Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /******************************************************************************* |
2 | ||
3 | ||
2648345f | 4 | Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. |
1da177e4 LT |
5 | |
6 | This program is free software; you can redistribute it and/or modify it | |
7 | under the terms of the GNU General Public License as published by the Free | |
8 | Software Foundation; either version 2 of the License, or (at your option) | |
9 | any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, but WITHOUT | |
12 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
14 | more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License along with | |
17 | this program; if not, write to the Free Software Foundation, Inc., 59 | |
18 | Temple Place - Suite 330, Boston, MA 02111-1307, USA. | |
19 | ||
20 | The full GNU General Public License is included in this distribution in the | |
21 | file called LICENSE. | |
22 | ||
23 | Contact Information: | |
24 | Linux NICS <linux.nics@intel.com> | |
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | |
26 | ||
27 | *******************************************************************************/ | |
28 | ||
29 | /* ethtool support for e1000 */ | |
30 | ||
31 | #include "e1000.h" | |
32 | ||
33 | #include <asm/uaccess.h> | |
34 | ||
35 | extern char e1000_driver_name[]; | |
36 | extern char e1000_driver_version[]; | |
37 | ||
38 | extern int e1000_up(struct e1000_adapter *adapter); | |
39 | extern void e1000_down(struct e1000_adapter *adapter); | |
40 | extern void e1000_reset(struct e1000_adapter *adapter); | |
41 | extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx); | |
42 | extern int e1000_setup_rx_resources(struct e1000_adapter *adapter); | |
43 | extern int e1000_setup_tx_resources(struct e1000_adapter *adapter); | |
44 | extern void e1000_free_rx_resources(struct e1000_adapter *adapter); | |
45 | extern void e1000_free_tx_resources(struct e1000_adapter *adapter); | |
46 | extern void e1000_update_stats(struct e1000_adapter *adapter); | |
47 | ||
48 | struct e1000_stats { | |
49 | char stat_string[ETH_GSTRING_LEN]; | |
50 | int sizeof_stat; | |
51 | int stat_offset; | |
52 | }; | |
53 | ||
54 | #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \ | |
55 | offsetof(struct e1000_adapter, m) | |
56 | static const struct e1000_stats e1000_gstrings_stats[] = { | |
57 | { "rx_packets", E1000_STAT(net_stats.rx_packets) }, | |
58 | { "tx_packets", E1000_STAT(net_stats.tx_packets) }, | |
59 | { "rx_bytes", E1000_STAT(net_stats.rx_bytes) }, | |
60 | { "tx_bytes", E1000_STAT(net_stats.tx_bytes) }, | |
61 | { "rx_errors", E1000_STAT(net_stats.rx_errors) }, | |
62 | { "tx_errors", E1000_STAT(net_stats.tx_errors) }, | |
63 | { "rx_dropped", E1000_STAT(net_stats.rx_dropped) }, | |
64 | { "tx_dropped", E1000_STAT(net_stats.tx_dropped) }, | |
65 | { "multicast", E1000_STAT(net_stats.multicast) }, | |
66 | { "collisions", E1000_STAT(net_stats.collisions) }, | |
67 | { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) }, | |
68 | { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) }, | |
69 | { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) }, | |
70 | { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) }, | |
71 | { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) }, | |
2648345f | 72 | { "rx_no_buffer_count", E1000_STAT(stats.rnbc) }, |
1da177e4 LT |
73 | { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) }, |
74 | { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) }, | |
75 | { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) }, | |
76 | { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) }, | |
77 | { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) }, | |
78 | { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) }, | |
79 | { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, | |
80 | { "tx_deferred_ok", E1000_STAT(stats.dc) }, | |
81 | { "tx_single_coll_ok", E1000_STAT(stats.scc) }, | |
82 | { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, | |
83 | { "rx_long_length_errors", E1000_STAT(stats.roc) }, | |
84 | { "rx_short_length_errors", E1000_STAT(stats.ruc) }, | |
85 | { "rx_align_errors", E1000_STAT(stats.algnerrc) }, | |
86 | { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, | |
87 | { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, | |
88 | { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, | |
89 | { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, | |
90 | { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, | |
91 | { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, | |
92 | { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, | |
93 | { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, | |
94 | { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) } | |
95 | }; | |
96 | #define E1000_STATS_LEN \ | |
97 | sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats) | |
98 | static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { | |
99 | "Register test (offline)", "Eeprom test (offline)", | |
100 | "Interrupt test (offline)", "Loopback test (offline)", | |
101 | "Link test (on/offline)" | |
102 | }; | |
103 | #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN | |
104 | ||
105 | static int | |
106 | e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) | |
107 | { | |
60490fe0 | 108 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1da177e4 LT |
109 | struct e1000_hw *hw = &adapter->hw; |
110 | ||
111 | if(hw->media_type == e1000_media_type_copper) { | |
112 | ||
113 | ecmd->supported = (SUPPORTED_10baseT_Half | | |
114 | SUPPORTED_10baseT_Full | | |
115 | SUPPORTED_100baseT_Half | | |
116 | SUPPORTED_100baseT_Full | | |
117 | SUPPORTED_1000baseT_Full| | |
118 | SUPPORTED_Autoneg | | |
119 | SUPPORTED_TP); | |
120 | ||
121 | ecmd->advertising = ADVERTISED_TP; | |
122 | ||
123 | if(hw->autoneg == 1) { | |
124 | ecmd->advertising |= ADVERTISED_Autoneg; | |
125 | ||
126 | /* the e1000 autoneg seems to match ethtool nicely */ | |
127 | ||
128 | ecmd->advertising |= hw->autoneg_advertised; | |
129 | } | |
130 | ||
131 | ecmd->port = PORT_TP; | |
132 | ecmd->phy_address = hw->phy_addr; | |
133 | ||
134 | if(hw->mac_type == e1000_82543) | |
135 | ecmd->transceiver = XCVR_EXTERNAL; | |
136 | else | |
137 | ecmd->transceiver = XCVR_INTERNAL; | |
138 | ||
139 | } else { | |
140 | ecmd->supported = (SUPPORTED_1000baseT_Full | | |
141 | SUPPORTED_FIBRE | | |
142 | SUPPORTED_Autoneg); | |
143 | ||
144 | ecmd->advertising = (SUPPORTED_1000baseT_Full | | |
145 | SUPPORTED_FIBRE | | |
146 | SUPPORTED_Autoneg); | |
147 | ||
148 | ecmd->port = PORT_FIBRE; | |
149 | ||
150 | if(hw->mac_type >= e1000_82545) | |
151 | ecmd->transceiver = XCVR_INTERNAL; | |
152 | else | |
153 | ecmd->transceiver = XCVR_EXTERNAL; | |
154 | } | |
155 | ||
156 | if(netif_carrier_ok(adapter->netdev)) { | |
157 | ||
158 | e1000_get_speed_and_duplex(hw, &adapter->link_speed, | |
159 | &adapter->link_duplex); | |
160 | ecmd->speed = adapter->link_speed; | |
161 | ||
162 | /* unfortunatly FULL_DUPLEX != DUPLEX_FULL | |
163 | * and HALF_DUPLEX != DUPLEX_HALF */ | |
164 | ||
165 | if(adapter->link_duplex == FULL_DUPLEX) | |
166 | ecmd->duplex = DUPLEX_FULL; | |
167 | else | |
168 | ecmd->duplex = DUPLEX_HALF; | |
169 | } else { | |
170 | ecmd->speed = -1; | |
171 | ecmd->duplex = -1; | |
172 | } | |
173 | ||
174 | ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) || | |
175 | hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; | |
176 | return 0; | |
177 | } | |
178 | ||
179 | static int | |
180 | e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) | |
181 | { | |
60490fe0 | 182 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1da177e4 LT |
183 | struct e1000_hw *hw = &adapter->hw; |
184 | ||
185 | if(ecmd->autoneg == AUTONEG_ENABLE) { | |
186 | hw->autoneg = 1; | |
187 | hw->autoneg_advertised = 0x002F; | |
188 | ecmd->advertising = 0x002F; | |
189 | } else | |
190 | if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) | |
191 | return -EINVAL; | |
192 | ||
193 | /* reset the link */ | |
194 | ||
195 | if(netif_running(adapter->netdev)) { | |
196 | e1000_down(adapter); | |
197 | e1000_reset(adapter); | |
198 | e1000_up(adapter); | |
199 | } else | |
200 | e1000_reset(adapter); | |
201 | ||
202 | return 0; | |
203 | } | |
204 | ||
205 | static void | |
206 | e1000_get_pauseparam(struct net_device *netdev, | |
207 | struct ethtool_pauseparam *pause) | |
208 | { | |
60490fe0 | 209 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1da177e4 LT |
210 | struct e1000_hw *hw = &adapter->hw; |
211 | ||
212 | pause->autoneg = | |
213 | (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); | |
214 | ||
215 | if(hw->fc == e1000_fc_rx_pause) | |
216 | pause->rx_pause = 1; | |
217 | else if(hw->fc == e1000_fc_tx_pause) | |
218 | pause->tx_pause = 1; | |
219 | else if(hw->fc == e1000_fc_full) { | |
220 | pause->rx_pause = 1; | |
221 | pause->tx_pause = 1; | |
222 | } | |
223 | } | |
224 | ||
225 | static int | |
226 | e1000_set_pauseparam(struct net_device *netdev, | |
227 | struct ethtool_pauseparam *pause) | |
228 | { | |
60490fe0 | 229 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1da177e4 LT |
230 | struct e1000_hw *hw = &adapter->hw; |
231 | ||
232 | adapter->fc_autoneg = pause->autoneg; | |
233 | ||
234 | if(pause->rx_pause && pause->tx_pause) | |
235 | hw->fc = e1000_fc_full; | |
236 | else if(pause->rx_pause && !pause->tx_pause) | |
237 | hw->fc = e1000_fc_rx_pause; | |
238 | else if(!pause->rx_pause && pause->tx_pause) | |
239 | hw->fc = e1000_fc_tx_pause; | |
240 | else if(!pause->rx_pause && !pause->tx_pause) | |
241 | hw->fc = e1000_fc_none; | |
242 | ||
243 | hw->original_fc = hw->fc; | |
244 | ||
245 | if(adapter->fc_autoneg == AUTONEG_ENABLE) { | |
246 | if(netif_running(adapter->netdev)) { | |
247 | e1000_down(adapter); | |
248 | e1000_up(adapter); | |
249 | } else | |
250 | e1000_reset(adapter); | |
251 | } | |
252 | else | |
253 | return ((hw->media_type == e1000_media_type_fiber) ? | |
254 | e1000_setup_link(hw) : e1000_force_mac_fc(hw)); | |
255 | ||
256 | return 0; | |
257 | } | |
258 | ||
259 | static uint32_t | |
260 | e1000_get_rx_csum(struct net_device *netdev) | |
261 | { | |
60490fe0 | 262 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1da177e4 LT |
263 | return adapter->rx_csum; |
264 | } | |
265 | ||
266 | static int | |
267 | e1000_set_rx_csum(struct net_device *netdev, uint32_t data) | |
268 | { | |
60490fe0 | 269 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1da177e4 LT |
270 | adapter->rx_csum = data; |
271 | ||
272 | if(netif_running(netdev)) { | |
273 | e1000_down(adapter); | |
274 | e1000_up(adapter); | |
275 | } else | |
276 | e1000_reset(adapter); | |
277 | return 0; | |
278 | } | |
279 | ||
280 | static uint32_t | |
281 | e1000_get_tx_csum(struct net_device *netdev) | |
282 | { | |
283 | return (netdev->features & NETIF_F_HW_CSUM) != 0; | |
284 | } | |
285 | ||
286 | static int | |
287 | e1000_set_tx_csum(struct net_device *netdev, uint32_t data) | |
288 | { | |
60490fe0 | 289 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1da177e4 LT |
290 | |
291 | if(adapter->hw.mac_type < e1000_82543) { | |
292 | if (!data) | |
293 | return -EINVAL; | |
294 | return 0; | |
295 | } | |
296 | ||
297 | if (data) | |
298 | netdev->features |= NETIF_F_HW_CSUM; | |
299 | else | |
300 | netdev->features &= ~NETIF_F_HW_CSUM; | |
301 | ||
302 | return 0; | |
303 | } | |
304 | ||
305 | #ifdef NETIF_F_TSO | |
306 | static int | |
307 | e1000_set_tso(struct net_device *netdev, uint32_t data) | |
308 | { | |
60490fe0 MC |
309 | struct e1000_adapter *adapter = netdev_priv(netdev); |
310 | if((adapter->hw.mac_type < e1000_82544) || | |
1da177e4 LT |
311 | (adapter->hw.mac_type == e1000_82547)) |
312 | return data ? -EINVAL : 0; | |
313 | ||
314 | if (data) | |
315 | netdev->features |= NETIF_F_TSO; | |
316 | else | |
317 | netdev->features &= ~NETIF_F_TSO; | |
318 | return 0; | |
319 | } | |
320 | #endif /* NETIF_F_TSO */ | |
321 | ||
322 | static uint32_t | |
323 | e1000_get_msglevel(struct net_device *netdev) | |
324 | { | |
60490fe0 | 325 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1da177e4 LT |
326 | return adapter->msg_enable; |
327 | } | |
328 | ||
329 | static void | |
330 | e1000_set_msglevel(struct net_device *netdev, uint32_t data) | |
331 | { | |
60490fe0 | 332 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1da177e4 LT |
333 | adapter->msg_enable = data; |
334 | } | |
335 | ||
336 | static int | |
337 | e1000_get_regs_len(struct net_device *netdev) | |
338 | { | |
339 | #define E1000_REGS_LEN 32 | |
340 | return E1000_REGS_LEN * sizeof(uint32_t); | |
341 | } | |
342 | ||
343 | static void | |
344 | e1000_get_regs(struct net_device *netdev, | |
345 | struct ethtool_regs *regs, void *p) | |
346 | { | |
60490fe0 | 347 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1da177e4 LT |
348 | struct e1000_hw *hw = &adapter->hw; |
349 | uint32_t *regs_buff = p; | |
350 | uint16_t phy_data; | |
351 | ||
352 | memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t)); | |
353 | ||
354 | regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; | |
355 | ||
356 | regs_buff[0] = E1000_READ_REG(hw, CTRL); | |
357 | regs_buff[1] = E1000_READ_REG(hw, STATUS); | |
358 | ||
359 | regs_buff[2] = E1000_READ_REG(hw, RCTL); | |
360 | regs_buff[3] = E1000_READ_REG(hw, RDLEN); | |
361 | regs_buff[4] = E1000_READ_REG(hw, RDH); | |
362 | regs_buff[5] = E1000_READ_REG(hw, RDT); | |
363 | regs_buff[6] = E1000_READ_REG(hw, RDTR); | |
364 | ||
365 | regs_buff[7] = E1000_READ_REG(hw, TCTL); | |
366 | regs_buff[8] = E1000_READ_REG(hw, TDLEN); | |
367 | regs_buff[9] = E1000_READ_REG(hw, TDH); | |
368 | regs_buff[10] = E1000_READ_REG(hw, TDT); | |
369 | regs_buff[11] = E1000_READ_REG(hw, TIDV); | |
370 | ||
371 | regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */ | |
372 | if(hw->phy_type == e1000_phy_igp) { | |
373 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | |
374 | IGP01E1000_PHY_AGC_A); | |
375 | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & | |
376 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | |
377 | regs_buff[13] = (uint32_t)phy_data; /* cable length */ | |
378 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | |
379 | IGP01E1000_PHY_AGC_B); | |
380 | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B & | |
381 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | |
382 | regs_buff[14] = (uint32_t)phy_data; /* cable length */ | |
383 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | |
384 | IGP01E1000_PHY_AGC_C); | |
385 | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C & | |
386 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | |
387 | regs_buff[15] = (uint32_t)phy_data; /* cable length */ | |
388 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | |
389 | IGP01E1000_PHY_AGC_D); | |
390 | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D & | |
391 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | |
392 | regs_buff[16] = (uint32_t)phy_data; /* cable length */ | |
393 | regs_buff[17] = 0; /* extended 10bt distance (not needed) */ | |
394 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); | |
395 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS & | |
396 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | |
397 | regs_buff[18] = (uint32_t)phy_data; /* cable polarity */ | |
398 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | |
399 | IGP01E1000_PHY_PCS_INIT_REG); | |
400 | e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG & | |
401 | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | |
402 | regs_buff[19] = (uint32_t)phy_data; /* cable polarity */ | |
403 | regs_buff[20] = 0; /* polarity correction enabled (always) */ | |
404 | regs_buff[22] = 0; /* phy receive errors (unavailable) */ | |
405 | regs_buff[23] = regs_buff[18]; /* mdix mode */ | |
406 | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); | |
407 | } else { | |
408 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | |
409 | regs_buff[13] = (uint32_t)phy_data; /* cable length */ | |
410 | regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ | |
411 | regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ | |
412 | regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ | |
413 | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | |
414 | regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */ | |
415 | regs_buff[18] = regs_buff[13]; /* cable polarity */ | |
416 | regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ | |
417 | regs_buff[20] = regs_buff[17]; /* polarity correction */ | |
418 | /* phy receive errors */ | |
419 | regs_buff[22] = adapter->phy_stats.receive_errors; | |
420 | regs_buff[23] = regs_buff[13]; /* mdix mode */ | |
421 | } | |
422 | regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */ | |
423 | e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | |
424 | regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */ | |
425 | regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ | |
426 | if(hw->mac_type >= e1000_82540 && | |
427 | hw->media_type == e1000_media_type_copper) { | |
428 | regs_buff[26] = E1000_READ_REG(hw, MANC); | |
429 | } | |
430 | } | |
431 | ||
432 | static int | |
433 | e1000_get_eeprom_len(struct net_device *netdev) | |
434 | { | |
60490fe0 | 435 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1da177e4 LT |
436 | return adapter->hw.eeprom.word_size * 2; |
437 | } | |
438 | ||
439 | static int | |
440 | e1000_get_eeprom(struct net_device *netdev, | |
441 | struct ethtool_eeprom *eeprom, uint8_t *bytes) | |
442 | { | |
60490fe0 | 443 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1da177e4 LT |
444 | struct e1000_hw *hw = &adapter->hw; |
445 | uint16_t *eeprom_buff; | |
446 | int first_word, last_word; | |
447 | int ret_val = 0; | |
448 | uint16_t i; | |
449 | ||
450 | if(eeprom->len == 0) | |
451 | return -EINVAL; | |
452 | ||
453 | eeprom->magic = hw->vendor_id | (hw->device_id << 16); | |
454 | ||
455 | first_word = eeprom->offset >> 1; | |
456 | last_word = (eeprom->offset + eeprom->len - 1) >> 1; | |
457 | ||
458 | eeprom_buff = kmalloc(sizeof(uint16_t) * | |
459 | (last_word - first_word + 1), GFP_KERNEL); | |
460 | if(!eeprom_buff) | |
461 | return -ENOMEM; | |
462 | ||
463 | if(hw->eeprom.type == e1000_eeprom_spi) | |
464 | ret_val = e1000_read_eeprom(hw, first_word, | |
465 | last_word - first_word + 1, | |
466 | eeprom_buff); | |
467 | else { | |
468 | for (i = 0; i < last_word - first_word + 1; i++) | |
469 | if((ret_val = e1000_read_eeprom(hw, first_word + i, 1, | |
470 | &eeprom_buff[i]))) | |
471 | break; | |
472 | } | |
473 | ||
474 | /* Device's eeprom is always little-endian, word addressable */ | |
475 | for (i = 0; i < last_word - first_word + 1; i++) | |
476 | le16_to_cpus(&eeprom_buff[i]); | |
477 | ||
478 | memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1), | |
479 | eeprom->len); | |
480 | kfree(eeprom_buff); | |
481 | ||
482 | return ret_val; | |
483 | } | |
484 | ||
485 | static int | |
486 | e1000_set_eeprom(struct net_device *netdev, | |
487 | struct ethtool_eeprom *eeprom, uint8_t *bytes) | |
488 | { | |
60490fe0 | 489 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1da177e4 LT |
490 | struct e1000_hw *hw = &adapter->hw; |
491 | uint16_t *eeprom_buff; | |
492 | void *ptr; | |
493 | int max_len, first_word, last_word, ret_val = 0; | |
494 | uint16_t i; | |
495 | ||
496 | if(eeprom->len == 0) | |
497 | return -EOPNOTSUPP; | |
498 | ||
499 | if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) | |
500 | return -EFAULT; | |
501 | ||
502 | max_len = hw->eeprom.word_size * 2; | |
503 | ||
504 | first_word = eeprom->offset >> 1; | |
505 | last_word = (eeprom->offset + eeprom->len - 1) >> 1; | |
506 | eeprom_buff = kmalloc(max_len, GFP_KERNEL); | |
507 | if(!eeprom_buff) | |
508 | return -ENOMEM; | |
509 | ||
510 | ptr = (void *)eeprom_buff; | |
511 | ||
512 | if(eeprom->offset & 1) { | |
513 | /* need read/modify/write of first changed EEPROM word */ | |
514 | /* only the second byte of the word is being modified */ | |
515 | ret_val = e1000_read_eeprom(hw, first_word, 1, | |
516 | &eeprom_buff[0]); | |
517 | ptr++; | |
518 | } | |
519 | if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { | |
520 | /* need read/modify/write of last changed EEPROM word */ | |
521 | /* only the first byte of the word is being modified */ | |
522 | ret_val = e1000_read_eeprom(hw, last_word, 1, | |
523 | &eeprom_buff[last_word - first_word]); | |
524 | } | |
525 | ||
526 | /* Device's eeprom is always little-endian, word addressable */ | |
527 | for (i = 0; i < last_word - first_word + 1; i++) | |
528 | le16_to_cpus(&eeprom_buff[i]); | |
529 | ||
530 | memcpy(ptr, bytes, eeprom->len); | |
531 | ||
532 | for (i = 0; i < last_word - first_word + 1; i++) | |
533 | eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); | |
534 | ||
535 | ret_val = e1000_write_eeprom(hw, first_word, | |
536 | last_word - first_word + 1, eeprom_buff); | |
537 | ||
538 | /* Update the checksum over the first part of the EEPROM if needed */ | |
539 | if((ret_val == 0) && first_word <= EEPROM_CHECKSUM_REG) | |
540 | e1000_update_eeprom_checksum(hw); | |
541 | ||
542 | kfree(eeprom_buff); | |
543 | return ret_val; | |
544 | } | |
545 | ||
546 | static void | |
547 | e1000_get_drvinfo(struct net_device *netdev, | |
548 | struct ethtool_drvinfo *drvinfo) | |
549 | { | |
60490fe0 | 550 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1da177e4 LT |
551 | |
552 | strncpy(drvinfo->driver, e1000_driver_name, 32); | |
553 | strncpy(drvinfo->version, e1000_driver_version, 32); | |
554 | strncpy(drvinfo->fw_version, "N/A", 32); | |
555 | strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); | |
556 | drvinfo->n_stats = E1000_STATS_LEN; | |
557 | drvinfo->testinfo_len = E1000_TEST_LEN; | |
558 | drvinfo->regdump_len = e1000_get_regs_len(netdev); | |
559 | drvinfo->eedump_len = e1000_get_eeprom_len(netdev); | |
560 | } | |
561 | ||
562 | static void | |
563 | e1000_get_ringparam(struct net_device *netdev, | |
564 | struct ethtool_ringparam *ring) | |
565 | { | |
60490fe0 | 566 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1da177e4 LT |
567 | e1000_mac_type mac_type = adapter->hw.mac_type; |
568 | struct e1000_desc_ring *txdr = &adapter->tx_ring; | |
569 | struct e1000_desc_ring *rxdr = &adapter->rx_ring; | |
570 | ||
571 | ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD : | |
572 | E1000_MAX_82544_RXD; | |
573 | ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD : | |
574 | E1000_MAX_82544_TXD; | |
575 | ring->rx_mini_max_pending = 0; | |
576 | ring->rx_jumbo_max_pending = 0; | |
577 | ring->rx_pending = rxdr->count; | |
578 | ring->tx_pending = txdr->count; | |
579 | ring->rx_mini_pending = 0; | |
580 | ring->rx_jumbo_pending = 0; | |
581 | } | |
582 | ||
583 | static int | |
584 | e1000_set_ringparam(struct net_device *netdev, | |
585 | struct ethtool_ringparam *ring) | |
586 | { | |
60490fe0 | 587 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1da177e4 LT |
588 | e1000_mac_type mac_type = adapter->hw.mac_type; |
589 | struct e1000_desc_ring *txdr = &adapter->tx_ring; | |
590 | struct e1000_desc_ring *rxdr = &adapter->rx_ring; | |
591 | struct e1000_desc_ring tx_old, tx_new, rx_old, rx_new; | |
592 | int err; | |
593 | ||
594 | tx_old = adapter->tx_ring; | |
595 | rx_old = adapter->rx_ring; | |
596 | ||
2648345f | 597 | if((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) |
1da177e4 LT |
598 | return -EINVAL; |
599 | ||
600 | if(netif_running(adapter->netdev)) | |
601 | e1000_down(adapter); | |
602 | ||
603 | rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD); | |
604 | rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ? | |
605 | E1000_MAX_RXD : E1000_MAX_82544_RXD)); | |
606 | E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); | |
607 | ||
608 | txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD); | |
609 | txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ? | |
610 | E1000_MAX_TXD : E1000_MAX_82544_TXD)); | |
611 | E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); | |
612 | ||
613 | if(netif_running(adapter->netdev)) { | |
614 | /* Try to get new resources before deleting old */ | |
615 | if((err = e1000_setup_rx_resources(adapter))) | |
616 | goto err_setup_rx; | |
617 | if((err = e1000_setup_tx_resources(adapter))) | |
618 | goto err_setup_tx; | |
619 | ||
620 | /* save the new, restore the old in order to free it, | |
621 | * then restore the new back again */ | |
622 | ||
623 | rx_new = adapter->rx_ring; | |
624 | tx_new = adapter->tx_ring; | |
625 | adapter->rx_ring = rx_old; | |
626 | adapter->tx_ring = tx_old; | |
627 | e1000_free_rx_resources(adapter); | |
628 | e1000_free_tx_resources(adapter); | |
629 | adapter->rx_ring = rx_new; | |
630 | adapter->tx_ring = tx_new; | |
631 | if((err = e1000_up(adapter))) | |
632 | return err; | |
633 | } | |
634 | ||
635 | return 0; | |
636 | err_setup_tx: | |
637 | e1000_free_rx_resources(adapter); | |
638 | err_setup_rx: | |
639 | adapter->rx_ring = rx_old; | |
640 | adapter->tx_ring = tx_old; | |
641 | e1000_up(adapter); | |
642 | return err; | |
643 | } | |
644 | ||
645 | #define REG_PATTERN_TEST(R, M, W) \ | |
646 | { \ | |
647 | uint32_t pat, value; \ | |
648 | uint32_t test[] = \ | |
649 | {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \ | |
650 | for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \ | |
651 | E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \ | |
652 | value = E1000_READ_REG(&adapter->hw, R); \ | |
653 | if(value != (test[pat] & W & M)) { \ | |
b01f6691 MC |
654 | DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \ |
655 | "0x%08X expected 0x%08X\n", \ | |
656 | E1000_##R, value, (test[pat] & W & M)); \ | |
1da177e4 LT |
657 | *data = (adapter->hw.mac_type < e1000_82543) ? \ |
658 | E1000_82542_##R : E1000_##R; \ | |
659 | return 1; \ | |
660 | } \ | |
661 | } \ | |
662 | } | |
663 | ||
664 | #define REG_SET_AND_CHECK(R, M, W) \ | |
665 | { \ | |
666 | uint32_t value; \ | |
667 | E1000_WRITE_REG(&adapter->hw, R, W & M); \ | |
668 | value = E1000_READ_REG(&adapter->hw, R); \ | |
b01f6691 MC |
669 | if((W & M) != (value & M)) { \ |
670 | DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\ | |
671 | "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \ | |
1da177e4 LT |
672 | *data = (adapter->hw.mac_type < e1000_82543) ? \ |
673 | E1000_82542_##R : E1000_##R; \ | |
674 | return 1; \ | |
675 | } \ | |
676 | } | |
677 | ||
678 | static int | |
679 | e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data) | |
680 | { | |
b01f6691 MC |
681 | uint32_t value, before, after; |
682 | uint32_t i, toggle; | |
1da177e4 LT |
683 | |
684 | /* The status register is Read Only, so a write should fail. | |
685 | * Some bits that get toggled are ignored. | |
686 | */ | |
b01f6691 MC |
687 | switch (adapter->hw.mac_type) { |
688 | case e1000_82573: | |
689 | toggle = 0x7FFFF033; | |
690 | break; | |
691 | default: | |
692 | toggle = 0xFFFFF833; | |
693 | break; | |
694 | } | |
695 | ||
696 | before = E1000_READ_REG(&adapter->hw, STATUS); | |
697 | value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle); | |
698 | E1000_WRITE_REG(&adapter->hw, STATUS, toggle); | |
699 | after = E1000_READ_REG(&adapter->hw, STATUS) & toggle; | |
700 | if(value != after) { | |
701 | DPRINTK(DRV, ERR, "failed STATUS register test got: " | |
702 | "0x%08X expected: 0x%08X\n", after, value); | |
1da177e4 LT |
703 | *data = 1; |
704 | return 1; | |
705 | } | |
b01f6691 MC |
706 | /* restore previous status */ |
707 | E1000_WRITE_REG(&adapter->hw, STATUS, before); | |
1da177e4 LT |
708 | |
709 | REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); | |
710 | REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); | |
711 | REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); | |
712 | REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); | |
713 | REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); | |
714 | REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); | |
715 | REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); | |
716 | REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF); | |
717 | REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF); | |
718 | REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8); | |
719 | REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF); | |
720 | REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF); | |
721 | REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); | |
722 | REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); | |
723 | ||
724 | REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); | |
725 | REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB); | |
726 | REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); | |
727 | ||
728 | if(adapter->hw.mac_type >= e1000_82543) { | |
729 | ||
730 | REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF); | |
731 | REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); | |
732 | REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); | |
733 | REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); | |
734 | REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); | |
735 | ||
736 | for(i = 0; i < E1000_RAR_ENTRIES; i++) { | |
737 | REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF, | |
738 | 0xFFFFFFFF); | |
739 | REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, | |
740 | 0xFFFFFFFF); | |
741 | } | |
742 | ||
743 | } else { | |
744 | ||
745 | REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); | |
746 | REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); | |
747 | REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); | |
748 | REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); | |
749 | ||
750 | } | |
751 | ||
752 | for(i = 0; i < E1000_MC_TBL_SIZE; i++) | |
753 | REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); | |
754 | ||
755 | *data = 0; | |
756 | return 0; | |
757 | } | |
758 | ||
759 | static int | |
760 | e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data) | |
761 | { | |
762 | uint16_t temp; | |
763 | uint16_t checksum = 0; | |
764 | uint16_t i; | |
765 | ||
766 | *data = 0; | |
767 | /* Read and add up the contents of the EEPROM */ | |
768 | for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | |
769 | if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) { | |
770 | *data = 1; | |
771 | break; | |
772 | } | |
773 | checksum += temp; | |
774 | } | |
775 | ||
776 | /* If Checksum is not Correct return error else test passed */ | |
777 | if((checksum != (uint16_t) EEPROM_SUM) && !(*data)) | |
778 | *data = 2; | |
779 | ||
780 | return *data; | |
781 | } | |
782 | ||
783 | static irqreturn_t | |
784 | e1000_test_intr(int irq, | |
785 | void *data, | |
786 | struct pt_regs *regs) | |
787 | { | |
788 | struct net_device *netdev = (struct net_device *) data; | |
60490fe0 | 789 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1da177e4 LT |
790 | |
791 | adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR); | |
792 | ||
793 | return IRQ_HANDLED; | |
794 | } | |
795 | ||
796 | static int | |
797 | e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data) | |
798 | { | |
799 | struct net_device *netdev = adapter->netdev; | |
800 | uint32_t mask, i=0, shared_int = TRUE; | |
801 | uint32_t irq = adapter->pdev->irq; | |
802 | ||
803 | *data = 0; | |
804 | ||
805 | /* Hook up test interrupt handler just for this test */ | |
806 | if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) { | |
807 | shared_int = FALSE; | |
2648345f MC |
808 | } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ, |
809 | netdev->name, netdev)){ | |
1da177e4 LT |
810 | *data = 1; |
811 | return -1; | |
812 | } | |
813 | ||
814 | /* Disable all the interrupts */ | |
815 | E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF); | |
816 | msec_delay(10); | |
817 | ||
818 | /* Test each interrupt */ | |
819 | for(; i < 10; i++) { | |
820 | ||
821 | /* Interrupt to test */ | |
822 | mask = 1 << i; | |
823 | ||
824 | if(!shared_int) { | |
825 | /* Disable the interrupt to be reported in | |
826 | * the cause register and then force the same | |
827 | * interrupt and see if one gets posted. If | |
828 | * an interrupt was posted to the bus, the | |
829 | * test failed. | |
830 | */ | |
831 | adapter->test_icr = 0; | |
832 | E1000_WRITE_REG(&adapter->hw, IMC, mask); | |
833 | E1000_WRITE_REG(&adapter->hw, ICS, mask); | |
834 | msec_delay(10); | |
835 | ||
836 | if(adapter->test_icr & mask) { | |
837 | *data = 3; | |
838 | break; | |
839 | } | |
840 | } | |
841 | ||
842 | /* Enable the interrupt to be reported in | |
843 | * the cause register and then force the same | |
844 | * interrupt and see if one gets posted. If | |
845 | * an interrupt was not posted to the bus, the | |
846 | * test failed. | |
847 | */ | |
848 | adapter->test_icr = 0; | |
849 | E1000_WRITE_REG(&adapter->hw, IMS, mask); | |
850 | E1000_WRITE_REG(&adapter->hw, ICS, mask); | |
851 | msec_delay(10); | |
852 | ||
853 | if(!(adapter->test_icr & mask)) { | |
854 | *data = 4; | |
855 | break; | |
856 | } | |
857 | ||
858 | if(!shared_int) { | |
859 | /* Disable the other interrupts to be reported in | |
860 | * the cause register and then force the other | |
861 | * interrupts and see if any get posted. If | |
862 | * an interrupt was posted to the bus, the | |
863 | * test failed. | |
864 | */ | |
865 | adapter->test_icr = 0; | |
2648345f MC |
866 | E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF); |
867 | E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF); | |
1da177e4 LT |
868 | msec_delay(10); |
869 | ||
870 | if(adapter->test_icr) { | |
871 | *data = 5; | |
872 | break; | |
873 | } | |
874 | } | |
875 | } | |
876 | ||
877 | /* Disable all the interrupts */ | |
878 | E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF); | |
879 | msec_delay(10); | |
880 | ||
881 | /* Unhook test interrupt handler */ | |
882 | free_irq(irq, netdev); | |
883 | ||
884 | return *data; | |
885 | } | |
886 | ||
887 | static void | |
888 | e1000_free_desc_rings(struct e1000_adapter *adapter) | |
889 | { | |
890 | struct e1000_desc_ring *txdr = &adapter->test_tx_ring; | |
891 | struct e1000_desc_ring *rxdr = &adapter->test_rx_ring; | |
892 | struct pci_dev *pdev = adapter->pdev; | |
893 | int i; | |
894 | ||
895 | if(txdr->desc && txdr->buffer_info) { | |
896 | for(i = 0; i < txdr->count; i++) { | |
897 | if(txdr->buffer_info[i].dma) | |
898 | pci_unmap_single(pdev, txdr->buffer_info[i].dma, | |
899 | txdr->buffer_info[i].length, | |
900 | PCI_DMA_TODEVICE); | |
901 | if(txdr->buffer_info[i].skb) | |
902 | dev_kfree_skb(txdr->buffer_info[i].skb); | |
903 | } | |
904 | } | |
905 | ||
906 | if(rxdr->desc && rxdr->buffer_info) { | |
907 | for(i = 0; i < rxdr->count; i++) { | |
908 | if(rxdr->buffer_info[i].dma) | |
909 | pci_unmap_single(pdev, rxdr->buffer_info[i].dma, | |
910 | rxdr->buffer_info[i].length, | |
911 | PCI_DMA_FROMDEVICE); | |
912 | if(rxdr->buffer_info[i].skb) | |
913 | dev_kfree_skb(rxdr->buffer_info[i].skb); | |
914 | } | |
915 | } | |
916 | ||
917 | if(txdr->desc) | |
918 | pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma); | |
919 | if(rxdr->desc) | |
920 | pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma); | |
921 | ||
922 | if(txdr->buffer_info) | |
923 | kfree(txdr->buffer_info); | |
924 | if(rxdr->buffer_info) | |
925 | kfree(rxdr->buffer_info); | |
926 | ||
927 | return; | |
928 | } | |
929 | ||
930 | static int | |
931 | e1000_setup_desc_rings(struct e1000_adapter *adapter) | |
932 | { | |
933 | struct e1000_desc_ring *txdr = &adapter->test_tx_ring; | |
934 | struct e1000_desc_ring *rxdr = &adapter->test_rx_ring; | |
935 | struct pci_dev *pdev = adapter->pdev; | |
936 | uint32_t rctl; | |
937 | int size, i, ret_val; | |
938 | ||
939 | /* Setup Tx descriptor ring and Tx buffers */ | |
940 | ||
e4eff729 MC |
941 | if(!txdr->count) |
942 | txdr->count = E1000_DEFAULT_TXD; | |
1da177e4 LT |
943 | |
944 | size = txdr->count * sizeof(struct e1000_buffer); | |
945 | if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) { | |
946 | ret_val = 1; | |
947 | goto err_nomem; | |
948 | } | |
949 | memset(txdr->buffer_info, 0, size); | |
950 | ||
951 | txdr->size = txdr->count * sizeof(struct e1000_tx_desc); | |
952 | E1000_ROUNDUP(txdr->size, 4096); | |
953 | if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) { | |
954 | ret_val = 2; | |
955 | goto err_nomem; | |
956 | } | |
957 | memset(txdr->desc, 0, txdr->size); | |
958 | txdr->next_to_use = txdr->next_to_clean = 0; | |
959 | ||
960 | E1000_WRITE_REG(&adapter->hw, TDBAL, | |
961 | ((uint64_t) txdr->dma & 0x00000000FFFFFFFF)); | |
962 | E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32)); | |
963 | E1000_WRITE_REG(&adapter->hw, TDLEN, | |
964 | txdr->count * sizeof(struct e1000_tx_desc)); | |
965 | E1000_WRITE_REG(&adapter->hw, TDH, 0); | |
966 | E1000_WRITE_REG(&adapter->hw, TDT, 0); | |
967 | E1000_WRITE_REG(&adapter->hw, TCTL, | |
968 | E1000_TCTL_PSP | E1000_TCTL_EN | | |
969 | E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | | |
970 | E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); | |
971 | ||
972 | for(i = 0; i < txdr->count; i++) { | |
973 | struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); | |
974 | struct sk_buff *skb; | |
975 | unsigned int size = 1024; | |
976 | ||
977 | if(!(skb = alloc_skb(size, GFP_KERNEL))) { | |
978 | ret_val = 3; | |
979 | goto err_nomem; | |
980 | } | |
981 | skb_put(skb, size); | |
982 | txdr->buffer_info[i].skb = skb; | |
983 | txdr->buffer_info[i].length = skb->len; | |
984 | txdr->buffer_info[i].dma = | |
985 | pci_map_single(pdev, skb->data, skb->len, | |
986 | PCI_DMA_TODEVICE); | |
987 | tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma); | |
988 | tx_desc->lower.data = cpu_to_le32(skb->len); | |
989 | tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | | |
990 | E1000_TXD_CMD_IFCS | | |
991 | E1000_TXD_CMD_RPS); | |
992 | tx_desc->upper.data = 0; | |
993 | } | |
994 | ||
995 | /* Setup Rx descriptor ring and Rx buffers */ | |
996 | ||
e4eff729 MC |
997 | if(!rxdr->count) |
998 | rxdr->count = E1000_DEFAULT_RXD; | |
1da177e4 LT |
999 | |
1000 | size = rxdr->count * sizeof(struct e1000_buffer); | |
1001 | if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) { | |
1002 | ret_val = 4; | |
1003 | goto err_nomem; | |
1004 | } | |
1005 | memset(rxdr->buffer_info, 0, size); | |
1006 | ||
1007 | rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); | |
1008 | if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) { | |
1009 | ret_val = 5; | |
1010 | goto err_nomem; | |
1011 | } | |
1012 | memset(rxdr->desc, 0, rxdr->size); | |
1013 | rxdr->next_to_use = rxdr->next_to_clean = 0; | |
1014 | ||
1015 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | |
1016 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN); | |
1017 | E1000_WRITE_REG(&adapter->hw, RDBAL, | |
1018 | ((uint64_t) rxdr->dma & 0xFFFFFFFF)); | |
1019 | E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32)); | |
1020 | E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size); | |
1021 | E1000_WRITE_REG(&adapter->hw, RDH, 0); | |
1022 | E1000_WRITE_REG(&adapter->hw, RDT, 0); | |
1023 | rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | | |
1024 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | |
1025 | (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); | |
1026 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | |
1027 | ||
1028 | for(i = 0; i < rxdr->count; i++) { | |
1029 | struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); | |
1030 | struct sk_buff *skb; | |
1031 | ||
2648345f | 1032 | if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, |
1da177e4 LT |
1033 | GFP_KERNEL))) { |
1034 | ret_val = 6; | |
1035 | goto err_nomem; | |
1036 | } | |
1037 | skb_reserve(skb, NET_IP_ALIGN); | |
1038 | rxdr->buffer_info[i].skb = skb; | |
1039 | rxdr->buffer_info[i].length = E1000_RXBUFFER_2048; | |
1040 | rxdr->buffer_info[i].dma = | |
1041 | pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048, | |
1042 | PCI_DMA_FROMDEVICE); | |
1043 | rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma); | |
1044 | memset(skb->data, 0x00, skb->len); | |
1045 | } | |
1046 | ||
1047 | return 0; | |
1048 | ||
1049 | err_nomem: | |
1050 | e1000_free_desc_rings(adapter); | |
1051 | return ret_val; | |
1052 | } | |
1053 | ||
1054 | static void | |
1055 | e1000_phy_disable_receiver(struct e1000_adapter *adapter) | |
1056 | { | |
1057 | /* Write out to PHY registers 29 and 30 to disable the Receiver. */ | |
1058 | e1000_write_phy_reg(&adapter->hw, 29, 0x001F); | |
1059 | e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC); | |
1060 | e1000_write_phy_reg(&adapter->hw, 29, 0x001A); | |
1061 | e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0); | |
1062 | } | |
1063 | ||
1064 | static void | |
1065 | e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) | |
1066 | { | |
1067 | uint16_t phy_reg; | |
1068 | ||
1069 | /* Because we reset the PHY above, we need to re-force TX_CLK in the | |
1070 | * Extended PHY Specific Control Register to 25MHz clock. This | |
1071 | * value defaults back to a 2.5MHz clock when the PHY is reset. | |
1072 | */ | |
1073 | e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); | |
1074 | phy_reg |= M88E1000_EPSCR_TX_CLK_25; | |
1075 | e1000_write_phy_reg(&adapter->hw, | |
1076 | M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); | |
1077 | ||
1078 | /* In addition, because of the s/w reset above, we need to enable | |
1079 | * CRS on TX. This must be set for both full and half duplex | |
1080 | * operation. | |
1081 | */ | |
1082 | e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); | |
1083 | phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | |
1084 | e1000_write_phy_reg(&adapter->hw, | |
1085 | M88E1000_PHY_SPEC_CTRL, phy_reg); | |
1086 | } | |
1087 | ||
1088 | static int | |
1089 | e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) | |
1090 | { | |
1091 | uint32_t ctrl_reg; | |
1092 | uint16_t phy_reg; | |
1093 | ||
1094 | /* Setup the Device Control Register for PHY loopback test. */ | |
1095 | ||
1096 | ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); | |
1097 | ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */ | |
1098 | E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ | |
1099 | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ | |
1100 | E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */ | |
1101 | E1000_CTRL_FD); /* Force Duplex to FULL */ | |
1102 | ||
1103 | E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg); | |
1104 | ||
1105 | /* Read the PHY Specific Control Register (0x10) */ | |
1106 | e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); | |
1107 | ||
1108 | /* Clear Auto-Crossover bits in PHY Specific Control Register | |
1109 | * (bits 6:5). | |
1110 | */ | |
1111 | phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; | |
1112 | e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg); | |
1113 | ||
1114 | /* Perform software reset on the PHY */ | |
1115 | e1000_phy_reset(&adapter->hw); | |
1116 | ||
1117 | /* Have to setup TX_CLK and TX_CRS after software reset */ | |
1118 | e1000_phy_reset_clk_and_crs(adapter); | |
1119 | ||
1120 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100); | |
1121 | ||
1122 | /* Wait for reset to complete. */ | |
1123 | udelay(500); | |
1124 | ||
1125 | /* Have to setup TX_CLK and TX_CRS after software reset */ | |
1126 | e1000_phy_reset_clk_and_crs(adapter); | |
1127 | ||
1128 | /* Write out to PHY registers 29 and 30 to disable the Receiver. */ | |
1129 | e1000_phy_disable_receiver(adapter); | |
1130 | ||
1131 | /* Set the loopback bit in the PHY control register. */ | |
1132 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); | |
1133 | phy_reg |= MII_CR_LOOPBACK; | |
1134 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); | |
1135 | ||
1136 | /* Setup TX_CLK and TX_CRS one more time. */ | |
1137 | e1000_phy_reset_clk_and_crs(adapter); | |
1138 | ||
1139 | /* Check Phy Configuration */ | |
1140 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); | |
1141 | if(phy_reg != 0x4100) | |
1142 | return 9; | |
1143 | ||
1144 | e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); | |
1145 | if(phy_reg != 0x0070) | |
1146 | return 10; | |
1147 | ||
1148 | e1000_read_phy_reg(&adapter->hw, 29, &phy_reg); | |
1149 | if(phy_reg != 0x001A) | |
1150 | return 11; | |
1151 | ||
1152 | return 0; | |
1153 | } | |
1154 | ||
1155 | static int | |
1156 | e1000_integrated_phy_loopback(struct e1000_adapter *adapter) | |
1157 | { | |
1158 | uint32_t ctrl_reg = 0; | |
1159 | uint32_t stat_reg = 0; | |
1160 | ||
1161 | adapter->hw.autoneg = FALSE; | |
1162 | ||
1163 | if(adapter->hw.phy_type == e1000_phy_m88) { | |
1164 | /* Auto-MDI/MDIX Off */ | |
1165 | e1000_write_phy_reg(&adapter->hw, | |
1166 | M88E1000_PHY_SPEC_CTRL, 0x0808); | |
1167 | /* reset to update Auto-MDI/MDIX */ | |
1168 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140); | |
1169 | /* autoneg off */ | |
1170 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140); | |
1171 | } | |
1172 | /* force 1000, set loopback */ | |
1173 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140); | |
1174 | ||
1175 | /* Now set up the MAC to the same speed/duplex as the PHY. */ | |
1176 | ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); | |
1177 | ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ | |
1178 | ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ | |
1179 | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ | |
1180 | E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ | |
1181 | E1000_CTRL_FD); /* Force Duplex to FULL */ | |
1182 | ||
1183 | if(adapter->hw.media_type == e1000_media_type_copper && | |
1184 | adapter->hw.phy_type == e1000_phy_m88) { | |
1185 | ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ | |
1186 | } else { | |
1187 | /* Set the ILOS bit on the fiber Nic is half | |
1188 | * duplex link is detected. */ | |
1189 | stat_reg = E1000_READ_REG(&adapter->hw, STATUS); | |
1190 | if((stat_reg & E1000_STATUS_FD) == 0) | |
1191 | ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); | |
1192 | } | |
1193 | ||
1194 | E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg); | |
1195 | ||
1196 | /* Disable the receiver on the PHY so when a cable is plugged in, the | |
1197 | * PHY does not begin to autoneg when a cable is reconnected to the NIC. | |
1198 | */ | |
1199 | if(adapter->hw.phy_type == e1000_phy_m88) | |
1200 | e1000_phy_disable_receiver(adapter); | |
1201 | ||
1202 | udelay(500); | |
1203 | ||
1204 | return 0; | |
1205 | } | |
1206 | ||
1207 | static int | |
1208 | e1000_set_phy_loopback(struct e1000_adapter *adapter) | |
1209 | { | |
1210 | uint16_t phy_reg = 0; | |
1211 | uint16_t count = 0; | |
1212 | ||
1213 | switch (adapter->hw.mac_type) { | |
1214 | case e1000_82543: | |
1215 | if(adapter->hw.media_type == e1000_media_type_copper) { | |
1216 | /* Attempt to setup Loopback mode on Non-integrated PHY. | |
1217 | * Some PHY registers get corrupted at random, so | |
1218 | * attempt this 10 times. | |
1219 | */ | |
1220 | while(e1000_nonintegrated_phy_loopback(adapter) && | |
1221 | count++ < 10); | |
1222 | if(count < 11) | |
1223 | return 0; | |
1224 | } | |
1225 | break; | |
1226 | ||
1227 | case e1000_82544: | |
1228 | case e1000_82540: | |
1229 | case e1000_82545: | |
1230 | case e1000_82545_rev_3: | |
1231 | case e1000_82546: | |
1232 | case e1000_82546_rev_3: | |
1233 | case e1000_82541: | |
1234 | case e1000_82541_rev_2: | |
1235 | case e1000_82547: | |
1236 | case e1000_82547_rev_2: | |
1237 | return e1000_integrated_phy_loopback(adapter); | |
1238 | break; | |
1239 | ||
1240 | default: | |
1241 | /* Default PHY loopback work is to read the MII | |
1242 | * control register and assert bit 14 (loopback mode). | |
1243 | */ | |
1244 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); | |
1245 | phy_reg |= MII_CR_LOOPBACK; | |
1246 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); | |
1247 | return 0; | |
1248 | break; | |
1249 | } | |
1250 | ||
1251 | return 8; | |
1252 | } | |
1253 | ||
1254 | static int | |
1255 | e1000_setup_loopback_test(struct e1000_adapter *adapter) | |
1256 | { | |
1257 | uint32_t rctl; | |
1258 | ||
1259 | if(adapter->hw.media_type == e1000_media_type_fiber || | |
1260 | adapter->hw.media_type == e1000_media_type_internal_serdes) { | |
1261 | if(adapter->hw.mac_type == e1000_82545 || | |
1262 | adapter->hw.mac_type == e1000_82546 || | |
1263 | adapter->hw.mac_type == e1000_82545_rev_3 || | |
1264 | adapter->hw.mac_type == e1000_82546_rev_3) | |
1265 | return e1000_set_phy_loopback(adapter); | |
1266 | else { | |
1267 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | |
1268 | rctl |= E1000_RCTL_LBM_TCVR; | |
1269 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | |
1270 | return 0; | |
1271 | } | |
1272 | } else if(adapter->hw.media_type == e1000_media_type_copper) | |
1273 | return e1000_set_phy_loopback(adapter); | |
1274 | ||
1275 | return 7; | |
1276 | } | |
1277 | ||
1278 | static void | |
1279 | e1000_loopback_cleanup(struct e1000_adapter *adapter) | |
1280 | { | |
1281 | uint32_t rctl; | |
1282 | uint16_t phy_reg; | |
1283 | ||
1284 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | |
1285 | rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); | |
1286 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | |
1287 | ||
1288 | if(adapter->hw.media_type == e1000_media_type_copper || | |
1289 | ((adapter->hw.media_type == e1000_media_type_fiber || | |
1290 | adapter->hw.media_type == e1000_media_type_internal_serdes) && | |
1291 | (adapter->hw.mac_type == e1000_82545 || | |
1292 | adapter->hw.mac_type == e1000_82546 || | |
1293 | adapter->hw.mac_type == e1000_82545_rev_3 || | |
1294 | adapter->hw.mac_type == e1000_82546_rev_3))) { | |
1295 | adapter->hw.autoneg = TRUE; | |
1296 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); | |
1297 | if(phy_reg & MII_CR_LOOPBACK) { | |
1298 | phy_reg &= ~MII_CR_LOOPBACK; | |
1299 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); | |
1300 | e1000_phy_reset(&adapter->hw); | |
1301 | } | |
1302 | } | |
1303 | } | |
1304 | ||
1305 | static void | |
1306 | e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) | |
1307 | { | |
1308 | memset(skb->data, 0xFF, frame_size); | |
1309 | frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size; | |
1310 | memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); | |
1311 | memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); | |
1312 | memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); | |
1313 | } | |
1314 | ||
1315 | static int | |
1316 | e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) | |
1317 | { | |
1318 | frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size; | |
1319 | if(*(skb->data + 3) == 0xFF) { | |
1320 | if((*(skb->data + frame_size / 2 + 10) == 0xBE) && | |
1321 | (*(skb->data + frame_size / 2 + 12) == 0xAF)) { | |
1322 | return 0; | |
1323 | } | |
1324 | } | |
1325 | return 13; | |
1326 | } | |
1327 | ||
1328 | static int | |
1329 | e1000_run_loopback_test(struct e1000_adapter *adapter) | |
1330 | { | |
1331 | struct e1000_desc_ring *txdr = &adapter->test_tx_ring; | |
1332 | struct e1000_desc_ring *rxdr = &adapter->test_rx_ring; | |
1333 | struct pci_dev *pdev = adapter->pdev; | |
e4eff729 MC |
1334 | int i, j, k, l, lc, good_cnt, ret_val=0; |
1335 | unsigned long time; | |
1da177e4 LT |
1336 | |
1337 | E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1); | |
1338 | ||
e4eff729 MC |
1339 | /* Calculate the loop count based on the largest descriptor ring |
1340 | * The idea is to wrap the largest ring a number of times using 64 | |
1341 | * send/receive pairs during each loop | |
1342 | */ | |
1da177e4 | 1343 | |
e4eff729 MC |
1344 | if(rxdr->count <= txdr->count) |
1345 | lc = ((txdr->count / 64) * 2) + 1; | |
1346 | else | |
1347 | lc = ((rxdr->count / 64) * 2) + 1; | |
1348 | ||
1349 | k = l = 0; | |
1350 | for(j = 0; j <= lc; j++) { /* loop count loop */ | |
1351 | for(i = 0; i < 64; i++) { /* send the packets */ | |
1352 | e1000_create_lbtest_frame(txdr->buffer_info[i].skb, | |
1353 | 1024); | |
1354 | pci_dma_sync_single_for_device(pdev, | |
1355 | txdr->buffer_info[k].dma, | |
1356 | txdr->buffer_info[k].length, | |
1357 | PCI_DMA_TODEVICE); | |
1358 | if(unlikely(++k == txdr->count)) k = 0; | |
1359 | } | |
1360 | E1000_WRITE_REG(&adapter->hw, TDT, k); | |
1361 | msec_delay(200); | |
1362 | time = jiffies; /* set the start time for the receive */ | |
1363 | good_cnt = 0; | |
1364 | do { /* receive the sent packets */ | |
1365 | pci_dma_sync_single_for_cpu(pdev, | |
1366 | rxdr->buffer_info[l].dma, | |
1367 | rxdr->buffer_info[l].length, | |
1368 | PCI_DMA_FROMDEVICE); | |
1369 | ||
1370 | ret_val = e1000_check_lbtest_frame( | |
1371 | rxdr->buffer_info[l].skb, | |
1372 | 1024); | |
1373 | if(!ret_val) | |
1374 | good_cnt++; | |
1375 | if(unlikely(++l == rxdr->count)) l = 0; | |
1376 | /* time + 20 msecs (200 msecs on 2.4) is more than | |
1377 | * enough time to complete the receives, if it's | |
1378 | * exceeded, break and error off | |
1379 | */ | |
1380 | } while (good_cnt < 64 && jiffies < (time + 20)); | |
1381 | if(good_cnt != 64) { | |
1382 | ret_val = 13; /* ret_val is the same as mis-compare */ | |
1383 | break; | |
1384 | } | |
1385 | if(jiffies >= (time + 2)) { | |
1386 | ret_val = 14; /* error code for time out error */ | |
1387 | break; | |
1388 | } | |
1389 | } /* end loop count loop */ | |
1da177e4 LT |
1390 | return ret_val; |
1391 | } | |
1392 | ||
1393 | static int | |
1394 | e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data) | |
1395 | { | |
1396 | if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback; | |
1397 | if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback; | |
1398 | *data = e1000_run_loopback_test(adapter); | |
1399 | e1000_loopback_cleanup(adapter); | |
1400 | e1000_free_desc_rings(adapter); | |
1401 | err_loopback: | |
1402 | return *data; | |
1403 | } | |
1404 | ||
1405 | static int | |
1406 | e1000_link_test(struct e1000_adapter *adapter, uint64_t *data) | |
1407 | { | |
1408 | *data = 0; | |
1da177e4 LT |
1409 | if (adapter->hw.media_type == e1000_media_type_internal_serdes) { |
1410 | int i = 0; | |
1411 | adapter->hw.serdes_link_down = TRUE; | |
1412 | ||
2648345f MC |
1413 | /* On some blade server designs, link establishment |
1414 | * could take as long as 2-3 minutes */ | |
1da177e4 LT |
1415 | do { |
1416 | e1000_check_for_link(&adapter->hw); | |
1417 | if (adapter->hw.serdes_link_down == FALSE) | |
1418 | return *data; | |
1419 | msec_delay(20); | |
1420 | } while (i++ < 3750); | |
1421 | ||
2648345f | 1422 | *data = 1; |
1da177e4 LT |
1423 | } else { |
1424 | e1000_check_for_link(&adapter->hw); | |
e4eff729 MC |
1425 | if(adapter->hw.autoneg) /* if auto_neg is set wait for it */ |
1426 | msec_delay(4000); | |
1da177e4 LT |
1427 | |
1428 | if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) { | |
1429 | *data = 1; | |
1430 | } | |
1431 | } | |
1432 | return *data; | |
1433 | } | |
1434 | ||
1435 | static int | |
1436 | e1000_diag_test_count(struct net_device *netdev) | |
1437 | { | |
1438 | return E1000_TEST_LEN; | |
1439 | } | |
1440 | ||
1441 | static void | |
1442 | e1000_diag_test(struct net_device *netdev, | |
1443 | struct ethtool_test *eth_test, uint64_t *data) | |
1444 | { | |
60490fe0 | 1445 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1da177e4 LT |
1446 | boolean_t if_running = netif_running(netdev); |
1447 | ||
1448 | if(eth_test->flags == ETH_TEST_FL_OFFLINE) { | |
1449 | /* Offline tests */ | |
1450 | ||
1451 | /* save speed, duplex, autoneg settings */ | |
1452 | uint16_t autoneg_advertised = adapter->hw.autoneg_advertised; | |
1453 | uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex; | |
1454 | uint8_t autoneg = adapter->hw.autoneg; | |
1455 | ||
1456 | /* Link test performed before hardware reset so autoneg doesn't | |
1457 | * interfere with test result */ | |
1458 | if(e1000_link_test(adapter, &data[4])) | |
1459 | eth_test->flags |= ETH_TEST_FL_FAILED; | |
1460 | ||
1461 | if(if_running) | |
1462 | e1000_down(adapter); | |
1463 | else | |
1464 | e1000_reset(adapter); | |
1465 | ||
1466 | if(e1000_reg_test(adapter, &data[0])) | |
1467 | eth_test->flags |= ETH_TEST_FL_FAILED; | |
1468 | ||
1469 | e1000_reset(adapter); | |
1470 | if(e1000_eeprom_test(adapter, &data[1])) | |
1471 | eth_test->flags |= ETH_TEST_FL_FAILED; | |
1472 | ||
1473 | e1000_reset(adapter); | |
1474 | if(e1000_intr_test(adapter, &data[2])) | |
1475 | eth_test->flags |= ETH_TEST_FL_FAILED; | |
1476 | ||
1477 | e1000_reset(adapter); | |
1478 | if(e1000_loopback_test(adapter, &data[3])) | |
1479 | eth_test->flags |= ETH_TEST_FL_FAILED; | |
1480 | ||
1481 | /* restore speed, duplex, autoneg settings */ | |
1482 | adapter->hw.autoneg_advertised = autoneg_advertised; | |
1483 | adapter->hw.forced_speed_duplex = forced_speed_duplex; | |
1484 | adapter->hw.autoneg = autoneg; | |
1485 | ||
1486 | e1000_reset(adapter); | |
1487 | if(if_running) | |
1488 | e1000_up(adapter); | |
1489 | } else { | |
1490 | /* Online tests */ | |
1491 | if(e1000_link_test(adapter, &data[4])) | |
1492 | eth_test->flags |= ETH_TEST_FL_FAILED; | |
1493 | ||
1494 | /* Offline tests aren't run; pass by default */ | |
1495 | data[0] = 0; | |
1496 | data[1] = 0; | |
1497 | data[2] = 0; | |
1498 | data[3] = 0; | |
1499 | } | |
1500 | } | |
1501 | ||
1502 | static void | |
1503 | e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) | |
1504 | { | |
60490fe0 | 1505 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1da177e4 LT |
1506 | struct e1000_hw *hw = &adapter->hw; |
1507 | ||
1508 | switch(adapter->hw.device_id) { | |
1509 | case E1000_DEV_ID_82542: | |
1510 | case E1000_DEV_ID_82543GC_FIBER: | |
1511 | case E1000_DEV_ID_82543GC_COPPER: | |
1512 | case E1000_DEV_ID_82544EI_FIBER: | |
1513 | case E1000_DEV_ID_82546EB_QUAD_COPPER: | |
1514 | case E1000_DEV_ID_82545EM_FIBER: | |
1515 | case E1000_DEV_ID_82545EM_COPPER: | |
1516 | wol->supported = 0; | |
1517 | wol->wolopts = 0; | |
1518 | return; | |
1519 | ||
1520 | case E1000_DEV_ID_82546EB_FIBER: | |
1521 | case E1000_DEV_ID_82546GB_FIBER: | |
1522 | /* Wake events only supported on port A for dual fiber */ | |
1523 | if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) { | |
1524 | wol->supported = 0; | |
1525 | wol->wolopts = 0; | |
1526 | return; | |
1527 | } | |
1528 | /* Fall Through */ | |
1529 | ||
1530 | default: | |
1531 | wol->supported = WAKE_UCAST | WAKE_MCAST | | |
1532 | WAKE_BCAST | WAKE_MAGIC; | |
1533 | ||
1534 | wol->wolopts = 0; | |
1535 | if(adapter->wol & E1000_WUFC_EX) | |
1536 | wol->wolopts |= WAKE_UCAST; | |
1537 | if(adapter->wol & E1000_WUFC_MC) | |
1538 | wol->wolopts |= WAKE_MCAST; | |
1539 | if(adapter->wol & E1000_WUFC_BC) | |
1540 | wol->wolopts |= WAKE_BCAST; | |
1541 | if(adapter->wol & E1000_WUFC_MAG) | |
1542 | wol->wolopts |= WAKE_MAGIC; | |
1543 | return; | |
1544 | } | |
1545 | } | |
1546 | ||
1547 | static int | |
1548 | e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) | |
1549 | { | |
60490fe0 | 1550 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1da177e4 LT |
1551 | struct e1000_hw *hw = &adapter->hw; |
1552 | ||
1553 | switch(adapter->hw.device_id) { | |
1554 | case E1000_DEV_ID_82542: | |
1555 | case E1000_DEV_ID_82543GC_FIBER: | |
1556 | case E1000_DEV_ID_82543GC_COPPER: | |
1557 | case E1000_DEV_ID_82544EI_FIBER: | |
1558 | case E1000_DEV_ID_82546EB_QUAD_COPPER: | |
1559 | case E1000_DEV_ID_82545EM_FIBER: | |
1560 | case E1000_DEV_ID_82545EM_COPPER: | |
1561 | return wol->wolopts ? -EOPNOTSUPP : 0; | |
1562 | ||
1563 | case E1000_DEV_ID_82546EB_FIBER: | |
1564 | case E1000_DEV_ID_82546GB_FIBER: | |
1565 | /* Wake events only supported on port A for dual fiber */ | |
1566 | if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) | |
1567 | return wol->wolopts ? -EOPNOTSUPP : 0; | |
1568 | /* Fall Through */ | |
1569 | ||
1570 | default: | |
1571 | if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) | |
1572 | return -EOPNOTSUPP; | |
1573 | ||
1574 | adapter->wol = 0; | |
1575 | ||
1576 | if(wol->wolopts & WAKE_UCAST) | |
1577 | adapter->wol |= E1000_WUFC_EX; | |
1578 | if(wol->wolopts & WAKE_MCAST) | |
1579 | adapter->wol |= E1000_WUFC_MC; | |
1580 | if(wol->wolopts & WAKE_BCAST) | |
1581 | adapter->wol |= E1000_WUFC_BC; | |
1582 | if(wol->wolopts & WAKE_MAGIC) | |
1583 | adapter->wol |= E1000_WUFC_MAG; | |
1584 | } | |
1585 | ||
1586 | return 0; | |
1587 | } | |
1588 | ||
1589 | /* toggle LED 4 times per second = 2 "blinks" per second */ | |
1590 | #define E1000_ID_INTERVAL (HZ/4) | |
1591 | ||
1592 | /* bit defines for adapter->led_status */ | |
1593 | #define E1000_LED_ON 0 | |
1594 | ||
1595 | static void | |
1596 | e1000_led_blink_callback(unsigned long data) | |
1597 | { | |
1598 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | |
1599 | ||
1600 | if(test_and_change_bit(E1000_LED_ON, &adapter->led_status)) | |
1601 | e1000_led_off(&adapter->hw); | |
1602 | else | |
1603 | e1000_led_on(&adapter->hw); | |
1604 | ||
1605 | mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL); | |
1606 | } | |
1607 | ||
1608 | static int | |
1609 | e1000_phys_id(struct net_device *netdev, uint32_t data) | |
1610 | { | |
60490fe0 | 1611 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1da177e4 LT |
1612 | |
1613 | if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ)) | |
1614 | data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ); | |
1615 | ||
1616 | if(!adapter->blink_timer.function) { | |
1617 | init_timer(&adapter->blink_timer); | |
1618 | adapter->blink_timer.function = e1000_led_blink_callback; | |
1619 | adapter->blink_timer.data = (unsigned long) adapter; | |
1620 | } | |
1621 | ||
1622 | e1000_setup_led(&adapter->hw); | |
1623 | mod_timer(&adapter->blink_timer, jiffies); | |
1624 | ||
1625 | msleep_interruptible(data * 1000); | |
1626 | del_timer_sync(&adapter->blink_timer); | |
1627 | e1000_led_off(&adapter->hw); | |
1628 | clear_bit(E1000_LED_ON, &adapter->led_status); | |
1629 | e1000_cleanup_led(&adapter->hw); | |
1630 | ||
1631 | return 0; | |
1632 | } | |
1633 | ||
1634 | static int | |
1635 | e1000_nway_reset(struct net_device *netdev) | |
1636 | { | |
60490fe0 | 1637 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1da177e4 LT |
1638 | if(netif_running(netdev)) { |
1639 | e1000_down(adapter); | |
1640 | e1000_up(adapter); | |
1641 | } | |
1642 | return 0; | |
1643 | } | |
1644 | ||
1645 | static int | |
1646 | e1000_get_stats_count(struct net_device *netdev) | |
1647 | { | |
1648 | return E1000_STATS_LEN; | |
1649 | } | |
1650 | ||
1651 | static void | |
1652 | e1000_get_ethtool_stats(struct net_device *netdev, | |
1653 | struct ethtool_stats *stats, uint64_t *data) | |
1654 | { | |
60490fe0 | 1655 | struct e1000_adapter *adapter = netdev_priv(netdev); |
1da177e4 LT |
1656 | int i; |
1657 | ||
1658 | e1000_update_stats(adapter); | |
1659 | for(i = 0; i < E1000_STATS_LEN; i++) { | |
1660 | char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset; | |
1661 | data[i] = (e1000_gstrings_stats[i].sizeof_stat == | |
1662 | sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p; | |
1663 | } | |
1664 | } | |
1665 | ||
1666 | static void | |
1667 | e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data) | |
1668 | { | |
1669 | int i; | |
1670 | ||
1671 | switch(stringset) { | |
1672 | case ETH_SS_TEST: | |
1673 | memcpy(data, *e1000_gstrings_test, | |
1674 | E1000_TEST_LEN*ETH_GSTRING_LEN); | |
1675 | break; | |
1676 | case ETH_SS_STATS: | |
1677 | for (i=0; i < E1000_STATS_LEN; i++) { | |
1678 | memcpy(data + i * ETH_GSTRING_LEN, | |
1679 | e1000_gstrings_stats[i].stat_string, | |
1680 | ETH_GSTRING_LEN); | |
1681 | } | |
1682 | break; | |
1683 | } | |
1684 | } | |
1685 | ||
1686 | struct ethtool_ops e1000_ethtool_ops = { | |
1687 | .get_settings = e1000_get_settings, | |
1688 | .set_settings = e1000_set_settings, | |
1689 | .get_drvinfo = e1000_get_drvinfo, | |
1690 | .get_regs_len = e1000_get_regs_len, | |
1691 | .get_regs = e1000_get_regs, | |
1692 | .get_wol = e1000_get_wol, | |
1693 | .set_wol = e1000_set_wol, | |
1694 | .get_msglevel = e1000_get_msglevel, | |
1695 | .set_msglevel = e1000_set_msglevel, | |
1696 | .nway_reset = e1000_nway_reset, | |
1697 | .get_link = ethtool_op_get_link, | |
1698 | .get_eeprom_len = e1000_get_eeprom_len, | |
1699 | .get_eeprom = e1000_get_eeprom, | |
1700 | .set_eeprom = e1000_set_eeprom, | |
1701 | .get_ringparam = e1000_get_ringparam, | |
1702 | .set_ringparam = e1000_set_ringparam, | |
1703 | .get_pauseparam = e1000_get_pauseparam, | |
1704 | .set_pauseparam = e1000_set_pauseparam, | |
1705 | .get_rx_csum = e1000_get_rx_csum, | |
1706 | .set_rx_csum = e1000_set_rx_csum, | |
1707 | .get_tx_csum = e1000_get_tx_csum, | |
1708 | .set_tx_csum = e1000_set_tx_csum, | |
1709 | .get_sg = ethtool_op_get_sg, | |
1710 | .set_sg = ethtool_op_set_sg, | |
1711 | #ifdef NETIF_F_TSO | |
1712 | .get_tso = ethtool_op_get_tso, | |
1713 | .set_tso = e1000_set_tso, | |
1714 | #endif | |
1715 | .self_test_count = e1000_diag_test_count, | |
1716 | .self_test = e1000_diag_test, | |
1717 | .get_strings = e1000_get_strings, | |
1718 | .phys_id = e1000_phys_id, | |
1719 | .get_stats_count = e1000_get_stats_count, | |
1720 | .get_ethtool_stats = e1000_get_ethtool_stats, | |
1721 | }; | |
1722 | ||
1723 | void e1000_set_ethtool_ops(struct net_device *netdev) | |
1724 | { | |
1725 | SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); | |
1726 | } |