e1000e: cleanup multiple common exit points
[deliverable/linux.git] / drivers / net / e1000e / ich8lan.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
c7e54b1b 4 Copyright(c) 1999 - 2009 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
1605927f 30 * 82562G 10/100 Network Connection
bc7f75fa
AK
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
97ac8cae
BA
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
1605927f 44 * 82567V Gigabit Network Connection
97ac8cae
BA
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
f4187b56
BA
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
2f15f9d6 50 * 82567LM-4 Gigabit Network Connection
a4f58f54
BA
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
bc7f75fa
AK
55 */
56
bc7f75fa
AK
57#include "e1000.h"
58
59#define ICH_FLASH_GFPREG 0x0000
60#define ICH_FLASH_HSFSTS 0x0004
61#define ICH_FLASH_HSFCTL 0x0006
62#define ICH_FLASH_FADDR 0x0008
63#define ICH_FLASH_FDATA0 0x0010
4a770358 64#define ICH_FLASH_PR0 0x0074
bc7f75fa
AK
65
66#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
67#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
68#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
69#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
70#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
71
72#define ICH_CYCLE_READ 0
73#define ICH_CYCLE_WRITE 2
74#define ICH_CYCLE_ERASE 3
75
76#define FLASH_GFPREG_BASE_MASK 0x1FFF
77#define FLASH_SECTOR_ADDR_SHIFT 12
78
79#define ICH_FLASH_SEG_SIZE_256 256
80#define ICH_FLASH_SEG_SIZE_4K 4096
81#define ICH_FLASH_SEG_SIZE_8K 8192
82#define ICH_FLASH_SEG_SIZE_64K 65536
83
84
85#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
6dfaa769
BA
86/* FW established a valid mode */
87#define E1000_ICH_FWSM_FW_VALID 0x00008000
bc7f75fa
AK
88
89#define E1000_ICH_MNG_IAMT_MODE 0x2
90
91#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
92 (ID_LED_DEF1_OFF2 << 8) | \
93 (ID_LED_DEF1_ON2 << 4) | \
94 (ID_LED_DEF1_DEF2))
95
96#define E1000_ICH_NVM_SIG_WORD 0x13
97#define E1000_ICH_NVM_SIG_MASK 0xC000
e243455d
BA
98#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
99#define E1000_ICH_NVM_SIG_VALUE 0x80
bc7f75fa
AK
100
101#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
102
103#define E1000_FEXTNVM_SW_CONFIG 1
104#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
105
106#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
107
108#define E1000_ICH_RAR_ENTRIES 7
109
110#define PHY_PAGE_SHIFT 5
111#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
112 ((reg) & MAX_PHY_REG_ADDRESS))
113#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
114#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
115
116#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
117#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
118#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
119
a4f58f54
BA
120#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
121
53ac5a88
BA
122#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
123
f523d211
BA
124/* SMBus Address Phy Register */
125#define HV_SMB_ADDR PHY_REG(768, 26)
126#define HV_SMB_ADDR_PEC_EN 0x0200
127#define HV_SMB_ADDR_VALID 0x0080
128
129/* Strapping Option Register - RO */
130#define E1000_STRAP 0x0000C
131#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
132#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
133
fa2ce13c
BA
134/* OEM Bits Phy Register */
135#define HV_OEM_BITS PHY_REG(768, 25)
136#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
f523d211 137#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
fa2ce13c
BA
138#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
139
1d5846b9
BA
140#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
141#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
142
fddaa1af
BA
143/* KMRN Mode Control */
144#define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
145#define HV_KMRN_MDIO_SLOW 0x0400
146
bc7f75fa
AK
147/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
148/* Offset 04h HSFSTS */
149union ich8_hws_flash_status {
150 struct ich8_hsfsts {
151 u16 flcdone :1; /* bit 0 Flash Cycle Done */
152 u16 flcerr :1; /* bit 1 Flash Cycle Error */
153 u16 dael :1; /* bit 2 Direct Access error Log */
154 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
155 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
156 u16 reserved1 :2; /* bit 13:6 Reserved */
157 u16 reserved2 :6; /* bit 13:6 Reserved */
158 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
159 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
160 } hsf_status;
161 u16 regval;
162};
163
164/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
165/* Offset 06h FLCTL */
166union ich8_hws_flash_ctrl {
167 struct ich8_hsflctl {
168 u16 flcgo :1; /* 0 Flash Cycle Go */
169 u16 flcycle :2; /* 2:1 Flash Cycle */
170 u16 reserved :5; /* 7:3 Reserved */
171 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
172 u16 flockdn :6; /* 15:10 Reserved */
173 } hsf_ctrl;
174 u16 regval;
175};
176
177/* ICH Flash Region Access Permissions */
178union ich8_hws_flash_regacc {
179 struct ich8_flracc {
180 u32 grra :8; /* 0:7 GbE region Read Access */
181 u32 grwa :8; /* 8:15 GbE region Write Access */
182 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
183 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
184 } hsf_flregacc;
185 u16 regval;
186};
187
4a770358
BA
188/* ICH Flash Protected Region */
189union ich8_flash_protected_range {
190 struct ich8_pr {
191 u32 base:13; /* 0:12 Protected Range Base */
192 u32 reserved1:2; /* 13:14 Reserved */
193 u32 rpe:1; /* 15 Read Protection Enable */
194 u32 limit:13; /* 16:28 Protected Range Limit */
195 u32 reserved2:2; /* 29:30 Reserved */
196 u32 wpe:1; /* 31 Write Protection Enable */
197 } range;
198 u32 regval;
199};
200
bc7f75fa
AK
201static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
202static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
203static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
bc7f75fa
AK
204static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
205static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
206 u32 offset, u8 byte);
f4187b56
BA
207static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
208 u8 *data);
bc7f75fa
AK
209static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
210 u16 *data);
211static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
212 u8 size, u16 *data);
213static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
214static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
f4187b56 215static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
a4f58f54
BA
216static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
217static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
218static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
219static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
220static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
221static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
222static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
223static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
fa2ce13c 224static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
17f208de 225static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
f523d211 226static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
1d5846b9 227static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
fddaa1af 228static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
bc7f75fa
AK
229
230static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
231{
232 return readw(hw->flash_address + reg);
233}
234
235static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
236{
237 return readl(hw->flash_address + reg);
238}
239
240static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
241{
242 writew(val, hw->flash_address + reg);
243}
244
245static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
246{
247 writel(val, hw->flash_address + reg);
248}
249
250#define er16flash(reg) __er16flash(hw, (reg))
251#define er32flash(reg) __er32flash(hw, (reg))
252#define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
253#define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
254
a4f58f54
BA
255/**
256 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
257 * @hw: pointer to the HW structure
258 *
259 * Initialize family-specific PHY parameters and function pointers.
260 **/
261static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
262{
263 struct e1000_phy_info *phy = &hw->phy;
6dfaa769 264 u32 ctrl;
a4f58f54
BA
265 s32 ret_val = 0;
266
267 phy->addr = 1;
268 phy->reset_delay_us = 100;
269
94d8186a
BA
270 phy->ops.read_reg = e1000_read_phy_reg_hv;
271 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
fa2ce13c
BA
272 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
273 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
94d8186a
BA
274 phy->ops.write_reg = e1000_write_phy_reg_hv;
275 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
17f208de
BA
276 phy->ops.power_up = e1000_power_up_phy_copper;
277 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
a4f58f54
BA
278 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
279
6dfaa769
BA
280 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
281 /*
282 * The MAC-PHY interconnect may still be in SMBus mode
283 * after Sx->S0. Toggle the LANPHYPC Value bit to force
284 * the interconnect to PCIe mode, but only if there is no
285 * firmware present otherwise firmware will have done it.
286 */
287 ctrl = er32(CTRL);
288 ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
289 ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
290 ew32(CTRL, ctrl);
291 udelay(10);
292 ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
293 ew32(CTRL, ctrl);
294 msleep(50);
295 }
296
627c8a04
BA
297 /*
298 * Reset the PHY before any acccess to it. Doing so, ensures that
299 * the PHY is in a known good state before we read/write PHY registers.
300 * The generic reset is sufficient here, because we haven't determined
301 * the PHY type yet.
302 */
303 ret_val = e1000e_phy_hw_reset_generic(hw);
304 if (ret_val)
305 goto out;
306
a4f58f54 307 phy->id = e1000_phy_unknown;
fddaa1af
BA
308 ret_val = e1000e_get_phy_id(hw);
309 if (ret_val)
310 goto out;
311 if ((phy->id == 0) || (phy->id == PHY_REVISION_MASK)) {
312 /*
313 * In case the PHY needs to be in mdio slow mode (eg. 82577),
314 * set slow mode and try to get the PHY id again.
315 */
316 ret_val = e1000_set_mdio_slow_mode_hv(hw);
317 if (ret_val)
318 goto out;
319 ret_val = e1000e_get_phy_id(hw);
320 if (ret_val)
321 goto out;
322 }
a4f58f54
BA
323 phy->type = e1000e_get_phy_type_from_id(phy->id);
324
0be84010
BA
325 switch (phy->type) {
326 case e1000_phy_82577:
a4f58f54
BA
327 phy->ops.check_polarity = e1000_check_polarity_82577;
328 phy->ops.force_speed_duplex =
329 e1000_phy_force_speed_duplex_82577;
0be84010 330 phy->ops.get_cable_length = e1000_get_cable_length_82577;
94d8186a
BA
331 phy->ops.get_info = e1000_get_phy_info_82577;
332 phy->ops.commit = e1000e_phy_sw_reset;
0be84010
BA
333 case e1000_phy_82578:
334 phy->ops.check_polarity = e1000_check_polarity_m88;
335 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
336 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
337 phy->ops.get_info = e1000e_get_phy_info_m88;
338 break;
339 default:
340 ret_val = -E1000_ERR_PHY;
341 break;
a4f58f54
BA
342 }
343
fddaa1af 344out:
a4f58f54
BA
345 return ret_val;
346}
347
bc7f75fa
AK
348/**
349 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
350 * @hw: pointer to the HW structure
351 *
352 * Initialize family-specific PHY parameters and function pointers.
353 **/
354static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
355{
356 struct e1000_phy_info *phy = &hw->phy;
357 s32 ret_val;
358 u16 i = 0;
359
360 phy->addr = 1;
361 phy->reset_delay_us = 100;
362
17f208de
BA
363 phy->ops.power_up = e1000_power_up_phy_copper;
364 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
365
97ac8cae
BA
366 /*
367 * We may need to do this twice - once for IGP and if that fails,
368 * we'll set BM func pointers and try again
369 */
370 ret_val = e1000e_determine_phy_address(hw);
371 if (ret_val) {
94d8186a
BA
372 phy->ops.write_reg = e1000e_write_phy_reg_bm;
373 phy->ops.read_reg = e1000e_read_phy_reg_bm;
97ac8cae 374 ret_val = e1000e_determine_phy_address(hw);
9b71b419
BA
375 if (ret_val) {
376 e_dbg("Cannot determine PHY addr. Erroring out\n");
97ac8cae 377 return ret_val;
9b71b419 378 }
97ac8cae
BA
379 }
380
bc7f75fa
AK
381 phy->id = 0;
382 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
383 (i++ < 100)) {
384 msleep(1);
385 ret_val = e1000e_get_phy_id(hw);
386 if (ret_val)
387 return ret_val;
388 }
389
390 /* Verify phy id */
391 switch (phy->id) {
392 case IGP03E1000_E_PHY_ID:
393 phy->type = e1000_phy_igp_3;
394 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
94d8186a
BA
395 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
396 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
0be84010
BA
397 phy->ops.get_info = e1000e_get_phy_info_igp;
398 phy->ops.check_polarity = e1000_check_polarity_igp;
399 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
bc7f75fa
AK
400 break;
401 case IFE_E_PHY_ID:
402 case IFE_PLUS_E_PHY_ID:
403 case IFE_C_E_PHY_ID:
404 phy->type = e1000_phy_ife;
405 phy->autoneg_mask = E1000_ALL_NOT_GIG;
0be84010
BA
406 phy->ops.get_info = e1000_get_phy_info_ife;
407 phy->ops.check_polarity = e1000_check_polarity_ife;
408 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
bc7f75fa 409 break;
97ac8cae
BA
410 case BME1000_E_PHY_ID:
411 phy->type = e1000_phy_bm;
412 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
94d8186a
BA
413 phy->ops.read_reg = e1000e_read_phy_reg_bm;
414 phy->ops.write_reg = e1000e_write_phy_reg_bm;
415 phy->ops.commit = e1000e_phy_sw_reset;
0be84010
BA
416 phy->ops.get_info = e1000e_get_phy_info_m88;
417 phy->ops.check_polarity = e1000_check_polarity_m88;
418 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
97ac8cae 419 break;
bc7f75fa
AK
420 default:
421 return -E1000_ERR_PHY;
422 break;
423 }
424
425 return 0;
426}
427
428/**
429 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
430 * @hw: pointer to the HW structure
431 *
432 * Initialize family-specific NVM parameters and function
433 * pointers.
434 **/
435static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
436{
437 struct e1000_nvm_info *nvm = &hw->nvm;
438 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
148675a7 439 u32 gfpreg, sector_base_addr, sector_end_addr;
bc7f75fa
AK
440 u16 i;
441
ad68076e 442 /* Can't read flash registers if the register set isn't mapped. */
bc7f75fa 443 if (!hw->flash_address) {
3bb99fe2 444 e_dbg("ERROR: Flash registers not mapped\n");
bc7f75fa
AK
445 return -E1000_ERR_CONFIG;
446 }
447
448 nvm->type = e1000_nvm_flash_sw;
449
450 gfpreg = er32flash(ICH_FLASH_GFPREG);
451
ad68076e
BA
452 /*
453 * sector_X_addr is a "sector"-aligned address (4096 bytes)
bc7f75fa 454 * Add 1 to sector_end_addr since this sector is included in
ad68076e
BA
455 * the overall size.
456 */
bc7f75fa
AK
457 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
458 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
459
460 /* flash_base_addr is byte-aligned */
461 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
462
ad68076e
BA
463 /*
464 * find total size of the NVM, then cut in half since the total
465 * size represents two separate NVM banks.
466 */
bc7f75fa
AK
467 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
468 << FLASH_SECTOR_ADDR_SHIFT;
469 nvm->flash_bank_size /= 2;
470 /* Adjust to word count */
471 nvm->flash_bank_size /= sizeof(u16);
472
473 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
474
475 /* Clear shadow ram */
476 for (i = 0; i < nvm->word_size; i++) {
564ea9bb 477 dev_spec->shadow_ram[i].modified = false;
bc7f75fa
AK
478 dev_spec->shadow_ram[i].value = 0xFFFF;
479 }
480
481 return 0;
482}
483
484/**
485 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
486 * @hw: pointer to the HW structure
487 *
488 * Initialize family-specific MAC parameters and function
489 * pointers.
490 **/
491static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
492{
493 struct e1000_hw *hw = &adapter->hw;
494 struct e1000_mac_info *mac = &hw->mac;
495
496 /* Set media type function pointer */
318a94d6 497 hw->phy.media_type = e1000_media_type_copper;
bc7f75fa
AK
498
499 /* Set mta register count */
500 mac->mta_reg_count = 32;
501 /* Set rar entry count */
502 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
503 if (mac->type == e1000_ich8lan)
504 mac->rar_entry_count--;
505 /* Set if manageability features are enabled. */
564ea9bb 506 mac->arc_subsystem_valid = true;
f464ba87
BA
507 /* Adaptive IFS supported */
508 mac->adaptive_ifs = true;
bc7f75fa 509
a4f58f54
BA
510 /* LED operations */
511 switch (mac->type) {
512 case e1000_ich8lan:
513 case e1000_ich9lan:
514 case e1000_ich10lan:
515 /* ID LED init */
516 mac->ops.id_led_init = e1000e_id_led_init;
517 /* setup LED */
518 mac->ops.setup_led = e1000e_setup_led_generic;
519 /* cleanup LED */
520 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
521 /* turn on/off LED */
522 mac->ops.led_on = e1000_led_on_ich8lan;
523 mac->ops.led_off = e1000_led_off_ich8lan;
524 break;
525 case e1000_pchlan:
526 /* ID LED init */
527 mac->ops.id_led_init = e1000_id_led_init_pchlan;
528 /* setup LED */
529 mac->ops.setup_led = e1000_setup_led_pchlan;
530 /* cleanup LED */
531 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
532 /* turn on/off LED */
533 mac->ops.led_on = e1000_led_on_pchlan;
534 mac->ops.led_off = e1000_led_off_pchlan;
535 break;
536 default:
537 break;
538 }
539
bc7f75fa
AK
540 /* Enable PCS Lock-loss workaround for ICH8 */
541 if (mac->type == e1000_ich8lan)
564ea9bb 542 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
bc7f75fa
AK
543
544 return 0;
545}
546
7d3cabbc
BA
547/**
548 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
549 * @hw: pointer to the HW structure
550 *
551 * Checks to see of the link status of the hardware has changed. If a
552 * change in link status has been detected, then we read the PHY registers
553 * to get the current speed/duplex if link exists.
554 **/
555static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
556{
557 struct e1000_mac_info *mac = &hw->mac;
558 s32 ret_val;
559 bool link;
560
561 /*
562 * We only want to go out to the PHY registers to see if Auto-Neg
563 * has completed and/or if our link status has changed. The
564 * get_link_status flag is set upon receiving a Link Status
565 * Change or Rx Sequence Error interrupt.
566 */
567 if (!mac->get_link_status) {
568 ret_val = 0;
569 goto out;
570 }
571
7d3cabbc
BA
572 /*
573 * First we want to see if the MII Status Register reports
574 * link. If so, then we want to get the current speed/duplex
575 * of the PHY.
576 */
577 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
578 if (ret_val)
579 goto out;
580
1d5846b9
BA
581 if (hw->mac.type == e1000_pchlan) {
582 ret_val = e1000_k1_gig_workaround_hv(hw, link);
583 if (ret_val)
584 goto out;
585 }
586
7d3cabbc
BA
587 if (!link)
588 goto out; /* No link detected */
589
590 mac->get_link_status = false;
591
592 if (hw->phy.type == e1000_phy_82578) {
593 ret_val = e1000_link_stall_workaround_hv(hw);
594 if (ret_val)
595 goto out;
596 }
597
598 /*
599 * Check if there was DownShift, must be checked
600 * immediately after link-up
601 */
602 e1000e_check_downshift(hw);
603
604 /*
605 * If we are forcing speed/duplex, then we simply return since
606 * we have already determined whether we have link or not.
607 */
608 if (!mac->autoneg) {
609 ret_val = -E1000_ERR_CONFIG;
610 goto out;
611 }
612
613 /*
614 * Auto-Neg is enabled. Auto Speed Detection takes care
615 * of MAC speed/duplex configuration. So we only need to
616 * configure Collision Distance in the MAC.
617 */
618 e1000e_config_collision_dist(hw);
619
620 /*
621 * Configure Flow Control now that Auto-Neg has completed.
622 * First, we need to restore the desired flow control
623 * settings because we may have had to re-autoneg with a
624 * different link partner.
625 */
626 ret_val = e1000e_config_fc_after_link_up(hw);
627 if (ret_val)
3bb99fe2 628 e_dbg("Error configuring flow control\n");
7d3cabbc
BA
629
630out:
631 return ret_val;
632}
633
69e3fd8c 634static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
bc7f75fa
AK
635{
636 struct e1000_hw *hw = &adapter->hw;
637 s32 rc;
638
639 rc = e1000_init_mac_params_ich8lan(adapter);
640 if (rc)
641 return rc;
642
643 rc = e1000_init_nvm_params_ich8lan(hw);
644 if (rc)
645 return rc;
646
a4f58f54
BA
647 if (hw->mac.type == e1000_pchlan)
648 rc = e1000_init_phy_params_pchlan(hw);
649 else
650 rc = e1000_init_phy_params_ich8lan(hw);
bc7f75fa
AK
651 if (rc)
652 return rc;
653
2adc55c9
BA
654 if (adapter->hw.phy.type == e1000_phy_ife) {
655 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
656 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
657 }
658
bc7f75fa
AK
659 if ((adapter->hw.mac.type == e1000_ich8lan) &&
660 (adapter->hw.phy.type == e1000_phy_igp_3))
661 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
662
663 return 0;
664}
665
717d438d 666static DEFINE_MUTEX(nvm_mutex);
717d438d 667
ca15df58
BA
668/**
669 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
670 * @hw: pointer to the HW structure
671 *
672 * Acquires the mutex for performing NVM operations.
673 **/
674static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
675{
676 mutex_lock(&nvm_mutex);
677
678 return 0;
679}
680
681/**
682 * e1000_release_nvm_ich8lan - Release NVM mutex
683 * @hw: pointer to the HW structure
684 *
685 * Releases the mutex used while performing NVM operations.
686 **/
687static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
688{
689 mutex_unlock(&nvm_mutex);
690
691 return;
692}
693
694static DEFINE_MUTEX(swflag_mutex);
695
bc7f75fa
AK
696/**
697 * e1000_acquire_swflag_ich8lan - Acquire software control flag
698 * @hw: pointer to the HW structure
699 *
ca15df58
BA
700 * Acquires the software control flag for performing PHY and select
701 * MAC CSR accesses.
bc7f75fa
AK
702 **/
703static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
704{
373a88d7
BA
705 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
706 s32 ret_val = 0;
bc7f75fa 707
ca15df58 708 mutex_lock(&swflag_mutex);
717d438d 709
bc7f75fa
AK
710 while (timeout) {
711 extcnf_ctrl = er32(EXTCNF_CTRL);
373a88d7
BA
712 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
713 break;
bc7f75fa 714
373a88d7
BA
715 mdelay(1);
716 timeout--;
717 }
718
719 if (!timeout) {
3bb99fe2 720 e_dbg("SW/FW/HW has locked the resource for too long.\n");
373a88d7
BA
721 ret_val = -E1000_ERR_CONFIG;
722 goto out;
723 }
724
53ac5a88 725 timeout = SW_FLAG_TIMEOUT;
373a88d7
BA
726
727 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
728 ew32(EXTCNF_CTRL, extcnf_ctrl);
729
730 while (timeout) {
731 extcnf_ctrl = er32(EXTCNF_CTRL);
732 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
733 break;
a4f58f54 734
bc7f75fa
AK
735 mdelay(1);
736 timeout--;
737 }
738
739 if (!timeout) {
3bb99fe2 740 e_dbg("Failed to acquire the semaphore.\n");
2e2e8d53
BA
741 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
742 ew32(EXTCNF_CTRL, extcnf_ctrl);
373a88d7
BA
743 ret_val = -E1000_ERR_CONFIG;
744 goto out;
bc7f75fa
AK
745 }
746
373a88d7
BA
747out:
748 if (ret_val)
ca15df58 749 mutex_unlock(&swflag_mutex);
373a88d7
BA
750
751 return ret_val;
bc7f75fa
AK
752}
753
754/**
755 * e1000_release_swflag_ich8lan - Release software control flag
756 * @hw: pointer to the HW structure
757 *
ca15df58
BA
758 * Releases the software control flag for performing PHY and select
759 * MAC CSR accesses.
bc7f75fa
AK
760 **/
761static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
762{
763 u32 extcnf_ctrl;
764
765 extcnf_ctrl = er32(EXTCNF_CTRL);
766 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
767 ew32(EXTCNF_CTRL, extcnf_ctrl);
717d438d 768
ca15df58
BA
769 mutex_unlock(&swflag_mutex);
770
771 return;
bc7f75fa
AK
772}
773
4662e82b
BA
774/**
775 * e1000_check_mng_mode_ich8lan - Checks management mode
776 * @hw: pointer to the HW structure
777 *
778 * This checks if the adapter has manageability enabled.
779 * This is a function pointer entry point only called by read/write
780 * routines for the PHY and NVM parts.
781 **/
782static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
783{
a708dd88
BA
784 u32 fwsm;
785
786 fwsm = er32(FWSM);
4662e82b
BA
787
788 return (fwsm & E1000_FWSM_MODE_MASK) ==
789 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
790}
791
bc7f75fa
AK
792/**
793 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
794 * @hw: pointer to the HW structure
795 *
796 * Checks if firmware is blocking the reset of the PHY.
797 * This is a function pointer entry point only called by
798 * reset routines.
799 **/
800static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
801{
802 u32 fwsm;
803
804 fwsm = er32(FWSM);
805
806 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
807}
808
f523d211
BA
809/**
810 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
811 * @hw: pointer to the HW structure
812 *
813 * SW should configure the LCD from the NVM extended configuration region
814 * as a workaround for certain parts.
815 **/
816static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
817{
818 struct e1000_phy_info *phy = &hw->phy;
819 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
820 s32 ret_val;
821 u16 word_addr, reg_data, reg_addr, phy_page = 0;
822
94d8186a 823 ret_val = hw->phy.ops.acquire(hw);
f523d211
BA
824 if (ret_val)
825 return ret_val;
826
827 /*
828 * Initialize the PHY from the NVM on ICH platforms. This
829 * is needed due to an issue where the NVM configuration is
830 * not properly autoloaded after power transitions.
831 * Therefore, after each PHY reset, we will load the
832 * configuration data out of the NVM manually.
833 */
834 if ((hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) ||
835 (hw->mac.type == e1000_pchlan)) {
836 struct e1000_adapter *adapter = hw->adapter;
837
838 /* Check if SW needs to configure the PHY */
839 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
840 (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M) ||
841 (hw->mac.type == e1000_pchlan))
842 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
843 else
844 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
845
846 data = er32(FEXTNVM);
847 if (!(data & sw_cfg_mask))
848 goto out;
849
850 /* Wait for basic configuration completes before proceeding */
851 e1000_lan_init_done_ich8lan(hw);
852
853 /*
854 * Make sure HW does not configure LCD from PHY
855 * extended configuration before SW configuration
856 */
857 data = er32(EXTCNF_CTRL);
858 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
859 goto out;
860
861 cnf_size = er32(EXTCNF_SIZE);
862 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
863 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
864 if (!cnf_size)
865 goto out;
866
867 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
868 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
869
870 if (!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
871 (hw->mac.type == e1000_pchlan)) {
872 /*
873 * HW configures the SMBus address and LEDs when the
874 * OEM and LCD Write Enable bits are set in the NVM.
875 * When both NVM bits are cleared, SW will configure
876 * them instead.
877 */
878 data = er32(STRAP);
879 data &= E1000_STRAP_SMBUS_ADDRESS_MASK;
880 reg_data = data >> E1000_STRAP_SMBUS_ADDRESS_SHIFT;
881 reg_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
882 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR,
883 reg_data);
884 if (ret_val)
885 goto out;
886
887 data = er32(LEDCTL);
888 ret_val = e1000_write_phy_reg_hv_locked(hw,
889 HV_LED_CONFIG,
890 (u16)data);
891 if (ret_val)
892 goto out;
893 }
894 /* Configure LCD from extended configuration region. */
895
896 /* cnf_base_addr is in DWORD */
897 word_addr = (u16)(cnf_base_addr << 1);
898
899 for (i = 0; i < cnf_size; i++) {
900 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
901 &reg_data);
902 if (ret_val)
903 goto out;
904
905 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
906 1, &reg_addr);
907 if (ret_val)
908 goto out;
909
910 /* Save off the PHY page for future writes. */
911 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
912 phy_page = reg_data;
913 continue;
914 }
915
916 reg_addr &= PHY_REG_MASK;
917 reg_addr |= phy_page;
918
94d8186a 919 ret_val = phy->ops.write_reg_locked(hw,
f523d211
BA
920 (u32)reg_addr,
921 reg_data);
922 if (ret_val)
923 goto out;
924 }
925 }
926
927out:
94d8186a 928 hw->phy.ops.release(hw);
f523d211
BA
929 return ret_val;
930}
931
1d5846b9
BA
932/**
933 * e1000_k1_gig_workaround_hv - K1 Si workaround
934 * @hw: pointer to the HW structure
935 * @link: link up bool flag
936 *
937 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
938 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
939 * If link is down, the function will restore the default K1 setting located
940 * in the NVM.
941 **/
942static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
943{
944 s32 ret_val = 0;
945 u16 status_reg = 0;
946 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
947
948 if (hw->mac.type != e1000_pchlan)
949 goto out;
950
951 /* Wrap the whole flow with the sw flag */
94d8186a 952 ret_val = hw->phy.ops.acquire(hw);
1d5846b9
BA
953 if (ret_val)
954 goto out;
955
956 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
957 if (link) {
958 if (hw->phy.type == e1000_phy_82578) {
94d8186a 959 ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1d5846b9
BA
960 &status_reg);
961 if (ret_val)
962 goto release;
963
964 status_reg &= BM_CS_STATUS_LINK_UP |
965 BM_CS_STATUS_RESOLVED |
966 BM_CS_STATUS_SPEED_MASK;
967
968 if (status_reg == (BM_CS_STATUS_LINK_UP |
969 BM_CS_STATUS_RESOLVED |
970 BM_CS_STATUS_SPEED_1000))
971 k1_enable = false;
972 }
973
974 if (hw->phy.type == e1000_phy_82577) {
94d8186a 975 ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1d5846b9
BA
976 &status_reg);
977 if (ret_val)
978 goto release;
979
980 status_reg &= HV_M_STATUS_LINK_UP |
981 HV_M_STATUS_AUTONEG_COMPLETE |
982 HV_M_STATUS_SPEED_MASK;
983
984 if (status_reg == (HV_M_STATUS_LINK_UP |
985 HV_M_STATUS_AUTONEG_COMPLETE |
986 HV_M_STATUS_SPEED_1000))
987 k1_enable = false;
988 }
989
990 /* Link stall fix for link up */
94d8186a 991 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1d5846b9
BA
992 0x0100);
993 if (ret_val)
994 goto release;
995
996 } else {
997 /* Link stall fix for link down */
94d8186a 998 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1d5846b9
BA
999 0x4100);
1000 if (ret_val)
1001 goto release;
1002 }
1003
1004 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1005
1006release:
94d8186a 1007 hw->phy.ops.release(hw);
1d5846b9
BA
1008out:
1009 return ret_val;
1010}
1011
1012/**
1013 * e1000_configure_k1_ich8lan - Configure K1 power state
1014 * @hw: pointer to the HW structure
1015 * @enable: K1 state to configure
1016 *
1017 * Configure the K1 power state based on the provided parameter.
1018 * Assumes semaphore already acquired.
1019 *
1020 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1021 **/
bb436b20 1022s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1d5846b9
BA
1023{
1024 s32 ret_val = 0;
1025 u32 ctrl_reg = 0;
1026 u32 ctrl_ext = 0;
1027 u32 reg = 0;
1028 u16 kmrn_reg = 0;
1029
1030 ret_val = e1000e_read_kmrn_reg_locked(hw,
1031 E1000_KMRNCTRLSTA_K1_CONFIG,
1032 &kmrn_reg);
1033 if (ret_val)
1034 goto out;
1035
1036 if (k1_enable)
1037 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1038 else
1039 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1040
1041 ret_val = e1000e_write_kmrn_reg_locked(hw,
1042 E1000_KMRNCTRLSTA_K1_CONFIG,
1043 kmrn_reg);
1044 if (ret_val)
1045 goto out;
1046
1047 udelay(20);
1048 ctrl_ext = er32(CTRL_EXT);
1049 ctrl_reg = er32(CTRL);
1050
1051 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1052 reg |= E1000_CTRL_FRCSPD;
1053 ew32(CTRL, reg);
1054
1055 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1056 udelay(20);
1057 ew32(CTRL, ctrl_reg);
1058 ew32(CTRL_EXT, ctrl_ext);
1059 udelay(20);
1060
1061out:
1062 return ret_val;
1063}
1064
f523d211
BA
1065/**
1066 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1067 * @hw: pointer to the HW structure
1068 * @d0_state: boolean if entering d0 or d3 device state
1069 *
1070 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1071 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1072 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1073 **/
1074static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1075{
1076 s32 ret_val = 0;
1077 u32 mac_reg;
1078 u16 oem_reg;
1079
1080 if (hw->mac.type != e1000_pchlan)
1081 return ret_val;
1082
94d8186a 1083 ret_val = hw->phy.ops.acquire(hw);
f523d211
BA
1084 if (ret_val)
1085 return ret_val;
1086
1087 mac_reg = er32(EXTCNF_CTRL);
1088 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1089 goto out;
1090
1091 mac_reg = er32(FEXTNVM);
1092 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1093 goto out;
1094
1095 mac_reg = er32(PHY_CTRL);
1096
94d8186a 1097 ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
f523d211
BA
1098 if (ret_val)
1099 goto out;
1100
1101 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1102
1103 if (d0_state) {
1104 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1105 oem_reg |= HV_OEM_BITS_GBE_DIS;
1106
1107 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1108 oem_reg |= HV_OEM_BITS_LPLU;
1109 } else {
1110 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1111 oem_reg |= HV_OEM_BITS_GBE_DIS;
1112
1113 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1114 oem_reg |= HV_OEM_BITS_LPLU;
1115 }
1116 /* Restart auto-neg to activate the bits */
818f3331
BA
1117 if (!e1000_check_reset_block(hw))
1118 oem_reg |= HV_OEM_BITS_RESTART_AN;
94d8186a 1119 ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
f523d211
BA
1120
1121out:
94d8186a 1122 hw->phy.ops.release(hw);
f523d211
BA
1123
1124 return ret_val;
1125}
1126
1127
fddaa1af
BA
1128/**
1129 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1130 * @hw: pointer to the HW structure
1131 **/
1132static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1133{
1134 s32 ret_val;
1135 u16 data;
1136
1137 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1138 if (ret_val)
1139 return ret_val;
1140
1141 data |= HV_KMRN_MDIO_SLOW;
1142
1143 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1144
1145 return ret_val;
1146}
1147
a4f58f54
BA
1148/**
1149 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1150 * done after every PHY reset.
1151 **/
1152static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1153{
1154 s32 ret_val = 0;
baf86c9d 1155 u16 phy_data;
a4f58f54
BA
1156
1157 if (hw->mac.type != e1000_pchlan)
1158 return ret_val;
1159
fddaa1af
BA
1160 /* Set MDIO slow mode before any other MDIO access */
1161 if (hw->phy.type == e1000_phy_82577) {
1162 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1163 if (ret_val)
1164 goto out;
1165 }
1166
a4f58f54
BA
1167 if (((hw->phy.type == e1000_phy_82577) &&
1168 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1169 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1170 /* Disable generation of early preamble */
1171 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1172 if (ret_val)
1173 return ret_val;
1174
1175 /* Preamble tuning for SSC */
1176 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
1177 if (ret_val)
1178 return ret_val;
1179 }
1180
1181 if (hw->phy.type == e1000_phy_82578) {
1182 /*
1183 * Return registers to default by doing a soft reset then
1184 * writing 0x3140 to the control register.
1185 */
1186 if (hw->phy.revision < 2) {
1187 e1000e_phy_sw_reset(hw);
1188 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1189 }
1190 }
1191
1192 /* Select page 0 */
94d8186a 1193 ret_val = hw->phy.ops.acquire(hw);
a4f58f54
BA
1194 if (ret_val)
1195 return ret_val;
1d5846b9 1196
a4f58f54 1197 hw->phy.addr = 1;
1d5846b9 1198 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
baf86c9d 1199 hw->phy.ops.release(hw);
1d5846b9
BA
1200 if (ret_val)
1201 goto out;
a4f58f54 1202
1d5846b9
BA
1203 /*
1204 * Configure the K1 Si workaround during phy reset assuming there is
1205 * link so that it disables K1 if link is in 1Gbps.
1206 */
1207 ret_val = e1000_k1_gig_workaround_hv(hw, true);
baf86c9d
BA
1208 if (ret_val)
1209 goto out;
1d5846b9 1210
baf86c9d
BA
1211 /* Workaround for link disconnects on a busy hub in half duplex */
1212 ret_val = hw->phy.ops.acquire(hw);
1213 if (ret_val)
1214 goto out;
1215 ret_val = hw->phy.ops.read_reg_locked(hw,
1216 PHY_REG(BM_PORT_CTRL_PAGE, 17),
1217 &phy_data);
1218 if (ret_val)
1219 goto release;
1220 ret_val = hw->phy.ops.write_reg_locked(hw,
1221 PHY_REG(BM_PORT_CTRL_PAGE, 17),
1222 phy_data & 0x00FF);
1223release:
1224 hw->phy.ops.release(hw);
1d5846b9 1225out:
a4f58f54
BA
1226 return ret_val;
1227}
1228
fc0c7760
BA
1229/**
1230 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1231 * @hw: pointer to the HW structure
1232 *
1233 * Check the appropriate indication the MAC has finished configuring the
1234 * PHY after a software reset.
1235 **/
1236static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1237{
1238 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1239
1240 /* Wait for basic configuration completes before proceeding */
1241 do {
1242 data = er32(STATUS);
1243 data &= E1000_STATUS_LAN_INIT_DONE;
1244 udelay(100);
1245 } while ((!data) && --loop);
1246
1247 /*
1248 * If basic configuration is incomplete before the above loop
1249 * count reaches 0, loading the configuration from NVM will
1250 * leave the PHY in a bad state possibly resulting in no link.
1251 */
1252 if (loop == 0)
3bb99fe2 1253 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
fc0c7760
BA
1254
1255 /* Clear the Init Done bit for the next init event */
1256 data = er32(STATUS);
1257 data &= ~E1000_STATUS_LAN_INIT_DONE;
1258 ew32(STATUS, data);
1259}
1260
bc7f75fa
AK
1261/**
1262 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1263 * @hw: pointer to the HW structure
1264 *
1265 * Resets the PHY
1266 * This is a function pointer entry point called by drivers
1267 * or other shared routines.
1268 **/
1269static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1270{
f523d211
BA
1271 s32 ret_val = 0;
1272 u16 reg;
bc7f75fa
AK
1273
1274 ret_val = e1000e_phy_hw_reset_generic(hw);
1275 if (ret_val)
1276 return ret_val;
1277
fc0c7760
BA
1278 /* Allow time for h/w to get to a quiescent state after reset */
1279 mdelay(10);
1280
fddaa1af 1281 /* Perform any necessary post-reset workarounds */
a4f58f54
BA
1282 if (hw->mac.type == e1000_pchlan) {
1283 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1284 if (ret_val)
1285 return ret_val;
1286 }
1287
db2932ec
BA
1288 /* Dummy read to clear the phy wakeup bit after lcd reset */
1289 if (hw->mac.type == e1000_pchlan)
1290 e1e_rphy(hw, BM_WUC, &reg);
1291
f523d211
BA
1292 /* Configure the LCD with the extended configuration region in NVM */
1293 ret_val = e1000_sw_lcd_config_ich8lan(hw);
1294 if (ret_val)
1295 goto out;
bc7f75fa 1296
f523d211
BA
1297 /* Configure the LCD with the OEM bits in NVM */
1298 if (hw->mac.type == e1000_pchlan)
1299 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
bc7f75fa 1300
f523d211 1301out:
bc7f75fa
AK
1302 return 0;
1303}
1304
fa2ce13c
BA
1305/**
1306 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1307 * @hw: pointer to the HW structure
1308 * @active: true to enable LPLU, false to disable
1309 *
1310 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1311 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1312 * the phy speed. This function will manually set the LPLU bit and restart
1313 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1314 * since it configures the same bit.
1315 **/
1316static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1317{
1318 s32 ret_val = 0;
1319 u16 oem_reg;
1320
1321 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1322 if (ret_val)
1323 goto out;
1324
1325 if (active)
1326 oem_reg |= HV_OEM_BITS_LPLU;
1327 else
1328 oem_reg &= ~HV_OEM_BITS_LPLU;
1329
1330 oem_reg |= HV_OEM_BITS_RESTART_AN;
1331 ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1332
1333out:
1334 return ret_val;
1335}
1336
bc7f75fa
AK
1337/**
1338 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1339 * @hw: pointer to the HW structure
564ea9bb 1340 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
1341 *
1342 * Sets the LPLU D0 state according to the active flag. When
1343 * activating LPLU this function also disables smart speed
1344 * and vice versa. LPLU will not be activated unless the
1345 * device autonegotiation advertisement meets standards of
1346 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1347 * This is a function pointer entry point only called by
1348 * PHY setup routines.
1349 **/
1350static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1351{
1352 struct e1000_phy_info *phy = &hw->phy;
1353 u32 phy_ctrl;
1354 s32 ret_val = 0;
1355 u16 data;
1356
97ac8cae 1357 if (phy->type == e1000_phy_ife)
bc7f75fa
AK
1358 return ret_val;
1359
1360 phy_ctrl = er32(PHY_CTRL);
1361
1362 if (active) {
1363 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1364 ew32(PHY_CTRL, phy_ctrl);
1365
60f1292f
BA
1366 if (phy->type != e1000_phy_igp_3)
1367 return 0;
1368
ad68076e
BA
1369 /*
1370 * Call gig speed drop workaround on LPLU before accessing
1371 * any PHY registers
1372 */
60f1292f 1373 if (hw->mac.type == e1000_ich8lan)
bc7f75fa
AK
1374 e1000e_gig_downshift_workaround_ich8lan(hw);
1375
1376 /* When LPLU is enabled, we should disable SmartSpeed */
1377 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1378 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1379 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1380 if (ret_val)
1381 return ret_val;
1382 } else {
1383 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1384 ew32(PHY_CTRL, phy_ctrl);
1385
60f1292f
BA
1386 if (phy->type != e1000_phy_igp_3)
1387 return 0;
1388
ad68076e
BA
1389 /*
1390 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
1391 * during Dx states where the power conservation is most
1392 * important. During driver activity we should enable
ad68076e
BA
1393 * SmartSpeed, so performance is maintained.
1394 */
bc7f75fa
AK
1395 if (phy->smart_speed == e1000_smart_speed_on) {
1396 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1397 &data);
bc7f75fa
AK
1398 if (ret_val)
1399 return ret_val;
1400
1401 data |= IGP01E1000_PSCFR_SMART_SPEED;
1402 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1403 data);
bc7f75fa
AK
1404 if (ret_val)
1405 return ret_val;
1406 } else if (phy->smart_speed == e1000_smart_speed_off) {
1407 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1408 &data);
bc7f75fa
AK
1409 if (ret_val)
1410 return ret_val;
1411
1412 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1413 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1414 data);
bc7f75fa
AK
1415 if (ret_val)
1416 return ret_val;
1417 }
1418 }
1419
1420 return 0;
1421}
1422
1423/**
1424 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1425 * @hw: pointer to the HW structure
564ea9bb 1426 * @active: true to enable LPLU, false to disable
bc7f75fa
AK
1427 *
1428 * Sets the LPLU D3 state according to the active flag. When
1429 * activating LPLU this function also disables smart speed
1430 * and vice versa. LPLU will not be activated unless the
1431 * device autonegotiation advertisement meets standards of
1432 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1433 * This is a function pointer entry point only called by
1434 * PHY setup routines.
1435 **/
1436static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1437{
1438 struct e1000_phy_info *phy = &hw->phy;
1439 u32 phy_ctrl;
1440 s32 ret_val;
1441 u16 data;
1442
1443 phy_ctrl = er32(PHY_CTRL);
1444
1445 if (!active) {
1446 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1447 ew32(PHY_CTRL, phy_ctrl);
60f1292f
BA
1448
1449 if (phy->type != e1000_phy_igp_3)
1450 return 0;
1451
ad68076e
BA
1452 /*
1453 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
1454 * during Dx states where the power conservation is most
1455 * important. During driver activity we should enable
ad68076e
BA
1456 * SmartSpeed, so performance is maintained.
1457 */
bc7f75fa 1458 if (phy->smart_speed == e1000_smart_speed_on) {
ad68076e
BA
1459 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1460 &data);
bc7f75fa
AK
1461 if (ret_val)
1462 return ret_val;
1463
1464 data |= IGP01E1000_PSCFR_SMART_SPEED;
ad68076e
BA
1465 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1466 data);
bc7f75fa
AK
1467 if (ret_val)
1468 return ret_val;
1469 } else if (phy->smart_speed == e1000_smart_speed_off) {
ad68076e
BA
1470 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1471 &data);
bc7f75fa
AK
1472 if (ret_val)
1473 return ret_val;
1474
1475 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ad68076e
BA
1476 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1477 data);
bc7f75fa
AK
1478 if (ret_val)
1479 return ret_val;
1480 }
1481 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1482 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1483 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1484 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1485 ew32(PHY_CTRL, phy_ctrl);
1486
60f1292f
BA
1487 if (phy->type != e1000_phy_igp_3)
1488 return 0;
1489
ad68076e
BA
1490 /*
1491 * Call gig speed drop workaround on LPLU before accessing
1492 * any PHY registers
1493 */
60f1292f 1494 if (hw->mac.type == e1000_ich8lan)
bc7f75fa
AK
1495 e1000e_gig_downshift_workaround_ich8lan(hw);
1496
1497 /* When LPLU is enabled, we should disable SmartSpeed */
ad68076e 1498 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
bc7f75fa
AK
1499 if (ret_val)
1500 return ret_val;
1501
1502 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ad68076e 1503 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
bc7f75fa
AK
1504 }
1505
1506 return 0;
1507}
1508
f4187b56
BA
1509/**
1510 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1511 * @hw: pointer to the HW structure
1512 * @bank: pointer to the variable that returns the active bank
1513 *
1514 * Reads signature byte from the NVM using the flash access registers.
e243455d 1515 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
f4187b56
BA
1516 **/
1517static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1518{
e243455d 1519 u32 eecd;
f4187b56 1520 struct e1000_nvm_info *nvm = &hw->nvm;
f4187b56
BA
1521 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1522 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
e243455d
BA
1523 u8 sig_byte = 0;
1524 s32 ret_val = 0;
f4187b56 1525
e243455d
BA
1526 switch (hw->mac.type) {
1527 case e1000_ich8lan:
1528 case e1000_ich9lan:
1529 eecd = er32(EECD);
1530 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1531 E1000_EECD_SEC1VAL_VALID_MASK) {
1532 if (eecd & E1000_EECD_SEC1VAL)
1533 *bank = 1;
1534 else
1535 *bank = 0;
1536
1537 return 0;
1538 }
3bb99fe2 1539 e_dbg("Unable to determine valid NVM bank via EEC - "
e243455d
BA
1540 "reading flash signature\n");
1541 /* fall-thru */
1542 default:
1543 /* set bank to 0 in case flash read fails */
1544 *bank = 0;
1545
1546 /* Check bank 0 */
1547 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
1548 &sig_byte);
1549 if (ret_val)
1550 return ret_val;
1551 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1552 E1000_ICH_NVM_SIG_VALUE) {
f4187b56 1553 *bank = 0;
e243455d
BA
1554 return 0;
1555 }
f4187b56 1556
e243455d
BA
1557 /* Check bank 1 */
1558 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1559 bank1_offset,
1560 &sig_byte);
1561 if (ret_val)
1562 return ret_val;
1563 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1564 E1000_ICH_NVM_SIG_VALUE) {
1565 *bank = 1;
1566 return 0;
f4187b56 1567 }
e243455d 1568
3bb99fe2 1569 e_dbg("ERROR: No valid NVM bank present\n");
e243455d 1570 return -E1000_ERR_NVM;
f4187b56
BA
1571 }
1572
1573 return 0;
1574}
1575
bc7f75fa
AK
1576/**
1577 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1578 * @hw: pointer to the HW structure
1579 * @offset: The offset (in bytes) of the word(s) to read.
1580 * @words: Size of data to read in words
1581 * @data: Pointer to the word(s) to read at offset.
1582 *
1583 * Reads a word(s) from the NVM using the flash access registers.
1584 **/
1585static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1586 u16 *data)
1587{
1588 struct e1000_nvm_info *nvm = &hw->nvm;
1589 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1590 u32 act_offset;
148675a7 1591 s32 ret_val = 0;
f4187b56 1592 u32 bank = 0;
bc7f75fa
AK
1593 u16 i, word;
1594
1595 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1596 (words == 0)) {
3bb99fe2 1597 e_dbg("nvm parameter(s) out of bounds\n");
ca15df58
BA
1598 ret_val = -E1000_ERR_NVM;
1599 goto out;
bc7f75fa
AK
1600 }
1601
94d8186a 1602 nvm->ops.acquire(hw);
bc7f75fa 1603
f4187b56 1604 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
148675a7 1605 if (ret_val) {
3bb99fe2 1606 e_dbg("Could not detect valid bank, assuming bank 0\n");
148675a7
BA
1607 bank = 0;
1608 }
f4187b56
BA
1609
1610 act_offset = (bank) ? nvm->flash_bank_size : 0;
bc7f75fa
AK
1611 act_offset += offset;
1612
148675a7 1613 ret_val = 0;
bc7f75fa
AK
1614 for (i = 0; i < words; i++) {
1615 if ((dev_spec->shadow_ram) &&
1616 (dev_spec->shadow_ram[offset+i].modified)) {
1617 data[i] = dev_spec->shadow_ram[offset+i].value;
1618 } else {
1619 ret_val = e1000_read_flash_word_ich8lan(hw,
1620 act_offset + i,
1621 &word);
1622 if (ret_val)
1623 break;
1624 data[i] = word;
1625 }
1626 }
1627
94d8186a 1628 nvm->ops.release(hw);
bc7f75fa 1629
e243455d
BA
1630out:
1631 if (ret_val)
3bb99fe2 1632 e_dbg("NVM read error: %d\n", ret_val);
e243455d 1633
bc7f75fa
AK
1634 return ret_val;
1635}
1636
1637/**
1638 * e1000_flash_cycle_init_ich8lan - Initialize flash
1639 * @hw: pointer to the HW structure
1640 *
1641 * This function does initial flash setup so that a new read/write/erase cycle
1642 * can be started.
1643 **/
1644static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1645{
1646 union ich8_hws_flash_status hsfsts;
1647 s32 ret_val = -E1000_ERR_NVM;
1648 s32 i = 0;
1649
1650 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1651
1652 /* Check if the flash descriptor is valid */
1653 if (hsfsts.hsf_status.fldesvalid == 0) {
3bb99fe2 1654 e_dbg("Flash descriptor invalid. "
2c73e1fe 1655 "SW Sequencing must be used.\n");
bc7f75fa
AK
1656 return -E1000_ERR_NVM;
1657 }
1658
1659 /* Clear FCERR and DAEL in hw status by writing 1 */
1660 hsfsts.hsf_status.flcerr = 1;
1661 hsfsts.hsf_status.dael = 1;
1662
1663 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1664
ad68076e
BA
1665 /*
1666 * Either we should have a hardware SPI cycle in progress
bc7f75fa
AK
1667 * bit to check against, in order to start a new cycle or
1668 * FDONE bit should be changed in the hardware so that it
489815ce 1669 * is 1 after hardware reset, which can then be used as an
bc7f75fa
AK
1670 * indication whether a cycle is in progress or has been
1671 * completed.
1672 */
1673
1674 if (hsfsts.hsf_status.flcinprog == 0) {
ad68076e
BA
1675 /*
1676 * There is no cycle running at present,
5ff5b664 1677 * so we can start a cycle.
ad68076e
BA
1678 * Begin by setting Flash Cycle Done.
1679 */
bc7f75fa
AK
1680 hsfsts.hsf_status.flcdone = 1;
1681 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1682 ret_val = 0;
1683 } else {
ad68076e 1684 /*
5ff5b664 1685 * Otherwise poll for sometime so the current
ad68076e
BA
1686 * cycle has a chance to end before giving up.
1687 */
bc7f75fa
AK
1688 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1689 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1690 if (hsfsts.hsf_status.flcinprog == 0) {
1691 ret_val = 0;
1692 break;
1693 }
1694 udelay(1);
1695 }
1696 if (ret_val == 0) {
ad68076e
BA
1697 /*
1698 * Successful in waiting for previous cycle to timeout,
1699 * now set the Flash Cycle Done.
1700 */
bc7f75fa
AK
1701 hsfsts.hsf_status.flcdone = 1;
1702 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1703 } else {
2c73e1fe 1704 e_dbg("Flash controller busy, cannot get access\n");
bc7f75fa
AK
1705 }
1706 }
1707
1708 return ret_val;
1709}
1710
1711/**
1712 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1713 * @hw: pointer to the HW structure
1714 * @timeout: maximum time to wait for completion
1715 *
1716 * This function starts a flash cycle and waits for its completion.
1717 **/
1718static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1719{
1720 union ich8_hws_flash_ctrl hsflctl;
1721 union ich8_hws_flash_status hsfsts;
1722 s32 ret_val = -E1000_ERR_NVM;
1723 u32 i = 0;
1724
1725 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1726 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1727 hsflctl.hsf_ctrl.flcgo = 1;
1728 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1729
1730 /* wait till FDONE bit is set to 1 */
1731 do {
1732 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1733 if (hsfsts.hsf_status.flcdone == 1)
1734 break;
1735 udelay(1);
1736 } while (i++ < timeout);
1737
1738 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1739 return 0;
1740
1741 return ret_val;
1742}
1743
1744/**
1745 * e1000_read_flash_word_ich8lan - Read word from flash
1746 * @hw: pointer to the HW structure
1747 * @offset: offset to data location
1748 * @data: pointer to the location for storing the data
1749 *
1750 * Reads the flash word at offset into data. Offset is converted
1751 * to bytes before read.
1752 **/
1753static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1754 u16 *data)
1755{
1756 /* Must convert offset into bytes. */
1757 offset <<= 1;
1758
1759 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1760}
1761
f4187b56
BA
1762/**
1763 * e1000_read_flash_byte_ich8lan - Read byte from flash
1764 * @hw: pointer to the HW structure
1765 * @offset: The offset of the byte to read.
1766 * @data: Pointer to a byte to store the value read.
1767 *
1768 * Reads a single byte from the NVM using the flash access registers.
1769 **/
1770static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1771 u8 *data)
1772{
1773 s32 ret_val;
1774 u16 word = 0;
1775
1776 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1777 if (ret_val)
1778 return ret_val;
1779
1780 *data = (u8)word;
1781
1782 return 0;
1783}
1784
bc7f75fa
AK
1785/**
1786 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1787 * @hw: pointer to the HW structure
1788 * @offset: The offset (in bytes) of the byte or word to read.
1789 * @size: Size of data to read, 1=byte 2=word
1790 * @data: Pointer to the word to store the value read.
1791 *
1792 * Reads a byte or word from the NVM using the flash access registers.
1793 **/
1794static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1795 u8 size, u16 *data)
1796{
1797 union ich8_hws_flash_status hsfsts;
1798 union ich8_hws_flash_ctrl hsflctl;
1799 u32 flash_linear_addr;
1800 u32 flash_data = 0;
1801 s32 ret_val = -E1000_ERR_NVM;
1802 u8 count = 0;
1803
1804 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1805 return -E1000_ERR_NVM;
1806
1807 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1808 hw->nvm.flash_base_addr;
1809
1810 do {
1811 udelay(1);
1812 /* Steps */
1813 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1814 if (ret_val != 0)
1815 break;
1816
1817 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1818 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1819 hsflctl.hsf_ctrl.fldbcount = size - 1;
1820 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1821 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1822
1823 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1824
1825 ret_val = e1000_flash_cycle_ich8lan(hw,
1826 ICH_FLASH_READ_COMMAND_TIMEOUT);
1827
ad68076e
BA
1828 /*
1829 * Check if FCERR is set to 1, if set to 1, clear it
bc7f75fa
AK
1830 * and try the whole sequence a few more times, else
1831 * read in (shift in) the Flash Data0, the order is
ad68076e
BA
1832 * least significant byte first msb to lsb
1833 */
bc7f75fa
AK
1834 if (ret_val == 0) {
1835 flash_data = er32flash(ICH_FLASH_FDATA0);
1836 if (size == 1) {
1837 *data = (u8)(flash_data & 0x000000FF);
1838 } else if (size == 2) {
1839 *data = (u16)(flash_data & 0x0000FFFF);
1840 }
1841 break;
1842 } else {
ad68076e
BA
1843 /*
1844 * If we've gotten here, then things are probably
bc7f75fa
AK
1845 * completely hosed, but if the error condition is
1846 * detected, it won't hurt to give it another try...
1847 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1848 */
1849 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1850 if (hsfsts.hsf_status.flcerr == 1) {
1851 /* Repeat for some time before giving up. */
1852 continue;
1853 } else if (hsfsts.hsf_status.flcdone == 0) {
3bb99fe2 1854 e_dbg("Timeout error - flash cycle "
2c73e1fe 1855 "did not complete.\n");
bc7f75fa
AK
1856 break;
1857 }
1858 }
1859 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1860
1861 return ret_val;
1862}
1863
1864/**
1865 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1866 * @hw: pointer to the HW structure
1867 * @offset: The offset (in bytes) of the word(s) to write.
1868 * @words: Size of data to write in words
1869 * @data: Pointer to the word(s) to write at offset.
1870 *
1871 * Writes a byte or word to the NVM using the flash access registers.
1872 **/
1873static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1874 u16 *data)
1875{
1876 struct e1000_nvm_info *nvm = &hw->nvm;
1877 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
bc7f75fa
AK
1878 u16 i;
1879
1880 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1881 (words == 0)) {
3bb99fe2 1882 e_dbg("nvm parameter(s) out of bounds\n");
bc7f75fa
AK
1883 return -E1000_ERR_NVM;
1884 }
1885
94d8186a 1886 nvm->ops.acquire(hw);
ca15df58 1887
bc7f75fa 1888 for (i = 0; i < words; i++) {
564ea9bb 1889 dev_spec->shadow_ram[offset+i].modified = true;
bc7f75fa
AK
1890 dev_spec->shadow_ram[offset+i].value = data[i];
1891 }
1892
94d8186a 1893 nvm->ops.release(hw);
ca15df58 1894
bc7f75fa
AK
1895 return 0;
1896}
1897
1898/**
1899 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1900 * @hw: pointer to the HW structure
1901 *
1902 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1903 * which writes the checksum to the shadow ram. The changes in the shadow
1904 * ram are then committed to the EEPROM by processing each bank at a time
1905 * checking for the modified bit and writing only the pending changes.
489815ce 1906 * After a successful commit, the shadow ram is cleared and is ready for
bc7f75fa
AK
1907 * future writes.
1908 **/
1909static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1910{
1911 struct e1000_nvm_info *nvm = &hw->nvm;
1912 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
f4187b56 1913 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
bc7f75fa
AK
1914 s32 ret_val;
1915 u16 data;
1916
1917 ret_val = e1000e_update_nvm_checksum_generic(hw);
1918 if (ret_val)
e243455d 1919 goto out;
bc7f75fa
AK
1920
1921 if (nvm->type != e1000_nvm_flash_sw)
e243455d 1922 goto out;
bc7f75fa 1923
94d8186a 1924 nvm->ops.acquire(hw);
bc7f75fa 1925
ad68076e
BA
1926 /*
1927 * We're writing to the opposite bank so if we're on bank 1,
bc7f75fa 1928 * write to bank 0 etc. We also need to erase the segment that
ad68076e
BA
1929 * is going to be written
1930 */
f4187b56 1931 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
e243455d 1932 if (ret_val) {
3bb99fe2 1933 e_dbg("Could not detect valid bank, assuming bank 0\n");
148675a7 1934 bank = 0;
e243455d 1935 }
f4187b56
BA
1936
1937 if (bank == 0) {
bc7f75fa
AK
1938 new_bank_offset = nvm->flash_bank_size;
1939 old_bank_offset = 0;
e243455d 1940 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
9c5e209d
BA
1941 if (ret_val)
1942 goto release;
bc7f75fa
AK
1943 } else {
1944 old_bank_offset = nvm->flash_bank_size;
1945 new_bank_offset = 0;
e243455d 1946 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
9c5e209d
BA
1947 if (ret_val)
1948 goto release;
bc7f75fa
AK
1949 }
1950
1951 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
ad68076e
BA
1952 /*
1953 * Determine whether to write the value stored
bc7f75fa 1954 * in the other NVM bank or a modified value stored
ad68076e
BA
1955 * in the shadow RAM
1956 */
bc7f75fa
AK
1957 if (dev_spec->shadow_ram[i].modified) {
1958 data = dev_spec->shadow_ram[i].value;
1959 } else {
e243455d
BA
1960 ret_val = e1000_read_flash_word_ich8lan(hw, i +
1961 old_bank_offset,
1962 &data);
1963 if (ret_val)
1964 break;
bc7f75fa
AK
1965 }
1966
ad68076e
BA
1967 /*
1968 * If the word is 0x13, then make sure the signature bits
bc7f75fa
AK
1969 * (15:14) are 11b until the commit has completed.
1970 * This will allow us to write 10b which indicates the
1971 * signature is valid. We want to do this after the write
1972 * has completed so that we don't mark the segment valid
ad68076e
BA
1973 * while the write is still in progress
1974 */
bc7f75fa
AK
1975 if (i == E1000_ICH_NVM_SIG_WORD)
1976 data |= E1000_ICH_NVM_SIG_MASK;
1977
1978 /* Convert offset to bytes. */
1979 act_offset = (i + new_bank_offset) << 1;
1980
1981 udelay(100);
1982 /* Write the bytes to the new bank. */
1983 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1984 act_offset,
1985 (u8)data);
1986 if (ret_val)
1987 break;
1988
1989 udelay(100);
1990 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1991 act_offset + 1,
1992 (u8)(data >> 8));
1993 if (ret_val)
1994 break;
1995 }
1996
ad68076e
BA
1997 /*
1998 * Don't bother writing the segment valid bits if sector
1999 * programming failed.
2000 */
bc7f75fa 2001 if (ret_val) {
4a770358 2002 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3bb99fe2 2003 e_dbg("Flash commit failed.\n");
9c5e209d 2004 goto release;
bc7f75fa
AK
2005 }
2006
ad68076e
BA
2007 /*
2008 * Finally validate the new segment by setting bit 15:14
bc7f75fa
AK
2009 * to 10b in word 0x13 , this can be done without an
2010 * erase as well since these bits are 11 to start with
ad68076e
BA
2011 * and we need to change bit 14 to 0b
2012 */
bc7f75fa 2013 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
e243455d 2014 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
9c5e209d
BA
2015 if (ret_val)
2016 goto release;
2017
bc7f75fa
AK
2018 data &= 0xBFFF;
2019 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2020 act_offset * 2 + 1,
2021 (u8)(data >> 8));
9c5e209d
BA
2022 if (ret_val)
2023 goto release;
bc7f75fa 2024
ad68076e
BA
2025 /*
2026 * And invalidate the previously valid segment by setting
bc7f75fa
AK
2027 * its signature word (0x13) high_byte to 0b. This can be
2028 * done without an erase because flash erase sets all bits
ad68076e
BA
2029 * to 1's. We can write 1's to 0's without an erase
2030 */
bc7f75fa
AK
2031 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2032 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
9c5e209d
BA
2033 if (ret_val)
2034 goto release;
bc7f75fa
AK
2035
2036 /* Great! Everything worked, we can now clear the cached entries. */
2037 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
564ea9bb 2038 dev_spec->shadow_ram[i].modified = false;
bc7f75fa
AK
2039 dev_spec->shadow_ram[i].value = 0xFFFF;
2040 }
2041
9c5e209d 2042release:
94d8186a 2043 nvm->ops.release(hw);
bc7f75fa 2044
ad68076e
BA
2045 /*
2046 * Reload the EEPROM, or else modifications will not appear
bc7f75fa
AK
2047 * until after the next adapter reset.
2048 */
9c5e209d
BA
2049 if (!ret_val) {
2050 e1000e_reload_nvm(hw);
2051 msleep(10);
2052 }
bc7f75fa 2053
e243455d
BA
2054out:
2055 if (ret_val)
3bb99fe2 2056 e_dbg("NVM update error: %d\n", ret_val);
e243455d 2057
bc7f75fa
AK
2058 return ret_val;
2059}
2060
2061/**
2062 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2063 * @hw: pointer to the HW structure
2064 *
2065 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2066 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2067 * calculated, in which case we need to calculate the checksum and set bit 6.
2068 **/
2069static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2070{
2071 s32 ret_val;
2072 u16 data;
2073
ad68076e
BA
2074 /*
2075 * Read 0x19 and check bit 6. If this bit is 0, the checksum
bc7f75fa
AK
2076 * needs to be fixed. This bit is an indication that the NVM
2077 * was prepared by OEM software and did not calculate the
2078 * checksum...a likely scenario.
2079 */
2080 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2081 if (ret_val)
2082 return ret_val;
2083
2084 if ((data & 0x40) == 0) {
2085 data |= 0x40;
2086 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2087 if (ret_val)
2088 return ret_val;
2089 ret_val = e1000e_update_nvm_checksum(hw);
2090 if (ret_val)
2091 return ret_val;
2092 }
2093
2094 return e1000e_validate_nvm_checksum_generic(hw);
2095}
2096
4a770358
BA
2097/**
2098 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2099 * @hw: pointer to the HW structure
2100 *
2101 * To prevent malicious write/erase of the NVM, set it to be read-only
2102 * so that the hardware ignores all write/erase cycles of the NVM via
2103 * the flash control registers. The shadow-ram copy of the NVM will
2104 * still be updated, however any updates to this copy will not stick
2105 * across driver reloads.
2106 **/
2107void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2108{
ca15df58 2109 struct e1000_nvm_info *nvm = &hw->nvm;
4a770358
BA
2110 union ich8_flash_protected_range pr0;
2111 union ich8_hws_flash_status hsfsts;
2112 u32 gfpreg;
4a770358 2113
94d8186a 2114 nvm->ops.acquire(hw);
4a770358
BA
2115
2116 gfpreg = er32flash(ICH_FLASH_GFPREG);
2117
2118 /* Write-protect GbE Sector of NVM */
2119 pr0.regval = er32flash(ICH_FLASH_PR0);
2120 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2121 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2122 pr0.range.wpe = true;
2123 ew32flash(ICH_FLASH_PR0, pr0.regval);
2124
2125 /*
2126 * Lock down a subset of GbE Flash Control Registers, e.g.
2127 * PR0 to prevent the write-protection from being lifted.
2128 * Once FLOCKDN is set, the registers protected by it cannot
2129 * be written until FLOCKDN is cleared by a hardware reset.
2130 */
2131 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2132 hsfsts.hsf_status.flockdn = true;
2133 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2134
94d8186a 2135 nvm->ops.release(hw);
4a770358
BA
2136}
2137
bc7f75fa
AK
2138/**
2139 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2140 * @hw: pointer to the HW structure
2141 * @offset: The offset (in bytes) of the byte/word to read.
2142 * @size: Size of data to read, 1=byte 2=word
2143 * @data: The byte(s) to write to the NVM.
2144 *
2145 * Writes one/two bytes to the NVM using the flash access registers.
2146 **/
2147static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2148 u8 size, u16 data)
2149{
2150 union ich8_hws_flash_status hsfsts;
2151 union ich8_hws_flash_ctrl hsflctl;
2152 u32 flash_linear_addr;
2153 u32 flash_data = 0;
2154 s32 ret_val;
2155 u8 count = 0;
2156
2157 if (size < 1 || size > 2 || data > size * 0xff ||
2158 offset > ICH_FLASH_LINEAR_ADDR_MASK)
2159 return -E1000_ERR_NVM;
2160
2161 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2162 hw->nvm.flash_base_addr;
2163
2164 do {
2165 udelay(1);
2166 /* Steps */
2167 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2168 if (ret_val)
2169 break;
2170
2171 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2172 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2173 hsflctl.hsf_ctrl.fldbcount = size -1;
2174 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2175 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2176
2177 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2178
2179 if (size == 1)
2180 flash_data = (u32)data & 0x00FF;
2181 else
2182 flash_data = (u32)data;
2183
2184 ew32flash(ICH_FLASH_FDATA0, flash_data);
2185
ad68076e
BA
2186 /*
2187 * check if FCERR is set to 1 , if set to 1, clear it
2188 * and try the whole sequence a few more times else done
2189 */
bc7f75fa
AK
2190 ret_val = e1000_flash_cycle_ich8lan(hw,
2191 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2192 if (!ret_val)
2193 break;
2194
ad68076e
BA
2195 /*
2196 * If we're here, then things are most likely
bc7f75fa
AK
2197 * completely hosed, but if the error condition
2198 * is detected, it won't hurt to give it another
2199 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2200 */
2201 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2202 if (hsfsts.hsf_status.flcerr == 1)
2203 /* Repeat for some time before giving up. */
2204 continue;
2205 if (hsfsts.hsf_status.flcdone == 0) {
3bb99fe2 2206 e_dbg("Timeout error - flash cycle "
bc7f75fa
AK
2207 "did not complete.");
2208 break;
2209 }
2210 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2211
2212 return ret_val;
2213}
2214
2215/**
2216 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2217 * @hw: pointer to the HW structure
2218 * @offset: The index of the byte to read.
2219 * @data: The byte to write to the NVM.
2220 *
2221 * Writes a single byte to the NVM using the flash access registers.
2222 **/
2223static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2224 u8 data)
2225{
2226 u16 word = (u16)data;
2227
2228 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2229}
2230
2231/**
2232 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2233 * @hw: pointer to the HW structure
2234 * @offset: The offset of the byte to write.
2235 * @byte: The byte to write to the NVM.
2236 *
2237 * Writes a single byte to the NVM using the flash access registers.
2238 * Goes through a retry algorithm before giving up.
2239 **/
2240static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2241 u32 offset, u8 byte)
2242{
2243 s32 ret_val;
2244 u16 program_retries;
2245
2246 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2247 if (!ret_val)
2248 return ret_val;
2249
2250 for (program_retries = 0; program_retries < 100; program_retries++) {
3bb99fe2 2251 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
bc7f75fa
AK
2252 udelay(100);
2253 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2254 if (!ret_val)
2255 break;
2256 }
2257 if (program_retries == 100)
2258 return -E1000_ERR_NVM;
2259
2260 return 0;
2261}
2262
2263/**
2264 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2265 * @hw: pointer to the HW structure
2266 * @bank: 0 for first bank, 1 for second bank, etc.
2267 *
2268 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2269 * bank N is 4096 * N + flash_reg_addr.
2270 **/
2271static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2272{
2273 struct e1000_nvm_info *nvm = &hw->nvm;
2274 union ich8_hws_flash_status hsfsts;
2275 union ich8_hws_flash_ctrl hsflctl;
2276 u32 flash_linear_addr;
2277 /* bank size is in 16bit words - adjust to bytes */
2278 u32 flash_bank_size = nvm->flash_bank_size * 2;
2279 s32 ret_val;
2280 s32 count = 0;
a708dd88 2281 s32 j, iteration, sector_size;
bc7f75fa
AK
2282
2283 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2284
ad68076e
BA
2285 /*
2286 * Determine HW Sector size: Read BERASE bits of hw flash status
2287 * register
2288 * 00: The Hw sector is 256 bytes, hence we need to erase 16
bc7f75fa
AK
2289 * consecutive sectors. The start index for the nth Hw sector
2290 * can be calculated as = bank * 4096 + n * 256
2291 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2292 * The start index for the nth Hw sector can be calculated
2293 * as = bank * 4096
2294 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2295 * (ich9 only, otherwise error condition)
2296 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2297 */
2298 switch (hsfsts.hsf_status.berasesz) {
2299 case 0:
2300 /* Hw sector size 256 */
2301 sector_size = ICH_FLASH_SEG_SIZE_256;
2302 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2303 break;
2304 case 1:
2305 sector_size = ICH_FLASH_SEG_SIZE_4K;
28c9195a 2306 iteration = 1;
bc7f75fa
AK
2307 break;
2308 case 2:
148675a7
BA
2309 sector_size = ICH_FLASH_SEG_SIZE_8K;
2310 iteration = 1;
bc7f75fa
AK
2311 break;
2312 case 3:
2313 sector_size = ICH_FLASH_SEG_SIZE_64K;
28c9195a 2314 iteration = 1;
bc7f75fa
AK
2315 break;
2316 default:
2317 return -E1000_ERR_NVM;
2318 }
2319
2320 /* Start with the base address, then add the sector offset. */
2321 flash_linear_addr = hw->nvm.flash_base_addr;
148675a7 2322 flash_linear_addr += (bank) ? flash_bank_size : 0;
bc7f75fa
AK
2323
2324 for (j = 0; j < iteration ; j++) {
2325 do {
2326 /* Steps */
2327 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2328 if (ret_val)
2329 return ret_val;
2330
ad68076e
BA
2331 /*
2332 * Write a value 11 (block Erase) in Flash
2333 * Cycle field in hw flash control
2334 */
bc7f75fa
AK
2335 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2336 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2337 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2338
ad68076e
BA
2339 /*
2340 * Write the last 24 bits of an index within the
bc7f75fa
AK
2341 * block into Flash Linear address field in Flash
2342 * Address.
2343 */
2344 flash_linear_addr += (j * sector_size);
2345 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2346
2347 ret_val = e1000_flash_cycle_ich8lan(hw,
2348 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2349 if (ret_val == 0)
2350 break;
2351
ad68076e
BA
2352 /*
2353 * Check if FCERR is set to 1. If 1,
bc7f75fa 2354 * clear it and try the whole sequence
ad68076e
BA
2355 * a few more times else Done
2356 */
bc7f75fa
AK
2357 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2358 if (hsfsts.hsf_status.flcerr == 1)
ad68076e 2359 /* repeat for some time before giving up */
bc7f75fa
AK
2360 continue;
2361 else if (hsfsts.hsf_status.flcdone == 0)
2362 return ret_val;
2363 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2364 }
2365
2366 return 0;
2367}
2368
2369/**
2370 * e1000_valid_led_default_ich8lan - Set the default LED settings
2371 * @hw: pointer to the HW structure
2372 * @data: Pointer to the LED settings
2373 *
2374 * Reads the LED default settings from the NVM to data. If the NVM LED
2375 * settings is all 0's or F's, set the LED default to a valid LED default
2376 * setting.
2377 **/
2378static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2379{
2380 s32 ret_val;
2381
2382 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2383 if (ret_val) {
3bb99fe2 2384 e_dbg("NVM Read Error\n");
bc7f75fa
AK
2385 return ret_val;
2386 }
2387
2388 if (*data == ID_LED_RESERVED_0000 ||
2389 *data == ID_LED_RESERVED_FFFF)
2390 *data = ID_LED_DEFAULT_ICH8LAN;
2391
2392 return 0;
2393}
2394
a4f58f54
BA
2395/**
2396 * e1000_id_led_init_pchlan - store LED configurations
2397 * @hw: pointer to the HW structure
2398 *
2399 * PCH does not control LEDs via the LEDCTL register, rather it uses
2400 * the PHY LED configuration register.
2401 *
2402 * PCH also does not have an "always on" or "always off" mode which
2403 * complicates the ID feature. Instead of using the "on" mode to indicate
2404 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2405 * use "link_up" mode. The LEDs will still ID on request if there is no
2406 * link based on logic in e1000_led_[on|off]_pchlan().
2407 **/
2408static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2409{
2410 struct e1000_mac_info *mac = &hw->mac;
2411 s32 ret_val;
2412 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2413 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2414 u16 data, i, temp, shift;
2415
2416 /* Get default ID LED modes */
2417 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2418 if (ret_val)
2419 goto out;
2420
2421 mac->ledctl_default = er32(LEDCTL);
2422 mac->ledctl_mode1 = mac->ledctl_default;
2423 mac->ledctl_mode2 = mac->ledctl_default;
2424
2425 for (i = 0; i < 4; i++) {
2426 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2427 shift = (i * 5);
2428 switch (temp) {
2429 case ID_LED_ON1_DEF2:
2430 case ID_LED_ON1_ON2:
2431 case ID_LED_ON1_OFF2:
2432 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2433 mac->ledctl_mode1 |= (ledctl_on << shift);
2434 break;
2435 case ID_LED_OFF1_DEF2:
2436 case ID_LED_OFF1_ON2:
2437 case ID_LED_OFF1_OFF2:
2438 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2439 mac->ledctl_mode1 |= (ledctl_off << shift);
2440 break;
2441 default:
2442 /* Do nothing */
2443 break;
2444 }
2445 switch (temp) {
2446 case ID_LED_DEF1_ON2:
2447 case ID_LED_ON1_ON2:
2448 case ID_LED_OFF1_ON2:
2449 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2450 mac->ledctl_mode2 |= (ledctl_on << shift);
2451 break;
2452 case ID_LED_DEF1_OFF2:
2453 case ID_LED_ON1_OFF2:
2454 case ID_LED_OFF1_OFF2:
2455 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2456 mac->ledctl_mode2 |= (ledctl_off << shift);
2457 break;
2458 default:
2459 /* Do nothing */
2460 break;
2461 }
2462 }
2463
2464out:
2465 return ret_val;
2466}
2467
bc7f75fa
AK
2468/**
2469 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2470 * @hw: pointer to the HW structure
2471 *
2472 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2473 * register, so the the bus width is hard coded.
2474 **/
2475static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2476{
2477 struct e1000_bus_info *bus = &hw->bus;
2478 s32 ret_val;
2479
2480 ret_val = e1000e_get_bus_info_pcie(hw);
2481
ad68076e
BA
2482 /*
2483 * ICH devices are "PCI Express"-ish. They have
bc7f75fa
AK
2484 * a configuration space, but do not contain
2485 * PCI Express Capability registers, so bus width
2486 * must be hardcoded.
2487 */
2488 if (bus->width == e1000_bus_width_unknown)
2489 bus->width = e1000_bus_width_pcie_x1;
2490
2491 return ret_val;
2492}
2493
2494/**
2495 * e1000_reset_hw_ich8lan - Reset the hardware
2496 * @hw: pointer to the HW structure
2497 *
2498 * Does a full reset of the hardware which includes a reset of the PHY and
2499 * MAC.
2500 **/
2501static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2502{
1d5846b9 2503 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
db2932ec 2504 u16 reg;
bc7f75fa
AK
2505 u32 ctrl, icr, kab;
2506 s32 ret_val;
2507
ad68076e
BA
2508 /*
2509 * Prevent the PCI-E bus from sticking if there is no TLP connection
bc7f75fa
AK
2510 * on the last TLP read/write transaction when MAC is reset.
2511 */
2512 ret_val = e1000e_disable_pcie_master(hw);
2513 if (ret_val) {
3bb99fe2 2514 e_dbg("PCI-E Master disable polling has failed.\n");
bc7f75fa
AK
2515 }
2516
3bb99fe2 2517 e_dbg("Masking off all interrupts\n");
bc7f75fa
AK
2518 ew32(IMC, 0xffffffff);
2519
ad68076e
BA
2520 /*
2521 * Disable the Transmit and Receive units. Then delay to allow
bc7f75fa
AK
2522 * any pending transactions to complete before we hit the MAC
2523 * with the global reset.
2524 */
2525 ew32(RCTL, 0);
2526 ew32(TCTL, E1000_TCTL_PSP);
2527 e1e_flush();
2528
2529 msleep(10);
2530
2531 /* Workaround for ICH8 bit corruption issue in FIFO memory */
2532 if (hw->mac.type == e1000_ich8lan) {
2533 /* Set Tx and Rx buffer allocation to 8k apiece. */
2534 ew32(PBA, E1000_PBA_8K);
2535 /* Set Packet Buffer Size to 16k. */
2536 ew32(PBS, E1000_PBS_16K);
2537 }
2538
1d5846b9
BA
2539 if (hw->mac.type == e1000_pchlan) {
2540 /* Save the NVM K1 bit setting*/
2541 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
2542 if (ret_val)
2543 return ret_val;
2544
2545 if (reg & E1000_NVM_K1_ENABLE)
2546 dev_spec->nvm_k1_enabled = true;
2547 else
2548 dev_spec->nvm_k1_enabled = false;
2549 }
2550
bc7f75fa
AK
2551 ctrl = er32(CTRL);
2552
2553 if (!e1000_check_reset_block(hw)) {
fc0c7760
BA
2554 /* Clear PHY Reset Asserted bit */
2555 if (hw->mac.type >= e1000_pchlan) {
2556 u32 status = er32(STATUS);
2557 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
2558 }
2559
ad68076e
BA
2560 /*
2561 * PHY HW reset requires MAC CORE reset at the same
bc7f75fa
AK
2562 * time to make sure the interface between MAC and the
2563 * external PHY is reset.
2564 */
2565 ctrl |= E1000_CTRL_PHY_RST;
2566 }
2567 ret_val = e1000_acquire_swflag_ich8lan(hw);
3bb99fe2 2568 e_dbg("Issuing a global reset to ich8lan\n");
bc7f75fa
AK
2569 ew32(CTRL, (ctrl | E1000_CTRL_RST));
2570 msleep(20);
2571
fc0c7760 2572 if (!ret_val)
30bb0e0d 2573 e1000_release_swflag_ich8lan(hw);
37f40239 2574
fddaa1af
BA
2575 /* Perform any necessary post-reset workarounds */
2576 if (hw->mac.type == e1000_pchlan)
2577 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2578
fc0c7760
BA
2579 if (ctrl & E1000_CTRL_PHY_RST)
2580 ret_val = hw->phy.ops.get_cfg_done(hw);
2581
2582 if (hw->mac.type >= e1000_ich10lan) {
2583 e1000_lan_init_done_ich8lan(hw);
2584 } else {
2585 ret_val = e1000e_get_auto_rd_done(hw);
2586 if (ret_val) {
2587 /*
2588 * When auto config read does not complete, do not
2589 * return with an error. This can happen in situations
2590 * where there is no eeprom and prevents getting link.
2591 */
3bb99fe2 2592 e_dbg("Auto Read Done did not complete\n");
fc0c7760 2593 }
bc7f75fa 2594 }
db2932ec
BA
2595 /* Dummy read to clear the phy wakeup bit after lcd reset */
2596 if (hw->mac.type == e1000_pchlan)
2597 e1e_rphy(hw, BM_WUC, &reg);
bc7f75fa 2598
f523d211
BA
2599 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2600 if (ret_val)
2601 goto out;
2602
2603 if (hw->mac.type == e1000_pchlan) {
2604 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2605 if (ret_val)
2606 goto out;
2607 }
7d3cabbc
BA
2608 /*
2609 * For PCH, this write will make sure that any noise
2610 * will be detected as a CRC error and be dropped rather than show up
2611 * as a bad packet to the DMA engine.
2612 */
2613 if (hw->mac.type == e1000_pchlan)
2614 ew32(CRC_OFFSET, 0x65656565);
2615
bc7f75fa
AK
2616 ew32(IMC, 0xffffffff);
2617 icr = er32(ICR);
2618
2619 kab = er32(KABGTXD);
2620 kab |= E1000_KABGTXD_BGSQLBIAS;
2621 ew32(KABGTXD, kab);
2622
f523d211 2623out:
bc7f75fa
AK
2624 return ret_val;
2625}
2626
2627/**
2628 * e1000_init_hw_ich8lan - Initialize the hardware
2629 * @hw: pointer to the HW structure
2630 *
2631 * Prepares the hardware for transmit and receive by doing the following:
2632 * - initialize hardware bits
2633 * - initialize LED identification
2634 * - setup receive address registers
2635 * - setup flow control
489815ce 2636 * - setup transmit descriptors
bc7f75fa
AK
2637 * - clear statistics
2638 **/
2639static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
2640{
2641 struct e1000_mac_info *mac = &hw->mac;
2642 u32 ctrl_ext, txdctl, snoop;
2643 s32 ret_val;
2644 u16 i;
2645
2646 e1000_initialize_hw_bits_ich8lan(hw);
2647
2648 /* Initialize identification LED */
a4f58f54 2649 ret_val = mac->ops.id_led_init(hw);
de39b752 2650 if (ret_val)
3bb99fe2 2651 e_dbg("Error initializing identification LED\n");
de39b752 2652 /* This is not fatal and we should not stop init due to this */
bc7f75fa
AK
2653
2654 /* Setup the receive address. */
2655 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2656
2657 /* Zero out the Multicast HASH table */
3bb99fe2 2658 e_dbg("Zeroing the MTA\n");
bc7f75fa
AK
2659 for (i = 0; i < mac->mta_reg_count; i++)
2660 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2661
fc0c7760
BA
2662 /*
2663 * The 82578 Rx buffer will stall if wakeup is enabled in host and
2664 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
2665 * Reset the phy after disabling host wakeup to reset the Rx buffer.
2666 */
2667 if (hw->phy.type == e1000_phy_82578) {
94d8186a 2668 hw->phy.ops.read_reg(hw, BM_WUC, &i);
fc0c7760
BA
2669 ret_val = e1000_phy_hw_reset_ich8lan(hw);
2670 if (ret_val)
2671 return ret_val;
2672 }
2673
bc7f75fa
AK
2674 /* Setup link and flow control */
2675 ret_val = e1000_setup_link_ich8lan(hw);
2676
2677 /* Set the transmit descriptor write-back policy for both queues */
e9ec2c0f 2678 txdctl = er32(TXDCTL(0));
bc7f75fa
AK
2679 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2680 E1000_TXDCTL_FULL_TX_DESC_WB;
2681 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2682 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
e9ec2c0f
JK
2683 ew32(TXDCTL(0), txdctl);
2684 txdctl = er32(TXDCTL(1));
bc7f75fa
AK
2685 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2686 E1000_TXDCTL_FULL_TX_DESC_WB;
2687 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2688 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
e9ec2c0f 2689 ew32(TXDCTL(1), txdctl);
bc7f75fa 2690
ad68076e
BA
2691 /*
2692 * ICH8 has opposite polarity of no_snoop bits.
2693 * By default, we should use snoop behavior.
2694 */
bc7f75fa
AK
2695 if (mac->type == e1000_ich8lan)
2696 snoop = PCIE_ICH8_SNOOP_ALL;
2697 else
2698 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2699 e1000e_set_pcie_no_snoop(hw, snoop);
2700
2701 ctrl_ext = er32(CTRL_EXT);
2702 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2703 ew32(CTRL_EXT, ctrl_ext);
2704
ad68076e
BA
2705 /*
2706 * Clear all of the statistics registers (clear on read). It is
bc7f75fa
AK
2707 * important that we do this after we have tried to establish link
2708 * because the symbol error count will increment wildly if there
2709 * is no link.
2710 */
2711 e1000_clear_hw_cntrs_ich8lan(hw);
2712
2713 return 0;
2714}
2715/**
2716 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2717 * @hw: pointer to the HW structure
2718 *
2719 * Sets/Clears required hardware bits necessary for correctly setting up the
2720 * hardware for transmit and receive.
2721 **/
2722static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2723{
2724 u32 reg;
2725
2726 /* Extended Device Control */
2727 reg = er32(CTRL_EXT);
2728 reg |= (1 << 22);
a4f58f54
BA
2729 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2730 if (hw->mac.type >= e1000_pchlan)
2731 reg |= E1000_CTRL_EXT_PHYPDEN;
bc7f75fa
AK
2732 ew32(CTRL_EXT, reg);
2733
2734 /* Transmit Descriptor Control 0 */
e9ec2c0f 2735 reg = er32(TXDCTL(0));
bc7f75fa 2736 reg |= (1 << 22);
e9ec2c0f 2737 ew32(TXDCTL(0), reg);
bc7f75fa
AK
2738
2739 /* Transmit Descriptor Control 1 */
e9ec2c0f 2740 reg = er32(TXDCTL(1));
bc7f75fa 2741 reg |= (1 << 22);
e9ec2c0f 2742 ew32(TXDCTL(1), reg);
bc7f75fa
AK
2743
2744 /* Transmit Arbitration Control 0 */
e9ec2c0f 2745 reg = er32(TARC(0));
bc7f75fa
AK
2746 if (hw->mac.type == e1000_ich8lan)
2747 reg |= (1 << 28) | (1 << 29);
2748 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
e9ec2c0f 2749 ew32(TARC(0), reg);
bc7f75fa
AK
2750
2751 /* Transmit Arbitration Control 1 */
e9ec2c0f 2752 reg = er32(TARC(1));
bc7f75fa
AK
2753 if (er32(TCTL) & E1000_TCTL_MULR)
2754 reg &= ~(1 << 28);
2755 else
2756 reg |= (1 << 28);
2757 reg |= (1 << 24) | (1 << 26) | (1 << 30);
e9ec2c0f 2758 ew32(TARC(1), reg);
bc7f75fa
AK
2759
2760 /* Device Status */
2761 if (hw->mac.type == e1000_ich8lan) {
2762 reg = er32(STATUS);
2763 reg &= ~(1 << 31);
2764 ew32(STATUS, reg);
2765 }
a80483d3
JB
2766
2767 /*
2768 * work-around descriptor data corruption issue during nfs v2 udp
2769 * traffic, just disable the nfs filtering capability
2770 */
2771 reg = er32(RFCTL);
2772 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
2773 ew32(RFCTL, reg);
2774
2775 return;
bc7f75fa
AK
2776}
2777
2778/**
2779 * e1000_setup_link_ich8lan - Setup flow control and link settings
2780 * @hw: pointer to the HW structure
2781 *
2782 * Determines which flow control settings to use, then configures flow
2783 * control. Calls the appropriate media-specific link configuration
2784 * function. Assuming the adapter has a valid link partner, a valid link
2785 * should be established. Assumes the hardware has previously been reset
2786 * and the transmitter and receiver are not enabled.
2787 **/
2788static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2789{
bc7f75fa
AK
2790 s32 ret_val;
2791
2792 if (e1000_check_reset_block(hw))
2793 return 0;
2794
ad68076e
BA
2795 /*
2796 * ICH parts do not have a word in the NVM to determine
bc7f75fa
AK
2797 * the default flow control setting, so we explicitly
2798 * set it to full.
2799 */
37289d9c
BA
2800 if (hw->fc.requested_mode == e1000_fc_default) {
2801 /* Workaround h/w hang when Tx flow control enabled */
2802 if (hw->mac.type == e1000_pchlan)
2803 hw->fc.requested_mode = e1000_fc_rx_pause;
2804 else
2805 hw->fc.requested_mode = e1000_fc_full;
2806 }
bc7f75fa 2807
5c48ef3e
BA
2808 /*
2809 * Save off the requested flow control mode for use later. Depending
2810 * on the link partner's capabilities, we may or may not use this mode.
2811 */
2812 hw->fc.current_mode = hw->fc.requested_mode;
bc7f75fa 2813
3bb99fe2 2814 e_dbg("After fix-ups FlowControl is now = %x\n",
5c48ef3e 2815 hw->fc.current_mode);
bc7f75fa
AK
2816
2817 /* Continue to configure the copper link. */
2818 ret_val = e1000_setup_copper_link_ich8lan(hw);
2819 if (ret_val)
2820 return ret_val;
2821
318a94d6 2822 ew32(FCTTV, hw->fc.pause_time);
a4f58f54
BA
2823 if ((hw->phy.type == e1000_phy_82578) ||
2824 (hw->phy.type == e1000_phy_82577)) {
94d8186a 2825 ret_val = hw->phy.ops.write_reg(hw,
a4f58f54
BA
2826 PHY_REG(BM_PORT_CTRL_PAGE, 27),
2827 hw->fc.pause_time);
2828 if (ret_val)
2829 return ret_val;
2830 }
bc7f75fa
AK
2831
2832 return e1000e_set_fc_watermarks(hw);
2833}
2834
2835/**
2836 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2837 * @hw: pointer to the HW structure
2838 *
2839 * Configures the kumeran interface to the PHY to wait the appropriate time
2840 * when polling the PHY, then call the generic setup_copper_link to finish
2841 * configuring the copper link.
2842 **/
2843static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2844{
2845 u32 ctrl;
2846 s32 ret_val;
2847 u16 reg_data;
2848
2849 ctrl = er32(CTRL);
2850 ctrl |= E1000_CTRL_SLU;
2851 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2852 ew32(CTRL, ctrl);
2853
ad68076e
BA
2854 /*
2855 * Set the mac to wait the maximum time between each iteration
bc7f75fa 2856 * and increase the max iterations when polling the phy;
ad68076e
BA
2857 * this fixes erroneous timeouts at 10Mbps.
2858 */
07818950 2859 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
bc7f75fa
AK
2860 if (ret_val)
2861 return ret_val;
07818950
BA
2862 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
2863 &reg_data);
bc7f75fa
AK
2864 if (ret_val)
2865 return ret_val;
2866 reg_data |= 0x3F;
07818950
BA
2867 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
2868 reg_data);
bc7f75fa
AK
2869 if (ret_val)
2870 return ret_val;
2871
a4f58f54
BA
2872 switch (hw->phy.type) {
2873 case e1000_phy_igp_3:
bc7f75fa
AK
2874 ret_val = e1000e_copper_link_setup_igp(hw);
2875 if (ret_val)
2876 return ret_val;
a4f58f54
BA
2877 break;
2878 case e1000_phy_bm:
2879 case e1000_phy_82578:
97ac8cae
BA
2880 ret_val = e1000e_copper_link_setup_m88(hw);
2881 if (ret_val)
2882 return ret_val;
a4f58f54
BA
2883 break;
2884 case e1000_phy_82577:
2885 ret_val = e1000_copper_link_setup_82577(hw);
2886 if (ret_val)
2887 return ret_val;
2888 break;
2889 case e1000_phy_ife:
94d8186a 2890 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
a4f58f54 2891 &reg_data);
97ac8cae
BA
2892 if (ret_val)
2893 return ret_val;
2894
2895 reg_data &= ~IFE_PMC_AUTO_MDIX;
2896
2897 switch (hw->phy.mdix) {
2898 case 1:
2899 reg_data &= ~IFE_PMC_FORCE_MDIX;
2900 break;
2901 case 2:
2902 reg_data |= IFE_PMC_FORCE_MDIX;
2903 break;
2904 case 0:
2905 default:
2906 reg_data |= IFE_PMC_AUTO_MDIX;
2907 break;
2908 }
94d8186a 2909 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
a4f58f54 2910 reg_data);
97ac8cae
BA
2911 if (ret_val)
2912 return ret_val;
a4f58f54
BA
2913 break;
2914 default:
2915 break;
97ac8cae 2916 }
bc7f75fa
AK
2917 return e1000e_setup_copper_link(hw);
2918}
2919
2920/**
2921 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2922 * @hw: pointer to the HW structure
2923 * @speed: pointer to store current link speed
2924 * @duplex: pointer to store the current link duplex
2925 *
ad68076e 2926 * Calls the generic get_speed_and_duplex to retrieve the current link
bc7f75fa
AK
2927 * information and then calls the Kumeran lock loss workaround for links at
2928 * gigabit speeds.
2929 **/
2930static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2931 u16 *duplex)
2932{
2933 s32 ret_val;
2934
2935 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2936 if (ret_val)
2937 return ret_val;
2938
2939 if ((hw->mac.type == e1000_ich8lan) &&
2940 (hw->phy.type == e1000_phy_igp_3) &&
2941 (*speed == SPEED_1000)) {
2942 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2943 }
2944
2945 return ret_val;
2946}
2947
2948/**
2949 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2950 * @hw: pointer to the HW structure
2951 *
2952 * Work-around for 82566 Kumeran PCS lock loss:
2953 * On link status change (i.e. PCI reset, speed change) and link is up and
2954 * speed is gigabit-
2955 * 0) if workaround is optionally disabled do nothing
2956 * 1) wait 1ms for Kumeran link to come up
2957 * 2) check Kumeran Diagnostic register PCS lock loss bit
2958 * 3) if not set the link is locked (all is good), otherwise...
2959 * 4) reset the PHY
2960 * 5) repeat up to 10 times
2961 * Note: this is only called for IGP3 copper when speed is 1gb.
2962 **/
2963static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2964{
2965 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2966 u32 phy_ctrl;
2967 s32 ret_val;
2968 u16 i, data;
2969 bool link;
2970
2971 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2972 return 0;
2973
ad68076e
BA
2974 /*
2975 * Make sure link is up before proceeding. If not just return.
bc7f75fa 2976 * Attempting this while link is negotiating fouled up link
ad68076e
BA
2977 * stability
2978 */
bc7f75fa
AK
2979 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2980 if (!link)
2981 return 0;
2982
2983 for (i = 0; i < 10; i++) {
2984 /* read once to clear */
2985 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2986 if (ret_val)
2987 return ret_val;
2988 /* and again to get new status */
2989 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2990 if (ret_val)
2991 return ret_val;
2992
2993 /* check for PCS lock */
2994 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2995 return 0;
2996
2997 /* Issue PHY reset */
2998 e1000_phy_hw_reset(hw);
2999 mdelay(5);
3000 }
3001 /* Disable GigE link negotiation */
3002 phy_ctrl = er32(PHY_CTRL);
3003 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3004 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3005 ew32(PHY_CTRL, phy_ctrl);
3006
ad68076e
BA
3007 /*
3008 * Call gig speed drop workaround on Gig disable before accessing
3009 * any PHY registers
3010 */
bc7f75fa
AK
3011 e1000e_gig_downshift_workaround_ich8lan(hw);
3012
3013 /* unable to acquire PCS lock */
3014 return -E1000_ERR_PHY;
3015}
3016
3017/**
ad68076e 3018 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
bc7f75fa 3019 * @hw: pointer to the HW structure
489815ce 3020 * @state: boolean value used to set the current Kumeran workaround state
bc7f75fa 3021 *
564ea9bb
BA
3022 * If ICH8, set the current Kumeran workaround state (enabled - true
3023 * /disabled - false).
bc7f75fa
AK
3024 **/
3025void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3026 bool state)
3027{
3028 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3029
3030 if (hw->mac.type != e1000_ich8lan) {
3bb99fe2 3031 e_dbg("Workaround applies to ICH8 only.\n");
bc7f75fa
AK
3032 return;
3033 }
3034
3035 dev_spec->kmrn_lock_loss_workaround_enabled = state;
3036}
3037
3038/**
3039 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3040 * @hw: pointer to the HW structure
3041 *
3042 * Workaround for 82566 power-down on D3 entry:
3043 * 1) disable gigabit link
3044 * 2) write VR power-down enable
3045 * 3) read it back
3046 * Continue if successful, else issue LCD reset and repeat
3047 **/
3048void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3049{
3050 u32 reg;
3051 u16 data;
3052 u8 retry = 0;
3053
3054 if (hw->phy.type != e1000_phy_igp_3)
3055 return;
3056
3057 /* Try the workaround twice (if needed) */
3058 do {
3059 /* Disable link */
3060 reg = er32(PHY_CTRL);
3061 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3062 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3063 ew32(PHY_CTRL, reg);
3064
ad68076e
BA
3065 /*
3066 * Call gig speed drop workaround on Gig disable before
3067 * accessing any PHY registers
3068 */
bc7f75fa
AK
3069 if (hw->mac.type == e1000_ich8lan)
3070 e1000e_gig_downshift_workaround_ich8lan(hw);
3071
3072 /* Write VR power-down enable */
3073 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3074 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3075 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3076
3077 /* Read it back and test */
3078 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3079 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3080 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3081 break;
3082
3083 /* Issue PHY reset and repeat at most one more time */
3084 reg = er32(CTRL);
3085 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3086 retry++;
3087 } while (retry);
3088}
3089
3090/**
3091 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3092 * @hw: pointer to the HW structure
3093 *
3094 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
489815ce 3095 * LPLU, Gig disable, MDIC PHY reset):
bc7f75fa
AK
3096 * 1) Set Kumeran Near-end loopback
3097 * 2) Clear Kumeran Near-end loopback
3098 * Should only be called for ICH8[m] devices with IGP_3 Phy.
3099 **/
3100void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3101{
3102 s32 ret_val;
3103 u16 reg_data;
3104
3105 if ((hw->mac.type != e1000_ich8lan) ||
3106 (hw->phy.type != e1000_phy_igp_3))
3107 return;
3108
3109 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3110 &reg_data);
3111 if (ret_val)
3112 return;
3113 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3114 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3115 reg_data);
3116 if (ret_val)
3117 return;
3118 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3119 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3120 reg_data);
3121}
3122
97ac8cae
BA
3123/**
3124 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3125 * @hw: pointer to the HW structure
3126 *
3127 * During S0 to Sx transition, it is possible the link remains at gig
3128 * instead of negotiating to a lower speed. Before going to Sx, set
3129 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3130 * to a lower speed.
3131 *
a4f58f54 3132 * Should only be called for applicable parts.
97ac8cae
BA
3133 **/
3134void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
3135{
3136 u32 phy_ctrl;
3137
a4f58f54 3138 switch (hw->mac.type) {
9e135a2e 3139 case e1000_ich8lan:
a4f58f54
BA
3140 case e1000_ich9lan:
3141 case e1000_ich10lan:
3142 case e1000_pchlan:
97ac8cae
BA
3143 phy_ctrl = er32(PHY_CTRL);
3144 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
3145 E1000_PHY_CTRL_GBE_DISABLE;
3146 ew32(PHY_CTRL, phy_ctrl);
a4f58f54 3147
a4f58f54 3148 if (hw->mac.type == e1000_pchlan)
74eee2e8 3149 e1000_phy_hw_reset_ich8lan(hw);
a4f58f54
BA
3150 default:
3151 break;
97ac8cae
BA
3152 }
3153
3154 return;
3155}
3156
bc7f75fa
AK
3157/**
3158 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3159 * @hw: pointer to the HW structure
3160 *
3161 * Return the LED back to the default configuration.
3162 **/
3163static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3164{
3165 if (hw->phy.type == e1000_phy_ife)
3166 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3167
3168 ew32(LEDCTL, hw->mac.ledctl_default);
3169 return 0;
3170}
3171
3172/**
489815ce 3173 * e1000_led_on_ich8lan - Turn LEDs on
bc7f75fa
AK
3174 * @hw: pointer to the HW structure
3175 *
489815ce 3176 * Turn on the LEDs.
bc7f75fa
AK
3177 **/
3178static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3179{
3180 if (hw->phy.type == e1000_phy_ife)
3181 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3182 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3183
3184 ew32(LEDCTL, hw->mac.ledctl_mode2);
3185 return 0;
3186}
3187
3188/**
489815ce 3189 * e1000_led_off_ich8lan - Turn LEDs off
bc7f75fa
AK
3190 * @hw: pointer to the HW structure
3191 *
489815ce 3192 * Turn off the LEDs.
bc7f75fa
AK
3193 **/
3194static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3195{
3196 if (hw->phy.type == e1000_phy_ife)
3197 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3198 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
3199
3200 ew32(LEDCTL, hw->mac.ledctl_mode1);
3201 return 0;
3202}
3203
a4f58f54
BA
3204/**
3205 * e1000_setup_led_pchlan - Configures SW controllable LED
3206 * @hw: pointer to the HW structure
3207 *
3208 * This prepares the SW controllable LED for use.
3209 **/
3210static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3211{
94d8186a 3212 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
a4f58f54
BA
3213 (u16)hw->mac.ledctl_mode1);
3214}
3215
3216/**
3217 * e1000_cleanup_led_pchlan - Restore the default LED operation
3218 * @hw: pointer to the HW structure
3219 *
3220 * Return the LED back to the default configuration.
3221 **/
3222static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3223{
94d8186a 3224 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
a4f58f54
BA
3225 (u16)hw->mac.ledctl_default);
3226}
3227
3228/**
3229 * e1000_led_on_pchlan - Turn LEDs on
3230 * @hw: pointer to the HW structure
3231 *
3232 * Turn on the LEDs.
3233 **/
3234static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3235{
3236 u16 data = (u16)hw->mac.ledctl_mode2;
3237 u32 i, led;
3238
3239 /*
3240 * If no link, then turn LED on by setting the invert bit
3241 * for each LED that's mode is "link_up" in ledctl_mode2.
3242 */
3243 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3244 for (i = 0; i < 3; i++) {
3245 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3246 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3247 E1000_LEDCTL_MODE_LINK_UP)
3248 continue;
3249 if (led & E1000_PHY_LED0_IVRT)
3250 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3251 else
3252 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3253 }
3254 }
3255
94d8186a 3256 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
a4f58f54
BA
3257}
3258
3259/**
3260 * e1000_led_off_pchlan - Turn LEDs off
3261 * @hw: pointer to the HW structure
3262 *
3263 * Turn off the LEDs.
3264 **/
3265static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3266{
3267 u16 data = (u16)hw->mac.ledctl_mode1;
3268 u32 i, led;
3269
3270 /*
3271 * If no link, then turn LED off by clearing the invert bit
3272 * for each LED that's mode is "link_up" in ledctl_mode1.
3273 */
3274 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3275 for (i = 0; i < 3; i++) {
3276 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3277 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3278 E1000_LEDCTL_MODE_LINK_UP)
3279 continue;
3280 if (led & E1000_PHY_LED0_IVRT)
3281 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3282 else
3283 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3284 }
3285 }
3286
94d8186a 3287 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
a4f58f54
BA
3288}
3289
f4187b56
BA
3290/**
3291 * e1000_get_cfg_done_ich8lan - Read config done bit
3292 * @hw: pointer to the HW structure
3293 *
3294 * Read the management control register for the config done bit for
3295 * completion status. NOTE: silicon which is EEPROM-less will fail trying
3296 * to read the config done bit, so an error is *ONLY* logged and returns
a4f58f54 3297 * 0. If we were to return with error, EEPROM-less silicon
f4187b56
BA
3298 * would not be able to be reset or change link.
3299 **/
3300static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3301{
3302 u32 bank = 0;
3303
fc0c7760
BA
3304 if (hw->mac.type >= e1000_pchlan) {
3305 u32 status = er32(STATUS);
3306
3307 if (status & E1000_STATUS_PHYRA)
3308 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3309 else
3bb99fe2 3310 e_dbg("PHY Reset Asserted not set - needs delay\n");
fc0c7760
BA
3311 }
3312
f4187b56
BA
3313 e1000e_get_cfg_done(hw);
3314
3315 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
a4f58f54
BA
3316 if ((hw->mac.type != e1000_ich10lan) &&
3317 (hw->mac.type != e1000_pchlan)) {
f4187b56
BA
3318 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3319 (hw->phy.type == e1000_phy_igp_3)) {
3320 e1000e_phy_init_script_igp3(hw);
3321 }
3322 } else {
3323 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3324 /* Maybe we should do a basic PHY config */
3bb99fe2 3325 e_dbg("EEPROM not present\n");
f4187b56
BA
3326 return -E1000_ERR_CONFIG;
3327 }
3328 }
3329
3330 return 0;
3331}
3332
17f208de
BA
3333/**
3334 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3335 * @hw: pointer to the HW structure
3336 *
3337 * In the case of a PHY power down to save power, or to turn off link during a
3338 * driver unload, or wake on lan is not enabled, remove the link.
3339 **/
3340static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3341{
3342 /* If the management interface is not enabled, then power down */
3343 if (!(hw->mac.ops.check_mng_mode(hw) ||
3344 hw->phy.ops.check_reset_block(hw)))
3345 e1000_power_down_phy_copper(hw);
3346
3347 return;
3348}
3349
bc7f75fa
AK
3350/**
3351 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3352 * @hw: pointer to the HW structure
3353 *
3354 * Clears hardware counters specific to the silicon family and calls
3355 * clear_hw_cntrs_generic to clear all general purpose counters.
3356 **/
3357static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3358{
a4f58f54 3359 u16 phy_data;
bc7f75fa
AK
3360
3361 e1000e_clear_hw_cntrs_base(hw);
3362
99673d9b
BA
3363 er32(ALGNERRC);
3364 er32(RXERRC);
3365 er32(TNCRS);
3366 er32(CEXTERR);
3367 er32(TSCTC);
3368 er32(TSCTFC);
bc7f75fa 3369
99673d9b
BA
3370 er32(MGTPRC);
3371 er32(MGTPDC);
3372 er32(MGTPTC);
bc7f75fa 3373
99673d9b
BA
3374 er32(IAC);
3375 er32(ICRXOC);
bc7f75fa 3376
a4f58f54
BA
3377 /* Clear PHY statistics registers */
3378 if ((hw->phy.type == e1000_phy_82578) ||
3379 (hw->phy.type == e1000_phy_82577)) {
94d8186a
BA
3380 hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data);
3381 hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data);
3382 hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data);
3383 hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data);
3384 hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data);
3385 hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data);
3386 hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data);
3387 hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data);
3388 hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data);
3389 hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data);
3390 hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data);
3391 hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data);
3392 hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data);
3393 hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data);
a4f58f54 3394 }
bc7f75fa
AK
3395}
3396
3397static struct e1000_mac_operations ich8_mac_ops = {
a4f58f54 3398 .id_led_init = e1000e_id_led_init,
4662e82b 3399 .check_mng_mode = e1000_check_mng_mode_ich8lan,
7d3cabbc 3400 .check_for_link = e1000_check_for_copper_link_ich8lan,
a4f58f54 3401 /* cleanup_led dependent on mac type */
bc7f75fa
AK
3402 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
3403 .get_bus_info = e1000_get_bus_info_ich8lan,
f4d2dd4c 3404 .set_lan_id = e1000_set_lan_id_single_port,
bc7f75fa 3405 .get_link_up_info = e1000_get_link_up_info_ich8lan,
a4f58f54
BA
3406 /* led_on dependent on mac type */
3407 /* led_off dependent on mac type */
e2de3eb6 3408 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
bc7f75fa
AK
3409 .reset_hw = e1000_reset_hw_ich8lan,
3410 .init_hw = e1000_init_hw_ich8lan,
3411 .setup_link = e1000_setup_link_ich8lan,
3412 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
a4f58f54 3413 /* id_led_init dependent on mac type */
bc7f75fa
AK
3414};
3415
3416static struct e1000_phy_operations ich8_phy_ops = {
94d8186a 3417 .acquire = e1000_acquire_swflag_ich8lan,
bc7f75fa 3418 .check_reset_block = e1000_check_reset_block_ich8lan,
94d8186a 3419 .commit = NULL,
f4187b56 3420 .get_cfg_done = e1000_get_cfg_done_ich8lan,
bc7f75fa 3421 .get_cable_length = e1000e_get_cable_length_igp_2,
94d8186a
BA
3422 .read_reg = e1000e_read_phy_reg_igp,
3423 .release = e1000_release_swflag_ich8lan,
3424 .reset = e1000_phy_hw_reset_ich8lan,
bc7f75fa
AK
3425 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
3426 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
94d8186a 3427 .write_reg = e1000e_write_phy_reg_igp,
bc7f75fa
AK
3428};
3429
3430static struct e1000_nvm_operations ich8_nvm_ops = {
94d8186a
BA
3431 .acquire = e1000_acquire_nvm_ich8lan,
3432 .read = e1000_read_nvm_ich8lan,
3433 .release = e1000_release_nvm_ich8lan,
3434 .update = e1000_update_nvm_checksum_ich8lan,
bc7f75fa 3435 .valid_led_default = e1000_valid_led_default_ich8lan,
94d8186a
BA
3436 .validate = e1000_validate_nvm_checksum_ich8lan,
3437 .write = e1000_write_nvm_ich8lan,
bc7f75fa
AK
3438};
3439
3440struct e1000_info e1000_ich8_info = {
3441 .mac = e1000_ich8lan,
3442 .flags = FLAG_HAS_WOL
97ac8cae 3443 | FLAG_IS_ICH
bc7f75fa
AK
3444 | FLAG_RX_CSUM_ENABLED
3445 | FLAG_HAS_CTRLEXT_ON_LOAD
3446 | FLAG_HAS_AMT
3447 | FLAG_HAS_FLASH
3448 | FLAG_APME_IN_WUC,
3449 .pba = 8,
2adc55c9 3450 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
69e3fd8c 3451 .get_variants = e1000_get_variants_ich8lan,
bc7f75fa
AK
3452 .mac_ops = &ich8_mac_ops,
3453 .phy_ops = &ich8_phy_ops,
3454 .nvm_ops = &ich8_nvm_ops,
3455};
3456
3457struct e1000_info e1000_ich9_info = {
3458 .mac = e1000_ich9lan,
3459 .flags = FLAG_HAS_JUMBO_FRAMES
97ac8cae 3460 | FLAG_IS_ICH
bc7f75fa
AK
3461 | FLAG_HAS_WOL
3462 | FLAG_RX_CSUM_ENABLED
3463 | FLAG_HAS_CTRLEXT_ON_LOAD
3464 | FLAG_HAS_AMT
3465 | FLAG_HAS_ERT
3466 | FLAG_HAS_FLASH
3467 | FLAG_APME_IN_WUC,
3468 .pba = 10,
2adc55c9 3469 .max_hw_frame_size = DEFAULT_JUMBO,
69e3fd8c 3470 .get_variants = e1000_get_variants_ich8lan,
bc7f75fa
AK
3471 .mac_ops = &ich8_mac_ops,
3472 .phy_ops = &ich8_phy_ops,
3473 .nvm_ops = &ich8_nvm_ops,
3474};
3475
f4187b56
BA
3476struct e1000_info e1000_ich10_info = {
3477 .mac = e1000_ich10lan,
3478 .flags = FLAG_HAS_JUMBO_FRAMES
3479 | FLAG_IS_ICH
3480 | FLAG_HAS_WOL
3481 | FLAG_RX_CSUM_ENABLED
3482 | FLAG_HAS_CTRLEXT_ON_LOAD
3483 | FLAG_HAS_AMT
3484 | FLAG_HAS_ERT
3485 | FLAG_HAS_FLASH
3486 | FLAG_APME_IN_WUC,
3487 .pba = 10,
2adc55c9 3488 .max_hw_frame_size = DEFAULT_JUMBO,
f4187b56
BA
3489 .get_variants = e1000_get_variants_ich8lan,
3490 .mac_ops = &ich8_mac_ops,
3491 .phy_ops = &ich8_phy_ops,
3492 .nvm_ops = &ich8_nvm_ops,
3493};
a4f58f54
BA
3494
3495struct e1000_info e1000_pch_info = {
3496 .mac = e1000_pchlan,
3497 .flags = FLAG_IS_ICH
3498 | FLAG_HAS_WOL
3499 | FLAG_RX_CSUM_ENABLED
3500 | FLAG_HAS_CTRLEXT_ON_LOAD
3501 | FLAG_HAS_AMT
3502 | FLAG_HAS_FLASH
3503 | FLAG_HAS_JUMBO_FRAMES
38eb394e 3504 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
a4f58f54
BA
3505 | FLAG_APME_IN_WUC,
3506 .pba = 26,
3507 .max_hw_frame_size = 4096,
3508 .get_variants = e1000_get_variants_ich8lan,
3509 .mac_ops = &ich8_mac_ops,
3510 .phy_ops = &ich8_phy_ops,
3511 .nvm_ops = &ich8_nvm_ops,
3512};
This page took 0.514217 seconds and 5 git commands to generate.