atl1e: remove the unneeded (struct atl1e_adapter *)
[deliverable/linux.git] / drivers / net / e1000e / netdev.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
ad68076e 4 Copyright(c) 1999 - 2008 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/module.h>
30#include <linux/types.h>
31#include <linux/init.h>
32#include <linux/pci.h>
33#include <linux/vmalloc.h>
34#include <linux/pagemap.h>
35#include <linux/delay.h>
36#include <linux/netdevice.h>
37#include <linux/tcp.h>
38#include <linux/ipv6.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/mii.h>
42#include <linux/ethtool.h>
43#include <linux/if_vlan.h>
44#include <linux/cpu.h>
45#include <linux/smp.h>
97ac8cae 46#include <linux/pm_qos_params.h>
bc7f75fa
AK
47
48#include "e1000.h"
49
97ac8cae 50#define DRV_VERSION "0.3.3.3-k2"
bc7f75fa
AK
51char e1000e_driver_name[] = "e1000e";
52const char e1000e_driver_version[] = DRV_VERSION;
53
54static const struct e1000_info *e1000_info_tbl[] = {
55 [board_82571] = &e1000_82571_info,
56 [board_82572] = &e1000_82572_info,
57 [board_82573] = &e1000_82573_info,
4662e82b 58 [board_82574] = &e1000_82574_info,
bc7f75fa
AK
59 [board_80003es2lan] = &e1000_es2_info,
60 [board_ich8lan] = &e1000_ich8_info,
61 [board_ich9lan] = &e1000_ich9_info,
f4187b56 62 [board_ich10lan] = &e1000_ich10_info,
bc7f75fa
AK
63};
64
65#ifdef DEBUG
66/**
67 * e1000_get_hw_dev_name - return device name string
68 * used by hardware layer to print debugging information
69 **/
70char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
71{
589c085f 72 return hw->adapter->netdev->name;
bc7f75fa
AK
73}
74#endif
75
76/**
77 * e1000_desc_unused - calculate if we have unused descriptors
78 **/
79static int e1000_desc_unused(struct e1000_ring *ring)
80{
81 if (ring->next_to_clean > ring->next_to_use)
82 return ring->next_to_clean - ring->next_to_use - 1;
83
84 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
85}
86
87/**
ad68076e 88 * e1000_receive_skb - helper function to handle Rx indications
bc7f75fa
AK
89 * @adapter: board private structure
90 * @status: descriptor status field as written by hardware
91 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
92 * @skb: pointer to sk_buff to be indicated to stack
93 **/
94static void e1000_receive_skb(struct e1000_adapter *adapter,
95 struct net_device *netdev,
96 struct sk_buff *skb,
a39fe742 97 u8 status, __le16 vlan)
bc7f75fa
AK
98{
99 skb->protocol = eth_type_trans(skb, netdev);
100
101 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
102 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
38b22195 103 le16_to_cpu(vlan));
bc7f75fa
AK
104 else
105 netif_receive_skb(skb);
106
107 netdev->last_rx = jiffies;
108}
109
110/**
111 * e1000_rx_checksum - Receive Checksum Offload for 82543
112 * @adapter: board private structure
113 * @status_err: receive descriptor status and error fields
114 * @csum: receive descriptor csum field
115 * @sk_buff: socket buffer with received data
116 **/
117static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
118 u32 csum, struct sk_buff *skb)
119{
120 u16 status = (u16)status_err;
121 u8 errors = (u8)(status_err >> 24);
122 skb->ip_summed = CHECKSUM_NONE;
123
124 /* Ignore Checksum bit is set */
125 if (status & E1000_RXD_STAT_IXSM)
126 return;
127 /* TCP/UDP checksum error bit is set */
128 if (errors & E1000_RXD_ERR_TCPE) {
129 /* let the stack verify checksum errors */
130 adapter->hw_csum_err++;
131 return;
132 }
133
134 /* TCP/UDP Checksum has not been calculated */
135 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
136 return;
137
138 /* It must be a TCP or UDP packet with a valid checksum */
139 if (status & E1000_RXD_STAT_TCPCS) {
140 /* TCP checksum is good */
141 skb->ip_summed = CHECKSUM_UNNECESSARY;
142 } else {
ad68076e
BA
143 /*
144 * IP fragment with UDP payload
145 * Hardware complements the payload checksum, so we undo it
bc7f75fa
AK
146 * and then put the value in host order for further stack use.
147 */
a39fe742
AV
148 __sum16 sum = (__force __sum16)htons(csum);
149 skb->csum = csum_unfold(~sum);
bc7f75fa
AK
150 skb->ip_summed = CHECKSUM_COMPLETE;
151 }
152 adapter->hw_csum_good++;
153}
154
155/**
156 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
157 * @adapter: address of board private structure
158 **/
159static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
160 int cleaned_count)
161{
162 struct net_device *netdev = adapter->netdev;
163 struct pci_dev *pdev = adapter->pdev;
164 struct e1000_ring *rx_ring = adapter->rx_ring;
165 struct e1000_rx_desc *rx_desc;
166 struct e1000_buffer *buffer_info;
167 struct sk_buff *skb;
168 unsigned int i;
169 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
170
171 i = rx_ring->next_to_use;
172 buffer_info = &rx_ring->buffer_info[i];
173
174 while (cleaned_count--) {
175 skb = buffer_info->skb;
176 if (skb) {
177 skb_trim(skb, 0);
178 goto map_skb;
179 }
180
181 skb = netdev_alloc_skb(netdev, bufsz);
182 if (!skb) {
183 /* Better luck next round */
184 adapter->alloc_rx_buff_failed++;
185 break;
186 }
187
ad68076e
BA
188 /*
189 * Make buffer alignment 2 beyond a 16 byte boundary
bc7f75fa
AK
190 * this will result in a 16 byte aligned IP header after
191 * the 14 byte MAC header is removed
192 */
193 skb_reserve(skb, NET_IP_ALIGN);
194
195 buffer_info->skb = skb;
196map_skb:
197 buffer_info->dma = pci_map_single(pdev, skb->data,
198 adapter->rx_buffer_len,
199 PCI_DMA_FROMDEVICE);
8d8bb39b 200 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
bc7f75fa
AK
201 dev_err(&pdev->dev, "RX DMA map failed\n");
202 adapter->rx_dma_failed++;
203 break;
204 }
205
206 rx_desc = E1000_RX_DESC(*rx_ring, i);
207 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
208
209 i++;
210 if (i == rx_ring->count)
211 i = 0;
212 buffer_info = &rx_ring->buffer_info[i];
213 }
214
215 if (rx_ring->next_to_use != i) {
216 rx_ring->next_to_use = i;
217 if (i-- == 0)
218 i = (rx_ring->count - 1);
219
ad68076e
BA
220 /*
221 * Force memory writes to complete before letting h/w
bc7f75fa
AK
222 * know there are new descriptors to fetch. (Only
223 * applicable for weak-ordered memory model archs,
ad68076e
BA
224 * such as IA-64).
225 */
bc7f75fa
AK
226 wmb();
227 writel(i, adapter->hw.hw_addr + rx_ring->tail);
228 }
229}
230
231/**
232 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
233 * @adapter: address of board private structure
234 **/
235static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
236 int cleaned_count)
237{
238 struct net_device *netdev = adapter->netdev;
239 struct pci_dev *pdev = adapter->pdev;
240 union e1000_rx_desc_packet_split *rx_desc;
241 struct e1000_ring *rx_ring = adapter->rx_ring;
242 struct e1000_buffer *buffer_info;
243 struct e1000_ps_page *ps_page;
244 struct sk_buff *skb;
245 unsigned int i, j;
246
247 i = rx_ring->next_to_use;
248 buffer_info = &rx_ring->buffer_info[i];
249
250 while (cleaned_count--) {
251 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
252
253 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40
AK
254 ps_page = &buffer_info->ps_pages[j];
255 if (j >= adapter->rx_ps_pages) {
256 /* all unused desc entries get hw null ptr */
a39fe742 257 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
47f44e40
AK
258 continue;
259 }
260 if (!ps_page->page) {
261 ps_page->page = alloc_page(GFP_ATOMIC);
bc7f75fa 262 if (!ps_page->page) {
47f44e40
AK
263 adapter->alloc_rx_buff_failed++;
264 goto no_buffers;
265 }
266 ps_page->dma = pci_map_page(pdev,
267 ps_page->page,
268 0, PAGE_SIZE,
269 PCI_DMA_FROMDEVICE);
8d8bb39b 270 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
47f44e40
AK
271 dev_err(&adapter->pdev->dev,
272 "RX DMA page map failed\n");
273 adapter->rx_dma_failed++;
274 goto no_buffers;
bc7f75fa 275 }
bc7f75fa 276 }
47f44e40
AK
277 /*
278 * Refresh the desc even if buffer_addrs
279 * didn't change because each write-back
280 * erases this info.
281 */
282 rx_desc->read.buffer_addr[j+1] =
283 cpu_to_le64(ps_page->dma);
bc7f75fa
AK
284 }
285
286 skb = netdev_alloc_skb(netdev,
287 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
288
289 if (!skb) {
290 adapter->alloc_rx_buff_failed++;
291 break;
292 }
293
ad68076e
BA
294 /*
295 * Make buffer alignment 2 beyond a 16 byte boundary
bc7f75fa
AK
296 * this will result in a 16 byte aligned IP header after
297 * the 14 byte MAC header is removed
298 */
299 skb_reserve(skb, NET_IP_ALIGN);
300
301 buffer_info->skb = skb;
302 buffer_info->dma = pci_map_single(pdev, skb->data,
303 adapter->rx_ps_bsize0,
304 PCI_DMA_FROMDEVICE);
8d8bb39b 305 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
bc7f75fa
AK
306 dev_err(&pdev->dev, "RX DMA map failed\n");
307 adapter->rx_dma_failed++;
308 /* cleanup skb */
309 dev_kfree_skb_any(skb);
310 buffer_info->skb = NULL;
311 break;
312 }
313
314 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
315
316 i++;
317 if (i == rx_ring->count)
318 i = 0;
319 buffer_info = &rx_ring->buffer_info[i];
320 }
321
322no_buffers:
323 if (rx_ring->next_to_use != i) {
324 rx_ring->next_to_use = i;
325
326 if (!(i--))
327 i = (rx_ring->count - 1);
328
ad68076e
BA
329 /*
330 * Force memory writes to complete before letting h/w
bc7f75fa
AK
331 * know there are new descriptors to fetch. (Only
332 * applicable for weak-ordered memory model archs,
ad68076e
BA
333 * such as IA-64).
334 */
bc7f75fa 335 wmb();
ad68076e
BA
336 /*
337 * Hardware increments by 16 bytes, but packet split
bc7f75fa
AK
338 * descriptors are 32 bytes...so we increment tail
339 * twice as much.
340 */
341 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
342 }
343}
344
97ac8cae
BA
345/**
346 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
347 * @adapter: address of board private structure
348 * @rx_ring: pointer to receive ring structure
349 * @cleaned_count: number of buffers to allocate this pass
350 **/
351
352static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
353 int cleaned_count)
354{
355 struct net_device *netdev = adapter->netdev;
356 struct pci_dev *pdev = adapter->pdev;
357 struct e1000_rx_desc *rx_desc;
358 struct e1000_ring *rx_ring = adapter->rx_ring;
359 struct e1000_buffer *buffer_info;
360 struct sk_buff *skb;
361 unsigned int i;
362 unsigned int bufsz = 256 -
363 16 /* for skb_reserve */ -
364 NET_IP_ALIGN;
365
366 i = rx_ring->next_to_use;
367 buffer_info = &rx_ring->buffer_info[i];
368
369 while (cleaned_count--) {
370 skb = buffer_info->skb;
371 if (skb) {
372 skb_trim(skb, 0);
373 goto check_page;
374 }
375
376 skb = netdev_alloc_skb(netdev, bufsz);
377 if (unlikely(!skb)) {
378 /* Better luck next round */
379 adapter->alloc_rx_buff_failed++;
380 break;
381 }
382
383 /* Make buffer alignment 2 beyond a 16 byte boundary
384 * this will result in a 16 byte aligned IP header after
385 * the 14 byte MAC header is removed
386 */
387 skb_reserve(skb, NET_IP_ALIGN);
388
389 buffer_info->skb = skb;
390check_page:
391 /* allocate a new page if necessary */
392 if (!buffer_info->page) {
393 buffer_info->page = alloc_page(GFP_ATOMIC);
394 if (unlikely(!buffer_info->page)) {
395 adapter->alloc_rx_buff_failed++;
396 break;
397 }
398 }
399
400 if (!buffer_info->dma)
401 buffer_info->dma = pci_map_page(pdev,
402 buffer_info->page, 0,
403 PAGE_SIZE,
404 PCI_DMA_FROMDEVICE);
405
406 rx_desc = E1000_RX_DESC(*rx_ring, i);
407 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
408
409 if (unlikely(++i == rx_ring->count))
410 i = 0;
411 buffer_info = &rx_ring->buffer_info[i];
412 }
413
414 if (likely(rx_ring->next_to_use != i)) {
415 rx_ring->next_to_use = i;
416 if (unlikely(i-- == 0))
417 i = (rx_ring->count - 1);
418
419 /* Force memory writes to complete before letting h/w
420 * know there are new descriptors to fetch. (Only
421 * applicable for weak-ordered memory model archs,
422 * such as IA-64). */
423 wmb();
424 writel(i, adapter->hw.hw_addr + rx_ring->tail);
425 }
426}
427
bc7f75fa
AK
428/**
429 * e1000_clean_rx_irq - Send received data up the network stack; legacy
430 * @adapter: board private structure
431 *
432 * the return value indicates whether actual cleaning was done, there
433 * is no guarantee that everything was cleaned
434 **/
435static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
436 int *work_done, int work_to_do)
437{
438 struct net_device *netdev = adapter->netdev;
439 struct pci_dev *pdev = adapter->pdev;
440 struct e1000_ring *rx_ring = adapter->rx_ring;
441 struct e1000_rx_desc *rx_desc, *next_rxd;
442 struct e1000_buffer *buffer_info, *next_buffer;
443 u32 length;
444 unsigned int i;
445 int cleaned_count = 0;
446 bool cleaned = 0;
447 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
448
449 i = rx_ring->next_to_clean;
450 rx_desc = E1000_RX_DESC(*rx_ring, i);
451 buffer_info = &rx_ring->buffer_info[i];
452
453 while (rx_desc->status & E1000_RXD_STAT_DD) {
454 struct sk_buff *skb;
455 u8 status;
456
457 if (*work_done >= work_to_do)
458 break;
459 (*work_done)++;
460
461 status = rx_desc->status;
462 skb = buffer_info->skb;
463 buffer_info->skb = NULL;
464
465 prefetch(skb->data - NET_IP_ALIGN);
466
467 i++;
468 if (i == rx_ring->count)
469 i = 0;
470 next_rxd = E1000_RX_DESC(*rx_ring, i);
471 prefetch(next_rxd);
472
473 next_buffer = &rx_ring->buffer_info[i];
474
475 cleaned = 1;
476 cleaned_count++;
477 pci_unmap_single(pdev,
478 buffer_info->dma,
479 adapter->rx_buffer_len,
480 PCI_DMA_FROMDEVICE);
481 buffer_info->dma = 0;
482
483 length = le16_to_cpu(rx_desc->length);
484
485 /* !EOP means multiple descriptors were used to store a single
486 * packet, also make sure the frame isn't just CRC only */
487 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
488 /* All receives must fit into a single buffer */
44defeb3
JK
489 e_dbg("%s: Receive packet consumed multiple buffers\n",
490 netdev->name);
bc7f75fa
AK
491 /* recycle */
492 buffer_info->skb = skb;
493 goto next_desc;
494 }
495
496 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
497 /* recycle */
498 buffer_info->skb = skb;
499 goto next_desc;
500 }
501
bc7f75fa
AK
502 total_rx_bytes += length;
503 total_rx_packets++;
504
ad68076e
BA
505 /*
506 * code added for copybreak, this should improve
bc7f75fa 507 * performance for small packets with large amounts
ad68076e
BA
508 * of reassembly being done in the stack
509 */
bc7f75fa
AK
510 if (length < copybreak) {
511 struct sk_buff *new_skb =
512 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
513 if (new_skb) {
514 skb_reserve(new_skb, NET_IP_ALIGN);
808ff676
BA
515 skb_copy_to_linear_data_offset(new_skb,
516 -NET_IP_ALIGN,
517 (skb->data -
518 NET_IP_ALIGN),
519 (length +
520 NET_IP_ALIGN));
bc7f75fa
AK
521 /* save the skb in buffer_info as good */
522 buffer_info->skb = skb;
523 skb = new_skb;
524 }
525 /* else just continue with the old one */
526 }
527 /* end copybreak code */
528 skb_put(skb, length);
529
530 /* Receive Checksum Offload */
531 e1000_rx_checksum(adapter,
532 (u32)(status) |
533 ((u32)(rx_desc->errors) << 24),
534 le16_to_cpu(rx_desc->csum), skb);
535
536 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
537
538next_desc:
539 rx_desc->status = 0;
540
541 /* return some buffers to hardware, one at a time is too slow */
542 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
543 adapter->alloc_rx_buf(adapter, cleaned_count);
544 cleaned_count = 0;
545 }
546
547 /* use prefetched values */
548 rx_desc = next_rxd;
549 buffer_info = next_buffer;
550 }
551 rx_ring->next_to_clean = i;
552
553 cleaned_count = e1000_desc_unused(rx_ring);
554 if (cleaned_count)
555 adapter->alloc_rx_buf(adapter, cleaned_count);
556
bc7f75fa 557 adapter->total_rx_bytes += total_rx_bytes;
7c25769f 558 adapter->total_rx_packets += total_rx_packets;
41988692 559 adapter->net_stats.rx_bytes += total_rx_bytes;
7c25769f 560 adapter->net_stats.rx_packets += total_rx_packets;
bc7f75fa
AK
561 return cleaned;
562}
563
bc7f75fa
AK
564static void e1000_put_txbuf(struct e1000_adapter *adapter,
565 struct e1000_buffer *buffer_info)
566{
567 if (buffer_info->dma) {
568 pci_unmap_page(adapter->pdev, buffer_info->dma,
569 buffer_info->length, PCI_DMA_TODEVICE);
570 buffer_info->dma = 0;
571 }
572 if (buffer_info->skb) {
573 dev_kfree_skb_any(buffer_info->skb);
574 buffer_info->skb = NULL;
575 }
576}
577
578static void e1000_print_tx_hang(struct e1000_adapter *adapter)
579{
580 struct e1000_ring *tx_ring = adapter->tx_ring;
581 unsigned int i = tx_ring->next_to_clean;
582 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
583 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
bc7f75fa
AK
584
585 /* detected Tx unit hang */
44defeb3
JK
586 e_err("Detected Tx Unit Hang:\n"
587 " TDH <%x>\n"
588 " TDT <%x>\n"
589 " next_to_use <%x>\n"
590 " next_to_clean <%x>\n"
591 "buffer_info[next_to_clean]:\n"
592 " time_stamp <%lx>\n"
593 " next_to_watch <%x>\n"
594 " jiffies <%lx>\n"
595 " next_to_watch.status <%x>\n",
596 readl(adapter->hw.hw_addr + tx_ring->head),
597 readl(adapter->hw.hw_addr + tx_ring->tail),
598 tx_ring->next_to_use,
599 tx_ring->next_to_clean,
600 tx_ring->buffer_info[eop].time_stamp,
601 eop,
602 jiffies,
603 eop_desc->upper.fields.status);
bc7f75fa
AK
604}
605
606/**
607 * e1000_clean_tx_irq - Reclaim resources after transmit completes
608 * @adapter: board private structure
609 *
610 * the return value indicates whether actual cleaning was done, there
611 * is no guarantee that everything was cleaned
612 **/
613static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
614{
615 struct net_device *netdev = adapter->netdev;
616 struct e1000_hw *hw = &adapter->hw;
617 struct e1000_ring *tx_ring = adapter->tx_ring;
618 struct e1000_tx_desc *tx_desc, *eop_desc;
619 struct e1000_buffer *buffer_info;
620 unsigned int i, eop;
621 unsigned int count = 0;
622 bool cleaned = 0;
623 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
624
625 i = tx_ring->next_to_clean;
626 eop = tx_ring->buffer_info[i].next_to_watch;
627 eop_desc = E1000_TX_DESC(*tx_ring, eop);
628
629 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
630 for (cleaned = 0; !cleaned; ) {
631 tx_desc = E1000_TX_DESC(*tx_ring, i);
632 buffer_info = &tx_ring->buffer_info[i];
633 cleaned = (i == eop);
634
635 if (cleaned) {
636 struct sk_buff *skb = buffer_info->skb;
637 unsigned int segs, bytecount;
638 segs = skb_shinfo(skb)->gso_segs ?: 1;
639 /* multiply data chunks by size of headers */
640 bytecount = ((segs - 1) * skb_headlen(skb)) +
641 skb->len;
642 total_tx_packets += segs;
643 total_tx_bytes += bytecount;
644 }
645
646 e1000_put_txbuf(adapter, buffer_info);
647 tx_desc->upper.data = 0;
648
649 i++;
650 if (i == tx_ring->count)
651 i = 0;
652 }
653
654 eop = tx_ring->buffer_info[i].next_to_watch;
655 eop_desc = E1000_TX_DESC(*tx_ring, eop);
656#define E1000_TX_WEIGHT 64
657 /* weight of a sort for tx, to avoid endless transmit cleanup */
658 if (count++ == E1000_TX_WEIGHT)
659 break;
660 }
661
662 tx_ring->next_to_clean = i;
663
664#define TX_WAKE_THRESHOLD 32
665 if (cleaned && netif_carrier_ok(netdev) &&
666 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
667 /* Make sure that anybody stopping the queue after this
668 * sees the new next_to_clean.
669 */
670 smp_mb();
671
672 if (netif_queue_stopped(netdev) &&
673 !(test_bit(__E1000_DOWN, &adapter->state))) {
674 netif_wake_queue(netdev);
675 ++adapter->restart_queue;
676 }
677 }
678
679 if (adapter->detect_tx_hung) {
ad68076e
BA
680 /*
681 * Detect a transmit hang in hardware, this serializes the
682 * check with the clearing of time_stamp and movement of i
683 */
bc7f75fa
AK
684 adapter->detect_tx_hung = 0;
685 if (tx_ring->buffer_info[eop].dma &&
686 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
687 + (adapter->tx_timeout_factor * HZ))
ad68076e 688 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
bc7f75fa
AK
689 e1000_print_tx_hang(adapter);
690 netif_stop_queue(netdev);
691 }
692 }
693 adapter->total_tx_bytes += total_tx_bytes;
694 adapter->total_tx_packets += total_tx_packets;
41988692 695 adapter->net_stats.tx_bytes += total_tx_bytes;
7c25769f 696 adapter->net_stats.tx_packets += total_tx_packets;
bc7f75fa
AK
697 return cleaned;
698}
699
bc7f75fa
AK
700/**
701 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
702 * @adapter: board private structure
703 *
704 * the return value indicates whether actual cleaning was done, there
705 * is no guarantee that everything was cleaned
706 **/
707static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
708 int *work_done, int work_to_do)
709{
710 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
711 struct net_device *netdev = adapter->netdev;
712 struct pci_dev *pdev = adapter->pdev;
713 struct e1000_ring *rx_ring = adapter->rx_ring;
714 struct e1000_buffer *buffer_info, *next_buffer;
715 struct e1000_ps_page *ps_page;
716 struct sk_buff *skb;
717 unsigned int i, j;
718 u32 length, staterr;
719 int cleaned_count = 0;
720 bool cleaned = 0;
721 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
722
723 i = rx_ring->next_to_clean;
724 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
725 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
726 buffer_info = &rx_ring->buffer_info[i];
727
728 while (staterr & E1000_RXD_STAT_DD) {
729 if (*work_done >= work_to_do)
730 break;
731 (*work_done)++;
732 skb = buffer_info->skb;
733
734 /* in the packet split case this is header only */
735 prefetch(skb->data - NET_IP_ALIGN);
736
737 i++;
738 if (i == rx_ring->count)
739 i = 0;
740 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
741 prefetch(next_rxd);
742
743 next_buffer = &rx_ring->buffer_info[i];
744
745 cleaned = 1;
746 cleaned_count++;
747 pci_unmap_single(pdev, buffer_info->dma,
748 adapter->rx_ps_bsize0,
749 PCI_DMA_FROMDEVICE);
750 buffer_info->dma = 0;
751
752 if (!(staterr & E1000_RXD_STAT_EOP)) {
44defeb3
JK
753 e_dbg("%s: Packet Split buffers didn't pick up the "
754 "full packet\n", netdev->name);
bc7f75fa
AK
755 dev_kfree_skb_irq(skb);
756 goto next_desc;
757 }
758
759 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
760 dev_kfree_skb_irq(skb);
761 goto next_desc;
762 }
763
764 length = le16_to_cpu(rx_desc->wb.middle.length0);
765
766 if (!length) {
44defeb3
JK
767 e_dbg("%s: Last part of the packet spanning multiple "
768 "descriptors\n", netdev->name);
bc7f75fa
AK
769 dev_kfree_skb_irq(skb);
770 goto next_desc;
771 }
772
773 /* Good Receive */
774 skb_put(skb, length);
775
776 {
ad68076e
BA
777 /*
778 * this looks ugly, but it seems compiler issues make it
779 * more efficient than reusing j
780 */
bc7f75fa
AK
781 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
782
ad68076e
BA
783 /*
784 * page alloc/put takes too long and effects small packet
785 * throughput, so unsplit small packets and save the alloc/put
786 * only valid in softirq (napi) context to call kmap_*
787 */
bc7f75fa
AK
788 if (l1 && (l1 <= copybreak) &&
789 ((length + l1) <= adapter->rx_ps_bsize0)) {
790 u8 *vaddr;
791
47f44e40 792 ps_page = &buffer_info->ps_pages[0];
bc7f75fa 793
ad68076e
BA
794 /*
795 * there is no documentation about how to call
bc7f75fa 796 * kmap_atomic, so we can't hold the mapping
ad68076e
BA
797 * very long
798 */
bc7f75fa
AK
799 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
800 PAGE_SIZE, PCI_DMA_FROMDEVICE);
801 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
802 memcpy(skb_tail_pointer(skb), vaddr, l1);
803 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
804 pci_dma_sync_single_for_device(pdev, ps_page->dma,
805 PAGE_SIZE, PCI_DMA_FROMDEVICE);
140a7480 806
bc7f75fa
AK
807 skb_put(skb, l1);
808 goto copydone;
809 } /* if */
810 }
811
812 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
813 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
814 if (!length)
815 break;
816
47f44e40 817 ps_page = &buffer_info->ps_pages[j];
bc7f75fa
AK
818 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
819 PCI_DMA_FROMDEVICE);
820 ps_page->dma = 0;
821 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
822 ps_page->page = NULL;
823 skb->len += length;
824 skb->data_len += length;
825 skb->truesize += length;
826 }
827
bc7f75fa
AK
828copydone:
829 total_rx_bytes += skb->len;
830 total_rx_packets++;
831
832 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
833 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
834
835 if (rx_desc->wb.upper.header_status &
836 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
837 adapter->rx_hdr_split++;
838
839 e1000_receive_skb(adapter, netdev, skb,
840 staterr, rx_desc->wb.middle.vlan);
841
842next_desc:
843 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
844 buffer_info->skb = NULL;
845
846 /* return some buffers to hardware, one at a time is too slow */
847 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
848 adapter->alloc_rx_buf(adapter, cleaned_count);
849 cleaned_count = 0;
850 }
851
852 /* use prefetched values */
853 rx_desc = next_rxd;
854 buffer_info = next_buffer;
855
856 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
857 }
858 rx_ring->next_to_clean = i;
859
860 cleaned_count = e1000_desc_unused(rx_ring);
861 if (cleaned_count)
862 adapter->alloc_rx_buf(adapter, cleaned_count);
863
bc7f75fa 864 adapter->total_rx_bytes += total_rx_bytes;
7c25769f 865 adapter->total_rx_packets += total_rx_packets;
41988692 866 adapter->net_stats.rx_bytes += total_rx_bytes;
7c25769f 867 adapter->net_stats.rx_packets += total_rx_packets;
bc7f75fa
AK
868 return cleaned;
869}
870
97ac8cae
BA
871/**
872 * e1000_consume_page - helper function
873 **/
874static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
875 u16 length)
876{
877 bi->page = NULL;
878 skb->len += length;
879 skb->data_len += length;
880 skb->truesize += length;
881}
882
883/**
884 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
885 * @adapter: board private structure
886 *
887 * the return value indicates whether actual cleaning was done, there
888 * is no guarantee that everything was cleaned
889 **/
890
891static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
892 int *work_done, int work_to_do)
893{
894 struct net_device *netdev = adapter->netdev;
895 struct pci_dev *pdev = adapter->pdev;
896 struct e1000_ring *rx_ring = adapter->rx_ring;
897 struct e1000_rx_desc *rx_desc, *next_rxd;
898 struct e1000_buffer *buffer_info, *next_buffer;
899 u32 length;
900 unsigned int i;
901 int cleaned_count = 0;
902 bool cleaned = false;
903 unsigned int total_rx_bytes=0, total_rx_packets=0;
904
905 i = rx_ring->next_to_clean;
906 rx_desc = E1000_RX_DESC(*rx_ring, i);
907 buffer_info = &rx_ring->buffer_info[i];
908
909 while (rx_desc->status & E1000_RXD_STAT_DD) {
910 struct sk_buff *skb;
911 u8 status;
912
913 if (*work_done >= work_to_do)
914 break;
915 (*work_done)++;
916
917 status = rx_desc->status;
918 skb = buffer_info->skb;
919 buffer_info->skb = NULL;
920
921 ++i;
922 if (i == rx_ring->count)
923 i = 0;
924 next_rxd = E1000_RX_DESC(*rx_ring, i);
925 prefetch(next_rxd);
926
927 next_buffer = &rx_ring->buffer_info[i];
928
929 cleaned = true;
930 cleaned_count++;
931 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
932 PCI_DMA_FROMDEVICE);
933 buffer_info->dma = 0;
934
935 length = le16_to_cpu(rx_desc->length);
936
937 /* errors is only valid for DD + EOP descriptors */
938 if (unlikely((status & E1000_RXD_STAT_EOP) &&
939 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
940 /* recycle both page and skb */
941 buffer_info->skb = skb;
942 /* an error means any chain goes out the window
943 * too */
944 if (rx_ring->rx_skb_top)
945 dev_kfree_skb(rx_ring->rx_skb_top);
946 rx_ring->rx_skb_top = NULL;
947 goto next_desc;
948 }
949
950#define rxtop rx_ring->rx_skb_top
951 if (!(status & E1000_RXD_STAT_EOP)) {
952 /* this descriptor is only the beginning (or middle) */
953 if (!rxtop) {
954 /* this is the beginning of a chain */
955 rxtop = skb;
956 skb_fill_page_desc(rxtop, 0, buffer_info->page,
957 0, length);
958 } else {
959 /* this is the middle of a chain */
960 skb_fill_page_desc(rxtop,
961 skb_shinfo(rxtop)->nr_frags,
962 buffer_info->page, 0, length);
963 /* re-use the skb, only consumed the page */
964 buffer_info->skb = skb;
965 }
966 e1000_consume_page(buffer_info, rxtop, length);
967 goto next_desc;
968 } else {
969 if (rxtop) {
970 /* end of the chain */
971 skb_fill_page_desc(rxtop,
972 skb_shinfo(rxtop)->nr_frags,
973 buffer_info->page, 0, length);
974 /* re-use the current skb, we only consumed the
975 * page */
976 buffer_info->skb = skb;
977 skb = rxtop;
978 rxtop = NULL;
979 e1000_consume_page(buffer_info, skb, length);
980 } else {
981 /* no chain, got EOP, this buf is the packet
982 * copybreak to save the put_page/alloc_page */
983 if (length <= copybreak &&
984 skb_tailroom(skb) >= length) {
985 u8 *vaddr;
986 vaddr = kmap_atomic(buffer_info->page,
987 KM_SKB_DATA_SOFTIRQ);
988 memcpy(skb_tail_pointer(skb), vaddr,
989 length);
990 kunmap_atomic(vaddr,
991 KM_SKB_DATA_SOFTIRQ);
992 /* re-use the page, so don't erase
993 * buffer_info->page */
994 skb_put(skb, length);
995 } else {
996 skb_fill_page_desc(skb, 0,
997 buffer_info->page, 0,
998 length);
999 e1000_consume_page(buffer_info, skb,
1000 length);
1001 }
1002 }
1003 }
1004
1005 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1006 e1000_rx_checksum(adapter,
1007 (u32)(status) |
1008 ((u32)(rx_desc->errors) << 24),
1009 le16_to_cpu(rx_desc->csum), skb);
1010
1011 /* probably a little skewed due to removing CRC */
1012 total_rx_bytes += skb->len;
1013 total_rx_packets++;
1014
1015 /* eth type trans needs skb->data to point to something */
1016 if (!pskb_may_pull(skb, ETH_HLEN)) {
44defeb3 1017 e_err("pskb_may_pull failed.\n");
97ac8cae
BA
1018 dev_kfree_skb(skb);
1019 goto next_desc;
1020 }
1021
1022 e1000_receive_skb(adapter, netdev, skb, status,
1023 rx_desc->special);
1024
1025next_desc:
1026 rx_desc->status = 0;
1027
1028 /* return some buffers to hardware, one at a time is too slow */
1029 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1030 adapter->alloc_rx_buf(adapter, cleaned_count);
1031 cleaned_count = 0;
1032 }
1033
1034 /* use prefetched values */
1035 rx_desc = next_rxd;
1036 buffer_info = next_buffer;
1037 }
1038 rx_ring->next_to_clean = i;
1039
1040 cleaned_count = e1000_desc_unused(rx_ring);
1041 if (cleaned_count)
1042 adapter->alloc_rx_buf(adapter, cleaned_count);
1043
1044 adapter->total_rx_bytes += total_rx_bytes;
1045 adapter->total_rx_packets += total_rx_packets;
1046 adapter->net_stats.rx_bytes += total_rx_bytes;
1047 adapter->net_stats.rx_packets += total_rx_packets;
1048 return cleaned;
1049}
1050
bc7f75fa
AK
1051/**
1052 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1053 * @adapter: board private structure
1054 **/
1055static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1056{
1057 struct e1000_ring *rx_ring = adapter->rx_ring;
1058 struct e1000_buffer *buffer_info;
1059 struct e1000_ps_page *ps_page;
1060 struct pci_dev *pdev = adapter->pdev;
bc7f75fa
AK
1061 unsigned int i, j;
1062
1063 /* Free all the Rx ring sk_buffs */
1064 for (i = 0; i < rx_ring->count; i++) {
1065 buffer_info = &rx_ring->buffer_info[i];
1066 if (buffer_info->dma) {
1067 if (adapter->clean_rx == e1000_clean_rx_irq)
1068 pci_unmap_single(pdev, buffer_info->dma,
1069 adapter->rx_buffer_len,
1070 PCI_DMA_FROMDEVICE);
97ac8cae
BA
1071 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1072 pci_unmap_page(pdev, buffer_info->dma,
1073 PAGE_SIZE,
1074 PCI_DMA_FROMDEVICE);
bc7f75fa
AK
1075 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1076 pci_unmap_single(pdev, buffer_info->dma,
1077 adapter->rx_ps_bsize0,
1078 PCI_DMA_FROMDEVICE);
1079 buffer_info->dma = 0;
1080 }
1081
97ac8cae
BA
1082 if (buffer_info->page) {
1083 put_page(buffer_info->page);
1084 buffer_info->page = NULL;
1085 }
1086
bc7f75fa
AK
1087 if (buffer_info->skb) {
1088 dev_kfree_skb(buffer_info->skb);
1089 buffer_info->skb = NULL;
1090 }
1091
1092 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
47f44e40 1093 ps_page = &buffer_info->ps_pages[j];
bc7f75fa
AK
1094 if (!ps_page->page)
1095 break;
1096 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1097 PCI_DMA_FROMDEVICE);
1098 ps_page->dma = 0;
1099 put_page(ps_page->page);
1100 ps_page->page = NULL;
1101 }
1102 }
1103
1104 /* there also may be some cached data from a chained receive */
1105 if (rx_ring->rx_skb_top) {
1106 dev_kfree_skb(rx_ring->rx_skb_top);
1107 rx_ring->rx_skb_top = NULL;
1108 }
1109
bc7f75fa
AK
1110 /* Zero out the descriptor ring */
1111 memset(rx_ring->desc, 0, rx_ring->size);
1112
1113 rx_ring->next_to_clean = 0;
1114 rx_ring->next_to_use = 0;
1115
1116 writel(0, adapter->hw.hw_addr + rx_ring->head);
1117 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1118}
1119
1120/**
1121 * e1000_intr_msi - Interrupt Handler
1122 * @irq: interrupt number
1123 * @data: pointer to a network interface device structure
1124 **/
1125static irqreturn_t e1000_intr_msi(int irq, void *data)
1126{
1127 struct net_device *netdev = data;
1128 struct e1000_adapter *adapter = netdev_priv(netdev);
1129 struct e1000_hw *hw = &adapter->hw;
1130 u32 icr = er32(ICR);
1131
ad68076e
BA
1132 /*
1133 * read ICR disables interrupts using IAM
1134 */
bc7f75fa
AK
1135
1136 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1137 hw->mac.get_link_status = 1;
ad68076e
BA
1138 /*
1139 * ICH8 workaround-- Call gig speed drop workaround on cable
1140 * disconnect (LSC) before accessing any PHY registers
1141 */
bc7f75fa
AK
1142 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1143 (!(er32(STATUS) & E1000_STATUS_LU)))
1144 e1000e_gig_downshift_workaround_ich8lan(hw);
1145
ad68076e
BA
1146 /*
1147 * 80003ES2LAN workaround-- For packet buffer work-around on
bc7f75fa 1148 * link down event; disable receives here in the ISR and reset
ad68076e
BA
1149 * adapter in watchdog
1150 */
bc7f75fa
AK
1151 if (netif_carrier_ok(netdev) &&
1152 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1153 /* disable receives */
1154 u32 rctl = er32(RCTL);
1155 ew32(RCTL, rctl & ~E1000_RCTL_EN);
318a94d6 1156 adapter->flags |= FLAG_RX_RESTART_NOW;
bc7f75fa
AK
1157 }
1158 /* guard against interrupt when we're going down */
1159 if (!test_bit(__E1000_DOWN, &adapter->state))
1160 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1161 }
1162
1163 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1164 adapter->total_tx_bytes = 0;
1165 adapter->total_tx_packets = 0;
1166 adapter->total_rx_bytes = 0;
1167 adapter->total_rx_packets = 0;
1168 __netif_rx_schedule(netdev, &adapter->napi);
bc7f75fa
AK
1169 }
1170
1171 return IRQ_HANDLED;
1172}
1173
1174/**
1175 * e1000_intr - Interrupt Handler
1176 * @irq: interrupt number
1177 * @data: pointer to a network interface device structure
1178 **/
1179static irqreturn_t e1000_intr(int irq, void *data)
1180{
1181 struct net_device *netdev = data;
1182 struct e1000_adapter *adapter = netdev_priv(netdev);
1183 struct e1000_hw *hw = &adapter->hw;
bc7f75fa 1184 u32 rctl, icr = er32(ICR);
4662e82b 1185
bc7f75fa
AK
1186 if (!icr)
1187 return IRQ_NONE; /* Not our interrupt */
1188
ad68076e
BA
1189 /*
1190 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1191 * not set, then the adapter didn't send an interrupt
1192 */
bc7f75fa
AK
1193 if (!(icr & E1000_ICR_INT_ASSERTED))
1194 return IRQ_NONE;
1195
ad68076e
BA
1196 /*
1197 * Interrupt Auto-Mask...upon reading ICR,
1198 * interrupts are masked. No need for the
1199 * IMC write
1200 */
bc7f75fa
AK
1201
1202 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1203 hw->mac.get_link_status = 1;
ad68076e
BA
1204 /*
1205 * ICH8 workaround-- Call gig speed drop workaround on cable
1206 * disconnect (LSC) before accessing any PHY registers
1207 */
bc7f75fa
AK
1208 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1209 (!(er32(STATUS) & E1000_STATUS_LU)))
1210 e1000e_gig_downshift_workaround_ich8lan(hw);
1211
ad68076e
BA
1212 /*
1213 * 80003ES2LAN workaround--
bc7f75fa
AK
1214 * For packet buffer work-around on link down event;
1215 * disable receives here in the ISR and
1216 * reset adapter in watchdog
1217 */
1218 if (netif_carrier_ok(netdev) &&
1219 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1220 /* disable receives */
1221 rctl = er32(RCTL);
1222 ew32(RCTL, rctl & ~E1000_RCTL_EN);
318a94d6 1223 adapter->flags |= FLAG_RX_RESTART_NOW;
bc7f75fa
AK
1224 }
1225 /* guard against interrupt when we're going down */
1226 if (!test_bit(__E1000_DOWN, &adapter->state))
1227 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1228 }
1229
1230 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1231 adapter->total_tx_bytes = 0;
1232 adapter->total_tx_packets = 0;
1233 adapter->total_rx_bytes = 0;
1234 adapter->total_rx_packets = 0;
1235 __netif_rx_schedule(netdev, &adapter->napi);
bc7f75fa
AK
1236 }
1237
1238 return IRQ_HANDLED;
1239}
1240
4662e82b
BA
1241static irqreturn_t e1000_msix_other(int irq, void *data)
1242{
1243 struct net_device *netdev = data;
1244 struct e1000_adapter *adapter = netdev_priv(netdev);
1245 struct e1000_hw *hw = &adapter->hw;
1246 u32 icr = er32(ICR);
1247
1248 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1249 ew32(IMS, E1000_IMS_OTHER);
1250 return IRQ_NONE;
1251 }
1252
1253 if (icr & adapter->eiac_mask)
1254 ew32(ICS, (icr & adapter->eiac_mask));
1255
1256 if (icr & E1000_ICR_OTHER) {
1257 if (!(icr & E1000_ICR_LSC))
1258 goto no_link_interrupt;
1259 hw->mac.get_link_status = 1;
1260 /* guard against interrupt when we're going down */
1261 if (!test_bit(__E1000_DOWN, &adapter->state))
1262 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1263 }
1264
1265no_link_interrupt:
1266 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1267
1268 return IRQ_HANDLED;
1269}
1270
1271
1272static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1273{
1274 struct net_device *netdev = data;
1275 struct e1000_adapter *adapter = netdev_priv(netdev);
1276 struct e1000_hw *hw = &adapter->hw;
1277 struct e1000_ring *tx_ring = adapter->tx_ring;
1278
1279
1280 adapter->total_tx_bytes = 0;
1281 adapter->total_tx_packets = 0;
1282
1283 if (!e1000_clean_tx_irq(adapter))
1284 /* Ring was not completely cleaned, so fire another interrupt */
1285 ew32(ICS, tx_ring->ims_val);
1286
1287 return IRQ_HANDLED;
1288}
1289
1290static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1291{
1292 struct net_device *netdev = data;
1293 struct e1000_adapter *adapter = netdev_priv(netdev);
1294
1295 /* Write the ITR value calculated at the end of the
1296 * previous interrupt.
1297 */
1298 if (adapter->rx_ring->set_itr) {
1299 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1300 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1301 adapter->rx_ring->set_itr = 0;
1302 }
1303
1304 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1305 adapter->total_rx_bytes = 0;
1306 adapter->total_rx_packets = 0;
1307 __netif_rx_schedule(netdev, &adapter->napi);
1308 }
1309 return IRQ_HANDLED;
1310}
1311
1312/**
1313 * e1000_configure_msix - Configure MSI-X hardware
1314 *
1315 * e1000_configure_msix sets up the hardware to properly
1316 * generate MSI-X interrupts.
1317 **/
1318static void e1000_configure_msix(struct e1000_adapter *adapter)
1319{
1320 struct e1000_hw *hw = &adapter->hw;
1321 struct e1000_ring *rx_ring = adapter->rx_ring;
1322 struct e1000_ring *tx_ring = adapter->tx_ring;
1323 int vector = 0;
1324 u32 ctrl_ext, ivar = 0;
1325
1326 adapter->eiac_mask = 0;
1327
1328 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1329 if (hw->mac.type == e1000_82574) {
1330 u32 rfctl = er32(RFCTL);
1331 rfctl |= E1000_RFCTL_ACK_DIS;
1332 ew32(RFCTL, rfctl);
1333 }
1334
1335#define E1000_IVAR_INT_ALLOC_VALID 0x8
1336 /* Configure Rx vector */
1337 rx_ring->ims_val = E1000_IMS_RXQ0;
1338 adapter->eiac_mask |= rx_ring->ims_val;
1339 if (rx_ring->itr_val)
1340 writel(1000000000 / (rx_ring->itr_val * 256),
1341 hw->hw_addr + rx_ring->itr_register);
1342 else
1343 writel(1, hw->hw_addr + rx_ring->itr_register);
1344 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1345
1346 /* Configure Tx vector */
1347 tx_ring->ims_val = E1000_IMS_TXQ0;
1348 vector++;
1349 if (tx_ring->itr_val)
1350 writel(1000000000 / (tx_ring->itr_val * 256),
1351 hw->hw_addr + tx_ring->itr_register);
1352 else
1353 writel(1, hw->hw_addr + tx_ring->itr_register);
1354 adapter->eiac_mask |= tx_ring->ims_val;
1355 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1356
1357 /* set vector for Other Causes, e.g. link changes */
1358 vector++;
1359 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1360 if (rx_ring->itr_val)
1361 writel(1000000000 / (rx_ring->itr_val * 256),
1362 hw->hw_addr + E1000_EITR_82574(vector));
1363 else
1364 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1365
1366 /* Cause Tx interrupts on every write back */
1367 ivar |= (1 << 31);
1368
1369 ew32(IVAR, ivar);
1370
1371 /* enable MSI-X PBA support */
1372 ctrl_ext = er32(CTRL_EXT);
1373 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1374
1375 /* Auto-Mask Other interrupts upon ICR read */
1376#define E1000_EIAC_MASK_82574 0x01F00000
1377 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1378 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1379 ew32(CTRL_EXT, ctrl_ext);
1380 e1e_flush();
1381}
1382
1383void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1384{
1385 if (adapter->msix_entries) {
1386 pci_disable_msix(adapter->pdev);
1387 kfree(adapter->msix_entries);
1388 adapter->msix_entries = NULL;
1389 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1390 pci_disable_msi(adapter->pdev);
1391 adapter->flags &= ~FLAG_MSI_ENABLED;
1392 }
1393
1394 return;
1395}
1396
1397/**
1398 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1399 *
1400 * Attempt to configure interrupts using the best available
1401 * capabilities of the hardware and kernel.
1402 **/
1403void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1404{
1405 int err;
1406 int numvecs, i;
1407
1408
1409 switch (adapter->int_mode) {
1410 case E1000E_INT_MODE_MSIX:
1411 if (adapter->flags & FLAG_HAS_MSIX) {
1412 numvecs = 3; /* RxQ0, TxQ0 and other */
1413 adapter->msix_entries = kcalloc(numvecs,
1414 sizeof(struct msix_entry),
1415 GFP_KERNEL);
1416 if (adapter->msix_entries) {
1417 for (i = 0; i < numvecs; i++)
1418 adapter->msix_entries[i].entry = i;
1419
1420 err = pci_enable_msix(adapter->pdev,
1421 adapter->msix_entries,
1422 numvecs);
1423 if (err == 0)
1424 return;
1425 }
1426 /* MSI-X failed, so fall through and try MSI */
1427 e_err("Failed to initialize MSI-X interrupts. "
1428 "Falling back to MSI interrupts.\n");
1429 e1000e_reset_interrupt_capability(adapter);
1430 }
1431 adapter->int_mode = E1000E_INT_MODE_MSI;
1432 /* Fall through */
1433 case E1000E_INT_MODE_MSI:
1434 if (!pci_enable_msi(adapter->pdev)) {
1435 adapter->flags |= FLAG_MSI_ENABLED;
1436 } else {
1437 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1438 e_err("Failed to initialize MSI interrupts. Falling "
1439 "back to legacy interrupts.\n");
1440 }
1441 /* Fall through */
1442 case E1000E_INT_MODE_LEGACY:
1443 /* Don't do anything; this is the system default */
1444 break;
1445 }
1446
1447 return;
1448}
1449
1450/**
1451 * e1000_request_msix - Initialize MSI-X interrupts
1452 *
1453 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1454 * kernel.
1455 **/
1456static int e1000_request_msix(struct e1000_adapter *adapter)
1457{
1458 struct net_device *netdev = adapter->netdev;
1459 int err = 0, vector = 0;
1460
1461 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1462 sprintf(adapter->rx_ring->name, "%s-rx0", netdev->name);
1463 else
1464 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1465 err = request_irq(adapter->msix_entries[vector].vector,
1466 &e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1467 netdev);
1468 if (err)
1469 goto out;
1470 adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1471 adapter->rx_ring->itr_val = adapter->itr;
1472 vector++;
1473
1474 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1475 sprintf(adapter->tx_ring->name, "%s-tx0", netdev->name);
1476 else
1477 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1478 err = request_irq(adapter->msix_entries[vector].vector,
1479 &e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1480 netdev);
1481 if (err)
1482 goto out;
1483 adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1484 adapter->tx_ring->itr_val = adapter->itr;
1485 vector++;
1486
1487 err = request_irq(adapter->msix_entries[vector].vector,
1488 &e1000_msix_other, 0, netdev->name, netdev);
1489 if (err)
1490 goto out;
1491
1492 e1000_configure_msix(adapter);
1493 return 0;
1494out:
1495 return err;
1496}
1497
f8d59f78
BA
1498/**
1499 * e1000_request_irq - initialize interrupts
1500 *
1501 * Attempts to configure interrupts using the best available
1502 * capabilities of the hardware and kernel.
1503 **/
bc7f75fa
AK
1504static int e1000_request_irq(struct e1000_adapter *adapter)
1505{
1506 struct net_device *netdev = adapter->netdev;
bc7f75fa
AK
1507 int err;
1508
4662e82b
BA
1509 if (adapter->msix_entries) {
1510 err = e1000_request_msix(adapter);
1511 if (!err)
1512 return err;
1513 /* fall back to MSI */
1514 e1000e_reset_interrupt_capability(adapter);
1515 adapter->int_mode = E1000E_INT_MODE_MSI;
1516 e1000e_set_interrupt_capability(adapter);
bc7f75fa 1517 }
4662e82b
BA
1518 if (adapter->flags & FLAG_MSI_ENABLED) {
1519 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, 0,
1520 netdev->name, netdev);
1521 if (!err)
1522 return err;
bc7f75fa 1523
4662e82b
BA
1524 /* fall back to legacy interrupt */
1525 e1000e_reset_interrupt_capability(adapter);
1526 adapter->int_mode = E1000E_INT_MODE_LEGACY;
bc7f75fa
AK
1527 }
1528
4662e82b
BA
1529 err = request_irq(adapter->pdev->irq, &e1000_intr, IRQF_SHARED,
1530 netdev->name, netdev);
1531 if (err)
1532 e_err("Unable to allocate interrupt, Error: %d\n", err);
1533
bc7f75fa
AK
1534 return err;
1535}
1536
1537static void e1000_free_irq(struct e1000_adapter *adapter)
1538{
1539 struct net_device *netdev = adapter->netdev;
1540
4662e82b
BA
1541 if (adapter->msix_entries) {
1542 int vector = 0;
1543
1544 free_irq(adapter->msix_entries[vector].vector, netdev);
1545 vector++;
1546
1547 free_irq(adapter->msix_entries[vector].vector, netdev);
1548 vector++;
1549
1550 /* Other Causes interrupt vector */
1551 free_irq(adapter->msix_entries[vector].vector, netdev);
1552 return;
bc7f75fa 1553 }
4662e82b
BA
1554
1555 free_irq(adapter->pdev->irq, netdev);
bc7f75fa
AK
1556}
1557
1558/**
1559 * e1000_irq_disable - Mask off interrupt generation on the NIC
1560 **/
1561static void e1000_irq_disable(struct e1000_adapter *adapter)
1562{
1563 struct e1000_hw *hw = &adapter->hw;
1564
bc7f75fa 1565 ew32(IMC, ~0);
4662e82b
BA
1566 if (adapter->msix_entries)
1567 ew32(EIAC_82574, 0);
bc7f75fa
AK
1568 e1e_flush();
1569 synchronize_irq(adapter->pdev->irq);
1570}
1571
1572/**
1573 * e1000_irq_enable - Enable default interrupt generation settings
1574 **/
1575static void e1000_irq_enable(struct e1000_adapter *adapter)
1576{
1577 struct e1000_hw *hw = &adapter->hw;
1578
4662e82b
BA
1579 if (adapter->msix_entries) {
1580 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1581 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1582 } else {
1583 ew32(IMS, IMS_ENABLE_MASK);
1584 }
74ef9c39 1585 e1e_flush();
bc7f75fa
AK
1586}
1587
1588/**
1589 * e1000_get_hw_control - get control of the h/w from f/w
1590 * @adapter: address of board private structure
1591 *
489815ce 1592 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
bc7f75fa
AK
1593 * For ASF and Pass Through versions of f/w this means that
1594 * the driver is loaded. For AMT version (only with 82573)
1595 * of the f/w this means that the network i/f is open.
1596 **/
1597static void e1000_get_hw_control(struct e1000_adapter *adapter)
1598{
1599 struct e1000_hw *hw = &adapter->hw;
1600 u32 ctrl_ext;
1601 u32 swsm;
1602
1603 /* Let firmware know the driver has taken over */
1604 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1605 swsm = er32(SWSM);
1606 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1607 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1608 ctrl_ext = er32(CTRL_EXT);
ad68076e 1609 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
bc7f75fa
AK
1610 }
1611}
1612
1613/**
1614 * e1000_release_hw_control - release control of the h/w to f/w
1615 * @adapter: address of board private structure
1616 *
489815ce 1617 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
bc7f75fa
AK
1618 * For ASF and Pass Through versions of f/w this means that the
1619 * driver is no longer loaded. For AMT version (only with 82573) i
1620 * of the f/w this means that the network i/f is closed.
1621 *
1622 **/
1623static void e1000_release_hw_control(struct e1000_adapter *adapter)
1624{
1625 struct e1000_hw *hw = &adapter->hw;
1626 u32 ctrl_ext;
1627 u32 swsm;
1628
1629 /* Let firmware taken over control of h/w */
1630 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1631 swsm = er32(SWSM);
1632 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1633 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1634 ctrl_ext = er32(CTRL_EXT);
ad68076e 1635 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
bc7f75fa
AK
1636 }
1637}
1638
bc7f75fa
AK
1639/**
1640 * @e1000_alloc_ring - allocate memory for a ring structure
1641 **/
1642static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1643 struct e1000_ring *ring)
1644{
1645 struct pci_dev *pdev = adapter->pdev;
1646
1647 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1648 GFP_KERNEL);
1649 if (!ring->desc)
1650 return -ENOMEM;
1651
1652 return 0;
1653}
1654
1655/**
1656 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1657 * @adapter: board private structure
1658 *
1659 * Return 0 on success, negative on failure
1660 **/
1661int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1662{
1663 struct e1000_ring *tx_ring = adapter->tx_ring;
1664 int err = -ENOMEM, size;
1665
1666 size = sizeof(struct e1000_buffer) * tx_ring->count;
1667 tx_ring->buffer_info = vmalloc(size);
1668 if (!tx_ring->buffer_info)
1669 goto err;
1670 memset(tx_ring->buffer_info, 0, size);
1671
1672 /* round up to nearest 4K */
1673 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1674 tx_ring->size = ALIGN(tx_ring->size, 4096);
1675
1676 err = e1000_alloc_ring_dma(adapter, tx_ring);
1677 if (err)
1678 goto err;
1679
1680 tx_ring->next_to_use = 0;
1681 tx_ring->next_to_clean = 0;
1682 spin_lock_init(&adapter->tx_queue_lock);
1683
1684 return 0;
1685err:
1686 vfree(tx_ring->buffer_info);
44defeb3 1687 e_err("Unable to allocate memory for the transmit descriptor ring\n");
bc7f75fa
AK
1688 return err;
1689}
1690
1691/**
1692 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1693 * @adapter: board private structure
1694 *
1695 * Returns 0 on success, negative on failure
1696 **/
1697int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1698{
1699 struct e1000_ring *rx_ring = adapter->rx_ring;
47f44e40
AK
1700 struct e1000_buffer *buffer_info;
1701 int i, size, desc_len, err = -ENOMEM;
bc7f75fa
AK
1702
1703 size = sizeof(struct e1000_buffer) * rx_ring->count;
1704 rx_ring->buffer_info = vmalloc(size);
1705 if (!rx_ring->buffer_info)
1706 goto err;
1707 memset(rx_ring->buffer_info, 0, size);
1708
47f44e40
AK
1709 for (i = 0; i < rx_ring->count; i++) {
1710 buffer_info = &rx_ring->buffer_info[i];
1711 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1712 sizeof(struct e1000_ps_page),
1713 GFP_KERNEL);
1714 if (!buffer_info->ps_pages)
1715 goto err_pages;
1716 }
bc7f75fa
AK
1717
1718 desc_len = sizeof(union e1000_rx_desc_packet_split);
1719
1720 /* Round up to nearest 4K */
1721 rx_ring->size = rx_ring->count * desc_len;
1722 rx_ring->size = ALIGN(rx_ring->size, 4096);
1723
1724 err = e1000_alloc_ring_dma(adapter, rx_ring);
1725 if (err)
47f44e40 1726 goto err_pages;
bc7f75fa
AK
1727
1728 rx_ring->next_to_clean = 0;
1729 rx_ring->next_to_use = 0;
1730 rx_ring->rx_skb_top = NULL;
1731
1732 return 0;
47f44e40
AK
1733
1734err_pages:
1735 for (i = 0; i < rx_ring->count; i++) {
1736 buffer_info = &rx_ring->buffer_info[i];
1737 kfree(buffer_info->ps_pages);
1738 }
bc7f75fa
AK
1739err:
1740 vfree(rx_ring->buffer_info);
44defeb3 1741 e_err("Unable to allocate memory for the transmit descriptor ring\n");
bc7f75fa
AK
1742 return err;
1743}
1744
1745/**
1746 * e1000_clean_tx_ring - Free Tx Buffers
1747 * @adapter: board private structure
1748 **/
1749static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1750{
1751 struct e1000_ring *tx_ring = adapter->tx_ring;
1752 struct e1000_buffer *buffer_info;
1753 unsigned long size;
1754 unsigned int i;
1755
1756 for (i = 0; i < tx_ring->count; i++) {
1757 buffer_info = &tx_ring->buffer_info[i];
1758 e1000_put_txbuf(adapter, buffer_info);
1759 }
1760
1761 size = sizeof(struct e1000_buffer) * tx_ring->count;
1762 memset(tx_ring->buffer_info, 0, size);
1763
1764 memset(tx_ring->desc, 0, tx_ring->size);
1765
1766 tx_ring->next_to_use = 0;
1767 tx_ring->next_to_clean = 0;
1768
1769 writel(0, adapter->hw.hw_addr + tx_ring->head);
1770 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1771}
1772
1773/**
1774 * e1000e_free_tx_resources - Free Tx Resources per Queue
1775 * @adapter: board private structure
1776 *
1777 * Free all transmit software resources
1778 **/
1779void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1780{
1781 struct pci_dev *pdev = adapter->pdev;
1782 struct e1000_ring *tx_ring = adapter->tx_ring;
1783
1784 e1000_clean_tx_ring(adapter);
1785
1786 vfree(tx_ring->buffer_info);
1787 tx_ring->buffer_info = NULL;
1788
1789 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1790 tx_ring->dma);
1791 tx_ring->desc = NULL;
1792}
1793
1794/**
1795 * e1000e_free_rx_resources - Free Rx Resources
1796 * @adapter: board private structure
1797 *
1798 * Free all receive software resources
1799 **/
1800
1801void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1802{
1803 struct pci_dev *pdev = adapter->pdev;
1804 struct e1000_ring *rx_ring = adapter->rx_ring;
47f44e40 1805 int i;
bc7f75fa
AK
1806
1807 e1000_clean_rx_ring(adapter);
1808
47f44e40
AK
1809 for (i = 0; i < rx_ring->count; i++) {
1810 kfree(rx_ring->buffer_info[i].ps_pages);
1811 }
1812
bc7f75fa
AK
1813 vfree(rx_ring->buffer_info);
1814 rx_ring->buffer_info = NULL;
1815
bc7f75fa
AK
1816 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1817 rx_ring->dma);
1818 rx_ring->desc = NULL;
1819}
1820
1821/**
1822 * e1000_update_itr - update the dynamic ITR value based on statistics
489815ce
AK
1823 * @adapter: pointer to adapter
1824 * @itr_setting: current adapter->itr
1825 * @packets: the number of packets during this measurement interval
1826 * @bytes: the number of bytes during this measurement interval
1827 *
bc7f75fa
AK
1828 * Stores a new ITR value based on packets and byte
1829 * counts during the last interrupt. The advantage of per interrupt
1830 * computation is faster updates and more accurate ITR for the current
1831 * traffic pattern. Constants in this function were computed
1832 * based on theoretical maximum wire speed and thresholds were set based
1833 * on testing data as well as attempting to minimize response time
4662e82b
BA
1834 * while increasing bulk throughput. This functionality is controlled
1835 * by the InterruptThrottleRate module parameter.
bc7f75fa
AK
1836 **/
1837static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1838 u16 itr_setting, int packets,
1839 int bytes)
1840{
1841 unsigned int retval = itr_setting;
1842
1843 if (packets == 0)
1844 goto update_itr_done;
1845
1846 switch (itr_setting) {
1847 case lowest_latency:
1848 /* handle TSO and jumbo frames */
1849 if (bytes/packets > 8000)
1850 retval = bulk_latency;
1851 else if ((packets < 5) && (bytes > 512)) {
1852 retval = low_latency;
1853 }
1854 break;
1855 case low_latency: /* 50 usec aka 20000 ints/s */
1856 if (bytes > 10000) {
1857 /* this if handles the TSO accounting */
1858 if (bytes/packets > 8000) {
1859 retval = bulk_latency;
1860 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1861 retval = bulk_latency;
1862 } else if ((packets > 35)) {
1863 retval = lowest_latency;
1864 }
1865 } else if (bytes/packets > 2000) {
1866 retval = bulk_latency;
1867 } else if (packets <= 2 && bytes < 512) {
1868 retval = lowest_latency;
1869 }
1870 break;
1871 case bulk_latency: /* 250 usec aka 4000 ints/s */
1872 if (bytes > 25000) {
1873 if (packets > 35) {
1874 retval = low_latency;
1875 }
1876 } else if (bytes < 6000) {
1877 retval = low_latency;
1878 }
1879 break;
1880 }
1881
1882update_itr_done:
1883 return retval;
1884}
1885
1886static void e1000_set_itr(struct e1000_adapter *adapter)
1887{
1888 struct e1000_hw *hw = &adapter->hw;
1889 u16 current_itr;
1890 u32 new_itr = adapter->itr;
1891
1892 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1893 if (adapter->link_speed != SPEED_1000) {
1894 current_itr = 0;
1895 new_itr = 4000;
1896 goto set_itr_now;
1897 }
1898
1899 adapter->tx_itr = e1000_update_itr(adapter,
1900 adapter->tx_itr,
1901 adapter->total_tx_packets,
1902 adapter->total_tx_bytes);
1903 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1904 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1905 adapter->tx_itr = low_latency;
1906
1907 adapter->rx_itr = e1000_update_itr(adapter,
1908 adapter->rx_itr,
1909 adapter->total_rx_packets,
1910 adapter->total_rx_bytes);
1911 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1912 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1913 adapter->rx_itr = low_latency;
1914
1915 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1916
1917 switch (current_itr) {
1918 /* counts and packets in update_itr are dependent on these numbers */
1919 case lowest_latency:
1920 new_itr = 70000;
1921 break;
1922 case low_latency:
1923 new_itr = 20000; /* aka hwitr = ~200 */
1924 break;
1925 case bulk_latency:
1926 new_itr = 4000;
1927 break;
1928 default:
1929 break;
1930 }
1931
1932set_itr_now:
1933 if (new_itr != adapter->itr) {
ad68076e
BA
1934 /*
1935 * this attempts to bias the interrupt rate towards Bulk
bc7f75fa 1936 * by adding intermediate steps when interrupt rate is
ad68076e
BA
1937 * increasing
1938 */
bc7f75fa
AK
1939 new_itr = new_itr > adapter->itr ?
1940 min(adapter->itr + (new_itr >> 2), new_itr) :
1941 new_itr;
1942 adapter->itr = new_itr;
4662e82b
BA
1943 adapter->rx_ring->itr_val = new_itr;
1944 if (adapter->msix_entries)
1945 adapter->rx_ring->set_itr = 1;
1946 else
1947 ew32(ITR, 1000000000 / (new_itr * 256));
bc7f75fa
AK
1948 }
1949}
1950
4662e82b
BA
1951/**
1952 * e1000_alloc_queues - Allocate memory for all rings
1953 * @adapter: board private structure to initialize
1954 **/
1955static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1956{
1957 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1958 if (!adapter->tx_ring)
1959 goto err;
1960
1961 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1962 if (!adapter->rx_ring)
1963 goto err;
1964
1965 return 0;
1966err:
1967 e_err("Unable to allocate memory for queues\n");
1968 kfree(adapter->rx_ring);
1969 kfree(adapter->tx_ring);
1970 return -ENOMEM;
1971}
1972
bc7f75fa
AK
1973/**
1974 * e1000_clean - NAPI Rx polling callback
ad68076e 1975 * @napi: struct associated with this polling callback
489815ce 1976 * @budget: amount of packets driver is allowed to process this poll
bc7f75fa
AK
1977 **/
1978static int e1000_clean(struct napi_struct *napi, int budget)
1979{
1980 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
4662e82b 1981 struct e1000_hw *hw = &adapter->hw;
bc7f75fa 1982 struct net_device *poll_dev = adapter->netdev;
d2c7ddd6 1983 int tx_cleaned = 0, work_done = 0;
bc7f75fa
AK
1984
1985 /* Must NOT use netdev_priv macro here. */
1986 adapter = poll_dev->priv;
1987
4662e82b
BA
1988 if (adapter->msix_entries &&
1989 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
1990 goto clean_rx;
1991
ad68076e
BA
1992 /*
1993 * e1000_clean is called per-cpu. This lock protects
bc7f75fa
AK
1994 * tx_ring from being cleaned by multiple cpus
1995 * simultaneously. A failure obtaining the lock means
ad68076e
BA
1996 * tx_ring is currently being cleaned anyway.
1997 */
bc7f75fa 1998 if (spin_trylock(&adapter->tx_queue_lock)) {
d2c7ddd6 1999 tx_cleaned = e1000_clean_tx_irq(adapter);
bc7f75fa
AK
2000 spin_unlock(&adapter->tx_queue_lock);
2001 }
2002
4662e82b 2003clean_rx:
bc7f75fa 2004 adapter->clean_rx(adapter, &work_done, budget);
d2c7ddd6
DM
2005
2006 if (tx_cleaned)
2007 work_done = budget;
bc7f75fa 2008
53e52c72
DM
2009 /* If budget not fully consumed, exit the polling mode */
2010 if (work_done < budget) {
bc7f75fa
AK
2011 if (adapter->itr_setting & 3)
2012 e1000_set_itr(adapter);
2013 netif_rx_complete(poll_dev, napi);
4662e82b
BA
2014 if (adapter->msix_entries)
2015 ew32(IMS, adapter->rx_ring->ims_val);
2016 else
2017 e1000_irq_enable(adapter);
bc7f75fa
AK
2018 }
2019
2020 return work_done;
2021}
2022
2023static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2024{
2025 struct e1000_adapter *adapter = netdev_priv(netdev);
2026 struct e1000_hw *hw = &adapter->hw;
2027 u32 vfta, index;
2028
2029 /* don't update vlan cookie if already programmed */
2030 if ((adapter->hw.mng_cookie.status &
2031 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2032 (vid == adapter->mng_vlan_id))
2033 return;
2034 /* add VID to filter table */
2035 index = (vid >> 5) & 0x7F;
2036 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2037 vfta |= (1 << (vid & 0x1F));
2038 e1000e_write_vfta(hw, index, vfta);
2039}
2040
2041static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2042{
2043 struct e1000_adapter *adapter = netdev_priv(netdev);
2044 struct e1000_hw *hw = &adapter->hw;
2045 u32 vfta, index;
2046
74ef9c39
JB
2047 if (!test_bit(__E1000_DOWN, &adapter->state))
2048 e1000_irq_disable(adapter);
bc7f75fa 2049 vlan_group_set_device(adapter->vlgrp, vid, NULL);
74ef9c39
JB
2050
2051 if (!test_bit(__E1000_DOWN, &adapter->state))
2052 e1000_irq_enable(adapter);
bc7f75fa
AK
2053
2054 if ((adapter->hw.mng_cookie.status &
2055 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2056 (vid == adapter->mng_vlan_id)) {
2057 /* release control to f/w */
2058 e1000_release_hw_control(adapter);
2059 return;
2060 }
2061
2062 /* remove VID from filter table */
2063 index = (vid >> 5) & 0x7F;
2064 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2065 vfta &= ~(1 << (vid & 0x1F));
2066 e1000e_write_vfta(hw, index, vfta);
2067}
2068
2069static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2070{
2071 struct net_device *netdev = adapter->netdev;
2072 u16 vid = adapter->hw.mng_cookie.vlan_id;
2073 u16 old_vid = adapter->mng_vlan_id;
2074
2075 if (!adapter->vlgrp)
2076 return;
2077
2078 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2079 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2080 if (adapter->hw.mng_cookie.status &
2081 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2082 e1000_vlan_rx_add_vid(netdev, vid);
2083 adapter->mng_vlan_id = vid;
2084 }
2085
2086 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2087 (vid != old_vid) &&
2088 !vlan_group_get_device(adapter->vlgrp, old_vid))
2089 e1000_vlan_rx_kill_vid(netdev, old_vid);
2090 } else {
2091 adapter->mng_vlan_id = vid;
2092 }
2093}
2094
2095
2096static void e1000_vlan_rx_register(struct net_device *netdev,
2097 struct vlan_group *grp)
2098{
2099 struct e1000_adapter *adapter = netdev_priv(netdev);
2100 struct e1000_hw *hw = &adapter->hw;
2101 u32 ctrl, rctl;
2102
74ef9c39
JB
2103 if (!test_bit(__E1000_DOWN, &adapter->state))
2104 e1000_irq_disable(adapter);
bc7f75fa
AK
2105 adapter->vlgrp = grp;
2106
2107 if (grp) {
2108 /* enable VLAN tag insert/strip */
2109 ctrl = er32(CTRL);
2110 ctrl |= E1000_CTRL_VME;
2111 ew32(CTRL, ctrl);
2112
2113 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2114 /* enable VLAN receive filtering */
2115 rctl = er32(RCTL);
bc7f75fa
AK
2116 rctl &= ~E1000_RCTL_CFIEN;
2117 ew32(RCTL, rctl);
2118 e1000_update_mng_vlan(adapter);
2119 }
2120 } else {
2121 /* disable VLAN tag insert/strip */
2122 ctrl = er32(CTRL);
2123 ctrl &= ~E1000_CTRL_VME;
2124 ew32(CTRL, ctrl);
2125
2126 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
bc7f75fa
AK
2127 if (adapter->mng_vlan_id !=
2128 (u16)E1000_MNG_VLAN_NONE) {
2129 e1000_vlan_rx_kill_vid(netdev,
2130 adapter->mng_vlan_id);
2131 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2132 }
2133 }
2134 }
2135
74ef9c39
JB
2136 if (!test_bit(__E1000_DOWN, &adapter->state))
2137 e1000_irq_enable(adapter);
bc7f75fa
AK
2138}
2139
2140static void e1000_restore_vlan(struct e1000_adapter *adapter)
2141{
2142 u16 vid;
2143
2144 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2145
2146 if (!adapter->vlgrp)
2147 return;
2148
2149 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2150 if (!vlan_group_get_device(adapter->vlgrp, vid))
2151 continue;
2152 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2153 }
2154}
2155
2156static void e1000_init_manageability(struct e1000_adapter *adapter)
2157{
2158 struct e1000_hw *hw = &adapter->hw;
2159 u32 manc, manc2h;
2160
2161 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2162 return;
2163
2164 manc = er32(MANC);
2165
ad68076e
BA
2166 /*
2167 * enable receiving management packets to the host. this will probably
bc7f75fa 2168 * generate destination unreachable messages from the host OS, but
ad68076e
BA
2169 * the packets will be handled on SMBUS
2170 */
bc7f75fa
AK
2171 manc |= E1000_MANC_EN_MNG2HOST;
2172 manc2h = er32(MANC2H);
2173#define E1000_MNG2HOST_PORT_623 (1 << 5)
2174#define E1000_MNG2HOST_PORT_664 (1 << 6)
2175 manc2h |= E1000_MNG2HOST_PORT_623;
2176 manc2h |= E1000_MNG2HOST_PORT_664;
2177 ew32(MANC2H, manc2h);
2178 ew32(MANC, manc);
2179}
2180
2181/**
2182 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2183 * @adapter: board private structure
2184 *
2185 * Configure the Tx unit of the MAC after a reset.
2186 **/
2187static void e1000_configure_tx(struct e1000_adapter *adapter)
2188{
2189 struct e1000_hw *hw = &adapter->hw;
2190 struct e1000_ring *tx_ring = adapter->tx_ring;
2191 u64 tdba;
2192 u32 tdlen, tctl, tipg, tarc;
2193 u32 ipgr1, ipgr2;
2194
2195 /* Setup the HW Tx Head and Tail descriptor pointers */
2196 tdba = tx_ring->dma;
2197 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2198 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
2199 ew32(TDBAH, (tdba >> 32));
2200 ew32(TDLEN, tdlen);
2201 ew32(TDH, 0);
2202 ew32(TDT, 0);
2203 tx_ring->head = E1000_TDH;
2204 tx_ring->tail = E1000_TDT;
2205
2206 /* Set the default values for the Tx Inter Packet Gap timer */
2207 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
2208 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
2209 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
2210
2211 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2212 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
2213
2214 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2215 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2216 ew32(TIPG, tipg);
2217
2218 /* Set the Tx Interrupt Delay register */
2219 ew32(TIDV, adapter->tx_int_delay);
ad68076e 2220 /* Tx irq moderation */
bc7f75fa
AK
2221 ew32(TADV, adapter->tx_abs_int_delay);
2222
2223 /* Program the Transmit Control Register */
2224 tctl = er32(TCTL);
2225 tctl &= ~E1000_TCTL_CT;
2226 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2227 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2228
2229 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
e9ec2c0f 2230 tarc = er32(TARC(0));
ad68076e
BA
2231 /*
2232 * set the speed mode bit, we'll clear it if we're not at
2233 * gigabit link later
2234 */
bc7f75fa
AK
2235#define SPEED_MODE_BIT (1 << 21)
2236 tarc |= SPEED_MODE_BIT;
e9ec2c0f 2237 ew32(TARC(0), tarc);
bc7f75fa
AK
2238 }
2239
2240 /* errata: program both queues to unweighted RR */
2241 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
e9ec2c0f 2242 tarc = er32(TARC(0));
bc7f75fa 2243 tarc |= 1;
e9ec2c0f
JK
2244 ew32(TARC(0), tarc);
2245 tarc = er32(TARC(1));
bc7f75fa 2246 tarc |= 1;
e9ec2c0f 2247 ew32(TARC(1), tarc);
bc7f75fa
AK
2248 }
2249
2250 e1000e_config_collision_dist(hw);
2251
2252 /* Setup Transmit Descriptor Settings for eop descriptor */
2253 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2254
2255 /* only set IDE if we are delaying interrupts using the timers */
2256 if (adapter->tx_int_delay)
2257 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2258
2259 /* enable Report Status bit */
2260 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2261
2262 ew32(TCTL, tctl);
2263
2264 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
2265}
2266
2267/**
2268 * e1000_setup_rctl - configure the receive control registers
2269 * @adapter: Board private structure
2270 **/
2271#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2272 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2273static void e1000_setup_rctl(struct e1000_adapter *adapter)
2274{
2275 struct e1000_hw *hw = &adapter->hw;
2276 u32 rctl, rfctl;
2277 u32 psrctl = 0;
2278 u32 pages = 0;
2279
2280 /* Program MC offset vector base */
2281 rctl = er32(RCTL);
2282 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2283 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2284 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2285 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2286
2287 /* Do not Store bad packets */
2288 rctl &= ~E1000_RCTL_SBP;
2289
2290 /* Enable Long Packet receive */
2291 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2292 rctl &= ~E1000_RCTL_LPE;
2293 else
2294 rctl |= E1000_RCTL_LPE;
2295
5918bd88
AK
2296 /* Enable hardware CRC frame stripping */
2297 rctl |= E1000_RCTL_SECRC;
2298
bc7f75fa
AK
2299 /* Setup buffer sizes */
2300 rctl &= ~E1000_RCTL_SZ_4096;
2301 rctl |= E1000_RCTL_BSEX;
2302 switch (adapter->rx_buffer_len) {
2303 case 256:
2304 rctl |= E1000_RCTL_SZ_256;
2305 rctl &= ~E1000_RCTL_BSEX;
2306 break;
2307 case 512:
2308 rctl |= E1000_RCTL_SZ_512;
2309 rctl &= ~E1000_RCTL_BSEX;
2310 break;
2311 case 1024:
2312 rctl |= E1000_RCTL_SZ_1024;
2313 rctl &= ~E1000_RCTL_BSEX;
2314 break;
2315 case 2048:
2316 default:
2317 rctl |= E1000_RCTL_SZ_2048;
2318 rctl &= ~E1000_RCTL_BSEX;
2319 break;
2320 case 4096:
2321 rctl |= E1000_RCTL_SZ_4096;
2322 break;
2323 case 8192:
2324 rctl |= E1000_RCTL_SZ_8192;
2325 break;
2326 case 16384:
2327 rctl |= E1000_RCTL_SZ_16384;
2328 break;
2329 }
2330
2331 /*
2332 * 82571 and greater support packet-split where the protocol
2333 * header is placed in skb->data and the packet data is
2334 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2335 * In the case of a non-split, skb->data is linearly filled,
2336 * followed by the page buffers. Therefore, skb->data is
2337 * sized to hold the largest protocol header.
2338 *
2339 * allocations using alloc_page take too long for regular MTU
2340 * so only enable packet split for jumbo frames
2341 *
2342 * Using pages when the page size is greater than 16k wastes
2343 * a lot of memory, since we allocate 3 pages at all times
2344 * per packet.
2345 */
bc7f75fa 2346 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
97ac8cae
BA
2347 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2348 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
bc7f75fa 2349 adapter->rx_ps_pages = pages;
97ac8cae
BA
2350 else
2351 adapter->rx_ps_pages = 0;
bc7f75fa
AK
2352
2353 if (adapter->rx_ps_pages) {
2354 /* Configure extra packet-split registers */
2355 rfctl = er32(RFCTL);
2356 rfctl |= E1000_RFCTL_EXTEN;
ad68076e
BA
2357 /*
2358 * disable packet split support for IPv6 extension headers,
2359 * because some malformed IPv6 headers can hang the Rx
2360 */
bc7f75fa
AK
2361 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2362 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2363
2364 ew32(RFCTL, rfctl);
2365
140a7480
AK
2366 /* Enable Packet split descriptors */
2367 rctl |= E1000_RCTL_DTYP_PS;
bc7f75fa
AK
2368
2369 psrctl |= adapter->rx_ps_bsize0 >>
2370 E1000_PSRCTL_BSIZE0_SHIFT;
2371
2372 switch (adapter->rx_ps_pages) {
2373 case 3:
2374 psrctl |= PAGE_SIZE <<
2375 E1000_PSRCTL_BSIZE3_SHIFT;
2376 case 2:
2377 psrctl |= PAGE_SIZE <<
2378 E1000_PSRCTL_BSIZE2_SHIFT;
2379 case 1:
2380 psrctl |= PAGE_SIZE >>
2381 E1000_PSRCTL_BSIZE1_SHIFT;
2382 break;
2383 }
2384
2385 ew32(PSRCTL, psrctl);
2386 }
2387
2388 ew32(RCTL, rctl);
318a94d6
JK
2389 /* just started the receive unit, no need to restart */
2390 adapter->flags &= ~FLAG_RX_RESTART_NOW;
bc7f75fa
AK
2391}
2392
2393/**
2394 * e1000_configure_rx - Configure Receive Unit after Reset
2395 * @adapter: board private structure
2396 *
2397 * Configure the Rx unit of the MAC after a reset.
2398 **/
2399static void e1000_configure_rx(struct e1000_adapter *adapter)
2400{
2401 struct e1000_hw *hw = &adapter->hw;
2402 struct e1000_ring *rx_ring = adapter->rx_ring;
2403 u64 rdba;
2404 u32 rdlen, rctl, rxcsum, ctrl_ext;
2405
2406 if (adapter->rx_ps_pages) {
2407 /* this is a 32 byte descriptor */
2408 rdlen = rx_ring->count *
2409 sizeof(union e1000_rx_desc_packet_split);
2410 adapter->clean_rx = e1000_clean_rx_irq_ps;
2411 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
97ac8cae
BA
2412 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2413 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2414 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2415 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
bc7f75fa 2416 } else {
97ac8cae 2417 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
bc7f75fa
AK
2418 adapter->clean_rx = e1000_clean_rx_irq;
2419 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2420 }
2421
2422 /* disable receives while setting up the descriptors */
2423 rctl = er32(RCTL);
2424 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2425 e1e_flush();
2426 msleep(10);
2427
2428 /* set the Receive Delay Timer Register */
2429 ew32(RDTR, adapter->rx_int_delay);
2430
2431 /* irq moderation */
2432 ew32(RADV, adapter->rx_abs_int_delay);
2433 if (adapter->itr_setting != 0)
ad68076e 2434 ew32(ITR, 1000000000 / (adapter->itr * 256));
bc7f75fa
AK
2435
2436 ctrl_ext = er32(CTRL_EXT);
2437 /* Reset delay timers after every interrupt */
2438 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2439 /* Auto-Mask interrupts upon ICR access */
2440 ctrl_ext |= E1000_CTRL_EXT_IAME;
2441 ew32(IAM, 0xffffffff);
2442 ew32(CTRL_EXT, ctrl_ext);
2443 e1e_flush();
2444
ad68076e
BA
2445 /*
2446 * Setup the HW Rx Head and Tail Descriptor Pointers and
2447 * the Base and Length of the Rx Descriptor Ring
2448 */
bc7f75fa
AK
2449 rdba = rx_ring->dma;
2450 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
2451 ew32(RDBAH, (rdba >> 32));
2452 ew32(RDLEN, rdlen);
2453 ew32(RDH, 0);
2454 ew32(RDT, 0);
2455 rx_ring->head = E1000_RDH;
2456 rx_ring->tail = E1000_RDT;
2457
2458 /* Enable Receive Checksum Offload for TCP and UDP */
2459 rxcsum = er32(RXCSUM);
2460 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2461 rxcsum |= E1000_RXCSUM_TUOFL;
2462
ad68076e
BA
2463 /*
2464 * IPv4 payload checksum for UDP fragments must be
2465 * used in conjunction with packet-split.
2466 */
bc7f75fa
AK
2467 if (adapter->rx_ps_pages)
2468 rxcsum |= E1000_RXCSUM_IPPCSE;
2469 } else {
2470 rxcsum &= ~E1000_RXCSUM_TUOFL;
2471 /* no need to clear IPPCSE as it defaults to 0 */
2472 }
2473 ew32(RXCSUM, rxcsum);
2474
ad68076e
BA
2475 /*
2476 * Enable early receives on supported devices, only takes effect when
bc7f75fa 2477 * packet size is equal or larger than the specified value (in 8 byte
ad68076e
BA
2478 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2479 */
bc7f75fa 2480 if ((adapter->flags & FLAG_HAS_ERT) &&
97ac8cae
BA
2481 (adapter->netdev->mtu > ETH_DATA_LEN)) {
2482 u32 rxdctl = er32(RXDCTL(0));
2483 ew32(RXDCTL(0), rxdctl | 0x3);
2484 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2485 /*
2486 * With jumbo frames and early-receive enabled, excessive
2487 * C4->C2 latencies result in dropped transactions.
2488 */
2489 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2490 e1000e_driver_name, 55);
2491 } else {
2492 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2493 e1000e_driver_name,
2494 PM_QOS_DEFAULT_VALUE);
2495 }
bc7f75fa
AK
2496
2497 /* Enable Receives */
2498 ew32(RCTL, rctl);
2499}
2500
2501/**
e2de3eb6 2502 * e1000_update_mc_addr_list - Update Multicast addresses
bc7f75fa
AK
2503 * @hw: pointer to the HW structure
2504 * @mc_addr_list: array of multicast addresses to program
2505 * @mc_addr_count: number of multicast addresses to program
2506 * @rar_used_count: the first RAR register free to program
2507 * @rar_count: total number of supported Receive Address Registers
2508 *
2509 * Updates the Receive Address Registers and Multicast Table Array.
2510 * The caller must have a packed mc_addr_list of multicast addresses.
2511 * The parameter rar_count will usually be hw->mac.rar_entry_count
2512 * unless there are workarounds that change this. Currently no func pointer
2513 * exists and all implementations are handled in the generic version of this
2514 * function.
2515 **/
e2de3eb6
JK
2516static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2517 u32 mc_addr_count, u32 rar_used_count,
2518 u32 rar_count)
bc7f75fa 2519{
e2de3eb6 2520 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
bc7f75fa
AK
2521 rar_used_count, rar_count);
2522}
2523
2524/**
2525 * e1000_set_multi - Multicast and Promiscuous mode set
2526 * @netdev: network interface device structure
2527 *
2528 * The set_multi entry point is called whenever the multicast address
2529 * list or the network interface flags are updated. This routine is
2530 * responsible for configuring the hardware for proper multicast,
2531 * promiscuous mode, and all-multi behavior.
2532 **/
2533static void e1000_set_multi(struct net_device *netdev)
2534{
2535 struct e1000_adapter *adapter = netdev_priv(netdev);
2536 struct e1000_hw *hw = &adapter->hw;
2537 struct e1000_mac_info *mac = &hw->mac;
2538 struct dev_mc_list *mc_ptr;
2539 u8 *mta_list;
2540 u32 rctl;
2541 int i;
2542
2543 /* Check for Promiscuous and All Multicast modes */
2544
2545 rctl = er32(RCTL);
2546
2547 if (netdev->flags & IFF_PROMISC) {
2548 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
746b9f02 2549 rctl &= ~E1000_RCTL_VFE;
bc7f75fa 2550 } else {
746b9f02
PM
2551 if (netdev->flags & IFF_ALLMULTI) {
2552 rctl |= E1000_RCTL_MPE;
2553 rctl &= ~E1000_RCTL_UPE;
2554 } else {
2555 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2556 }
78ed11a5 2557 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
746b9f02 2558 rctl |= E1000_RCTL_VFE;
bc7f75fa
AK
2559 }
2560
2561 ew32(RCTL, rctl);
2562
2563 if (netdev->mc_count) {
2564 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2565 if (!mta_list)
2566 return;
2567
2568 /* prepare a packed array of only addresses. */
2569 mc_ptr = netdev->mc_list;
2570
2571 for (i = 0; i < netdev->mc_count; i++) {
2572 if (!mc_ptr)
2573 break;
2574 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2575 ETH_ALEN);
2576 mc_ptr = mc_ptr->next;
2577 }
2578
e2de3eb6 2579 e1000_update_mc_addr_list(hw, mta_list, i, 1,
bc7f75fa
AK
2580 mac->rar_entry_count);
2581 kfree(mta_list);
2582 } else {
2583 /*
2584 * if we're called from probe, we might not have
2585 * anything to do here, so clear out the list
2586 */
e2de3eb6 2587 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
bc7f75fa
AK
2588 }
2589}
2590
2591/**
ad68076e 2592 * e1000_configure - configure the hardware for Rx and Tx
bc7f75fa
AK
2593 * @adapter: private board structure
2594 **/
2595static void e1000_configure(struct e1000_adapter *adapter)
2596{
2597 e1000_set_multi(adapter->netdev);
2598
2599 e1000_restore_vlan(adapter);
2600 e1000_init_manageability(adapter);
2601
2602 e1000_configure_tx(adapter);
2603 e1000_setup_rctl(adapter);
2604 e1000_configure_rx(adapter);
ad68076e 2605 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
bc7f75fa
AK
2606}
2607
2608/**
2609 * e1000e_power_up_phy - restore link in case the phy was powered down
2610 * @adapter: address of board private structure
2611 *
2612 * The phy may be powered down to save power and turn off link when the
2613 * driver is unloaded and wake on lan is not enabled (among others)
2614 * *** this routine MUST be followed by a call to e1000e_reset ***
2615 **/
2616void e1000e_power_up_phy(struct e1000_adapter *adapter)
2617{
2618 u16 mii_reg = 0;
2619
2620 /* Just clear the power down bit to wake the phy back up */
318a94d6 2621 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
ad68076e
BA
2622 /*
2623 * According to the manual, the phy will retain its
2624 * settings across a power-down/up cycle
2625 */
bc7f75fa
AK
2626 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2627 mii_reg &= ~MII_CR_POWER_DOWN;
2628 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2629 }
2630
2631 adapter->hw.mac.ops.setup_link(&adapter->hw);
2632}
2633
2634/**
2635 * e1000_power_down_phy - Power down the PHY
2636 *
2637 * Power down the PHY so no link is implied when interface is down
2638 * The PHY cannot be powered down is management or WoL is active
2639 */
2640static void e1000_power_down_phy(struct e1000_adapter *adapter)
2641{
2642 struct e1000_hw *hw = &adapter->hw;
2643 u16 mii_reg;
2644
2645 /* WoL is enabled */
23b66e2b 2646 if (adapter->wol)
bc7f75fa
AK
2647 return;
2648
2649 /* non-copper PHY? */
318a94d6 2650 if (adapter->hw.phy.media_type != e1000_media_type_copper)
bc7f75fa
AK
2651 return;
2652
2653 /* reset is blocked because of a SoL/IDER session */
ad68076e 2654 if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
bc7f75fa
AK
2655 return;
2656
489815ce 2657 /* manageability (AMT) is enabled */
bc7f75fa
AK
2658 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2659 return;
2660
2661 /* power down the PHY */
2662 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2663 mii_reg |= MII_CR_POWER_DOWN;
2664 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2665 mdelay(1);
2666}
2667
2668/**
2669 * e1000e_reset - bring the hardware into a known good state
2670 *
2671 * This function boots the hardware and enables some settings that
2672 * require a configuration cycle of the hardware - those cannot be
2673 * set/changed during runtime. After reset the device needs to be
ad68076e 2674 * properly configured for Rx, Tx etc.
bc7f75fa
AK
2675 */
2676void e1000e_reset(struct e1000_adapter *adapter)
2677{
2678 struct e1000_mac_info *mac = &adapter->hw.mac;
318a94d6 2679 struct e1000_fc_info *fc = &adapter->hw.fc;
bc7f75fa
AK
2680 struct e1000_hw *hw = &adapter->hw;
2681 u32 tx_space, min_tx_space, min_rx_space;
318a94d6 2682 u32 pba = adapter->pba;
bc7f75fa
AK
2683 u16 hwm;
2684
ad68076e 2685 /* reset Packet Buffer Allocation to default */
318a94d6 2686 ew32(PBA, pba);
df762464 2687
318a94d6 2688 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
ad68076e
BA
2689 /*
2690 * To maintain wire speed transmits, the Tx FIFO should be
bc7f75fa
AK
2691 * large enough to accommodate two full transmit packets,
2692 * rounded up to the next 1KB and expressed in KB. Likewise,
2693 * the Rx FIFO should be large enough to accommodate at least
2694 * one full receive packet and is similarly rounded up and
ad68076e
BA
2695 * expressed in KB.
2696 */
df762464 2697 pba = er32(PBA);
bc7f75fa 2698 /* upper 16 bits has Tx packet buffer allocation size in KB */
df762464 2699 tx_space = pba >> 16;
bc7f75fa 2700 /* lower 16 bits has Rx packet buffer allocation size in KB */
df762464 2701 pba &= 0xffff;
ad68076e
BA
2702 /*
2703 * the Tx fifo also stores 16 bytes of information about the tx
2704 * but don't include ethernet FCS because hardware appends it
318a94d6
JK
2705 */
2706 min_tx_space = (adapter->max_frame_size +
bc7f75fa
AK
2707 sizeof(struct e1000_tx_desc) -
2708 ETH_FCS_LEN) * 2;
2709 min_tx_space = ALIGN(min_tx_space, 1024);
2710 min_tx_space >>= 10;
2711 /* software strips receive CRC, so leave room for it */
318a94d6 2712 min_rx_space = adapter->max_frame_size;
bc7f75fa
AK
2713 min_rx_space = ALIGN(min_rx_space, 1024);
2714 min_rx_space >>= 10;
2715
ad68076e
BA
2716 /*
2717 * If current Tx allocation is less than the min Tx FIFO size,
bc7f75fa 2718 * and the min Tx FIFO size is less than the current Rx FIFO
ad68076e
BA
2719 * allocation, take space away from current Rx allocation
2720 */
df762464
AK
2721 if ((tx_space < min_tx_space) &&
2722 ((min_tx_space - tx_space) < pba)) {
2723 pba -= min_tx_space - tx_space;
bc7f75fa 2724
ad68076e
BA
2725 /*
2726 * if short on Rx space, Rx wins and must trump tx
2727 * adjustment or use Early Receive if available
2728 */
df762464 2729 if ((pba < min_rx_space) &&
bc7f75fa
AK
2730 (!(adapter->flags & FLAG_HAS_ERT)))
2731 /* ERT enabled in e1000_configure_rx */
df762464 2732 pba = min_rx_space;
bc7f75fa 2733 }
df762464
AK
2734
2735 ew32(PBA, pba);
bc7f75fa
AK
2736 }
2737
bc7f75fa 2738
ad68076e
BA
2739 /*
2740 * flow control settings
2741 *
2742 * The high water mark must be low enough to fit one full frame
bc7f75fa
AK
2743 * (or the size used for early receive) above it in the Rx FIFO.
2744 * Set it to the lower of:
2745 * - 90% of the Rx FIFO size, and
2746 * - the full Rx FIFO size minus the early receive size (for parts
2747 * with ERT support assuming ERT set to E1000_ERT_2048), or
ad68076e
BA
2748 * - the full Rx FIFO size minus one full frame
2749 */
bc7f75fa 2750 if (adapter->flags & FLAG_HAS_ERT)
318a94d6
JK
2751 hwm = min(((pba << 10) * 9 / 10),
2752 ((pba << 10) - (E1000_ERT_2048 << 3)));
bc7f75fa 2753 else
318a94d6
JK
2754 hwm = min(((pba << 10) * 9 / 10),
2755 ((pba << 10) - adapter->max_frame_size));
bc7f75fa 2756
318a94d6
JK
2757 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
2758 fc->low_water = fc->high_water - 8;
bc7f75fa
AK
2759
2760 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
318a94d6 2761 fc->pause_time = 0xFFFF;
bc7f75fa 2762 else
318a94d6
JK
2763 fc->pause_time = E1000_FC_PAUSE_TIME;
2764 fc->send_xon = 1;
2765 fc->type = fc->original_type;
bc7f75fa
AK
2766
2767 /* Allow time for pending master requests to run */
2768 mac->ops.reset_hw(hw);
97ac8cae
BA
2769
2770 /*
2771 * For parts with AMT enabled, let the firmware know
2772 * that the network interface is in control
2773 */
c43bc57e 2774 if (adapter->flags & FLAG_HAS_AMT)
97ac8cae
BA
2775 e1000_get_hw_control(adapter);
2776
bc7f75fa
AK
2777 ew32(WUC, 0);
2778
2779 if (mac->ops.init_hw(hw))
44defeb3 2780 e_err("Hardware Error\n");
bc7f75fa
AK
2781
2782 e1000_update_mng_vlan(adapter);
2783
2784 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2785 ew32(VET, ETH_P_8021Q);
2786
2787 e1000e_reset_adaptive(hw);
2788 e1000_get_phy_info(hw);
2789
2790 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2791 u16 phy_data = 0;
ad68076e
BA
2792 /*
2793 * speed up time to link by disabling smart power down, ignore
bc7f75fa 2794 * the return value of this function because there is nothing
ad68076e
BA
2795 * different we would do if it failed
2796 */
bc7f75fa
AK
2797 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2798 phy_data &= ~IGP02E1000_PM_SPD;
2799 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2800 }
bc7f75fa
AK
2801}
2802
2803int e1000e_up(struct e1000_adapter *adapter)
2804{
2805 struct e1000_hw *hw = &adapter->hw;
2806
2807 /* hardware has been reset, we need to reload some things */
2808 e1000_configure(adapter);
2809
2810 clear_bit(__E1000_DOWN, &adapter->state);
2811
2812 napi_enable(&adapter->napi);
4662e82b
BA
2813 if (adapter->msix_entries)
2814 e1000_configure_msix(adapter);
bc7f75fa
AK
2815 e1000_irq_enable(adapter);
2816
2817 /* fire a link change interrupt to start the watchdog */
2818 ew32(ICS, E1000_ICS_LSC);
2819 return 0;
2820}
2821
2822void e1000e_down(struct e1000_adapter *adapter)
2823{
2824 struct net_device *netdev = adapter->netdev;
2825 struct e1000_hw *hw = &adapter->hw;
2826 u32 tctl, rctl;
2827
ad68076e
BA
2828 /*
2829 * signal that we're down so the interrupt handler does not
2830 * reschedule our watchdog timer
2831 */
bc7f75fa
AK
2832 set_bit(__E1000_DOWN, &adapter->state);
2833
2834 /* disable receives in the hardware */
2835 rctl = er32(RCTL);
2836 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2837 /* flush and sleep below */
2838
d55b53ff 2839 netif_tx_stop_all_queues(netdev);
bc7f75fa
AK
2840
2841 /* disable transmits in the hardware */
2842 tctl = er32(TCTL);
2843 tctl &= ~E1000_TCTL_EN;
2844 ew32(TCTL, tctl);
2845 /* flush both disables and wait for them to finish */
2846 e1e_flush();
2847 msleep(10);
2848
2849 napi_disable(&adapter->napi);
2850 e1000_irq_disable(adapter);
2851
2852 del_timer_sync(&adapter->watchdog_timer);
2853 del_timer_sync(&adapter->phy_info_timer);
2854
2855 netdev->tx_queue_len = adapter->tx_queue_len;
2856 netif_carrier_off(netdev);
2857 adapter->link_speed = 0;
2858 adapter->link_duplex = 0;
2859
52cc3086
JK
2860 if (!pci_channel_offline(adapter->pdev))
2861 e1000e_reset(adapter);
bc7f75fa
AK
2862 e1000_clean_tx_ring(adapter);
2863 e1000_clean_rx_ring(adapter);
2864
2865 /*
2866 * TODO: for power management, we could drop the link and
2867 * pci_disable_device here.
2868 */
2869}
2870
2871void e1000e_reinit_locked(struct e1000_adapter *adapter)
2872{
2873 might_sleep();
2874 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2875 msleep(1);
2876 e1000e_down(adapter);
2877 e1000e_up(adapter);
2878 clear_bit(__E1000_RESETTING, &adapter->state);
2879}
2880
2881/**
2882 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2883 * @adapter: board private structure to initialize
2884 *
2885 * e1000_sw_init initializes the Adapter private data structure.
2886 * Fields are initialized based on PCI device information and
2887 * OS network device settings (MTU size).
2888 **/
2889static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2890{
bc7f75fa
AK
2891 struct net_device *netdev = adapter->netdev;
2892
2893 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2894 adapter->rx_ps_bsize0 = 128;
318a94d6
JK
2895 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2896 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
bc7f75fa 2897
4662e82b 2898 e1000e_set_interrupt_capability(adapter);
bc7f75fa 2899
4662e82b
BA
2900 if (e1000_alloc_queues(adapter))
2901 return -ENOMEM;
bc7f75fa
AK
2902
2903 spin_lock_init(&adapter->tx_queue_lock);
2904
2905 /* Explicitly disable IRQ since the NIC can be in any state. */
bc7f75fa
AK
2906 e1000_irq_disable(adapter);
2907
2908 spin_lock_init(&adapter->stats_lock);
2909
2910 set_bit(__E1000_DOWN, &adapter->state);
2911 return 0;
bc7f75fa
AK
2912}
2913
f8d59f78
BA
2914/**
2915 * e1000_intr_msi_test - Interrupt Handler
2916 * @irq: interrupt number
2917 * @data: pointer to a network interface device structure
2918 **/
2919static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2920{
2921 struct net_device *netdev = data;
2922 struct e1000_adapter *adapter = netdev_priv(netdev);
2923 struct e1000_hw *hw = &adapter->hw;
2924 u32 icr = er32(ICR);
2925
2926 e_dbg("%s: icr is %08X\n", netdev->name, icr);
2927 if (icr & E1000_ICR_RXSEQ) {
2928 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2929 wmb();
2930 }
2931
2932 return IRQ_HANDLED;
2933}
2934
2935/**
2936 * e1000_test_msi_interrupt - Returns 0 for successful test
2937 * @adapter: board private struct
2938 *
2939 * code flow taken from tg3.c
2940 **/
2941static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2942{
2943 struct net_device *netdev = adapter->netdev;
2944 struct e1000_hw *hw = &adapter->hw;
2945 int err;
2946
2947 /* poll_enable hasn't been called yet, so don't need disable */
2948 /* clear any pending events */
2949 er32(ICR);
2950
2951 /* free the real vector and request a test handler */
2952 e1000_free_irq(adapter);
4662e82b 2953 e1000e_reset_interrupt_capability(adapter);
f8d59f78
BA
2954
2955 /* Assume that the test fails, if it succeeds then the test
2956 * MSI irq handler will unset this flag */
2957 adapter->flags |= FLAG_MSI_TEST_FAILED;
2958
2959 err = pci_enable_msi(adapter->pdev);
2960 if (err)
2961 goto msi_test_failed;
2962
2963 err = request_irq(adapter->pdev->irq, &e1000_intr_msi_test, 0,
2964 netdev->name, netdev);
2965 if (err) {
2966 pci_disable_msi(adapter->pdev);
2967 goto msi_test_failed;
2968 }
2969
2970 wmb();
2971
2972 e1000_irq_enable(adapter);
2973
2974 /* fire an unusual interrupt on the test handler */
2975 ew32(ICS, E1000_ICS_RXSEQ);
2976 e1e_flush();
2977 msleep(50);
2978
2979 e1000_irq_disable(adapter);
2980
2981 rmb();
2982
2983 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4662e82b 2984 adapter->int_mode = E1000E_INT_MODE_LEGACY;
f8d59f78
BA
2985 err = -EIO;
2986 e_info("MSI interrupt test failed!\n");
2987 }
2988
2989 free_irq(adapter->pdev->irq, netdev);
2990 pci_disable_msi(adapter->pdev);
2991
2992 if (err == -EIO)
2993 goto msi_test_failed;
2994
2995 /* okay so the test worked, restore settings */
2996 e_dbg("%s: MSI interrupt test succeeded!\n", netdev->name);
2997msi_test_failed:
4662e82b 2998 e1000e_set_interrupt_capability(adapter);
f8d59f78
BA
2999 e1000_request_irq(adapter);
3000 return err;
3001}
3002
3003/**
3004 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3005 * @adapter: board private struct
3006 *
3007 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3008 **/
3009static int e1000_test_msi(struct e1000_adapter *adapter)
3010{
3011 int err;
3012 u16 pci_cmd;
3013
3014 if (!(adapter->flags & FLAG_MSI_ENABLED))
3015 return 0;
3016
3017 /* disable SERR in case the MSI write causes a master abort */
3018 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3019 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3020 pci_cmd & ~PCI_COMMAND_SERR);
3021
3022 err = e1000_test_msi_interrupt(adapter);
3023
3024 /* restore previous setting of command word */
3025 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3026
3027 /* success ! */
3028 if (!err)
3029 return 0;
3030
3031 /* EIO means MSI test failed */
3032 if (err != -EIO)
3033 return err;
3034
3035 /* back to INTx mode */
3036 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3037
3038 e1000_free_irq(adapter);
3039
3040 err = e1000_request_irq(adapter);
3041
3042 return err;
3043}
3044
bc7f75fa
AK
3045/**
3046 * e1000_open - Called when a network interface is made active
3047 * @netdev: network interface device structure
3048 *
3049 * Returns 0 on success, negative value on failure
3050 *
3051 * The open entry point is called when a network interface is made
3052 * active by the system (IFF_UP). At this point all resources needed
3053 * for transmit and receive operations are allocated, the interrupt
3054 * handler is registered with the OS, the watchdog timer is started,
3055 * and the stack is notified that the interface is ready.
3056 **/
3057static int e1000_open(struct net_device *netdev)
3058{
3059 struct e1000_adapter *adapter = netdev_priv(netdev);
3060 struct e1000_hw *hw = &adapter->hw;
3061 int err;
3062
3063 /* disallow open during test */
3064 if (test_bit(__E1000_TESTING, &adapter->state))
3065 return -EBUSY;
3066
3067 /* allocate transmit descriptors */
3068 err = e1000e_setup_tx_resources(adapter);
3069 if (err)
3070 goto err_setup_tx;
3071
3072 /* allocate receive descriptors */
3073 err = e1000e_setup_rx_resources(adapter);
3074 if (err)
3075 goto err_setup_rx;
3076
3077 e1000e_power_up_phy(adapter);
3078
3079 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3080 if ((adapter->hw.mng_cookie.status &
3081 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3082 e1000_update_mng_vlan(adapter);
3083
ad68076e
BA
3084 /*
3085 * If AMT is enabled, let the firmware know that the network
3086 * interface is now open
3087 */
c43bc57e 3088 if (adapter->flags & FLAG_HAS_AMT)
bc7f75fa
AK
3089 e1000_get_hw_control(adapter);
3090
ad68076e
BA
3091 /*
3092 * before we allocate an interrupt, we must be ready to handle it.
bc7f75fa
AK
3093 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3094 * as soon as we call pci_request_irq, so we have to setup our
ad68076e
BA
3095 * clean_rx handler before we do so.
3096 */
bc7f75fa
AK
3097 e1000_configure(adapter);
3098
3099 err = e1000_request_irq(adapter);
3100 if (err)
3101 goto err_req_irq;
3102
f8d59f78
BA
3103 /*
3104 * Work around PCIe errata with MSI interrupts causing some chipsets to
3105 * ignore e1000e MSI messages, which means we need to test our MSI
3106 * interrupt now
3107 */
4662e82b 3108 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
f8d59f78
BA
3109 err = e1000_test_msi(adapter);
3110 if (err) {
3111 e_err("Interrupt allocation failed\n");
3112 goto err_req_irq;
3113 }
3114 }
3115
bc7f75fa
AK
3116 /* From here on the code is the same as e1000e_up() */
3117 clear_bit(__E1000_DOWN, &adapter->state);
3118
3119 napi_enable(&adapter->napi);
3120
3121 e1000_irq_enable(adapter);
3122
d55b53ff
JK
3123 netif_tx_start_all_queues(netdev);
3124
bc7f75fa
AK
3125 /* fire a link status change interrupt to start the watchdog */
3126 ew32(ICS, E1000_ICS_LSC);
3127
3128 return 0;
3129
3130err_req_irq:
3131 e1000_release_hw_control(adapter);
3132 e1000_power_down_phy(adapter);
3133 e1000e_free_rx_resources(adapter);
3134err_setup_rx:
3135 e1000e_free_tx_resources(adapter);
3136err_setup_tx:
3137 e1000e_reset(adapter);
3138
3139 return err;
3140}
3141
3142/**
3143 * e1000_close - Disables a network interface
3144 * @netdev: network interface device structure
3145 *
3146 * Returns 0, this is not allowed to fail
3147 *
3148 * The close entry point is called when an interface is de-activated
3149 * by the OS. The hardware is still under the drivers control, but
3150 * needs to be disabled. A global MAC reset is issued to stop the
3151 * hardware, and all transmit and receive resources are freed.
3152 **/
3153static int e1000_close(struct net_device *netdev)
3154{
3155 struct e1000_adapter *adapter = netdev_priv(netdev);
3156
3157 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3158 e1000e_down(adapter);
3159 e1000_power_down_phy(adapter);
3160 e1000_free_irq(adapter);
3161
3162 e1000e_free_tx_resources(adapter);
3163 e1000e_free_rx_resources(adapter);
3164
ad68076e
BA
3165 /*
3166 * kill manageability vlan ID if supported, but not if a vlan with
3167 * the same ID is registered on the host OS (let 8021q kill it)
3168 */
bc7f75fa
AK
3169 if ((adapter->hw.mng_cookie.status &
3170 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3171 !(adapter->vlgrp &&
3172 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3173 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3174
ad68076e
BA
3175 /*
3176 * If AMT is enabled, let the firmware know that the network
3177 * interface is now closed
3178 */
c43bc57e 3179 if (adapter->flags & FLAG_HAS_AMT)
bc7f75fa
AK
3180 e1000_release_hw_control(adapter);
3181
3182 return 0;
3183}
3184/**
3185 * e1000_set_mac - Change the Ethernet Address of the NIC
3186 * @netdev: network interface device structure
3187 * @p: pointer to an address structure
3188 *
3189 * Returns 0 on success, negative on failure
3190 **/
3191static int e1000_set_mac(struct net_device *netdev, void *p)
3192{
3193 struct e1000_adapter *adapter = netdev_priv(netdev);
3194 struct sockaddr *addr = p;
3195
3196 if (!is_valid_ether_addr(addr->sa_data))
3197 return -EADDRNOTAVAIL;
3198
3199 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3200 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3201
3202 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3203
3204 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3205 /* activate the work around */
3206 e1000e_set_laa_state_82571(&adapter->hw, 1);
3207
ad68076e
BA
3208 /*
3209 * Hold a copy of the LAA in RAR[14] This is done so that
bc7f75fa
AK
3210 * between the time RAR[0] gets clobbered and the time it
3211 * gets fixed (in e1000_watchdog), the actual LAA is in one
3212 * of the RARs and no incoming packets directed to this port
3213 * are dropped. Eventually the LAA will be in RAR[0] and
ad68076e
BA
3214 * RAR[14]
3215 */
bc7f75fa
AK
3216 e1000e_rar_set(&adapter->hw,
3217 adapter->hw.mac.addr,
3218 adapter->hw.mac.rar_entry_count - 1);
3219 }
3220
3221 return 0;
3222}
3223
ad68076e
BA
3224/*
3225 * Need to wait a few seconds after link up to get diagnostic information from
3226 * the phy
3227 */
bc7f75fa
AK
3228static void e1000_update_phy_info(unsigned long data)
3229{
3230 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3231 e1000_get_phy_info(&adapter->hw);
3232}
3233
3234/**
3235 * e1000e_update_stats - Update the board statistics counters
3236 * @adapter: board private structure
3237 **/
3238void e1000e_update_stats(struct e1000_adapter *adapter)
3239{
3240 struct e1000_hw *hw = &adapter->hw;
3241 struct pci_dev *pdev = adapter->pdev;
3242 unsigned long irq_flags;
3243 u16 phy_tmp;
3244
3245#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3246
3247 /*
3248 * Prevent stats update while adapter is being reset, or if the pci
3249 * connection is down.
3250 */
3251 if (adapter->link_speed == 0)
3252 return;
3253 if (pci_channel_offline(pdev))
3254 return;
3255
3256 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
3257
ad68076e
BA
3258 /*
3259 * these counters are modified from e1000_adjust_tbi_stats,
bc7f75fa
AK
3260 * called from the interrupt context, so they must only
3261 * be written while holding adapter->stats_lock
3262 */
3263
3264 adapter->stats.crcerrs += er32(CRCERRS);
3265 adapter->stats.gprc += er32(GPRC);
7c25769f
BA
3266 adapter->stats.gorc += er32(GORCL);
3267 er32(GORCH); /* Clear gorc */
bc7f75fa
AK
3268 adapter->stats.bprc += er32(BPRC);
3269 adapter->stats.mprc += er32(MPRC);
3270 adapter->stats.roc += er32(ROC);
3271
bc7f75fa
AK
3272 adapter->stats.mpc += er32(MPC);
3273 adapter->stats.scc += er32(SCC);
3274 adapter->stats.ecol += er32(ECOL);
3275 adapter->stats.mcc += er32(MCC);
3276 adapter->stats.latecol += er32(LATECOL);
3277 adapter->stats.dc += er32(DC);
bc7f75fa
AK
3278 adapter->stats.xonrxc += er32(XONRXC);
3279 adapter->stats.xontxc += er32(XONTXC);
3280 adapter->stats.xoffrxc += er32(XOFFRXC);
3281 adapter->stats.xofftxc += er32(XOFFTXC);
bc7f75fa 3282 adapter->stats.gptc += er32(GPTC);
7c25769f
BA
3283 adapter->stats.gotc += er32(GOTCL);
3284 er32(GOTCH); /* Clear gotc */
bc7f75fa
AK
3285 adapter->stats.rnbc += er32(RNBC);
3286 adapter->stats.ruc += er32(RUC);
bc7f75fa
AK
3287
3288 adapter->stats.mptc += er32(MPTC);
3289 adapter->stats.bptc += er32(BPTC);
3290
3291 /* used for adaptive IFS */
3292
3293 hw->mac.tx_packet_delta = er32(TPT);
3294 adapter->stats.tpt += hw->mac.tx_packet_delta;
3295 hw->mac.collision_delta = er32(COLC);
3296 adapter->stats.colc += hw->mac.collision_delta;
3297
3298 adapter->stats.algnerrc += er32(ALGNERRC);
3299 adapter->stats.rxerrc += er32(RXERRC);
4662e82b
BA
3300 if (hw->mac.type != e1000_82574)
3301 adapter->stats.tncrs += er32(TNCRS);
bc7f75fa
AK
3302 adapter->stats.cexterr += er32(CEXTERR);
3303 adapter->stats.tsctc += er32(TSCTC);
3304 adapter->stats.tsctfc += er32(TSCTFC);
3305
bc7f75fa 3306 /* Fill out the OS statistics structure */
bc7f75fa
AK
3307 adapter->net_stats.multicast = adapter->stats.mprc;
3308 adapter->net_stats.collisions = adapter->stats.colc;
3309
3310 /* Rx Errors */
3311
ad68076e
BA
3312 /*
3313 * RLEC on some newer hardware can be incorrect so build
3314 * our own version based on RUC and ROC
3315 */
bc7f75fa
AK
3316 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3317 adapter->stats.crcerrs + adapter->stats.algnerrc +
3318 adapter->stats.ruc + adapter->stats.roc +
3319 adapter->stats.cexterr;
3320 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3321 adapter->stats.roc;
3322 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3323 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3324 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3325
3326 /* Tx Errors */
3327 adapter->net_stats.tx_errors = adapter->stats.ecol +
3328 adapter->stats.latecol;
3329 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3330 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3331 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3332
3333 /* Tx Dropped needs to be maintained elsewhere */
3334
3335 /* Phy Stats */
318a94d6 3336 if (hw->phy.media_type == e1000_media_type_copper) {
bc7f75fa
AK
3337 if ((adapter->link_speed == SPEED_1000) &&
3338 (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
3339 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3340 adapter->phy_stats.idle_errors += phy_tmp;
3341 }
3342 }
3343
3344 /* Management Stats */
3345 adapter->stats.mgptc += er32(MGTPTC);
3346 adapter->stats.mgprc += er32(MGTPRC);
3347 adapter->stats.mgpdc += er32(MGTPDC);
3348
3349 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3350}
3351
7c25769f
BA
3352/**
3353 * e1000_phy_read_status - Update the PHY register status snapshot
3354 * @adapter: board private structure
3355 **/
3356static void e1000_phy_read_status(struct e1000_adapter *adapter)
3357{
3358 struct e1000_hw *hw = &adapter->hw;
3359 struct e1000_phy_regs *phy = &adapter->phy_regs;
3360 int ret_val;
3361 unsigned long irq_flags;
3362
3363
3364 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
3365
3366 if ((er32(STATUS) & E1000_STATUS_LU) &&
3367 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3368 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3369 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3370 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3371 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3372 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3373 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3374 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3375 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3376 if (ret_val)
44defeb3 3377 e_warn("Error reading PHY register\n");
7c25769f
BA
3378 } else {
3379 /*
3380 * Do not read PHY registers if link is not up
3381 * Set values to typical power-on defaults
3382 */
3383 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3384 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3385 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3386 BMSR_ERCAP);
3387 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3388 ADVERTISE_ALL | ADVERTISE_CSMA);
3389 phy->lpa = 0;
3390 phy->expansion = EXPANSION_ENABLENPAGE;
3391 phy->ctrl1000 = ADVERTISE_1000FULL;
3392 phy->stat1000 = 0;
3393 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3394 }
3395
3396 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3397}
3398
bc7f75fa
AK
3399static void e1000_print_link_info(struct e1000_adapter *adapter)
3400{
bc7f75fa
AK
3401 struct e1000_hw *hw = &adapter->hw;
3402 u32 ctrl = er32(CTRL);
3403
44defeb3
JK
3404 e_info("Link is Up %d Mbps %s, Flow Control: %s\n",
3405 adapter->link_speed,
3406 (adapter->link_duplex == FULL_DUPLEX) ?
3407 "Full Duplex" : "Half Duplex",
3408 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3409 "RX/TX" :
3410 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3411 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
bc7f75fa
AK
3412}
3413
318a94d6
JK
3414static bool e1000_has_link(struct e1000_adapter *adapter)
3415{
3416 struct e1000_hw *hw = &adapter->hw;
3417 bool link_active = 0;
3418 s32 ret_val = 0;
3419
3420 /*
3421 * get_link_status is set on LSC (link status) interrupt or
3422 * Rx sequence error interrupt. get_link_status will stay
3423 * false until the check_for_link establishes link
3424 * for copper adapters ONLY
3425 */
3426 switch (hw->phy.media_type) {
3427 case e1000_media_type_copper:
3428 if (hw->mac.get_link_status) {
3429 ret_val = hw->mac.ops.check_for_link(hw);
3430 link_active = !hw->mac.get_link_status;
3431 } else {
3432 link_active = 1;
3433 }
3434 break;
3435 case e1000_media_type_fiber:
3436 ret_val = hw->mac.ops.check_for_link(hw);
3437 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3438 break;
3439 case e1000_media_type_internal_serdes:
3440 ret_val = hw->mac.ops.check_for_link(hw);
3441 link_active = adapter->hw.mac.serdes_has_link;
3442 break;
3443 default:
3444 case e1000_media_type_unknown:
3445 break;
3446 }
3447
3448 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3449 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3450 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
44defeb3 3451 e_info("Gigabit has been disabled, downgrading speed\n");
318a94d6
JK
3452 }
3453
3454 return link_active;
3455}
3456
3457static void e1000e_enable_receives(struct e1000_adapter *adapter)
3458{
3459 /* make sure the receive unit is started */
3460 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3461 (adapter->flags & FLAG_RX_RESTART_NOW)) {
3462 struct e1000_hw *hw = &adapter->hw;
3463 u32 rctl = er32(RCTL);
3464 ew32(RCTL, rctl | E1000_RCTL_EN);
3465 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3466 }
3467}
3468
bc7f75fa
AK
3469/**
3470 * e1000_watchdog - Timer Call-back
3471 * @data: pointer to adapter cast into an unsigned long
3472 **/
3473static void e1000_watchdog(unsigned long data)
3474{
3475 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3476
3477 /* Do the rest outside of interrupt context */
3478 schedule_work(&adapter->watchdog_task);
3479
3480 /* TODO: make this use queue_delayed_work() */
3481}
3482
3483static void e1000_watchdog_task(struct work_struct *work)
3484{
3485 struct e1000_adapter *adapter = container_of(work,
3486 struct e1000_adapter, watchdog_task);
bc7f75fa
AK
3487 struct net_device *netdev = adapter->netdev;
3488 struct e1000_mac_info *mac = &adapter->hw.mac;
3489 struct e1000_ring *tx_ring = adapter->tx_ring;
3490 struct e1000_hw *hw = &adapter->hw;
3491 u32 link, tctl;
bc7f75fa
AK
3492 int tx_pending = 0;
3493
318a94d6
JK
3494 link = e1000_has_link(adapter);
3495 if ((netif_carrier_ok(netdev)) && link) {
3496 e1000e_enable_receives(adapter);
bc7f75fa 3497 goto link_up;
bc7f75fa
AK
3498 }
3499
3500 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3501 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3502 e1000_update_mng_vlan(adapter);
3503
bc7f75fa
AK
3504 if (link) {
3505 if (!netif_carrier_ok(netdev)) {
3506 bool txb2b = 1;
318a94d6 3507 /* update snapshot of PHY registers on LSC */
7c25769f 3508 e1000_phy_read_status(adapter);
bc7f75fa
AK
3509 mac->ops.get_link_up_info(&adapter->hw,
3510 &adapter->link_speed,
3511 &adapter->link_duplex);
3512 e1000_print_link_info(adapter);
f4187b56
BA
3513 /*
3514 * On supported PHYs, check for duplex mismatch only
3515 * if link has autonegotiated at 10/100 half
3516 */
3517 if ((hw->phy.type == e1000_phy_igp_3 ||
3518 hw->phy.type == e1000_phy_bm) &&
3519 (hw->mac.autoneg == true) &&
3520 (adapter->link_speed == SPEED_10 ||
3521 adapter->link_speed == SPEED_100) &&
3522 (adapter->link_duplex == HALF_DUPLEX)) {
3523 u16 autoneg_exp;
3524
3525 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
3526
3527 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
3528 e_info("Autonegotiated half duplex but"
3529 " link partner cannot autoneg. "
3530 " Try forcing full duplex if "
3531 "link gets many collisions.\n");
3532 }
3533
ad68076e
BA
3534 /*
3535 * tweak tx_queue_len according to speed/duplex
3536 * and adjust the timeout factor
3537 */
bc7f75fa
AK
3538 netdev->tx_queue_len = adapter->tx_queue_len;
3539 adapter->tx_timeout_factor = 1;
3540 switch (adapter->link_speed) {
3541 case SPEED_10:
3542 txb2b = 0;
3543 netdev->tx_queue_len = 10;
10f1b492 3544 adapter->tx_timeout_factor = 16;
bc7f75fa
AK
3545 break;
3546 case SPEED_100:
3547 txb2b = 0;
3548 netdev->tx_queue_len = 100;
3549 /* maybe add some timeout factor ? */
3550 break;
3551 }
3552
ad68076e
BA
3553 /*
3554 * workaround: re-program speed mode bit after
3555 * link-up event
3556 */
bc7f75fa
AK
3557 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3558 !txb2b) {
3559 u32 tarc0;
e9ec2c0f 3560 tarc0 = er32(TARC(0));
bc7f75fa 3561 tarc0 &= ~SPEED_MODE_BIT;
e9ec2c0f 3562 ew32(TARC(0), tarc0);
bc7f75fa
AK
3563 }
3564
ad68076e
BA
3565 /*
3566 * disable TSO for pcie and 10/100 speeds, to avoid
3567 * some hardware issues
3568 */
bc7f75fa
AK
3569 if (!(adapter->flags & FLAG_TSO_FORCE)) {
3570 switch (adapter->link_speed) {
3571 case SPEED_10:
3572 case SPEED_100:
44defeb3 3573 e_info("10/100 speed: disabling TSO\n");
bc7f75fa
AK
3574 netdev->features &= ~NETIF_F_TSO;
3575 netdev->features &= ~NETIF_F_TSO6;
3576 break;
3577 case SPEED_1000:
3578 netdev->features |= NETIF_F_TSO;
3579 netdev->features |= NETIF_F_TSO6;
3580 break;
3581 default:
3582 /* oops */
3583 break;
3584 }
3585 }
3586
ad68076e
BA
3587 /*
3588 * enable transmits in the hardware, need to do this
3589 * after setting TARC(0)
3590 */
bc7f75fa
AK
3591 tctl = er32(TCTL);
3592 tctl |= E1000_TCTL_EN;
3593 ew32(TCTL, tctl);
3594
3595 netif_carrier_on(netdev);
d55b53ff 3596 netif_tx_wake_all_queues(netdev);
bc7f75fa
AK
3597
3598 if (!test_bit(__E1000_DOWN, &adapter->state))
3599 mod_timer(&adapter->phy_info_timer,
3600 round_jiffies(jiffies + 2 * HZ));
bc7f75fa
AK
3601 }
3602 } else {
3603 if (netif_carrier_ok(netdev)) {
3604 adapter->link_speed = 0;
3605 adapter->link_duplex = 0;
44defeb3 3606 e_info("Link is Down\n");
bc7f75fa 3607 netif_carrier_off(netdev);
d55b53ff 3608 netif_tx_stop_all_queues(netdev);
bc7f75fa
AK
3609 if (!test_bit(__E1000_DOWN, &adapter->state))
3610 mod_timer(&adapter->phy_info_timer,
3611 round_jiffies(jiffies + 2 * HZ));
3612
3613 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3614 schedule_work(&adapter->reset_task);
3615 }
3616 }
3617
3618link_up:
3619 e1000e_update_stats(adapter);
3620
3621 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3622 adapter->tpt_old = adapter->stats.tpt;
3623 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3624 adapter->colc_old = adapter->stats.colc;
3625
7c25769f
BA
3626 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3627 adapter->gorc_old = adapter->stats.gorc;
3628 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3629 adapter->gotc_old = adapter->stats.gotc;
bc7f75fa
AK
3630
3631 e1000e_update_adaptive(&adapter->hw);
3632
3633 if (!netif_carrier_ok(netdev)) {
3634 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3635 tx_ring->count);
3636 if (tx_pending) {
ad68076e
BA
3637 /*
3638 * We've lost link, so the controller stops DMA,
bc7f75fa
AK
3639 * but we've got queued Tx work that's never going
3640 * to get done, so reset controller to flush Tx.
ad68076e
BA
3641 * (Do the reset outside of interrupt context).
3642 */
bc7f75fa
AK
3643 adapter->tx_timeout_count++;
3644 schedule_work(&adapter->reset_task);
3645 }
3646 }
3647
ad68076e 3648 /* Cause software interrupt to ensure Rx ring is cleaned */
4662e82b
BA
3649 if (adapter->msix_entries)
3650 ew32(ICS, adapter->rx_ring->ims_val);
3651 else
3652 ew32(ICS, E1000_ICS_RXDMT0);
bc7f75fa
AK
3653
3654 /* Force detection of hung controller every watchdog period */
3655 adapter->detect_tx_hung = 1;
3656
ad68076e
BA
3657 /*
3658 * With 82571 controllers, LAA may be overwritten due to controller
3659 * reset from the other port. Set the appropriate LAA in RAR[0]
3660 */
bc7f75fa
AK
3661 if (e1000e_get_laa_state_82571(hw))
3662 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3663
3664 /* Reset the timer */
3665 if (!test_bit(__E1000_DOWN, &adapter->state))
3666 mod_timer(&adapter->watchdog_timer,
3667 round_jiffies(jiffies + 2 * HZ));
3668}
3669
3670#define E1000_TX_FLAGS_CSUM 0x00000001
3671#define E1000_TX_FLAGS_VLAN 0x00000002
3672#define E1000_TX_FLAGS_TSO 0x00000004
3673#define E1000_TX_FLAGS_IPV4 0x00000008
3674#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3675#define E1000_TX_FLAGS_VLAN_SHIFT 16
3676
3677static int e1000_tso(struct e1000_adapter *adapter,
3678 struct sk_buff *skb)
3679{
3680 struct e1000_ring *tx_ring = adapter->tx_ring;
3681 struct e1000_context_desc *context_desc;
3682 struct e1000_buffer *buffer_info;
3683 unsigned int i;
3684 u32 cmd_length = 0;
3685 u16 ipcse = 0, tucse, mss;
3686 u8 ipcss, ipcso, tucss, tucso, hdr_len;
3687 int err;
3688
3689 if (skb_is_gso(skb)) {
3690 if (skb_header_cloned(skb)) {
3691 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3692 if (err)
3693 return err;
3694 }
3695
3696 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3697 mss = skb_shinfo(skb)->gso_size;
3698 if (skb->protocol == htons(ETH_P_IP)) {
3699 struct iphdr *iph = ip_hdr(skb);
3700 iph->tot_len = 0;
3701 iph->check = 0;
3702 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3703 iph->daddr, 0,
3704 IPPROTO_TCP,
3705 0);
3706 cmd_length = E1000_TXD_CMD_IP;
3707 ipcse = skb_transport_offset(skb) - 1;
3708 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3709 ipv6_hdr(skb)->payload_len = 0;
3710 tcp_hdr(skb)->check =
3711 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3712 &ipv6_hdr(skb)->daddr,
3713 0, IPPROTO_TCP, 0);
3714 ipcse = 0;
3715 }
3716 ipcss = skb_network_offset(skb);
3717 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3718 tucss = skb_transport_offset(skb);
3719 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3720 tucse = 0;
3721
3722 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3723 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3724
3725 i = tx_ring->next_to_use;
3726 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3727 buffer_info = &tx_ring->buffer_info[i];
3728
3729 context_desc->lower_setup.ip_fields.ipcss = ipcss;
3730 context_desc->lower_setup.ip_fields.ipcso = ipcso;
3731 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3732 context_desc->upper_setup.tcp_fields.tucss = tucss;
3733 context_desc->upper_setup.tcp_fields.tucso = tucso;
3734 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3735 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3736 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3737 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3738
3739 buffer_info->time_stamp = jiffies;
3740 buffer_info->next_to_watch = i;
3741
3742 i++;
3743 if (i == tx_ring->count)
3744 i = 0;
3745 tx_ring->next_to_use = i;
3746
3747 return 1;
3748 }
3749
3750 return 0;
3751}
3752
3753static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3754{
3755 struct e1000_ring *tx_ring = adapter->tx_ring;
3756 struct e1000_context_desc *context_desc;
3757 struct e1000_buffer *buffer_info;
3758 unsigned int i;
3759 u8 css;
3760
3761 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3762 css = skb_transport_offset(skb);
3763
3764 i = tx_ring->next_to_use;
3765 buffer_info = &tx_ring->buffer_info[i];
3766 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3767
3768 context_desc->lower_setup.ip_config = 0;
3769 context_desc->upper_setup.tcp_fields.tucss = css;
3770 context_desc->upper_setup.tcp_fields.tucso =
3771 css + skb->csum_offset;
3772 context_desc->upper_setup.tcp_fields.tucse = 0;
3773 context_desc->tcp_seg_setup.data = 0;
3774 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
3775
3776 buffer_info->time_stamp = jiffies;
3777 buffer_info->next_to_watch = i;
3778
3779 i++;
3780 if (i == tx_ring->count)
3781 i = 0;
3782 tx_ring->next_to_use = i;
3783
3784 return 1;
3785 }
3786
3787 return 0;
3788}
3789
3790#define E1000_MAX_PER_TXD 8192
3791#define E1000_MAX_TXD_PWR 12
3792
3793static int e1000_tx_map(struct e1000_adapter *adapter,
3794 struct sk_buff *skb, unsigned int first,
3795 unsigned int max_per_txd, unsigned int nr_frags,
3796 unsigned int mss)
3797{
3798 struct e1000_ring *tx_ring = adapter->tx_ring;
3799 struct e1000_buffer *buffer_info;
3800 unsigned int len = skb->len - skb->data_len;
3801 unsigned int offset = 0, size, count = 0, i;
3802 unsigned int f;
3803
3804 i = tx_ring->next_to_use;
3805
3806 while (len) {
3807 buffer_info = &tx_ring->buffer_info[i];
3808 size = min(len, max_per_txd);
3809
3810 /* Workaround for premature desc write-backs
3811 * in TSO mode. Append 4-byte sentinel desc */
3812 if (mss && !nr_frags && size == len && size > 8)
3813 size -= 4;
3814
3815 buffer_info->length = size;
3816 /* set time_stamp *before* dma to help avoid a possible race */
3817 buffer_info->time_stamp = jiffies;
3818 buffer_info->dma =
3819 pci_map_single(adapter->pdev,
3820 skb->data + offset,
3821 size,
3822 PCI_DMA_TODEVICE);
8d8bb39b 3823 if (pci_dma_mapping_error(adapter->pdev, buffer_info->dma)) {
bc7f75fa
AK
3824 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3825 adapter->tx_dma_failed++;
3826 return -1;
3827 }
3828 buffer_info->next_to_watch = i;
3829
3830 len -= size;
3831 offset += size;
3832 count++;
3833 i++;
3834 if (i == tx_ring->count)
3835 i = 0;
3836 }
3837
3838 for (f = 0; f < nr_frags; f++) {
3839 struct skb_frag_struct *frag;
3840
3841 frag = &skb_shinfo(skb)->frags[f];
3842 len = frag->size;
3843 offset = frag->page_offset;
3844
3845 while (len) {
3846 buffer_info = &tx_ring->buffer_info[i];
3847 size = min(len, max_per_txd);
3848 /* Workaround for premature desc write-backs
3849 * in TSO mode. Append 4-byte sentinel desc */
3850 if (mss && f == (nr_frags-1) && size == len && size > 8)
3851 size -= 4;
3852
3853 buffer_info->length = size;
3854 buffer_info->time_stamp = jiffies;
3855 buffer_info->dma =
3856 pci_map_page(adapter->pdev,
3857 frag->page,
3858 offset,
3859 size,
3860 PCI_DMA_TODEVICE);
8d8bb39b
FT
3861 if (pci_dma_mapping_error(adapter->pdev,
3862 buffer_info->dma)) {
bc7f75fa
AK
3863 dev_err(&adapter->pdev->dev,
3864 "TX DMA page map failed\n");
3865 adapter->tx_dma_failed++;
3866 return -1;
3867 }
3868
3869 buffer_info->next_to_watch = i;
3870
3871 len -= size;
3872 offset += size;
3873 count++;
3874
3875 i++;
3876 if (i == tx_ring->count)
3877 i = 0;
3878 }
3879 }
3880
3881 if (i == 0)
3882 i = tx_ring->count - 1;
3883 else
3884 i--;
3885
3886 tx_ring->buffer_info[i].skb = skb;
3887 tx_ring->buffer_info[first].next_to_watch = i;
3888
3889 return count;
3890}
3891
3892static void e1000_tx_queue(struct e1000_adapter *adapter,
3893 int tx_flags, int count)
3894{
3895 struct e1000_ring *tx_ring = adapter->tx_ring;
3896 struct e1000_tx_desc *tx_desc = NULL;
3897 struct e1000_buffer *buffer_info;
3898 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3899 unsigned int i;
3900
3901 if (tx_flags & E1000_TX_FLAGS_TSO) {
3902 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3903 E1000_TXD_CMD_TSE;
3904 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3905
3906 if (tx_flags & E1000_TX_FLAGS_IPV4)
3907 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3908 }
3909
3910 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3911 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3912 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3913 }
3914
3915 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3916 txd_lower |= E1000_TXD_CMD_VLE;
3917 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3918 }
3919
3920 i = tx_ring->next_to_use;
3921
3922 while (count--) {
3923 buffer_info = &tx_ring->buffer_info[i];
3924 tx_desc = E1000_TX_DESC(*tx_ring, i);
3925 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3926 tx_desc->lower.data =
3927 cpu_to_le32(txd_lower | buffer_info->length);
3928 tx_desc->upper.data = cpu_to_le32(txd_upper);
3929
3930 i++;
3931 if (i == tx_ring->count)
3932 i = 0;
3933 }
3934
3935 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3936
ad68076e
BA
3937 /*
3938 * Force memory writes to complete before letting h/w
bc7f75fa
AK
3939 * know there are new descriptors to fetch. (Only
3940 * applicable for weak-ordered memory model archs,
ad68076e
BA
3941 * such as IA-64).
3942 */
bc7f75fa
AK
3943 wmb();
3944
3945 tx_ring->next_to_use = i;
3946 writel(i, adapter->hw.hw_addr + tx_ring->tail);
ad68076e
BA
3947 /*
3948 * we need this if more than one processor can write to our tail
3949 * at a time, it synchronizes IO on IA64/Altix systems
3950 */
bc7f75fa
AK
3951 mmiowb();
3952}
3953
3954#define MINIMUM_DHCP_PACKET_SIZE 282
3955static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3956 struct sk_buff *skb)
3957{
3958 struct e1000_hw *hw = &adapter->hw;
3959 u16 length, offset;
3960
3961 if (vlan_tx_tag_present(skb)) {
3962 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3963 && (adapter->hw.mng_cookie.status &
3964 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3965 return 0;
3966 }
3967
3968 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3969 return 0;
3970
3971 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3972 return 0;
3973
3974 {
3975 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3976 struct udphdr *udp;
3977
3978 if (ip->protocol != IPPROTO_UDP)
3979 return 0;
3980
3981 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3982 if (ntohs(udp->dest) != 67)
3983 return 0;
3984
3985 offset = (u8 *)udp + 8 - skb->data;
3986 length = skb->len - offset;
3987 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3988 }
3989
3990 return 0;
3991}
3992
3993static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3994{
3995 struct e1000_adapter *adapter = netdev_priv(netdev);
3996
3997 netif_stop_queue(netdev);
ad68076e
BA
3998 /*
3999 * Herbert's original patch had:
bc7f75fa 4000 * smp_mb__after_netif_stop_queue();
ad68076e
BA
4001 * but since that doesn't exist yet, just open code it.
4002 */
bc7f75fa
AK
4003 smp_mb();
4004
ad68076e
BA
4005 /*
4006 * We need to check again in a case another CPU has just
4007 * made room available.
4008 */
bc7f75fa
AK
4009 if (e1000_desc_unused(adapter->tx_ring) < size)
4010 return -EBUSY;
4011
4012 /* A reprieve! */
4013 netif_start_queue(netdev);
4014 ++adapter->restart_queue;
4015 return 0;
4016}
4017
4018static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4019{
4020 struct e1000_adapter *adapter = netdev_priv(netdev);
4021
4022 if (e1000_desc_unused(adapter->tx_ring) >= size)
4023 return 0;
4024 return __e1000_maybe_stop_tx(netdev, size);
4025}
4026
4027#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4028static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4029{
4030 struct e1000_adapter *adapter = netdev_priv(netdev);
4031 struct e1000_ring *tx_ring = adapter->tx_ring;
4032 unsigned int first;
4033 unsigned int max_per_txd = E1000_MAX_PER_TXD;
4034 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4035 unsigned int tx_flags = 0;
4e6c709c 4036 unsigned int len = skb->len - skb->data_len;
bc7f75fa 4037 unsigned long irq_flags;
4e6c709c
AK
4038 unsigned int nr_frags;
4039 unsigned int mss;
bc7f75fa
AK
4040 int count = 0;
4041 int tso;
4042 unsigned int f;
bc7f75fa
AK
4043
4044 if (test_bit(__E1000_DOWN, &adapter->state)) {
4045 dev_kfree_skb_any(skb);
4046 return NETDEV_TX_OK;
4047 }
4048
4049 if (skb->len <= 0) {
4050 dev_kfree_skb_any(skb);
4051 return NETDEV_TX_OK;
4052 }
4053
4054 mss = skb_shinfo(skb)->gso_size;
ad68076e
BA
4055 /*
4056 * The controller does a simple calculation to
bc7f75fa
AK
4057 * make sure there is enough room in the FIFO before
4058 * initiating the DMA for each buffer. The calc is:
4059 * 4 = ceil(buffer len/mss). To make sure we don't
4060 * overrun the FIFO, adjust the max buffer len if mss
ad68076e
BA
4061 * drops.
4062 */
bc7f75fa
AK
4063 if (mss) {
4064 u8 hdr_len;
4065 max_per_txd = min(mss << 2, max_per_txd);
4066 max_txd_pwr = fls(max_per_txd) - 1;
4067
ad68076e
BA
4068 /*
4069 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4070 * points to just header, pull a few bytes of payload from
4071 * frags into skb->data
4072 */
bc7f75fa 4073 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
ad68076e
BA
4074 /*
4075 * we do this workaround for ES2LAN, but it is un-necessary,
4076 * avoiding it could save a lot of cycles
4077 */
4e6c709c 4078 if (skb->data_len && (hdr_len == len)) {
bc7f75fa
AK
4079 unsigned int pull_size;
4080
4081 pull_size = min((unsigned int)4, skb->data_len);
4082 if (!__pskb_pull_tail(skb, pull_size)) {
44defeb3 4083 e_err("__pskb_pull_tail failed.\n");
bc7f75fa
AK
4084 dev_kfree_skb_any(skb);
4085 return NETDEV_TX_OK;
4086 }
4087 len = skb->len - skb->data_len;
4088 }
4089 }
4090
4091 /* reserve a descriptor for the offload context */
4092 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4093 count++;
4094 count++;
4095
4096 count += TXD_USE_COUNT(len, max_txd_pwr);
4097
4098 nr_frags = skb_shinfo(skb)->nr_frags;
4099 for (f = 0; f < nr_frags; f++)
4100 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4101 max_txd_pwr);
4102
4103 if (adapter->hw.mac.tx_pkt_filtering)
4104 e1000_transfer_dhcp_info(adapter, skb);
4105
4106 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
4107 /* Collision - tell upper layer to requeue */
4108 return NETDEV_TX_LOCKED;
4109
ad68076e
BA
4110 /*
4111 * need: count + 2 desc gap to keep tail from touching
4112 * head, otherwise try next time
4113 */
bc7f75fa
AK
4114 if (e1000_maybe_stop_tx(netdev, count + 2)) {
4115 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4116 return NETDEV_TX_BUSY;
4117 }
4118
4119 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4120 tx_flags |= E1000_TX_FLAGS_VLAN;
4121 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4122 }
4123
4124 first = tx_ring->next_to_use;
4125
4126 tso = e1000_tso(adapter, skb);
4127 if (tso < 0) {
4128 dev_kfree_skb_any(skb);
4129 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4130 return NETDEV_TX_OK;
4131 }
4132
4133 if (tso)
4134 tx_flags |= E1000_TX_FLAGS_TSO;
4135 else if (e1000_tx_csum(adapter, skb))
4136 tx_flags |= E1000_TX_FLAGS_CSUM;
4137
ad68076e
BA
4138 /*
4139 * Old method was to assume IPv4 packet by default if TSO was enabled.
bc7f75fa 4140 * 82571 hardware supports TSO capabilities for IPv6 as well...
ad68076e
BA
4141 * no longer assume, we must.
4142 */
bc7f75fa
AK
4143 if (skb->protocol == htons(ETH_P_IP))
4144 tx_flags |= E1000_TX_FLAGS_IPV4;
4145
4146 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4147 if (count < 0) {
4148 /* handle pci_map_single() error in e1000_tx_map */
4149 dev_kfree_skb_any(skb);
4150 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
7b5dfe1a 4151 return NETDEV_TX_OK;
bc7f75fa
AK
4152 }
4153
4154 e1000_tx_queue(adapter, tx_flags, count);
4155
4156 netdev->trans_start = jiffies;
4157
4158 /* Make sure there is space in the ring for the next send. */
4159 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4160
4161 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4162 return NETDEV_TX_OK;
4163}
4164
4165/**
4166 * e1000_tx_timeout - Respond to a Tx Hang
4167 * @netdev: network interface device structure
4168 **/
4169static void e1000_tx_timeout(struct net_device *netdev)
4170{
4171 struct e1000_adapter *adapter = netdev_priv(netdev);
4172
4173 /* Do the reset outside of interrupt context */
4174 adapter->tx_timeout_count++;
4175 schedule_work(&adapter->reset_task);
4176}
4177
4178static void e1000_reset_task(struct work_struct *work)
4179{
4180 struct e1000_adapter *adapter;
4181 adapter = container_of(work, struct e1000_adapter, reset_task);
4182
4183 e1000e_reinit_locked(adapter);
4184}
4185
4186/**
4187 * e1000_get_stats - Get System Network Statistics
4188 * @netdev: network interface device structure
4189 *
4190 * Returns the address of the device statistics structure.
4191 * The statistics are actually updated from the timer callback.
4192 **/
4193static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4194{
4195 struct e1000_adapter *adapter = netdev_priv(netdev);
4196
4197 /* only return the current stats */
4198 return &adapter->net_stats;
4199}
4200
4201/**
4202 * e1000_change_mtu - Change the Maximum Transfer Unit
4203 * @netdev: network interface device structure
4204 * @new_mtu: new value for maximum frame size
4205 *
4206 * Returns 0 on success, negative on failure
4207 **/
4208static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4209{
4210 struct e1000_adapter *adapter = netdev_priv(netdev);
4211 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4212
d53f706d 4213 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
bc7f75fa 4214 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
44defeb3 4215 e_err("Invalid MTU setting\n");
bc7f75fa
AK
4216 return -EINVAL;
4217 }
4218
4219 /* Jumbo frame size limits */
4220 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
4221 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
44defeb3 4222 e_err("Jumbo Frames not supported.\n");
bc7f75fa
AK
4223 return -EINVAL;
4224 }
4225 if (adapter->hw.phy.type == e1000_phy_ife) {
44defeb3 4226 e_err("Jumbo Frames not supported.\n");
bc7f75fa
AK
4227 return -EINVAL;
4228 }
4229 }
4230
4231#define MAX_STD_JUMBO_FRAME_SIZE 9234
4232 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
44defeb3 4233 e_err("MTU > 9216 not supported.\n");
bc7f75fa
AK
4234 return -EINVAL;
4235 }
4236
4237 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4238 msleep(1);
4239 /* e1000e_down has a dependency on max_frame_size */
318a94d6 4240 adapter->max_frame_size = max_frame;
bc7f75fa
AK
4241 if (netif_running(netdev))
4242 e1000e_down(adapter);
4243
ad68076e
BA
4244 /*
4245 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
bc7f75fa
AK
4246 * means we reserve 2 more, this pushes us to allocate from the next
4247 * larger slab size.
ad68076e 4248 * i.e. RXBUFFER_2048 --> size-4096 slab
97ac8cae
BA
4249 * However with the new *_jumbo_rx* routines, jumbo receives will use
4250 * fragmented skbs
ad68076e 4251 */
bc7f75fa
AK
4252
4253 if (max_frame <= 256)
4254 adapter->rx_buffer_len = 256;
4255 else if (max_frame <= 512)
4256 adapter->rx_buffer_len = 512;
4257 else if (max_frame <= 1024)
4258 adapter->rx_buffer_len = 1024;
4259 else if (max_frame <= 2048)
4260 adapter->rx_buffer_len = 2048;
4261 else
4262 adapter->rx_buffer_len = 4096;
4263
4264 /* adjust allocation if LPE protects us, and we aren't using SBP */
4265 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4266 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4267 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
ad68076e 4268 + ETH_FCS_LEN;
bc7f75fa 4269
44defeb3 4270 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
bc7f75fa
AK
4271 netdev->mtu = new_mtu;
4272
4273 if (netif_running(netdev))
4274 e1000e_up(adapter);
4275 else
4276 e1000e_reset(adapter);
4277
4278 clear_bit(__E1000_RESETTING, &adapter->state);
4279
4280 return 0;
4281}
4282
4283static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4284 int cmd)
4285{
4286 struct e1000_adapter *adapter = netdev_priv(netdev);
4287 struct mii_ioctl_data *data = if_mii(ifr);
bc7f75fa 4288
318a94d6 4289 if (adapter->hw.phy.media_type != e1000_media_type_copper)
bc7f75fa
AK
4290 return -EOPNOTSUPP;
4291
4292 switch (cmd) {
4293 case SIOCGMIIPHY:
4294 data->phy_id = adapter->hw.phy.addr;
4295 break;
4296 case SIOCGMIIREG:
4297 if (!capable(CAP_NET_ADMIN))
4298 return -EPERM;
7c25769f
BA
4299 switch (data->reg_num & 0x1F) {
4300 case MII_BMCR:
4301 data->val_out = adapter->phy_regs.bmcr;
4302 break;
4303 case MII_BMSR:
4304 data->val_out = adapter->phy_regs.bmsr;
4305 break;
4306 case MII_PHYSID1:
4307 data->val_out = (adapter->hw.phy.id >> 16);
4308 break;
4309 case MII_PHYSID2:
4310 data->val_out = (adapter->hw.phy.id & 0xFFFF);
4311 break;
4312 case MII_ADVERTISE:
4313 data->val_out = adapter->phy_regs.advertise;
4314 break;
4315 case MII_LPA:
4316 data->val_out = adapter->phy_regs.lpa;
4317 break;
4318 case MII_EXPANSION:
4319 data->val_out = adapter->phy_regs.expansion;
4320 break;
4321 case MII_CTRL1000:
4322 data->val_out = adapter->phy_regs.ctrl1000;
4323 break;
4324 case MII_STAT1000:
4325 data->val_out = adapter->phy_regs.stat1000;
4326 break;
4327 case MII_ESTATUS:
4328 data->val_out = adapter->phy_regs.estatus;
4329 break;
4330 default:
bc7f75fa
AK
4331 return -EIO;
4332 }
bc7f75fa
AK
4333 break;
4334 case SIOCSMIIREG:
4335 default:
4336 return -EOPNOTSUPP;
4337 }
4338 return 0;
4339}
4340
4341static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4342{
4343 switch (cmd) {
4344 case SIOCGMIIPHY:
4345 case SIOCGMIIREG:
4346 case SIOCSMIIREG:
4347 return e1000_mii_ioctl(netdev, ifr, cmd);
4348 default:
4349 return -EOPNOTSUPP;
4350 }
4351}
4352
4353static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4354{
4355 struct net_device *netdev = pci_get_drvdata(pdev);
4356 struct e1000_adapter *adapter = netdev_priv(netdev);
4357 struct e1000_hw *hw = &adapter->hw;
4358 u32 ctrl, ctrl_ext, rctl, status;
4359 u32 wufc = adapter->wol;
4360 int retval = 0;
4361
4362 netif_device_detach(netdev);
4363
4364 if (netif_running(netdev)) {
4365 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4366 e1000e_down(adapter);
4367 e1000_free_irq(adapter);
4368 }
4662e82b 4369 e1000e_reset_interrupt_capability(adapter);
bc7f75fa
AK
4370
4371 retval = pci_save_state(pdev);
4372 if (retval)
4373 return retval;
4374
4375 status = er32(STATUS);
4376 if (status & E1000_STATUS_LU)
4377 wufc &= ~E1000_WUFC_LNKC;
4378
4379 if (wufc) {
4380 e1000_setup_rctl(adapter);
4381 e1000_set_multi(netdev);
4382
4383 /* turn on all-multi mode if wake on multicast is enabled */
4384 if (wufc & E1000_WUFC_MC) {
4385 rctl = er32(RCTL);
4386 rctl |= E1000_RCTL_MPE;
4387 ew32(RCTL, rctl);
4388 }
4389
4390 ctrl = er32(CTRL);
4391 /* advertise wake from D3Cold */
4392 #define E1000_CTRL_ADVD3WUC 0x00100000
4393 /* phy power management enable */
4394 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4395 ctrl |= E1000_CTRL_ADVD3WUC |
4396 E1000_CTRL_EN_PHY_PWR_MGMT;
4397 ew32(CTRL, ctrl);
4398
318a94d6
JK
4399 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4400 adapter->hw.phy.media_type ==
4401 e1000_media_type_internal_serdes) {
bc7f75fa
AK
4402 /* keep the laser running in D3 */
4403 ctrl_ext = er32(CTRL_EXT);
4404 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4405 ew32(CTRL_EXT, ctrl_ext);
4406 }
4407
97ac8cae
BA
4408 if (adapter->flags & FLAG_IS_ICH)
4409 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4410
bc7f75fa
AK
4411 /* Allow time for pending master requests to run */
4412 e1000e_disable_pcie_master(&adapter->hw);
4413
4414 ew32(WUC, E1000_WUC_PME_EN);
4415 ew32(WUFC, wufc);
4416 pci_enable_wake(pdev, PCI_D3hot, 1);
4417 pci_enable_wake(pdev, PCI_D3cold, 1);
4418 } else {
4419 ew32(WUC, 0);
4420 ew32(WUFC, 0);
4421 pci_enable_wake(pdev, PCI_D3hot, 0);
4422 pci_enable_wake(pdev, PCI_D3cold, 0);
4423 }
4424
bc7f75fa
AK
4425 /* make sure adapter isn't asleep if manageability is enabled */
4426 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
4427 pci_enable_wake(pdev, PCI_D3hot, 1);
4428 pci_enable_wake(pdev, PCI_D3cold, 1);
4429 }
4430
4431 if (adapter->hw.phy.type == e1000_phy_igp_3)
4432 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4433
ad68076e
BA
4434 /*
4435 * Release control of h/w to f/w. If f/w is AMT enabled, this
4436 * would have already happened in close and is redundant.
4437 */
bc7f75fa
AK
4438 e1000_release_hw_control(adapter);
4439
4440 pci_disable_device(pdev);
4441
4442 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4443
4444 return 0;
4445}
4446
1eae4eb2
AK
4447static void e1000e_disable_l1aspm(struct pci_dev *pdev)
4448{
4449 int pos;
1eae4eb2
AK
4450 u16 val;
4451
4452 /*
4453 * 82573 workaround - disable L1 ASPM on mobile chipsets
4454 *
4455 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4456 * resulting in lost data or garbage information on the pci-e link
4457 * level. This could result in (false) bad EEPROM checksum errors,
4458 * long ping times (up to 2s) or even a system freeze/hang.
4459 *
4460 * Unfortunately this feature saves about 1W power consumption when
4461 * active.
4462 */
4463 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
1eae4eb2
AK
4464 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
4465 if (val & 0x2) {
4466 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
4467 val &= ~0x2;
4468 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
4469 }
4470}
4471
bc7f75fa
AK
4472#ifdef CONFIG_PM
4473static int e1000_resume(struct pci_dev *pdev)
4474{
4475 struct net_device *netdev = pci_get_drvdata(pdev);
4476 struct e1000_adapter *adapter = netdev_priv(netdev);
4477 struct e1000_hw *hw = &adapter->hw;
4478 u32 err;
4479
4480 pci_set_power_state(pdev, PCI_D0);
4481 pci_restore_state(pdev);
1eae4eb2 4482 e1000e_disable_l1aspm(pdev);
6e4f6f6b 4483
f0f422e5 4484 err = pci_enable_device_mem(pdev);
bc7f75fa
AK
4485 if (err) {
4486 dev_err(&pdev->dev,
4487 "Cannot enable PCI device from suspend\n");
4488 return err;
4489 }
4490
4491 pci_set_master(pdev);
4492
4493 pci_enable_wake(pdev, PCI_D3hot, 0);
4494 pci_enable_wake(pdev, PCI_D3cold, 0);
4495
4662e82b 4496 e1000e_set_interrupt_capability(adapter);
bc7f75fa
AK
4497 if (netif_running(netdev)) {
4498 err = e1000_request_irq(adapter);
4499 if (err)
4500 return err;
4501 }
4502
4503 e1000e_power_up_phy(adapter);
4504 e1000e_reset(adapter);
4505 ew32(WUS, ~0);
4506
4507 e1000_init_manageability(adapter);
4508
4509 if (netif_running(netdev))
4510 e1000e_up(adapter);
4511
4512 netif_device_attach(netdev);
4513
ad68076e
BA
4514 /*
4515 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 4516 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
4517 * under the control of the driver.
4518 */
c43bc57e 4519 if (!(adapter->flags & FLAG_HAS_AMT))
bc7f75fa
AK
4520 e1000_get_hw_control(adapter);
4521
4522 return 0;
4523}
4524#endif
4525
4526static void e1000_shutdown(struct pci_dev *pdev)
4527{
4528 e1000_suspend(pdev, PMSG_SUSPEND);
4529}
4530
4531#ifdef CONFIG_NET_POLL_CONTROLLER
4532/*
4533 * Polling 'interrupt' - used by things like netconsole to send skbs
4534 * without having to re-enable interrupts. It's not called while
4535 * the interrupt routine is executing.
4536 */
4537static void e1000_netpoll(struct net_device *netdev)
4538{
4539 struct e1000_adapter *adapter = netdev_priv(netdev);
4540
4541 disable_irq(adapter->pdev->irq);
4542 e1000_intr(adapter->pdev->irq, netdev);
4543
bc7f75fa
AK
4544 enable_irq(adapter->pdev->irq);
4545}
4546#endif
4547
4548/**
4549 * e1000_io_error_detected - called when PCI error is detected
4550 * @pdev: Pointer to PCI device
4551 * @state: The current pci connection state
4552 *
4553 * This function is called after a PCI bus error affecting
4554 * this device has been detected.
4555 */
4556static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4557 pci_channel_state_t state)
4558{
4559 struct net_device *netdev = pci_get_drvdata(pdev);
4560 struct e1000_adapter *adapter = netdev_priv(netdev);
4561
4562 netif_device_detach(netdev);
4563
4564 if (netif_running(netdev))
4565 e1000e_down(adapter);
4566 pci_disable_device(pdev);
4567
4568 /* Request a slot slot reset. */
4569 return PCI_ERS_RESULT_NEED_RESET;
4570}
4571
4572/**
4573 * e1000_io_slot_reset - called after the pci bus has been reset.
4574 * @pdev: Pointer to PCI device
4575 *
4576 * Restart the card from scratch, as if from a cold-boot. Implementation
4577 * resembles the first-half of the e1000_resume routine.
4578 */
4579static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4580{
4581 struct net_device *netdev = pci_get_drvdata(pdev);
4582 struct e1000_adapter *adapter = netdev_priv(netdev);
4583 struct e1000_hw *hw = &adapter->hw;
6e4f6f6b 4584 int err;
bc7f75fa 4585
1eae4eb2 4586 e1000e_disable_l1aspm(pdev);
f0f422e5 4587 err = pci_enable_device_mem(pdev);
6e4f6f6b 4588 if (err) {
bc7f75fa
AK
4589 dev_err(&pdev->dev,
4590 "Cannot re-enable PCI device after reset.\n");
4591 return PCI_ERS_RESULT_DISCONNECT;
4592 }
4593 pci_set_master(pdev);
aad32739 4594 pci_restore_state(pdev);
bc7f75fa
AK
4595
4596 pci_enable_wake(pdev, PCI_D3hot, 0);
4597 pci_enable_wake(pdev, PCI_D3cold, 0);
4598
4599 e1000e_reset(adapter);
4600 ew32(WUS, ~0);
4601
4602 return PCI_ERS_RESULT_RECOVERED;
4603}
4604
4605/**
4606 * e1000_io_resume - called when traffic can start flowing again.
4607 * @pdev: Pointer to PCI device
4608 *
4609 * This callback is called when the error recovery driver tells us that
4610 * its OK to resume normal operation. Implementation resembles the
4611 * second-half of the e1000_resume routine.
4612 */
4613static void e1000_io_resume(struct pci_dev *pdev)
4614{
4615 struct net_device *netdev = pci_get_drvdata(pdev);
4616 struct e1000_adapter *adapter = netdev_priv(netdev);
4617
4618 e1000_init_manageability(adapter);
4619
4620 if (netif_running(netdev)) {
4621 if (e1000e_up(adapter)) {
4622 dev_err(&pdev->dev,
4623 "can't bring device back up after reset\n");
4624 return;
4625 }
4626 }
4627
4628 netif_device_attach(netdev);
4629
ad68076e
BA
4630 /*
4631 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 4632 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
4633 * under the control of the driver.
4634 */
c43bc57e 4635 if (!(adapter->flags & FLAG_HAS_AMT))
bc7f75fa
AK
4636 e1000_get_hw_control(adapter);
4637
4638}
4639
4640static void e1000_print_device_info(struct e1000_adapter *adapter)
4641{
4642 struct e1000_hw *hw = &adapter->hw;
4643 struct net_device *netdev = adapter->netdev;
69e3fd8c 4644 u32 pba_num;
bc7f75fa
AK
4645
4646 /* print bus type/speed/width info */
44defeb3
JK
4647 e_info("(PCI Express:2.5GB/s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
4648 /* bus width */
4649 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4650 "Width x1"),
4651 /* MAC address */
4652 netdev->dev_addr[0], netdev->dev_addr[1],
4653 netdev->dev_addr[2], netdev->dev_addr[3],
4654 netdev->dev_addr[4], netdev->dev_addr[5]);
4655 e_info("Intel(R) PRO/%s Network Connection\n",
4656 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
69e3fd8c 4657 e1000e_read_pba_num(hw, &pba_num);
44defeb3
JK
4658 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4659 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
bc7f75fa
AK
4660}
4661
10aa4c04
AK
4662static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4663{
4664 struct e1000_hw *hw = &adapter->hw;
4665 int ret_val;
4666 u16 buf = 0;
4667
4668 if (hw->mac.type != e1000_82573)
4669 return;
4670
4671 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4672 if (!(le16_to_cpu(buf) & (1 << 0))) {
4673 /* Deep Smart Power Down (DSPD) */
4674 e_warn("Warning: detected DSPD enabled in EEPROM\n");
4675 }
4676
4677 ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
4678 if (le16_to_cpu(buf) & (3 << 2)) {
4679 /* ASPM enable */
4680 e_warn("Warning: detected ASPM enabled in EEPROM\n");
4681 }
4682}
4683
bc7f75fa
AK
4684/**
4685 * e1000_probe - Device Initialization Routine
4686 * @pdev: PCI device information struct
4687 * @ent: entry in e1000_pci_tbl
4688 *
4689 * Returns 0 on success, negative on failure
4690 *
4691 * e1000_probe initializes an adapter identified by a pci_dev structure.
4692 * The OS initialization, configuring of the adapter private structure,
4693 * and a hardware reset occur.
4694 **/
4695static int __devinit e1000_probe(struct pci_dev *pdev,
4696 const struct pci_device_id *ent)
4697{
4698 struct net_device *netdev;
4699 struct e1000_adapter *adapter;
4700 struct e1000_hw *hw;
4701 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
f47e81fc
BB
4702 resource_size_t mmio_start, mmio_len;
4703 resource_size_t flash_start, flash_len;
bc7f75fa
AK
4704
4705 static int cards_found;
4706 int i, err, pci_using_dac;
4707 u16 eeprom_data = 0;
4708 u16 eeprom_apme_mask = E1000_EEPROM_APME;
4709
1eae4eb2 4710 e1000e_disable_l1aspm(pdev);
6e4f6f6b 4711
f0f422e5 4712 err = pci_enable_device_mem(pdev);
bc7f75fa
AK
4713 if (err)
4714 return err;
4715
4716 pci_using_dac = 0;
4717 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
4718 if (!err) {
4719 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
4720 if (!err)
4721 pci_using_dac = 1;
4722 } else {
4723 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4724 if (err) {
4725 err = pci_set_consistent_dma_mask(pdev,
4726 DMA_32BIT_MASK);
4727 if (err) {
4728 dev_err(&pdev->dev, "No usable DMA "
4729 "configuration, aborting\n");
4730 goto err_dma;
4731 }
4732 }
4733 }
4734
f0f422e5
BA
4735 err = pci_request_selected_regions(pdev,
4736 pci_select_bars(pdev, IORESOURCE_MEM),
4737 e1000e_driver_name);
bc7f75fa
AK
4738 if (err)
4739 goto err_pci_reg;
4740
4741 pci_set_master(pdev);
aad32739 4742 pci_save_state(pdev);
bc7f75fa
AK
4743
4744 err = -ENOMEM;
4745 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4746 if (!netdev)
4747 goto err_alloc_etherdev;
4748
bc7f75fa
AK
4749 SET_NETDEV_DEV(netdev, &pdev->dev);
4750
4751 pci_set_drvdata(pdev, netdev);
4752 adapter = netdev_priv(netdev);
4753 hw = &adapter->hw;
4754 adapter->netdev = netdev;
4755 adapter->pdev = pdev;
4756 adapter->ei = ei;
4757 adapter->pba = ei->pba;
4758 adapter->flags = ei->flags;
4759 adapter->hw.adapter = adapter;
4760 adapter->hw.mac.type = ei->mac;
4761 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
4762
4763 mmio_start = pci_resource_start(pdev, 0);
4764 mmio_len = pci_resource_len(pdev, 0);
4765
4766 err = -EIO;
4767 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
4768 if (!adapter->hw.hw_addr)
4769 goto err_ioremap;
4770
4771 if ((adapter->flags & FLAG_HAS_FLASH) &&
4772 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
4773 flash_start = pci_resource_start(pdev, 1);
4774 flash_len = pci_resource_len(pdev, 1);
4775 adapter->hw.flash_address = ioremap(flash_start, flash_len);
4776 if (!adapter->hw.flash_address)
4777 goto err_flashmap;
4778 }
4779
4780 /* construct the net_device struct */
4781 netdev->open = &e1000_open;
4782 netdev->stop = &e1000_close;
4783 netdev->hard_start_xmit = &e1000_xmit_frame;
4784 netdev->get_stats = &e1000_get_stats;
4785 netdev->set_multicast_list = &e1000_set_multi;
4786 netdev->set_mac_address = &e1000_set_mac;
4787 netdev->change_mtu = &e1000_change_mtu;
4788 netdev->do_ioctl = &e1000_ioctl;
4789 e1000e_set_ethtool_ops(netdev);
4790 netdev->tx_timeout = &e1000_tx_timeout;
4791 netdev->watchdog_timeo = 5 * HZ;
4792 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
4793 netdev->vlan_rx_register = e1000_vlan_rx_register;
4794 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
4795 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
4796#ifdef CONFIG_NET_POLL_CONTROLLER
4797 netdev->poll_controller = e1000_netpoll;
4798#endif
4799 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
4800
4801 netdev->mem_start = mmio_start;
4802 netdev->mem_end = mmio_start + mmio_len;
4803
4804 adapter->bd_number = cards_found++;
4805
4662e82b
BA
4806 e1000e_check_options(adapter);
4807
bc7f75fa
AK
4808 /* setup adapter struct */
4809 err = e1000_sw_init(adapter);
4810 if (err)
4811 goto err_sw_init;
4812
4813 err = -EIO;
4814
4815 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4816 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
4817 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4818
69e3fd8c 4819 err = ei->get_variants(adapter);
bc7f75fa
AK
4820 if (err)
4821 goto err_hw_init;
4822
4823 hw->mac.ops.get_bus_info(&adapter->hw);
4824
318a94d6 4825 adapter->hw.phy.autoneg_wait_to_complete = 0;
bc7f75fa
AK
4826
4827 /* Copper options */
318a94d6 4828 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
bc7f75fa
AK
4829 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4830 adapter->hw.phy.disable_polarity_correction = 0;
4831 adapter->hw.phy.ms_type = e1000_ms_hw_default;
4832 }
4833
4834 if (e1000_check_reset_block(&adapter->hw))
44defeb3 4835 e_info("PHY reset is blocked due to SOL/IDER session.\n");
bc7f75fa
AK
4836
4837 netdev->features = NETIF_F_SG |
4838 NETIF_F_HW_CSUM |
4839 NETIF_F_HW_VLAN_TX |
4840 NETIF_F_HW_VLAN_RX;
4841
4842 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4843 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4844
4845 netdev->features |= NETIF_F_TSO;
4846 netdev->features |= NETIF_F_TSO6;
4847
a5136e23
JK
4848 netdev->vlan_features |= NETIF_F_TSO;
4849 netdev->vlan_features |= NETIF_F_TSO6;
4850 netdev->vlan_features |= NETIF_F_HW_CSUM;
4851 netdev->vlan_features |= NETIF_F_SG;
4852
bc7f75fa
AK
4853 if (pci_using_dac)
4854 netdev->features |= NETIF_F_HIGHDMA;
4855
ad68076e
BA
4856 /*
4857 * We should not be using LLTX anymore, but we are still Tx faster with
4858 * it.
4859 */
bc7f75fa
AK
4860 netdev->features |= NETIF_F_LLTX;
4861
4862 if (e1000e_enable_mng_pass_thru(&adapter->hw))
4863 adapter->flags |= FLAG_MNG_PT_ENABLED;
4864
ad68076e
BA
4865 /*
4866 * before reading the NVM, reset the controller to
4867 * put the device in a known good starting state
4868 */
bc7f75fa
AK
4869 adapter->hw.mac.ops.reset_hw(&adapter->hw);
4870
4871 /*
4872 * systems with ASPM and others may see the checksum fail on the first
4873 * attempt. Let's give it a few tries
4874 */
4875 for (i = 0;; i++) {
4876 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4877 break;
4878 if (i == 2) {
44defeb3 4879 e_err("The NVM Checksum Is Not Valid\n");
bc7f75fa
AK
4880 err = -EIO;
4881 goto err_eeprom;
4882 }
4883 }
4884
10aa4c04
AK
4885 e1000_eeprom_checks(adapter);
4886
bc7f75fa
AK
4887 /* copy the MAC address out of the NVM */
4888 if (e1000e_read_mac_addr(&adapter->hw))
44defeb3 4889 e_err("NVM Read Error while reading MAC address\n");
bc7f75fa
AK
4890
4891 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4892 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4893
4894 if (!is_valid_ether_addr(netdev->perm_addr)) {
44defeb3
JK
4895 e_err("Invalid MAC Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
4896 netdev->perm_addr[0], netdev->perm_addr[1],
4897 netdev->perm_addr[2], netdev->perm_addr[3],
4898 netdev->perm_addr[4], netdev->perm_addr[5]);
bc7f75fa
AK
4899 err = -EIO;
4900 goto err_eeprom;
4901 }
4902
4903 init_timer(&adapter->watchdog_timer);
4904 adapter->watchdog_timer.function = &e1000_watchdog;
4905 adapter->watchdog_timer.data = (unsigned long) adapter;
4906
4907 init_timer(&adapter->phy_info_timer);
4908 adapter->phy_info_timer.function = &e1000_update_phy_info;
4909 adapter->phy_info_timer.data = (unsigned long) adapter;
4910
4911 INIT_WORK(&adapter->reset_task, e1000_reset_task);
4912 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
4913
bc7f75fa
AK
4914 /* Initialize link parameters. User can change them with ethtool */
4915 adapter->hw.mac.autoneg = 1;
309af40b 4916 adapter->fc_autoneg = 1;
318a94d6
JK
4917 adapter->hw.fc.original_type = e1000_fc_default;
4918 adapter->hw.fc.type = e1000_fc_default;
bc7f75fa
AK
4919 adapter->hw.phy.autoneg_advertised = 0x2f;
4920
4921 /* ring size defaults */
4922 adapter->rx_ring->count = 256;
4923 adapter->tx_ring->count = 256;
4924
4925 /*
4926 * Initial Wake on LAN setting - If APM wake is enabled in
4927 * the EEPROM, enable the ACPI Magic Packet filter
4928 */
4929 if (adapter->flags & FLAG_APME_IN_WUC) {
4930 /* APME bit in EEPROM is mapped to WUC.APME */
4931 eeprom_data = er32(WUC);
4932 eeprom_apme_mask = E1000_WUC_APME;
4933 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
4934 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
4935 (adapter->hw.bus.func == 1))
4936 e1000_read_nvm(&adapter->hw,
4937 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4938 else
4939 e1000_read_nvm(&adapter->hw,
4940 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4941 }
4942
4943 /* fetch WoL from EEPROM */
4944 if (eeprom_data & eeprom_apme_mask)
4945 adapter->eeprom_wol |= E1000_WUFC_MAG;
4946
4947 /*
4948 * now that we have the eeprom settings, apply the special cases
4949 * where the eeprom may be wrong or the board simply won't support
4950 * wake on lan on a particular port
4951 */
4952 if (!(adapter->flags & FLAG_HAS_WOL))
4953 adapter->eeprom_wol = 0;
4954
4955 /* initialize the wol settings based on the eeprom settings */
4956 adapter->wol = adapter->eeprom_wol;
4957
4958 /* reset the hardware with the new settings */
4959 e1000e_reset(adapter);
4960
ad68076e
BA
4961 /*
4962 * If the controller has AMT, do not set DRV_LOAD until the interface
bc7f75fa 4963 * is up. For all other cases, let the f/w know that the h/w is now
ad68076e
BA
4964 * under the control of the driver.
4965 */
c43bc57e 4966 if (!(adapter->flags & FLAG_HAS_AMT))
bc7f75fa
AK
4967 e1000_get_hw_control(adapter);
4968
4969 /* tell the stack to leave us alone until e1000_open() is called */
4970 netif_carrier_off(netdev);
d55b53ff 4971 netif_tx_stop_all_queues(netdev);
bc7f75fa
AK
4972
4973 strcpy(netdev->name, "eth%d");
4974 err = register_netdev(netdev);
4975 if (err)
4976 goto err_register;
4977
4978 e1000_print_device_info(adapter);
4979
4980 return 0;
4981
4982err_register:
c43bc57e
JB
4983 if (!(adapter->flags & FLAG_HAS_AMT))
4984 e1000_release_hw_control(adapter);
bc7f75fa
AK
4985err_eeprom:
4986 if (!e1000_check_reset_block(&adapter->hw))
4987 e1000_phy_hw_reset(&adapter->hw);
c43bc57e 4988err_hw_init:
bc7f75fa 4989
bc7f75fa
AK
4990 kfree(adapter->tx_ring);
4991 kfree(adapter->rx_ring);
4992err_sw_init:
c43bc57e
JB
4993 if (adapter->hw.flash_address)
4994 iounmap(adapter->hw.flash_address);
4995err_flashmap:
bc7f75fa
AK
4996 iounmap(adapter->hw.hw_addr);
4997err_ioremap:
4998 free_netdev(netdev);
4999err_alloc_etherdev:
f0f422e5
BA
5000 pci_release_selected_regions(pdev,
5001 pci_select_bars(pdev, IORESOURCE_MEM));
bc7f75fa
AK
5002err_pci_reg:
5003err_dma:
5004 pci_disable_device(pdev);
5005 return err;
5006}
5007
5008/**
5009 * e1000_remove - Device Removal Routine
5010 * @pdev: PCI device information struct
5011 *
5012 * e1000_remove is called by the PCI subsystem to alert the driver
5013 * that it should release a PCI device. The could be caused by a
5014 * Hot-Plug event, or because the driver is going to be removed from
5015 * memory.
5016 **/
5017static void __devexit e1000_remove(struct pci_dev *pdev)
5018{
5019 struct net_device *netdev = pci_get_drvdata(pdev);
5020 struct e1000_adapter *adapter = netdev_priv(netdev);
5021
ad68076e
BA
5022 /*
5023 * flush_scheduled work may reschedule our watchdog task, so
5024 * explicitly disable watchdog tasks from being rescheduled
5025 */
bc7f75fa
AK
5026 set_bit(__E1000_DOWN, &adapter->state);
5027 del_timer_sync(&adapter->watchdog_timer);
5028 del_timer_sync(&adapter->phy_info_timer);
5029
5030 flush_scheduled_work();
5031
ad68076e
BA
5032 /*
5033 * Release control of h/w to f/w. If f/w is AMT enabled, this
5034 * would have already happened in close and is redundant.
5035 */
bc7f75fa
AK
5036 e1000_release_hw_control(adapter);
5037
5038 unregister_netdev(netdev);
5039
5040 if (!e1000_check_reset_block(&adapter->hw))
5041 e1000_phy_hw_reset(&adapter->hw);
5042
4662e82b 5043 e1000e_reset_interrupt_capability(adapter);
bc7f75fa
AK
5044 kfree(adapter->tx_ring);
5045 kfree(adapter->rx_ring);
5046
5047 iounmap(adapter->hw.hw_addr);
5048 if (adapter->hw.flash_address)
5049 iounmap(adapter->hw.flash_address);
f0f422e5
BA
5050 pci_release_selected_regions(pdev,
5051 pci_select_bars(pdev, IORESOURCE_MEM));
bc7f75fa
AK
5052
5053 free_netdev(netdev);
5054
5055 pci_disable_device(pdev);
5056}
5057
5058/* PCI Error Recovery (ERS) */
5059static struct pci_error_handlers e1000_err_handler = {
5060 .error_detected = e1000_io_error_detected,
5061 .slot_reset = e1000_io_slot_reset,
5062 .resume = e1000_io_resume,
5063};
5064
5065static struct pci_device_id e1000_pci_tbl[] = {
bc7f75fa
AK
5066 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5067 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5068 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5069 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5070 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5071 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
040babf9
AK
5072 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5073 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5074 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
ad68076e 5075
bc7f75fa
AK
5076 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5077 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5078 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5079 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
ad68076e 5080
bc7f75fa
AK
5081 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5082 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5083 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
ad68076e 5084
4662e82b
BA
5085 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5086
bc7f75fa
AK
5087 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5088 board_80003es2lan },
5089 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5090 board_80003es2lan },
5091 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5092 board_80003es2lan },
5093 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5094 board_80003es2lan },
ad68076e 5095
bc7f75fa
AK
5096 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5097 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5098 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5099 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
ad68076e 5103
bc7f75fa
AK
5104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
2f15f9d6 5109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
97ac8cae
BA
5110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5113
5114 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5115 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5116 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
bc7f75fa 5117
f4187b56
BA
5118 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5119 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5120
bc7f75fa
AK
5121 { } /* terminate list */
5122};
5123MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
5124
5125/* PCI Device API Driver */
5126static struct pci_driver e1000_driver = {
5127 .name = e1000e_driver_name,
5128 .id_table = e1000_pci_tbl,
5129 .probe = e1000_probe,
5130 .remove = __devexit_p(e1000_remove),
5131#ifdef CONFIG_PM
ad68076e 5132 /* Power Management Hooks */
bc7f75fa
AK
5133 .suspend = e1000_suspend,
5134 .resume = e1000_resume,
5135#endif
5136 .shutdown = e1000_shutdown,
5137 .err_handler = &e1000_err_handler
5138};
5139
5140/**
5141 * e1000_init_module - Driver Registration Routine
5142 *
5143 * e1000_init_module is the first routine called when the driver is
5144 * loaded. All it does is register with the PCI subsystem.
5145 **/
5146static int __init e1000_init_module(void)
5147{
5148 int ret;
5149 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
5150 e1000e_driver_name, e1000e_driver_version);
ad68076e 5151 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
bc7f75fa
AK
5152 e1000e_driver_name);
5153 ret = pci_register_driver(&e1000_driver);
97ac8cae
BA
5154 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
5155 PM_QOS_DEFAULT_VALUE);
5156
bc7f75fa
AK
5157 return ret;
5158}
5159module_init(e1000_init_module);
5160
5161/**
5162 * e1000_exit_module - Driver Exit Cleanup Routine
5163 *
5164 * e1000_exit_module is called just before the driver is removed
5165 * from memory.
5166 **/
5167static void __exit e1000_exit_module(void)
5168{
5169 pci_unregister_driver(&e1000_driver);
97ac8cae 5170 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
bc7f75fa
AK
5171}
5172module_exit(e1000_exit_module);
5173
5174
5175MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5176MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5177MODULE_LICENSE("GPL");
5178MODULE_VERSION(DRV_VERSION);
5179
5180/* e1000_main.c */
This page took 0.550431 seconds and 5 git commands to generate.