembled the bundle
1807 * @skbs: the partial bundle
1808 * @n: the number of packets in the bundle
1809 *
1810 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1811 */
1812static inline void deliver_partial_bundle(struct t3cdev *tdev,
1813 struct sge_rspq *q,
1814 struct sk_buff *skbs[], int n)
1815{
1816 if (n) {
1817 q->offload_bundles++;
1818 tdev->recv(tdev, skbs, n);
1819 }
1820}
1821
1822/**
1823 * ofld_poll - NAPI handler for offload packets in interrupt mode
1824 * @dev: the network device doing the polling
1825 * @budget: polling budget
1826 *
1827 * The NAPI handler for offload packets when a response queue is serviced
1828 * by the hard interrupt handler, i.e., when it's operating in non-polling
1829 * mode. Creates small packet batches and sends them through the offload
1830 * receive handler. Batches need to be of modest size as we do prefetches
1831 * on the packets in each.
1832 */
bea3348e 1833static int ofld_poll(struct napi_struct *napi, int budget)
4d22de3e 1834{
bea3348e 1835 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
4d22de3e 1836 struct sge_rspq *q = &qs->rspq;
bea3348e
SH
1837 struct adapter *adapter = qs->adap;
1838 int work_done = 0;
4d22de3e 1839
bea3348e 1840 while (work_done < budget) {
147e70e6
DM
1841 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1842 struct sk_buff_head queue;
4d22de3e
DLR
1843 int ngathered;
1844
1845 spin_lock_irq(&q->lock);
147e70e6
DM
1846 __skb_queue_head_init(&queue);
1847 skb_queue_splice_init(&q->rx_queue, &queue);
1848 if (skb_queue_empty(&queue)) {
bea3348e 1849 napi_complete(napi);
4d22de3e 1850 spin_unlock_irq(&q->lock);
bea3348e 1851 return work_done;
4d22de3e 1852 }
4d22de3e
DLR
1853 spin_unlock_irq(&q->lock);
1854
147e70e6
DM
1855 ngathered = 0;
1856 skb_queue_walk_safe(&queue, skb, tmp) {
1857 if (work_done >= budget)
1858 break;
1859 work_done++;
1860
1861 __skb_unlink(skb, &queue);
1862 prefetch(skb->data);
1863 skbs[ngathered] = skb;
4d22de3e
DLR
1864 if (++ngathered == RX_BUNDLE_SIZE) {
1865 q->offload_bundles++;
1866 adapter->tdev.recv(&adapter->tdev, skbs,
1867 ngathered);
1868 ngathered = 0;
1869 }
1870 }
147e70e6
DM
1871 if (!skb_queue_empty(&queue)) {
1872 /* splice remaining packets back onto Rx queue */
4d22de3e 1873 spin_lock_irq(&q->lock);
147e70e6 1874 skb_queue_splice(&queue, &q->rx_queue);
4d22de3e
DLR
1875 spin_unlock_irq(&q->lock);
1876 }
1877 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1878 }
bea3348e
SH
1879
1880 return work_done;
4d22de3e
DLR
1881}
1882
1883/**
1884 * rx_offload - process a received offload packet
1885 * @tdev: the offload device receiving the packet
1886 * @rq: the response queue that received the packet
1887 * @skb: the packet
1888 * @rx_gather: a gather list of packets if we are building a bundle
1889 * @gather_idx: index of the next available slot in the bundle
1890 *
1891 * Process an ingress offload pakcet and add it to the offload ingress
1892 * queue. Returns the index of the next available slot in the bundle.
1893 */
1894static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1895 struct sk_buff *skb, struct sk_buff *rx_gather[],
1896 unsigned int gather_idx)
1897{
459a98ed 1898 skb_reset_mac_header(skb);
c1d2bbe1 1899 skb_reset_network_header(skb);
badff6d0 1900 skb_reset_transport_header(skb);
4d22de3e
DLR
1901
1902 if (rq->polling) {
1903 rx_gather[gather_idx++] = skb;
1904 if (gather_idx == RX_BUNDLE_SIZE) {
1905 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1906 gather_idx = 0;
1907 rq->offload_bundles++;
1908 }
1909 } else
1910 offload_enqueue(rq, skb);
1911
1912 return gather_idx;
1913}
1914
4d22de3e
DLR
1915/**
1916 * restart_tx - check whether to restart suspended Tx queues
1917 * @qs: the queue set to resume
1918 *
1919 * Restarts suspended Tx queues of an SGE queue set if they have enough
1920 * free resources to resume operation.
1921 */
1922static void restart_tx(struct sge_qset *qs)
1923{
1924 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1925 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1926 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1927 qs->txq[TXQ_ETH].restarts++;
1928 if (netif_running(qs->netdev))
82ad3329 1929 netif_tx_wake_queue(qs->tx_q);
4d22de3e
DLR
1930 }
1931
1932 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1933 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1934 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1935 qs->txq[TXQ_OFLD].restarts++;
1936 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1937 }
1938 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1939 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1940 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1941 qs->txq[TXQ_CTRL].restarts++;
1942 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1943 }
1944}
1945
a109a5b9
KX
1946/**
1947 * cxgb3_arp_process - process an ARP request probing a private IP address
1948 * @adapter: the adapter
1949 * @skb: the skbuff containing the ARP request
1950 *
1951 * Check if the ARP request is probing the private IP address
1952 * dedicated to iSCSI, generate an ARP reply if so.
1953 */
1954static void cxgb3_arp_process(struct adapter *adapter, struct sk_buff *skb)
1955{
1956 struct net_device *dev = skb->dev;
1957 struct port_info *pi;
1958 struct arphdr *arp;
1959 unsigned char *arp_ptr;
1960 unsigned char *sha;
1961 __be32 sip, tip;
1962
1963 if (!dev)
1964 return;
1965
1966 skb_reset_network_header(skb);
1967 arp = arp_hdr(skb);
1968
1969 if (arp->ar_op != htons(ARPOP_REQUEST))
1970 return;
1971
1972 arp_ptr = (unsigned char *)(arp + 1);
1973 sha = arp_ptr;
1974 arp_ptr += dev->addr_len;
1975 memcpy(&sip, arp_ptr, sizeof(sip));
1976 arp_ptr += sizeof(sip);
1977 arp_ptr += dev->addr_len;
1978 memcpy(&tip, arp_ptr, sizeof(tip));
1979
1980 pi = netdev_priv(dev);
1981 if (tip != pi->iscsi_ipv4addr)
1982 return;
1983
1984 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
1985 dev->dev_addr, sha);
1986
1987}
1988
1989static inline int is_arp(struct sk_buff *skb)
1990{
1991 return skb->protocol == htons(ETH_P_ARP);
1992}
1993
4d22de3e
DLR
1994/**
1995 * rx_eth - process an ingress ethernet packet
1996 * @adap: the adapter
1997 * @rq: the response queue that received the packet
1998 * @skb: the packet
1999 * @pad: amount of padding at the start of the buffer
2000 *
2001 * Process an ingress ethernet pakcet and deliver it to the stack.
2002 * The padding is 2 if the packet was delivered in an Rx buffer and 0
2003 * if it was immediate data in a response.
2004 */
2005static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
b47385bd 2006 struct sk_buff *skb, int pad, int lro)
4d22de3e
DLR
2007{
2008 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
b47385bd 2009 struct sge_qset *qs = rspq_to_qset(rq);
4d22de3e
DLR
2010 struct port_info *pi;
2011
4d22de3e 2012 skb_pull(skb, sizeof(*p) + pad);
4c13eb66 2013 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
4d22de3e 2014 pi = netdev_priv(skb->dev);
5e68b772
DLR
2015 if ((pi->rx_offload & T3_RX_CSUM) && p->csum_valid &&
2016 p->csum == htons(0xffff) && !p->fragment) {
a109a5b9 2017 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
4d22de3e
DLR
2018 skb->ip_summed = CHECKSUM_UNNECESSARY;
2019 } else
2020 skb->ip_summed = CHECKSUM_NONE;
0c8dfc83 2021 skb_record_rx_queue(skb, qs - &adap->sge.qs[0]);
4d22de3e
DLR
2022
2023 if (unlikely(p->vlan_valid)) {
2024 struct vlan_group *grp = pi->vlan_grp;
2025
b47385bd 2026 qs->port_stats[SGE_PSTAT_VLANEX]++;
4d22de3e 2027 if (likely(grp))
b47385bd 2028 if (lro)
7be2df45
HX
2029 vlan_gro_receive(&qs->napi, grp,
2030 ntohs(p->vlan), skb);
a109a5b9
KX
2031 else {
2032 if (unlikely(pi->iscsi_ipv4addr &&
2033 is_arp(skb))) {
2034 unsigned short vtag = ntohs(p->vlan) &
2035 VLAN_VID_MASK;
2036 skb->dev = vlan_group_get_device(grp,
2037 vtag);
2038 cxgb3_arp_process(adap, skb);
2039 }
b47385bd
DLR
2040 __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
2041 rq->polling);
a109a5b9 2042 }
4d22de3e
DLR
2043 else
2044 dev_kfree_skb_any(skb);
b47385bd
DLR
2045 } else if (rq->polling) {
2046 if (lro)
7be2df45 2047 napi_gro_receive(&qs->napi, skb);
a109a5b9
KX
2048 else {
2049 if (unlikely(pi->iscsi_ipv4addr && is_arp(skb)))
2050 cxgb3_arp_process(adap, skb);
b47385bd 2051 netif_receive_skb(skb);
a109a5b9 2052 }
b47385bd 2053 } else
4d22de3e
DLR
2054 netif_rx(skb);
2055}
2056
b47385bd
DLR
2057static inline int is_eth_tcp(u32 rss)
2058{
2059 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2060}
2061
b47385bd
DLR
2062/**
2063 * lro_add_page - add a page chunk to an LRO session
2064 * @adap: the adapter
2065 * @qs: the associated queue set
2066 * @fl: the free list containing the page chunk to add
2067 * @len: packet length
2068 * @complete: Indicates the last fragment of a frame
2069 *
2070 * Add a received packet contained in a page chunk to an existing LRO
2071 * session.
2072 */
2073static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2074 struct sge_fl *fl, int len, int complete)
2075{
2076 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2077 struct cpl_rx_pkt *cpl;
7be2df45
HX
2078 struct skb_frag_struct *rx_frag = qs->lro_frag_tbl.frags;
2079 int nr_frags = qs->lro_frag_tbl.nr_frags;
2080 int frag_len = qs->lro_frag_tbl.len;
b47385bd
DLR
2081 int offset = 0;
2082
2083 if (!nr_frags) {
2084 offset = 2 + sizeof(struct cpl_rx_pkt);
2085 qs->lro_va = cpl = sd->pg_chunk.va + 2;
2086 }
2087
2088 fl->credits--;
2089
2090 len -= offset;
5e68b772
DLR
2091 pci_dma_sync_single_for_cpu(adap->pdev,
2092 pci_unmap_addr(sd, dma_addr),
2093 fl->buf_size - SGE_PG_RSVD,
2094 PCI_DMA_FROMDEVICE);
2095
2096 (*sd->pg_chunk.p_cnt)--;
2097 if (!*sd->pg_chunk.p_cnt)
2098 pci_unmap_page(adap->pdev,
2099 pci_unmap_addr(&sd->pg_chunk, mapping),
2100 fl->alloc_size,
2101 PCI_DMA_FROMDEVICE);
b47385bd 2102
5e68b772 2103 prefetch(qs->lro_va);
b2b964f0 2104
b47385bd
DLR
2105 rx_frag += nr_frags;
2106 rx_frag->page = sd->pg_chunk.page;
2107 rx_frag->page_offset = sd->pg_chunk.offset + offset;
2108 rx_frag->size = len;
2109 frag_len += len;
7be2df45
HX
2110 qs->lro_frag_tbl.nr_frags++;
2111 qs->lro_frag_tbl.len = frag_len;
b47385bd 2112
5e68b772 2113
b47385bd
DLR
2114 if (!complete)
2115 return;
2116
7be2df45 2117 qs->lro_frag_tbl.ip_summed = CHECKSUM_UNNECESSARY;
b47385bd
DLR
2118 cpl = qs->lro_va;
2119
2120 if (unlikely(cpl->vlan_valid)) {
2121 struct net_device *dev = qs->netdev;
2122 struct port_info *pi = netdev_priv(dev);
2123 struct vlan_group *grp = pi->vlan_grp;
2124
2125 if (likely(grp != NULL)) {
7be2df45
HX
2126 vlan_gro_frags(&qs->napi, grp, ntohs(cpl->vlan),
2127 &qs->lro_frag_tbl);
2128 goto out;
b47385bd
DLR
2129 }
2130 }
7be2df45 2131 napi_gro_frags(&qs->napi, &qs->lro_frag_tbl);
b47385bd 2132
7be2df45
HX
2133out:
2134 qs->lro_frag_tbl.nr_frags = qs->lro_frag_tbl.len = 0;
b47385bd
DLR
2135}
2136
4d22de3e
DLR
2137/**
2138 * handle_rsp_cntrl_info - handles control information in a response
2139 * @qs: the queue set corresponding to the response
2140 * @flags: the response control flags
4d22de3e
DLR
2141 *
2142 * Handles the control information of an SGE response, such as GTS
2143 * indications and completion credits for the queue set's Tx queues.
6195c71d 2144 * HW coalesces credits, we don't do any extra SW coalescing.
4d22de3e 2145 */
6195c71d 2146static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
4d22de3e
DLR
2147{
2148 unsigned int credits;
2149
2150#if USE_GTS
2151 if (flags & F_RSPD_TXQ0_GTS)
2152 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2153#endif
2154
4d22de3e
DLR
2155 credits = G_RSPD_TXQ0_CR(flags);
2156 if (credits)
2157 qs->txq[TXQ_ETH].processed += credits;
2158
6195c71d
DLR
2159 credits = G_RSPD_TXQ2_CR(flags);
2160 if (credits)
2161 qs->txq[TXQ_CTRL].processed += credits;
2162
4d22de3e
DLR
2163# if USE_GTS
2164 if (flags & F_RSPD_TXQ1_GTS)
2165 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2166# endif
6195c71d
DLR
2167 credits = G_RSPD_TXQ1_CR(flags);
2168 if (credits)
2169 qs->txq[TXQ_OFLD].processed += credits;
4d22de3e
DLR
2170}
2171
2172/**
2173 * check_ring_db - check if we need to ring any doorbells
2174 * @adapter: the adapter
2175 * @qs: the queue set whose Tx queues are to be examined
2176 * @sleeping: indicates which Tx queue sent GTS
2177 *
2178 * Checks if some of a queue set's Tx queues need to ring their doorbells
2179 * to resume transmission after idling while they still have unprocessed
2180 * descriptors.
2181 */
2182static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2183 unsigned int sleeping)
2184{
2185 if (sleeping & F_RSPD_TXQ0_GTS) {
2186 struct sge_txq *txq = &qs->txq[TXQ_ETH];
2187
2188 if (txq->cleaned + txq->in_use != txq->processed &&
2189 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2190 set_bit(TXQ_RUNNING, &txq->flags);
2191 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2192 V_EGRCNTX(txq->cntxt_id));
2193 }
2194 }
2195
2196 if (sleeping & F_RSPD_TXQ1_GTS) {
2197 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2198
2199 if (txq->cleaned + txq->in_use != txq->processed &&
2200 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2201 set_bit(TXQ_RUNNING, &txq->flags);
2202 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2203 V_EGRCNTX(txq->cntxt_id));
2204 }
2205 }
2206}
2207
2208/**
2209 * is_new_response - check if a response is newly written
2210 * @r: the response descriptor
2211 * @q: the response queue
2212 *
2213 * Returns true if a response descriptor contains a yet unprocessed
2214 * response.
2215 */
2216static inline int is_new_response(const struct rsp_desc *r,
2217 const struct sge_rspq *q)
2218{
2219 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2220}
2221
7385ecf3
DLR
2222static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2223{
2224 q->pg_skb = NULL;
2225 q->rx_recycle_buf = 0;
2226}
2227
4d22de3e
DLR
2228#define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2229#define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2230 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2231 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2232 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2233
2234/* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2235#define NOMEM_INTR_DELAY 2500
2236
2237/**
2238 * process_responses - process responses from an SGE response queue
2239 * @adap: the adapter
2240 * @qs: the queue set to which the response queue belongs
2241 * @budget: how many responses can be processed in this round
2242 *
2243 * Process responses from an SGE response queue up to the supplied budget.
2244 * Responses include received packets as well as credits and other events
2245 * for the queues that belong to the response queue's queue set.
2246 * A negative budget is effectively unlimited.
2247 *
2248 * Additionally choose the interrupt holdoff time for the next interrupt
2249 * on this queue. If the system is under memory shortage use a fairly
2250 * long delay to help recovery.
2251 */
2252static int process_responses(struct adapter *adap, struct sge_qset *qs,
2253 int budget)
2254{
2255 struct sge_rspq *q = &qs->rspq;
2256 struct rsp_desc *r = &q->desc[q->cidx];
2257 int budget_left = budget;
6195c71d 2258 unsigned int sleeping = 0;
4d22de3e
DLR
2259 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2260 int ngathered = 0;
2261
2262 q->next_holdoff = q->holdoff_tmr;
2263
2264 while (likely(budget_left && is_new_response(r, q))) {
b47385bd 2265 int packet_complete, eth, ethpad = 2, lro = qs->lro_enabled;
4d22de3e
DLR
2266 struct sk_buff *skb = NULL;
2267 u32 len, flags = ntohl(r->flags);
7385ecf3
DLR
2268 __be32 rss_hi = *(const __be32 *)r,
2269 rss_lo = r->rss_hdr.rss_hash_val;
4d22de3e
DLR
2270
2271 eth = r->rss_hdr.opcode == CPL_RX_PKT;
2272
2273 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2274 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2275 if (!skb)
2276 goto no_mem;
2277
2278 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
2279 skb->data[0] = CPL_ASYNC_NOTIF;
2280 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2281 q->async_notif++;
2282 } else if (flags & F_RSPD_IMM_DATA_VALID) {
2283 skb = get_imm_packet(r);
2284 if (unlikely(!skb)) {
cf992af5 2285no_mem:
4d22de3e
DLR
2286 q->next_holdoff = NOMEM_INTR_DELAY;
2287 q->nomem++;
2288 /* consume one credit since we tried */
2289 budget_left--;
2290 break;
2291 }
2292 q->imm_data++;
e0994eb1 2293 ethpad = 0;
4d22de3e 2294 } else if ((len = ntohl(r->len_cq)) != 0) {
cf992af5 2295 struct sge_fl *fl;
e0994eb1 2296
65ab8385 2297 lro &= eth && is_eth_tcp(rss_hi);
b47385bd 2298
cf992af5
DLR
2299 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2300 if (fl->use_pages) {
2301 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
e0994eb1 2302
5e68b772
DLR
2303 prefetch(&qs->lro_frag_tbl);
2304
cf992af5
DLR
2305 prefetch(addr);
2306#if L1_CACHE_BYTES < 128
2307 prefetch(addr + L1_CACHE_BYTES);
2308#endif
e0994eb1 2309 __refill_fl(adap, fl);
b47385bd
DLR
2310 if (lro > 0) {
2311 lro_add_page(adap, qs, fl,
2312 G_RSPD_LEN(len),
2313 flags & F_RSPD_EOP);
2314 goto next_fl;
2315 }
e0994eb1 2316
7385ecf3
DLR
2317 skb = get_packet_pg(adap, fl, q,
2318 G_RSPD_LEN(len),
2319 eth ?
2320 SGE_RX_DROP_THRES : 0);
2321 q->pg_skb = skb;
cf992af5 2322 } else
e0994eb1
DLR
2323 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2324 eth ? SGE_RX_DROP_THRES : 0);
cf992af5
DLR
2325 if (unlikely(!skb)) {
2326 if (!eth)
2327 goto no_mem;
2328 q->rx_drops++;
2329 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2330 __skb_pull(skb, 2);
b47385bd 2331next_fl:
4d22de3e
DLR
2332 if (++fl->cidx == fl->size)
2333 fl->cidx = 0;
2334 } else
2335 q->pure_rsps++;
2336
2337 if (flags & RSPD_CTRL_MASK) {
2338 sleeping |= flags & RSPD_GTS_MASK;
6195c71d 2339 handle_rsp_cntrl_info(qs, flags);
4d22de3e
DLR
2340 }
2341
2342 r++;
2343 if (unlikely(++q->cidx == q->size)) {
2344 q->cidx = 0;
2345 q->gen ^= 1;
2346 r = q->desc;
2347 }
2348 prefetch(r);
2349
2350 if (++q->credits >= (q->size / 4)) {
2351 refill_rspq(adap, q, q->credits);
2352 q->credits = 0;
2353 }
2354
7385ecf3
DLR
2355 packet_complete = flags &
2356 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2357 F_RSPD_ASYNC_NOTIF);
2358
2359 if (skb != NULL && packet_complete) {
4d22de3e 2360 if (eth)
b47385bd 2361 rx_eth(adap, q, skb, ethpad, lro);
4d22de3e 2362 else {
afefce66 2363 q->offload_pkts++;
cf992af5
DLR
2364 /* Preserve the RSS info in csum & priority */
2365 skb->csum = rss_hi;
2366 skb->priority = rss_lo;
2367 ngathered = rx_offload(&adap->tdev, q, skb,
2368 offload_skbs,
e0994eb1 2369 ngathered);
4d22de3e 2370 }
7385ecf3
DLR
2371
2372 if (flags & F_RSPD_EOP)
b47385bd 2373 clear_rspq_bufstate(q);
4d22de3e 2374 }
4d22de3e
DLR
2375 --budget_left;
2376 }
2377
4d22de3e 2378 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
b47385bd 2379
4d22de3e
DLR
2380 if (sleeping)
2381 check_ring_db(adap, qs, sleeping);
2382
2383 smp_mb(); /* commit Tx queue .processed updates */
2384 if (unlikely(qs->txq_stopped != 0))
2385 restart_tx(qs);
2386
2387 budget -= budget_left;
2388 return budget;
2389}
2390
2391static inline int is_pure_response(const struct rsp_desc *r)
2392{
c5419e6f 2393 __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
4d22de3e
DLR
2394
2395 return (n | r->len_cq) == 0;
2396}
2397
2398/**
2399 * napi_rx_handler - the NAPI handler for Rx processing
bea3348e 2400 * @napi: the napi instance
4d22de3e
DLR
2401 * @budget: how many packets we can process in this round
2402 *
2403 * Handler for new data events when using NAPI.
2404 */
bea3348e 2405static int napi_rx_handler(struct napi_struct *napi, int budget)
4d22de3e 2406{
bea3348e
SH
2407 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2408 struct adapter *adap = qs->adap;
2409 int work_done = process_responses(adap, qs, budget);
4d22de3e 2410
bea3348e
SH
2411 if (likely(work_done < budget)) {
2412 napi_complete(napi);
4d22de3e 2413
bea3348e
SH
2414 /*
2415 * Because we don't atomically flush the following
2416 * write it is possible that in very rare cases it can
2417 * reach the device in a way that races with a new
2418 * response being written plus an error interrupt
2419 * causing the NAPI interrupt handler below to return
2420 * unhandled status to the OS. To protect against
2421 * this would require flushing the write and doing
2422 * both the write and the flush with interrupts off.
2423 * Way too expensive and unjustifiable given the
2424 * rarity of the race.
2425 *
2426 * The race cannot happen at all with MSI-X.
2427 */
2428 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2429 V_NEWTIMER(qs->rspq.next_holdoff) |
2430 V_NEWINDEX(qs->rspq.cidx));
2431 }
2432 return work_done;
4d22de3e
DLR
2433}
2434
2435/*
2436 * Returns true if the device is already scheduled for polling.
2437 */
bea3348e 2438static inline int napi_is_scheduled(struct napi_struct *napi)
4d22de3e 2439{
bea3348e 2440 return test_bit(NAPI_STATE_SCHED, &napi->state);
4d22de3e
DLR
2441}
2442
2443/**
2444 * process_pure_responses - process pure responses from a response queue
2445 * @adap: the adapter
2446 * @qs: the queue set owning the response queue
2447 * @r: the first pure response to process
2448 *
2449 * A simpler version of process_responses() that handles only pure (i.e.,
2450 * non data-carrying) responses. Such respones are too light-weight to
2451 * justify calling a softirq under NAPI, so we handle them specially in
2452 * the interrupt handler. The function is called with a pointer to a
2453 * response, which the caller must ensure is a valid pure response.
2454 *
2455 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2456 */
2457static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2458 struct rsp_desc *r)
2459{
2460 struct sge_rspq *q = &qs->rspq;
6195c71d 2461 unsigned int sleeping = 0;
4d22de3e
DLR
2462
2463 do {
2464 u32 flags = ntohl(r->flags);
2465
2466 r++;
2467 if (unlikely(++q->cidx == q->size)) {
2468 q->cidx = 0;
2469 q->gen ^= 1;
2470 r = q->desc;
2471 }
2472 prefetch(r);
2473
2474 if (flags & RSPD_CTRL_MASK) {
2475 sleeping |= flags & RSPD_GTS_MASK;
6195c71d 2476 handle_rsp_cntrl_info(qs, flags);
4d22de3e
DLR
2477 }
2478
2479 q->pure_rsps++;
2480 if (++q->credits >= (q->size / 4)) {
2481 refill_rspq(adap, q, q->credits);
2482 q->credits = 0;
2483 }
2484 } while (is_new_response(r, q) && is_pure_response(r));
2485
4d22de3e
DLR
2486 if (sleeping)
2487 check_ring_db(adap, qs, sleeping);
2488
2489 smp_mb(); /* commit Tx queue .processed updates */
2490 if (unlikely(qs->txq_stopped != 0))
2491 restart_tx(qs);
2492
2493 return is_new_response(r, q);
2494}
2495
2496/**
2497 * handle_responses - decide what to do with new responses in NAPI mode
2498 * @adap: the adapter
2499 * @q: the response queue
2500 *
2501 * This is used by the NAPI interrupt handlers to decide what to do with
2502 * new SGE responses. If there are no new responses it returns -1. If
2503 * there are new responses and they are pure (i.e., non-data carrying)
2504 * it handles them straight in hard interrupt context as they are very
2505 * cheap and don't deliver any packets. Finally, if there are any data
2506 * signaling responses it schedules the NAPI handler. Returns 1 if it
2507 * schedules NAPI, 0 if all new responses were pure.
2508 *
2509 * The caller must ascertain NAPI is not already running.
2510 */
2511static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2512{
2513 struct sge_qset *qs = rspq_to_qset(q);
2514 struct rsp_desc *r = &q->desc[q->cidx];
2515
2516 if (!is_new_response(r, q))
2517 return -1;
2518 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2519 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2520 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2521 return 0;
2522 }
bea3348e 2523 napi_schedule(&qs->napi);
4d22de3e
DLR
2524 return 1;
2525}
2526
2527/*
2528 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2529 * (i.e., response queue serviced in hard interrupt).
2530 */
2531irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2532{
2533 struct sge_qset *qs = cookie;
bea3348e 2534 struct adapter *adap = qs->adap;
4d22de3e
DLR
2535 struct sge_rspq *q = &qs->rspq;
2536
2537 spin_lock(&q->lock);
2538 if (process_responses(adap, qs, -1) == 0)
2539 q->unhandled_irqs++;
2540 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2541 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2542 spin_unlock(&q->lock);
2543 return IRQ_HANDLED;
2544}
2545
2546/*
2547 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2548 * (i.e., response queue serviced by NAPI polling).
2549 */
9265fabf 2550static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
4d22de3e
DLR
2551{
2552 struct sge_qset *qs = cookie;
4d22de3e
DLR
2553 struct sge_rspq *q = &qs->rspq;
2554
2555 spin_lock(&q->lock);
4d22de3e 2556
bea3348e 2557 if (handle_responses(qs->adap, q) < 0)
4d22de3e
DLR
2558 q->unhandled_irqs++;
2559 spin_unlock(&q->lock);
2560 return IRQ_HANDLED;
2561}
2562
2563/*
2564 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2565 * SGE response queues as well as error and other async events as they all use
2566 * the same MSI vector. We use one SGE response queue per port in this mode
2567 * and protect all response queues with queue 0's lock.
2568 */
2569static irqreturn_t t3_intr_msi(int irq, void *cookie)
2570{
2571 int new_packets = 0;
2572 struct adapter *adap = cookie;
2573 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2574
2575 spin_lock(&q->lock);
2576
2577 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2578 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2579 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2580 new_packets = 1;
2581 }
2582
2583 if (adap->params.nports == 2 &&
2584 process_responses(adap, &adap->sge.qs[1], -1)) {
2585 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2586
2587 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2588 V_NEWTIMER(q1->next_holdoff) |
2589 V_NEWINDEX(q1->cidx));
2590 new_packets = 1;
2591 }
2592
2593 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2594 q->unhandled_irqs++;
2595
2596 spin_unlock(&q->lock);
2597 return IRQ_HANDLED;
2598}
2599
bea3348e 2600static int rspq_check_napi(struct sge_qset *qs)
4d22de3e 2601{
bea3348e
SH
2602 struct sge_rspq *q = &qs->rspq;
2603
2604 if (!napi_is_scheduled(&qs->napi) &&
2605 is_new_response(&q->desc[q->cidx], q)) {
2606 napi_schedule(&qs->napi);
4d22de3e
DLR
2607 return 1;
2608 }
2609 return 0;
2610}
2611
2612/*
2613 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2614 * by NAPI polling). Handles data events from SGE response queues as well as
2615 * error and other async events as they all use the same MSI vector. We use
2616 * one SGE response queue per port in this mode and protect all response
2617 * queues with queue 0's lock.
2618 */
9265fabf 2619static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
4d22de3e
DLR
2620{
2621 int new_packets;
2622 struct adapter *adap = cookie;
2623 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2624
2625 spin_lock(&q->lock);
2626
bea3348e 2627 new_packets = rspq_check_napi(&adap->sge.qs[0]);
4d22de3e 2628 if (adap->params.nports == 2)
bea3348e 2629 new_packets += rspq_check_napi(&adap->sge.qs[1]);
4d22de3e
DLR
2630 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2631 q->unhandled_irqs++;
2632
2633 spin_unlock(&q->lock);
2634 return IRQ_HANDLED;
2635}
2636
2637/*
2638 * A helper function that processes responses and issues GTS.
2639 */
2640static inline int process_responses_gts(struct adapter *adap,
2641 struct sge_rspq *rq)
2642{
2643 int work;
2644
2645 work = process_responses(adap, rspq_to_qset(rq), -1);
2646 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2647 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2648 return work;
2649}
2650
2651/*
2652 * The legacy INTx interrupt handler. This needs to handle data events from
2653 * SGE response queues as well as error and other async events as they all use
2654 * the same interrupt pin. We use one SGE response queue per port in this mode
2655 * and protect all response queues with queue 0's lock.
2656 */
2657static irqreturn_t t3_intr(int irq, void *cookie)
2658{
2659 int work_done, w0, w1;
2660 struct adapter *adap = cookie;
2661 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2662 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2663
2664 spin_lock(&q0->lock);
2665
2666 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2667 w1 = adap->params.nports == 2 &&
2668 is_new_response(&q1->desc[q1->cidx], q1);
2669
2670 if (likely(w0 | w1)) {
2671 t3_write_reg(adap, A_PL_CLI, 0);
2672 t3_read_reg(adap, A_PL_CLI); /* flush */
2673
2674 if (likely(w0))
2675 process_responses_gts(adap, q0);
2676
2677 if (w1)
2678 process_responses_gts(adap, q1);
2679
2680 work_done = w0 | w1;
2681 } else
2682 work_done = t3_slow_intr_handler(adap);
2683
2684 spin_unlock(&q0->lock);
2685 return IRQ_RETVAL(work_done != 0);
2686}
2687
2688/*
2689 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2690 * Handles data events from SGE response queues as well as error and other
2691 * async events as they all use the same interrupt pin. We use one SGE
2692 * response queue per port in this mode and protect all response queues with
2693 * queue 0's lock.
2694 */
2695static irqreturn_t t3b_intr(int irq, void *cookie)
2696{
2697 u32 map;
2698 struct adapter *adap = cookie;
2699 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2700
2701 t3_write_reg(adap, A_PL_CLI, 0);
2702 map = t3_read_reg(adap, A_SG_DATA_INTR);
2703
2704 if (unlikely(!map)) /* shared interrupt, most likely */
2705 return IRQ_NONE;
2706
2707 spin_lock(&q0->lock);
2708
2709 if (unlikely(map & F_ERRINTR))
2710 t3_slow_intr_handler(adap);
2711
2712 if (likely(map & 1))
2713 process_responses_gts(adap, q0);
2714
2715 if (map & 2)
2716 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2717
2718 spin_unlock(&q0->lock);
2719 return IRQ_HANDLED;
2720}
2721
2722/*
2723 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2724 * Handles data events from SGE response queues as well as error and other
2725 * async events as they all use the same interrupt pin. We use one SGE
2726 * response queue per port in this mode and protect all response queues with
2727 * queue 0's lock.
2728 */
2729static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2730{
2731 u32 map;
4d22de3e 2732 struct adapter *adap = cookie;
bea3348e
SH
2733 struct sge_qset *qs0 = &adap->sge.qs[0];
2734 struct sge_rspq *q0 = &qs0->rspq;
4d22de3e
DLR
2735
2736 t3_write_reg(adap, A_PL_CLI, 0);
2737 map = t3_read_reg(adap, A_SG_DATA_INTR);
2738
2739 if (unlikely(!map)) /* shared interrupt, most likely */
2740 return IRQ_NONE;
2741
2742 spin_lock(&q0->lock);
2743
2744 if (unlikely(map & F_ERRINTR))
2745 t3_slow_intr_handler(adap);
2746
bea3348e
SH
2747 if (likely(map & 1))
2748 napi_schedule(&qs0->napi);
4d22de3e 2749
bea3348e
SH
2750 if (map & 2)
2751 napi_schedule(&adap->sge.qs[1].napi);
4d22de3e
DLR
2752
2753 spin_unlock(&q0->lock);
2754 return IRQ_HANDLED;
2755}
2756
2757/**
2758 * t3_intr_handler - select the top-level interrupt handler
2759 * @adap: the adapter
2760 * @polling: whether using NAPI to service response queues
2761 *
2762 * Selects the top-level interrupt handler based on the type of interrupts
2763 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2764 * response queues.
2765 */
7c239975 2766irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
4d22de3e
DLR
2767{
2768 if (adap->flags & USING_MSIX)
2769 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2770 if (adap->flags & USING_MSI)
2771 return polling ? t3_intr_msi_napi : t3_intr_msi;
2772 if (adap->params.rev > 0)
2773 return polling ? t3b_intr_napi : t3b_intr;
2774 return t3_intr;
2775}
2776
b881955b
DLR
2777#define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2778 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2779 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2780 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2781 F_HIRCQPARITYERROR)
2782#define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2783#define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2784 F_RSPQDISABLED)
2785
4d22de3e
DLR
2786/**
2787 * t3_sge_err_intr_handler - SGE async event interrupt handler
2788 * @adapter: the adapter
2789 *
2790 * Interrupt handler for SGE asynchronous (non-data) events.
2791 */
2792void t3_sge_err_intr_handler(struct adapter *adapter)
2793{
fc882196
DLR
2794 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2795 ~F_FLEMPTY;
4d22de3e 2796
b881955b
DLR
2797 if (status & SGE_PARERR)
2798 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2799 status & SGE_PARERR);
2800 if (status & SGE_FRAMINGERR)
2801 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2802 status & SGE_FRAMINGERR);
2803
4d22de3e
DLR
2804 if (status & F_RSPQCREDITOVERFOW)
2805 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2806
2807 if (status & F_RSPQDISABLED) {
2808 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2809
2810 CH_ALERT(adapter,
2811 "packet delivered to disabled response queue "
2812 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2813 }
2814
6e3f03b7
DLR
2815 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2816 CH_ALERT(adapter, "SGE dropped %s priority doorbell\n",
2817 status & F_HIPIODRBDROPERR ? "high" : "lo");
2818
4d22de3e 2819 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
b881955b 2820 if (status & SGE_FATALERR)
4d22de3e
DLR
2821 t3_fatal_err(adapter);
2822}
2823
2824/**
42c8ea17 2825 * sge_timer_tx - perform periodic maintenance of an SGE qset
4d22de3e
DLR
2826 * @data: the SGE queue set to maintain
2827 *
2828 * Runs periodically from a timer to perform maintenance of an SGE queue
2829 * set. It performs two tasks:
2830 *
42c8ea17 2831 * Cleans up any completed Tx descriptors that may still be pending.
4d22de3e
DLR
2832 * Normal descriptor cleanup happens when new packets are added to a Tx
2833 * queue so this timer is relatively infrequent and does any cleanup only
2834 * if the Tx queue has not seen any new packets in a while. We make a
2835 * best effort attempt to reclaim descriptors, in that we don't wait
2836 * around if we cannot get a queue's lock (which most likely is because
2837 * someone else is queueing new packets and so will also handle the clean
2838 * up). Since control queues use immediate data exclusively we don't
2839 * bother cleaning them up here.
2840 *
4d22de3e 2841 */
42c8ea17 2842static void sge_timer_tx(unsigned long data)
4d22de3e 2843{
4d22de3e 2844 struct sge_qset *qs = (struct sge_qset *)data;
42c8ea17
DLR
2845 struct port_info *pi = netdev_priv(qs->netdev);
2846 struct adapter *adap = pi->adapter;
2847 unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2848 unsigned long next_period;
4d22de3e
DLR
2849
2850 if (spin_trylock(&qs->txq[TXQ_ETH].lock)) {
42c8ea17
DLR
2851 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2852 TX_RECLAIM_TIMER_CHUNK);
4d22de3e
DLR
2853 spin_unlock(&qs->txq[TXQ_ETH].lock);
2854 }
2855 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
42c8ea17
DLR
2856 tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2857 TX_RECLAIM_TIMER_CHUNK);
4d22de3e
DLR
2858 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2859 }
42c8ea17
DLR
2860
2861 next_period = TX_RECLAIM_PERIOD >>
2862 (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2863 TX_RECLAIM_TIMER_CHUNK);
2864 mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2865}
2866
2867/*
2868 * sge_timer_rx - perform periodic maintenance of an SGE qset
2869 * @data: the SGE queue set to maintain
2870 *
2871 * a) Replenishes Rx queues that have run out due to memory shortage.
2872 * Normally new Rx buffers are added when existing ones are consumed but
2873 * when out of memory a queue can become empty. We try to add only a few
2874 * buffers here, the queue will be replenished fully as these new buffers
2875 * are used up if memory shortage has subsided.
2876 *
2877 * b) Return coalesced response queue credits in case a response queue is
2878 * starved.
2879 *
2880 */
2881static void sge_timer_rx(unsigned long data)
2882{
2883 spinlock_t *lock;
2884 struct sge_qset *qs = (struct sge_qset *)data;
2885 struct port_info *pi = netdev_priv(qs->netdev);
2886 struct adapter *adap = pi->adapter;
2887 u32 status;
2888
2889 lock = adap->params.rev > 0 ?
2890 &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2891
2892 if (!spin_trylock_irq(lock))
2893 goto out;
2894
2895 if (napi_is_scheduled(&qs->napi))
2896 goto unlock;
2897
2898 if (adap->params.rev < 4) {
2899 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2900
2901 if (status & (1 << qs->rspq.cntxt_id)) {
2902 qs->rspq.starved++;
2903 if (qs->rspq.credits) {
2904 qs->rspq.credits--;
2905 refill_rspq(adap, &qs->rspq, 1);
2906 qs->rspq.restarted++;
2907 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2908 1 << qs->rspq.cntxt_id);
bae73f44 2909 }
4d22de3e 2910 }
4d22de3e 2911 }
42c8ea17
DLR
2912
2913 if (qs->fl[0].credits < qs->fl[0].size)
2914 __refill_fl(adap, &qs->fl[0]);
2915 if (qs->fl[1].credits < qs->fl[1].size)
2916 __refill_fl(adap, &qs->fl[1]);
2917
2918unlock:
2919 spin_unlock_irq(lock);
2920out:
2921 mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
4d22de3e
DLR
2922}
2923
2924/**
2925 * t3_update_qset_coalesce - update coalescing settings for a queue set
2926 * @qs: the SGE queue set
2927 * @p: new queue set parameters
2928 *
2929 * Update the coalescing settings for an SGE queue set. Nothing is done
2930 * if the queue set is not initialized yet.
2931 */
2932void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2933{
4d22de3e
DLR
2934 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2935 qs->rspq.polling = p->polling;
bea3348e 2936 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
4d22de3e
DLR
2937}
2938
2939/**
2940 * t3_sge_alloc_qset - initialize an SGE queue set
2941 * @adapter: the adapter
2942 * @id: the queue set id
2943 * @nports: how many Ethernet ports will be using this queue set
2944 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2945 * @p: configuration parameters for this queue set
2946 * @ntxq: number of Tx queues for the queue set
2947 * @netdev: net device associated with this queue set
82ad3329 2948 * @netdevq: net device TX queue associated with this queue set
4d22de3e
DLR
2949 *
2950 * Allocate resources and initialize an SGE queue set. A queue set
2951 * comprises a response queue, two Rx free-buffer queues, and up to 3
2952 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2953 * queue, offload queue, and control queue.
2954 */
2955int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2956 int irq_vec_idx, const struct qset_params *p,
82ad3329
DLR
2957 int ntxq, struct net_device *dev,
2958 struct netdev_queue *netdevq)
4d22de3e 2959{
b1fb1f28 2960 int i, avail, ret = -ENOMEM;
4d22de3e
DLR
2961 struct sge_qset *q = &adapter->sge.qs[id];
2962
2963 init_qset_cntxt(q, id);
42c8ea17
DLR
2964 setup_timer(&q->tx_reclaim_timer, sge_timer_tx, (unsigned long)q);
2965 setup_timer(&q->rx_reclaim_timer, sge_timer_rx, (unsigned long)q);
4d22de3e
DLR
2966
2967 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
2968 sizeof(struct rx_desc),
2969 sizeof(struct rx_sw_desc),
2970 &q->fl[0].phys_addr, &q->fl[0].sdesc);
2971 if (!q->fl[0].desc)
2972 goto err;
2973
2974 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
2975 sizeof(struct rx_desc),
2976 sizeof(struct rx_sw_desc),
2977 &q->fl[1].phys_addr, &q->fl[1].sdesc);
2978 if (!q->fl[1].desc)
2979 goto err;
2980
2981 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
2982 sizeof(struct rsp_desc), 0,
2983 &q->rspq.phys_addr, NULL);
2984 if (!q->rspq.desc)
2985 goto err;
2986
2987 for (i = 0; i < ntxq; ++i) {
2988 /*
2989 * The control queue always uses immediate data so does not
2990 * need to keep track of any sk_buffs.
2991 */
2992 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
2993
2994 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
2995 sizeof(struct tx_desc), sz,
2996 &q->txq[i].phys_addr,
2997 &q->txq[i].sdesc);
2998 if (!q->txq[i].desc)
2999 goto err;
3000
3001 q->txq[i].gen = 1;
3002 q->txq[i].size = p->txq_size[i];
3003 spin_lock_init(&q->txq[i].lock);
3004 skb_queue_head_init(&q->txq[i].sendq);
3005 }
3006
3007 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
3008 (unsigned long)q);
3009 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
3010 (unsigned long)q);
3011
3012 q->fl[0].gen = q->fl[1].gen = 1;
3013 q->fl[0].size = p->fl_size;
3014 q->fl[1].size = p->jumbo_size;
3015
3016 q->rspq.gen = 1;
3017 q->rspq.size = p->rspq_size;
3018 spin_lock_init(&q->rspq.lock);
147e70e6 3019 skb_queue_head_init(&q->rspq.rx_queue);
4d22de3e
DLR
3020
3021 q->txq[TXQ_ETH].stop_thres = nports *
3022 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3023
cf992af5
DLR
3024#if FL0_PG_CHUNK_SIZE > 0
3025 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
e0994eb1 3026#else
cf992af5 3027 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
e0994eb1 3028#endif
7385ecf3
DLR
3029#if FL1_PG_CHUNK_SIZE > 0
3030 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3031#else
cf992af5
DLR
3032 q->fl[1].buf_size = is_offload(adapter) ?
3033 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3034 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
7385ecf3
DLR
3035#endif
3036
3037 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3038 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3039 q->fl[0].order = FL0_PG_ORDER;
3040 q->fl[1].order = FL1_PG_ORDER;
5e68b772
DLR
3041 q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3042 q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
4d22de3e 3043
b1186dee 3044 spin_lock_irq(&adapter->sge.reg_lock);
4d22de3e
DLR
3045
3046 /* FL threshold comparison uses < */
3047 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3048 q->rspq.phys_addr, q->rspq.size,
5e68b772 3049 q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
4d22de3e
DLR
3050 if (ret)
3051 goto err_unlock;
3052
3053 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3054 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3055 q->fl[i].phys_addr, q->fl[i].size,
5e68b772
DLR
3056 q->fl[i].buf_size - SGE_PG_RSVD,
3057 p->cong_thres, 1, 0);
4d22de3e
DLR
3058 if (ret)
3059 goto err_unlock;
3060 }
3061
3062 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3063 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3064 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3065 1, 0);
3066 if (ret)
3067 goto err_unlock;
3068
3069 if (ntxq > 1) {
3070 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3071 USE_GTS, SGE_CNTXT_OFLD, id,
3072 q->txq[TXQ_OFLD].phys_addr,
3073 q->txq[TXQ_OFLD].size, 0, 1, 0);
3074 if (ret)
3075 goto err_unlock;
3076 }
3077
3078 if (ntxq > 2) {
3079 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3080 SGE_CNTXT_CTRL, id,
3081 q->txq[TXQ_CTRL].phys_addr,
3082 q->txq[TXQ_CTRL].size,
3083 q->txq[TXQ_CTRL].token, 1, 0);
3084 if (ret)
3085 goto err_unlock;
3086 }
3087
b1186dee 3088 spin_unlock_irq(&adapter->sge.reg_lock);
4d22de3e 3089
bea3348e
SH
3090 q->adap = adapter;
3091 q->netdev = dev;
82ad3329 3092 q->tx_q = netdevq;
bea3348e 3093 t3_update_qset_coalesce(q, p);
b47385bd 3094
7385ecf3
DLR
3095 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3096 GFP_KERNEL | __GFP_COMP);
b1fb1f28
DLR
3097 if (!avail) {
3098 CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3099 goto err;
3100 }
3101 if (avail < q->fl[0].size)
3102 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3103 avail);
3104
7385ecf3
DLR
3105 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3106 GFP_KERNEL | __GFP_COMP);
b1fb1f28
DLR
3107 if (avail < q->fl[1].size)
3108 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3109 avail);
4d22de3e
DLR
3110 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3111
3112 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3113 V_NEWTIMER(q->rspq.holdoff_tmr));
3114
4d22de3e
DLR
3115 return 0;
3116
b1fb1f28 3117err_unlock:
b1186dee 3118 spin_unlock_irq(&adapter->sge.reg_lock);
b1fb1f28 3119err:
4d22de3e
DLR
3120 t3_free_qset(adapter, q);
3121 return ret;
3122}
3123
31563789
DLR
3124/**
3125 * t3_start_sge_timers - start SGE timer call backs
3126 * @adap: the adapter
3127 *
3128 * Starts each SGE queue set's timer call back
3129 */
3130void t3_start_sge_timers(struct adapter *adap)
3131{
3132 int i;
3133
3134 for (i = 0; i < SGE_QSETS; ++i) {
3135 struct sge_qset *q = &adap->sge.qs[i];
3136
3137 if (q->tx_reclaim_timer.function)
3138 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
3139
3140 if (q->rx_reclaim_timer.function)
3141 mod_timer(&q->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3142 }
3143}
3144
0ca41c04
DLR
3145/**
3146 * t3_stop_sge_timers - stop SGE timer call backs
3147 * @adap: the adapter
3148 *
3149 * Stops each SGE queue set's timer call back
3150 */
3151void t3_stop_sge_timers(struct adapter *adap)
3152{
3153 int i;
3154
3155 for (i = 0; i < SGE_QSETS; ++i) {
3156 struct sge_qset *q = &adap->sge.qs[i];
3157
3158 if (q->tx_reclaim_timer.function)
3159 del_timer_sync(&q->tx_reclaim_timer);
42c8ea17
DLR
3160 if (q->rx_reclaim_timer.function)
3161 del_timer_sync(&q->rx_reclaim_timer);
0ca41c04
DLR
3162 }
3163}
3164
4d22de3e
DLR
3165/**
3166 * t3_free_sge_resources - free SGE resources
3167 * @adap: the adapter
3168 *
3169 * Frees resources used by the SGE queue sets.
3170 */
3171void t3_free_sge_resources(struct adapter *adap)
3172{
3173 int i;
3174
3175 for (i = 0; i < SGE_QSETS; ++i)
3176 t3_free_qset(adap, &adap->sge.qs[i]);
3177}
3178
3179/**
3180 * t3_sge_start - enable SGE
3181 * @adap: the adapter
3182 *
3183 * Enables the SGE for DMAs. This is the last step in starting packet
3184 * transfers.
3185 */
3186void t3_sge_start(struct adapter *adap)
3187{
3188 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3189}
3190
3191/**
3192 * t3_sge_stop - disable SGE operation
3193 * @adap: the adapter
3194 *
3195 * Disables the DMA engine. This can be called in emeregencies (e.g.,
3196 * from error interrupts) or from normal process context. In the latter
3197 * case it also disables any pending queue restart tasklets. Note that
3198 * if it is called in interrupt context it cannot disable the restart
3199 * tasklets as it cannot wait, however the tasklets will have no effect
3200 * since the doorbells are disabled and the driver will call this again
3201 * later from process context, at which time the tasklets will be stopped
3202 * if they are still running.
3203 */
3204void t3_sge_stop(struct adapter *adap)
3205{
3206 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3207 if (!in_interrupt()) {
3208 int i;
3209
3210 for (i = 0; i < SGE_QSETS; ++i) {
3211 struct sge_qset *qs = &adap->sge.qs[i];
3212
3213 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3214 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3215 }
3216 }
3217}
3218
3219/**
3220 * t3_sge_init - initialize SGE
3221 * @adap: the adapter
3222 * @p: the SGE parameters
3223 *
3224 * Performs SGE initialization needed every time after a chip reset.
3225 * We do not initialize any of the queue sets here, instead the driver
3226 * top-level must request those individually. We also do not enable DMA
3227 * here, that should be done after the queues have been set up.
3228 */
3229void t3_sge_init(struct adapter *adap, struct sge_params *p)
3230{
3231 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3232
3233 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
b881955b 3234 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
4d22de3e
DLR
3235 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3236 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3237#if SGE_NUM_GENBITS == 1
3238 ctrl |= F_EGRGENCTRL;
3239#endif
3240 if (adap->params.rev > 0) {
3241 if (!(adap->flags & (USING_MSIX | USING_MSI)))
3242 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
4d22de3e
DLR
3243 }
3244 t3_write_reg(adap, A_SG_CONTROL, ctrl);
3245 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3246 V_LORCQDRBTHRSH(512));
3247 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3248 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
6195c71d 3249 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
b881955b
DLR
3250 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3251 adap->params.rev < T3_REV_C ? 1000 : 500);
4d22de3e
DLR
3252 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3253 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3254 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3255 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3256 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3257}
3258
3259/**
3260 * t3_sge_prep - one-time SGE initialization
3261 * @adap: the associated adapter
3262 * @p: SGE parameters
3263 *
3264 * Performs one-time initialization of SGE SW state. Includes determining
3265 * defaults for the assorted SGE parameters, which admins can change until
3266 * they are used to initialize the SGE.
3267 */
7b9b0943 3268void t3_sge_prep(struct adapter *adap, struct sge_params *p)
4d22de3e
DLR
3269{
3270 int i;
3271
3272 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3273 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3274
3275 for (i = 0; i < SGE_QSETS; ++i) {
3276 struct qset_params *q = p->qset + i;
3277
3278 q->polling = adap->params.rev > 0;
3279 q->coalesce_usecs = 5;
3280 q->rspq_size = 1024;
e0994eb1 3281 q->fl_size = 1024;
7385ecf3 3282 q->jumbo_size = 512;
4d22de3e
DLR
3283 q->txq_size[TXQ_ETH] = 1024;
3284 q->txq_size[TXQ_OFLD] = 1024;
3285 q->txq_size[TXQ_CTRL] = 256;
3286 q->cong_thres = 0;
3287 }
3288
3289 spin_lock_init(&adap->sge.reg_lock);
3290}
3291
3292/**
3293 * t3_get_desc - dump an SGE descriptor for debugging purposes
3294 * @qs: the queue set
3295 * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
3296 * @idx: the descriptor index in the queue
3297 * @data: where to dump the descriptor contents
3298 *
3299 * Dumps the contents of a HW descriptor of an SGE queue. Returns the
3300 * size of the descriptor.
3301 */
3302int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
3303 unsigned char *data)
3304{
3305 if (qnum >= 6)
3306 return -EINVAL;
3307
3308 if (qnum < 3) {
3309 if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
3310 return -EINVAL;
3311 memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
3312 return sizeof(struct tx_desc);
3313 }
3314
3315 if (qnum == 3) {
3316 if (!qs->rspq.desc || idx >= qs->rspq.size)
3317 return -EINVAL;
3318 memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
3319 return sizeof(struct rsp_desc);
3320 }
3321
3322 qnum -= 4;
3323 if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
3324 return -EINVAL;
3325 memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
3326 return sizeof(struct rx_desc);
3327}
This page took 0.666276 seconds and 5 git commands to generate.