Merge git://git.kernel.org/pub/scm/linux/kernel/git/viro/audit-current
[deliverable/linux.git] / drivers / net / e100.c
CommitLineData
1da177e4
LT
1/*******************************************************************************
2
0abb6eb1
AK
3 Intel PRO/100 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
05479938
JB
5
6 This program is free software; you can redistribute it and/or modify it
0abb6eb1
AK
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
05479938 9
0abb6eb1 10 This program is distributed in the hope it will be useful, but WITHOUT
05479938
JB
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
1da177e4 13 more details.
05479938 14
1da177e4 15 You should have received a copy of the GNU General Public License along with
0abb6eb1
AK
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
05479938 18
0abb6eb1
AK
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
05479938 21
1da177e4
LT
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
0abb6eb1 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
1da177e4
LT
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * e100.c: Intel(R) PRO/100 ethernet driver
31 *
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
35 *
36 * References:
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
40 *
41 *
42 * Theory of Operation
43 *
44 * I. General
45 *
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
54 *
55 * II. Driver Operation
56 *
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
63 *
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
67 * devices.
68 *
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
72 *
73 * III. Transmit
74 *
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
82 *
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
86 *
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
92 *
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
95 * with 00h.
96 *
0a0863af 97 * IV. Receive
1da177e4
LT
98 *
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
108 *
7734f6e6
DA
109 * In order to keep updates to the RFD link field from colliding with
110 * hardware writes to mark packets complete, we use the feature that
111 * hardware will not write to a size 0 descriptor and mark the previous
112 * packet as end-of-list (EL). After updating the link, we remove EL
113 * and only then restore the size such that hardware may use the
114 * previous-to-end RFD.
115 *
1da177e4
LT
116 * Under typical operation, the receive unit (RU) is start once,
117 * and the controller happily fills RFDs as frames arrive. If
118 * replacement RFDs cannot be allocated, or the RU goes non-active,
119 * the RU must be restarted. Frame arrival generates an interrupt,
120 * and Rx indication and re-allocation happen in the same context,
121 * therefore no locking is required. A software-generated interrupt
122 * is generated from the watchdog to recover from a failed allocation
0a0863af 123 * scenario where all Rx resources have been indicated and none re-
1da177e4
LT
124 * placed.
125 *
126 * V. Miscellaneous
127 *
128 * VLAN offloading of tagging, stripping and filtering is not
129 * supported, but driver will accommodate the extra 4-byte VLAN tag
130 * for processing by upper layers. Tx/Rx Checksum offloading is not
131 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
132 * not supported (hardware limitation).
133 *
134 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
135 *
136 * Thanks to JC (jchapman@katalix.com) for helping with
137 * testing/troubleshooting the development driver.
138 *
139 * TODO:
140 * o several entry points race with dev->close
141 * o check for tx-no-resources/stop Q races with tx clean/wake Q
ac7c6669
OM
142 *
143 * FIXES:
144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
145 * - Stratus87247: protect MDI control register manipulations
72001762
AM
146 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
147 * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
1da177e4
LT
148 */
149
1da177e4
LT
150#include <linux/module.h>
151#include <linux/moduleparam.h>
152#include <linux/kernel.h>
153#include <linux/types.h>
154#include <linux/slab.h>
155#include <linux/delay.h>
156#include <linux/init.h>
157#include <linux/pci.h>
1e7f0bd8 158#include <linux/dma-mapping.h>
1da177e4
LT
159#include <linux/netdevice.h>
160#include <linux/etherdevice.h>
161#include <linux/mii.h>
162#include <linux/if_vlan.h>
163#include <linux/skbuff.h>
164#include <linux/ethtool.h>
165#include <linux/string.h>
9ac32e1b 166#include <linux/firmware.h>
1da177e4
LT
167#include <asm/unaligned.h>
168
169
170#define DRV_NAME "e100"
4e1dc97d 171#define DRV_EXT "-NAPI"
b55de80e 172#define DRV_VERSION "3.5.24-k2"DRV_EXT
1da177e4 173#define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
4e1dc97d 174#define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
1da177e4
LT
175#define PFX DRV_NAME ": "
176
177#define E100_WATCHDOG_PERIOD (2 * HZ)
178#define E100_NAPI_WEIGHT 16
179
9ac32e1b
JSR
180#define FIRMWARE_D101M "e100/d101m_ucode.bin"
181#define FIRMWARE_D101S "e100/d101s_ucode.bin"
182#define FIRMWARE_D102E "e100/d102e_ucode.bin"
183
1da177e4
LT
184MODULE_DESCRIPTION(DRV_DESCRIPTION);
185MODULE_AUTHOR(DRV_COPYRIGHT);
186MODULE_LICENSE("GPL");
187MODULE_VERSION(DRV_VERSION);
9ac32e1b
JSR
188MODULE_FIRMWARE(FIRMWARE_D101M);
189MODULE_FIRMWARE(FIRMWARE_D101S);
190MODULE_FIRMWARE(FIRMWARE_D102E);
1da177e4
LT
191
192static int debug = 3;
8fb6f732 193static int eeprom_bad_csum_allow = 0;
27345bb6 194static int use_io = 0;
1da177e4 195module_param(debug, int, 0);
8fb6f732 196module_param(eeprom_bad_csum_allow, int, 0);
27345bb6 197module_param(use_io, int, 0);
1da177e4 198MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
8fb6f732 199MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
27345bb6 200MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
1da177e4
LT
201#define DPRINTK(nlevel, klevel, fmt, args...) \
202 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
203 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
b39d66a8 204 __func__ , ## args))
1da177e4
LT
205
206#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
207 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
208 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
209static struct pci_device_id e100_id_table[] = {
210 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
211 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
212 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
213 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
214 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
215 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
216 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
217 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
218 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
219 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
220 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
221 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
222 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
223 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
224 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
225 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
226 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
227 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
228 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
229 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
230 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
231 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
232 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
233 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
234 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
235 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
236 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
237 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
238 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
239 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
042e2fb7
MC
240 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
241 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
242 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
243 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
244 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
b55de80e 245 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
1da177e4
LT
246 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
247 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
248 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
249 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
250 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
042e2fb7 251 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
1da177e4
LT
252 { 0, }
253};
254MODULE_DEVICE_TABLE(pci, e100_id_table);
255
256enum mac {
257 mac_82557_D100_A = 0,
258 mac_82557_D100_B = 1,
259 mac_82557_D100_C = 2,
260 mac_82558_D101_A4 = 4,
261 mac_82558_D101_B0 = 5,
262 mac_82559_D101M = 8,
263 mac_82559_D101S = 9,
264 mac_82550_D102 = 12,
265 mac_82550_D102_C = 13,
266 mac_82551_E = 14,
267 mac_82551_F = 15,
268 mac_82551_10 = 16,
269 mac_unknown = 0xFF,
270};
271
272enum phy {
273 phy_100a = 0x000003E0,
274 phy_100c = 0x035002A8,
275 phy_82555_tx = 0x015002A8,
276 phy_nsc_tx = 0x5C002000,
277 phy_82562_et = 0x033002A8,
278 phy_82562_em = 0x032002A8,
279 phy_82562_ek = 0x031002A8,
280 phy_82562_eh = 0x017002A8,
b55de80e 281 phy_82552_v = 0xd061004d,
1da177e4
LT
282 phy_unknown = 0xFFFFFFFF,
283};
284
285/* CSR (Control/Status Registers) */
286struct csr {
287 struct {
288 u8 status;
289 u8 stat_ack;
290 u8 cmd_lo;
291 u8 cmd_hi;
292 u32 gen_ptr;
293 } scb;
294 u32 port;
295 u16 flash_ctrl;
296 u8 eeprom_ctrl_lo;
297 u8 eeprom_ctrl_hi;
298 u32 mdi_ctrl;
299 u32 rx_dma_count;
300};
301
302enum scb_status {
7734f6e6 303 rus_no_res = 0x08,
1da177e4
LT
304 rus_ready = 0x10,
305 rus_mask = 0x3C,
306};
307
ca93ca42
JG
308enum ru_state {
309 RU_SUSPENDED = 0,
310 RU_RUNNING = 1,
311 RU_UNINITIALIZED = -1,
312};
313
1da177e4
LT
314enum scb_stat_ack {
315 stat_ack_not_ours = 0x00,
316 stat_ack_sw_gen = 0x04,
317 stat_ack_rnr = 0x10,
318 stat_ack_cu_idle = 0x20,
319 stat_ack_frame_rx = 0x40,
320 stat_ack_cu_cmd_done = 0x80,
321 stat_ack_not_present = 0xFF,
322 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
323 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
324};
325
326enum scb_cmd_hi {
327 irq_mask_none = 0x00,
328 irq_mask_all = 0x01,
329 irq_sw_gen = 0x02,
330};
331
332enum scb_cmd_lo {
333 cuc_nop = 0x00,
334 ruc_start = 0x01,
335 ruc_load_base = 0x06,
336 cuc_start = 0x10,
337 cuc_resume = 0x20,
338 cuc_dump_addr = 0x40,
339 cuc_dump_stats = 0x50,
340 cuc_load_base = 0x60,
341 cuc_dump_reset = 0x70,
342};
343
344enum cuc_dump {
345 cuc_dump_complete = 0x0000A005,
346 cuc_dump_reset_complete = 0x0000A007,
347};
05479938 348
1da177e4
LT
349enum port {
350 software_reset = 0x0000,
351 selftest = 0x0001,
352 selective_reset = 0x0002,
353};
354
355enum eeprom_ctrl_lo {
356 eesk = 0x01,
357 eecs = 0x02,
358 eedi = 0x04,
359 eedo = 0x08,
360};
361
362enum mdi_ctrl {
363 mdi_write = 0x04000000,
364 mdi_read = 0x08000000,
365 mdi_ready = 0x10000000,
366};
367
368enum eeprom_op {
369 op_write = 0x05,
370 op_read = 0x06,
371 op_ewds = 0x10,
372 op_ewen = 0x13,
373};
374
375enum eeprom_offsets {
376 eeprom_cnfg_mdix = 0x03,
72001762 377 eeprom_phy_iface = 0x06,
1da177e4
LT
378 eeprom_id = 0x0A,
379 eeprom_config_asf = 0x0D,
380 eeprom_smbus_addr = 0x90,
381};
382
383enum eeprom_cnfg_mdix {
384 eeprom_mdix_enabled = 0x0080,
385};
386
72001762
AM
387enum eeprom_phy_iface {
388 NoSuchPhy = 0,
389 I82553AB,
390 I82553C,
391 I82503,
392 DP83840,
393 S80C240,
394 S80C24,
395 I82555,
396 DP83840A = 10,
397};
398
1da177e4
LT
399enum eeprom_id {
400 eeprom_id_wol = 0x0020,
401};
402
403enum eeprom_config_asf {
404 eeprom_asf = 0x8000,
405 eeprom_gcl = 0x4000,
406};
407
408enum cb_status {
409 cb_complete = 0x8000,
410 cb_ok = 0x2000,
411};
412
413enum cb_command {
414 cb_nop = 0x0000,
415 cb_iaaddr = 0x0001,
416 cb_config = 0x0002,
417 cb_multi = 0x0003,
418 cb_tx = 0x0004,
419 cb_ucode = 0x0005,
420 cb_dump = 0x0006,
421 cb_tx_sf = 0x0008,
422 cb_cid = 0x1f00,
423 cb_i = 0x2000,
424 cb_s = 0x4000,
425 cb_el = 0x8000,
426};
427
428struct rfd {
aaf918ba
AV
429 __le16 status;
430 __le16 command;
431 __le32 link;
432 __le32 rbd;
433 __le16 actual_size;
434 __le16 size;
1da177e4
LT
435};
436
437struct rx {
438 struct rx *next, *prev;
439 struct sk_buff *skb;
440 dma_addr_t dma_addr;
441};
442
443#if defined(__BIG_ENDIAN_BITFIELD)
444#define X(a,b) b,a
445#else
446#define X(a,b) a,b
447#endif
448struct config {
449/*0*/ u8 X(byte_count:6, pad0:2);
450/*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
451/*2*/ u8 adaptive_ifs;
452/*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
453 term_write_cache_line:1), pad3:4);
454/*4*/ u8 X(rx_dma_max_count:7, pad4:1);
455/*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
456/*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
457 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
458 rx_discard_overruns:1), rx_save_bad_frames:1);
459/*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
460 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
461 tx_dynamic_tbd:1);
462/*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
463/*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
464 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
465/*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
466 loopback:2);
467/*11*/ u8 X(linear_priority:3, pad11:5);
468/*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
469/*13*/ u8 ip_addr_lo;
470/*14*/ u8 ip_addr_hi;
471/*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
472 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
473 pad15_2:1), crs_or_cdt:1);
474/*16*/ u8 fc_delay_lo;
475/*17*/ u8 fc_delay_hi;
476/*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
477 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
478/*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
479 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
480 full_duplex_force:1), full_duplex_pin:1);
481/*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
482/*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
483/*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
484 u8 pad_d102[9];
485};
486
487#define E100_MAX_MULTICAST_ADDRS 64
488struct multi {
aaf918ba 489 __le16 count;
1da177e4
LT
490 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
491};
492
493/* Important: keep total struct u32-aligned */
494#define UCODE_SIZE 134
495struct cb {
aaf918ba
AV
496 __le16 status;
497 __le16 command;
498 __le32 link;
1da177e4
LT
499 union {
500 u8 iaaddr[ETH_ALEN];
aaf918ba 501 __le32 ucode[UCODE_SIZE];
1da177e4
LT
502 struct config config;
503 struct multi multi;
504 struct {
505 u32 tbd_array;
506 u16 tcb_byte_count;
507 u8 threshold;
508 u8 tbd_count;
509 struct {
aaf918ba
AV
510 __le32 buf_addr;
511 __le16 size;
1da177e4
LT
512 u16 eol;
513 } tbd;
514 } tcb;
aaf918ba 515 __le32 dump_buffer_addr;
1da177e4
LT
516 } u;
517 struct cb *next, *prev;
518 dma_addr_t dma_addr;
519 struct sk_buff *skb;
520};
521
522enum loopback {
523 lb_none = 0, lb_mac = 1, lb_phy = 3,
524};
525
526struct stats {
aaf918ba 527 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
1da177e4
LT
528 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
529 tx_multiple_collisions, tx_total_collisions;
aaf918ba 530 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
1da177e4
LT
531 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
532 rx_short_frame_errors;
aaf918ba
AV
533 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
534 __le16 xmt_tco_frames, rcv_tco_frames;
535 __le32 complete;
1da177e4
LT
536};
537
538struct mem {
539 struct {
540 u32 signature;
541 u32 result;
542 } selftest;
543 struct stats stats;
544 u8 dump_buf[596];
545};
546
547struct param_range {
548 u32 min;
549 u32 max;
550 u32 count;
551};
552
553struct params {
554 struct param_range rfds;
555 struct param_range cbs;
556};
557
558struct nic {
559 /* Begin: frequently used values: keep adjacent for cache effect */
560 u32 msg_enable ____cacheline_aligned;
561 struct net_device *netdev;
562 struct pci_dev *pdev;
72001762 563 u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
1da177e4
LT
564
565 struct rx *rxs ____cacheline_aligned;
566 struct rx *rx_to_use;
567 struct rx *rx_to_clean;
568 struct rfd blank_rfd;
ca93ca42 569 enum ru_state ru_running;
1da177e4
LT
570
571 spinlock_t cb_lock ____cacheline_aligned;
572 spinlock_t cmd_lock;
573 struct csr __iomem *csr;
574 enum scb_cmd_lo cuc_cmd;
575 unsigned int cbs_avail;
bea3348e 576 struct napi_struct napi;
1da177e4
LT
577 struct cb *cbs;
578 struct cb *cb_to_use;
579 struct cb *cb_to_send;
580 struct cb *cb_to_clean;
aaf918ba 581 __le16 tx_command;
1da177e4
LT
582 /* End: frequently used values: keep adjacent for cache effect */
583
584 enum {
585 ich = (1 << 0),
586 promiscuous = (1 << 1),
587 multicast_all = (1 << 2),
588 wol_magic = (1 << 3),
589 ich_10h_workaround = (1 << 4),
590 } flags ____cacheline_aligned;
591
592 enum mac mac;
593 enum phy phy;
594 struct params params;
1da177e4
LT
595 struct timer_list watchdog;
596 struct timer_list blink_timer;
597 struct mii_if_info mii;
2acdb1e0 598 struct work_struct tx_timeout_task;
1da177e4
LT
599 enum loopback loopback;
600
601 struct mem *mem;
602 dma_addr_t dma_addr;
603
604 dma_addr_t cbs_dma_addr;
605 u8 adaptive_ifs;
606 u8 tx_threshold;
607 u32 tx_frames;
608 u32 tx_collisions;
609 u32 tx_deferred;
610 u32 tx_single_collisions;
611 u32 tx_multiple_collisions;
612 u32 tx_fc_pause;
613 u32 tx_tco_frames;
614
615 u32 rx_fc_pause;
616 u32 rx_fc_unsupported;
617 u32 rx_tco_frames;
618 u32 rx_over_length_errors;
619
1da177e4
LT
620 u16 leds;
621 u16 eeprom_wc;
aaf918ba 622 __le16 eeprom[256];
ac7c6669 623 spinlock_t mdio_lock;
1da177e4
LT
624};
625
626static inline void e100_write_flush(struct nic *nic)
627{
628 /* Flush previous PCI writes through intermediate bridges
629 * by doing a benign read */
27345bb6 630 (void)ioread8(&nic->csr->scb.status);
1da177e4
LT
631}
632
858119e1 633static void e100_enable_irq(struct nic *nic)
1da177e4
LT
634{
635 unsigned long flags;
636
637 spin_lock_irqsave(&nic->cmd_lock, flags);
27345bb6 638 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
1da177e4 639 e100_write_flush(nic);
ad8c48ad 640 spin_unlock_irqrestore(&nic->cmd_lock, flags);
1da177e4
LT
641}
642
858119e1 643static void e100_disable_irq(struct nic *nic)
1da177e4
LT
644{
645 unsigned long flags;
646
647 spin_lock_irqsave(&nic->cmd_lock, flags);
27345bb6 648 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
1da177e4 649 e100_write_flush(nic);
ad8c48ad 650 spin_unlock_irqrestore(&nic->cmd_lock, flags);
1da177e4
LT
651}
652
653static void e100_hw_reset(struct nic *nic)
654{
655 /* Put CU and RU into idle with a selective reset to get
656 * device off of PCI bus */
27345bb6 657 iowrite32(selective_reset, &nic->csr->port);
1da177e4
LT
658 e100_write_flush(nic); udelay(20);
659
660 /* Now fully reset device */
27345bb6 661 iowrite32(software_reset, &nic->csr->port);
1da177e4
LT
662 e100_write_flush(nic); udelay(20);
663
664 /* Mask off our interrupt line - it's unmasked after reset */
665 e100_disable_irq(nic);
666}
667
668static int e100_self_test(struct nic *nic)
669{
670 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
671
672 /* Passing the self-test is a pretty good indication
673 * that the device can DMA to/from host memory */
674
675 nic->mem->selftest.signature = 0;
676 nic->mem->selftest.result = 0xFFFFFFFF;
677
27345bb6 678 iowrite32(selftest | dma_addr, &nic->csr->port);
1da177e4
LT
679 e100_write_flush(nic);
680 /* Wait 10 msec for self-test to complete */
681 msleep(10);
682
683 /* Interrupts are enabled after self-test */
684 e100_disable_irq(nic);
685
686 /* Check results of self-test */
f26251eb 687 if (nic->mem->selftest.result != 0) {
1da177e4
LT
688 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n",
689 nic->mem->selftest.result);
690 return -ETIMEDOUT;
691 }
f26251eb 692 if (nic->mem->selftest.signature == 0) {
1da177e4
LT
693 DPRINTK(HW, ERR, "Self-test failed: timed out\n");
694 return -ETIMEDOUT;
695 }
696
697 return 0;
698}
699
aaf918ba 700static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
1da177e4
LT
701{
702 u32 cmd_addr_data[3];
703 u8 ctrl;
704 int i, j;
705
706 /* Three cmds: write/erase enable, write data, write/erase disable */
707 cmd_addr_data[0] = op_ewen << (addr_len - 2);
708 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
aaf918ba 709 le16_to_cpu(data);
1da177e4
LT
710 cmd_addr_data[2] = op_ewds << (addr_len - 2);
711
712 /* Bit-bang cmds to write word to eeprom */
f26251eb 713 for (j = 0; j < 3; j++) {
1da177e4
LT
714
715 /* Chip select */
27345bb6 716 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
1da177e4
LT
717 e100_write_flush(nic); udelay(4);
718
f26251eb 719 for (i = 31; i >= 0; i--) {
1da177e4
LT
720 ctrl = (cmd_addr_data[j] & (1 << i)) ?
721 eecs | eedi : eecs;
27345bb6 722 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
1da177e4
LT
723 e100_write_flush(nic); udelay(4);
724
27345bb6 725 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
1da177e4
LT
726 e100_write_flush(nic); udelay(4);
727 }
728 /* Wait 10 msec for cmd to complete */
729 msleep(10);
730
731 /* Chip deselect */
27345bb6 732 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
1da177e4
LT
733 e100_write_flush(nic); udelay(4);
734 }
735};
736
737/* General technique stolen from the eepro100 driver - very clever */
aaf918ba 738static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
1da177e4
LT
739{
740 u32 cmd_addr_data;
741 u16 data = 0;
742 u8 ctrl;
743 int i;
744
745 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
746
747 /* Chip select */
27345bb6 748 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
1da177e4
LT
749 e100_write_flush(nic); udelay(4);
750
751 /* Bit-bang to read word from eeprom */
f26251eb 752 for (i = 31; i >= 0; i--) {
1da177e4 753 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
27345bb6 754 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
1da177e4 755 e100_write_flush(nic); udelay(4);
05479938 756
27345bb6 757 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
1da177e4 758 e100_write_flush(nic); udelay(4);
05479938 759
1da177e4
LT
760 /* Eeprom drives a dummy zero to EEDO after receiving
761 * complete address. Use this to adjust addr_len. */
27345bb6 762 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
f26251eb 763 if (!(ctrl & eedo) && i > 16) {
1da177e4
LT
764 *addr_len -= (i - 16);
765 i = 17;
766 }
05479938 767
1da177e4
LT
768 data = (data << 1) | (ctrl & eedo ? 1 : 0);
769 }
770
771 /* Chip deselect */
27345bb6 772 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
1da177e4
LT
773 e100_write_flush(nic); udelay(4);
774
aaf918ba 775 return cpu_to_le16(data);
1da177e4
LT
776};
777
778/* Load entire EEPROM image into driver cache and validate checksum */
779static int e100_eeprom_load(struct nic *nic)
780{
781 u16 addr, addr_len = 8, checksum = 0;
782
783 /* Try reading with an 8-bit addr len to discover actual addr len */
784 e100_eeprom_read(nic, &addr_len, 0);
785 nic->eeprom_wc = 1 << addr_len;
786
f26251eb 787 for (addr = 0; addr < nic->eeprom_wc; addr++) {
1da177e4 788 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
f26251eb 789 if (addr < nic->eeprom_wc - 1)
aaf918ba 790 checksum += le16_to_cpu(nic->eeprom[addr]);
1da177e4
LT
791 }
792
793 /* The checksum, stored in the last word, is calculated such that
794 * the sum of words should be 0xBABA */
aaf918ba 795 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
1da177e4 796 DPRINTK(PROBE, ERR, "EEPROM corrupted\n");
8fb6f732
DM
797 if (!eeprom_bad_csum_allow)
798 return -EAGAIN;
1da177e4
LT
799 }
800
801 return 0;
802}
803
804/* Save (portion of) driver EEPROM cache to device and update checksum */
805static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
806{
807 u16 addr, addr_len = 8, checksum = 0;
808
809 /* Try reading with an 8-bit addr len to discover actual addr len */
810 e100_eeprom_read(nic, &addr_len, 0);
811 nic->eeprom_wc = 1 << addr_len;
812
f26251eb 813 if (start + count >= nic->eeprom_wc)
1da177e4
LT
814 return -EINVAL;
815
f26251eb 816 for (addr = start; addr < start + count; addr++)
1da177e4
LT
817 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
818
819 /* The checksum, stored in the last word, is calculated such that
820 * the sum of words should be 0xBABA */
f26251eb 821 for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
aaf918ba
AV
822 checksum += le16_to_cpu(nic->eeprom[addr]);
823 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
1da177e4
LT
824 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
825 nic->eeprom[nic->eeprom_wc - 1]);
826
827 return 0;
828}
829
962082b6 830#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
e6280f26 831#define E100_WAIT_SCB_FAST 20 /* delay like the old code */
858119e1 832static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
1da177e4
LT
833{
834 unsigned long flags;
835 unsigned int i;
836 int err = 0;
837
838 spin_lock_irqsave(&nic->cmd_lock, flags);
839
840 /* Previous command is accepted when SCB clears */
f26251eb
BA
841 for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
842 if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
1da177e4
LT
843 break;
844 cpu_relax();
f26251eb 845 if (unlikely(i > E100_WAIT_SCB_FAST))
1da177e4
LT
846 udelay(5);
847 }
f26251eb 848 if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
1da177e4
LT
849 err = -EAGAIN;
850 goto err_unlock;
851 }
852
f26251eb 853 if (unlikely(cmd != cuc_resume))
27345bb6
JB
854 iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
855 iowrite8(cmd, &nic->csr->scb.cmd_lo);
1da177e4
LT
856
857err_unlock:
858 spin_unlock_irqrestore(&nic->cmd_lock, flags);
859
860 return err;
861}
862
858119e1 863static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
1da177e4
LT
864 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
865{
866 struct cb *cb;
867 unsigned long flags;
868 int err = 0;
869
870 spin_lock_irqsave(&nic->cb_lock, flags);
871
f26251eb 872 if (unlikely(!nic->cbs_avail)) {
1da177e4
LT
873 err = -ENOMEM;
874 goto err_unlock;
875 }
876
877 cb = nic->cb_to_use;
878 nic->cb_to_use = cb->next;
879 nic->cbs_avail--;
880 cb->skb = skb;
881
f26251eb 882 if (unlikely(!nic->cbs_avail))
1da177e4
LT
883 err = -ENOSPC;
884
885 cb_prepare(nic, cb, skb);
886
887 /* Order is important otherwise we'll be in a race with h/w:
888 * set S-bit in current first, then clear S-bit in previous. */
889 cb->command |= cpu_to_le16(cb_s);
890 wmb();
891 cb->prev->command &= cpu_to_le16(~cb_s);
892
f26251eb
BA
893 while (nic->cb_to_send != nic->cb_to_use) {
894 if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
1da177e4
LT
895 nic->cb_to_send->dma_addr))) {
896 /* Ok, here's where things get sticky. It's
897 * possible that we can't schedule the command
898 * because the controller is too busy, so
899 * let's just queue the command and try again
900 * when another command is scheduled. */
f26251eb 901 if (err == -ENOSPC) {
962082b6
MC
902 //request a reset
903 schedule_work(&nic->tx_timeout_task);
904 }
1da177e4
LT
905 break;
906 } else {
907 nic->cuc_cmd = cuc_resume;
908 nic->cb_to_send = nic->cb_to_send->next;
909 }
910 }
911
912err_unlock:
913 spin_unlock_irqrestore(&nic->cb_lock, flags);
914
915 return err;
916}
917
72001762
AM
918static int mdio_read(struct net_device *netdev, int addr, int reg)
919{
920 struct nic *nic = netdev_priv(netdev);
921 return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
922}
923
924static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
925{
926 struct nic *nic = netdev_priv(netdev);
927
928 nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
929}
930
931/* the standard mdio_ctrl() function for usual MII-compliant hardware */
932static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
1da177e4
LT
933{
934 u32 data_out = 0;
935 unsigned int i;
ac7c6669 936 unsigned long flags;
1da177e4 937
ac7c6669
OM
938
939 /*
940 * Stratus87247: we shouldn't be writing the MDI control
941 * register until the Ready bit shows True. Also, since
942 * manipulation of the MDI control registers is a multi-step
943 * procedure it should be done under lock.
944 */
945 spin_lock_irqsave(&nic->mdio_lock, flags);
946 for (i = 100; i; --i) {
27345bb6 947 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
ac7c6669
OM
948 break;
949 udelay(20);
950 }
951 if (unlikely(!i)) {
952 printk("e100.mdio_ctrl(%s) won't go Ready\n",
953 nic->netdev->name );
954 spin_unlock_irqrestore(&nic->mdio_lock, flags);
955 return 0; /* No way to indicate timeout error */
956 }
27345bb6 957 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
1da177e4 958
ac7c6669 959 for (i = 0; i < 100; i++) {
1da177e4 960 udelay(20);
27345bb6 961 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
1da177e4
LT
962 break;
963 }
ac7c6669 964 spin_unlock_irqrestore(&nic->mdio_lock, flags);
1da177e4
LT
965 DPRINTK(HW, DEBUG,
966 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
967 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out);
968 return (u16)data_out;
969}
970
72001762
AM
971/* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
972static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
973 u32 addr,
974 u32 dir,
975 u32 reg,
976 u16 data)
977{
978 if ((reg == MII_BMCR) && (dir == mdi_write)) {
979 if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
980 u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
981 MII_ADVERTISE);
982
983 /*
984 * Workaround Si issue where sometimes the part will not
985 * autoneg to 100Mbps even when advertised.
986 */
987 if (advert & ADVERTISE_100FULL)
988 data |= BMCR_SPEED100 | BMCR_FULLDPLX;
989 else if (advert & ADVERTISE_100HALF)
990 data |= BMCR_SPEED100;
991 }
992 }
993 return mdio_ctrl_hw(nic, addr, dir, reg, data);
1da177e4
LT
994}
995
72001762
AM
996/* Fully software-emulated mdio_ctrl() function for cards without
997 * MII-compliant PHYs.
998 * For now, this is mainly geared towards 80c24 support; in case of further
999 * requirements for other types (i82503, ...?) either extend this mechanism
1000 * or split it, whichever is cleaner.
1001 */
1002static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
1003 u32 addr,
1004 u32 dir,
1005 u32 reg,
1006 u16 data)
1007{
1008 /* might need to allocate a netdev_priv'ed register array eventually
1009 * to be able to record state changes, but for now
1010 * some fully hardcoded register handling ought to be ok I guess. */
1011
1012 if (dir == mdi_read) {
1013 switch (reg) {
1014 case MII_BMCR:
1015 /* Auto-negotiation, right? */
1016 return BMCR_ANENABLE |
1017 BMCR_FULLDPLX;
1018 case MII_BMSR:
1019 return BMSR_LSTATUS /* for mii_link_ok() */ |
1020 BMSR_ANEGCAPABLE |
1021 BMSR_10FULL;
1022 case MII_ADVERTISE:
1023 /* 80c24 is a "combo card" PHY, right? */
1024 return ADVERTISE_10HALF |
1025 ADVERTISE_10FULL;
1026 default:
1027 DPRINTK(HW, DEBUG,
1028 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1029 dir == mdi_read ? "READ" : "WRITE", addr, reg, data);
1030 return 0xFFFF;
1031 }
1032 } else {
1033 switch (reg) {
1034 default:
1035 DPRINTK(HW, DEBUG,
1036 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1037 dir == mdi_read ? "READ" : "WRITE", addr, reg, data);
1038 return 0xFFFF;
1039 }
b55de80e 1040 }
72001762
AM
1041}
1042static inline int e100_phy_supports_mii(struct nic *nic)
1043{
1044 /* for now, just check it by comparing whether we
1045 are using MII software emulation.
1046 */
1047 return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1da177e4
LT
1048}
1049
1050static void e100_get_defaults(struct nic *nic)
1051{
2afecc04
JB
1052 struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1053 struct param_range cbs = { .min = 64, .max = 256, .count = 128 };
1da177e4 1054
1da177e4 1055 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
44c10138 1056 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
f26251eb 1057 if (nic->mac == mac_unknown)
1da177e4
LT
1058 nic->mac = mac_82557_D100_A;
1059
1060 nic->params.rfds = rfds;
1061 nic->params.cbs = cbs;
1062
1063 /* Quadwords to DMA into FIFO before starting frame transmit */
1064 nic->tx_threshold = 0xE0;
1065
0a0863af 1066 /* no interrupt for every tx completion, delay = 256us if not 557 */
962082b6
MC
1067 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1068 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1da177e4
LT
1069
1070 /* Template for a freshly allocated RFD */
7734f6e6 1071 nic->blank_rfd.command = 0;
1172899a 1072 nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1da177e4
LT
1073 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
1074
1075 /* MII setup */
1076 nic->mii.phy_id_mask = 0x1F;
1077 nic->mii.reg_num_mask = 0x1F;
1078 nic->mii.dev = nic->netdev;
1079 nic->mii.mdio_read = mdio_read;
1080 nic->mii.mdio_write = mdio_write;
1081}
1082
1083static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1084{
1085 struct config *config = &cb->u.config;
1086 u8 *c = (u8 *)config;
1087
1088 cb->command = cpu_to_le16(cb_config);
1089
1090 memset(config, 0, sizeof(struct config));
1091
1092 config->byte_count = 0x16; /* bytes in this struct */
1093 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
1094 config->direct_rx_dma = 0x1; /* reserved */
1095 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
1096 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
1097 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
1098 config->tx_underrun_retry = 0x3; /* # of underrun retries */
72001762
AM
1099 if (e100_phy_supports_mii(nic))
1100 config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */
1da177e4
LT
1101 config->pad10 = 0x6;
1102 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
1103 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
1104 config->ifs = 0x6; /* x16 = inter frame spacing */
1105 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
1106 config->pad15_1 = 0x1;
1107 config->pad15_2 = 0x1;
1108 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
1109 config->fc_delay_hi = 0x40; /* time delay for fc frame */
1110 config->tx_padding = 0x1; /* 1=pad short frames */
1111 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
1112 config->pad18 = 0x1;
1113 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
1114 config->pad20_1 = 0x1F;
1115 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
1116 config->pad21_1 = 0x5;
1117
1118 config->adaptive_ifs = nic->adaptive_ifs;
1119 config->loopback = nic->loopback;
1120
f26251eb 1121 if (nic->mii.force_media && nic->mii.full_duplex)
1da177e4
LT
1122 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
1123
f26251eb 1124 if (nic->flags & promiscuous || nic->loopback) {
1da177e4
LT
1125 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1126 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1127 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
1128 }
1129
f26251eb 1130 if (nic->flags & multicast_all)
1da177e4
LT
1131 config->multicast_all = 0x1; /* 1=accept, 0=no */
1132
6bdacb1a 1133 /* disable WoL when up */
f26251eb 1134 if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1da177e4
LT
1135 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
1136
f26251eb 1137 if (nic->mac >= mac_82558_D101_A4) {
1da177e4
LT
1138 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
1139 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
1140 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
1141 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
44e4925e 1142 if (nic->mac >= mac_82559_D101M) {
1da177e4 1143 config->tno_intr = 0x1; /* TCO stats enable */
44e4925e
DG
1144 /* Enable TCO in extended config */
1145 if (nic->mac >= mac_82551_10) {
1146 config->byte_count = 0x20; /* extended bytes */
1147 config->rx_d102_mode = 0x1; /* GMRC for TCO */
1148 }
1149 } else {
1da177e4 1150 config->standard_stat_counter = 0x0;
44e4925e 1151 }
1da177e4
LT
1152 }
1153
1154 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1155 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1156 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1157 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1158 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1159 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1160}
1161
2afecc04
JB
1162/*************************************************************************
1163* CPUSaver parameters
1164*
1165* All CPUSaver parameters are 16-bit literals that are part of a
1166* "move immediate value" instruction. By changing the value of
1167* the literal in the instruction before the code is loaded, the
1168* driver can change the algorithm.
1169*
0779bf2d 1170* INTDELAY - This loads the dead-man timer with its initial value.
05479938 1171* When this timer expires the interrupt is asserted, and the
2afecc04
JB
1172* timer is reset each time a new packet is received. (see
1173* BUNDLEMAX below to set the limit on number of chained packets)
1174* The current default is 0x600 or 1536. Experiments show that
1175* the value should probably stay within the 0x200 - 0x1000.
1176*
05479938 1177* BUNDLEMAX -
2afecc04
JB
1178* This sets the maximum number of frames that will be bundled. In
1179* some situations, such as the TCP windowing algorithm, it may be
1180* better to limit the growth of the bundle size than let it go as
1181* high as it can, because that could cause too much added latency.
1182* The default is six, because this is the number of packets in the
1183* default TCP window size. A value of 1 would make CPUSaver indicate
1184* an interrupt for every frame received. If you do not want to put
1185* a limit on the bundle size, set this value to xFFFF.
1186*
05479938 1187* BUNDLESMALL -
2afecc04
JB
1188* This contains a bit-mask describing the minimum size frame that
1189* will be bundled. The default masks the lower 7 bits, which means
1190* that any frame less than 128 bytes in length will not be bundled,
1191* but will instead immediately generate an interrupt. This does
1192* not affect the current bundle in any way. Any frame that is 128
1193* bytes or large will be bundled normally. This feature is meant
1194* to provide immediate indication of ACK frames in a TCP environment.
1195* Customers were seeing poor performance when a machine with CPUSaver
1196* enabled was sending but not receiving. The delay introduced when
1197* the ACKs were received was enough to reduce total throughput, because
1198* the sender would sit idle until the ACK was finally seen.
1199*
1200* The current default is 0xFF80, which masks out the lower 7 bits.
1201* This means that any frame which is x7F (127) bytes or smaller
05479938 1202* will cause an immediate interrupt. Because this value must be a
2afecc04
JB
1203* bit mask, there are only a few valid values that can be used. To
1204* turn this feature off, the driver can write the value xFFFF to the
1205* lower word of this instruction (in the same way that the other
1206* parameters are used). Likewise, a value of 0xF800 (2047) would
1207* cause an interrupt to be generated for every frame, because all
1208* standard Ethernet frames are <= 2047 bytes in length.
1209*************************************************************************/
1210
05479938 1211/* if you wish to disable the ucode functionality, while maintaining the
2afecc04
JB
1212 * workarounds it provides, set the following defines to:
1213 * BUNDLESMALL 0
1214 * BUNDLEMAX 1
1215 * INTDELAY 1
1216 */
1217#define BUNDLESMALL 1
1218#define BUNDLEMAX (u16)6
1219#define INTDELAY (u16)1536 /* 0x600 */
1220
9ac32e1b
JSR
1221/* Initialize firmware */
1222static const struct firmware *e100_request_firmware(struct nic *nic)
1223{
1224 const char *fw_name;
1225 const struct firmware *fw;
1226 u8 timer, bundle, min_size;
1227 int err;
1228
2afecc04
JB
1229 /* do not load u-code for ICH devices */
1230 if (nic->flags & ich)
9ac32e1b 1231 return NULL;
2afecc04 1232
44c10138 1233 /* Search for ucode match against h/w revision */
9ac32e1b
JSR
1234 if (nic->mac == mac_82559_D101M)
1235 fw_name = FIRMWARE_D101M;
1236 else if (nic->mac == mac_82559_D101S)
1237 fw_name = FIRMWARE_D101S;
1238 else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10)
1239 fw_name = FIRMWARE_D102E;
1240 else /* No ucode on other devices */
1241 return NULL;
1242
1243 err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1244 if (err) {
1245 DPRINTK(PROBE, ERR, "Failed to load firmware \"%s\": %d\n",
1246 fw_name, err);
1247 return ERR_PTR(err);
1248 }
1249 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1250 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1251 if (fw->size != UCODE_SIZE * 4 + 3) {
1252 DPRINTK(PROBE, ERR, "Firmware \"%s\" has wrong size %zu\n",
1253 fw_name, fw->size);
1254 release_firmware(fw);
1255 return ERR_PTR(-EINVAL);
2afecc04
JB
1256 }
1257
9ac32e1b
JSR
1258 /* Read timer, bundle and min_size from end of firmware blob */
1259 timer = fw->data[UCODE_SIZE * 4];
1260 bundle = fw->data[UCODE_SIZE * 4 + 1];
1261 min_size = fw->data[UCODE_SIZE * 4 + 2];
1262
1263 if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1264 min_size >= UCODE_SIZE) {
1265 DPRINTK(PROBE, ERR,
1266 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1267 fw_name, timer, bundle, min_size);
1268 release_firmware(fw);
1269 return ERR_PTR(-EINVAL);
1270 }
1271 /* OK, firmware is validated and ready to use... */
1272 return fw;
24180333
JB
1273}
1274
9ac32e1b
JSR
1275static void e100_setup_ucode(struct nic *nic, struct cb *cb,
1276 struct sk_buff *skb)
24180333 1277{
9ac32e1b
JSR
1278 const struct firmware *fw = (void *)skb;
1279 u8 timer, bundle, min_size;
1280
1281 /* It's not a real skb; we just abused the fact that e100_exec_cb
1282 will pass it through to here... */
1283 cb->skb = NULL;
1284
1285 /* firmware is stored as little endian already */
1286 memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1287
1288 /* Read timer, bundle and min_size from end of firmware blob */
1289 timer = fw->data[UCODE_SIZE * 4];
1290 bundle = fw->data[UCODE_SIZE * 4 + 1];
1291 min_size = fw->data[UCODE_SIZE * 4 + 2];
1292
1293 /* Insert user-tunable settings in cb->u.ucode */
1294 cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1295 cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1296 cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1297 cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1298 cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1299 cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1300
1301 cb->command = cpu_to_le16(cb_ucode | cb_el);
1302}
1303
1304static inline int e100_load_ucode_wait(struct nic *nic)
1305{
1306 const struct firmware *fw;
24180333
JB
1307 int err = 0, counter = 50;
1308 struct cb *cb = nic->cb_to_clean;
1309
9ac32e1b
JSR
1310 fw = e100_request_firmware(nic);
1311 /* If it's NULL, then no ucode is required */
1312 if (!fw || IS_ERR(fw))
1313 return PTR_ERR(fw);
1314
1315 if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
24180333 1316 DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err);
05479938 1317
24180333
JB
1318 /* must restart cuc */
1319 nic->cuc_cmd = cuc_start;
1320
1321 /* wait for completion */
1322 e100_write_flush(nic);
1323 udelay(10);
1324
1325 /* wait for possibly (ouch) 500ms */
1326 while (!(cb->status & cpu_to_le16(cb_complete))) {
1327 msleep(10);
1328 if (!--counter) break;
1329 }
05479938 1330
3a4fa0a2 1331 /* ack any interrupts, something could have been set */
27345bb6 1332 iowrite8(~0, &nic->csr->scb.stat_ack);
24180333
JB
1333
1334 /* if the command failed, or is not OK, notify and return */
1335 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1336 DPRINTK(PROBE,ERR, "ucode load failed\n");
1337 err = -EPERM;
1338 }
05479938 1339
24180333 1340 return err;
1da177e4
LT
1341}
1342
1343static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1344 struct sk_buff *skb)
1345{
1346 cb->command = cpu_to_le16(cb_iaaddr);
1347 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1348}
1349
1350static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1351{
1352 cb->command = cpu_to_le16(cb_dump);
1353 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1354 offsetof(struct mem, dump_buf));
1355}
1356
72001762
AM
1357static int e100_phy_check_without_mii(struct nic *nic)
1358{
1359 u8 phy_type;
1360 int without_mii;
1361
1362 phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
1363
1364 switch (phy_type) {
1365 case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1366 case I82503: /* Non-MII PHY; UNTESTED! */
1367 case S80C24: /* Non-MII PHY; tested and working */
1368 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1369 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1370 * doesn't have a programming interface of any sort. The
1371 * media is sensed automatically based on how the link partner
1372 * is configured. This is, in essence, manual configuration.
1373 */
1374 DPRINTK(PROBE, INFO,
1375 "found MII-less i82503 or 80c24 or other PHY\n");
1376
1377 nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1378 nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1379
1380 /* these might be needed for certain MII-less cards...
1381 * nic->flags |= ich;
1382 * nic->flags |= ich_10h_workaround; */
1383
1384 without_mii = 1;
1385 break;
1386 default:
1387 without_mii = 0;
1388 break;
1389 }
1390 return without_mii;
1391}
1392
1da177e4
LT
1393#define NCONFIG_AUTO_SWITCH 0x0080
1394#define MII_NSC_CONG MII_RESV1
1395#define NSC_CONG_ENABLE 0x0100
1396#define NSC_CONG_TXREADY 0x0400
1397#define ADVERTISE_FC_SUPPORTED 0x0400
1398static int e100_phy_init(struct nic *nic)
1399{
1400 struct net_device *netdev = nic->netdev;
1401 u32 addr;
1402 u16 bmcr, stat, id_lo, id_hi, cong;
1403
1404 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
f26251eb 1405 for (addr = 0; addr < 32; addr++) {
1da177e4
LT
1406 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1407 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1408 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1409 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
f26251eb 1410 if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1da177e4
LT
1411 break;
1412 }
72001762
AM
1413 if (addr == 32) {
1414 /* uhoh, no PHY detected: check whether we seem to be some
1415 * weird, rare variant which is *known* to not have any MII.
1416 * But do this AFTER MII checking only, since this does
1417 * lookup of EEPROM values which may easily be unreliable. */
1418 if (e100_phy_check_without_mii(nic))
1419 return 0; /* simply return and hope for the best */
1420 else {
1421 /* for unknown cases log a fatal error */
1422 DPRINTK(HW, ERR,
1423 "Failed to locate any known PHY, aborting.\n");
1424 return -EAGAIN;
1425 }
1426 } else
1427 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id);
1da177e4 1428
b55de80e
BA
1429 /* Isolate all the PHY ids */
1430 for (addr = 0; addr < 32; addr++)
1431 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1432 /* Select the discovered PHY */
1433 bmcr &= ~BMCR_ISOLATE;
1434 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1da177e4
LT
1435
1436 /* Get phy ID */
1437 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1438 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1439 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1440 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy);
1441
1442 /* Handle National tx phys */
1443#define NCS_PHY_MODEL_MASK 0xFFF0FFFF
f26251eb 1444 if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1da177e4
LT
1445 /* Disable congestion control */
1446 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1447 cong |= NSC_CONG_TXREADY;
1448 cong &= ~NSC_CONG_ENABLE;
1449 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1450 }
1451
b55de80e
BA
1452 if (nic->phy == phy_82552_v) {
1453 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1454
72001762
AM
1455 /* assign special tweaked mdio_ctrl() function */
1456 nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1457
b55de80e
BA
1458 /* Workaround Si not advertising flow-control during autoneg */
1459 advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1460 mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1461
1462 /* Reset for the above changes to take effect */
1463 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1464 bmcr |= BMCR_RESET;
1465 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1466 } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
60ffa478
JK
1467 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1468 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1469 /* enable/disable MDI/MDI-X auto-switching. */
1470 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1471 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
64895145 1472 }
1da177e4
LT
1473
1474 return 0;
1475}
1476
1477static int e100_hw_init(struct nic *nic)
1478{
1479 int err;
1480
1481 e100_hw_reset(nic);
1482
1483 DPRINTK(HW, ERR, "e100_hw_init\n");
f26251eb 1484 if (!in_interrupt() && (err = e100_self_test(nic)))
1da177e4
LT
1485 return err;
1486
f26251eb 1487 if ((err = e100_phy_init(nic)))
1da177e4 1488 return err;
f26251eb 1489 if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1da177e4 1490 return err;
f26251eb 1491 if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1da177e4 1492 return err;
9ac32e1b 1493 if ((err = e100_load_ucode_wait(nic)))
1da177e4 1494 return err;
f26251eb 1495 if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1da177e4 1496 return err;
f26251eb 1497 if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1da177e4 1498 return err;
f26251eb 1499 if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1da177e4
LT
1500 nic->dma_addr + offsetof(struct mem, stats))))
1501 return err;
f26251eb 1502 if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1da177e4
LT
1503 return err;
1504
1505 e100_disable_irq(nic);
1506
1507 return 0;
1508}
1509
1510static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1511{
1512 struct net_device *netdev = nic->netdev;
1513 struct dev_mc_list *list = netdev->mc_list;
1514 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS);
1515
1516 cb->command = cpu_to_le16(cb_multi);
1517 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
f26251eb 1518 for (i = 0; list && i < count; i++, list = list->next)
1da177e4
LT
1519 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr,
1520 ETH_ALEN);
1521}
1522
1523static void e100_set_multicast_list(struct net_device *netdev)
1524{
1525 struct nic *nic = netdev_priv(netdev);
1526
1527 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n",
1528 netdev->mc_count, netdev->flags);
1529
f26251eb 1530 if (netdev->flags & IFF_PROMISC)
1da177e4
LT
1531 nic->flags |= promiscuous;
1532 else
1533 nic->flags &= ~promiscuous;
1534
f26251eb 1535 if (netdev->flags & IFF_ALLMULTI ||
1da177e4
LT
1536 netdev->mc_count > E100_MAX_MULTICAST_ADDRS)
1537 nic->flags |= multicast_all;
1538 else
1539 nic->flags &= ~multicast_all;
1540
1541 e100_exec_cb(nic, NULL, e100_configure);
1542 e100_exec_cb(nic, NULL, e100_multi);
1543}
1544
1545static void e100_update_stats(struct nic *nic)
1546{
09f75cd7
JG
1547 struct net_device *dev = nic->netdev;
1548 struct net_device_stats *ns = &dev->stats;
1da177e4 1549 struct stats *s = &nic->mem->stats;
aaf918ba
AV
1550 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1551 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1da177e4
LT
1552 &s->complete;
1553
1554 /* Device's stats reporting may take several microseconds to
0a0863af 1555 * complete, so we're always waiting for results of the
1da177e4
LT
1556 * previous command. */
1557
f26251eb 1558 if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1da177e4
LT
1559 *complete = 0;
1560 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1561 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1562 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1563 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1564 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1565 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1566 ns->collisions += nic->tx_collisions;
1567 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1568 le32_to_cpu(s->tx_lost_crs);
1da177e4
LT
1569 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1570 nic->rx_over_length_errors;
1571 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1572 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1573 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1574 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
ecf7130b 1575 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1da177e4
LT
1576 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1577 le32_to_cpu(s->rx_alignment_errors) +
1578 le32_to_cpu(s->rx_short_frame_errors) +
1579 le32_to_cpu(s->rx_cdt_errors);
1580 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1581 nic->tx_single_collisions +=
1582 le32_to_cpu(s->tx_single_collisions);
1583 nic->tx_multiple_collisions +=
1584 le32_to_cpu(s->tx_multiple_collisions);
f26251eb 1585 if (nic->mac >= mac_82558_D101_A4) {
1da177e4
LT
1586 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1587 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1588 nic->rx_fc_unsupported +=
1589 le32_to_cpu(s->fc_rcv_unsupported);
f26251eb 1590 if (nic->mac >= mac_82559_D101M) {
1da177e4
LT
1591 nic->tx_tco_frames +=
1592 le16_to_cpu(s->xmt_tco_frames);
1593 nic->rx_tco_frames +=
1594 le16_to_cpu(s->rcv_tco_frames);
1595 }
1596 }
1597 }
1598
05479938 1599
f26251eb 1600 if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1f53367d 1601 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n");
1da177e4
LT
1602}
1603
1604static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1605{
1606 /* Adjust inter-frame-spacing (IFS) between two transmits if
1607 * we're getting collisions on a half-duplex connection. */
1608
f26251eb 1609 if (duplex == DUPLEX_HALF) {
1da177e4
LT
1610 u32 prev = nic->adaptive_ifs;
1611 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1612
f26251eb 1613 if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1da177e4 1614 (nic->tx_frames > min_frames)) {
f26251eb 1615 if (nic->adaptive_ifs < 60)
1da177e4
LT
1616 nic->adaptive_ifs += 5;
1617 } else if (nic->tx_frames < min_frames) {
f26251eb 1618 if (nic->adaptive_ifs >= 5)
1da177e4
LT
1619 nic->adaptive_ifs -= 5;
1620 }
f26251eb 1621 if (nic->adaptive_ifs != prev)
1da177e4
LT
1622 e100_exec_cb(nic, NULL, e100_configure);
1623 }
1624}
1625
1626static void e100_watchdog(unsigned long data)
1627{
1628 struct nic *nic = (struct nic *)data;
1629 struct ethtool_cmd cmd;
1630
1631 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies);
1632
1633 /* mii library handles link maintenance tasks */
1634
1635 mii_ethtool_gset(&nic->mii, &cmd);
1636
f26251eb 1637 if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
f4113030
JK
1638 printk(KERN_INFO "e100: %s NIC Link is Up %s Mbps %s Duplex\n",
1639 nic->netdev->name,
1640 cmd.speed == SPEED_100 ? "100" : "10",
1641 cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
f26251eb 1642 } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
f4113030
JK
1643 printk(KERN_INFO "e100: %s NIC Link is Down\n",
1644 nic->netdev->name);
1da177e4
LT
1645 }
1646
1647 mii_check_link(&nic->mii);
1648
1649 /* Software generated interrupt to recover from (rare) Rx
05479938
JB
1650 * allocation failure.
1651 * Unfortunately have to use a spinlock to not re-enable interrupts
1652 * accidentally, due to hardware that shares a register between the
1653 * interrupt mask bit and the SW Interrupt generation bit */
1da177e4 1654 spin_lock_irq(&nic->cmd_lock);
27345bb6 1655 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1da177e4 1656 e100_write_flush(nic);
ad8c48ad 1657 spin_unlock_irq(&nic->cmd_lock);
1da177e4
LT
1658
1659 e100_update_stats(nic);
1660 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
1661
f26251eb 1662 if (nic->mac <= mac_82557_D100_C)
1da177e4
LT
1663 /* Issue a multicast command to workaround a 557 lock up */
1664 e100_set_multicast_list(nic->netdev);
1665
f26251eb 1666 if (nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
1da177e4
LT
1667 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1668 nic->flags |= ich_10h_workaround;
1669 else
1670 nic->flags &= ~ich_10h_workaround;
1671
34c6417b
SH
1672 mod_timer(&nic->watchdog,
1673 round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1da177e4
LT
1674}
1675
858119e1 1676static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1da177e4
LT
1677 struct sk_buff *skb)
1678{
1679 cb->command = nic->tx_command;
962082b6 1680 /* interrupt every 16 packets regardless of delay */
f26251eb 1681 if ((nic->cbs_avail & ~15) == nic->cbs_avail)
996ec353 1682 cb->command |= cpu_to_le16(cb_i);
1da177e4
LT
1683 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1684 cb->u.tcb.tcb_byte_count = 0;
1685 cb->u.tcb.threshold = nic->tx_threshold;
1686 cb->u.tcb.tbd_count = 1;
1687 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1688 skb->data, skb->len, PCI_DMA_TODEVICE));
611494dc 1689 /* check for mapping failure? */
1da177e4
LT
1690 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1691}
1692
3b29a56d
SH
1693static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1694 struct net_device *netdev)
1da177e4
LT
1695{
1696 struct nic *nic = netdev_priv(netdev);
1697 int err;
1698
f26251eb 1699 if (nic->flags & ich_10h_workaround) {
1da177e4
LT
1700 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1701 Issue a NOP command followed by a 1us delay before
1702 issuing the Tx command. */
f26251eb 1703 if (e100_exec_cmd(nic, cuc_nop, 0))
1f53367d 1704 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n");
1da177e4
LT
1705 udelay(1);
1706 }
1707
1708 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1709
f26251eb 1710 switch (err) {
1da177e4
LT
1711 case -ENOSPC:
1712 /* We queued the skb, but now we're out of space. */
1713 DPRINTK(TX_ERR, DEBUG, "No space for CB\n");
1714 netif_stop_queue(netdev);
1715 break;
1716 case -ENOMEM:
1717 /* This is a hard error - log it. */
1718 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n");
1719 netif_stop_queue(netdev);
5b548140 1720 return NETDEV_TX_BUSY;
1da177e4
LT
1721 }
1722
1723 netdev->trans_start = jiffies;
6ed10654 1724 return NETDEV_TX_OK;
1da177e4
LT
1725}
1726
858119e1 1727static int e100_tx_clean(struct nic *nic)
1da177e4 1728{
09f75cd7 1729 struct net_device *dev = nic->netdev;
1da177e4
LT
1730 struct cb *cb;
1731 int tx_cleaned = 0;
1732
1733 spin_lock(&nic->cb_lock);
1734
1da177e4 1735 /* Clean CBs marked complete */
f26251eb 1736 for (cb = nic->cb_to_clean;
1da177e4
LT
1737 cb->status & cpu_to_le16(cb_complete);
1738 cb = nic->cb_to_clean = cb->next) {
dc45010e
JB
1739 DPRINTK(TX_DONE, DEBUG, "cb[%d]->status = 0x%04X\n",
1740 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1741 cb->status);
1742
f26251eb 1743 if (likely(cb->skb != NULL)) {
09f75cd7
JG
1744 dev->stats.tx_packets++;
1745 dev->stats.tx_bytes += cb->skb->len;
1da177e4
LT
1746
1747 pci_unmap_single(nic->pdev,
1748 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1749 le16_to_cpu(cb->u.tcb.tbd.size),
1750 PCI_DMA_TODEVICE);
1751 dev_kfree_skb_any(cb->skb);
1752 cb->skb = NULL;
1753 tx_cleaned = 1;
1754 }
1755 cb->status = 0;
1756 nic->cbs_avail++;
1757 }
1758
1759 spin_unlock(&nic->cb_lock);
1760
1761 /* Recover from running out of Tx resources in xmit_frame */
f26251eb 1762 if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1da177e4
LT
1763 netif_wake_queue(nic->netdev);
1764
1765 return tx_cleaned;
1766}
1767
1768static void e100_clean_cbs(struct nic *nic)
1769{
f26251eb
BA
1770 if (nic->cbs) {
1771 while (nic->cbs_avail != nic->params.cbs.count) {
1da177e4 1772 struct cb *cb = nic->cb_to_clean;
f26251eb 1773 if (cb->skb) {
1da177e4
LT
1774 pci_unmap_single(nic->pdev,
1775 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1776 le16_to_cpu(cb->u.tcb.tbd.size),
1777 PCI_DMA_TODEVICE);
1778 dev_kfree_skb(cb->skb);
1779 }
1780 nic->cb_to_clean = nic->cb_to_clean->next;
1781 nic->cbs_avail++;
1782 }
1783 pci_free_consistent(nic->pdev,
1784 sizeof(struct cb) * nic->params.cbs.count,
1785 nic->cbs, nic->cbs_dma_addr);
1786 nic->cbs = NULL;
1787 nic->cbs_avail = 0;
1788 }
1789 nic->cuc_cmd = cuc_start;
1790 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1791 nic->cbs;
1792}
1793
1794static int e100_alloc_cbs(struct nic *nic)
1795{
1796 struct cb *cb;
1797 unsigned int i, count = nic->params.cbs.count;
1798
1799 nic->cuc_cmd = cuc_start;
1800 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1801 nic->cbs_avail = 0;
1802
1803 nic->cbs = pci_alloc_consistent(nic->pdev,
1804 sizeof(struct cb) * count, &nic->cbs_dma_addr);
f26251eb 1805 if (!nic->cbs)
1da177e4
LT
1806 return -ENOMEM;
1807
f26251eb 1808 for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1da177e4
LT
1809 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1810 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1811
1812 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1813 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1814 ((i+1) % count) * sizeof(struct cb));
1815 cb->skb = NULL;
1816 }
1817
1818 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1819 nic->cbs_avail = count;
1820
1821 return 0;
1822}
1823
ca93ca42 1824static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1da177e4 1825{
f26251eb
BA
1826 if (!nic->rxs) return;
1827 if (RU_SUSPENDED != nic->ru_running) return;
ca93ca42
JG
1828
1829 /* handle init time starts */
f26251eb 1830 if (!rx) rx = nic->rxs;
ca93ca42
JG
1831
1832 /* (Re)start RU if suspended or idle and RFA is non-NULL */
f26251eb 1833 if (rx->skb) {
ca93ca42
JG
1834 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1835 nic->ru_running = RU_RUNNING;
1836 }
1da177e4
LT
1837}
1838
1839#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
858119e1 1840static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1da177e4 1841{
f26251eb 1842 if (!(rx->skb = netdev_alloc_skb(nic->netdev, RFD_BUF_LEN + NET_IP_ALIGN)))
1da177e4
LT
1843 return -ENOMEM;
1844
1845 /* Align, init, and map the RFD. */
1da177e4 1846 skb_reserve(rx->skb, NET_IP_ALIGN);
27d7ff46 1847 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1da177e4
LT
1848 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1849 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1850
8d8bb39b 1851 if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1f53367d 1852 dev_kfree_skb_any(rx->skb);
097688ef 1853 rx->skb = NULL;
1f53367d
MC
1854 rx->dma_addr = 0;
1855 return -ENOMEM;
1856 }
1857
1da177e4 1858 /* Link the RFD to end of RFA by linking previous RFD to
7734f6e6
DA
1859 * this one. We are safe to touch the previous RFD because
1860 * it is protected by the before last buffer's el bit being set */
aaf918ba 1861 if (rx->prev->skb) {
1da177e4 1862 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
6caf52a4 1863 put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1923815d 1864 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
773c9c1f 1865 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1da177e4
LT
1866 }
1867
1868 return 0;
1869}
1870
858119e1 1871static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1da177e4
LT
1872 unsigned int *work_done, unsigned int work_to_do)
1873{
09f75cd7 1874 struct net_device *dev = nic->netdev;
1da177e4
LT
1875 struct sk_buff *skb = rx->skb;
1876 struct rfd *rfd = (struct rfd *)skb->data;
1877 u16 rfd_status, actual_size;
1878
f26251eb 1879 if (unlikely(work_done && *work_done >= work_to_do))
1da177e4
LT
1880 return -EAGAIN;
1881
1882 /* Need to sync before taking a peek at cb_complete bit */
1883 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
773c9c1f 1884 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1da177e4
LT
1885 rfd_status = le16_to_cpu(rfd->status);
1886
1887 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status);
1888
1889 /* If data isn't ready, nothing to indicate */
7734f6e6
DA
1890 if (unlikely(!(rfd_status & cb_complete))) {
1891 /* If the next buffer has the el bit, but we think the receiver
1892 * is still running, check to see if it really stopped while
1893 * we had interrupts off.
1894 * This allows for a fast restart without re-enabling
1895 * interrupts */
1896 if ((le16_to_cpu(rfd->command) & cb_el) &&
1897 (RU_RUNNING == nic->ru_running))
1898
17393dd6 1899 if (ioread8(&nic->csr->scb.status) & rus_no_res)
7734f6e6 1900 nic->ru_running = RU_SUSPENDED;
303d67c2
KH
1901 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
1902 sizeof(struct rfd),
6ff9c2e7 1903 PCI_DMA_FROMDEVICE);
1f53367d 1904 return -ENODATA;
7734f6e6 1905 }
1da177e4
LT
1906
1907 /* Get actual data size */
1908 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
f26251eb 1909 if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1da177e4
LT
1910 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1911
1912 /* Get data */
1913 pci_unmap_single(nic->pdev, rx->dma_addr,
773c9c1f 1914 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1da177e4 1915
7734f6e6
DA
1916 /* If this buffer has the el bit, but we think the receiver
1917 * is still running, check to see if it really stopped while
1918 * we had interrupts off.
1919 * This allows for a fast restart without re-enabling interrupts.
1920 * This can happen when the RU sees the size change but also sees
1921 * the el bit set. */
1922 if ((le16_to_cpu(rfd->command) & cb_el) &&
1923 (RU_RUNNING == nic->ru_running)) {
1924
17393dd6 1925 if (ioread8(&nic->csr->scb.status) & rus_no_res)
ca93ca42 1926 nic->ru_running = RU_SUSPENDED;
7734f6e6 1927 }
ca93ca42 1928
1da177e4
LT
1929 /* Pull off the RFD and put the actual data (minus eth hdr) */
1930 skb_reserve(skb, sizeof(struct rfd));
1931 skb_put(skb, actual_size);
1932 skb->protocol = eth_type_trans(skb, nic->netdev);
1933
f26251eb 1934 if (unlikely(!(rfd_status & cb_ok))) {
1da177e4 1935 /* Don't indicate if hardware indicates errors */
1da177e4 1936 dev_kfree_skb_any(skb);
f26251eb 1937 } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
1da177e4
LT
1938 /* Don't indicate oversized frames */
1939 nic->rx_over_length_errors++;
1da177e4
LT
1940 dev_kfree_skb_any(skb);
1941 } else {
09f75cd7
JG
1942 dev->stats.rx_packets++;
1943 dev->stats.rx_bytes += actual_size;
1da177e4 1944 netif_receive_skb(skb);
f26251eb 1945 if (work_done)
1da177e4
LT
1946 (*work_done)++;
1947 }
1948
1949 rx->skb = NULL;
1950
1951 return 0;
1952}
1953
858119e1 1954static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1da177e4
LT
1955 unsigned int work_to_do)
1956{
1957 struct rx *rx;
7734f6e6
DA
1958 int restart_required = 0, err = 0;
1959 struct rx *old_before_last_rx, *new_before_last_rx;
1960 struct rfd *old_before_last_rfd, *new_before_last_rfd;
1da177e4
LT
1961
1962 /* Indicate newly arrived packets */
f26251eb 1963 for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
7734f6e6
DA
1964 err = e100_rx_indicate(nic, rx, work_done, work_to_do);
1965 /* Hit quota or no more to clean */
1966 if (-EAGAIN == err || -ENODATA == err)
ca93ca42 1967 break;
1da177e4
LT
1968 }
1969
7734f6e6
DA
1970
1971 /* On EAGAIN, hit quota so have more work to do, restart once
1972 * cleanup is complete.
1973 * Else, are we already rnr? then pay attention!!! this ensures that
1974 * the state machine progression never allows a start with a
1975 * partially cleaned list, avoiding a race between hardware
1976 * and rx_to_clean when in NAPI mode */
1977 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
1978 restart_required = 1;
1979
1980 old_before_last_rx = nic->rx_to_use->prev->prev;
1981 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
ca93ca42 1982
1da177e4 1983 /* Alloc new skbs to refill list */
f26251eb
BA
1984 for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
1985 if (unlikely(e100_rx_alloc_skb(nic, rx)))
1da177e4
LT
1986 break; /* Better luck next time (see watchdog) */
1987 }
ca93ca42 1988
7734f6e6
DA
1989 new_before_last_rx = nic->rx_to_use->prev->prev;
1990 if (new_before_last_rx != old_before_last_rx) {
1991 /* Set the el-bit on the buffer that is before the last buffer.
1992 * This lets us update the next pointer on the last buffer
1993 * without worrying about hardware touching it.
1994 * We set the size to 0 to prevent hardware from touching this
1995 * buffer.
1996 * When the hardware hits the before last buffer with el-bit
1997 * and size of 0, it will RNR interrupt, the RUS will go into
1998 * the No Resources state. It will not complete nor write to
1999 * this buffer. */
2000 new_before_last_rfd =
2001 (struct rfd *)new_before_last_rx->skb->data;
2002 new_before_last_rfd->size = 0;
2003 new_before_last_rfd->command |= cpu_to_le16(cb_el);
2004 pci_dma_sync_single_for_device(nic->pdev,
2005 new_before_last_rx->dma_addr, sizeof(struct rfd),
773c9c1f 2006 PCI_DMA_BIDIRECTIONAL);
7734f6e6
DA
2007
2008 /* Now that we have a new stopping point, we can clear the old
2009 * stopping point. We must sync twice to get the proper
2010 * ordering on the hardware side of things. */
2011 old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2012 pci_dma_sync_single_for_device(nic->pdev,
2013 old_before_last_rx->dma_addr, sizeof(struct rfd),
773c9c1f 2014 PCI_DMA_BIDIRECTIONAL);
7734f6e6
DA
2015 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
2016 pci_dma_sync_single_for_device(nic->pdev,
2017 old_before_last_rx->dma_addr, sizeof(struct rfd),
773c9c1f 2018 PCI_DMA_BIDIRECTIONAL);
7734f6e6
DA
2019 }
2020
f26251eb 2021 if (restart_required) {
ca93ca42 2022 // ack the rnr?
915e91d7 2023 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
7734f6e6 2024 e100_start_receiver(nic, nic->rx_to_clean);
f26251eb 2025 if (work_done)
ca93ca42
JG
2026 (*work_done)++;
2027 }
1da177e4
LT
2028}
2029
2030static void e100_rx_clean_list(struct nic *nic)
2031{
2032 struct rx *rx;
2033 unsigned int i, count = nic->params.rfds.count;
2034
ca93ca42
JG
2035 nic->ru_running = RU_UNINITIALIZED;
2036
f26251eb
BA
2037 if (nic->rxs) {
2038 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2039 if (rx->skb) {
1da177e4 2040 pci_unmap_single(nic->pdev, rx->dma_addr,
773c9c1f 2041 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1da177e4
LT
2042 dev_kfree_skb(rx->skb);
2043 }
2044 }
2045 kfree(nic->rxs);
2046 nic->rxs = NULL;
2047 }
2048
2049 nic->rx_to_use = nic->rx_to_clean = NULL;
1da177e4
LT
2050}
2051
2052static int e100_rx_alloc_list(struct nic *nic)
2053{
2054 struct rx *rx;
2055 unsigned int i, count = nic->params.rfds.count;
7734f6e6 2056 struct rfd *before_last;
1da177e4
LT
2057
2058 nic->rx_to_use = nic->rx_to_clean = NULL;
ca93ca42 2059 nic->ru_running = RU_UNINITIALIZED;
1da177e4 2060
f26251eb 2061 if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
1da177e4 2062 return -ENOMEM;
1da177e4 2063
f26251eb 2064 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
1da177e4
LT
2065 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2066 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
f26251eb 2067 if (e100_rx_alloc_skb(nic, rx)) {
1da177e4
LT
2068 e100_rx_clean_list(nic);
2069 return -ENOMEM;
2070 }
2071 }
7734f6e6
DA
2072 /* Set the el-bit on the buffer that is before the last buffer.
2073 * This lets us update the next pointer on the last buffer without
2074 * worrying about hardware touching it.
2075 * We set the size to 0 to prevent hardware from touching this buffer.
2076 * When the hardware hits the before last buffer with el-bit and size
2077 * of 0, it will RNR interrupt, the RU will go into the No Resources
2078 * state. It will not complete nor write to this buffer. */
2079 rx = nic->rxs->prev->prev;
2080 before_last = (struct rfd *)rx->skb->data;
2081 before_last->command |= cpu_to_le16(cb_el);
2082 before_last->size = 0;
2083 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
773c9c1f 2084 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1da177e4
LT
2085
2086 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
ca93ca42 2087 nic->ru_running = RU_SUSPENDED;
1da177e4
LT
2088
2089 return 0;
2090}
2091
7d12e780 2092static irqreturn_t e100_intr(int irq, void *dev_id)
1da177e4
LT
2093{
2094 struct net_device *netdev = dev_id;
2095 struct nic *nic = netdev_priv(netdev);
27345bb6 2096 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
1da177e4
LT
2097
2098 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack);
2099
f26251eb 2100 if (stat_ack == stat_ack_not_ours || /* Not our interrupt */
1da177e4
LT
2101 stat_ack == stat_ack_not_present) /* Hardware is ejected */
2102 return IRQ_NONE;
2103
2104 /* Ack interrupt(s) */
27345bb6 2105 iowrite8(stat_ack, &nic->csr->scb.stat_ack);
1da177e4 2106
ca93ca42 2107 /* We hit Receive No Resource (RNR); restart RU after cleaning */
f26251eb 2108 if (stat_ack & stat_ack_rnr)
ca93ca42
JG
2109 nic->ru_running = RU_SUSPENDED;
2110
288379f0 2111 if (likely(napi_schedule_prep(&nic->napi))) {
0685c31b 2112 e100_disable_irq(nic);
288379f0 2113 __napi_schedule(&nic->napi);
0685c31b 2114 }
1da177e4
LT
2115
2116 return IRQ_HANDLED;
2117}
2118
bea3348e 2119static int e100_poll(struct napi_struct *napi, int budget)
1da177e4 2120{
bea3348e 2121 struct nic *nic = container_of(napi, struct nic, napi);
ddfce6bb 2122 unsigned int work_done = 0;
1da177e4 2123
bea3348e 2124 e100_rx_clean(nic, &work_done, budget);
53e52c72 2125 e100_tx_clean(nic);
1da177e4 2126
53e52c72
DM
2127 /* If budget not fully consumed, exit the polling mode */
2128 if (work_done < budget) {
288379f0 2129 napi_complete(napi);
1da177e4 2130 e100_enable_irq(nic);
1da177e4
LT
2131 }
2132
bea3348e 2133 return work_done;
1da177e4
LT
2134}
2135
2136#ifdef CONFIG_NET_POLL_CONTROLLER
2137static void e100_netpoll(struct net_device *netdev)
2138{
2139 struct nic *nic = netdev_priv(netdev);
611494dc 2140
1da177e4 2141 e100_disable_irq(nic);
7d12e780 2142 e100_intr(nic->pdev->irq, netdev);
1da177e4
LT
2143 e100_tx_clean(nic);
2144 e100_enable_irq(nic);
2145}
2146#endif
2147
1da177e4
LT
2148static int e100_set_mac_address(struct net_device *netdev, void *p)
2149{
2150 struct nic *nic = netdev_priv(netdev);
2151 struct sockaddr *addr = p;
2152
2153 if (!is_valid_ether_addr(addr->sa_data))
2154 return -EADDRNOTAVAIL;
2155
2156 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2157 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2158
2159 return 0;
2160}
2161
2162static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2163{
f26251eb 2164 if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
1da177e4
LT
2165 return -EINVAL;
2166 netdev->mtu = new_mtu;
2167 return 0;
2168}
2169
2170static int e100_asf(struct nic *nic)
2171{
2172 /* ASF can be enabled from eeprom */
2173 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2174 (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2175 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2176 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
2177}
2178
2179static int e100_up(struct nic *nic)
2180{
2181 int err;
2182
f26251eb 2183 if ((err = e100_rx_alloc_list(nic)))
1da177e4 2184 return err;
f26251eb 2185 if ((err = e100_alloc_cbs(nic)))
1da177e4 2186 goto err_rx_clean_list;
f26251eb 2187 if ((err = e100_hw_init(nic)))
1da177e4
LT
2188 goto err_clean_cbs;
2189 e100_set_multicast_list(nic->netdev);
ca93ca42 2190 e100_start_receiver(nic, NULL);
1da177e4 2191 mod_timer(&nic->watchdog, jiffies);
f26251eb 2192 if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
1da177e4
LT
2193 nic->netdev->name, nic->netdev)))
2194 goto err_no_irq;
1da177e4 2195 netif_wake_queue(nic->netdev);
bea3348e 2196 napi_enable(&nic->napi);
0236ebb7
MC
2197 /* enable ints _after_ enabling poll, preventing a race between
2198 * disable ints+schedule */
2199 e100_enable_irq(nic);
1da177e4
LT
2200 return 0;
2201
2202err_no_irq:
2203 del_timer_sync(&nic->watchdog);
2204err_clean_cbs:
2205 e100_clean_cbs(nic);
2206err_rx_clean_list:
2207 e100_rx_clean_list(nic);
2208 return err;
2209}
2210
2211static void e100_down(struct nic *nic)
2212{
0236ebb7 2213 /* wait here for poll to complete */
bea3348e 2214 napi_disable(&nic->napi);
0236ebb7 2215 netif_stop_queue(nic->netdev);
1da177e4
LT
2216 e100_hw_reset(nic);
2217 free_irq(nic->pdev->irq, nic->netdev);
2218 del_timer_sync(&nic->watchdog);
2219 netif_carrier_off(nic->netdev);
1da177e4
LT
2220 e100_clean_cbs(nic);
2221 e100_rx_clean_list(nic);
2222}
2223
2224static void e100_tx_timeout(struct net_device *netdev)
2225{
2226 struct nic *nic = netdev_priv(netdev);
2227
05479938 2228 /* Reset outside of interrupt context, to avoid request_irq
2acdb1e0
MC
2229 * in interrupt context */
2230 schedule_work(&nic->tx_timeout_task);
2231}
2232
c4028958 2233static void e100_tx_timeout_task(struct work_struct *work)
2acdb1e0 2234{
c4028958
DH
2235 struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2236 struct net_device *netdev = nic->netdev;
2acdb1e0 2237
1da177e4 2238 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n",
27345bb6 2239 ioread8(&nic->csr->scb.status));
1da177e4
LT
2240 e100_down(netdev_priv(netdev));
2241 e100_up(netdev_priv(netdev));
2242}
2243
2244static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2245{
2246 int err;
2247 struct sk_buff *skb;
2248
2249 /* Use driver resources to perform internal MAC or PHY
2250 * loopback test. A single packet is prepared and transmitted
2251 * in loopback mode, and the test passes if the received
2252 * packet compares byte-for-byte to the transmitted packet. */
2253
f26251eb 2254 if ((err = e100_rx_alloc_list(nic)))
1da177e4 2255 return err;
f26251eb 2256 if ((err = e100_alloc_cbs(nic)))
1da177e4
LT
2257 goto err_clean_rx;
2258
2259 /* ICH PHY loopback is broken so do MAC loopback instead */
f26251eb 2260 if (nic->flags & ich && loopback_mode == lb_phy)
1da177e4
LT
2261 loopback_mode = lb_mac;
2262
2263 nic->loopback = loopback_mode;
f26251eb 2264 if ((err = e100_hw_init(nic)))
1da177e4
LT
2265 goto err_loopback_none;
2266
f26251eb 2267 if (loopback_mode == lb_phy)
1da177e4
LT
2268 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2269 BMCR_LOOPBACK);
2270
ca93ca42 2271 e100_start_receiver(nic, NULL);
1da177e4 2272
f26251eb 2273 if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
1da177e4
LT
2274 err = -ENOMEM;
2275 goto err_loopback_none;
2276 }
2277 skb_put(skb, ETH_DATA_LEN);
2278 memset(skb->data, 0xFF, ETH_DATA_LEN);
2279 e100_xmit_frame(skb, nic->netdev);
2280
2281 msleep(10);
2282
aa49cdd9 2283 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
773c9c1f 2284 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
aa49cdd9 2285
f26251eb 2286 if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
1da177e4
LT
2287 skb->data, ETH_DATA_LEN))
2288 err = -EAGAIN;
2289
2290err_loopback_none:
2291 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2292 nic->loopback = lb_none;
1da177e4 2293 e100_clean_cbs(nic);
aa49cdd9 2294 e100_hw_reset(nic);
1da177e4
LT
2295err_clean_rx:
2296 e100_rx_clean_list(nic);
2297 return err;
2298}
2299
2300#define MII_LED_CONTROL 0x1B
b55de80e
BA
2301#define E100_82552_LED_OVERRIDE 0x19
2302#define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */
2303#define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */
1da177e4
LT
2304static void e100_blink_led(unsigned long data)
2305{
2306 struct nic *nic = (struct nic *)data;
2307 enum led_state {
2308 led_on = 0x01,
2309 led_off = 0x04,
2310 led_on_559 = 0x05,
2311 led_on_557 = 0x07,
2312 };
b55de80e
BA
2313 u16 led_reg = MII_LED_CONTROL;
2314
2315 if (nic->phy == phy_82552_v) {
2316 led_reg = E100_82552_LED_OVERRIDE;
1da177e4 2317
b55de80e
BA
2318 nic->leds = (nic->leds == E100_82552_LED_ON) ?
2319 E100_82552_LED_OFF : E100_82552_LED_ON;
2320 } else {
2321 nic->leds = (nic->leds & led_on) ? led_off :
2322 (nic->mac < mac_82559_D101M) ? led_on_557 :
2323 led_on_559;
2324 }
2325 mdio_write(nic->netdev, nic->mii.phy_id, led_reg, nic->leds);
1da177e4
LT
2326 mod_timer(&nic->blink_timer, jiffies + HZ / 4);
2327}
2328
2329static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2330{
2331 struct nic *nic = netdev_priv(netdev);
2332 return mii_ethtool_gset(&nic->mii, cmd);
2333}
2334
2335static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2336{
2337 struct nic *nic = netdev_priv(netdev);
2338 int err;
2339
2340 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2341 err = mii_ethtool_sset(&nic->mii, cmd);
2342 e100_exec_cb(nic, NULL, e100_configure);
2343
2344 return err;
2345}
2346
2347static void e100_get_drvinfo(struct net_device *netdev,
2348 struct ethtool_drvinfo *info)
2349{
2350 struct nic *nic = netdev_priv(netdev);
2351 strcpy(info->driver, DRV_NAME);
2352 strcpy(info->version, DRV_VERSION);
2353 strcpy(info->fw_version, "N/A");
2354 strcpy(info->bus_info, pci_name(nic->pdev));
2355}
2356
abf9b902 2357#define E100_PHY_REGS 0x1C
1da177e4
LT
2358static int e100_get_regs_len(struct net_device *netdev)
2359{
2360 struct nic *nic = netdev_priv(netdev);
abf9b902 2361 return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
1da177e4
LT
2362}
2363
2364static void e100_get_regs(struct net_device *netdev,
2365 struct ethtool_regs *regs, void *p)
2366{
2367 struct nic *nic = netdev_priv(netdev);
2368 u32 *buff = p;
2369 int i;
2370
44c10138 2371 regs->version = (1 << 24) | nic->pdev->revision;
27345bb6
JB
2372 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2373 ioread8(&nic->csr->scb.cmd_lo) << 16 |
2374 ioread16(&nic->csr->scb.status);
f26251eb 2375 for (i = E100_PHY_REGS; i >= 0; i--)
1da177e4
LT
2376 buff[1 + E100_PHY_REGS - i] =
2377 mdio_read(netdev, nic->mii.phy_id, i);
2378 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2379 e100_exec_cb(nic, NULL, e100_dump);
2380 msleep(10);
2381 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2382 sizeof(nic->mem->dump_buf));
2383}
2384
2385static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2386{
2387 struct nic *nic = netdev_priv(netdev);
2388 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
2389 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2390}
2391
2392static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2393{
2394 struct nic *nic = netdev_priv(netdev);
2395
bc79fc84
RW
2396 if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2397 !device_can_wakeup(&nic->pdev->dev))
1da177e4
LT
2398 return -EOPNOTSUPP;
2399
f26251eb 2400 if (wol->wolopts)
1da177e4
LT
2401 nic->flags |= wol_magic;
2402 else
2403 nic->flags &= ~wol_magic;
2404
bc79fc84
RW
2405 device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2406
1da177e4
LT
2407 e100_exec_cb(nic, NULL, e100_configure);
2408
2409 return 0;
2410}
2411
2412static u32 e100_get_msglevel(struct net_device *netdev)
2413{
2414 struct nic *nic = netdev_priv(netdev);
2415 return nic->msg_enable;
2416}
2417
2418static void e100_set_msglevel(struct net_device *netdev, u32 value)
2419{
2420 struct nic *nic = netdev_priv(netdev);
2421 nic->msg_enable = value;
2422}
2423
2424static int e100_nway_reset(struct net_device *netdev)
2425{
2426 struct nic *nic = netdev_priv(netdev);
2427 return mii_nway_restart(&nic->mii);
2428}
2429
2430static u32 e100_get_link(struct net_device *netdev)
2431{
2432 struct nic *nic = netdev_priv(netdev);
2433 return mii_link_ok(&nic->mii);
2434}
2435
2436static int e100_get_eeprom_len(struct net_device *netdev)
2437{
2438 struct nic *nic = netdev_priv(netdev);
2439 return nic->eeprom_wc << 1;
2440}
2441
2442#define E100_EEPROM_MAGIC 0x1234
2443static int e100_get_eeprom(struct net_device *netdev,
2444 struct ethtool_eeprom *eeprom, u8 *bytes)
2445{
2446 struct nic *nic = netdev_priv(netdev);
2447
2448 eeprom->magic = E100_EEPROM_MAGIC;
2449 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2450
2451 return 0;
2452}
2453
2454static int e100_set_eeprom(struct net_device *netdev,
2455 struct ethtool_eeprom *eeprom, u8 *bytes)
2456{
2457 struct nic *nic = netdev_priv(netdev);
2458
f26251eb 2459 if (eeprom->magic != E100_EEPROM_MAGIC)
1da177e4
LT
2460 return -EINVAL;
2461
2462 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2463
2464 return e100_eeprom_save(nic, eeprom->offset >> 1,
2465 (eeprom->len >> 1) + 1);
2466}
2467
2468static void e100_get_ringparam(struct net_device *netdev,
2469 struct ethtool_ringparam *ring)
2470{
2471 struct nic *nic = netdev_priv(netdev);
2472 struct param_range *rfds = &nic->params.rfds;
2473 struct param_range *cbs = &nic->params.cbs;
2474
2475 ring->rx_max_pending = rfds->max;
2476 ring->tx_max_pending = cbs->max;
2477 ring->rx_mini_max_pending = 0;
2478 ring->rx_jumbo_max_pending = 0;
2479 ring->rx_pending = rfds->count;
2480 ring->tx_pending = cbs->count;
2481 ring->rx_mini_pending = 0;
2482 ring->rx_jumbo_pending = 0;
2483}
2484
2485static int e100_set_ringparam(struct net_device *netdev,
2486 struct ethtool_ringparam *ring)
2487{
2488 struct nic *nic = netdev_priv(netdev);
2489 struct param_range *rfds = &nic->params.rfds;
2490 struct param_range *cbs = &nic->params.cbs;
2491
05479938 2492 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
1da177e4
LT
2493 return -EINVAL;
2494
f26251eb 2495 if (netif_running(netdev))
1da177e4
LT
2496 e100_down(nic);
2497 rfds->count = max(ring->rx_pending, rfds->min);
2498 rfds->count = min(rfds->count, rfds->max);
2499 cbs->count = max(ring->tx_pending, cbs->min);
2500 cbs->count = min(cbs->count, cbs->max);
2501 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n",
2502 rfds->count, cbs->count);
f26251eb 2503 if (netif_running(netdev))
1da177e4
LT
2504 e100_up(nic);
2505
2506 return 0;
2507}
2508
2509static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2510 "Link test (on/offline)",
2511 "Eeprom test (on/offline)",
2512 "Self test (offline)",
2513 "Mac loopback (offline)",
2514 "Phy loopback (offline)",
2515};
4c3616cd 2516#define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test)
1da177e4 2517
1da177e4
LT
2518static void e100_diag_test(struct net_device *netdev,
2519 struct ethtool_test *test, u64 *data)
2520{
2521 struct ethtool_cmd cmd;
2522 struct nic *nic = netdev_priv(netdev);
2523 int i, err;
2524
2525 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2526 data[0] = !mii_link_ok(&nic->mii);
2527 data[1] = e100_eeprom_load(nic);
f26251eb 2528 if (test->flags & ETH_TEST_FL_OFFLINE) {
1da177e4
LT
2529
2530 /* save speed, duplex & autoneg settings */
2531 err = mii_ethtool_gset(&nic->mii, &cmd);
2532
f26251eb 2533 if (netif_running(netdev))
1da177e4
LT
2534 e100_down(nic);
2535 data[2] = e100_self_test(nic);
2536 data[3] = e100_loopback_test(nic, lb_mac);
2537 data[4] = e100_loopback_test(nic, lb_phy);
2538
2539 /* restore speed, duplex & autoneg settings */
2540 err = mii_ethtool_sset(&nic->mii, &cmd);
2541
f26251eb 2542 if (netif_running(netdev))
1da177e4
LT
2543 e100_up(nic);
2544 }
f26251eb 2545 for (i = 0; i < E100_TEST_LEN; i++)
1da177e4 2546 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
a074fb86
MC
2547
2548 msleep_interruptible(4 * 1000);
1da177e4
LT
2549}
2550
2551static int e100_phys_id(struct net_device *netdev, u32 data)
2552{
2553 struct nic *nic = netdev_priv(netdev);
b55de80e
BA
2554 u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2555 MII_LED_CONTROL;
1da177e4 2556
f26251eb 2557 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1da177e4
LT
2558 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
2559 mod_timer(&nic->blink_timer, jiffies);
2560 msleep_interruptible(data * 1000);
2561 del_timer_sync(&nic->blink_timer);
b55de80e 2562 mdio_write(netdev, nic->mii.phy_id, led_reg, 0);
1da177e4
LT
2563
2564 return 0;
2565}
2566
2567static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2568 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2569 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2570 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2571 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2572 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2573 "tx_heartbeat_errors", "tx_window_errors",
2574 /* device-specific stats */
2575 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2576 "tx_flow_control_pause", "rx_flow_control_pause",
2577 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2578};
2579#define E100_NET_STATS_LEN 21
4c3616cd 2580#define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats)
1da177e4 2581
b9f2c044 2582static int e100_get_sset_count(struct net_device *netdev, int sset)
1da177e4 2583{
b9f2c044
JG
2584 switch (sset) {
2585 case ETH_SS_TEST:
2586 return E100_TEST_LEN;
2587 case ETH_SS_STATS:
2588 return E100_STATS_LEN;
2589 default:
2590 return -EOPNOTSUPP;
2591 }
1da177e4
LT
2592}
2593
2594static void e100_get_ethtool_stats(struct net_device *netdev,
2595 struct ethtool_stats *stats, u64 *data)
2596{
2597 struct nic *nic = netdev_priv(netdev);
2598 int i;
2599
f26251eb 2600 for (i = 0; i < E100_NET_STATS_LEN; i++)
09f75cd7 2601 data[i] = ((unsigned long *)&netdev->stats)[i];
1da177e4
LT
2602
2603 data[i++] = nic->tx_deferred;
2604 data[i++] = nic->tx_single_collisions;
2605 data[i++] = nic->tx_multiple_collisions;
2606 data[i++] = nic->tx_fc_pause;
2607 data[i++] = nic->rx_fc_pause;
2608 data[i++] = nic->rx_fc_unsupported;
2609 data[i++] = nic->tx_tco_frames;
2610 data[i++] = nic->rx_tco_frames;
2611}
2612
2613static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2614{
f26251eb 2615 switch (stringset) {
1da177e4
LT
2616 case ETH_SS_TEST:
2617 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2618 break;
2619 case ETH_SS_STATS:
2620 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2621 break;
2622 }
2623}
2624
7282d491 2625static const struct ethtool_ops e100_ethtool_ops = {
1da177e4
LT
2626 .get_settings = e100_get_settings,
2627 .set_settings = e100_set_settings,
2628 .get_drvinfo = e100_get_drvinfo,
2629 .get_regs_len = e100_get_regs_len,
2630 .get_regs = e100_get_regs,
2631 .get_wol = e100_get_wol,
2632 .set_wol = e100_set_wol,
2633 .get_msglevel = e100_get_msglevel,
2634 .set_msglevel = e100_set_msglevel,
2635 .nway_reset = e100_nway_reset,
2636 .get_link = e100_get_link,
2637 .get_eeprom_len = e100_get_eeprom_len,
2638 .get_eeprom = e100_get_eeprom,
2639 .set_eeprom = e100_set_eeprom,
2640 .get_ringparam = e100_get_ringparam,
2641 .set_ringparam = e100_set_ringparam,
1da177e4
LT
2642 .self_test = e100_diag_test,
2643 .get_strings = e100_get_strings,
2644 .phys_id = e100_phys_id,
1da177e4 2645 .get_ethtool_stats = e100_get_ethtool_stats,
b9f2c044 2646 .get_sset_count = e100_get_sset_count,
1da177e4
LT
2647};
2648
2649static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2650{
2651 struct nic *nic = netdev_priv(netdev);
2652
2653 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2654}
2655
2656static int e100_alloc(struct nic *nic)
2657{
2658 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2659 &nic->dma_addr);
2660 return nic->mem ? 0 : -ENOMEM;
2661}
2662
2663static void e100_free(struct nic *nic)
2664{
f26251eb 2665 if (nic->mem) {
1da177e4
LT
2666 pci_free_consistent(nic->pdev, sizeof(struct mem),
2667 nic->mem, nic->dma_addr);
2668 nic->mem = NULL;
2669 }
2670}
2671
2672static int e100_open(struct net_device *netdev)
2673{
2674 struct nic *nic = netdev_priv(netdev);
2675 int err = 0;
2676
2677 netif_carrier_off(netdev);
f26251eb 2678 if ((err = e100_up(nic)))
1da177e4
LT
2679 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n");
2680 return err;
2681}
2682
2683static int e100_close(struct net_device *netdev)
2684{
2685 e100_down(netdev_priv(netdev));
2686 return 0;
2687}
2688
acc78426
SH
2689static const struct net_device_ops e100_netdev_ops = {
2690 .ndo_open = e100_open,
2691 .ndo_stop = e100_close,
00829823 2692 .ndo_start_xmit = e100_xmit_frame,
acc78426
SH
2693 .ndo_validate_addr = eth_validate_addr,
2694 .ndo_set_multicast_list = e100_set_multicast_list,
2695 .ndo_set_mac_address = e100_set_mac_address,
2696 .ndo_change_mtu = e100_change_mtu,
2697 .ndo_do_ioctl = e100_do_ioctl,
2698 .ndo_tx_timeout = e100_tx_timeout,
2699#ifdef CONFIG_NET_POLL_CONTROLLER
2700 .ndo_poll_controller = e100_netpoll,
2701#endif
2702};
2703
1da177e4
LT
2704static int __devinit e100_probe(struct pci_dev *pdev,
2705 const struct pci_device_id *ent)
2706{
2707 struct net_device *netdev;
2708 struct nic *nic;
2709 int err;
2710
f26251eb
BA
2711 if (!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2712 if (((1 << debug) - 1) & NETIF_MSG_PROBE)
1da177e4
LT
2713 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n");
2714 return -ENOMEM;
2715 }
2716
acc78426 2717 netdev->netdev_ops = &e100_netdev_ops;
1da177e4 2718 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
1da177e4 2719 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
0eb5a34c 2720 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1da177e4
LT
2721
2722 nic = netdev_priv(netdev);
bea3348e 2723 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
1da177e4
LT
2724 nic->netdev = netdev;
2725 nic->pdev = pdev;
2726 nic->msg_enable = (1 << debug) - 1;
72001762 2727 nic->mdio_ctrl = mdio_ctrl_hw;
1da177e4
LT
2728 pci_set_drvdata(pdev, netdev);
2729
f26251eb 2730 if ((err = pci_enable_device(pdev))) {
1da177e4
LT
2731 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n");
2732 goto err_out_free_dev;
2733 }
2734
f26251eb 2735 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
1da177e4
LT
2736 DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
2737 "base address, aborting.\n");
2738 err = -ENODEV;
2739 goto err_out_disable_pdev;
2740 }
2741
f26251eb 2742 if ((err = pci_request_regions(pdev, DRV_NAME))) {
1da177e4
LT
2743 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n");
2744 goto err_out_disable_pdev;
2745 }
2746
284901a9 2747 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
1da177e4
LT
2748 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n");
2749 goto err_out_free_res;
2750 }
2751
1da177e4
LT
2752 SET_NETDEV_DEV(netdev, &pdev->dev);
2753
27345bb6
JB
2754 if (use_io)
2755 DPRINTK(PROBE, INFO, "using i/o access mode\n");
2756
2757 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
f26251eb 2758 if (!nic->csr) {
1da177e4
LT
2759 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n");
2760 err = -ENOMEM;
2761 goto err_out_free_res;
2762 }
2763
f26251eb 2764 if (ent->driver_data)
1da177e4
LT
2765 nic->flags |= ich;
2766 else
2767 nic->flags &= ~ich;
2768
2769 e100_get_defaults(nic);
2770
1f53367d 2771 /* locks must be initialized before calling hw_reset */
1da177e4
LT
2772 spin_lock_init(&nic->cb_lock);
2773 spin_lock_init(&nic->cmd_lock);
ac7c6669 2774 spin_lock_init(&nic->mdio_lock);
1da177e4
LT
2775
2776 /* Reset the device before pci_set_master() in case device is in some
2777 * funky state and has an interrupt pending - hint: we don't have the
2778 * interrupt handler registered yet. */
2779 e100_hw_reset(nic);
2780
2781 pci_set_master(pdev);
2782
2783 init_timer(&nic->watchdog);
2784 nic->watchdog.function = e100_watchdog;
2785 nic->watchdog.data = (unsigned long)nic;
2786 init_timer(&nic->blink_timer);
2787 nic->blink_timer.function = e100_blink_led;
2788 nic->blink_timer.data = (unsigned long)nic;
2789
c4028958 2790 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2acdb1e0 2791
f26251eb 2792 if ((err = e100_alloc(nic))) {
1da177e4
LT
2793 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n");
2794 goto err_out_iounmap;
2795 }
2796
f26251eb 2797 if ((err = e100_eeprom_load(nic)))
1da177e4
LT
2798 goto err_out_free;
2799
f92d8728
MC
2800 e100_phy_init(nic);
2801
1da177e4 2802 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
a92dd923 2803 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
948cd43f
JB
2804 if (!is_valid_ether_addr(netdev->perm_addr)) {
2805 if (!eeprom_bad_csum_allow) {
2806 DPRINTK(PROBE, ERR, "Invalid MAC address from "
2807 "EEPROM, aborting.\n");
2808 err = -EAGAIN;
2809 goto err_out_free;
2810 } else {
2811 DPRINTK(PROBE, ERR, "Invalid MAC address from EEPROM, "
2812 "you MUST configure one.\n");
2813 }
1da177e4
LT
2814 }
2815
2816 /* Wol magic packet can be enabled from eeprom */
f26251eb 2817 if ((nic->mac >= mac_82558_D101_A4) &&
bc79fc84 2818 (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
1da177e4 2819 nic->flags |= wol_magic;
bc79fc84
RW
2820 device_set_wakeup_enable(&pdev->dev, true);
2821 }
1da177e4 2822
6bdacb1a 2823 /* ack any pending wake events, disable PME */
e7272403 2824 pci_pme_active(pdev, false);
1da177e4
LT
2825
2826 strcpy(netdev->name, "eth%d");
f26251eb 2827 if ((err = register_netdev(netdev))) {
1da177e4
LT
2828 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n");
2829 goto err_out_free;
2830 }
2831
e174961c 2832 DPRINTK(PROBE, INFO, "addr 0x%llx, irq %d, MAC addr %pM\n",
0795af57 2833 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
e174961c 2834 pdev->irq, netdev->dev_addr);
1da177e4
LT
2835
2836 return 0;
2837
2838err_out_free:
2839 e100_free(nic);
2840err_out_iounmap:
27345bb6 2841 pci_iounmap(pdev, nic->csr);
1da177e4
LT
2842err_out_free_res:
2843 pci_release_regions(pdev);
2844err_out_disable_pdev:
2845 pci_disable_device(pdev);
2846err_out_free_dev:
2847 pci_set_drvdata(pdev, NULL);
2848 free_netdev(netdev);
2849 return err;
2850}
2851
2852static void __devexit e100_remove(struct pci_dev *pdev)
2853{
2854 struct net_device *netdev = pci_get_drvdata(pdev);
2855
f26251eb 2856 if (netdev) {
1da177e4
LT
2857 struct nic *nic = netdev_priv(netdev);
2858 unregister_netdev(netdev);
2859 e100_free(nic);
915e91d7 2860 pci_iounmap(pdev, nic->csr);
1da177e4
LT
2861 free_netdev(netdev);
2862 pci_release_regions(pdev);
2863 pci_disable_device(pdev);
2864 pci_set_drvdata(pdev, NULL);
2865 }
2866}
2867
b55de80e
BA
2868#define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */
2869#define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */
2870#define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */
ac7c992c 2871static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
1da177e4
LT
2872{
2873 struct net_device *netdev = pci_get_drvdata(pdev);
2874 struct nic *nic = netdev_priv(netdev);
2875
824545e7 2876 if (netif_running(netdev))
f902283b 2877 e100_down(nic);
518d8338 2878 netif_device_detach(netdev);
a53a33da 2879
1da177e4 2880 pci_save_state(pdev);
e8e82b76
AK
2881
2882 if ((nic->flags & wol_magic) | e100_asf(nic)) {
b55de80e
BA
2883 /* enable reverse auto-negotiation */
2884 if (nic->phy == phy_82552_v) {
2885 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
2886 E100_82552_SMARTSPEED);
2887
2888 mdio_write(netdev, nic->mii.phy_id,
2889 E100_82552_SMARTSPEED, smartspeed |
2890 E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
2891 }
ac7c992c 2892 *enable_wake = true;
e8e82b76 2893 } else {
ac7c992c 2894 *enable_wake = false;
e8e82b76 2895 }
975b366a 2896
8543da66 2897 pci_disable_device(pdev);
ac7c992c 2898}
1da177e4 2899
ac7c992c
TLSC
2900static int __e100_power_off(struct pci_dev *pdev, bool wake)
2901{
6905b1f1 2902 if (wake)
ac7c992c 2903 return pci_prepare_to_sleep(pdev);
6905b1f1
RW
2904
2905 pci_wake_from_d3(pdev, false);
2906 pci_set_power_state(pdev, PCI_D3hot);
2907
2908 return 0;
1da177e4
LT
2909}
2910
f902283b 2911#ifdef CONFIG_PM
ac7c992c
TLSC
2912static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2913{
2914 bool wake;
2915 __e100_shutdown(pdev, &wake);
2916 return __e100_power_off(pdev, wake);
2917}
2918
1da177e4
LT
2919static int e100_resume(struct pci_dev *pdev)
2920{
2921 struct net_device *netdev = pci_get_drvdata(pdev);
2922 struct nic *nic = netdev_priv(netdev);
2923
975b366a 2924 pci_set_power_state(pdev, PCI_D0);
1da177e4 2925 pci_restore_state(pdev);
6bdacb1a 2926 /* ack any pending wake events, disable PME */
975b366a 2927 pci_enable_wake(pdev, 0, 0);
1da177e4 2928
4b512d26 2929 /* disable reverse auto-negotiation */
b55de80e
BA
2930 if (nic->phy == phy_82552_v) {
2931 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
2932 E100_82552_SMARTSPEED);
2933
2934 mdio_write(netdev, nic->mii.phy_id,
2935 E100_82552_SMARTSPEED,
2936 smartspeed & ~(E100_82552_REV_ANEG));
2937 }
2938
1da177e4 2939 netif_device_attach(netdev);
975b366a 2940 if (netif_running(netdev))
1da177e4
LT
2941 e100_up(nic);
2942
2943 return 0;
2944}
975b366a 2945#endif /* CONFIG_PM */
1da177e4 2946
d18c3db5 2947static void e100_shutdown(struct pci_dev *pdev)
6bdacb1a 2948{
ac7c992c
TLSC
2949 bool wake;
2950 __e100_shutdown(pdev, &wake);
2951 if (system_state == SYSTEM_POWER_OFF)
2952 __e100_power_off(pdev, wake);
6bdacb1a
MC
2953}
2954
2cc30492
AK
2955/* ------------------ PCI Error Recovery infrastructure -------------- */
2956/**
2957 * e100_io_error_detected - called when PCI error is detected.
2958 * @pdev: Pointer to PCI device
0a0863af 2959 * @state: The current pci connection state
2cc30492
AK
2960 */
2961static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2962{
2963 struct net_device *netdev = pci_get_drvdata(pdev);
bea3348e 2964 struct nic *nic = netdev_priv(netdev);
2cc30492 2965
2cc30492 2966 netif_device_detach(netdev);
ef681ce1
AD
2967
2968 if (state == pci_channel_io_perm_failure)
2969 return PCI_ERS_RESULT_DISCONNECT;
2970
2971 if (netif_running(netdev))
2972 e100_down(nic);
b1d26f24 2973 pci_disable_device(pdev);
2cc30492
AK
2974
2975 /* Request a slot reset. */
2976 return PCI_ERS_RESULT_NEED_RESET;
2977}
2978
2979/**
2980 * e100_io_slot_reset - called after the pci bus has been reset.
2981 * @pdev: Pointer to PCI device
2982 *
2983 * Restart the card from scratch.
2984 */
2985static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
2986{
2987 struct net_device *netdev = pci_get_drvdata(pdev);
2988 struct nic *nic = netdev_priv(netdev);
2989
2990 if (pci_enable_device(pdev)) {
2991 printk(KERN_ERR "e100: Cannot re-enable PCI device after reset.\n");
2992 return PCI_ERS_RESULT_DISCONNECT;
2993 }
2994 pci_set_master(pdev);
2995
2996 /* Only one device per card can do a reset */
2997 if (0 != PCI_FUNC(pdev->devfn))
2998 return PCI_ERS_RESULT_RECOVERED;
2999 e100_hw_reset(nic);
3000 e100_phy_init(nic);
3001
3002 return PCI_ERS_RESULT_RECOVERED;
3003}
3004
3005/**
3006 * e100_io_resume - resume normal operations
3007 * @pdev: Pointer to PCI device
3008 *
3009 * Resume normal operations after an error recovery
3010 * sequence has been completed.
3011 */
3012static void e100_io_resume(struct pci_dev *pdev)
3013{
3014 struct net_device *netdev = pci_get_drvdata(pdev);
3015 struct nic *nic = netdev_priv(netdev);
3016
3017 /* ack any pending wake events, disable PME */
3018 pci_enable_wake(pdev, 0, 0);
3019
3020 netif_device_attach(netdev);
3021 if (netif_running(netdev)) {
3022 e100_open(netdev);
3023 mod_timer(&nic->watchdog, jiffies);
3024 }
3025}
3026
3027static struct pci_error_handlers e100_err_handler = {
3028 .error_detected = e100_io_error_detected,
3029 .slot_reset = e100_io_slot_reset,
3030 .resume = e100_io_resume,
3031};
6bdacb1a 3032
1da177e4
LT
3033static struct pci_driver e100_driver = {
3034 .name = DRV_NAME,
3035 .id_table = e100_id_table,
3036 .probe = e100_probe,
3037 .remove = __devexit_p(e100_remove),
e8e82b76 3038#ifdef CONFIG_PM
975b366a 3039 /* Power Management hooks */
1da177e4
LT
3040 .suspend = e100_suspend,
3041 .resume = e100_resume,
3042#endif
05479938 3043 .shutdown = e100_shutdown,
2cc30492 3044 .err_handler = &e100_err_handler,
1da177e4
LT
3045};
3046
3047static int __init e100_init_module(void)
3048{
f26251eb 3049 if (((1 << debug) - 1) & NETIF_MSG_DRV) {
1da177e4
LT
3050 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
3051 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT);
3052 }
29917620 3053 return pci_register_driver(&e100_driver);
1da177e4
LT
3054}
3055
3056static void __exit e100_cleanup_module(void)
3057{
3058 pci_unregister_driver(&e100_driver);
3059}
3060
3061module_init(e100_init_module);
3062module_exit(e100_cleanup_module);
This page took 0.75596 seconds and 5 git commands to generate.