e1000e: remove redundant might_sleep()
[deliverable/linux.git] / drivers / net / e1000e / ich8lan.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
c7e54b1b 4 Copyright(c) 1999 - 2009 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
1605927f 30 * 82562G 10/100 Network Connection
bc7f75fa
AK
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
97ac8cae
BA
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
1605927f 44 * 82567V Gigabit Network Connection
97ac8cae
BA
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
f4187b56
BA
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
2f15f9d6 50 * 82567LM-4 Gigabit Network Connection
a4f58f54
BA
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
bc7f75fa
AK
55 */
56
bc7f75fa
AK
57#include "e1000.h"
58
59#define ICH_FLASH_GFPREG 0x0000
60#define ICH_FLASH_HSFSTS 0x0004
61#define ICH_FLASH_HSFCTL 0x0006
62#define ICH_FLASH_FADDR 0x0008
63#define ICH_FLASH_FDATA0 0x0010
4a770358 64#define ICH_FLASH_PR0 0x0074
bc7f75fa
AK
65
66#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
67#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
68#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
69#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
70#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
71
72#define ICH_CYCLE_READ 0
73#define ICH_CYCLE_WRITE 2
74#define ICH_CYCLE_ERASE 3
75
76#define FLASH_GFPREG_BASE_MASK 0x1FFF
77#define FLASH_SECTOR_ADDR_SHIFT 12
78
79#define ICH_FLASH_SEG_SIZE_256 256
80#define ICH_FLASH_SEG_SIZE_4K 4096
81#define ICH_FLASH_SEG_SIZE_8K 8192
82#define ICH_FLASH_SEG_SIZE_64K 65536
83
84
85#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
86
87#define E1000_ICH_MNG_IAMT_MODE 0x2
88
89#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
90 (ID_LED_DEF1_OFF2 << 8) | \
91 (ID_LED_DEF1_ON2 << 4) | \
92 (ID_LED_DEF1_DEF2))
93
94#define E1000_ICH_NVM_SIG_WORD 0x13
95#define E1000_ICH_NVM_SIG_MASK 0xC000
e243455d
BA
96#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
97#define E1000_ICH_NVM_SIG_VALUE 0x80
bc7f75fa
AK
98
99#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
100
101#define E1000_FEXTNVM_SW_CONFIG 1
102#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
103
104#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
105
106#define E1000_ICH_RAR_ENTRIES 7
107
108#define PHY_PAGE_SHIFT 5
109#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
110 ((reg) & MAX_PHY_REG_ADDRESS))
111#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
112#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
113
114#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
115#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
116#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
117
a4f58f54
BA
118#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
119
53ac5a88
BA
120#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
121
f523d211
BA
122/* SMBus Address Phy Register */
123#define HV_SMB_ADDR PHY_REG(768, 26)
124#define HV_SMB_ADDR_PEC_EN 0x0200
125#define HV_SMB_ADDR_VALID 0x0080
126
127/* Strapping Option Register - RO */
128#define E1000_STRAP 0x0000C
129#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
130#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
131
fa2ce13c
BA
132/* OEM Bits Phy Register */
133#define HV_OEM_BITS PHY_REG(768, 25)
134#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
f523d211 135#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
fa2ce13c
BA
136#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
137
1d5846b9
BA
138#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
139#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
140
bc7f75fa
AK
141/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
142/* Offset 04h HSFSTS */
143union ich8_hws_flash_status {
144 struct ich8_hsfsts {
145 u16 flcdone :1; /* bit 0 Flash Cycle Done */
146 u16 flcerr :1; /* bit 1 Flash Cycle Error */
147 u16 dael :1; /* bit 2 Direct Access error Log */
148 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
149 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
150 u16 reserved1 :2; /* bit 13:6 Reserved */
151 u16 reserved2 :6; /* bit 13:6 Reserved */
152 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
153 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
154 } hsf_status;
155 u16 regval;
156};
157
158/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
159/* Offset 06h FLCTL */
160union ich8_hws_flash_ctrl {
161 struct ich8_hsflctl {
162 u16 flcgo :1; /* 0 Flash Cycle Go */
163 u16 flcycle :2; /* 2:1 Flash Cycle */
164 u16 reserved :5; /* 7:3 Reserved */
165 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
166 u16 flockdn :6; /* 15:10 Reserved */
167 } hsf_ctrl;
168 u16 regval;
169};
170
171/* ICH Flash Region Access Permissions */
172union ich8_hws_flash_regacc {
173 struct ich8_flracc {
174 u32 grra :8; /* 0:7 GbE region Read Access */
175 u32 grwa :8; /* 8:15 GbE region Write Access */
176 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
177 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
178 } hsf_flregacc;
179 u16 regval;
180};
181
4a770358
BA
182/* ICH Flash Protected Region */
183union ich8_flash_protected_range {
184 struct ich8_pr {
185 u32 base:13; /* 0:12 Protected Range Base */
186 u32 reserved1:2; /* 13:14 Reserved */
187 u32 rpe:1; /* 15 Read Protection Enable */
188 u32 limit:13; /* 16:28 Protected Range Limit */
189 u32 reserved2:2; /* 29:30 Reserved */
190 u32 wpe:1; /* 31 Write Protection Enable */
191 } range;
192 u32 regval;
193};
194
bc7f75fa
AK
195static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
196static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
197static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
198static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
199static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
200static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
201 u32 offset, u8 byte);
f4187b56
BA
202static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
203 u8 *data);
bc7f75fa
AK
204static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
205 u16 *data);
206static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
207 u8 size, u16 *data);
208static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
209static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
f4187b56 210static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
a4f58f54
BA
211static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
212static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
213static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
214static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
215static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
216static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
217static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
218static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
fa2ce13c 219static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
f523d211 220static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
1d5846b9 221static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
bc7f75fa
AK
222
223static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
224{
225 return readw(hw->flash_address + reg);
226}
227
228static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
229{
230 return readl(hw->flash_address + reg);
231}
232
233static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
234{
235 writew(val, hw->flash_address + reg);
236}
237
238static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
239{
240 writel(val, hw->flash_address + reg);
241}
242
243#define er16flash(reg) __er16flash(hw, (reg))
244#define er32flash(reg) __er32flash(hw, (reg))
245#define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
246#define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
247
a4f58f54
BA
248/**
249 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
250 * @hw: pointer to the HW structure
251 *
252 * Initialize family-specific PHY parameters and function pointers.
253 **/
254static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
255{
256 struct e1000_phy_info *phy = &hw->phy;
257 s32 ret_val = 0;
258
259 phy->addr = 1;
260 phy->reset_delay_us = 100;
261
262 phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
94d8186a
BA
263 phy->ops.read_reg = e1000_read_phy_reg_hv;
264 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
fa2ce13c
BA
265 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
266 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
94d8186a
BA
267 phy->ops.write_reg = e1000_write_phy_reg_hv;
268 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
a4f58f54
BA
269 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
270
271 phy->id = e1000_phy_unknown;
272 e1000e_get_phy_id(hw);
273 phy->type = e1000e_get_phy_type_from_id(phy->id);
274
275 if (phy->type == e1000_phy_82577) {
276 phy->ops.check_polarity = e1000_check_polarity_82577;
277 phy->ops.force_speed_duplex =
278 e1000_phy_force_speed_duplex_82577;
279 phy->ops.get_cable_length = e1000_get_cable_length_82577;
94d8186a
BA
280 phy->ops.get_info = e1000_get_phy_info_82577;
281 phy->ops.commit = e1000e_phy_sw_reset;
a4f58f54
BA
282 }
283
284 return ret_val;
285}
286
bc7f75fa
AK
287/**
288 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
289 * @hw: pointer to the HW structure
290 *
291 * Initialize family-specific PHY parameters and function pointers.
292 **/
293static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
294{
295 struct e1000_phy_info *phy = &hw->phy;
296 s32 ret_val;
297 u16 i = 0;
298
299 phy->addr = 1;
300 phy->reset_delay_us = 100;
301
97ac8cae
BA
302 /*
303 * We may need to do this twice - once for IGP and if that fails,
304 * we'll set BM func pointers and try again
305 */
306 ret_val = e1000e_determine_phy_address(hw);
307 if (ret_val) {
94d8186a
BA
308 phy->ops.write_reg = e1000e_write_phy_reg_bm;
309 phy->ops.read_reg = e1000e_read_phy_reg_bm;
97ac8cae
BA
310 ret_val = e1000e_determine_phy_address(hw);
311 if (ret_val)
312 return ret_val;
313 }
314
bc7f75fa
AK
315 phy->id = 0;
316 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
317 (i++ < 100)) {
318 msleep(1);
319 ret_val = e1000e_get_phy_id(hw);
320 if (ret_val)
321 return ret_val;
322 }
323
324 /* Verify phy id */
325 switch (phy->id) {
326 case IGP03E1000_E_PHY_ID:
327 phy->type = e1000_phy_igp_3;
328 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
94d8186a
BA
329 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
330 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
bc7f75fa
AK
331 break;
332 case IFE_E_PHY_ID:
333 case IFE_PLUS_E_PHY_ID:
334 case IFE_C_E_PHY_ID:
335 phy->type = e1000_phy_ife;
336 phy->autoneg_mask = E1000_ALL_NOT_GIG;
337 break;
97ac8cae
BA
338 case BME1000_E_PHY_ID:
339 phy->type = e1000_phy_bm;
340 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
94d8186a
BA
341 phy->ops.read_reg = e1000e_read_phy_reg_bm;
342 phy->ops.write_reg = e1000e_write_phy_reg_bm;
343 phy->ops.commit = e1000e_phy_sw_reset;
97ac8cae 344 break;
bc7f75fa
AK
345 default:
346 return -E1000_ERR_PHY;
347 break;
348 }
349
a4f58f54
BA
350 phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
351
bc7f75fa
AK
352 return 0;
353}
354
355/**
356 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
357 * @hw: pointer to the HW structure
358 *
359 * Initialize family-specific NVM parameters and function
360 * pointers.
361 **/
362static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
363{
364 struct e1000_nvm_info *nvm = &hw->nvm;
365 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
148675a7 366 u32 gfpreg, sector_base_addr, sector_end_addr;
bc7f75fa
AK
367 u16 i;
368
ad68076e 369 /* Can't read flash registers if the register set isn't mapped. */
bc7f75fa 370 if (!hw->flash_address) {
3bb99fe2 371 e_dbg("ERROR: Flash registers not mapped\n");
bc7f75fa
AK
372 return -E1000_ERR_CONFIG;
373 }
374
375 nvm->type = e1000_nvm_flash_sw;
376
377 gfpreg = er32flash(ICH_FLASH_GFPREG);
378
ad68076e
BA
379 /*
380 * sector_X_addr is a "sector"-aligned address (4096 bytes)
bc7f75fa 381 * Add 1 to sector_end_addr since this sector is included in
ad68076e
BA
382 * the overall size.
383 */
bc7f75fa
AK
384 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
385 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
386
387 /* flash_base_addr is byte-aligned */
388 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
389
ad68076e
BA
390 /*
391 * find total size of the NVM, then cut in half since the total
392 * size represents two separate NVM banks.
393 */
bc7f75fa
AK
394 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
395 << FLASH_SECTOR_ADDR_SHIFT;
396 nvm->flash_bank_size /= 2;
397 /* Adjust to word count */
398 nvm->flash_bank_size /= sizeof(u16);
399
400 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
401
402 /* Clear shadow ram */
403 for (i = 0; i < nvm->word_size; i++) {
564ea9bb 404 dev_spec->shadow_ram[i].modified = false;
bc7f75fa
AK
405 dev_spec->shadow_ram[i].value = 0xFFFF;
406 }
407
408 return 0;
409}
410
411/**
412 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
413 * @hw: pointer to the HW structure
414 *
415 * Initialize family-specific MAC parameters and function
416 * pointers.
417 **/
418static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
419{
420 struct e1000_hw *hw = &adapter->hw;
421 struct e1000_mac_info *mac = &hw->mac;
422
423 /* Set media type function pointer */
318a94d6 424 hw->phy.media_type = e1000_media_type_copper;
bc7f75fa
AK
425
426 /* Set mta register count */
427 mac->mta_reg_count = 32;
428 /* Set rar entry count */
429 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
430 if (mac->type == e1000_ich8lan)
431 mac->rar_entry_count--;
432 /* Set if manageability features are enabled. */
564ea9bb 433 mac->arc_subsystem_valid = true;
bc7f75fa 434
a4f58f54
BA
435 /* LED operations */
436 switch (mac->type) {
437 case e1000_ich8lan:
438 case e1000_ich9lan:
439 case e1000_ich10lan:
440 /* ID LED init */
441 mac->ops.id_led_init = e1000e_id_led_init;
442 /* setup LED */
443 mac->ops.setup_led = e1000e_setup_led_generic;
444 /* cleanup LED */
445 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
446 /* turn on/off LED */
447 mac->ops.led_on = e1000_led_on_ich8lan;
448 mac->ops.led_off = e1000_led_off_ich8lan;
449 break;
450 case e1000_pchlan:
451 /* ID LED init */
452 mac->ops.id_led_init = e1000_id_led_init_pchlan;
453 /* setup LED */
454 mac->ops.setup_led = e1000_setup_led_pchlan;
455 /* cleanup LED */
456 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
457 /* turn on/off LED */
458 mac->ops.led_on = e1000_led_on_pchlan;
459 mac->ops.led_off = e1000_led_off_pchlan;
460 break;
461 default:
462 break;
463 }
464
bc7f75fa
AK
465 /* Enable PCS Lock-loss workaround for ICH8 */
466 if (mac->type == e1000_ich8lan)
564ea9bb 467 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
bc7f75fa
AK
468
469 return 0;
470}
471
7d3cabbc
BA
472/**
473 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
474 * @hw: pointer to the HW structure
475 *
476 * Checks to see of the link status of the hardware has changed. If a
477 * change in link status has been detected, then we read the PHY registers
478 * to get the current speed/duplex if link exists.
479 **/
480static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
481{
482 struct e1000_mac_info *mac = &hw->mac;
483 s32 ret_val;
484 bool link;
485
486 /*
487 * We only want to go out to the PHY registers to see if Auto-Neg
488 * has completed and/or if our link status has changed. The
489 * get_link_status flag is set upon receiving a Link Status
490 * Change or Rx Sequence Error interrupt.
491 */
492 if (!mac->get_link_status) {
493 ret_val = 0;
494 goto out;
495 }
496
7d3cabbc
BA
497 /*
498 * First we want to see if the MII Status Register reports
499 * link. If so, then we want to get the current speed/duplex
500 * of the PHY.
501 */
502 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
503 if (ret_val)
504 goto out;
505
1d5846b9
BA
506 if (hw->mac.type == e1000_pchlan) {
507 ret_val = e1000_k1_gig_workaround_hv(hw, link);
508 if (ret_val)
509 goto out;
510 }
511
7d3cabbc
BA
512 if (!link)
513 goto out; /* No link detected */
514
515 mac->get_link_status = false;
516
517 if (hw->phy.type == e1000_phy_82578) {
518 ret_val = e1000_link_stall_workaround_hv(hw);
519 if (ret_val)
520 goto out;
521 }
522
523 /*
524 * Check if there was DownShift, must be checked
525 * immediately after link-up
526 */
527 e1000e_check_downshift(hw);
528
529 /*
530 * If we are forcing speed/duplex, then we simply return since
531 * we have already determined whether we have link or not.
532 */
533 if (!mac->autoneg) {
534 ret_val = -E1000_ERR_CONFIG;
535 goto out;
536 }
537
538 /*
539 * Auto-Neg is enabled. Auto Speed Detection takes care
540 * of MAC speed/duplex configuration. So we only need to
541 * configure Collision Distance in the MAC.
542 */
543 e1000e_config_collision_dist(hw);
544
545 /*
546 * Configure Flow Control now that Auto-Neg has completed.
547 * First, we need to restore the desired flow control
548 * settings because we may have had to re-autoneg with a
549 * different link partner.
550 */
551 ret_val = e1000e_config_fc_after_link_up(hw);
552 if (ret_val)
3bb99fe2 553 e_dbg("Error configuring flow control\n");
7d3cabbc
BA
554
555out:
556 return ret_val;
557}
558
69e3fd8c 559static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
bc7f75fa
AK
560{
561 struct e1000_hw *hw = &adapter->hw;
562 s32 rc;
563
564 rc = e1000_init_mac_params_ich8lan(adapter);
565 if (rc)
566 return rc;
567
568 rc = e1000_init_nvm_params_ich8lan(hw);
569 if (rc)
570 return rc;
571
a4f58f54
BA
572 if (hw->mac.type == e1000_pchlan)
573 rc = e1000_init_phy_params_pchlan(hw);
574 else
575 rc = e1000_init_phy_params_ich8lan(hw);
bc7f75fa
AK
576 if (rc)
577 return rc;
578
2adc55c9
BA
579 if (adapter->hw.phy.type == e1000_phy_ife) {
580 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
581 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
582 }
583
bc7f75fa
AK
584 if ((adapter->hw.mac.type == e1000_ich8lan) &&
585 (adapter->hw.phy.type == e1000_phy_igp_3))
586 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
587
588 return 0;
589}
590
717d438d 591static DEFINE_MUTEX(nvm_mutex);
717d438d 592
ca15df58
BA
593/**
594 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
595 * @hw: pointer to the HW structure
596 *
597 * Acquires the mutex for performing NVM operations.
598 **/
599static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
600{
601 mutex_lock(&nvm_mutex);
602
603 return 0;
604}
605
606/**
607 * e1000_release_nvm_ich8lan - Release NVM mutex
608 * @hw: pointer to the HW structure
609 *
610 * Releases the mutex used while performing NVM operations.
611 **/
612static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
613{
614 mutex_unlock(&nvm_mutex);
615
616 return;
617}
618
619static DEFINE_MUTEX(swflag_mutex);
620
bc7f75fa
AK
621/**
622 * e1000_acquire_swflag_ich8lan - Acquire software control flag
623 * @hw: pointer to the HW structure
624 *
ca15df58
BA
625 * Acquires the software control flag for performing PHY and select
626 * MAC CSR accesses.
bc7f75fa
AK
627 **/
628static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
629{
373a88d7
BA
630 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
631 s32 ret_val = 0;
bc7f75fa 632
ca15df58 633 mutex_lock(&swflag_mutex);
717d438d 634
bc7f75fa
AK
635 while (timeout) {
636 extcnf_ctrl = er32(EXTCNF_CTRL);
373a88d7
BA
637 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
638 break;
bc7f75fa 639
373a88d7
BA
640 mdelay(1);
641 timeout--;
642 }
643
644 if (!timeout) {
3bb99fe2 645 e_dbg("SW/FW/HW has locked the resource for too long.\n");
373a88d7
BA
646 ret_val = -E1000_ERR_CONFIG;
647 goto out;
648 }
649
53ac5a88 650 timeout = SW_FLAG_TIMEOUT;
373a88d7
BA
651
652 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
653 ew32(EXTCNF_CTRL, extcnf_ctrl);
654
655 while (timeout) {
656 extcnf_ctrl = er32(EXTCNF_CTRL);
657 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
658 break;
a4f58f54 659
bc7f75fa
AK
660 mdelay(1);
661 timeout--;
662 }
663
664 if (!timeout) {
3bb99fe2 665 e_dbg("Failed to acquire the semaphore.\n");
2e2e8d53
BA
666 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
667 ew32(EXTCNF_CTRL, extcnf_ctrl);
373a88d7
BA
668 ret_val = -E1000_ERR_CONFIG;
669 goto out;
bc7f75fa
AK
670 }
671
373a88d7
BA
672out:
673 if (ret_val)
ca15df58 674 mutex_unlock(&swflag_mutex);
373a88d7
BA
675
676 return ret_val;
bc7f75fa
AK
677}
678
679/**
680 * e1000_release_swflag_ich8lan - Release software control flag
681 * @hw: pointer to the HW structure
682 *
ca15df58
BA
683 * Releases the software control flag for performing PHY and select
684 * MAC CSR accesses.
bc7f75fa
AK
685 **/
686static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
687{
688 u32 extcnf_ctrl;
689
690 extcnf_ctrl = er32(EXTCNF_CTRL);
691 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
692 ew32(EXTCNF_CTRL, extcnf_ctrl);
717d438d 693
ca15df58
BA
694 mutex_unlock(&swflag_mutex);
695
696 return;
bc7f75fa
AK
697}
698
4662e82b
BA
699/**
700 * e1000_check_mng_mode_ich8lan - Checks management mode
701 * @hw: pointer to the HW structure
702 *
703 * This checks if the adapter has manageability enabled.
704 * This is a function pointer entry point only called by read/write
705 * routines for the PHY and NVM parts.
706 **/
707static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
708{
709 u32 fwsm = er32(FWSM);
710
711 return (fwsm & E1000_FWSM_MODE_MASK) ==
712 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
713}
714
bc7f75fa
AK
715/**
716 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
717 * @hw: pointer to the HW structure
718 *
719 * Checks if firmware is blocking the reset of the PHY.
720 * This is a function pointer entry point only called by
721 * reset routines.
722 **/
723static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
724{
725 u32 fwsm;
726
727 fwsm = er32(FWSM);
728
729 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
730}
731
732/**
733 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
734 * @hw: pointer to the HW structure
735 *
736 * Forces the speed and duplex settings of the PHY.
737 * This is a function pointer entry point only called by
738 * PHY setup routines.
739 **/
740static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
741{
742 struct e1000_phy_info *phy = &hw->phy;
743 s32 ret_val;
744 u16 data;
745 bool link;
746
747 if (phy->type != e1000_phy_ife) {
748 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
749 return ret_val;
750 }
751
752 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
753 if (ret_val)
754 return ret_val;
755
756 e1000e_phy_force_speed_duplex_setup(hw, &data);
757
758 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
759 if (ret_val)
760 return ret_val;
761
762 /* Disable MDI-X support for 10/100 */
763 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
764 if (ret_val)
765 return ret_val;
766
767 data &= ~IFE_PMC_AUTO_MDIX;
768 data &= ~IFE_PMC_FORCE_MDIX;
769
770 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
771 if (ret_val)
772 return ret_val;
773
3bb99fe2 774 e_dbg("IFE PMC: %X\n", data);
bc7f75fa
AK
775
776 udelay(1);
777
318a94d6 778 if (phy->autoneg_wait_to_complete) {
3bb99fe2 779 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
bc7f75fa
AK
780
781 ret_val = e1000e_phy_has_link_generic(hw,
782 PHY_FORCE_LIMIT,
783 100000,
784 &link);
785 if (ret_val)
786 return ret_val;
787
788 if (!link)
3bb99fe2 789 e_dbg("Link taking longer than expected.\n");
bc7f75fa
AK
790
791 /* Try once more */
792 ret_val = e1000e_phy_has_link_generic(hw,
793 PHY_FORCE_LIMIT,
794 100000,
795 &link);
796 if (ret_val)
797 return ret_val;
798 }
799
800 return 0;
801}
802
f523d211
BA
803/**
804 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
805 * @hw: pointer to the HW structure
806 *
807 * SW should configure the LCD from the NVM extended configuration region
808 * as a workaround for certain parts.
809 **/
810static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
811{
812 struct e1000_phy_info *phy = &hw->phy;
813 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
814 s32 ret_val;
815 u16 word_addr, reg_data, reg_addr, phy_page = 0;
816
94d8186a 817 ret_val = hw->phy.ops.acquire(hw);
f523d211
BA
818 if (ret_val)
819 return ret_val;
820
821 /*
822 * Initialize the PHY from the NVM on ICH platforms. This
823 * is needed due to an issue where the NVM configuration is
824 * not properly autoloaded after power transitions.
825 * Therefore, after each PHY reset, we will load the
826 * configuration data out of the NVM manually.
827 */
828 if ((hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) ||
829 (hw->mac.type == e1000_pchlan)) {
830 struct e1000_adapter *adapter = hw->adapter;
831
832 /* Check if SW needs to configure the PHY */
833 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
834 (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M) ||
835 (hw->mac.type == e1000_pchlan))
836 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
837 else
838 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
839
840 data = er32(FEXTNVM);
841 if (!(data & sw_cfg_mask))
842 goto out;
843
844 /* Wait for basic configuration completes before proceeding */
845 e1000_lan_init_done_ich8lan(hw);
846
847 /*
848 * Make sure HW does not configure LCD from PHY
849 * extended configuration before SW configuration
850 */
851 data = er32(EXTCNF_CTRL);
852 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
853 goto out;
854
855 cnf_size = er32(EXTCNF_SIZE);
856 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
857 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
858 if (!cnf_size)
859 goto out;
860
861 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
862 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
863
864 if (!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
865 (hw->mac.type == e1000_pchlan)) {
866 /*
867 * HW configures the SMBus address and LEDs when the
868 * OEM and LCD Write Enable bits are set in the NVM.
869 * When both NVM bits are cleared, SW will configure
870 * them instead.
871 */
872 data = er32(STRAP);
873 data &= E1000_STRAP_SMBUS_ADDRESS_MASK;
874 reg_data = data >> E1000_STRAP_SMBUS_ADDRESS_SHIFT;
875 reg_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
876 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR,
877 reg_data);
878 if (ret_val)
879 goto out;
880
881 data = er32(LEDCTL);
882 ret_val = e1000_write_phy_reg_hv_locked(hw,
883 HV_LED_CONFIG,
884 (u16)data);
885 if (ret_val)
886 goto out;
887 }
888 /* Configure LCD from extended configuration region. */
889
890 /* cnf_base_addr is in DWORD */
891 word_addr = (u16)(cnf_base_addr << 1);
892
893 for (i = 0; i < cnf_size; i++) {
894 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
895 &reg_data);
896 if (ret_val)
897 goto out;
898
899 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
900 1, &reg_addr);
901 if (ret_val)
902 goto out;
903
904 /* Save off the PHY page for future writes. */
905 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
906 phy_page = reg_data;
907 continue;
908 }
909
910 reg_addr &= PHY_REG_MASK;
911 reg_addr |= phy_page;
912
94d8186a 913 ret_val = phy->ops.write_reg_locked(hw,
f523d211
BA
914 (u32)reg_addr,
915 reg_data);
916 if (ret_val)
917 goto out;
918 }
919 }
920
921out:
94d8186a 922 hw->phy.ops.release(hw);
f523d211
BA
923 return ret_val;
924}
925
1d5846b9
BA
926/**
927 * e1000_k1_gig_workaround_hv - K1 Si workaround
928 * @hw: pointer to the HW structure
929 * @link: link up bool flag
930 *
931 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
932 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
933 * If link is down, the function will restore the default K1 setting located
934 * in the NVM.
935 **/
936static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
937{
938 s32 ret_val = 0;
939 u16 status_reg = 0;
940 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
941
942 if (hw->mac.type != e1000_pchlan)
943 goto out;
944
945 /* Wrap the whole flow with the sw flag */
94d8186a 946 ret_val = hw->phy.ops.acquire(hw);
1d5846b9
BA
947 if (ret_val)
948 goto out;
949
950 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
951 if (link) {
952 if (hw->phy.type == e1000_phy_82578) {
94d8186a 953 ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1d5846b9
BA
954 &status_reg);
955 if (ret_val)
956 goto release;
957
958 status_reg &= BM_CS_STATUS_LINK_UP |
959 BM_CS_STATUS_RESOLVED |
960 BM_CS_STATUS_SPEED_MASK;
961
962 if (status_reg == (BM_CS_STATUS_LINK_UP |
963 BM_CS_STATUS_RESOLVED |
964 BM_CS_STATUS_SPEED_1000))
965 k1_enable = false;
966 }
967
968 if (hw->phy.type == e1000_phy_82577) {
94d8186a 969 ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1d5846b9
BA
970 &status_reg);
971 if (ret_val)
972 goto release;
973
974 status_reg &= HV_M_STATUS_LINK_UP |
975 HV_M_STATUS_AUTONEG_COMPLETE |
976 HV_M_STATUS_SPEED_MASK;
977
978 if (status_reg == (HV_M_STATUS_LINK_UP |
979 HV_M_STATUS_AUTONEG_COMPLETE |
980 HV_M_STATUS_SPEED_1000))
981 k1_enable = false;
982 }
983
984 /* Link stall fix for link up */
94d8186a 985 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1d5846b9
BA
986 0x0100);
987 if (ret_val)
988 goto release;
989
990 } else {
991 /* Link stall fix for link down */
94d8186a 992 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1d5846b9
BA
993 0x4100);
994 if (ret_val)
995 goto release;
996 }
997
998 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
999
1000release:
94d8186a 1001 hw->phy.ops.release(hw);
1d5846b9
BA
1002out:
1003 return ret_val;
1004}
1005
1006/**
1007 * e1000_configure_k1_ich8lan - Configure K1 power state
1008 * @hw: pointer to the HW structure
1009 * @enable: K1 state to configure
1010 *
1011 * Configure the K1 power state based on the provided parameter.
1012 * Assumes semaphore already acquired.
1013 *
1014 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1015 **/
bb436b20 1016s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1d5846b9
BA
1017{
1018 s32 ret_val = 0;
1019 u32 ctrl_reg = 0;
1020 u32 ctrl_ext = 0;
1021 u32 reg = 0;
1022 u16 kmrn_reg = 0;
1023
1024 ret_val = e1000e_read_kmrn_reg_locked(hw,
1025 E1000_KMRNCTRLSTA_K1_CONFIG,
1026 &kmrn_reg);
1027 if (ret_val)
1028 goto out;
1029
1030 if (k1_enable)
1031 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1032 else
1033 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1034
1035 ret_val = e1000e_write_kmrn_reg_locked(hw,
1036 E1000_KMRNCTRLSTA_K1_CONFIG,
1037 kmrn_reg);
1038 if (ret_val)
1039 goto out;
1040
1041 udelay(20);
1042 ctrl_ext = er32(CTRL_EXT);
1043 ctrl_reg = er32(CTRL);
1044
1045 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1046 reg |= E1000_CTRL_FRCSPD;
1047 ew32(CTRL, reg);
1048
1049 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1050 udelay(20);
1051 ew32(CTRL, ctrl_reg);
1052 ew32(CTRL_EXT, ctrl_ext);
1053 udelay(20);
1054
1055out:
1056 return ret_val;
1057}
1058
f523d211
BA
1059/**
1060 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1061 * @hw: pointer to the HW structure
1062 * @d0_state: boolean if entering d0 or d3 device state
1063 *
1064 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1065 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1066 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1067 **/
1068static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1069{
1070 s32 ret_val = 0;
1071 u32 mac_reg;
1072 u16 oem_reg;
1073
1074 if (hw->mac.type != e1000_pchlan)
1075 return ret_val;
1076
94d8186a 1077 ret_val = hw->phy.ops.acquire(hw);
f523d211
BA
1078 if (ret_val)
1079 return ret_val;
1080
1081 mac_reg = er32(EXTCNF_CTRL);
1082 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1083 goto out;
1084
1085 mac_reg = er32(FEXTNVM);
1086 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1087 goto out;
1088
1089 mac_reg = er32(PHY_CTRL);
1090
94d8186a 1091 ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
f523d211
BA
1092 if (ret_val)
1093 goto out;
1094
1095 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1096
1097 if (d0_state) {
1098 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1099 oem_reg |= HV_OEM_BITS_GBE_DIS;
1100
1101 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1102 oem_reg |= HV_OEM_BITS_LPLU;
1103 } else {
1104 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1105 oem_reg |= HV_OEM_BITS_GBE_DIS;
1106
1107 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1108 oem_reg |= HV_OEM_BITS_LPLU;
1109 }
1110 /* Restart auto-neg to activate the bits */
1111 oem_reg |= HV_OEM_BITS_RESTART_AN;
94d8186a 1112 ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
f523d211
BA
1113
1114out:
94d8186a 1115 hw->phy.ops.release(hw);
f523d211
BA
1116
1117 return ret_val;
1118}
1119
1120
a4f58f54
BA
1121/**
1122 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1123 * done after every PHY reset.
1124 **/
1125static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1126{
1127 s32 ret_val = 0;
1128
1129 if (hw->mac.type != e1000_pchlan)
1130 return ret_val;
1131
1132 if (((hw->phy.type == e1000_phy_82577) &&
1133 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1134 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1135 /* Disable generation of early preamble */
1136 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1137 if (ret_val)
1138 return ret_val;
1139
1140 /* Preamble tuning for SSC */
1141 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
1142 if (ret_val)
1143 return ret_val;
1144 }
1145
1146 if (hw->phy.type == e1000_phy_82578) {
1147 /*
1148 * Return registers to default by doing a soft reset then
1149 * writing 0x3140 to the control register.
1150 */
1151 if (hw->phy.revision < 2) {
1152 e1000e_phy_sw_reset(hw);
1153 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1154 }
1155 }
1156
1157 /* Select page 0 */
94d8186a 1158 ret_val = hw->phy.ops.acquire(hw);
a4f58f54
BA
1159 if (ret_val)
1160 return ret_val;
1d5846b9 1161
a4f58f54 1162 hw->phy.addr = 1;
1d5846b9
BA
1163 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1164 if (ret_val)
1165 goto out;
94d8186a 1166 hw->phy.ops.release(hw);
a4f58f54 1167
1d5846b9
BA
1168 /*
1169 * Configure the K1 Si workaround during phy reset assuming there is
1170 * link so that it disables K1 if link is in 1Gbps.
1171 */
1172 ret_val = e1000_k1_gig_workaround_hv(hw, true);
1173
1174out:
a4f58f54
BA
1175 return ret_val;
1176}
1177
fc0c7760
BA
1178/**
1179 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1180 * @hw: pointer to the HW structure
1181 *
1182 * Check the appropriate indication the MAC has finished configuring the
1183 * PHY after a software reset.
1184 **/
1185static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1186{
1187 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1188
1189 /* Wait for basic configuration completes before proceeding */
1190 do {
1191 data = er32(STATUS);
1192 data &= E1000_STATUS_LAN_INIT_DONE;
1193 udelay(100);
1194 } while ((!data) && --loop);
1195
1196 /*
1197 * If basic configuration is incomplete before the above loop
1198 * count reaches 0, loading the configuration from NVM will
1199 * leave the PHY in a bad state possibly resulting in no link.
1200 */
1201 if (loop == 0)
3bb99fe2 1202 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
fc0c7760
BA
1203
1204 /* Clear the Init Done bit for the next init event */
1205 data = er32(STATUS);
1206 data &= ~E1000_STATUS_LAN_INIT_DONE;
1207 ew32(STATUS, data);
1208}
1209
bc7f75fa
AK
1210/**
1211 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1212 * @hw: pointer to the HW structure
1213 *
1214 * Resets the PHY
1215 * This is a function pointer entry point called by drivers
1216 * or other shared routines.
1217 **/
1218static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1219{
f523d211
BA
1220 s32 ret_val = 0;
1221 u16 reg;
bc7f75fa
AK
1222
1223 ret_val = e1000e_phy_hw_reset_generic(hw);
1224 if (ret_val)
1225 return ret_val;
1226
fc0c7760
BA
1227 /* Allow time for h/w to get to a quiescent state after reset */
1228 mdelay(10);
1229
a4f58f54
BA
1230 if (hw->mac.type == e1000_pchlan) {
1231 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1232 if (ret_val)
1233 return ret_val;
1234 }
1235
db2932ec
BA
1236 /* Dummy read to clear the phy wakeup bit after lcd reset */
1237 if (hw->mac.type == e1000_pchlan)
1238 e1e_rphy(hw, BM_WUC, &reg);
1239
f523d211
BA
1240 /* Configure the LCD with the extended configuration region in NVM */
1241 ret_val = e1000_sw_lcd_config_ich8lan(hw);
1242 if (ret_val)
1243 goto out;
bc7f75fa 1244
f523d211
BA
1245 /* Configure the LCD with the OEM bits in NVM */
1246 if (hw->mac.type == e1000_pchlan)
1247 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
bc7f75fa 1248
f523d211 1249out:
bc7f75fa
AK
1250 return 0;
1251}
1252
1253/**
1254 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
1255 * @hw: pointer to the HW structure
1256 *
1257 * Populates "phy" structure with various feature states.
1258 * This function is only called by other family-specific
1259 * routines.
1260 **/
1261static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
1262{
1263 struct e1000_phy_info *phy = &hw->phy;
1264 s32 ret_val;
1265 u16 data;
1266 bool link;
1267
1268 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1269 if (ret_val)
1270 return ret_val;
1271
1272 if (!link) {
3bb99fe2 1273 e_dbg("Phy info is only valid if link is up\n");
bc7f75fa
AK
1274 return -E1000_ERR_CONFIG;
1275 }
1276
1277 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
1278 if (ret_val)
1279 return ret_val;
1280 phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
1281
1282 if (phy->polarity_correction) {
a4f58f54 1283 ret_val = phy->ops.check_polarity(hw);
bc7f75fa
AK
1284 if (ret_val)
1285 return ret_val;
1286 } else {
1287 /* Polarity is forced */
1288 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
1289 ? e1000_rev_polarity_reversed
1290 : e1000_rev_polarity_normal;
1291 }
1292
1293 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1294 if (ret_val)
1295 return ret_val;
1296
1297 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
1298
1299 /* The following parameters are undefined for 10/100 operation. */
1300 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1301 phy->local_rx = e1000_1000t_rx_status_undefined;
1302 phy->remote_rx = e1000_1000t_rx_status_undefined;
1303
1304 return 0;
1305}
1306
1307/**
1308 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
1309 * @hw: pointer to the HW structure
1310 *
1311 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
1312 * This is a function pointer entry point called by drivers
1313 * or other shared routines.
1314 **/
1315static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
1316{
1317 switch (hw->phy.type) {
1318 case e1000_phy_ife:
1319 return e1000_get_phy_info_ife_ich8lan(hw);
1320 break;
1321 case e1000_phy_igp_3:
97ac8cae 1322 case e1000_phy_bm:
a4f58f54
BA
1323 case e1000_phy_82578:
1324 case e1000_phy_82577:
bc7f75fa
AK
1325 return e1000e_get_phy_info_igp(hw);
1326 break;
1327 default:
1328 break;
1329 }
1330
1331 return -E1000_ERR_PHY_TYPE;
1332}
1333
1334/**
1335 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
1336 * @hw: pointer to the HW structure
1337 *
489815ce 1338 * Polarity is determined on the polarity reversal feature being enabled.
bc7f75fa
AK
1339 * This function is only called by other family-specific
1340 * routines.
1341 **/
1342static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
1343{
1344 struct e1000_phy_info *phy = &hw->phy;
1345 s32 ret_val;
1346 u16 phy_data, offset, mask;
1347
ad68076e
BA
1348 /*
1349 * Polarity is determined based on the reversal feature being enabled.
bc7f75fa
AK
1350 */
1351 if (phy->polarity_correction) {
1352 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1353 mask = IFE_PESC_POLARITY_REVERSED;
1354 } else {
1355 offset = IFE_PHY_SPECIAL_CONTROL;
1356 mask = IFE_PSC_FORCE_POLARITY;
1357 }
1358
1359 ret_val = e1e_rphy(hw, offset, &phy_data);
1360
1361 if (!ret_val)
1362 phy->cable_polarity = (phy_data & mask)
1363 ? e1000_rev_polarity_reversed
1364 : e1000_rev_polarity_normal;
1365
1366 return ret_val;
1367}
1368
fa2ce13c
BA
1369/**
1370 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1371 * @hw: pointer to the HW structure
1372 * @active: true to enable LPLU, false to disable
1373 *
1374 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1375 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1376 * the phy speed. This function will manually set the LPLU bit and restart
1377 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1378 * since it configures the same bit.
1379 **/
1380static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1381{
1382 s32 ret_val = 0;
1383 u16 oem_reg;
1384
1385 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1386 if (ret_val)
1387 goto out;
1388
1389 if (active)
1390 oem_reg |= HV_OEM_BITS_LPLU;
1391 else
1392 oem_reg &= ~HV_OEM_BITS_LPLU;
1393
1394 oem_reg |= HV_OEM_BITS_RESTART_AN;
1395 ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1396
1397out:
1398 return ret_val;
1399}
1400
bc7f75fa
AK
1401/**
1402 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1403 * @hw: pointer to the HW structure
564ea9bb 1404 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
1405 *
1406 * Sets the LPLU D0 state according to the active flag. When
1407 * activating LPLU this function also disables smart speed
1408 * and vice versa. LPLU will not be activated unless the
1409 * device autonegotiation advertisement meets standards of
1410 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1411 * This is a function pointer entry point only called by
1412 * PHY setup routines.
1413 **/
1414static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1415{
1416 struct e1000_phy_info *phy = &hw->phy;
1417 u32 phy_ctrl;
1418 s32 ret_val = 0;
1419 u16 data;
1420
97ac8cae 1421 if (phy->type == e1000_phy_ife)
bc7f75fa
AK
1422 return ret_val;
1423
1424 phy_ctrl = er32(PHY_CTRL);
1425
1426 if (active) {
1427 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1428 ew32(PHY_CTRL, phy_ctrl);
1429
60f1292f
BA
1430 if (phy->type != e1000_phy_igp_3)
1431 return 0;
1432
ad68076e
BA
1433 /*
1434 * Call gig speed drop workaround on LPLU before accessing
1435 * any PHY registers
1436 */
60f1292f 1437 if (hw->mac.type == e1000_ich8lan)
bc7f75fa
AK
1438 e1000e_gig_downshift_workaround_ich8lan(hw);
1439
1440 /* When LPLU is enabled, we should disable SmartSpeed */
1441 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1442 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1443 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1444 if (ret_val)
1445 return ret_val;
1446 } else {
1447 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1448 ew32(PHY_CTRL, phy_ctrl);
1449
60f1292f
BA
1450 if (phy->type != e1000_phy_igp_3)
1451 return 0;
1452
ad68076e
BA
1453 /*
1454 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
1455 * during Dx states where the power conservation is most
1456 * important. During driver activity we should enable
ad68076e
BA
1457 * SmartSpeed, so performance is maintained.
1458 */
bc7f75fa
AK
1459 if (phy->smart_speed == e1000_smart_speed_on) {
1460 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1461 &data);
bc7f75fa
AK
1462 if (ret_val)
1463 return ret_val;
1464
1465 data |= IGP01E1000_PSCFR_SMART_SPEED;
1466 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1467 data);
bc7f75fa
AK
1468 if (ret_val)
1469 return ret_val;
1470 } else if (phy->smart_speed == e1000_smart_speed_off) {
1471 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1472 &data);
bc7f75fa
AK
1473 if (ret_val)
1474 return ret_val;
1475
1476 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1477 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1478 data);
bc7f75fa
AK
1479 if (ret_val)
1480 return ret_val;
1481 }
1482 }
1483
1484 return 0;
1485}
1486
1487/**
1488 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1489 * @hw: pointer to the HW structure
564ea9bb 1490 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
1491 *
1492 * Sets the LPLU D3 state according to the active flag. When
1493 * activating LPLU this function also disables smart speed
1494 * and vice versa. LPLU will not be activated unless the
1495 * device autonegotiation advertisement meets standards of
1496 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1497 * This is a function pointer entry point only called by
1498 * PHY setup routines.
1499 **/
1500static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1501{
1502 struct e1000_phy_info *phy = &hw->phy;
1503 u32 phy_ctrl;
1504 s32 ret_val;
1505 u16 data;
1506
1507 phy_ctrl = er32(PHY_CTRL);
1508
1509 if (!active) {
1510 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1511 ew32(PHY_CTRL, phy_ctrl);
60f1292f
BA
1512
1513 if (phy->type != e1000_phy_igp_3)
1514 return 0;
1515
ad68076e
BA
1516 /*
1517 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
1518 * during Dx states where the power conservation is most
1519 * important. During driver activity we should enable
ad68076e
BA
1520 * SmartSpeed, so performance is maintained.
1521 */
bc7f75fa 1522 if (phy->smart_speed == e1000_smart_speed_on) {
ad68076e
BA
1523 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1524 &data);
bc7f75fa
AK
1525 if (ret_val)
1526 return ret_val;
1527
1528 data |= IGP01E1000_PSCFR_SMART_SPEED;
ad68076e
BA
1529 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1530 data);
bc7f75fa
AK
1531 if (ret_val)
1532 return ret_val;
1533 } else if (phy->smart_speed == e1000_smart_speed_off) {
ad68076e
BA
1534 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1535 &data);
bc7f75fa
AK
1536 if (ret_val)
1537 return ret_val;
1538
1539 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ad68076e
BA
1540 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1541 data);
bc7f75fa
AK
1542 if (ret_val)
1543 return ret_val;
1544 }
1545 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1546 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1547 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1548 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1549 ew32(PHY_CTRL, phy_ctrl);
1550
60f1292f
BA
1551 if (phy->type != e1000_phy_igp_3)
1552 return 0;
1553
ad68076e
BA
1554 /*
1555 * Call gig speed drop workaround on LPLU before accessing
1556 * any PHY registers
1557 */
60f1292f 1558 if (hw->mac.type == e1000_ich8lan)
bc7f75fa
AK
1559 e1000e_gig_downshift_workaround_ich8lan(hw);
1560
1561 /* When LPLU is enabled, we should disable SmartSpeed */
ad68076e 1562 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
bc7f75fa
AK
1563 if (ret_val)
1564 return ret_val;
1565
1566 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ad68076e 1567 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
bc7f75fa
AK
1568 }
1569
1570 return 0;
1571}
1572
f4187b56
BA
1573/**
1574 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1575 * @hw: pointer to the HW structure
1576 * @bank: pointer to the variable that returns the active bank
1577 *
1578 * Reads signature byte from the NVM using the flash access registers.
e243455d 1579 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
f4187b56
BA
1580 **/
1581static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1582{
e243455d 1583 u32 eecd;
f4187b56 1584 struct e1000_nvm_info *nvm = &hw->nvm;
f4187b56
BA
1585 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1586 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
e243455d
BA
1587 u8 sig_byte = 0;
1588 s32 ret_val = 0;
f4187b56 1589
e243455d
BA
1590 switch (hw->mac.type) {
1591 case e1000_ich8lan:
1592 case e1000_ich9lan:
1593 eecd = er32(EECD);
1594 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1595 E1000_EECD_SEC1VAL_VALID_MASK) {
1596 if (eecd & E1000_EECD_SEC1VAL)
1597 *bank = 1;
1598 else
1599 *bank = 0;
1600
1601 return 0;
1602 }
3bb99fe2 1603 e_dbg("Unable to determine valid NVM bank via EEC - "
e243455d
BA
1604 "reading flash signature\n");
1605 /* fall-thru */
1606 default:
1607 /* set bank to 0 in case flash read fails */
1608 *bank = 0;
1609
1610 /* Check bank 0 */
1611 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
1612 &sig_byte);
1613 if (ret_val)
1614 return ret_val;
1615 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1616 E1000_ICH_NVM_SIG_VALUE) {
f4187b56 1617 *bank = 0;
e243455d
BA
1618 return 0;
1619 }
f4187b56 1620
e243455d
BA
1621 /* Check bank 1 */
1622 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1623 bank1_offset,
1624 &sig_byte);
1625 if (ret_val)
1626 return ret_val;
1627 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1628 E1000_ICH_NVM_SIG_VALUE) {
1629 *bank = 1;
1630 return 0;
f4187b56 1631 }
e243455d 1632
3bb99fe2 1633 e_dbg("ERROR: No valid NVM bank present\n");
e243455d 1634 return -E1000_ERR_NVM;
f4187b56
BA
1635 }
1636
1637 return 0;
1638}
1639
bc7f75fa
AK
1640/**
1641 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1642 * @hw: pointer to the HW structure
1643 * @offset: The offset (in bytes) of the word(s) to read.
1644 * @words: Size of data to read in words
1645 * @data: Pointer to the word(s) to read at offset.
1646 *
1647 * Reads a word(s) from the NVM using the flash access registers.
1648 **/
1649static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1650 u16 *data)
1651{
1652 struct e1000_nvm_info *nvm = &hw->nvm;
1653 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1654 u32 act_offset;
148675a7 1655 s32 ret_val = 0;
f4187b56 1656 u32 bank = 0;
bc7f75fa
AK
1657 u16 i, word;
1658
1659 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1660 (words == 0)) {
3bb99fe2 1661 e_dbg("nvm parameter(s) out of bounds\n");
ca15df58
BA
1662 ret_val = -E1000_ERR_NVM;
1663 goto out;
bc7f75fa
AK
1664 }
1665
94d8186a 1666 nvm->ops.acquire(hw);
bc7f75fa 1667
f4187b56 1668 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
148675a7 1669 if (ret_val) {
3bb99fe2 1670 e_dbg("Could not detect valid bank, assuming bank 0\n");
148675a7
BA
1671 bank = 0;
1672 }
f4187b56
BA
1673
1674 act_offset = (bank) ? nvm->flash_bank_size : 0;
bc7f75fa
AK
1675 act_offset += offset;
1676
148675a7 1677 ret_val = 0;
bc7f75fa
AK
1678 for (i = 0; i < words; i++) {
1679 if ((dev_spec->shadow_ram) &&
1680 (dev_spec->shadow_ram[offset+i].modified)) {
1681 data[i] = dev_spec->shadow_ram[offset+i].value;
1682 } else {
1683 ret_val = e1000_read_flash_word_ich8lan(hw,
1684 act_offset + i,
1685 &word);
1686 if (ret_val)
1687 break;
1688 data[i] = word;
1689 }
1690 }
1691
94d8186a 1692 nvm->ops.release(hw);
bc7f75fa 1693
e243455d
BA
1694out:
1695 if (ret_val)
3bb99fe2 1696 e_dbg("NVM read error: %d\n", ret_val);
e243455d 1697
bc7f75fa
AK
1698 return ret_val;
1699}
1700
1701/**
1702 * e1000_flash_cycle_init_ich8lan - Initialize flash
1703 * @hw: pointer to the HW structure
1704 *
1705 * This function does initial flash setup so that a new read/write/erase cycle
1706 * can be started.
1707 **/
1708static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1709{
1710 union ich8_hws_flash_status hsfsts;
1711 s32 ret_val = -E1000_ERR_NVM;
1712 s32 i = 0;
1713
1714 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1715
1716 /* Check if the flash descriptor is valid */
1717 if (hsfsts.hsf_status.fldesvalid == 0) {
3bb99fe2 1718 e_dbg("Flash descriptor invalid. "
bc7f75fa
AK
1719 "SW Sequencing must be used.");
1720 return -E1000_ERR_NVM;
1721 }
1722
1723 /* Clear FCERR and DAEL in hw status by writing 1 */
1724 hsfsts.hsf_status.flcerr = 1;
1725 hsfsts.hsf_status.dael = 1;
1726
1727 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1728
ad68076e
BA
1729 /*
1730 * Either we should have a hardware SPI cycle in progress
bc7f75fa
AK
1731 * bit to check against, in order to start a new cycle or
1732 * FDONE bit should be changed in the hardware so that it
489815ce 1733 * is 1 after hardware reset, which can then be used as an
bc7f75fa
AK
1734 * indication whether a cycle is in progress or has been
1735 * completed.
1736 */
1737
1738 if (hsfsts.hsf_status.flcinprog == 0) {
ad68076e
BA
1739 /*
1740 * There is no cycle running at present,
1741 * so we can start a cycle
1742 * Begin by setting Flash Cycle Done.
1743 */
bc7f75fa
AK
1744 hsfsts.hsf_status.flcdone = 1;
1745 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1746 ret_val = 0;
1747 } else {
ad68076e
BA
1748 /*
1749 * otherwise poll for sometime so the current
1750 * cycle has a chance to end before giving up.
1751 */
bc7f75fa
AK
1752 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1753 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1754 if (hsfsts.hsf_status.flcinprog == 0) {
1755 ret_val = 0;
1756 break;
1757 }
1758 udelay(1);
1759 }
1760 if (ret_val == 0) {
ad68076e
BA
1761 /*
1762 * Successful in waiting for previous cycle to timeout,
1763 * now set the Flash Cycle Done.
1764 */
bc7f75fa
AK
1765 hsfsts.hsf_status.flcdone = 1;
1766 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1767 } else {
3bb99fe2 1768 e_dbg("Flash controller busy, cannot get access");
bc7f75fa
AK
1769 }
1770 }
1771
1772 return ret_val;
1773}
1774
1775/**
1776 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1777 * @hw: pointer to the HW structure
1778 * @timeout: maximum time to wait for completion
1779 *
1780 * This function starts a flash cycle and waits for its completion.
1781 **/
1782static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1783{
1784 union ich8_hws_flash_ctrl hsflctl;
1785 union ich8_hws_flash_status hsfsts;
1786 s32 ret_val = -E1000_ERR_NVM;
1787 u32 i = 0;
1788
1789 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1790 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1791 hsflctl.hsf_ctrl.flcgo = 1;
1792 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1793
1794 /* wait till FDONE bit is set to 1 */
1795 do {
1796 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1797 if (hsfsts.hsf_status.flcdone == 1)
1798 break;
1799 udelay(1);
1800 } while (i++ < timeout);
1801
1802 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1803 return 0;
1804
1805 return ret_val;
1806}
1807
1808/**
1809 * e1000_read_flash_word_ich8lan - Read word from flash
1810 * @hw: pointer to the HW structure
1811 * @offset: offset to data location
1812 * @data: pointer to the location for storing the data
1813 *
1814 * Reads the flash word at offset into data. Offset is converted
1815 * to bytes before read.
1816 **/
1817static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1818 u16 *data)
1819{
1820 /* Must convert offset into bytes. */
1821 offset <<= 1;
1822
1823 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1824}
1825
f4187b56
BA
1826/**
1827 * e1000_read_flash_byte_ich8lan - Read byte from flash
1828 * @hw: pointer to the HW structure
1829 * @offset: The offset of the byte to read.
1830 * @data: Pointer to a byte to store the value read.
1831 *
1832 * Reads a single byte from the NVM using the flash access registers.
1833 **/
1834static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1835 u8 *data)
1836{
1837 s32 ret_val;
1838 u16 word = 0;
1839
1840 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1841 if (ret_val)
1842 return ret_val;
1843
1844 *data = (u8)word;
1845
1846 return 0;
1847}
1848
bc7f75fa
AK
1849/**
1850 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1851 * @hw: pointer to the HW structure
1852 * @offset: The offset (in bytes) of the byte or word to read.
1853 * @size: Size of data to read, 1=byte 2=word
1854 * @data: Pointer to the word to store the value read.
1855 *
1856 * Reads a byte or word from the NVM using the flash access registers.
1857 **/
1858static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1859 u8 size, u16 *data)
1860{
1861 union ich8_hws_flash_status hsfsts;
1862 union ich8_hws_flash_ctrl hsflctl;
1863 u32 flash_linear_addr;
1864 u32 flash_data = 0;
1865 s32 ret_val = -E1000_ERR_NVM;
1866 u8 count = 0;
1867
1868 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1869 return -E1000_ERR_NVM;
1870
1871 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1872 hw->nvm.flash_base_addr;
1873
1874 do {
1875 udelay(1);
1876 /* Steps */
1877 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1878 if (ret_val != 0)
1879 break;
1880
1881 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1882 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1883 hsflctl.hsf_ctrl.fldbcount = size - 1;
1884 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1885 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1886
1887 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1888
1889 ret_val = e1000_flash_cycle_ich8lan(hw,
1890 ICH_FLASH_READ_COMMAND_TIMEOUT);
1891
ad68076e
BA
1892 /*
1893 * Check if FCERR is set to 1, if set to 1, clear it
bc7f75fa
AK
1894 * and try the whole sequence a few more times, else
1895 * read in (shift in) the Flash Data0, the order is
ad68076e
BA
1896 * least significant byte first msb to lsb
1897 */
bc7f75fa
AK
1898 if (ret_val == 0) {
1899 flash_data = er32flash(ICH_FLASH_FDATA0);
1900 if (size == 1) {
1901 *data = (u8)(flash_data & 0x000000FF);
1902 } else if (size == 2) {
1903 *data = (u16)(flash_data & 0x0000FFFF);
1904 }
1905 break;
1906 } else {
ad68076e
BA
1907 /*
1908 * If we've gotten here, then things are probably
bc7f75fa
AK
1909 * completely hosed, but if the error condition is
1910 * detected, it won't hurt to give it another try...
1911 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1912 */
1913 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1914 if (hsfsts.hsf_status.flcerr == 1) {
1915 /* Repeat for some time before giving up. */
1916 continue;
1917 } else if (hsfsts.hsf_status.flcdone == 0) {
3bb99fe2 1918 e_dbg("Timeout error - flash cycle "
bc7f75fa
AK
1919 "did not complete.");
1920 break;
1921 }
1922 }
1923 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1924
1925 return ret_val;
1926}
1927
1928/**
1929 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1930 * @hw: pointer to the HW structure
1931 * @offset: The offset (in bytes) of the word(s) to write.
1932 * @words: Size of data to write in words
1933 * @data: Pointer to the word(s) to write at offset.
1934 *
1935 * Writes a byte or word to the NVM using the flash access registers.
1936 **/
1937static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1938 u16 *data)
1939{
1940 struct e1000_nvm_info *nvm = &hw->nvm;
1941 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
bc7f75fa
AK
1942 u16 i;
1943
1944 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1945 (words == 0)) {
3bb99fe2 1946 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
1947 return -E1000_ERR_NVM;
1948 }
1949
94d8186a 1950 nvm->ops.acquire(hw);
ca15df58 1951
bc7f75fa 1952 for (i = 0; i < words; i++) {
564ea9bb 1953 dev_spec->shadow_ram[offset+i].modified = true;
bc7f75fa
AK
1954 dev_spec->shadow_ram[offset+i].value = data[i];
1955 }
1956
94d8186a 1957 nvm->ops.release(hw);
ca15df58 1958
bc7f75fa
AK
1959 return 0;
1960}
1961
1962/**
1963 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1964 * @hw: pointer to the HW structure
1965 *
1966 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1967 * which writes the checksum to the shadow ram. The changes in the shadow
1968 * ram are then committed to the EEPROM by processing each bank at a time
1969 * checking for the modified bit and writing only the pending changes.
489815ce 1970 * After a successful commit, the shadow ram is cleared and is ready for
bc7f75fa
AK
1971 * future writes.
1972 **/
1973static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1974{
1975 struct e1000_nvm_info *nvm = &hw->nvm;
1976 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
f4187b56 1977 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
bc7f75fa
AK
1978 s32 ret_val;
1979 u16 data;
1980
1981 ret_val = e1000e_update_nvm_checksum_generic(hw);
1982 if (ret_val)
e243455d 1983 goto out;
bc7f75fa
AK
1984
1985 if (nvm->type != e1000_nvm_flash_sw)
e243455d 1986 goto out;
bc7f75fa 1987
94d8186a 1988 nvm->ops.acquire(hw);
bc7f75fa 1989
ad68076e
BA
1990 /*
1991 * We're writing to the opposite bank so if we're on bank 1,
bc7f75fa 1992 * write to bank 0 etc. We also need to erase the segment that
ad68076e
BA
1993 * is going to be written
1994 */
f4187b56 1995 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
e243455d 1996 if (ret_val) {
3bb99fe2 1997 e_dbg("Could not detect valid bank, assuming bank 0\n");
148675a7 1998 bank = 0;
e243455d 1999 }
f4187b56
BA
2000
2001 if (bank == 0) {
bc7f75fa
AK
2002 new_bank_offset = nvm->flash_bank_size;
2003 old_bank_offset = 0;
e243455d
BA
2004 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2005 if (ret_val) {
94d8186a 2006 nvm->ops.release(hw);
e243455d
BA
2007 goto out;
2008 }
bc7f75fa
AK
2009 } else {
2010 old_bank_offset = nvm->flash_bank_size;
2011 new_bank_offset = 0;
e243455d
BA
2012 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2013 if (ret_val) {
94d8186a 2014 nvm->ops.release(hw);
e243455d
BA
2015 goto out;
2016 }
bc7f75fa
AK
2017 }
2018
2019 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
ad68076e
BA
2020 /*
2021 * Determine whether to write the value stored
bc7f75fa 2022 * in the other NVM bank or a modified value stored
ad68076e
BA
2023 * in the shadow RAM
2024 */
bc7f75fa
AK
2025 if (dev_spec->shadow_ram[i].modified) {
2026 data = dev_spec->shadow_ram[i].value;
2027 } else {
e243455d
BA
2028 ret_val = e1000_read_flash_word_ich8lan(hw, i +
2029 old_bank_offset,
2030 &data);
2031 if (ret_val)
2032 break;
bc7f75fa
AK
2033 }
2034
ad68076e
BA
2035 /*
2036 * If the word is 0x13, then make sure the signature bits
bc7f75fa
AK
2037 * (15:14) are 11b until the commit has completed.
2038 * This will allow us to write 10b which indicates the
2039 * signature is valid. We want to do this after the write
2040 * has completed so that we don't mark the segment valid
ad68076e
BA
2041 * while the write is still in progress
2042 */
bc7f75fa
AK
2043 if (i == E1000_ICH_NVM_SIG_WORD)
2044 data |= E1000_ICH_NVM_SIG_MASK;
2045
2046 /* Convert offset to bytes. */
2047 act_offset = (i + new_bank_offset) << 1;
2048
2049 udelay(100);
2050 /* Write the bytes to the new bank. */
2051 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2052 act_offset,
2053 (u8)data);
2054 if (ret_val)
2055 break;
2056
2057 udelay(100);
2058 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2059 act_offset + 1,
2060 (u8)(data >> 8));
2061 if (ret_val)
2062 break;
2063 }
2064
ad68076e
BA
2065 /*
2066 * Don't bother writing the segment valid bits if sector
2067 * programming failed.
2068 */
bc7f75fa 2069 if (ret_val) {
4a770358 2070 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3bb99fe2 2071 e_dbg("Flash commit failed.\n");
94d8186a 2072 nvm->ops.release(hw);
e243455d 2073 goto out;
bc7f75fa
AK
2074 }
2075
ad68076e
BA
2076 /*
2077 * Finally validate the new segment by setting bit 15:14
bc7f75fa
AK
2078 * to 10b in word 0x13 , this can be done without an
2079 * erase as well since these bits are 11 to start with
ad68076e
BA
2080 * and we need to change bit 14 to 0b
2081 */
bc7f75fa 2082 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
e243455d
BA
2083 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2084 if (ret_val) {
94d8186a 2085 nvm->ops.release(hw);
e243455d
BA
2086 goto out;
2087 }
bc7f75fa
AK
2088 data &= 0xBFFF;
2089 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2090 act_offset * 2 + 1,
2091 (u8)(data >> 8));
2092 if (ret_val) {
94d8186a 2093 nvm->ops.release(hw);
e243455d 2094 goto out;
bc7f75fa
AK
2095 }
2096
ad68076e
BA
2097 /*
2098 * And invalidate the previously valid segment by setting
bc7f75fa
AK
2099 * its signature word (0x13) high_byte to 0b. This can be
2100 * done without an erase because flash erase sets all bits
ad68076e
BA
2101 * to 1's. We can write 1's to 0's without an erase
2102 */
bc7f75fa
AK
2103 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2104 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2105 if (ret_val) {
94d8186a 2106 nvm->ops.release(hw);
e243455d 2107 goto out;
bc7f75fa
AK
2108 }
2109
2110 /* Great! Everything worked, we can now clear the cached entries. */
2111 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
564ea9bb 2112 dev_spec->shadow_ram[i].modified = false;
bc7f75fa
AK
2113 dev_spec->shadow_ram[i].value = 0xFFFF;
2114 }
2115
94d8186a 2116 nvm->ops.release(hw);
bc7f75fa 2117
ad68076e
BA
2118 /*
2119 * Reload the EEPROM, or else modifications will not appear
bc7f75fa
AK
2120 * until after the next adapter reset.
2121 */
2122 e1000e_reload_nvm(hw);
2123 msleep(10);
2124
e243455d
BA
2125out:
2126 if (ret_val)
3bb99fe2 2127 e_dbg("NVM update error: %d\n", ret_val);
e243455d 2128
bc7f75fa
AK
2129 return ret_val;
2130}
2131
2132/**
2133 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2134 * @hw: pointer to the HW structure
2135 *
2136 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2137 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2138 * calculated, in which case we need to calculate the checksum and set bit 6.
2139 **/
2140static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2141{
2142 s32 ret_val;
2143 u16 data;
2144
ad68076e
BA
2145 /*
2146 * Read 0x19 and check bit 6. If this bit is 0, the checksum
bc7f75fa
AK
2147 * needs to be fixed. This bit is an indication that the NVM
2148 * was prepared by OEM software and did not calculate the
2149 * checksum...a likely scenario.
2150 */
2151 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2152 if (ret_val)
2153 return ret_val;
2154
2155 if ((data & 0x40) == 0) {
2156 data |= 0x40;
2157 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2158 if (ret_val)
2159 return ret_val;
2160 ret_val = e1000e_update_nvm_checksum(hw);
2161 if (ret_val)
2162 return ret_val;
2163 }
2164
2165 return e1000e_validate_nvm_checksum_generic(hw);
2166}
2167
4a770358
BA
2168/**
2169 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2170 * @hw: pointer to the HW structure
2171 *
2172 * To prevent malicious write/erase of the NVM, set it to be read-only
2173 * so that the hardware ignores all write/erase cycles of the NVM via
2174 * the flash control registers. The shadow-ram copy of the NVM will
2175 * still be updated, however any updates to this copy will not stick
2176 * across driver reloads.
2177 **/
2178void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2179{
ca15df58 2180 struct e1000_nvm_info *nvm = &hw->nvm;
4a770358
BA
2181 union ich8_flash_protected_range pr0;
2182 union ich8_hws_flash_status hsfsts;
2183 u32 gfpreg;
4a770358 2184
94d8186a 2185 nvm->ops.acquire(hw);
4a770358
BA
2186
2187 gfpreg = er32flash(ICH_FLASH_GFPREG);
2188
2189 /* Write-protect GbE Sector of NVM */
2190 pr0.regval = er32flash(ICH_FLASH_PR0);
2191 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2192 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2193 pr0.range.wpe = true;
2194 ew32flash(ICH_FLASH_PR0, pr0.regval);
2195
2196 /*
2197 * Lock down a subset of GbE Flash Control Registers, e.g.
2198 * PR0 to prevent the write-protection from being lifted.
2199 * Once FLOCKDN is set, the registers protected by it cannot
2200 * be written until FLOCKDN is cleared by a hardware reset.
2201 */
2202 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2203 hsfsts.hsf_status.flockdn = true;
2204 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2205
94d8186a 2206 nvm->ops.release(hw);
4a770358
BA
2207}
2208
bc7f75fa
AK
2209/**
2210 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2211 * @hw: pointer to the HW structure
2212 * @offset: The offset (in bytes) of the byte/word to read.
2213 * @size: Size of data to read, 1=byte 2=word
2214 * @data: The byte(s) to write to the NVM.
2215 *
2216 * Writes one/two bytes to the NVM using the flash access registers.
2217 **/
2218static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2219 u8 size, u16 data)
2220{
2221 union ich8_hws_flash_status hsfsts;
2222 union ich8_hws_flash_ctrl hsflctl;
2223 u32 flash_linear_addr;
2224 u32 flash_data = 0;
2225 s32 ret_val;
2226 u8 count = 0;
2227
2228 if (size < 1 || size > 2 || data > size * 0xff ||
2229 offset > ICH_FLASH_LINEAR_ADDR_MASK)
2230 return -E1000_ERR_NVM;
2231
2232 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2233 hw->nvm.flash_base_addr;
2234
2235 do {
2236 udelay(1);
2237 /* Steps */
2238 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2239 if (ret_val)
2240 break;
2241
2242 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2243 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2244 hsflctl.hsf_ctrl.fldbcount = size -1;
2245 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2246 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2247
2248 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2249
2250 if (size == 1)
2251 flash_data = (u32)data & 0x00FF;
2252 else
2253 flash_data = (u32)data;
2254
2255 ew32flash(ICH_FLASH_FDATA0, flash_data);
2256
ad68076e
BA
2257 /*
2258 * check if FCERR is set to 1 , if set to 1, clear it
2259 * and try the whole sequence a few more times else done
2260 */
bc7f75fa
AK
2261 ret_val = e1000_flash_cycle_ich8lan(hw,
2262 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2263 if (!ret_val)
2264 break;
2265
ad68076e
BA
2266 /*
2267 * If we're here, then things are most likely
bc7f75fa
AK
2268 * completely hosed, but if the error condition
2269 * is detected, it won't hurt to give it another
2270 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2271 */
2272 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2273 if (hsfsts.hsf_status.flcerr == 1)
2274 /* Repeat for some time before giving up. */
2275 continue;
2276 if (hsfsts.hsf_status.flcdone == 0) {
3bb99fe2 2277 e_dbg("Timeout error - flash cycle "
bc7f75fa
AK
2278 "did not complete.");
2279 break;
2280 }
2281 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2282
2283 return ret_val;
2284}
2285
2286/**
2287 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2288 * @hw: pointer to the HW structure
2289 * @offset: The index of the byte to read.
2290 * @data: The byte to write to the NVM.
2291 *
2292 * Writes a single byte to the NVM using the flash access registers.
2293 **/
2294static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2295 u8 data)
2296{
2297 u16 word = (u16)data;
2298
2299 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2300}
2301
2302/**
2303 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2304 * @hw: pointer to the HW structure
2305 * @offset: The offset of the byte to write.
2306 * @byte: The byte to write to the NVM.
2307 *
2308 * Writes a single byte to the NVM using the flash access registers.
2309 * Goes through a retry algorithm before giving up.
2310 **/
2311static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2312 u32 offset, u8 byte)
2313{
2314 s32 ret_val;
2315 u16 program_retries;
2316
2317 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2318 if (!ret_val)
2319 return ret_val;
2320
2321 for (program_retries = 0; program_retries < 100; program_retries++) {
3bb99fe2 2322 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
bc7f75fa
AK
2323 udelay(100);
2324 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2325 if (!ret_val)
2326 break;
2327 }
2328 if (program_retries == 100)
2329 return -E1000_ERR_NVM;
2330
2331 return 0;
2332}
2333
2334/**
2335 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2336 * @hw: pointer to the HW structure
2337 * @bank: 0 for first bank, 1 for second bank, etc.
2338 *
2339 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2340 * bank N is 4096 * N + flash_reg_addr.
2341 **/
2342static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2343{
2344 struct e1000_nvm_info *nvm = &hw->nvm;
2345 union ich8_hws_flash_status hsfsts;
2346 union ich8_hws_flash_ctrl hsflctl;
2347 u32 flash_linear_addr;
2348 /* bank size is in 16bit words - adjust to bytes */
2349 u32 flash_bank_size = nvm->flash_bank_size * 2;
2350 s32 ret_val;
2351 s32 count = 0;
2352 s32 iteration;
2353 s32 sector_size;
2354 s32 j;
2355
2356 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2357
ad68076e
BA
2358 /*
2359 * Determine HW Sector size: Read BERASE bits of hw flash status
2360 * register
2361 * 00: The Hw sector is 256 bytes, hence we need to erase 16
bc7f75fa
AK
2362 * consecutive sectors. The start index for the nth Hw sector
2363 * can be calculated as = bank * 4096 + n * 256
2364 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2365 * The start index for the nth Hw sector can be calculated
2366 * as = bank * 4096
2367 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2368 * (ich9 only, otherwise error condition)
2369 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2370 */
2371 switch (hsfsts.hsf_status.berasesz) {
2372 case 0:
2373 /* Hw sector size 256 */
2374 sector_size = ICH_FLASH_SEG_SIZE_256;
2375 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2376 break;
2377 case 1:
2378 sector_size = ICH_FLASH_SEG_SIZE_4K;
28c9195a 2379 iteration = 1;
bc7f75fa
AK
2380 break;
2381 case 2:
148675a7
BA
2382 sector_size = ICH_FLASH_SEG_SIZE_8K;
2383 iteration = 1;
bc7f75fa
AK
2384 break;
2385 case 3:
2386 sector_size = ICH_FLASH_SEG_SIZE_64K;
28c9195a 2387 iteration = 1;
bc7f75fa
AK
2388 break;
2389 default:
2390 return -E1000_ERR_NVM;
2391 }
2392
2393 /* Start with the base address, then add the sector offset. */
2394 flash_linear_addr = hw->nvm.flash_base_addr;
148675a7 2395 flash_linear_addr += (bank) ? flash_bank_size : 0;
bc7f75fa
AK
2396
2397 for (j = 0; j < iteration ; j++) {
2398 do {
2399 /* Steps */
2400 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2401 if (ret_val)
2402 return ret_val;
2403
ad68076e
BA
2404 /*
2405 * Write a value 11 (block Erase) in Flash
2406 * Cycle field in hw flash control
2407 */
bc7f75fa
AK
2408 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2409 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2410 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2411
ad68076e
BA
2412 /*
2413 * Write the last 24 bits of an index within the
bc7f75fa
AK
2414 * block into Flash Linear address field in Flash
2415 * Address.
2416 */
2417 flash_linear_addr += (j * sector_size);
2418 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2419
2420 ret_val = e1000_flash_cycle_ich8lan(hw,
2421 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2422 if (ret_val == 0)
2423 break;
2424
ad68076e
BA
2425 /*
2426 * Check if FCERR is set to 1. If 1,
bc7f75fa 2427 * clear it and try the whole sequence
ad68076e
BA
2428 * a few more times else Done
2429 */
bc7f75fa
AK
2430 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2431 if (hsfsts.hsf_status.flcerr == 1)
ad68076e 2432 /* repeat for some time before giving up */
bc7f75fa
AK
2433 continue;
2434 else if (hsfsts.hsf_status.flcdone == 0)
2435 return ret_val;
2436 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2437 }
2438
2439 return 0;
2440}
2441
2442/**
2443 * e1000_valid_led_default_ich8lan - Set the default LED settings
2444 * @hw: pointer to the HW structure
2445 * @data: Pointer to the LED settings
2446 *
2447 * Reads the LED default settings from the NVM to data. If the NVM LED
2448 * settings is all 0's or F's, set the LED default to a valid LED default
2449 * setting.
2450 **/
2451static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2452{
2453 s32 ret_val;
2454
2455 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2456 if (ret_val) {
3bb99fe2 2457 e_dbg("NVM Read Error\n");
bc7f75fa
AK
2458 return ret_val;
2459 }
2460
2461 if (*data == ID_LED_RESERVED_0000 ||
2462 *data == ID_LED_RESERVED_FFFF)
2463 *data = ID_LED_DEFAULT_ICH8LAN;
2464
2465 return 0;
2466}
2467
a4f58f54
BA
2468/**
2469 * e1000_id_led_init_pchlan - store LED configurations
2470 * @hw: pointer to the HW structure
2471 *
2472 * PCH does not control LEDs via the LEDCTL register, rather it uses
2473 * the PHY LED configuration register.
2474 *
2475 * PCH also does not have an "always on" or "always off" mode which
2476 * complicates the ID feature. Instead of using the "on" mode to indicate
2477 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2478 * use "link_up" mode. The LEDs will still ID on request if there is no
2479 * link based on logic in e1000_led_[on|off]_pchlan().
2480 **/
2481static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2482{
2483 struct e1000_mac_info *mac = &hw->mac;
2484 s32 ret_val;
2485 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2486 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2487 u16 data, i, temp, shift;
2488
2489 /* Get default ID LED modes */
2490 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2491 if (ret_val)
2492 goto out;
2493
2494 mac->ledctl_default = er32(LEDCTL);
2495 mac->ledctl_mode1 = mac->ledctl_default;
2496 mac->ledctl_mode2 = mac->ledctl_default;
2497
2498 for (i = 0; i < 4; i++) {
2499 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2500 shift = (i * 5);
2501 switch (temp) {
2502 case ID_LED_ON1_DEF2:
2503 case ID_LED_ON1_ON2:
2504 case ID_LED_ON1_OFF2:
2505 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2506 mac->ledctl_mode1 |= (ledctl_on << shift);
2507 break;
2508 case ID_LED_OFF1_DEF2:
2509 case ID_LED_OFF1_ON2:
2510 case ID_LED_OFF1_OFF2:
2511 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2512 mac->ledctl_mode1 |= (ledctl_off << shift);
2513 break;
2514 default:
2515 /* Do nothing */
2516 break;
2517 }
2518 switch (temp) {
2519 case ID_LED_DEF1_ON2:
2520 case ID_LED_ON1_ON2:
2521 case ID_LED_OFF1_ON2:
2522 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2523 mac->ledctl_mode2 |= (ledctl_on << shift);
2524 break;
2525 case ID_LED_DEF1_OFF2:
2526 case ID_LED_ON1_OFF2:
2527 case ID_LED_OFF1_OFF2:
2528 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2529 mac->ledctl_mode2 |= (ledctl_off << shift);
2530 break;
2531 default:
2532 /* Do nothing */
2533 break;
2534 }
2535 }
2536
2537out:
2538 return ret_val;
2539}
2540
bc7f75fa
AK
2541/**
2542 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2543 * @hw: pointer to the HW structure
2544 *
2545 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2546 * register, so the the bus width is hard coded.
2547 **/
2548static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2549{
2550 struct e1000_bus_info *bus = &hw->bus;
2551 s32 ret_val;
2552
2553 ret_val = e1000e_get_bus_info_pcie(hw);
2554
ad68076e
BA
2555 /*
2556 * ICH devices are "PCI Express"-ish. They have
bc7f75fa
AK
2557 * a configuration space, but do not contain
2558 * PCI Express Capability registers, so bus width
2559 * must be hardcoded.
2560 */
2561 if (bus->width == e1000_bus_width_unknown)
2562 bus->width = e1000_bus_width_pcie_x1;
2563
2564 return ret_val;
2565}
2566
2567/**
2568 * e1000_reset_hw_ich8lan - Reset the hardware
2569 * @hw: pointer to the HW structure
2570 *
2571 * Does a full reset of the hardware which includes a reset of the PHY and
2572 * MAC.
2573 **/
2574static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2575{
1d5846b9 2576 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
db2932ec 2577 u16 reg;
bc7f75fa
AK
2578 u32 ctrl, icr, kab;
2579 s32 ret_val;
2580
ad68076e
BA
2581 /*
2582 * Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
2583 * on the last TLP read/write transaction when MAC is reset.
2584 */
2585 ret_val = e1000e_disable_pcie_master(hw);
2586 if (ret_val) {
3bb99fe2 2587 e_dbg("PCI-E Master disable polling has failed.\n");
bc7f75fa
AK
2588 }
2589
3bb99fe2 2590 e_dbg("Masking off all interrupts\n");
bc7f75fa
AK
2591 ew32(IMC, 0xffffffff);
2592
ad68076e
BA
2593 /*
2594 * Disable the Transmit and Receive units. Then delay to allow
bc7f75fa
AK
2595 * any pending transactions to complete before we hit the MAC
2596 * with the global reset.
2597 */
2598 ew32(RCTL, 0);
2599 ew32(TCTL, E1000_TCTL_PSP);
2600 e1e_flush();
2601
2602 msleep(10);
2603
2604 /* Workaround for ICH8 bit corruption issue in FIFO memory */
2605 if (hw->mac.type == e1000_ich8lan) {
2606 /* Set Tx and Rx buffer allocation to 8k apiece. */
2607 ew32(PBA, E1000_PBA_8K);
2608 /* Set Packet Buffer Size to 16k. */
2609 ew32(PBS, E1000_PBS_16K);
2610 }
2611
1d5846b9
BA
2612 if (hw->mac.type == e1000_pchlan) {
2613 /* Save the NVM K1 bit setting*/
2614 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
2615 if (ret_val)
2616 return ret_val;
2617
2618 if (reg & E1000_NVM_K1_ENABLE)
2619 dev_spec->nvm_k1_enabled = true;
2620 else
2621 dev_spec->nvm_k1_enabled = false;
2622 }
2623
bc7f75fa
AK
2624 ctrl = er32(CTRL);
2625
2626 if (!e1000_check_reset_block(hw)) {
fc0c7760
BA
2627 /* Clear PHY Reset Asserted bit */
2628 if (hw->mac.type >= e1000_pchlan) {
2629 u32 status = er32(STATUS);
2630 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
2631 }
2632
ad68076e
BA
2633 /*
2634 * PHY HW reset requires MAC CORE reset at the same
bc7f75fa
AK
2635 * time to make sure the interface between MAC and the
2636 * external PHY is reset.
2637 */
2638 ctrl |= E1000_CTRL_PHY_RST;
2639 }
2640 ret_val = e1000_acquire_swflag_ich8lan(hw);
30bb0e0d 2641 /* Whether or not the swflag was acquired, we need to reset the part */
3bb99fe2 2642 e_dbg("Issuing a global reset to ich8lan\n");
bc7f75fa
AK
2643 ew32(CTRL, (ctrl | E1000_CTRL_RST));
2644 msleep(20);
2645
fc0c7760 2646 if (!ret_val)
30bb0e0d 2647 e1000_release_swflag_ich8lan(hw);
37f40239 2648
fc0c7760
BA
2649 if (ctrl & E1000_CTRL_PHY_RST)
2650 ret_val = hw->phy.ops.get_cfg_done(hw);
2651
2652 if (hw->mac.type >= e1000_ich10lan) {
2653 e1000_lan_init_done_ich8lan(hw);
2654 } else {
2655 ret_val = e1000e_get_auto_rd_done(hw);
2656 if (ret_val) {
2657 /*
2658 * When auto config read does not complete, do not
2659 * return with an error. This can happen in situations
2660 * where there is no eeprom and prevents getting link.
2661 */
3bb99fe2 2662 e_dbg("Auto Read Done did not complete\n");
fc0c7760 2663 }
bc7f75fa 2664 }
db2932ec
BA
2665 /* Dummy read to clear the phy wakeup bit after lcd reset */
2666 if (hw->mac.type == e1000_pchlan)
2667 e1e_rphy(hw, BM_WUC, &reg);
bc7f75fa 2668
f523d211
BA
2669 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2670 if (ret_val)
2671 goto out;
2672
2673 if (hw->mac.type == e1000_pchlan) {
2674 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2675 if (ret_val)
2676 goto out;
2677 }
7d3cabbc
BA
2678 /*
2679 * For PCH, this write will make sure that any noise
2680 * will be detected as a CRC error and be dropped rather than show up
2681 * as a bad packet to the DMA engine.
2682 */
2683 if (hw->mac.type == e1000_pchlan)
2684 ew32(CRC_OFFSET, 0x65656565);
2685
bc7f75fa
AK
2686 ew32(IMC, 0xffffffff);
2687 icr = er32(ICR);
2688
2689 kab = er32(KABGTXD);
2690 kab |= E1000_KABGTXD_BGSQLBIAS;
2691 ew32(KABGTXD, kab);
2692
a4f58f54
BA
2693 if (hw->mac.type == e1000_pchlan)
2694 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2695
f523d211 2696out:
bc7f75fa
AK
2697 return ret_val;
2698}
2699
2700/**
2701 * e1000_init_hw_ich8lan - Initialize the hardware
2702 * @hw: pointer to the HW structure
2703 *
2704 * Prepares the hardware for transmit and receive by doing the following:
2705 * - initialize hardware bits
2706 * - initialize LED identification
2707 * - setup receive address registers
2708 * - setup flow control
489815ce 2709 * - setup transmit descriptors
bc7f75fa
AK
2710 * - clear statistics
2711 **/
2712static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
2713{
2714 struct e1000_mac_info *mac = &hw->mac;
2715 u32 ctrl_ext, txdctl, snoop;
2716 s32 ret_val;
2717 u16 i;
2718
2719 e1000_initialize_hw_bits_ich8lan(hw);
2720
2721 /* Initialize identification LED */
a4f58f54 2722 ret_val = mac->ops.id_led_init(hw);
de39b752 2723 if (ret_val)
3bb99fe2 2724 e_dbg("Error initializing identification LED\n");
de39b752 2725 /* This is not fatal and we should not stop init due to this */
bc7f75fa
AK
2726
2727 /* Setup the receive address. */
2728 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2729
2730 /* Zero out the Multicast HASH table */
3bb99fe2 2731 e_dbg("Zeroing the MTA\n");
bc7f75fa
AK
2732 for (i = 0; i < mac->mta_reg_count; i++)
2733 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2734
fc0c7760
BA
2735 /*
2736 * The 82578 Rx buffer will stall if wakeup is enabled in host and
2737 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
2738 * Reset the phy after disabling host wakeup to reset the Rx buffer.
2739 */
2740 if (hw->phy.type == e1000_phy_82578) {
94d8186a 2741 hw->phy.ops.read_reg(hw, BM_WUC, &i);
fc0c7760
BA
2742 ret_val = e1000_phy_hw_reset_ich8lan(hw);
2743 if (ret_val)
2744 return ret_val;
2745 }
2746
bc7f75fa
AK
2747 /* Setup link and flow control */
2748 ret_val = e1000_setup_link_ich8lan(hw);
2749
2750 /* Set the transmit descriptor write-back policy for both queues */
e9ec2c0f 2751 txdctl = er32(TXDCTL(0));
bc7f75fa
AK
2752 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2753 E1000_TXDCTL_FULL_TX_DESC_WB;
2754 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2755 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
e9ec2c0f
JK
2756 ew32(TXDCTL(0), txdctl);
2757 txdctl = er32(TXDCTL(1));
bc7f75fa
AK
2758 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2759 E1000_TXDCTL_FULL_TX_DESC_WB;
2760 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2761 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
e9ec2c0f 2762 ew32(TXDCTL(1), txdctl);
bc7f75fa 2763
ad68076e
BA
2764 /*
2765 * ICH8 has opposite polarity of no_snoop bits.
2766 * By default, we should use snoop behavior.
2767 */
bc7f75fa
AK
2768 if (mac->type == e1000_ich8lan)
2769 snoop = PCIE_ICH8_SNOOP_ALL;
2770 else
2771 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2772 e1000e_set_pcie_no_snoop(hw, snoop);
2773
2774 ctrl_ext = er32(CTRL_EXT);
2775 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2776 ew32(CTRL_EXT, ctrl_ext);
2777
ad68076e
BA
2778 /*
2779 * Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
2780 * important that we do this after we have tried to establish link
2781 * because the symbol error count will increment wildly if there
2782 * is no link.
2783 */
2784 e1000_clear_hw_cntrs_ich8lan(hw);
2785
2786 return 0;
2787}
2788/**
2789 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2790 * @hw: pointer to the HW structure
2791 *
2792 * Sets/Clears required hardware bits necessary for correctly setting up the
2793 * hardware for transmit and receive.
2794 **/
2795static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2796{
2797 u32 reg;
2798
2799 /* Extended Device Control */
2800 reg = er32(CTRL_EXT);
2801 reg |= (1 << 22);
a4f58f54
BA
2802 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2803 if (hw->mac.type >= e1000_pchlan)
2804 reg |= E1000_CTRL_EXT_PHYPDEN;
bc7f75fa
AK
2805 ew32(CTRL_EXT, reg);
2806
2807 /* Transmit Descriptor Control 0 */
e9ec2c0f 2808 reg = er32(TXDCTL(0));
bc7f75fa 2809 reg |= (1 << 22);
e9ec2c0f 2810 ew32(TXDCTL(0), reg);
bc7f75fa
AK
2811
2812 /* Transmit Descriptor Control 1 */
e9ec2c0f 2813 reg = er32(TXDCTL(1));
bc7f75fa 2814 reg |= (1 << 22);
e9ec2c0f 2815 ew32(TXDCTL(1), reg);
bc7f75fa
AK
2816
2817 /* Transmit Arbitration Control 0 */
e9ec2c0f 2818 reg = er32(TARC(0));
bc7f75fa
AK
2819 if (hw->mac.type == e1000_ich8lan)
2820 reg |= (1 << 28) | (1 << 29);
2821 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
e9ec2c0f 2822 ew32(TARC(0), reg);
bc7f75fa
AK
2823
2824 /* Transmit Arbitration Control 1 */
e9ec2c0f 2825 reg = er32(TARC(1));
bc7f75fa
AK
2826 if (er32(TCTL) & E1000_TCTL_MULR)
2827 reg &= ~(1 << 28);
2828 else
2829 reg |= (1 << 28);
2830 reg |= (1 << 24) | (1 << 26) | (1 << 30);
e9ec2c0f 2831 ew32(TARC(1), reg);
bc7f75fa
AK
2832
2833 /* Device Status */
2834 if (hw->mac.type == e1000_ich8lan) {
2835 reg = er32(STATUS);
2836 reg &= ~(1 << 31);
2837 ew32(STATUS, reg);
2838 }
2839}
2840
2841/**
2842 * e1000_setup_link_ich8lan - Setup flow control and link settings
2843 * @hw: pointer to the HW structure
2844 *
2845 * Determines which flow control settings to use, then configures flow
2846 * control. Calls the appropriate media-specific link configuration
2847 * function. Assuming the adapter has a valid link partner, a valid link
2848 * should be established. Assumes the hardware has previously been reset
2849 * and the transmitter and receiver are not enabled.
2850 **/
2851static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2852{
bc7f75fa
AK
2853 s32 ret_val;
2854
2855 if (e1000_check_reset_block(hw))
2856 return 0;
2857
ad68076e
BA
2858 /*
2859 * ICH parts do not have a word in the NVM to determine
bc7f75fa
AK
2860 * the default flow control setting, so we explicitly
2861 * set it to full.
2862 */
37289d9c
BA
2863 if (hw->fc.requested_mode == e1000_fc_default) {
2864 /* Workaround h/w hang when Tx flow control enabled */
2865 if (hw->mac.type == e1000_pchlan)
2866 hw->fc.requested_mode = e1000_fc_rx_pause;
2867 else
2868 hw->fc.requested_mode = e1000_fc_full;
2869 }
bc7f75fa 2870
5c48ef3e
BA
2871 /*
2872 * Save off the requested flow control mode for use later. Depending
2873 * on the link partner's capabilities, we may or may not use this mode.
2874 */
2875 hw->fc.current_mode = hw->fc.requested_mode;
bc7f75fa 2876
3bb99fe2 2877 e_dbg("After fix-ups FlowControl is now = %x\n",
5c48ef3e 2878 hw->fc.current_mode);
bc7f75fa
AK
2879
2880 /* Continue to configure the copper link. */
2881 ret_val = e1000_setup_copper_link_ich8lan(hw);
2882 if (ret_val)
2883 return ret_val;
2884
318a94d6 2885 ew32(FCTTV, hw->fc.pause_time);
a4f58f54
BA
2886 if ((hw->phy.type == e1000_phy_82578) ||
2887 (hw->phy.type == e1000_phy_82577)) {
94d8186a 2888 ret_val = hw->phy.ops.write_reg(hw,
a4f58f54
BA
2889 PHY_REG(BM_PORT_CTRL_PAGE, 27),
2890 hw->fc.pause_time);
2891 if (ret_val)
2892 return ret_val;
2893 }
bc7f75fa
AK
2894
2895 return e1000e_set_fc_watermarks(hw);
2896}
2897
2898/**
2899 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2900 * @hw: pointer to the HW structure
2901 *
2902 * Configures the kumeran interface to the PHY to wait the appropriate time
2903 * when polling the PHY, then call the generic setup_copper_link to finish
2904 * configuring the copper link.
2905 **/
2906static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2907{
2908 u32 ctrl;
2909 s32 ret_val;
2910 u16 reg_data;
2911
2912 ctrl = er32(CTRL);
2913 ctrl |= E1000_CTRL_SLU;
2914 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2915 ew32(CTRL, ctrl);
2916
ad68076e
BA
2917 /*
2918 * Set the mac to wait the maximum time between each iteration
bc7f75fa 2919 * and increase the max iterations when polling the phy;
ad68076e
BA
2920 * this fixes erroneous timeouts at 10Mbps.
2921 */
bc7f75fa
AK
2922 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2923 if (ret_val)
2924 return ret_val;
2925 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
2926 if (ret_val)
2927 return ret_val;
2928 reg_data |= 0x3F;
2929 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2930 if (ret_val)
2931 return ret_val;
2932
a4f58f54
BA
2933 switch (hw->phy.type) {
2934 case e1000_phy_igp_3:
bc7f75fa
AK
2935 ret_val = e1000e_copper_link_setup_igp(hw);
2936 if (ret_val)
2937 return ret_val;
a4f58f54
BA
2938 break;
2939 case e1000_phy_bm:
2940 case e1000_phy_82578:
97ac8cae
BA
2941 ret_val = e1000e_copper_link_setup_m88(hw);
2942 if (ret_val)
2943 return ret_val;
a4f58f54
BA
2944 break;
2945 case e1000_phy_82577:
2946 ret_val = e1000_copper_link_setup_82577(hw);
2947 if (ret_val)
2948 return ret_val;
2949 break;
2950 case e1000_phy_ife:
94d8186a 2951 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
a4f58f54 2952 &reg_data);
97ac8cae
BA
2953 if (ret_val)
2954 return ret_val;
2955
2956 reg_data &= ~IFE_PMC_AUTO_MDIX;
2957
2958 switch (hw->phy.mdix) {
2959 case 1:
2960 reg_data &= ~IFE_PMC_FORCE_MDIX;
2961 break;
2962 case 2:
2963 reg_data |= IFE_PMC_FORCE_MDIX;
2964 break;
2965 case 0:
2966 default:
2967 reg_data |= IFE_PMC_AUTO_MDIX;
2968 break;
2969 }
94d8186a 2970 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
a4f58f54 2971 reg_data);
97ac8cae
BA
2972 if (ret_val)
2973 return ret_val;
a4f58f54
BA
2974 break;
2975 default:
2976 break;
97ac8cae 2977 }
bc7f75fa
AK
2978 return e1000e_setup_copper_link(hw);
2979}
2980
2981/**
2982 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2983 * @hw: pointer to the HW structure
2984 * @speed: pointer to store current link speed
2985 * @duplex: pointer to store the current link duplex
2986 *
ad68076e 2987 * Calls the generic get_speed_and_duplex to retrieve the current link
bc7f75fa
AK
2988 * information and then calls the Kumeran lock loss workaround for links at
2989 * gigabit speeds.
2990 **/
2991static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2992 u16 *duplex)
2993{
2994 s32 ret_val;
2995
2996 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2997 if (ret_val)
2998 return ret_val;
2999
3000 if ((hw->mac.type == e1000_ich8lan) &&
3001 (hw->phy.type == e1000_phy_igp_3) &&
3002 (*speed == SPEED_1000)) {
3003 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3004 }
3005
3006 return ret_val;
3007}
3008
3009/**
3010 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3011 * @hw: pointer to the HW structure
3012 *
3013 * Work-around for 82566 Kumeran PCS lock loss:
3014 * On link status change (i.e. PCI reset, speed change) and link is up and
3015 * speed is gigabit-
3016 * 0) if workaround is optionally disabled do nothing
3017 * 1) wait 1ms for Kumeran link to come up
3018 * 2) check Kumeran Diagnostic register PCS lock loss bit
3019 * 3) if not set the link is locked (all is good), otherwise...
3020 * 4) reset the PHY
3021 * 5) repeat up to 10 times
3022 * Note: this is only called for IGP3 copper when speed is 1gb.
3023 **/
3024static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3025{
3026 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3027 u32 phy_ctrl;
3028 s32 ret_val;
3029 u16 i, data;
3030 bool link;
3031
3032 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3033 return 0;
3034
ad68076e
BA
3035 /*
3036 * Make sure link is up before proceeding. If not just return.
bc7f75fa 3037 * Attempting this while link is negotiating fouled up link
ad68076e
BA
3038 * stability
3039 */
bc7f75fa
AK
3040 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3041 if (!link)
3042 return 0;
3043
3044 for (i = 0; i < 10; i++) {
3045 /* read once to clear */
3046 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3047 if (ret_val)
3048 return ret_val;
3049 /* and again to get new status */
3050 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3051 if (ret_val)
3052 return ret_val;
3053
3054 /* check for PCS lock */
3055 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3056 return 0;
3057
3058 /* Issue PHY reset */
3059 e1000_phy_hw_reset(hw);
3060 mdelay(5);
3061 }
3062 /* Disable GigE link negotiation */
3063 phy_ctrl = er32(PHY_CTRL);
3064 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3065 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3066 ew32(PHY_CTRL, phy_ctrl);
3067
ad68076e
BA
3068 /*
3069 * Call gig speed drop workaround on Gig disable before accessing
3070 * any PHY registers
3071 */
bc7f75fa
AK
3072 e1000e_gig_downshift_workaround_ich8lan(hw);
3073
3074 /* unable to acquire PCS lock */
3075 return -E1000_ERR_PHY;
3076}
3077
3078/**
ad68076e 3079 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
bc7f75fa 3080 * @hw: pointer to the HW structure
489815ce 3081 * @state: boolean value used to set the current Kumeran workaround state
bc7f75fa 3082 *
564ea9bb
BA
3083 * If ICH8, set the current Kumeran workaround state (enabled - true
3084 * /disabled - false).
bc7f75fa
AK
3085 **/
3086void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3087 bool state)
3088{
3089 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3090
3091 if (hw->mac.type != e1000_ich8lan) {
3bb99fe2 3092 e_dbg("Workaround applies to ICH8 only.\n");
bc7f75fa
AK
3093 return;
3094 }
3095
3096 dev_spec->kmrn_lock_loss_workaround_enabled = state;
3097}
3098
3099/**
3100 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3101 * @hw: pointer to the HW structure
3102 *
3103 * Workaround for 82566 power-down on D3 entry:
3104 * 1) disable gigabit link
3105 * 2) write VR power-down enable
3106 * 3) read it back
3107 * Continue if successful, else issue LCD reset and repeat
3108 **/
3109void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3110{
3111 u32 reg;
3112 u16 data;
3113 u8 retry = 0;
3114
3115 if (hw->phy.type != e1000_phy_igp_3)
3116 return;
3117
3118 /* Try the workaround twice (if needed) */
3119 do {
3120 /* Disable link */
3121 reg = er32(PHY_CTRL);
3122 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3123 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3124 ew32(PHY_CTRL, reg);
3125
ad68076e
BA
3126 /*
3127 * Call gig speed drop workaround on Gig disable before
3128 * accessing any PHY registers
3129 */
bc7f75fa
AK
3130 if (hw->mac.type == e1000_ich8lan)
3131 e1000e_gig_downshift_workaround_ich8lan(hw);
3132
3133 /* Write VR power-down enable */
3134 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3135 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3136 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3137
3138 /* Read it back and test */
3139 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3140 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3141 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3142 break;
3143
3144 /* Issue PHY reset and repeat at most one more time */
3145 reg = er32(CTRL);
3146 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3147 retry++;
3148 } while (retry);
3149}
3150
3151/**
3152 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3153 * @hw: pointer to the HW structure
3154 *
3155 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
489815ce 3156 * LPLU, Gig disable, MDIC PHY reset):
bc7f75fa
AK
3157 * 1) Set Kumeran Near-end loopback
3158 * 2) Clear Kumeran Near-end loopback
3159 * Should only be called for ICH8[m] devices with IGP_3 Phy.
3160 **/
3161void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3162{
3163 s32 ret_val;
3164 u16 reg_data;
3165
3166 if ((hw->mac.type != e1000_ich8lan) ||
3167 (hw->phy.type != e1000_phy_igp_3))
3168 return;
3169
3170 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3171 &reg_data);
3172 if (ret_val)
3173 return;
3174 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3175 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3176 reg_data);
3177 if (ret_val)
3178 return;
3179 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3180 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3181 reg_data);
3182}
3183
97ac8cae
BA
3184/**
3185 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3186 * @hw: pointer to the HW structure
3187 *
3188 * During S0 to Sx transition, it is possible the link remains at gig
3189 * instead of negotiating to a lower speed. Before going to Sx, set
3190 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3191 * to a lower speed.
3192 *
a4f58f54 3193 * Should only be called for applicable parts.
97ac8cae
BA
3194 **/
3195void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
3196{
3197 u32 phy_ctrl;
3198
a4f58f54
BA
3199 switch (hw->mac.type) {
3200 case e1000_ich9lan:
3201 case e1000_ich10lan:
3202 case e1000_pchlan:
97ac8cae
BA
3203 phy_ctrl = er32(PHY_CTRL);
3204 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
3205 E1000_PHY_CTRL_GBE_DISABLE;
3206 ew32(PHY_CTRL, phy_ctrl);
a4f58f54 3207
a4f58f54 3208 if (hw->mac.type == e1000_pchlan)
74eee2e8 3209 e1000_phy_hw_reset_ich8lan(hw);
a4f58f54
BA
3210 default:
3211 break;
97ac8cae
BA
3212 }
3213
3214 return;
3215}
3216
bc7f75fa
AK
3217/**
3218 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3219 * @hw: pointer to the HW structure
3220 *
3221 * Return the LED back to the default configuration.
3222 **/
3223static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3224{
3225 if (hw->phy.type == e1000_phy_ife)
3226 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3227
3228 ew32(LEDCTL, hw->mac.ledctl_default);
3229 return 0;
3230}
3231
3232/**
489815ce 3233 * e1000_led_on_ich8lan - Turn LEDs on
bc7f75fa
AK
3234 * @hw: pointer to the HW structure
3235 *
489815ce 3236 * Turn on the LEDs.
bc7f75fa
AK
3237 **/
3238static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3239{
3240 if (hw->phy.type == e1000_phy_ife)
3241 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3242 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3243
3244 ew32(LEDCTL, hw->mac.ledctl_mode2);
3245 return 0;
3246}
3247
3248/**
489815ce 3249 * e1000_led_off_ich8lan - Turn LEDs off
bc7f75fa
AK
3250 * @hw: pointer to the HW structure
3251 *
489815ce 3252 * Turn off the LEDs.
bc7f75fa
AK
3253 **/
3254static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3255{
3256 if (hw->phy.type == e1000_phy_ife)
3257 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3258 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
3259
3260 ew32(LEDCTL, hw->mac.ledctl_mode1);
3261 return 0;
3262}
3263
a4f58f54
BA
3264/**
3265 * e1000_setup_led_pchlan - Configures SW controllable LED
3266 * @hw: pointer to the HW structure
3267 *
3268 * This prepares the SW controllable LED for use.
3269 **/
3270static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3271{
94d8186a 3272 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
a4f58f54
BA
3273 (u16)hw->mac.ledctl_mode1);
3274}
3275
3276/**
3277 * e1000_cleanup_led_pchlan - Restore the default LED operation
3278 * @hw: pointer to the HW structure
3279 *
3280 * Return the LED back to the default configuration.
3281 **/
3282static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3283{
94d8186a 3284 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
a4f58f54
BA
3285 (u16)hw->mac.ledctl_default);
3286}
3287
3288/**
3289 * e1000_led_on_pchlan - Turn LEDs on
3290 * @hw: pointer to the HW structure
3291 *
3292 * Turn on the LEDs.
3293 **/
3294static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3295{
3296 u16 data = (u16)hw->mac.ledctl_mode2;
3297 u32 i, led;
3298
3299 /*
3300 * If no link, then turn LED on by setting the invert bit
3301 * for each LED that's mode is "link_up" in ledctl_mode2.
3302 */
3303 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3304 for (i = 0; i < 3; i++) {
3305 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3306 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3307 E1000_LEDCTL_MODE_LINK_UP)
3308 continue;
3309 if (led & E1000_PHY_LED0_IVRT)
3310 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3311 else
3312 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3313 }
3314 }
3315
94d8186a 3316 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
a4f58f54
BA
3317}
3318
3319/**
3320 * e1000_led_off_pchlan - Turn LEDs off
3321 * @hw: pointer to the HW structure
3322 *
3323 * Turn off the LEDs.
3324 **/
3325static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3326{
3327 u16 data = (u16)hw->mac.ledctl_mode1;
3328 u32 i, led;
3329
3330 /*
3331 * If no link, then turn LED off by clearing the invert bit
3332 * for each LED that's mode is "link_up" in ledctl_mode1.
3333 */
3334 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3335 for (i = 0; i < 3; i++) {
3336 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3337 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3338 E1000_LEDCTL_MODE_LINK_UP)
3339 continue;
3340 if (led & E1000_PHY_LED0_IVRT)
3341 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3342 else
3343 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3344 }
3345 }
3346
94d8186a 3347 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
a4f58f54
BA
3348}
3349
f4187b56
BA
3350/**
3351 * e1000_get_cfg_done_ich8lan - Read config done bit
3352 * @hw: pointer to the HW structure
3353 *
3354 * Read the management control register for the config done bit for
3355 * completion status. NOTE: silicon which is EEPROM-less will fail trying
3356 * to read the config done bit, so an error is *ONLY* logged and returns
a4f58f54 3357 * 0. If we were to return with error, EEPROM-less silicon
f4187b56
BA
3358 * would not be able to be reset or change link.
3359 **/
3360static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3361{
3362 u32 bank = 0;
3363
fc0c7760
BA
3364 if (hw->mac.type >= e1000_pchlan) {
3365 u32 status = er32(STATUS);
3366
3367 if (status & E1000_STATUS_PHYRA)
3368 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3369 else
3bb99fe2 3370 e_dbg("PHY Reset Asserted not set - needs delay\n");
fc0c7760
BA
3371 }
3372
f4187b56
BA
3373 e1000e_get_cfg_done(hw);
3374
3375 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
a4f58f54
BA
3376 if ((hw->mac.type != e1000_ich10lan) &&
3377 (hw->mac.type != e1000_pchlan)) {
f4187b56
BA
3378 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3379 (hw->phy.type == e1000_phy_igp_3)) {
3380 e1000e_phy_init_script_igp3(hw);
3381 }
3382 } else {
3383 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3384 /* Maybe we should do a basic PHY config */
3bb99fe2 3385 e_dbg("EEPROM not present\n");
f4187b56
BA
3386 return -E1000_ERR_CONFIG;
3387 }
3388 }
3389
3390 return 0;
3391}
3392
bc7f75fa
AK
3393/**
3394 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3395 * @hw: pointer to the HW structure
3396 *
3397 * Clears hardware counters specific to the silicon family and calls
3398 * clear_hw_cntrs_generic to clear all general purpose counters.
3399 **/
3400static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3401{
a4f58f54 3402 u16 phy_data;
bc7f75fa
AK
3403
3404 e1000e_clear_hw_cntrs_base(hw);
3405
99673d9b
BA
3406 er32(ALGNERRC);
3407 er32(RXERRC);
3408 er32(TNCRS);
3409 er32(CEXTERR);
3410 er32(TSCTC);
3411 er32(TSCTFC);
bc7f75fa 3412
99673d9b
BA
3413 er32(MGTPRC);
3414 er32(MGTPDC);
3415 er32(MGTPTC);
bc7f75fa 3416
99673d9b
BA
3417 er32(IAC);
3418 er32(ICRXOC);
bc7f75fa 3419
a4f58f54
BA
3420 /* Clear PHY statistics registers */
3421 if ((hw->phy.type == e1000_phy_82578) ||
3422 (hw->phy.type == e1000_phy_82577)) {
94d8186a
BA
3423 hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data);
3424 hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data);
3425 hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data);
3426 hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data);
3427 hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data);
3428 hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data);
3429 hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data);
3430 hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data);
3431 hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data);
3432 hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data);
3433 hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data);
3434 hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data);
3435 hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data);
3436 hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data);
a4f58f54 3437 }
bc7f75fa
AK
3438}
3439
3440static struct e1000_mac_operations ich8_mac_ops = {
a4f58f54 3441 .id_led_init = e1000e_id_led_init,
4662e82b 3442 .check_mng_mode = e1000_check_mng_mode_ich8lan,
7d3cabbc 3443 .check_for_link = e1000_check_for_copper_link_ich8lan,
a4f58f54 3444 /* cleanup_led dependent on mac type */
bc7f75fa
AK
3445 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
3446 .get_bus_info = e1000_get_bus_info_ich8lan,
3447 .get_link_up_info = e1000_get_link_up_info_ich8lan,
a4f58f54
BA
3448 /* led_on dependent on mac type */
3449 /* led_off dependent on mac type */
e2de3eb6 3450 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
bc7f75fa
AK
3451 .reset_hw = e1000_reset_hw_ich8lan,
3452 .init_hw = e1000_init_hw_ich8lan,
3453 .setup_link = e1000_setup_link_ich8lan,
3454 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
a4f58f54 3455 /* id_led_init dependent on mac type */
bc7f75fa
AK
3456};
3457
3458static struct e1000_phy_operations ich8_phy_ops = {
94d8186a 3459 .acquire = e1000_acquire_swflag_ich8lan,
bc7f75fa 3460 .check_reset_block = e1000_check_reset_block_ich8lan,
94d8186a 3461 .commit = NULL,
bc7f75fa 3462 .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan,
f4187b56 3463 .get_cfg_done = e1000_get_cfg_done_ich8lan,
bc7f75fa 3464 .get_cable_length = e1000e_get_cable_length_igp_2,
94d8186a
BA
3465 .get_info = e1000_get_phy_info_ich8lan,
3466 .read_reg = e1000e_read_phy_reg_igp,
3467 .release = e1000_release_swflag_ich8lan,
3468 .reset = e1000_phy_hw_reset_ich8lan,
bc7f75fa
AK
3469 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
3470 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
94d8186a 3471 .write_reg = e1000e_write_phy_reg_igp,
bc7f75fa
AK
3472};
3473
3474static struct e1000_nvm_operations ich8_nvm_ops = {
94d8186a
BA
3475 .acquire = e1000_acquire_nvm_ich8lan,
3476 .read = e1000_read_nvm_ich8lan,
3477 .release = e1000_release_nvm_ich8lan,
3478 .update = e1000_update_nvm_checksum_ich8lan,
bc7f75fa 3479 .valid_led_default = e1000_valid_led_default_ich8lan,
94d8186a
BA
3480 .validate = e1000_validate_nvm_checksum_ich8lan,
3481 .write = e1000_write_nvm_ich8lan,
bc7f75fa
AK
3482};
3483
3484struct e1000_info e1000_ich8_info = {
3485 .mac = e1000_ich8lan,
3486 .flags = FLAG_HAS_WOL
97ac8cae 3487 | FLAG_IS_ICH
bc7f75fa
AK
3488 | FLAG_RX_CSUM_ENABLED
3489 | FLAG_HAS_CTRLEXT_ON_LOAD
3490 | FLAG_HAS_AMT
3491 | FLAG_HAS_FLASH
3492 | FLAG_APME_IN_WUC,
3493 .pba = 8,
2adc55c9 3494 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
69e3fd8c 3495 .get_variants = e1000_get_variants_ich8lan,
bc7f75fa
AK
3496 .mac_ops = &ich8_mac_ops,
3497 .phy_ops = &ich8_phy_ops,
3498 .nvm_ops = &ich8_nvm_ops,
3499};
3500
3501struct e1000_info e1000_ich9_info = {
3502 .mac = e1000_ich9lan,
3503 .flags = FLAG_HAS_JUMBO_FRAMES
97ac8cae 3504 | FLAG_IS_ICH
bc7f75fa
AK
3505 | FLAG_HAS_WOL
3506 | FLAG_RX_CSUM_ENABLED
3507 | FLAG_HAS_CTRLEXT_ON_LOAD
3508 | FLAG_HAS_AMT
3509 | FLAG_HAS_ERT
3510 | FLAG_HAS_FLASH
3511 | FLAG_APME_IN_WUC,
3512 .pba = 10,
2adc55c9 3513 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 3514 .get_variants = e1000_get_variants_ich8lan,
bc7f75fa
AK
3515 .mac_ops = &ich8_mac_ops,
3516 .phy_ops = &ich8_phy_ops,
3517 .nvm_ops = &ich8_nvm_ops,
3518};
3519
f4187b56
BA
3520struct e1000_info e1000_ich10_info = {
3521 .mac = e1000_ich10lan,
3522 .flags = FLAG_HAS_JUMBO_FRAMES
3523 | FLAG_IS_ICH
3524 | FLAG_HAS_WOL
3525 | FLAG_RX_CSUM_ENABLED
3526 | FLAG_HAS_CTRLEXT_ON_LOAD
3527 | FLAG_HAS_AMT
3528 | FLAG_HAS_ERT
3529 | FLAG_HAS_FLASH
3530 | FLAG_APME_IN_WUC,
3531 .pba = 10,
2adc55c9 3532 .max_hw_frame_size = DEFAULT_JUMBO,
f4187b56
BA
3533 .get_variants = e1000_get_variants_ich8lan,
3534 .mac_ops = &ich8_mac_ops,
3535 .phy_ops = &ich8_phy_ops,
3536 .nvm_ops = &ich8_nvm_ops,
3537};
a4f58f54
BA
3538
3539struct e1000_info e1000_pch_info = {
3540 .mac = e1000_pchlan,
3541 .flags = FLAG_IS_ICH
3542 | FLAG_HAS_WOL
3543 | FLAG_RX_CSUM_ENABLED
3544 | FLAG_HAS_CTRLEXT_ON_LOAD
3545 | FLAG_HAS_AMT
3546 | FLAG_HAS_FLASH
3547 | FLAG_HAS_JUMBO_FRAMES
3548 | FLAG_APME_IN_WUC,
3549 .pba = 26,
3550 .max_hw_frame_size = 4096,
3551 .get_variants = e1000_get_variants_ich8lan,
3552 .mac_ops = &ich8_mac_ops,
3553 .phy_ops = &ich8_phy_ops,
3554 .nvm_ops = &ich8_nvm_ops,
3555};
This page took 0.445415 seconds and 5 git commands to generate.