Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/kaber/ipmr-2.6
[deliverable/linux.git] / drivers / net / e1000e / 82571.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
c7e54b1b 4 Copyright(c) 1999 - 2009 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * 82571EB Gigabit Ethernet Controller
1605927f 31 * 82571EB Gigabit Ethernet Controller (Copper)
bc7f75fa 32 * 82571EB Gigabit Ethernet Controller (Fiber)
ad68076e
BA
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
bc7f75fa
AK
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
4662e82b 42 * 82574L Gigabit Network Connection
8c81c9c3 43 * 82583V Gigabit Network Connection
bc7f75fa
AK
44 */
45
bc7f75fa
AK
46#include "e1000.h"
47
48#define ID_LED_RESERVED_F746 0xF746
49#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 (ID_LED_OFF1_ON2 << 8) | \
51 (ID_LED_DEF1_DEF2 << 4) | \
52 (ID_LED_DEF1_DEF2))
53
54#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55
4662e82b
BA
56#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
57
bc7f75fa
AK
58static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
59static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
60static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
c9523379 61static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
bc7f75fa
AK
62static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
63 u16 words, u16 *data);
64static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
65static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
66static s32 e1000_setup_link_82571(struct e1000_hw *hw);
67static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
caaddaf8 68static void e1000_clear_vfta_82571(struct e1000_hw *hw);
4662e82b
BA
69static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
70static s32 e1000_led_on_82574(struct e1000_hw *hw);
23a2d1b2 71static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
17f208de 72static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
bc7f75fa
AK
73
74/**
75 * e1000_init_phy_params_82571 - Init PHY func ptrs.
76 * @hw: pointer to the HW structure
bc7f75fa
AK
77 **/
78static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
79{
80 struct e1000_phy_info *phy = &hw->phy;
81 s32 ret_val;
82
318a94d6 83 if (hw->phy.media_type != e1000_media_type_copper) {
bc7f75fa
AK
84 phy->type = e1000_phy_none;
85 return 0;
86 }
87
88 phy->addr = 1;
89 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
90 phy->reset_delay_us = 100;
91
17f208de
BA
92 phy->ops.power_up = e1000_power_up_phy_copper;
93 phy->ops.power_down = e1000_power_down_phy_copper_82571;
94
bc7f75fa
AK
95 switch (hw->mac.type) {
96 case e1000_82571:
97 case e1000_82572:
98 phy->type = e1000_phy_igp_2;
99 break;
100 case e1000_82573:
101 phy->type = e1000_phy_m88;
102 break;
4662e82b 103 case e1000_82574:
8c81c9c3 104 case e1000_82583:
4662e82b
BA
105 phy->type = e1000_phy_bm;
106 break;
bc7f75fa
AK
107 default:
108 return -E1000_ERR_PHY;
109 break;
110 }
111
112 /* This can only be done after all function pointers are setup. */
113 ret_val = e1000_get_phy_id_82571(hw);
114
115 /* Verify phy id */
116 switch (hw->mac.type) {
117 case e1000_82571:
118 case e1000_82572:
119 if (phy->id != IGP01E1000_I_PHY_ID)
120 return -E1000_ERR_PHY;
121 break;
122 case e1000_82573:
123 if (phy->id != M88E1111_I_PHY_ID)
124 return -E1000_ERR_PHY;
125 break;
4662e82b 126 case e1000_82574:
8c81c9c3 127 case e1000_82583:
4662e82b
BA
128 if (phy->id != BME1000_E_PHY_ID_R2)
129 return -E1000_ERR_PHY;
130 break;
bc7f75fa
AK
131 default:
132 return -E1000_ERR_PHY;
133 break;
134 }
135
136 return 0;
137}
138
139/**
140 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
141 * @hw: pointer to the HW structure
bc7f75fa
AK
142 **/
143static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
144{
145 struct e1000_nvm_info *nvm = &hw->nvm;
146 u32 eecd = er32(EECD);
147 u16 size;
148
149 nvm->opcode_bits = 8;
150 nvm->delay_usec = 1;
151 switch (nvm->override) {
152 case e1000_nvm_override_spi_large:
153 nvm->page_size = 32;
154 nvm->address_bits = 16;
155 break;
156 case e1000_nvm_override_spi_small:
157 nvm->page_size = 8;
158 nvm->address_bits = 8;
159 break;
160 default:
161 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
162 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
163 break;
164 }
165
166 switch (hw->mac.type) {
167 case e1000_82573:
4662e82b 168 case e1000_82574:
8c81c9c3 169 case e1000_82583:
bc7f75fa
AK
170 if (((eecd >> 15) & 0x3) == 0x3) {
171 nvm->type = e1000_nvm_flash_hw;
172 nvm->word_size = 2048;
ad68076e
BA
173 /*
174 * Autonomous Flash update bit must be cleared due
bc7f75fa
AK
175 * to Flash update issue.
176 */
177 eecd &= ~E1000_EECD_AUPDEN;
178 ew32(EECD, eecd);
179 break;
180 }
181 /* Fall Through */
182 default:
ad68076e 183 nvm->type = e1000_nvm_eeprom_spi;
bc7f75fa
AK
184 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
185 E1000_EECD_SIZE_EX_SHIFT);
ad68076e
BA
186 /*
187 * Added to a constant, "size" becomes the left-shift value
bc7f75fa
AK
188 * for setting word_size.
189 */
190 size += NVM_WORD_SIZE_BASE_SHIFT;
8d7c294c
JK
191
192 /* EEPROM access above 16k is unsupported */
193 if (size > 14)
194 size = 14;
bc7f75fa
AK
195 nvm->word_size = 1 << size;
196 break;
197 }
198
199 return 0;
200}
201
202/**
203 * e1000_init_mac_params_82571 - Init MAC func ptrs.
204 * @hw: pointer to the HW structure
bc7f75fa
AK
205 **/
206static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
207{
208 struct e1000_hw *hw = &adapter->hw;
209 struct e1000_mac_info *mac = &hw->mac;
210 struct e1000_mac_operations *func = &mac->ops;
23a2d1b2
DG
211 u32 swsm = 0;
212 u32 swsm2 = 0;
213 bool force_clear_smbi = false;
bc7f75fa
AK
214
215 /* Set media type */
216 switch (adapter->pdev->device) {
217 case E1000_DEV_ID_82571EB_FIBER:
218 case E1000_DEV_ID_82572EI_FIBER:
219 case E1000_DEV_ID_82571EB_QUAD_FIBER:
318a94d6 220 hw->phy.media_type = e1000_media_type_fiber;
bc7f75fa
AK
221 break;
222 case E1000_DEV_ID_82571EB_SERDES:
223 case E1000_DEV_ID_82572EI_SERDES:
040babf9
AK
224 case E1000_DEV_ID_82571EB_SERDES_DUAL:
225 case E1000_DEV_ID_82571EB_SERDES_QUAD:
318a94d6 226 hw->phy.media_type = e1000_media_type_internal_serdes;
bc7f75fa
AK
227 break;
228 default:
318a94d6 229 hw->phy.media_type = e1000_media_type_copper;
bc7f75fa
AK
230 break;
231 }
232
233 /* Set mta register count */
234 mac->mta_reg_count = 128;
235 /* Set rar entry count */
236 mac->rar_entry_count = E1000_RAR_ENTRIES;
237 /* Set if manageability features are enabled. */
564ea9bb
BA
238 mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK)
239 ? true : false;
f464ba87
BA
240 /* Adaptive IFS supported */
241 mac->adaptive_ifs = true;
bc7f75fa
AK
242
243 /* check for link */
318a94d6 244 switch (hw->phy.media_type) {
bc7f75fa
AK
245 case e1000_media_type_copper:
246 func->setup_physical_interface = e1000_setup_copper_link_82571;
247 func->check_for_link = e1000e_check_for_copper_link;
248 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
249 break;
250 case e1000_media_type_fiber:
ad68076e
BA
251 func->setup_physical_interface =
252 e1000_setup_fiber_serdes_link_82571;
bc7f75fa 253 func->check_for_link = e1000e_check_for_fiber_link;
ad68076e
BA
254 func->get_link_up_info =
255 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
256 break;
257 case e1000_media_type_internal_serdes:
ad68076e
BA
258 func->setup_physical_interface =
259 e1000_setup_fiber_serdes_link_82571;
c9523379 260 func->check_for_link = e1000_check_for_serdes_link_82571;
ad68076e
BA
261 func->get_link_up_info =
262 e1000e_get_speed_and_duplex_fiber_serdes;
bc7f75fa
AK
263 break;
264 default:
265 return -E1000_ERR_CONFIG;
266 break;
267 }
268
4662e82b 269 switch (hw->mac.type) {
f4d2dd4c
BA
270 case e1000_82573:
271 func->set_lan_id = e1000_set_lan_id_single_port;
272 func->check_mng_mode = e1000e_check_mng_mode_generic;
273 func->led_on = e1000e_led_on_generic;
274 break;
4662e82b 275 case e1000_82574:
8c81c9c3 276 case e1000_82583:
f4d2dd4c 277 func->set_lan_id = e1000_set_lan_id_single_port;
4662e82b
BA
278 func->check_mng_mode = e1000_check_mng_mode_82574;
279 func->led_on = e1000_led_on_82574;
280 break;
281 default:
282 func->check_mng_mode = e1000e_check_mng_mode_generic;
283 func->led_on = e1000e_led_on_generic;
284 break;
285 }
286
23a2d1b2
DG
287 /*
288 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
289 * first NVM or PHY acess. This should be done for single-port
290 * devices, and for one port only on dual-port devices so that
291 * for those devices we can still use the SMBI lock to synchronize
292 * inter-port accesses to the PHY & NVM.
293 */
294 switch (hw->mac.type) {
295 case e1000_82571:
296 case e1000_82572:
297 swsm2 = er32(SWSM2);
298
299 if (!(swsm2 & E1000_SWSM2_LOCK)) {
300 /* Only do this for the first interface on this card */
301 ew32(SWSM2,
302 swsm2 | E1000_SWSM2_LOCK);
303 force_clear_smbi = true;
304 } else
305 force_clear_smbi = false;
306 break;
307 default:
308 force_clear_smbi = true;
309 break;
310 }
311
312 if (force_clear_smbi) {
313 /* Make sure SWSM.SMBI is clear */
314 swsm = er32(SWSM);
315 if (swsm & E1000_SWSM_SMBI) {
316 /* This bit should not be set on a first interface, and
317 * indicates that the bootagent or EFI code has
318 * improperly left this bit enabled
319 */
3bb99fe2 320 e_dbg("Please update your 82571 Bootagent\n");
23a2d1b2
DG
321 }
322 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
323 }
324
325 /*
2c73e1fe 326 * Initialize device specific counter of SMBI acquisition
23a2d1b2
DG
327 * timeouts.
328 */
329 hw->dev_spec.e82571.smb_counter = 0;
330
bc7f75fa
AK
331 return 0;
332}
333
69e3fd8c 334static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
bc7f75fa
AK
335{
336 struct e1000_hw *hw = &adapter->hw;
337 static int global_quad_port_a; /* global port a indication */
338 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
339 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
340 s32 rc;
341
342 rc = e1000_init_mac_params_82571(adapter);
343 if (rc)
344 return rc;
345
346 rc = e1000_init_nvm_params_82571(hw);
347 if (rc)
348 return rc;
349
350 rc = e1000_init_phy_params_82571(hw);
351 if (rc)
352 return rc;
353
354 /* tag quad port adapters first, it's used below */
355 switch (pdev->device) {
356 case E1000_DEV_ID_82571EB_QUAD_COPPER:
357 case E1000_DEV_ID_82571EB_QUAD_FIBER:
358 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
040babf9 359 case E1000_DEV_ID_82571PT_QUAD_COPPER:
bc7f75fa
AK
360 adapter->flags |= FLAG_IS_QUAD_PORT;
361 /* mark the first port */
362 if (global_quad_port_a == 0)
363 adapter->flags |= FLAG_IS_QUAD_PORT_A;
364 /* Reset for multiple quad port adapters */
365 global_quad_port_a++;
366 if (global_quad_port_a == 4)
367 global_quad_port_a = 0;
368 break;
369 default:
370 break;
371 }
372
373 switch (adapter->hw.mac.type) {
374 case e1000_82571:
375 /* these dual ports don't have WoL on port B at all */
376 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
377 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
378 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
379 (is_port_b))
380 adapter->flags &= ~FLAG_HAS_WOL;
381 /* quad ports only support WoL on port A */
382 if (adapter->flags & FLAG_IS_QUAD_PORT &&
6e4ca80d 383 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
bc7f75fa 384 adapter->flags &= ~FLAG_HAS_WOL;
040babf9
AK
385 /* Does not support WoL on any port */
386 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
387 adapter->flags &= ~FLAG_HAS_WOL;
bc7f75fa 388 break;
bc7f75fa 389 case e1000_82573:
6f461f6c
BA
390 case e1000_82574:
391 case e1000_82583:
392 /* Disable ASPM L0s due to hardware errata */
393 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L0S);
394
bc7f75fa 395 if (pdev->device == E1000_DEV_ID_82573L) {
6f461f6c
BA
396 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
397 adapter->max_hw_frame_size = DEFAULT_JUMBO;
bc7f75fa
AK
398 }
399 break;
400 default:
401 break;
402 }
403
404 return 0;
405}
406
407/**
408 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
409 * @hw: pointer to the HW structure
410 *
411 * Reads the PHY registers and stores the PHY ID and possibly the PHY
412 * revision in the hardware structure.
413 **/
414static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
415{
416 struct e1000_phy_info *phy = &hw->phy;
4662e82b
BA
417 s32 ret_val;
418 u16 phy_id = 0;
bc7f75fa
AK
419
420 switch (hw->mac.type) {
421 case e1000_82571:
422 case e1000_82572:
ad68076e
BA
423 /*
424 * The 82571 firmware may still be configuring the PHY.
bc7f75fa
AK
425 * In this case, we cannot access the PHY until the
426 * configuration is done. So we explicitly set the
ad68076e
BA
427 * PHY ID.
428 */
bc7f75fa
AK
429 phy->id = IGP01E1000_I_PHY_ID;
430 break;
431 case e1000_82573:
432 return e1000e_get_phy_id(hw);
433 break;
4662e82b 434 case e1000_82574:
8c81c9c3 435 case e1000_82583:
4662e82b
BA
436 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
437 if (ret_val)
438 return ret_val;
439
440 phy->id = (u32)(phy_id << 16);
441 udelay(20);
442 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
443 if (ret_val)
444 return ret_val;
445
446 phy->id |= (u32)(phy_id);
447 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
448 break;
bc7f75fa
AK
449 default:
450 return -E1000_ERR_PHY;
451 break;
452 }
453
454 return 0;
455}
456
457/**
458 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
459 * @hw: pointer to the HW structure
460 *
461 * Acquire the HW semaphore to access the PHY or NVM
462 **/
463static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
464{
465 u32 swsm;
23a2d1b2
DG
466 s32 sw_timeout = hw->nvm.word_size + 1;
467 s32 fw_timeout = hw->nvm.word_size + 1;
bc7f75fa
AK
468 s32 i = 0;
469
23a2d1b2
DG
470 /*
471 * If we have timedout 3 times on trying to acquire
472 * the inter-port SMBI semaphore, there is old code
473 * operating on the other port, and it is not
474 * releasing SMBI. Modify the number of times that
475 * we try for the semaphore to interwork with this
476 * older code.
477 */
478 if (hw->dev_spec.e82571.smb_counter > 2)
479 sw_timeout = 1;
480
481 /* Get the SW semaphore */
482 while (i < sw_timeout) {
483 swsm = er32(SWSM);
484 if (!(swsm & E1000_SWSM_SMBI))
485 break;
486
487 udelay(50);
488 i++;
489 }
490
491 if (i == sw_timeout) {
3bb99fe2 492 e_dbg("Driver can't access device - SMBI bit is set.\n");
23a2d1b2
DG
493 hw->dev_spec.e82571.smb_counter++;
494 }
bc7f75fa 495 /* Get the FW semaphore. */
23a2d1b2 496 for (i = 0; i < fw_timeout; i++) {
bc7f75fa
AK
497 swsm = er32(SWSM);
498 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
499
500 /* Semaphore acquired if bit latched */
501 if (er32(SWSM) & E1000_SWSM_SWESMBI)
502 break;
503
504 udelay(50);
505 }
506
23a2d1b2 507 if (i == fw_timeout) {
bc7f75fa 508 /* Release semaphores */
23a2d1b2 509 e1000_put_hw_semaphore_82571(hw);
3bb99fe2 510 e_dbg("Driver can't access the NVM\n");
bc7f75fa
AK
511 return -E1000_ERR_NVM;
512 }
513
514 return 0;
515}
516
517/**
518 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
519 * @hw: pointer to the HW structure
520 *
521 * Release hardware semaphore used to access the PHY or NVM
522 **/
523static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
524{
525 u32 swsm;
526
527 swsm = er32(SWSM);
23a2d1b2 528 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
bc7f75fa
AK
529 ew32(SWSM, swsm);
530}
531
532/**
533 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
534 * @hw: pointer to the HW structure
535 *
536 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
537 * Then for non-82573 hardware, set the EEPROM access request bit and wait
538 * for EEPROM access grant bit. If the access grant bit is not set, release
539 * hardware semaphore.
540 **/
541static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
542{
543 s32 ret_val;
544
545 ret_val = e1000_get_hw_semaphore_82571(hw);
546 if (ret_val)
547 return ret_val;
548
8c81c9c3
AD
549 switch (hw->mac.type) {
550 case e1000_82573:
551 case e1000_82574:
552 case e1000_82583:
553 break;
554 default:
bc7f75fa 555 ret_val = e1000e_acquire_nvm(hw);
8c81c9c3
AD
556 break;
557 }
bc7f75fa
AK
558
559 if (ret_val)
560 e1000_put_hw_semaphore_82571(hw);
561
562 return ret_val;
563}
564
565/**
566 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
567 * @hw: pointer to the HW structure
568 *
569 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
570 **/
571static void e1000_release_nvm_82571(struct e1000_hw *hw)
572{
573 e1000e_release_nvm(hw);
574 e1000_put_hw_semaphore_82571(hw);
575}
576
577/**
578 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
579 * @hw: pointer to the HW structure
580 * @offset: offset within the EEPROM to be written to
581 * @words: number of words to write
582 * @data: 16 bit word(s) to be written to the EEPROM
583 *
584 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
585 *
586 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 587 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
588 **/
589static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
590 u16 *data)
591{
592 s32 ret_val;
593
594 switch (hw->mac.type) {
595 case e1000_82573:
4662e82b 596 case e1000_82574:
8c81c9c3 597 case e1000_82583:
bc7f75fa
AK
598 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
599 break;
600 case e1000_82571:
601 case e1000_82572:
602 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
603 break;
604 default:
605 ret_val = -E1000_ERR_NVM;
606 break;
607 }
608
609 return ret_val;
610}
611
612/**
613 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
614 * @hw: pointer to the HW structure
615 *
616 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
617 * up to the checksum. Then calculates the EEPROM checksum and writes the
618 * value to the EEPROM.
619 **/
620static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
621{
622 u32 eecd;
623 s32 ret_val;
624 u16 i;
625
626 ret_val = e1000e_update_nvm_checksum_generic(hw);
627 if (ret_val)
628 return ret_val;
629
ad68076e
BA
630 /*
631 * If our nvm is an EEPROM, then we're done
632 * otherwise, commit the checksum to the flash NVM.
633 */
bc7f75fa
AK
634 if (hw->nvm.type != e1000_nvm_flash_hw)
635 return ret_val;
636
637 /* Check for pending operations. */
638 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
639 msleep(1);
640 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
641 break;
642 }
643
644 if (i == E1000_FLASH_UPDATES)
645 return -E1000_ERR_NVM;
646
647 /* Reset the firmware if using STM opcode. */
648 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
ad68076e
BA
649 /*
650 * The enabling of and the actual reset must be done
bc7f75fa
AK
651 * in two write cycles.
652 */
653 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
654 e1e_flush();
655 ew32(HICR, E1000_HICR_FW_RESET);
656 }
657
658 /* Commit the write to flash */
659 eecd = er32(EECD) | E1000_EECD_FLUPD;
660 ew32(EECD, eecd);
661
662 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
663 msleep(1);
664 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
665 break;
666 }
667
668 if (i == E1000_FLASH_UPDATES)
669 return -E1000_ERR_NVM;
670
671 return 0;
672}
673
674/**
675 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
676 * @hw: pointer to the HW structure
677 *
678 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
679 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
680 **/
681static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
682{
683 if (hw->nvm.type == e1000_nvm_flash_hw)
684 e1000_fix_nvm_checksum_82571(hw);
685
686 return e1000e_validate_nvm_checksum_generic(hw);
687}
688
689/**
690 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
691 * @hw: pointer to the HW structure
692 * @offset: offset within the EEPROM to be written to
693 * @words: number of words to write
694 * @data: 16 bit word(s) to be written to the EEPROM
695 *
696 * After checking for invalid values, poll the EEPROM to ensure the previous
697 * command has completed before trying to write the next word. After write
698 * poll for completion.
699 *
700 * If e1000e_update_nvm_checksum is not called after this function, the
489815ce 701 * EEPROM will most likely contain an invalid checksum.
bc7f75fa
AK
702 **/
703static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
704 u16 words, u16 *data)
705{
706 struct e1000_nvm_info *nvm = &hw->nvm;
a708dd88 707 u32 i, eewr = 0;
bc7f75fa
AK
708 s32 ret_val = 0;
709
ad68076e
BA
710 /*
711 * A check for invalid values: offset too large, too many words,
712 * and not enough words.
713 */
bc7f75fa
AK
714 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
715 (words == 0)) {
3bb99fe2 716 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
717 return -E1000_ERR_NVM;
718 }
719
720 for (i = 0; i < words; i++) {
721 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
722 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
723 E1000_NVM_RW_REG_START;
724
725 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
726 if (ret_val)
727 break;
728
729 ew32(EEWR, eewr);
730
731 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
732 if (ret_val)
733 break;
734 }
735
736 return ret_val;
737}
738
739/**
740 * e1000_get_cfg_done_82571 - Poll for configuration done
741 * @hw: pointer to the HW structure
742 *
743 * Reads the management control register for the config done bit to be set.
744 **/
745static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
746{
747 s32 timeout = PHY_CFG_TIMEOUT;
748
749 while (timeout) {
750 if (er32(EEMNGCTL) &
751 E1000_NVM_CFG_DONE_PORT_0)
752 break;
753 msleep(1);
754 timeout--;
755 }
756 if (!timeout) {
3bb99fe2 757 e_dbg("MNG configuration cycle has not completed.\n");
bc7f75fa
AK
758 return -E1000_ERR_RESET;
759 }
760
761 return 0;
762}
763
764/**
765 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
766 * @hw: pointer to the HW structure
564ea9bb 767 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
768 *
769 * Sets the LPLU D0 state according to the active flag. When activating LPLU
770 * this function also disables smart speed and vice versa. LPLU will not be
771 * activated unless the device autonegotiation advertisement meets standards
772 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
773 * pointer entry point only called by PHY setup routines.
774 **/
775static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
776{
777 struct e1000_phy_info *phy = &hw->phy;
778 s32 ret_val;
779 u16 data;
780
781 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
782 if (ret_val)
783 return ret_val;
784
785 if (active) {
786 data |= IGP02E1000_PM_D0_LPLU;
787 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
788 if (ret_val)
789 return ret_val;
790
791 /* When LPLU is enabled, we should disable SmartSpeed */
792 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
793 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
794 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
795 if (ret_val)
796 return ret_val;
797 } else {
798 data &= ~IGP02E1000_PM_D0_LPLU;
799 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
ad68076e
BA
800 /*
801 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
802 * during Dx states where the power conservation is most
803 * important. During driver activity we should enable
ad68076e
BA
804 * SmartSpeed, so performance is maintained.
805 */
bc7f75fa
AK
806 if (phy->smart_speed == e1000_smart_speed_on) {
807 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 808 &data);
bc7f75fa
AK
809 if (ret_val)
810 return ret_val;
811
812 data |= IGP01E1000_PSCFR_SMART_SPEED;
813 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 814 data);
bc7f75fa
AK
815 if (ret_val)
816 return ret_val;
817 } else if (phy->smart_speed == e1000_smart_speed_off) {
818 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 819 &data);
bc7f75fa
AK
820 if (ret_val)
821 return ret_val;
822
823 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
824 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 825 data);
bc7f75fa
AK
826 if (ret_val)
827 return ret_val;
828 }
829 }
830
831 return 0;
832}
833
834/**
835 * e1000_reset_hw_82571 - Reset hardware
836 * @hw: pointer to the HW structure
837 *
fe401674 838 * This resets the hardware into a known state.
bc7f75fa
AK
839 **/
840static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
841{
a708dd88 842 u32 ctrl, extcnf_ctrl, ctrl_ext, icr;
bc7f75fa
AK
843 s32 ret_val;
844 u16 i = 0;
845
ad68076e
BA
846 /*
847 * Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
848 * on the last TLP read/write transaction when MAC is reset.
849 */
850 ret_val = e1000e_disable_pcie_master(hw);
851 if (ret_val)
3bb99fe2 852 e_dbg("PCI-E Master disable polling has failed.\n");
bc7f75fa 853
3bb99fe2 854 e_dbg("Masking off all interrupts\n");
bc7f75fa
AK
855 ew32(IMC, 0xffffffff);
856
857 ew32(RCTL, 0);
858 ew32(TCTL, E1000_TCTL_PSP);
859 e1e_flush();
860
861 msleep(10);
862
ad68076e
BA
863 /*
864 * Must acquire the MDIO ownership before MAC reset.
865 * Ownership defaults to firmware after a reset.
866 */
8c81c9c3
AD
867 switch (hw->mac.type) {
868 case e1000_82573:
869 case e1000_82574:
870 case e1000_82583:
bc7f75fa
AK
871 extcnf_ctrl = er32(EXTCNF_CTRL);
872 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
873
874 do {
875 ew32(EXTCNF_CTRL, extcnf_ctrl);
876 extcnf_ctrl = er32(EXTCNF_CTRL);
877
878 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
879 break;
880
881 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
882
883 msleep(2);
884 i++;
885 } while (i < MDIO_OWNERSHIP_TIMEOUT);
8c81c9c3
AD
886 break;
887 default:
888 break;
bc7f75fa
AK
889 }
890
891 ctrl = er32(CTRL);
892
3bb99fe2 893 e_dbg("Issuing a global reset to MAC\n");
bc7f75fa
AK
894 ew32(CTRL, ctrl | E1000_CTRL_RST);
895
896 if (hw->nvm.type == e1000_nvm_flash_hw) {
897 udelay(10);
898 ctrl_ext = er32(CTRL_EXT);
899 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
900 ew32(CTRL_EXT, ctrl_ext);
901 e1e_flush();
902 }
903
904 ret_val = e1000e_get_auto_rd_done(hw);
905 if (ret_val)
906 /* We don't want to continue accessing MAC registers. */
907 return ret_val;
908
ad68076e
BA
909 /*
910 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
bc7f75fa
AK
911 * Need to wait for Phy configuration completion before accessing
912 * NVM and Phy.
913 */
8c81c9c3
AD
914
915 switch (hw->mac.type) {
916 case e1000_82573:
917 case e1000_82574:
918 case e1000_82583:
bc7f75fa 919 msleep(25);
8c81c9c3
AD
920 break;
921 default:
922 break;
923 }
bc7f75fa
AK
924
925 /* Clear any pending interrupt events. */
926 ew32(IMC, 0xffffffff);
927 icr = er32(ICR);
928
608f8a0d
BA
929 /* Install any alternate MAC address into RAR0 */
930 ret_val = e1000_check_alt_mac_addr_generic(hw);
931 if (ret_val)
932 return ret_val;
933
934 e1000e_set_laa_state_82571(hw, true);
93ca1610 935
c9523379 936 /* Reinitialize the 82571 serdes link state machine */
937 if (hw->phy.media_type == e1000_media_type_internal_serdes)
938 hw->mac.serdes_link_state = e1000_serdes_link_down;
939
bc7f75fa
AK
940 return 0;
941}
942
943/**
944 * e1000_init_hw_82571 - Initialize hardware
945 * @hw: pointer to the HW structure
946 *
947 * This inits the hardware readying it for operation.
948 **/
949static s32 e1000_init_hw_82571(struct e1000_hw *hw)
950{
951 struct e1000_mac_info *mac = &hw->mac;
952 u32 reg_data;
953 s32 ret_val;
a708dd88 954 u16 i, rar_count = mac->rar_entry_count;
bc7f75fa
AK
955
956 e1000_initialize_hw_bits_82571(hw);
957
958 /* Initialize identification LED */
959 ret_val = e1000e_id_led_init(hw);
de39b752 960 if (ret_val)
3bb99fe2 961 e_dbg("Error initializing identification LED\n");
de39b752 962 /* This is not fatal and we should not stop init due to this */
bc7f75fa
AK
963
964 /* Disabling VLAN filtering */
3bb99fe2 965 e_dbg("Initializing the IEEE VLAN\n");
caaddaf8 966 mac->ops.clear_vfta(hw);
bc7f75fa
AK
967
968 /* Setup the receive address. */
ad68076e
BA
969 /*
970 * If, however, a locally administered address was assigned to the
bc7f75fa
AK
971 * 82571, we must reserve a RAR for it to work around an issue where
972 * resetting one port will reload the MAC on the other port.
973 */
974 if (e1000e_get_laa_state_82571(hw))
975 rar_count--;
976 e1000e_init_rx_addrs(hw, rar_count);
977
978 /* Zero out the Multicast HASH table */
3bb99fe2 979 e_dbg("Zeroing the MTA\n");
bc7f75fa
AK
980 for (i = 0; i < mac->mta_reg_count; i++)
981 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
982
983 /* Setup link and flow control */
984 ret_val = e1000_setup_link_82571(hw);
985
986 /* Set the transmit descriptor write-back policy */
e9ec2c0f 987 reg_data = er32(TXDCTL(0));
bc7f75fa
AK
988 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
989 E1000_TXDCTL_FULL_TX_DESC_WB |
990 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 991 ew32(TXDCTL(0), reg_data);
bc7f75fa
AK
992
993 /* ...for both queues. */
8c81c9c3
AD
994 switch (mac->type) {
995 case e1000_82573:
996 case e1000_82574:
997 case e1000_82583:
998 e1000e_enable_tx_pkt_filtering(hw);
999 reg_data = er32(GCR);
1000 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1001 ew32(GCR, reg_data);
1002 break;
1003 default:
e9ec2c0f 1004 reg_data = er32(TXDCTL(1));
bc7f75fa
AK
1005 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1006 E1000_TXDCTL_FULL_TX_DESC_WB |
1007 E1000_TXDCTL_COUNT_DESC;
e9ec2c0f 1008 ew32(TXDCTL(1), reg_data);
8c81c9c3 1009 break;
bc7f75fa
AK
1010 }
1011
ad68076e
BA
1012 /*
1013 * Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
1014 * important that we do this after we have tried to establish link
1015 * because the symbol error count will increment wildly if there
1016 * is no link.
1017 */
1018 e1000_clear_hw_cntrs_82571(hw);
1019
1020 return ret_val;
1021}
1022
1023/**
1024 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1025 * @hw: pointer to the HW structure
1026 *
1027 * Initializes required hardware-dependent bits needed for normal operation.
1028 **/
1029static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1030{
1031 u32 reg;
1032
1033 /* Transmit Descriptor Control 0 */
e9ec2c0f 1034 reg = er32(TXDCTL(0));
bc7f75fa 1035 reg |= (1 << 22);
e9ec2c0f 1036 ew32(TXDCTL(0), reg);
bc7f75fa
AK
1037
1038 /* Transmit Descriptor Control 1 */
e9ec2c0f 1039 reg = er32(TXDCTL(1));
bc7f75fa 1040 reg |= (1 << 22);
e9ec2c0f 1041 ew32(TXDCTL(1), reg);
bc7f75fa
AK
1042
1043 /* Transmit Arbitration Control 0 */
e9ec2c0f 1044 reg = er32(TARC(0));
bc7f75fa
AK
1045 reg &= ~(0xF << 27); /* 30:27 */
1046 switch (hw->mac.type) {
1047 case e1000_82571:
1048 case e1000_82572:
1049 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1050 break;
1051 default:
1052 break;
1053 }
e9ec2c0f 1054 ew32(TARC(0), reg);
bc7f75fa
AK
1055
1056 /* Transmit Arbitration Control 1 */
e9ec2c0f 1057 reg = er32(TARC(1));
bc7f75fa
AK
1058 switch (hw->mac.type) {
1059 case e1000_82571:
1060 case e1000_82572:
1061 reg &= ~((1 << 29) | (1 << 30));
1062 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1063 if (er32(TCTL) & E1000_TCTL_MULR)
1064 reg &= ~(1 << 28);
1065 else
1066 reg |= (1 << 28);
e9ec2c0f 1067 ew32(TARC(1), reg);
bc7f75fa
AK
1068 break;
1069 default:
1070 break;
1071 }
1072
1073 /* Device Control */
8c81c9c3
AD
1074 switch (hw->mac.type) {
1075 case e1000_82573:
1076 case e1000_82574:
1077 case e1000_82583:
bc7f75fa
AK
1078 reg = er32(CTRL);
1079 reg &= ~(1 << 29);
1080 ew32(CTRL, reg);
8c81c9c3
AD
1081 break;
1082 default:
1083 break;
bc7f75fa
AK
1084 }
1085
1086 /* Extended Device Control */
8c81c9c3
AD
1087 switch (hw->mac.type) {
1088 case e1000_82573:
1089 case e1000_82574:
1090 case e1000_82583:
bc7f75fa
AK
1091 reg = er32(CTRL_EXT);
1092 reg &= ~(1 << 23);
1093 reg |= (1 << 22);
1094 ew32(CTRL_EXT, reg);
8c81c9c3
AD
1095 break;
1096 default:
1097 break;
bc7f75fa 1098 }
4662e82b 1099
6ea7ae1d
AD
1100 if (hw->mac.type == e1000_82571) {
1101 reg = er32(PBA_ECC);
1102 reg |= E1000_PBA_ECC_CORR_EN;
1103 ew32(PBA_ECC, reg);
1104 }
5df3f0ea 1105 /*
1106 * Workaround for hardware errata.
1107 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1108 */
1109
1110 if ((hw->mac.type == e1000_82571) ||
1111 (hw->mac.type == e1000_82572)) {
1112 reg = er32(CTRL_EXT);
1113 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1114 ew32(CTRL_EXT, reg);
1115 }
1116
6ea7ae1d 1117
78272bba 1118 /* PCI-Ex Control Registers */
8c81c9c3
AD
1119 switch (hw->mac.type) {
1120 case e1000_82574:
1121 case e1000_82583:
4662e82b
BA
1122 reg = er32(GCR);
1123 reg |= (1 << 22);
1124 ew32(GCR, reg);
78272bba 1125
84efb7b9
BA
1126 /*
1127 * Workaround for hardware errata.
1128 * apply workaround for hardware errata documented in errata
1129 * docs Fixes issue where some error prone or unreliable PCIe
1130 * completions are occurring, particularly with ASPM enabled.
1131 * Without fix, issue can cause tx timeouts.
1132 */
78272bba
JB
1133 reg = er32(GCR2);
1134 reg |= 1;
1135 ew32(GCR2, reg);
8c81c9c3
AD
1136 break;
1137 default:
1138 break;
4662e82b
BA
1139 }
1140
1141 return;
bc7f75fa
AK
1142}
1143
1144/**
caaddaf8 1145 * e1000_clear_vfta_82571 - Clear VLAN filter table
bc7f75fa
AK
1146 * @hw: pointer to the HW structure
1147 *
1148 * Clears the register array which contains the VLAN filter table by
1149 * setting all the values to 0.
1150 **/
caaddaf8 1151static void e1000_clear_vfta_82571(struct e1000_hw *hw)
bc7f75fa
AK
1152{
1153 u32 offset;
1154 u32 vfta_value = 0;
1155 u32 vfta_offset = 0;
1156 u32 vfta_bit_in_reg = 0;
1157
8c81c9c3
AD
1158 switch (hw->mac.type) {
1159 case e1000_82573:
1160 case e1000_82574:
1161 case e1000_82583:
bc7f75fa 1162 if (hw->mng_cookie.vlan_id != 0) {
ad68076e
BA
1163 /*
1164 * The VFTA is a 4096b bit-field, each identifying
bc7f75fa
AK
1165 * a single VLAN ID. The following operations
1166 * determine which 32b entry (i.e. offset) into the
1167 * array we want to set the VLAN ID (i.e. bit) of
1168 * the manageability unit.
1169 */
1170 vfta_offset = (hw->mng_cookie.vlan_id >>
1171 E1000_VFTA_ENTRY_SHIFT) &
1172 E1000_VFTA_ENTRY_MASK;
1173 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1174 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1175 }
8c81c9c3
AD
1176 break;
1177 default:
1178 break;
bc7f75fa
AK
1179 }
1180 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
ad68076e
BA
1181 /*
1182 * If the offset we want to clear is the same offset of the
bc7f75fa
AK
1183 * manageability VLAN ID, then clear all bits except that of
1184 * the manageability unit.
1185 */
1186 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1187 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1188 e1e_flush();
1189 }
1190}
1191
4662e82b
BA
1192/**
1193 * e1000_check_mng_mode_82574 - Check manageability is enabled
1194 * @hw: pointer to the HW structure
1195 *
1196 * Reads the NVM Initialization Control Word 2 and returns true
1197 * (>0) if any manageability is enabled, else false (0).
1198 **/
1199static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1200{
1201 u16 data;
1202
1203 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1204 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1205}
1206
1207/**
1208 * e1000_led_on_82574 - Turn LED on
1209 * @hw: pointer to the HW structure
1210 *
1211 * Turn LED on.
1212 **/
1213static s32 e1000_led_on_82574(struct e1000_hw *hw)
1214{
1215 u32 ctrl;
1216 u32 i;
1217
1218 ctrl = hw->mac.ledctl_mode2;
1219 if (!(E1000_STATUS_LU & er32(STATUS))) {
1220 /*
1221 * If no link, then turn LED on by setting the invert bit
1222 * for each LED that's "on" (0x0E) in ledctl_mode2.
1223 */
1224 for (i = 0; i < 4; i++)
1225 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1226 E1000_LEDCTL_MODE_LED_ON)
1227 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1228 }
1229 ew32(LEDCTL, ctrl);
1230
1231 return 0;
1232}
1233
bc7f75fa
AK
1234/**
1235 * e1000_setup_link_82571 - Setup flow control and link settings
1236 * @hw: pointer to the HW structure
1237 *
1238 * Determines which flow control settings to use, then configures flow
1239 * control. Calls the appropriate media-specific link configuration
1240 * function. Assuming the adapter has a valid link partner, a valid link
1241 * should be established. Assumes the hardware has previously been reset
1242 * and the transmitter and receiver are not enabled.
1243 **/
1244static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1245{
ad68076e
BA
1246 /*
1247 * 82573 does not have a word in the NVM to determine
bc7f75fa
AK
1248 * the default flow control setting, so we explicitly
1249 * set it to full.
1250 */
8c81c9c3
AD
1251 switch (hw->mac.type) {
1252 case e1000_82573:
1253 case e1000_82574:
1254 case e1000_82583:
1255 if (hw->fc.requested_mode == e1000_fc_default)
1256 hw->fc.requested_mode = e1000_fc_full;
1257 break;
1258 default:
1259 break;
1260 }
bc7f75fa
AK
1261
1262 return e1000e_setup_link(hw);
1263}
1264
1265/**
1266 * e1000_setup_copper_link_82571 - Configure copper link settings
1267 * @hw: pointer to the HW structure
1268 *
1269 * Configures the link for auto-neg or forced speed and duplex. Then we check
1270 * for link, once link is established calls to configure collision distance
1271 * and flow control are called.
1272 **/
1273static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1274{
1275 u32 ctrl;
bc7f75fa
AK
1276 s32 ret_val;
1277
1278 ctrl = er32(CTRL);
1279 ctrl |= E1000_CTRL_SLU;
1280 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1281 ew32(CTRL, ctrl);
1282
1283 switch (hw->phy.type) {
1284 case e1000_phy_m88:
4662e82b 1285 case e1000_phy_bm:
bc7f75fa
AK
1286 ret_val = e1000e_copper_link_setup_m88(hw);
1287 break;
1288 case e1000_phy_igp_2:
1289 ret_val = e1000e_copper_link_setup_igp(hw);
bc7f75fa
AK
1290 break;
1291 default:
1292 return -E1000_ERR_PHY;
1293 break;
1294 }
1295
1296 if (ret_val)
1297 return ret_val;
1298
1299 ret_val = e1000e_setup_copper_link(hw);
1300
1301 return ret_val;
1302}
1303
1304/**
1305 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1306 * @hw: pointer to the HW structure
1307 *
1308 * Configures collision distance and flow control for fiber and serdes links.
1309 * Upon successful setup, poll for link.
1310 **/
1311static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1312{
1313 switch (hw->mac.type) {
1314 case e1000_82571:
1315 case e1000_82572:
ad68076e
BA
1316 /*
1317 * If SerDes loopback mode is entered, there is no form
bc7f75fa
AK
1318 * of reset to take the adapter out of that mode. So we
1319 * have to explicitly take the adapter out of loopback
489815ce 1320 * mode. This prevents drivers from twiddling their thumbs
bc7f75fa
AK
1321 * if another tool failed to take it out of loopback mode.
1322 */
ad68076e 1323 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
bc7f75fa
AK
1324 break;
1325 default:
1326 break;
1327 }
1328
1329 return e1000e_setup_fiber_serdes_link(hw);
1330}
1331
c9523379 1332/**
1333 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1334 * @hw: pointer to the HW structure
1335 *
1a40d5c1
BA
1336 * Reports the link state as up or down.
1337 *
1338 * If autonegotiation is supported by the link partner, the link state is
1339 * determined by the result of autonegotiation. This is the most likely case.
1340 * If autonegotiation is not supported by the link partner, and the link
1341 * has a valid signal, force the link up.
1342 *
1343 * The link state is represented internally here by 4 states:
1344 *
1345 * 1) down
1346 * 2) autoneg_progress
3ad2f3fb 1347 * 3) autoneg_complete (the link successfully autonegotiated)
1a40d5c1
BA
1348 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1349 *
c9523379 1350 **/
f6370117 1351static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
c9523379 1352{
1353 struct e1000_mac_info *mac = &hw->mac;
1354 u32 rxcw;
1355 u32 ctrl;
1356 u32 status;
1357 s32 ret_val = 0;
1358
1359 ctrl = er32(CTRL);
1360 status = er32(STATUS);
1361 rxcw = er32(RXCW);
1362
1363 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1364
1365 /* Receiver is synchronized with no invalid bits. */
1366 switch (mac->serdes_link_state) {
1367 case e1000_serdes_link_autoneg_complete:
1368 if (!(status & E1000_STATUS_LU)) {
1369 /*
1370 * We have lost link, retry autoneg before
1371 * reporting link failure
1372 */
1373 mac->serdes_link_state =
1374 e1000_serdes_link_autoneg_progress;
1a40d5c1 1375 mac->serdes_has_link = false;
3bb99fe2 1376 e_dbg("AN_UP -> AN_PROG\n");
c9523379 1377 }
1378 break;
1379
1380 case e1000_serdes_link_forced_up:
1381 /*
1382 * If we are receiving /C/ ordered sets, re-enable
1383 * auto-negotiation in the TXCW register and disable
1384 * forced link in the Device Control register in an
1385 * attempt to auto-negotiate with our link partner.
1386 */
1387 if (rxcw & E1000_RXCW_C) {
1388 /* Enable autoneg, and unforce link up */
1389 ew32(TXCW, mac->txcw);
1a40d5c1 1390 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
c9523379 1391 mac->serdes_link_state =
1392 e1000_serdes_link_autoneg_progress;
1a40d5c1 1393 mac->serdes_has_link = false;
3bb99fe2 1394 e_dbg("FORCED_UP -> AN_PROG\n");
c9523379 1395 }
1396 break;
1397
1398 case e1000_serdes_link_autoneg_progress:
1a40d5c1
BA
1399 if (rxcw & E1000_RXCW_C) {
1400 /*
1401 * We received /C/ ordered sets, meaning the
1402 * link partner has autonegotiated, and we can
1403 * trust the Link Up (LU) status bit.
1404 */
1405 if (status & E1000_STATUS_LU) {
1406 mac->serdes_link_state =
1407 e1000_serdes_link_autoneg_complete;
1408 e_dbg("AN_PROG -> AN_UP\n");
1409 mac->serdes_has_link = true;
1410 } else {
1411 /* Autoneg completed, but failed. */
1412 mac->serdes_link_state =
1413 e1000_serdes_link_down;
1414 e_dbg("AN_PROG -> DOWN\n");
1415 }
c9523379 1416 } else {
1417 /*
1a40d5c1
BA
1418 * The link partner did not autoneg.
1419 * Force link up and full duplex, and change
1420 * state to forced.
c9523379 1421 */
1a40d5c1 1422 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
c9523379 1423 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1424 ew32(CTRL, ctrl);
1425
1426 /* Configure Flow Control after link up. */
1a40d5c1 1427 ret_val = e1000e_config_fc_after_link_up(hw);
c9523379 1428 if (ret_val) {
3bb99fe2 1429 e_dbg("Error config flow control\n");
c9523379 1430 break;
1431 }
1432 mac->serdes_link_state =
1433 e1000_serdes_link_forced_up;
1a40d5c1 1434 mac->serdes_has_link = true;
3bb99fe2 1435 e_dbg("AN_PROG -> FORCED_UP\n");
c9523379 1436 }
c9523379 1437 break;
1438
1439 case e1000_serdes_link_down:
1440 default:
1a40d5c1
BA
1441 /*
1442 * The link was down but the receiver has now gained
c9523379 1443 * valid sync, so lets see if we can bring the link
1a40d5c1
BA
1444 * up.
1445 */
c9523379 1446 ew32(TXCW, mac->txcw);
1a40d5c1 1447 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
c9523379 1448 mac->serdes_link_state =
1449 e1000_serdes_link_autoneg_progress;
3bb99fe2 1450 e_dbg("DOWN -> AN_PROG\n");
c9523379 1451 break;
1452 }
1453 } else {
1454 if (!(rxcw & E1000_RXCW_SYNCH)) {
1455 mac->serdes_has_link = false;
1456 mac->serdes_link_state = e1000_serdes_link_down;
3bb99fe2 1457 e_dbg("ANYSTATE -> DOWN\n");
c9523379 1458 } else {
1459 /*
1a40d5c1
BA
1460 * We have sync, and can tolerate one invalid (IV)
1461 * codeword before declaring link down, so reread
1462 * to look again.
c9523379 1463 */
1464 udelay(10);
1465 rxcw = er32(RXCW);
1466 if (rxcw & E1000_RXCW_IV) {
1467 mac->serdes_link_state = e1000_serdes_link_down;
1468 mac->serdes_has_link = false;
3bb99fe2 1469 e_dbg("ANYSTATE -> DOWN\n");
c9523379 1470 }
1471 }
1472 }
1473
1474 return ret_val;
1475}
1476
bc7f75fa
AK
1477/**
1478 * e1000_valid_led_default_82571 - Verify a valid default LED config
1479 * @hw: pointer to the HW structure
1480 * @data: pointer to the NVM (EEPROM)
1481 *
1482 * Read the EEPROM for the current default LED configuration. If the
1483 * LED configuration is not valid, set to a valid LED configuration.
1484 **/
1485static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1486{
1487 s32 ret_val;
1488
1489 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1490 if (ret_val) {
3bb99fe2 1491 e_dbg("NVM Read Error\n");
bc7f75fa
AK
1492 return ret_val;
1493 }
1494
8c81c9c3
AD
1495 switch (hw->mac.type) {
1496 case e1000_82573:
1497 case e1000_82574:
1498 case e1000_82583:
1499 if (*data == ID_LED_RESERVED_F746)
1500 *data = ID_LED_DEFAULT_82573;
1501 break;
1502 default:
1503 if (*data == ID_LED_RESERVED_0000 ||
1504 *data == ID_LED_RESERVED_FFFF)
1505 *data = ID_LED_DEFAULT;
1506 break;
1507 }
bc7f75fa
AK
1508
1509 return 0;
1510}
1511
1512/**
1513 * e1000e_get_laa_state_82571 - Get locally administered address state
1514 * @hw: pointer to the HW structure
1515 *
489815ce 1516 * Retrieve and return the current locally administered address state.
bc7f75fa
AK
1517 **/
1518bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1519{
1520 if (hw->mac.type != e1000_82571)
564ea9bb 1521 return false;
bc7f75fa
AK
1522
1523 return hw->dev_spec.e82571.laa_is_present;
1524}
1525
1526/**
1527 * e1000e_set_laa_state_82571 - Set locally administered address state
1528 * @hw: pointer to the HW structure
1529 * @state: enable/disable locally administered address
1530 *
5ff5b664 1531 * Enable/Disable the current locally administered address state.
bc7f75fa
AK
1532 **/
1533void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1534{
1535 if (hw->mac.type != e1000_82571)
1536 return;
1537
1538 hw->dev_spec.e82571.laa_is_present = state;
1539
1540 /* If workaround is activated... */
1541 if (state)
ad68076e
BA
1542 /*
1543 * Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
1544 * between the time RAR[0] gets clobbered and the time it
1545 * gets fixed, the actual LAA is in one of the RARs and no
1546 * incoming packets directed to this port are dropped.
1547 * Eventually the LAA will be in RAR[0] and RAR[14].
1548 */
1549 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1550}
1551
1552/**
1553 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1554 * @hw: pointer to the HW structure
1555 *
1556 * Verifies that the EEPROM has completed the update. After updating the
1557 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1558 * the checksum fix is not implemented, we need to set the bit and update
1559 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1560 * we need to return bad checksum.
1561 **/
1562static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1563{
1564 struct e1000_nvm_info *nvm = &hw->nvm;
1565 s32 ret_val;
1566 u16 data;
1567
1568 if (nvm->type != e1000_nvm_flash_hw)
1569 return 0;
1570
ad68076e
BA
1571 /*
1572 * Check bit 4 of word 10h. If it is 0, firmware is done updating
bc7f75fa
AK
1573 * 10h-12h. Checksum may need to be fixed.
1574 */
1575 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1576 if (ret_val)
1577 return ret_val;
1578
1579 if (!(data & 0x10)) {
ad68076e
BA
1580 /*
1581 * Read 0x23 and check bit 15. This bit is a 1
bc7f75fa
AK
1582 * when the checksum has already been fixed. If
1583 * the checksum is still wrong and this bit is a
1584 * 1, we need to return bad checksum. Otherwise,
1585 * we need to set this bit to a 1 and update the
1586 * checksum.
1587 */
1588 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1589 if (ret_val)
1590 return ret_val;
1591
1592 if (!(data & 0x8000)) {
1593 data |= 0x8000;
1594 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1595 if (ret_val)
1596 return ret_val;
1597 ret_val = e1000e_update_nvm_checksum(hw);
1598 }
1599 }
1600
1601 return 0;
1602}
1603
608f8a0d
BA
1604/**
1605 * e1000_read_mac_addr_82571 - Read device MAC address
1606 * @hw: pointer to the HW structure
1607 **/
1608static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1609{
1610 s32 ret_val = 0;
1611
1612 /*
1613 * If there's an alternate MAC address place it in RAR0
1614 * so that it will override the Si installed default perm
1615 * address.
1616 */
1617 ret_val = e1000_check_alt_mac_addr_generic(hw);
1618 if (ret_val)
1619 goto out;
1620
1621 ret_val = e1000_read_mac_addr_generic(hw);
1622
1623out:
1624 return ret_val;
1625}
1626
17f208de
BA
1627/**
1628 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1629 * @hw: pointer to the HW structure
1630 *
1631 * In the case of a PHY power down to save power, or to turn off link during a
1632 * driver unload, or wake on lan is not enabled, remove the link.
1633 **/
1634static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1635{
1636 struct e1000_phy_info *phy = &hw->phy;
1637 struct e1000_mac_info *mac = &hw->mac;
1638
1639 if (!(phy->ops.check_reset_block))
1640 return;
1641
1642 /* If the management interface is not enabled, then power down */
1643 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1644 e1000_power_down_phy_copper(hw);
1645
1646 return;
1647}
1648
bc7f75fa
AK
1649/**
1650 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1651 * @hw: pointer to the HW structure
1652 *
1653 * Clears the hardware counters by reading the counter registers.
1654 **/
1655static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1656{
bc7f75fa
AK
1657 e1000e_clear_hw_cntrs_base(hw);
1658
99673d9b
BA
1659 er32(PRC64);
1660 er32(PRC127);
1661 er32(PRC255);
1662 er32(PRC511);
1663 er32(PRC1023);
1664 er32(PRC1522);
1665 er32(PTC64);
1666 er32(PTC127);
1667 er32(PTC255);
1668 er32(PTC511);
1669 er32(PTC1023);
1670 er32(PTC1522);
1671
1672 er32(ALGNERRC);
1673 er32(RXERRC);
1674 er32(TNCRS);
1675 er32(CEXTERR);
1676 er32(TSCTC);
1677 er32(TSCTFC);
1678
1679 er32(MGTPRC);
1680 er32(MGTPDC);
1681 er32(MGTPTC);
1682
1683 er32(IAC);
1684 er32(ICRXOC);
1685
1686 er32(ICRXPTC);
1687 er32(ICRXATC);
1688 er32(ICTXPTC);
1689 er32(ICTXATC);
1690 er32(ICTXQEC);
1691 er32(ICTXQMTC);
1692 er32(ICRXDMTC);
bc7f75fa
AK
1693}
1694
1695static struct e1000_mac_operations e82571_mac_ops = {
4662e82b 1696 /* .check_mng_mode: mac type dependent */
bc7f75fa 1697 /* .check_for_link: media type dependent */
a4f58f54 1698 .id_led_init = e1000e_id_led_init,
bc7f75fa
AK
1699 .cleanup_led = e1000e_cleanup_led_generic,
1700 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1701 .get_bus_info = e1000e_get_bus_info_pcie,
f4d2dd4c 1702 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
bc7f75fa 1703 /* .get_link_up_info: media type dependent */
4662e82b 1704 /* .led_on: mac type dependent */
bc7f75fa 1705 .led_off = e1000e_led_off_generic,
ab8932f3 1706 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
caaddaf8
BA
1707 .write_vfta = e1000_write_vfta_generic,
1708 .clear_vfta = e1000_clear_vfta_82571,
bc7f75fa
AK
1709 .reset_hw = e1000_reset_hw_82571,
1710 .init_hw = e1000_init_hw_82571,
1711 .setup_link = e1000_setup_link_82571,
1712 /* .setup_physical_interface: media type dependent */
a4f58f54 1713 .setup_led = e1000e_setup_led_generic,
608f8a0d 1714 .read_mac_addr = e1000_read_mac_addr_82571,
bc7f75fa
AK
1715};
1716
1717static struct e1000_phy_operations e82_phy_ops_igp = {
94d8186a 1718 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1719 .check_polarity = e1000_check_polarity_igp,
bc7f75fa 1720 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1721 .commit = NULL,
bc7f75fa
AK
1722 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1723 .get_cfg_done = e1000_get_cfg_done_82571,
1724 .get_cable_length = e1000e_get_cable_length_igp_2,
94d8186a
BA
1725 .get_info = e1000e_get_phy_info_igp,
1726 .read_reg = e1000e_read_phy_reg_igp,
1727 .release = e1000_put_hw_semaphore_82571,
1728 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1729 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1730 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1731 .write_reg = e1000e_write_phy_reg_igp,
75eb0fad 1732 .cfg_on_link_up = NULL,
bc7f75fa
AK
1733};
1734
1735static struct e1000_phy_operations e82_phy_ops_m88 = {
94d8186a 1736 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1737 .check_polarity = e1000_check_polarity_m88,
bc7f75fa 1738 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1739 .commit = e1000e_phy_sw_reset,
bc7f75fa
AK
1740 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1741 .get_cfg_done = e1000e_get_cfg_done,
1742 .get_cable_length = e1000e_get_cable_length_m88,
94d8186a
BA
1743 .get_info = e1000e_get_phy_info_m88,
1744 .read_reg = e1000e_read_phy_reg_m88,
1745 .release = e1000_put_hw_semaphore_82571,
1746 .reset = e1000e_phy_hw_reset_generic,
bc7f75fa
AK
1747 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1748 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1749 .write_reg = e1000e_write_phy_reg_m88,
75eb0fad 1750 .cfg_on_link_up = NULL,
bc7f75fa
AK
1751};
1752
4662e82b 1753static struct e1000_phy_operations e82_phy_ops_bm = {
94d8186a 1754 .acquire = e1000_get_hw_semaphore_82571,
94e5b651 1755 .check_polarity = e1000_check_polarity_m88,
4662e82b 1756 .check_reset_block = e1000e_check_reset_block_generic,
94d8186a 1757 .commit = e1000e_phy_sw_reset,
4662e82b
BA
1758 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1759 .get_cfg_done = e1000e_get_cfg_done,
1760 .get_cable_length = e1000e_get_cable_length_m88,
94d8186a
BA
1761 .get_info = e1000e_get_phy_info_m88,
1762 .read_reg = e1000e_read_phy_reg_bm2,
1763 .release = e1000_put_hw_semaphore_82571,
1764 .reset = e1000e_phy_hw_reset_generic,
4662e82b
BA
1765 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1766 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
94d8186a 1767 .write_reg = e1000e_write_phy_reg_bm2,
75eb0fad 1768 .cfg_on_link_up = NULL,
4662e82b
BA
1769};
1770
bc7f75fa 1771static struct e1000_nvm_operations e82571_nvm_ops = {
94d8186a
BA
1772 .acquire = e1000_acquire_nvm_82571,
1773 .read = e1000e_read_nvm_eerd,
1774 .release = e1000_release_nvm_82571,
1775 .update = e1000_update_nvm_checksum_82571,
bc7f75fa 1776 .valid_led_default = e1000_valid_led_default_82571,
94d8186a
BA
1777 .validate = e1000_validate_nvm_checksum_82571,
1778 .write = e1000_write_nvm_82571,
bc7f75fa
AK
1779};
1780
1781struct e1000_info e1000_82571_info = {
1782 .mac = e1000_82571,
1783 .flags = FLAG_HAS_HW_VLAN_FILTER
1784 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1785 | FLAG_HAS_WOL
1786 | FLAG_APME_IN_CTRL3
1787 | FLAG_RX_CSUM_ENABLED
1788 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa
AK
1789 | FLAG_HAS_SMART_POWER_DOWN
1790 | FLAG_RESET_OVERWRITES_LAA /* errata */
1791 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1792 | FLAG_APME_CHECK_PORT_B,
6f461f6c 1793 .flags2 = FLAG2_DISABLE_ASPM_L1, /* errata 13 */
bc7f75fa 1794 .pba = 38,
2adc55c9 1795 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 1796 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1797 .mac_ops = &e82571_mac_ops,
1798 .phy_ops = &e82_phy_ops_igp,
1799 .nvm_ops = &e82571_nvm_ops,
1800};
1801
1802struct e1000_info e1000_82572_info = {
1803 .mac = e1000_82572,
1804 .flags = FLAG_HAS_HW_VLAN_FILTER
1805 | FLAG_HAS_JUMBO_FRAMES
bc7f75fa
AK
1806 | FLAG_HAS_WOL
1807 | FLAG_APME_IN_CTRL3
1808 | FLAG_RX_CSUM_ENABLED
1809 | FLAG_HAS_CTRLEXT_ON_LOAD
bc7f75fa 1810 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
6f461f6c 1811 .flags2 = FLAG2_DISABLE_ASPM_L1, /* errata 13 */
bc7f75fa 1812 .pba = 38,
2adc55c9 1813 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 1814 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1815 .mac_ops = &e82571_mac_ops,
1816 .phy_ops = &e82_phy_ops_igp,
1817 .nvm_ops = &e82571_nvm_ops,
1818};
1819
1820struct e1000_info e1000_82573_info = {
1821 .mac = e1000_82573,
1822 .flags = FLAG_HAS_HW_VLAN_FILTER
bc7f75fa
AK
1823 | FLAG_HAS_WOL
1824 | FLAG_APME_IN_CTRL3
1825 | FLAG_RX_CSUM_ENABLED
bc7f75fa
AK
1826 | FLAG_HAS_SMART_POWER_DOWN
1827 | FLAG_HAS_AMT
bc7f75fa
AK
1828 | FLAG_HAS_SWSM_ON_LOAD,
1829 .pba = 20,
2adc55c9 1830 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
69e3fd8c 1831 .get_variants = e1000_get_variants_82571,
bc7f75fa
AK
1832 .mac_ops = &e82571_mac_ops,
1833 .phy_ops = &e82_phy_ops_m88,
31f8c4fe 1834 .nvm_ops = &e82571_nvm_ops,
bc7f75fa
AK
1835};
1836
4662e82b
BA
1837struct e1000_info e1000_82574_info = {
1838 .mac = e1000_82574,
1839 .flags = FLAG_HAS_HW_VLAN_FILTER
1840 | FLAG_HAS_MSIX
1841 | FLAG_HAS_JUMBO_FRAMES
1842 | FLAG_HAS_WOL
1843 | FLAG_APME_IN_CTRL3
1844 | FLAG_RX_CSUM_ENABLED
1845 | FLAG_HAS_SMART_POWER_DOWN
1846 | FLAG_HAS_AMT
1847 | FLAG_HAS_CTRLEXT_ON_LOAD,
1848 .pba = 20,
a825e00c 1849 .max_hw_frame_size = DEFAULT_JUMBO,
4662e82b
BA
1850 .get_variants = e1000_get_variants_82571,
1851 .mac_ops = &e82571_mac_ops,
1852 .phy_ops = &e82_phy_ops_bm,
1853 .nvm_ops = &e82571_nvm_ops,
1854};
1855
8c81c9c3
AD
1856struct e1000_info e1000_82583_info = {
1857 .mac = e1000_82583,
1858 .flags = FLAG_HAS_HW_VLAN_FILTER
1859 | FLAG_HAS_WOL
1860 | FLAG_APME_IN_CTRL3
1861 | FLAG_RX_CSUM_ENABLED
1862 | FLAG_HAS_SMART_POWER_DOWN
1863 | FLAG_HAS_AMT
1864 | FLAG_HAS_CTRLEXT_ON_LOAD,
1865 .pba = 20,
a825e00c 1866 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
8c81c9c3
AD
1867 .get_variants = e1000_get_variants_82571,
1868 .mac_ops = &e82571_mac_ops,
1869 .phy_ops = &e82_phy_ops_bm,
1870 .nvm_ops = &e82571_nvm_ops,
1871};
1872
This page took 0.465419 seconds and 5 git commands to generate.