[PATCH] e1000: Fixed register and loopback test failures with 82573 controllers
[deliverable/linux.git] / drivers / net / e1000 / e1000_ethtool.c
CommitLineData
1da177e4
LT
1/*******************************************************************************
2
3
2648345f 4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
1da177e4
LT
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/* ethtool support for e1000 */
30
31#include "e1000.h"
32
33#include <asm/uaccess.h>
34
35extern char e1000_driver_name[];
36extern char e1000_driver_version[];
37
38extern int e1000_up(struct e1000_adapter *adapter);
39extern void e1000_down(struct e1000_adapter *adapter);
40extern void e1000_reset(struct e1000_adapter *adapter);
41extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
42extern int e1000_setup_rx_resources(struct e1000_adapter *adapter);
43extern int e1000_setup_tx_resources(struct e1000_adapter *adapter);
44extern void e1000_free_rx_resources(struct e1000_adapter *adapter);
45extern void e1000_free_tx_resources(struct e1000_adapter *adapter);
46extern void e1000_update_stats(struct e1000_adapter *adapter);
47
48struct e1000_stats {
49 char stat_string[ETH_GSTRING_LEN];
50 int sizeof_stat;
51 int stat_offset;
52};
53
54#define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55 offsetof(struct e1000_adapter, m)
56static const struct e1000_stats e1000_gstrings_stats[] = {
57 { "rx_packets", E1000_STAT(net_stats.rx_packets) },
58 { "tx_packets", E1000_STAT(net_stats.tx_packets) },
59 { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
60 { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
61 { "rx_errors", E1000_STAT(net_stats.rx_errors) },
62 { "tx_errors", E1000_STAT(net_stats.tx_errors) },
63 { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
64 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
65 { "multicast", E1000_STAT(net_stats.multicast) },
66 { "collisions", E1000_STAT(net_stats.collisions) },
67 { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
68 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
69 { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
70 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
71 { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
2648345f 72 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
1da177e4
LT
73 { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
74 { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
75 { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
76 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
77 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
78 { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
79 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
80 { "tx_deferred_ok", E1000_STAT(stats.dc) },
81 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
82 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
83 { "rx_long_length_errors", E1000_STAT(stats.roc) },
84 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
85 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
86 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
87 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
88 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
89 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
90 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
91 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
92 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
93 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
94 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }
95};
96#define E1000_STATS_LEN \
97 sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
98static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
99 "Register test (offline)", "Eeprom test (offline)",
100 "Interrupt test (offline)", "Loopback test (offline)",
101 "Link test (on/offline)"
102};
103#define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
104
105static int
106e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
107{
60490fe0 108 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
109 struct e1000_hw *hw = &adapter->hw;
110
111 if(hw->media_type == e1000_media_type_copper) {
112
113 ecmd->supported = (SUPPORTED_10baseT_Half |
114 SUPPORTED_10baseT_Full |
115 SUPPORTED_100baseT_Half |
116 SUPPORTED_100baseT_Full |
117 SUPPORTED_1000baseT_Full|
118 SUPPORTED_Autoneg |
119 SUPPORTED_TP);
120
121 ecmd->advertising = ADVERTISED_TP;
122
123 if(hw->autoneg == 1) {
124 ecmd->advertising |= ADVERTISED_Autoneg;
125
126 /* the e1000 autoneg seems to match ethtool nicely */
127
128 ecmd->advertising |= hw->autoneg_advertised;
129 }
130
131 ecmd->port = PORT_TP;
132 ecmd->phy_address = hw->phy_addr;
133
134 if(hw->mac_type == e1000_82543)
135 ecmd->transceiver = XCVR_EXTERNAL;
136 else
137 ecmd->transceiver = XCVR_INTERNAL;
138
139 } else {
140 ecmd->supported = (SUPPORTED_1000baseT_Full |
141 SUPPORTED_FIBRE |
142 SUPPORTED_Autoneg);
143
144 ecmd->advertising = (SUPPORTED_1000baseT_Full |
145 SUPPORTED_FIBRE |
146 SUPPORTED_Autoneg);
147
148 ecmd->port = PORT_FIBRE;
149
150 if(hw->mac_type >= e1000_82545)
151 ecmd->transceiver = XCVR_INTERNAL;
152 else
153 ecmd->transceiver = XCVR_EXTERNAL;
154 }
155
156 if(netif_carrier_ok(adapter->netdev)) {
157
158 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
159 &adapter->link_duplex);
160 ecmd->speed = adapter->link_speed;
161
162 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
163 * and HALF_DUPLEX != DUPLEX_HALF */
164
165 if(adapter->link_duplex == FULL_DUPLEX)
166 ecmd->duplex = DUPLEX_FULL;
167 else
168 ecmd->duplex = DUPLEX_HALF;
169 } else {
170 ecmd->speed = -1;
171 ecmd->duplex = -1;
172 }
173
174 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
175 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
176 return 0;
177}
178
179static int
180e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
181{
60490fe0 182 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
183 struct e1000_hw *hw = &adapter->hw;
184
185 if(ecmd->autoneg == AUTONEG_ENABLE) {
186 hw->autoneg = 1;
187 hw->autoneg_advertised = 0x002F;
188 ecmd->advertising = 0x002F;
189 } else
190 if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
191 return -EINVAL;
192
193 /* reset the link */
194
195 if(netif_running(adapter->netdev)) {
196 e1000_down(adapter);
197 e1000_reset(adapter);
198 e1000_up(adapter);
199 } else
200 e1000_reset(adapter);
201
202 return 0;
203}
204
205static void
206e1000_get_pauseparam(struct net_device *netdev,
207 struct ethtool_pauseparam *pause)
208{
60490fe0 209 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
210 struct e1000_hw *hw = &adapter->hw;
211
212 pause->autoneg =
213 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
214
215 if(hw->fc == e1000_fc_rx_pause)
216 pause->rx_pause = 1;
217 else if(hw->fc == e1000_fc_tx_pause)
218 pause->tx_pause = 1;
219 else if(hw->fc == e1000_fc_full) {
220 pause->rx_pause = 1;
221 pause->tx_pause = 1;
222 }
223}
224
225static int
226e1000_set_pauseparam(struct net_device *netdev,
227 struct ethtool_pauseparam *pause)
228{
60490fe0 229 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
230 struct e1000_hw *hw = &adapter->hw;
231
232 adapter->fc_autoneg = pause->autoneg;
233
234 if(pause->rx_pause && pause->tx_pause)
235 hw->fc = e1000_fc_full;
236 else if(pause->rx_pause && !pause->tx_pause)
237 hw->fc = e1000_fc_rx_pause;
238 else if(!pause->rx_pause && pause->tx_pause)
239 hw->fc = e1000_fc_tx_pause;
240 else if(!pause->rx_pause && !pause->tx_pause)
241 hw->fc = e1000_fc_none;
242
243 hw->original_fc = hw->fc;
244
245 if(adapter->fc_autoneg == AUTONEG_ENABLE) {
246 if(netif_running(adapter->netdev)) {
247 e1000_down(adapter);
248 e1000_up(adapter);
249 } else
250 e1000_reset(adapter);
251 }
252 else
253 return ((hw->media_type == e1000_media_type_fiber) ?
254 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
255
256 return 0;
257}
258
259static uint32_t
260e1000_get_rx_csum(struct net_device *netdev)
261{
60490fe0 262 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
263 return adapter->rx_csum;
264}
265
266static int
267e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
268{
60490fe0 269 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
270 adapter->rx_csum = data;
271
272 if(netif_running(netdev)) {
273 e1000_down(adapter);
274 e1000_up(adapter);
275 } else
276 e1000_reset(adapter);
277 return 0;
278}
279
280static uint32_t
281e1000_get_tx_csum(struct net_device *netdev)
282{
283 return (netdev->features & NETIF_F_HW_CSUM) != 0;
284}
285
286static int
287e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
288{
60490fe0 289 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
290
291 if(adapter->hw.mac_type < e1000_82543) {
292 if (!data)
293 return -EINVAL;
294 return 0;
295 }
296
297 if (data)
298 netdev->features |= NETIF_F_HW_CSUM;
299 else
300 netdev->features &= ~NETIF_F_HW_CSUM;
301
302 return 0;
303}
304
305#ifdef NETIF_F_TSO
306static int
307e1000_set_tso(struct net_device *netdev, uint32_t data)
308{
60490fe0
MC
309 struct e1000_adapter *adapter = netdev_priv(netdev);
310 if((adapter->hw.mac_type < e1000_82544) ||
1da177e4
LT
311 (adapter->hw.mac_type == e1000_82547))
312 return data ? -EINVAL : 0;
313
314 if (data)
315 netdev->features |= NETIF_F_TSO;
316 else
317 netdev->features &= ~NETIF_F_TSO;
318 return 0;
319}
320#endif /* NETIF_F_TSO */
321
322static uint32_t
323e1000_get_msglevel(struct net_device *netdev)
324{
60490fe0 325 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
326 return adapter->msg_enable;
327}
328
329static void
330e1000_set_msglevel(struct net_device *netdev, uint32_t data)
331{
60490fe0 332 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
333 adapter->msg_enable = data;
334}
335
336static int
337e1000_get_regs_len(struct net_device *netdev)
338{
339#define E1000_REGS_LEN 32
340 return E1000_REGS_LEN * sizeof(uint32_t);
341}
342
343static void
344e1000_get_regs(struct net_device *netdev,
345 struct ethtool_regs *regs, void *p)
346{
60490fe0 347 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
348 struct e1000_hw *hw = &adapter->hw;
349 uint32_t *regs_buff = p;
350 uint16_t phy_data;
351
352 memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
353
354 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
355
356 regs_buff[0] = E1000_READ_REG(hw, CTRL);
357 regs_buff[1] = E1000_READ_REG(hw, STATUS);
358
359 regs_buff[2] = E1000_READ_REG(hw, RCTL);
360 regs_buff[3] = E1000_READ_REG(hw, RDLEN);
361 regs_buff[4] = E1000_READ_REG(hw, RDH);
362 regs_buff[5] = E1000_READ_REG(hw, RDT);
363 regs_buff[6] = E1000_READ_REG(hw, RDTR);
364
365 regs_buff[7] = E1000_READ_REG(hw, TCTL);
366 regs_buff[8] = E1000_READ_REG(hw, TDLEN);
367 regs_buff[9] = E1000_READ_REG(hw, TDH);
368 regs_buff[10] = E1000_READ_REG(hw, TDT);
369 regs_buff[11] = E1000_READ_REG(hw, TIDV);
370
371 regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */
372 if(hw->phy_type == e1000_phy_igp) {
373 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
374 IGP01E1000_PHY_AGC_A);
375 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
376 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
377 regs_buff[13] = (uint32_t)phy_data; /* cable length */
378 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
379 IGP01E1000_PHY_AGC_B);
380 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
381 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
382 regs_buff[14] = (uint32_t)phy_data; /* cable length */
383 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
384 IGP01E1000_PHY_AGC_C);
385 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
386 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
387 regs_buff[15] = (uint32_t)phy_data; /* cable length */
388 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
389 IGP01E1000_PHY_AGC_D);
390 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
391 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
392 regs_buff[16] = (uint32_t)phy_data; /* cable length */
393 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
394 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
395 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
396 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
397 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
398 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
399 IGP01E1000_PHY_PCS_INIT_REG);
400 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
401 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
402 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
403 regs_buff[20] = 0; /* polarity correction enabled (always) */
404 regs_buff[22] = 0; /* phy receive errors (unavailable) */
405 regs_buff[23] = regs_buff[18]; /* mdix mode */
406 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
407 } else {
408 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
409 regs_buff[13] = (uint32_t)phy_data; /* cable length */
410 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
411 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
412 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
413 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
414 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
415 regs_buff[18] = regs_buff[13]; /* cable polarity */
416 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
417 regs_buff[20] = regs_buff[17]; /* polarity correction */
418 /* phy receive errors */
419 regs_buff[22] = adapter->phy_stats.receive_errors;
420 regs_buff[23] = regs_buff[13]; /* mdix mode */
421 }
422 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
423 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
424 regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */
425 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
426 if(hw->mac_type >= e1000_82540 &&
427 hw->media_type == e1000_media_type_copper) {
428 regs_buff[26] = E1000_READ_REG(hw, MANC);
429 }
430}
431
432static int
433e1000_get_eeprom_len(struct net_device *netdev)
434{
60490fe0 435 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
436 return adapter->hw.eeprom.word_size * 2;
437}
438
439static int
440e1000_get_eeprom(struct net_device *netdev,
441 struct ethtool_eeprom *eeprom, uint8_t *bytes)
442{
60490fe0 443 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
444 struct e1000_hw *hw = &adapter->hw;
445 uint16_t *eeprom_buff;
446 int first_word, last_word;
447 int ret_val = 0;
448 uint16_t i;
449
450 if(eeprom->len == 0)
451 return -EINVAL;
452
453 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
454
455 first_word = eeprom->offset >> 1;
456 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
457
458 eeprom_buff = kmalloc(sizeof(uint16_t) *
459 (last_word - first_word + 1), GFP_KERNEL);
460 if(!eeprom_buff)
461 return -ENOMEM;
462
463 if(hw->eeprom.type == e1000_eeprom_spi)
464 ret_val = e1000_read_eeprom(hw, first_word,
465 last_word - first_word + 1,
466 eeprom_buff);
467 else {
468 for (i = 0; i < last_word - first_word + 1; i++)
469 if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
470 &eeprom_buff[i])))
471 break;
472 }
473
474 /* Device's eeprom is always little-endian, word addressable */
475 for (i = 0; i < last_word - first_word + 1; i++)
476 le16_to_cpus(&eeprom_buff[i]);
477
478 memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
479 eeprom->len);
480 kfree(eeprom_buff);
481
482 return ret_val;
483}
484
485static int
486e1000_set_eeprom(struct net_device *netdev,
487 struct ethtool_eeprom *eeprom, uint8_t *bytes)
488{
60490fe0 489 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
490 struct e1000_hw *hw = &adapter->hw;
491 uint16_t *eeprom_buff;
492 void *ptr;
493 int max_len, first_word, last_word, ret_val = 0;
494 uint16_t i;
495
496 if(eeprom->len == 0)
497 return -EOPNOTSUPP;
498
499 if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
500 return -EFAULT;
501
502 max_len = hw->eeprom.word_size * 2;
503
504 first_word = eeprom->offset >> 1;
505 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
506 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
507 if(!eeprom_buff)
508 return -ENOMEM;
509
510 ptr = (void *)eeprom_buff;
511
512 if(eeprom->offset & 1) {
513 /* need read/modify/write of first changed EEPROM word */
514 /* only the second byte of the word is being modified */
515 ret_val = e1000_read_eeprom(hw, first_word, 1,
516 &eeprom_buff[0]);
517 ptr++;
518 }
519 if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
520 /* need read/modify/write of last changed EEPROM word */
521 /* only the first byte of the word is being modified */
522 ret_val = e1000_read_eeprom(hw, last_word, 1,
523 &eeprom_buff[last_word - first_word]);
524 }
525
526 /* Device's eeprom is always little-endian, word addressable */
527 for (i = 0; i < last_word - first_word + 1; i++)
528 le16_to_cpus(&eeprom_buff[i]);
529
530 memcpy(ptr, bytes, eeprom->len);
531
532 for (i = 0; i < last_word - first_word + 1; i++)
533 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
534
535 ret_val = e1000_write_eeprom(hw, first_word,
536 last_word - first_word + 1, eeprom_buff);
537
538 /* Update the checksum over the first part of the EEPROM if needed */
539 if((ret_val == 0) && first_word <= EEPROM_CHECKSUM_REG)
540 e1000_update_eeprom_checksum(hw);
541
542 kfree(eeprom_buff);
543 return ret_val;
544}
545
546static void
547e1000_get_drvinfo(struct net_device *netdev,
548 struct ethtool_drvinfo *drvinfo)
549{
60490fe0 550 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
551
552 strncpy(drvinfo->driver, e1000_driver_name, 32);
553 strncpy(drvinfo->version, e1000_driver_version, 32);
554 strncpy(drvinfo->fw_version, "N/A", 32);
555 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
556 drvinfo->n_stats = E1000_STATS_LEN;
557 drvinfo->testinfo_len = E1000_TEST_LEN;
558 drvinfo->regdump_len = e1000_get_regs_len(netdev);
559 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
560}
561
562static void
563e1000_get_ringparam(struct net_device *netdev,
564 struct ethtool_ringparam *ring)
565{
60490fe0 566 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
567 e1000_mac_type mac_type = adapter->hw.mac_type;
568 struct e1000_desc_ring *txdr = &adapter->tx_ring;
569 struct e1000_desc_ring *rxdr = &adapter->rx_ring;
570
571 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
572 E1000_MAX_82544_RXD;
573 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
574 E1000_MAX_82544_TXD;
575 ring->rx_mini_max_pending = 0;
576 ring->rx_jumbo_max_pending = 0;
577 ring->rx_pending = rxdr->count;
578 ring->tx_pending = txdr->count;
579 ring->rx_mini_pending = 0;
580 ring->rx_jumbo_pending = 0;
581}
582
583static int
584e1000_set_ringparam(struct net_device *netdev,
585 struct ethtool_ringparam *ring)
586{
60490fe0 587 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
588 e1000_mac_type mac_type = adapter->hw.mac_type;
589 struct e1000_desc_ring *txdr = &adapter->tx_ring;
590 struct e1000_desc_ring *rxdr = &adapter->rx_ring;
591 struct e1000_desc_ring tx_old, tx_new, rx_old, rx_new;
592 int err;
593
594 tx_old = adapter->tx_ring;
595 rx_old = adapter->rx_ring;
596
2648345f 597 if((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
1da177e4
LT
598 return -EINVAL;
599
600 if(netif_running(adapter->netdev))
601 e1000_down(adapter);
602
603 rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
604 rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
605 E1000_MAX_RXD : E1000_MAX_82544_RXD));
606 E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
607
608 txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
609 txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
610 E1000_MAX_TXD : E1000_MAX_82544_TXD));
611 E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
612
613 if(netif_running(adapter->netdev)) {
614 /* Try to get new resources before deleting old */
615 if((err = e1000_setup_rx_resources(adapter)))
616 goto err_setup_rx;
617 if((err = e1000_setup_tx_resources(adapter)))
618 goto err_setup_tx;
619
620 /* save the new, restore the old in order to free it,
621 * then restore the new back again */
622
623 rx_new = adapter->rx_ring;
624 tx_new = adapter->tx_ring;
625 adapter->rx_ring = rx_old;
626 adapter->tx_ring = tx_old;
627 e1000_free_rx_resources(adapter);
628 e1000_free_tx_resources(adapter);
629 adapter->rx_ring = rx_new;
630 adapter->tx_ring = tx_new;
631 if((err = e1000_up(adapter)))
632 return err;
633 }
634
635 return 0;
636err_setup_tx:
637 e1000_free_rx_resources(adapter);
638err_setup_rx:
639 adapter->rx_ring = rx_old;
640 adapter->tx_ring = tx_old;
641 e1000_up(adapter);
642 return err;
643}
644
645#define REG_PATTERN_TEST(R, M, W) \
646{ \
647 uint32_t pat, value; \
648 uint32_t test[] = \
649 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
650 for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
651 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
652 value = E1000_READ_REG(&adapter->hw, R); \
653 if(value != (test[pat] & W & M)) { \
b01f6691
MC
654 DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
655 "0x%08X expected 0x%08X\n", \
656 E1000_##R, value, (test[pat] & W & M)); \
1da177e4
LT
657 *data = (adapter->hw.mac_type < e1000_82543) ? \
658 E1000_82542_##R : E1000_##R; \
659 return 1; \
660 } \
661 } \
662}
663
664#define REG_SET_AND_CHECK(R, M, W) \
665{ \
666 uint32_t value; \
667 E1000_WRITE_REG(&adapter->hw, R, W & M); \
668 value = E1000_READ_REG(&adapter->hw, R); \
b01f6691
MC
669 if((W & M) != (value & M)) { \
670 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
671 "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
1da177e4
LT
672 *data = (adapter->hw.mac_type < e1000_82543) ? \
673 E1000_82542_##R : E1000_##R; \
674 return 1; \
675 } \
676}
677
678static int
679e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
680{
b01f6691
MC
681 uint32_t value, before, after;
682 uint32_t i, toggle;
1da177e4
LT
683
684 /* The status register is Read Only, so a write should fail.
685 * Some bits that get toggled are ignored.
686 */
b01f6691
MC
687 switch (adapter->hw.mac_type) {
688 case e1000_82573:
689 toggle = 0x7FFFF033;
690 break;
691 default:
692 toggle = 0xFFFFF833;
693 break;
694 }
695
696 before = E1000_READ_REG(&adapter->hw, STATUS);
697 value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
698 E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
699 after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
700 if(value != after) {
701 DPRINTK(DRV, ERR, "failed STATUS register test got: "
702 "0x%08X expected: 0x%08X\n", after, value);
1da177e4
LT
703 *data = 1;
704 return 1;
705 }
b01f6691
MC
706 /* restore previous status */
707 E1000_WRITE_REG(&adapter->hw, STATUS, before);
1da177e4
LT
708
709 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
710 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
711 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
712 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
713 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
714 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
715 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
716 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
717 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
718 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
719 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
720 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
721 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
722 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
723
724 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
725 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
726 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
727
728 if(adapter->hw.mac_type >= e1000_82543) {
729
730 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
731 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
732 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
733 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
734 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
735
736 for(i = 0; i < E1000_RAR_ENTRIES; i++) {
737 REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
738 0xFFFFFFFF);
739 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
740 0xFFFFFFFF);
741 }
742
743 } else {
744
745 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
746 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
747 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
748 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
749
750 }
751
752 for(i = 0; i < E1000_MC_TBL_SIZE; i++)
753 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
754
755 *data = 0;
756 return 0;
757}
758
759static int
760e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
761{
762 uint16_t temp;
763 uint16_t checksum = 0;
764 uint16_t i;
765
766 *data = 0;
767 /* Read and add up the contents of the EEPROM */
768 for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
769 if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
770 *data = 1;
771 break;
772 }
773 checksum += temp;
774 }
775
776 /* If Checksum is not Correct return error else test passed */
777 if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
778 *data = 2;
779
780 return *data;
781}
782
783static irqreturn_t
784e1000_test_intr(int irq,
785 void *data,
786 struct pt_regs *regs)
787{
788 struct net_device *netdev = (struct net_device *) data;
60490fe0 789 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
790
791 adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
792
793 return IRQ_HANDLED;
794}
795
796static int
797e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
798{
799 struct net_device *netdev = adapter->netdev;
800 uint32_t mask, i=0, shared_int = TRUE;
801 uint32_t irq = adapter->pdev->irq;
802
803 *data = 0;
804
805 /* Hook up test interrupt handler just for this test */
806 if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
807 shared_int = FALSE;
2648345f
MC
808 } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ,
809 netdev->name, netdev)){
1da177e4
LT
810 *data = 1;
811 return -1;
812 }
813
814 /* Disable all the interrupts */
815 E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
816 msec_delay(10);
817
818 /* Test each interrupt */
819 for(; i < 10; i++) {
820
821 /* Interrupt to test */
822 mask = 1 << i;
823
824 if(!shared_int) {
825 /* Disable the interrupt to be reported in
826 * the cause register and then force the same
827 * interrupt and see if one gets posted. If
828 * an interrupt was posted to the bus, the
829 * test failed.
830 */
831 adapter->test_icr = 0;
832 E1000_WRITE_REG(&adapter->hw, IMC, mask);
833 E1000_WRITE_REG(&adapter->hw, ICS, mask);
834 msec_delay(10);
835
836 if(adapter->test_icr & mask) {
837 *data = 3;
838 break;
839 }
840 }
841
842 /* Enable the interrupt to be reported in
843 * the cause register and then force the same
844 * interrupt and see if one gets posted. If
845 * an interrupt was not posted to the bus, the
846 * test failed.
847 */
848 adapter->test_icr = 0;
849 E1000_WRITE_REG(&adapter->hw, IMS, mask);
850 E1000_WRITE_REG(&adapter->hw, ICS, mask);
851 msec_delay(10);
852
853 if(!(adapter->test_icr & mask)) {
854 *data = 4;
855 break;
856 }
857
858 if(!shared_int) {
859 /* Disable the other interrupts to be reported in
860 * the cause register and then force the other
861 * interrupts and see if any get posted. If
862 * an interrupt was posted to the bus, the
863 * test failed.
864 */
865 adapter->test_icr = 0;
2648345f
MC
866 E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
867 E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
1da177e4
LT
868 msec_delay(10);
869
870 if(adapter->test_icr) {
871 *data = 5;
872 break;
873 }
874 }
875 }
876
877 /* Disable all the interrupts */
878 E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
879 msec_delay(10);
880
881 /* Unhook test interrupt handler */
882 free_irq(irq, netdev);
883
884 return *data;
885}
886
887static void
888e1000_free_desc_rings(struct e1000_adapter *adapter)
889{
890 struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
891 struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
892 struct pci_dev *pdev = adapter->pdev;
893 int i;
894
895 if(txdr->desc && txdr->buffer_info) {
896 for(i = 0; i < txdr->count; i++) {
897 if(txdr->buffer_info[i].dma)
898 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
899 txdr->buffer_info[i].length,
900 PCI_DMA_TODEVICE);
901 if(txdr->buffer_info[i].skb)
902 dev_kfree_skb(txdr->buffer_info[i].skb);
903 }
904 }
905
906 if(rxdr->desc && rxdr->buffer_info) {
907 for(i = 0; i < rxdr->count; i++) {
908 if(rxdr->buffer_info[i].dma)
909 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
910 rxdr->buffer_info[i].length,
911 PCI_DMA_FROMDEVICE);
912 if(rxdr->buffer_info[i].skb)
913 dev_kfree_skb(rxdr->buffer_info[i].skb);
914 }
915 }
916
917 if(txdr->desc)
918 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
919 if(rxdr->desc)
920 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
921
922 if(txdr->buffer_info)
923 kfree(txdr->buffer_info);
924 if(rxdr->buffer_info)
925 kfree(rxdr->buffer_info);
926
927 return;
928}
929
930static int
931e1000_setup_desc_rings(struct e1000_adapter *adapter)
932{
933 struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
934 struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
935 struct pci_dev *pdev = adapter->pdev;
936 uint32_t rctl;
937 int size, i, ret_val;
938
939 /* Setup Tx descriptor ring and Tx buffers */
940
e4eff729
MC
941 if(!txdr->count)
942 txdr->count = E1000_DEFAULT_TXD;
1da177e4
LT
943
944 size = txdr->count * sizeof(struct e1000_buffer);
945 if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
946 ret_val = 1;
947 goto err_nomem;
948 }
949 memset(txdr->buffer_info, 0, size);
950
951 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
952 E1000_ROUNDUP(txdr->size, 4096);
953 if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
954 ret_val = 2;
955 goto err_nomem;
956 }
957 memset(txdr->desc, 0, txdr->size);
958 txdr->next_to_use = txdr->next_to_clean = 0;
959
960 E1000_WRITE_REG(&adapter->hw, TDBAL,
961 ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
962 E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
963 E1000_WRITE_REG(&adapter->hw, TDLEN,
964 txdr->count * sizeof(struct e1000_tx_desc));
965 E1000_WRITE_REG(&adapter->hw, TDH, 0);
966 E1000_WRITE_REG(&adapter->hw, TDT, 0);
967 E1000_WRITE_REG(&adapter->hw, TCTL,
968 E1000_TCTL_PSP | E1000_TCTL_EN |
969 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
970 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
971
972 for(i = 0; i < txdr->count; i++) {
973 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
974 struct sk_buff *skb;
975 unsigned int size = 1024;
976
977 if(!(skb = alloc_skb(size, GFP_KERNEL))) {
978 ret_val = 3;
979 goto err_nomem;
980 }
981 skb_put(skb, size);
982 txdr->buffer_info[i].skb = skb;
983 txdr->buffer_info[i].length = skb->len;
984 txdr->buffer_info[i].dma =
985 pci_map_single(pdev, skb->data, skb->len,
986 PCI_DMA_TODEVICE);
987 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
988 tx_desc->lower.data = cpu_to_le32(skb->len);
989 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
990 E1000_TXD_CMD_IFCS |
991 E1000_TXD_CMD_RPS);
992 tx_desc->upper.data = 0;
993 }
994
995 /* Setup Rx descriptor ring and Rx buffers */
996
e4eff729
MC
997 if(!rxdr->count)
998 rxdr->count = E1000_DEFAULT_RXD;
1da177e4
LT
999
1000 size = rxdr->count * sizeof(struct e1000_buffer);
1001 if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1002 ret_val = 4;
1003 goto err_nomem;
1004 }
1005 memset(rxdr->buffer_info, 0, size);
1006
1007 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1008 if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1009 ret_val = 5;
1010 goto err_nomem;
1011 }
1012 memset(rxdr->desc, 0, rxdr->size);
1013 rxdr->next_to_use = rxdr->next_to_clean = 0;
1014
1015 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1016 E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1017 E1000_WRITE_REG(&adapter->hw, RDBAL,
1018 ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1019 E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1020 E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1021 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1022 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1023 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1024 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1025 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1026 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1027
1028 for(i = 0; i < rxdr->count; i++) {
1029 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1030 struct sk_buff *skb;
1031
2648345f 1032 if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1da177e4
LT
1033 GFP_KERNEL))) {
1034 ret_val = 6;
1035 goto err_nomem;
1036 }
1037 skb_reserve(skb, NET_IP_ALIGN);
1038 rxdr->buffer_info[i].skb = skb;
1039 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1040 rxdr->buffer_info[i].dma =
1041 pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1042 PCI_DMA_FROMDEVICE);
1043 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1044 memset(skb->data, 0x00, skb->len);
1045 }
1046
1047 return 0;
1048
1049err_nomem:
1050 e1000_free_desc_rings(adapter);
1051 return ret_val;
1052}
1053
1054static void
1055e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1056{
1057 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1058 e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1059 e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1060 e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1061 e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1062}
1063
1064static void
1065e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1066{
1067 uint16_t phy_reg;
1068
1069 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1070 * Extended PHY Specific Control Register to 25MHz clock. This
1071 * value defaults back to a 2.5MHz clock when the PHY is reset.
1072 */
1073 e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1074 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1075 e1000_write_phy_reg(&adapter->hw,
1076 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1077
1078 /* In addition, because of the s/w reset above, we need to enable
1079 * CRS on TX. This must be set for both full and half duplex
1080 * operation.
1081 */
1082 e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1083 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1084 e1000_write_phy_reg(&adapter->hw,
1085 M88E1000_PHY_SPEC_CTRL, phy_reg);
1086}
1087
1088static int
1089e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1090{
1091 uint32_t ctrl_reg;
1092 uint16_t phy_reg;
1093
1094 /* Setup the Device Control Register for PHY loopback test. */
1095
1096 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1097 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1098 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1099 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1100 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1101 E1000_CTRL_FD); /* Force Duplex to FULL */
1102
1103 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1104
1105 /* Read the PHY Specific Control Register (0x10) */
1106 e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1107
1108 /* Clear Auto-Crossover bits in PHY Specific Control Register
1109 * (bits 6:5).
1110 */
1111 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1112 e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1113
1114 /* Perform software reset on the PHY */
1115 e1000_phy_reset(&adapter->hw);
1116
1117 /* Have to setup TX_CLK and TX_CRS after software reset */
1118 e1000_phy_reset_clk_and_crs(adapter);
1119
1120 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1121
1122 /* Wait for reset to complete. */
1123 udelay(500);
1124
1125 /* Have to setup TX_CLK and TX_CRS after software reset */
1126 e1000_phy_reset_clk_and_crs(adapter);
1127
1128 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1129 e1000_phy_disable_receiver(adapter);
1130
1131 /* Set the loopback bit in the PHY control register. */
1132 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1133 phy_reg |= MII_CR_LOOPBACK;
1134 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1135
1136 /* Setup TX_CLK and TX_CRS one more time. */
1137 e1000_phy_reset_clk_and_crs(adapter);
1138
1139 /* Check Phy Configuration */
1140 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1141 if(phy_reg != 0x4100)
1142 return 9;
1143
1144 e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1145 if(phy_reg != 0x0070)
1146 return 10;
1147
1148 e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1149 if(phy_reg != 0x001A)
1150 return 11;
1151
1152 return 0;
1153}
1154
1155static int
1156e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1157{
1158 uint32_t ctrl_reg = 0;
1159 uint32_t stat_reg = 0;
1160
1161 adapter->hw.autoneg = FALSE;
1162
1163 if(adapter->hw.phy_type == e1000_phy_m88) {
1164 /* Auto-MDI/MDIX Off */
1165 e1000_write_phy_reg(&adapter->hw,
1166 M88E1000_PHY_SPEC_CTRL, 0x0808);
1167 /* reset to update Auto-MDI/MDIX */
1168 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1169 /* autoneg off */
1170 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1171 }
1172 /* force 1000, set loopback */
1173 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1174
1175 /* Now set up the MAC to the same speed/duplex as the PHY. */
1176 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1177 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1178 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1179 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1180 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1181 E1000_CTRL_FD); /* Force Duplex to FULL */
1182
1183 if(adapter->hw.media_type == e1000_media_type_copper &&
1184 adapter->hw.phy_type == e1000_phy_m88) {
1185 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1186 } else {
1187 /* Set the ILOS bit on the fiber Nic is half
1188 * duplex link is detected. */
1189 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1190 if((stat_reg & E1000_STATUS_FD) == 0)
1191 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1192 }
1193
1194 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1195
1196 /* Disable the receiver on the PHY so when a cable is plugged in, the
1197 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1198 */
1199 if(adapter->hw.phy_type == e1000_phy_m88)
1200 e1000_phy_disable_receiver(adapter);
1201
1202 udelay(500);
1203
1204 return 0;
1205}
1206
1207static int
1208e1000_set_phy_loopback(struct e1000_adapter *adapter)
1209{
1210 uint16_t phy_reg = 0;
1211 uint16_t count = 0;
1212
1213 switch (adapter->hw.mac_type) {
1214 case e1000_82543:
1215 if(adapter->hw.media_type == e1000_media_type_copper) {
1216 /* Attempt to setup Loopback mode on Non-integrated PHY.
1217 * Some PHY registers get corrupted at random, so
1218 * attempt this 10 times.
1219 */
1220 while(e1000_nonintegrated_phy_loopback(adapter) &&
1221 count++ < 10);
1222 if(count < 11)
1223 return 0;
1224 }
1225 break;
1226
1227 case e1000_82544:
1228 case e1000_82540:
1229 case e1000_82545:
1230 case e1000_82545_rev_3:
1231 case e1000_82546:
1232 case e1000_82546_rev_3:
1233 case e1000_82541:
1234 case e1000_82541_rev_2:
1235 case e1000_82547:
1236 case e1000_82547_rev_2:
1237 return e1000_integrated_phy_loopback(adapter);
1238 break;
1239
1240 default:
1241 /* Default PHY loopback work is to read the MII
1242 * control register and assert bit 14 (loopback mode).
1243 */
1244 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1245 phy_reg |= MII_CR_LOOPBACK;
1246 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1247 return 0;
1248 break;
1249 }
1250
1251 return 8;
1252}
1253
1254static int
1255e1000_setup_loopback_test(struct e1000_adapter *adapter)
1256{
1257 uint32_t rctl;
1258
1259 if(adapter->hw.media_type == e1000_media_type_fiber ||
1260 adapter->hw.media_type == e1000_media_type_internal_serdes) {
1261 if(adapter->hw.mac_type == e1000_82545 ||
1262 adapter->hw.mac_type == e1000_82546 ||
1263 adapter->hw.mac_type == e1000_82545_rev_3 ||
1264 adapter->hw.mac_type == e1000_82546_rev_3)
1265 return e1000_set_phy_loopback(adapter);
1266 else {
1267 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1268 rctl |= E1000_RCTL_LBM_TCVR;
1269 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1270 return 0;
1271 }
1272 } else if(adapter->hw.media_type == e1000_media_type_copper)
1273 return e1000_set_phy_loopback(adapter);
1274
1275 return 7;
1276}
1277
1278static void
1279e1000_loopback_cleanup(struct e1000_adapter *adapter)
1280{
1281 uint32_t rctl;
1282 uint16_t phy_reg;
1283
1284 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1285 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1286 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1287
1288 if(adapter->hw.media_type == e1000_media_type_copper ||
1289 ((adapter->hw.media_type == e1000_media_type_fiber ||
1290 adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1291 (adapter->hw.mac_type == e1000_82545 ||
1292 adapter->hw.mac_type == e1000_82546 ||
1293 adapter->hw.mac_type == e1000_82545_rev_3 ||
1294 adapter->hw.mac_type == e1000_82546_rev_3))) {
1295 adapter->hw.autoneg = TRUE;
1296 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1297 if(phy_reg & MII_CR_LOOPBACK) {
1298 phy_reg &= ~MII_CR_LOOPBACK;
1299 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1300 e1000_phy_reset(&adapter->hw);
1301 }
1302 }
1303}
1304
1305static void
1306e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1307{
1308 memset(skb->data, 0xFF, frame_size);
1309 frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1310 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1311 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1312 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1313}
1314
1315static int
1316e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1317{
1318 frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1319 if(*(skb->data + 3) == 0xFF) {
1320 if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1321 (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1322 return 0;
1323 }
1324 }
1325 return 13;
1326}
1327
1328static int
1329e1000_run_loopback_test(struct e1000_adapter *adapter)
1330{
1331 struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
1332 struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
1333 struct pci_dev *pdev = adapter->pdev;
e4eff729
MC
1334 int i, j, k, l, lc, good_cnt, ret_val=0;
1335 unsigned long time;
1da177e4
LT
1336
1337 E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1338
e4eff729
MC
1339 /* Calculate the loop count based on the largest descriptor ring
1340 * The idea is to wrap the largest ring a number of times using 64
1341 * send/receive pairs during each loop
1342 */
1da177e4 1343
e4eff729
MC
1344 if(rxdr->count <= txdr->count)
1345 lc = ((txdr->count / 64) * 2) + 1;
1346 else
1347 lc = ((rxdr->count / 64) * 2) + 1;
1348
1349 k = l = 0;
1350 for(j = 0; j <= lc; j++) { /* loop count loop */
1351 for(i = 0; i < 64; i++) { /* send the packets */
1352 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1353 1024);
1354 pci_dma_sync_single_for_device(pdev,
1355 txdr->buffer_info[k].dma,
1356 txdr->buffer_info[k].length,
1357 PCI_DMA_TODEVICE);
1358 if(unlikely(++k == txdr->count)) k = 0;
1359 }
1360 E1000_WRITE_REG(&adapter->hw, TDT, k);
1361 msec_delay(200);
1362 time = jiffies; /* set the start time for the receive */
1363 good_cnt = 0;
1364 do { /* receive the sent packets */
1365 pci_dma_sync_single_for_cpu(pdev,
1366 rxdr->buffer_info[l].dma,
1367 rxdr->buffer_info[l].length,
1368 PCI_DMA_FROMDEVICE);
1369
1370 ret_val = e1000_check_lbtest_frame(
1371 rxdr->buffer_info[l].skb,
1372 1024);
1373 if(!ret_val)
1374 good_cnt++;
1375 if(unlikely(++l == rxdr->count)) l = 0;
1376 /* time + 20 msecs (200 msecs on 2.4) is more than
1377 * enough time to complete the receives, if it's
1378 * exceeded, break and error off
1379 */
1380 } while (good_cnt < 64 && jiffies < (time + 20));
1381 if(good_cnt != 64) {
1382 ret_val = 13; /* ret_val is the same as mis-compare */
1383 break;
1384 }
1385 if(jiffies >= (time + 2)) {
1386 ret_val = 14; /* error code for time out error */
1387 break;
1388 }
1389 } /* end loop count loop */
1da177e4
LT
1390 return ret_val;
1391}
1392
1393static int
1394e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1395{
1396 if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback;
1397 if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback;
1398 *data = e1000_run_loopback_test(adapter);
1399 e1000_loopback_cleanup(adapter);
1400 e1000_free_desc_rings(adapter);
1401err_loopback:
1402 return *data;
1403}
1404
1405static int
1406e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1407{
1408 *data = 0;
1da177e4
LT
1409 if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1410 int i = 0;
1411 adapter->hw.serdes_link_down = TRUE;
1412
2648345f
MC
1413 /* On some blade server designs, link establishment
1414 * could take as long as 2-3 minutes */
1da177e4
LT
1415 do {
1416 e1000_check_for_link(&adapter->hw);
1417 if (adapter->hw.serdes_link_down == FALSE)
1418 return *data;
1419 msec_delay(20);
1420 } while (i++ < 3750);
1421
2648345f 1422 *data = 1;
1da177e4
LT
1423 } else {
1424 e1000_check_for_link(&adapter->hw);
e4eff729
MC
1425 if(adapter->hw.autoneg) /* if auto_neg is set wait for it */
1426 msec_delay(4000);
1da177e4
LT
1427
1428 if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1429 *data = 1;
1430 }
1431 }
1432 return *data;
1433}
1434
1435static int
1436e1000_diag_test_count(struct net_device *netdev)
1437{
1438 return E1000_TEST_LEN;
1439}
1440
1441static void
1442e1000_diag_test(struct net_device *netdev,
1443 struct ethtool_test *eth_test, uint64_t *data)
1444{
60490fe0 1445 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
1446 boolean_t if_running = netif_running(netdev);
1447
1448 if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
1449 /* Offline tests */
1450
1451 /* save speed, duplex, autoneg settings */
1452 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1453 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1454 uint8_t autoneg = adapter->hw.autoneg;
1455
1456 /* Link test performed before hardware reset so autoneg doesn't
1457 * interfere with test result */
1458 if(e1000_link_test(adapter, &data[4]))
1459 eth_test->flags |= ETH_TEST_FL_FAILED;
1460
1461 if(if_running)
1462 e1000_down(adapter);
1463 else
1464 e1000_reset(adapter);
1465
1466 if(e1000_reg_test(adapter, &data[0]))
1467 eth_test->flags |= ETH_TEST_FL_FAILED;
1468
1469 e1000_reset(adapter);
1470 if(e1000_eeprom_test(adapter, &data[1]))
1471 eth_test->flags |= ETH_TEST_FL_FAILED;
1472
1473 e1000_reset(adapter);
1474 if(e1000_intr_test(adapter, &data[2]))
1475 eth_test->flags |= ETH_TEST_FL_FAILED;
1476
1477 e1000_reset(adapter);
1478 if(e1000_loopback_test(adapter, &data[3]))
1479 eth_test->flags |= ETH_TEST_FL_FAILED;
1480
1481 /* restore speed, duplex, autoneg settings */
1482 adapter->hw.autoneg_advertised = autoneg_advertised;
1483 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1484 adapter->hw.autoneg = autoneg;
1485
1486 e1000_reset(adapter);
1487 if(if_running)
1488 e1000_up(adapter);
1489 } else {
1490 /* Online tests */
1491 if(e1000_link_test(adapter, &data[4]))
1492 eth_test->flags |= ETH_TEST_FL_FAILED;
1493
1494 /* Offline tests aren't run; pass by default */
1495 data[0] = 0;
1496 data[1] = 0;
1497 data[2] = 0;
1498 data[3] = 0;
1499 }
1500}
1501
1502static void
1503e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1504{
60490fe0 1505 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
1506 struct e1000_hw *hw = &adapter->hw;
1507
1508 switch(adapter->hw.device_id) {
1509 case E1000_DEV_ID_82542:
1510 case E1000_DEV_ID_82543GC_FIBER:
1511 case E1000_DEV_ID_82543GC_COPPER:
1512 case E1000_DEV_ID_82544EI_FIBER:
1513 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1514 case E1000_DEV_ID_82545EM_FIBER:
1515 case E1000_DEV_ID_82545EM_COPPER:
1516 wol->supported = 0;
1517 wol->wolopts = 0;
1518 return;
1519
1520 case E1000_DEV_ID_82546EB_FIBER:
1521 case E1000_DEV_ID_82546GB_FIBER:
1522 /* Wake events only supported on port A for dual fiber */
1523 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1524 wol->supported = 0;
1525 wol->wolopts = 0;
1526 return;
1527 }
1528 /* Fall Through */
1529
1530 default:
1531 wol->supported = WAKE_UCAST | WAKE_MCAST |
1532 WAKE_BCAST | WAKE_MAGIC;
1533
1534 wol->wolopts = 0;
1535 if(adapter->wol & E1000_WUFC_EX)
1536 wol->wolopts |= WAKE_UCAST;
1537 if(adapter->wol & E1000_WUFC_MC)
1538 wol->wolopts |= WAKE_MCAST;
1539 if(adapter->wol & E1000_WUFC_BC)
1540 wol->wolopts |= WAKE_BCAST;
1541 if(adapter->wol & E1000_WUFC_MAG)
1542 wol->wolopts |= WAKE_MAGIC;
1543 return;
1544 }
1545}
1546
1547static int
1548e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1549{
60490fe0 1550 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
1551 struct e1000_hw *hw = &adapter->hw;
1552
1553 switch(adapter->hw.device_id) {
1554 case E1000_DEV_ID_82542:
1555 case E1000_DEV_ID_82543GC_FIBER:
1556 case E1000_DEV_ID_82543GC_COPPER:
1557 case E1000_DEV_ID_82544EI_FIBER:
1558 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1559 case E1000_DEV_ID_82545EM_FIBER:
1560 case E1000_DEV_ID_82545EM_COPPER:
1561 return wol->wolopts ? -EOPNOTSUPP : 0;
1562
1563 case E1000_DEV_ID_82546EB_FIBER:
1564 case E1000_DEV_ID_82546GB_FIBER:
1565 /* Wake events only supported on port A for dual fiber */
1566 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1567 return wol->wolopts ? -EOPNOTSUPP : 0;
1568 /* Fall Through */
1569
1570 default:
1571 if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1572 return -EOPNOTSUPP;
1573
1574 adapter->wol = 0;
1575
1576 if(wol->wolopts & WAKE_UCAST)
1577 adapter->wol |= E1000_WUFC_EX;
1578 if(wol->wolopts & WAKE_MCAST)
1579 adapter->wol |= E1000_WUFC_MC;
1580 if(wol->wolopts & WAKE_BCAST)
1581 adapter->wol |= E1000_WUFC_BC;
1582 if(wol->wolopts & WAKE_MAGIC)
1583 adapter->wol |= E1000_WUFC_MAG;
1584 }
1585
1586 return 0;
1587}
1588
1589/* toggle LED 4 times per second = 2 "blinks" per second */
1590#define E1000_ID_INTERVAL (HZ/4)
1591
1592/* bit defines for adapter->led_status */
1593#define E1000_LED_ON 0
1594
1595static void
1596e1000_led_blink_callback(unsigned long data)
1597{
1598 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1599
1600 if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1601 e1000_led_off(&adapter->hw);
1602 else
1603 e1000_led_on(&adapter->hw);
1604
1605 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1606}
1607
1608static int
1609e1000_phys_id(struct net_device *netdev, uint32_t data)
1610{
60490fe0 1611 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
1612
1613 if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1614 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1615
1616 if(!adapter->blink_timer.function) {
1617 init_timer(&adapter->blink_timer);
1618 adapter->blink_timer.function = e1000_led_blink_callback;
1619 adapter->blink_timer.data = (unsigned long) adapter;
1620 }
1621
1622 e1000_setup_led(&adapter->hw);
1623 mod_timer(&adapter->blink_timer, jiffies);
1624
1625 msleep_interruptible(data * 1000);
1626 del_timer_sync(&adapter->blink_timer);
1627 e1000_led_off(&adapter->hw);
1628 clear_bit(E1000_LED_ON, &adapter->led_status);
1629 e1000_cleanup_led(&adapter->hw);
1630
1631 return 0;
1632}
1633
1634static int
1635e1000_nway_reset(struct net_device *netdev)
1636{
60490fe0 1637 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
1638 if(netif_running(netdev)) {
1639 e1000_down(adapter);
1640 e1000_up(adapter);
1641 }
1642 return 0;
1643}
1644
1645static int
1646e1000_get_stats_count(struct net_device *netdev)
1647{
1648 return E1000_STATS_LEN;
1649}
1650
1651static void
1652e1000_get_ethtool_stats(struct net_device *netdev,
1653 struct ethtool_stats *stats, uint64_t *data)
1654{
60490fe0 1655 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
1656 int i;
1657
1658 e1000_update_stats(adapter);
1659 for(i = 0; i < E1000_STATS_LEN; i++) {
1660 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1661 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1662 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1663 }
1664}
1665
1666static void
1667e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1668{
1669 int i;
1670
1671 switch(stringset) {
1672 case ETH_SS_TEST:
1673 memcpy(data, *e1000_gstrings_test,
1674 E1000_TEST_LEN*ETH_GSTRING_LEN);
1675 break;
1676 case ETH_SS_STATS:
1677 for (i=0; i < E1000_STATS_LEN; i++) {
1678 memcpy(data + i * ETH_GSTRING_LEN,
1679 e1000_gstrings_stats[i].stat_string,
1680 ETH_GSTRING_LEN);
1681 }
1682 break;
1683 }
1684}
1685
1686struct ethtool_ops e1000_ethtool_ops = {
1687 .get_settings = e1000_get_settings,
1688 .set_settings = e1000_set_settings,
1689 .get_drvinfo = e1000_get_drvinfo,
1690 .get_regs_len = e1000_get_regs_len,
1691 .get_regs = e1000_get_regs,
1692 .get_wol = e1000_get_wol,
1693 .set_wol = e1000_set_wol,
1694 .get_msglevel = e1000_get_msglevel,
1695 .set_msglevel = e1000_set_msglevel,
1696 .nway_reset = e1000_nway_reset,
1697 .get_link = ethtool_op_get_link,
1698 .get_eeprom_len = e1000_get_eeprom_len,
1699 .get_eeprom = e1000_get_eeprom,
1700 .set_eeprom = e1000_set_eeprom,
1701 .get_ringparam = e1000_get_ringparam,
1702 .set_ringparam = e1000_set_ringparam,
1703 .get_pauseparam = e1000_get_pauseparam,
1704 .set_pauseparam = e1000_set_pauseparam,
1705 .get_rx_csum = e1000_get_rx_csum,
1706 .set_rx_csum = e1000_set_rx_csum,
1707 .get_tx_csum = e1000_get_tx_csum,
1708 .set_tx_csum = e1000_set_tx_csum,
1709 .get_sg = ethtool_op_get_sg,
1710 .set_sg = ethtool_op_set_sg,
1711#ifdef NETIF_F_TSO
1712 .get_tso = ethtool_op_get_tso,
1713 .set_tso = e1000_set_tso,
1714#endif
1715 .self_test_count = e1000_diag_test_count,
1716 .self_test = e1000_diag_test,
1717 .get_strings = e1000_get_strings,
1718 .phys_id = e1000_phys_id,
1719 .get_stats_count = e1000_get_stats_count,
1720 .get_ethtool_stats = e1000_get_ethtool_stats,
1721};
1722
1723void e1000_set_ethtool_ops(struct net_device *netdev)
1724{
1725 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1726}
This page took 0.115151 seconds and 5 git commands to generate.