drivers/net: Remove alloc_etherdev error messages
[deliverable/linux.git] / drivers / net / ethernet / adaptec / starfire.c
CommitLineData
1da177e4
LT
1/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2/*
3 Written 1998-2000 by Donald Becker.
4
fdecea66 5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
1da177e4
LT
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
8
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
15
16 The information below comes from Donald Becker's original driver:
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
03a8c661 25 [link no longer provides useful info -jgarzik]
1da177e4 26
1da177e4
LT
27*/
28
29#define DRV_NAME "starfire"
a6676019
FR
30#define DRV_VERSION "2.1"
31#define DRV_RELDATE "July 6, 2008"
1da177e4 32
a6b7a407 33#include <linux/interrupt.h>
1da177e4
LT
34#include <linux/module.h>
35#include <linux/kernel.h>
36#include <linux/pci.h>
37#include <linux/netdevice.h>
38#include <linux/etherdevice.h>
39#include <linux/init.h>
40#include <linux/delay.h>
fdecea66
JG
41#include <linux/crc32.h>
42#include <linux/ethtool.h>
43#include <linux/mii.h>
44#include <linux/if_vlan.h>
d7fe0f24 45#include <linux/mm.h>
cfc3a44c 46#include <linux/firmware.h>
1da177e4
LT
47#include <asm/processor.h> /* Processor type for cache alignment. */
48#include <asm/uaccess.h>
49#include <asm/io.h>
50
1da177e4
LT
51/*
52 * The current frame processor firmware fails to checksum a fragment
53 * of length 1. If and when this is fixed, the #define below can be removed.
54 */
55#define HAS_BROKEN_FIRMWARE
67974231
IB
56
57/*
58 * If using the broken firmware, data must be padded to the next 32-bit boundary.
59 */
60#ifdef HAS_BROKEN_FIRMWARE
61#define PADDING_MASK 3
62#endif
63
1da177e4
LT
64/*
65 * Define this if using the driver with the zero-copy patch
66 */
1da177e4 67#define ZEROCOPY
1da177e4
LT
68
69#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
70#define VLAN_SUPPORT
71#endif
72
1da177e4
LT
73/* The user-configurable values.
74 These may be modified when a driver module is loaded.*/
75
76/* Used for tuning interrupt latency vs. overhead. */
77static int intr_latency;
78static int small_frames;
79
80static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
81static int max_interrupt_work = 20;
82static int mtu;
83/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
84 The Starfire has a 512 element hash table based on the Ethernet CRC. */
f71e1309 85static const int multicast_filter_limit = 512;
1da177e4 86/* Whether to do TCP/UDP checksums in hardware */
1da177e4 87static int enable_hw_cksum = 1;
1da177e4
LT
88
89#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
90/*
91 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
92 * Setting to > 1518 effectively disables this feature.
93 *
94 * NOTE:
95 * The ia64 doesn't allow for unaligned loads even of integers being
96 * misaligned on a 2 byte boundary. Thus always force copying of
97 * packets as the starfire doesn't allow for misaligned DMAs ;-(
98 * 23/10/2000 - Jes
99 *
100 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
101 * at least, having unaligned frames leads to a rather serious performance
102 * penalty. -Ion
103 */
104#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
105static int rx_copybreak = PKT_BUF_SZ;
106#else
107static int rx_copybreak /* = 0 */;
108#endif
109
110/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
111#ifdef __sparc__
112#define DMA_BURST_SIZE 64
113#else
114#define DMA_BURST_SIZE 128
115#endif
116
117/* Used to pass the media type, etc.
118 Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
119 The media type is usually passed in 'options[]'.
120 These variables are deprecated, use ethtool instead. -Ion
121*/
122#define MAX_UNITS 8 /* More are supported, limit only on options */
123static int options[MAX_UNITS] = {0, };
124static int full_duplex[MAX_UNITS] = {0, };
125
126/* Operational parameters that are set at compile time. */
127
128/* The "native" ring sizes are either 256 or 2048.
129 However in some modes a descriptor may be marked to wrap the ring earlier.
130*/
131#define RX_RING_SIZE 256
132#define TX_RING_SIZE 32
133/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
134#define DONE_Q_SIZE 1024
135/* All queues must be aligned on a 256-byte boundary */
136#define QUEUE_ALIGN 256
137
138#if RX_RING_SIZE > 256
139#define RX_Q_ENTRIES Rx2048QEntries
140#else
141#define RX_Q_ENTRIES Rx256QEntries
142#endif
143
144/* Operational parameters that usually are not changed. */
145/* Time in jiffies before concluding the transmitter is hung. */
146#define TX_TIMEOUT (2 * HZ)
147
1591cb60 148#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1da177e4
LT
149/* 64-bit dma_addr_t */
150#define ADDR_64BITS /* This chip uses 64 bit addresses. */
88b1943b 151#define netdrv_addr_t __le64
1da177e4
LT
152#define cpu_to_dma(x) cpu_to_le64(x)
153#define dma_to_cpu(x) le64_to_cpu(x)
154#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
155#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
156#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
157#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
158#define RX_DESC_ADDR_SIZE RxDescAddr64bit
159#else /* 32-bit dma_addr_t */
88b1943b 160#define netdrv_addr_t __le32
1da177e4
LT
161#define cpu_to_dma(x) cpu_to_le32(x)
162#define dma_to_cpu(x) le32_to_cpu(x)
163#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
164#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
165#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
166#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
167#define RX_DESC_ADDR_SIZE RxDescAddr32bit
168#endif
169
1da177e4
LT
170#define skb_first_frag_len(skb) skb_headlen(skb)
171#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
1da177e4 172
cfc3a44c
JSR
173/* Firmware names */
174#define FIRMWARE_RX "adaptec/starfire_rx.bin"
175#define FIRMWARE_TX "adaptec/starfire_tx.bin"
176
1da177e4 177/* These identify the driver base version and may not be removed. */
b5defaa5 178static const char version[] __devinitconst =
1da177e4 179KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
ad361c98 180" (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
1da177e4
LT
181
182MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
183MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
184MODULE_LICENSE("GPL");
fdecea66 185MODULE_VERSION(DRV_VERSION);
cfc3a44c
JSR
186MODULE_FIRMWARE(FIRMWARE_RX);
187MODULE_FIRMWARE(FIRMWARE_TX);
1da177e4
LT
188
189module_param(max_interrupt_work, int, 0);
190module_param(mtu, int, 0);
191module_param(debug, int, 0);
192module_param(rx_copybreak, int, 0);
193module_param(intr_latency, int, 0);
194module_param(small_frames, int, 0);
195module_param_array(options, int, NULL, 0);
196module_param_array(full_duplex, int, NULL, 0);
197module_param(enable_hw_cksum, int, 0);
198MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
199MODULE_PARM_DESC(mtu, "MTU (all boards)");
200MODULE_PARM_DESC(debug, "Debug level (0-6)");
201MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
202MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
203MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
204MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
205MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
206MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
207
208/*
209 Theory of Operation
210
211I. Board Compatibility
212
213This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
214
215II. Board-specific settings
216
217III. Driver operation
218
219IIIa. Ring buffers
220
221The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
222ring sizes are set fixed by the hardware, but may optionally be wrapped
223earlier by the END bit in the descriptor.
224This driver uses that hardware queue size for the Rx ring, where a large
225number of entries has no ill effect beyond increases the potential backlog.
226The Tx ring is wrapped with the END bit, since a large hardware Tx queue
227disables the queue layer priority ordering and we have no mechanism to
228utilize the hardware two-level priority queue. When modifying the
229RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
230levels.
231
232IIIb/c. Transmit/Receive Structure
233
234See the Adaptec manual for the many possible structures, and options for
235each structure. There are far too many to document all of them here.
236
237For transmit this driver uses type 0/1 transmit descriptors (depending
238on the 32/64 bitness of the architecture), and relies on automatic
239minimum-length padding. It does not use the completion queue
240consumer index, but instead checks for non-zero status entries.
241
fdecea66 242For receive this driver uses type 2/3 receive descriptors. The driver
1da177e4
LT
243allocates full frame size skbuffs for the Rx ring buffers, so all frames
244should fit in a single descriptor. The driver does not use the completion
245queue consumer index, but instead checks for non-zero status entries.
246
247When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
248is allocated and the frame is copied to the new skbuff. When the incoming
249frame is larger, the skbuff is passed directly up the protocol stack.
250Buffers consumed this way are replaced by newly allocated skbuffs in a later
251phase of receive.
252
253A notable aspect of operation is that unaligned buffers are not permitted by
254the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
255isn't longword aligned, which may cause problems on some machine
256e.g. Alphas and IA64. For these architectures, the driver is forced to copy
257the frame into a new skbuff unconditionally. Copied frames are put into the
258skbuff at an offset of "+2", thus 16-byte aligning the IP header.
259
260IIId. Synchronization
261
262The driver runs as two independent, single-threaded flows of control. One
263is the send-packet routine, which enforces single-threaded use by the
264dev->tbusy flag. The other thread is the interrupt handler, which is single
265threaded by the hardware and interrupt handling software.
266
267The send packet thread has partial control over the Tx ring and the netif_queue
268status. If the number of free Tx slots in the ring falls below a certain number
269(currently hardcoded to 4), it signals the upper layer to stop the queue.
270
271The interrupt handler has exclusive control over the Rx ring and records stats
272from the Tx ring. After reaping the stats, it marks the Tx queue entry as
273empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
274number of free Tx slow is above the threshold, it signals the upper layer to
275restart the queue.
276
277IV. Notes
278
279IVb. References
280
281The Adaptec Starfire manuals, available only from Adaptec.
282http://www.scyld.com/expert/100mbps.html
283http://www.scyld.com/expert/NWay.html
284
285IVc. Errata
286
287- StopOnPerr is broken, don't enable
288- Hardware ethernet padding exposes random data, perform software padding
289 instead (unverified -- works correctly for all the hardware I have)
290
291*/
292
fdecea66 293
1da177e4
LT
294
295enum chip_capability_flags {CanHaveMII=1, };
296
297enum chipset {
298 CH_6915 = 0,
299};
300
a3aa1884 301static DEFINE_PCI_DEVICE_TABLE(starfire_pci_tbl) = {
d08336e9 302 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
1da177e4
LT
303 { 0, }
304};
305MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
306
307/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
f71e1309 308static const struct chip_info {
1da177e4
LT
309 const char *name;
310 int drv_flags;
311} netdrv_tbl[] __devinitdata = {
312 { "Adaptec Starfire 6915", CanHaveMII },
313};
314
315
316/* Offsets to the device registers.
317 Unlike software-only systems, device drivers interact with complex hardware.
318 It's not useful to define symbolic names for every register bit in the
319 device. The name can only partially document the semantics and make
320 the driver longer and more difficult to read.
321 In general, only the important configuration values or bits changed
322 multiple times should be defined symbolically.
323*/
324enum register_offsets {
325 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
326 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
327 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
328 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
329 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
330 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
331 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
332 TxThreshold=0x500B0,
333 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
334 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
335 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
336 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
337 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
338 TxMode=0x55000, VlanType=0x55064,
339 PerfFilterTable=0x56000, HashTable=0x56100,
340 TxGfpMem=0x58000, RxGfpMem=0x5a000,
341};
342
343/*
344 * Bits in the interrupt status/mask registers.
345 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
346 * enables all the interrupt sources that are or'ed into those status bits.
347 */
348enum intr_status_bits {
349 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
350 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
351 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
352 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
353 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
354 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
355 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
356 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
357 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
358 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
359 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
360 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
361 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
362 IntrTxGfp=0x02, IntrPCIPad=0x01,
363 /* not quite bits */
364 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
365 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
366 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
367};
368
369/* Bits in the RxFilterMode register. */
370enum rx_mode_bits {
371 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
372 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
373 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
374 WakeupOnGFP=0x0800,
375};
376
377/* Bits in the TxMode register */
378enum tx_mode_bits {
379 MiiSoftReset=0x8000, MIILoopback=0x4000,
380 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
381 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
382};
383
384/* Bits in the TxDescCtrl register. */
385enum tx_ctrl_bits {
386 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
387 TxDescSpace128=0x30, TxDescSpace256=0x40,
388 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
389 TxDescType3=0x03, TxDescType4=0x04,
390 TxNoDMACompletion=0x08,
391 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
392 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
393 TxDMABurstSizeShift=8,
394};
395
396/* Bits in the RxDescQCtrl register. */
397enum rx_ctrl_bits {
398 RxBufferLenShift=16, RxMinDescrThreshShift=0,
399 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
400 Rx2048QEntries=0x4000, Rx256QEntries=0,
401 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
402 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
403 RxDescSpace4=0x000, RxDescSpace8=0x100,
404 RxDescSpace16=0x200, RxDescSpace32=0x300,
405 RxDescSpace64=0x400, RxDescSpace128=0x500,
406 RxConsumerWrEn=0x80,
407};
408
409/* Bits in the RxDMACtrl register. */
410enum rx_dmactrl_bits {
411 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
412 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
413 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
414 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
415 RxChecksumRejectTCPOnly=0x01000000,
416 RxCompletionQ2Enable=0x800000,
417 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
418 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
419 RxDMAQ2NonIP=0x400000,
420 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
421 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
422 RxBurstSizeShift=0,
423};
424
425/* Bits in the RxCompletionAddr register */
426enum rx_compl_bits {
427 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
428 RxComplProducerWrEn=0x40,
429 RxComplType0=0x00, RxComplType1=0x10,
430 RxComplType2=0x20, RxComplType3=0x30,
431 RxComplThreshShift=0,
432};
433
434/* Bits in the TxCompletionAddr register */
435enum tx_compl_bits {
436 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
437 TxComplProducerWrEn=0x40,
438 TxComplIntrStatus=0x20,
439 CommonQueueMode=0x10,
440 TxComplThreshShift=0,
441};
442
443/* Bits in the GenCtrl register */
444enum gen_ctrl_bits {
445 RxEnable=0x05, TxEnable=0x0a,
446 RxGFPEnable=0x10, TxGFPEnable=0x20,
447};
448
449/* Bits in the IntrTimerCtrl register */
450enum intr_ctrl_bits {
451 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
452 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
453 IntrLatencyMask=0x1f,
454};
455
456/* The Rx and Tx buffer descriptors. */
457struct starfire_rx_desc {
88b1943b 458 netdrv_addr_t rxaddr;
1da177e4
LT
459};
460enum rx_desc_bits {
461 RxDescValid=1, RxDescEndRing=2,
462};
463
464/* Completion queue entry. */
465struct short_rx_done_desc {
88b1943b 466 __le32 status; /* Low 16 bits is length. */
1da177e4
LT
467};
468struct basic_rx_done_desc {
88b1943b
AV
469 __le32 status; /* Low 16 bits is length. */
470 __le16 vlanid;
471 __le16 status2;
1da177e4
LT
472};
473struct csum_rx_done_desc {
88b1943b
AV
474 __le32 status; /* Low 16 bits is length. */
475 __le16 csum; /* Partial checksum */
476 __le16 status2;
1da177e4
LT
477};
478struct full_rx_done_desc {
88b1943b
AV
479 __le32 status; /* Low 16 bits is length. */
480 __le16 status3;
481 __le16 status2;
482 __le16 vlanid;
483 __le16 csum; /* partial checksum */
484 __le32 timestamp;
1da177e4
LT
485};
486/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
1da177e4
LT
487#ifdef VLAN_SUPPORT
488typedef struct full_rx_done_desc rx_done_desc;
489#define RxComplType RxComplType3
490#else /* not VLAN_SUPPORT */
491typedef struct csum_rx_done_desc rx_done_desc;
492#define RxComplType RxComplType2
493#endif /* not VLAN_SUPPORT */
1da177e4
LT
494
495enum rx_done_bits {
496 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
497};
498
499/* Type 1 Tx descriptor. */
500struct starfire_tx_desc_1 {
88b1943b
AV
501 __le32 status; /* Upper bits are status, lower 16 length. */
502 __le32 addr;
1da177e4
LT
503};
504
505/* Type 2 Tx descriptor. */
506struct starfire_tx_desc_2 {
88b1943b
AV
507 __le32 status; /* Upper bits are status, lower 16 length. */
508 __le32 reserved;
509 __le64 addr;
1da177e4
LT
510};
511
512#ifdef ADDR_64BITS
513typedef struct starfire_tx_desc_2 starfire_tx_desc;
514#define TX_DESC_TYPE TxDescType2
515#else /* not ADDR_64BITS */
516typedef struct starfire_tx_desc_1 starfire_tx_desc;
517#define TX_DESC_TYPE TxDescType1
518#endif /* not ADDR_64BITS */
519#define TX_DESC_SPACING TxDescSpaceUnlim
520
521enum tx_desc_bits {
522 TxDescID=0xB0000000,
523 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
524 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
525};
526struct tx_done_desc {
88b1943b 527 __le32 status; /* timestamp, index. */
1da177e4 528#if 0
88b1943b 529 __le32 intrstatus; /* interrupt status */
1da177e4
LT
530#endif
531};
532
533struct rx_ring_info {
534 struct sk_buff *skb;
535 dma_addr_t mapping;
536};
537struct tx_ring_info {
538 struct sk_buff *skb;
539 dma_addr_t mapping;
540 unsigned int used_slots;
541};
542
543#define PHY_CNT 2
544struct netdev_private {
545 /* Descriptor rings first for alignment. */
546 struct starfire_rx_desc *rx_ring;
547 starfire_tx_desc *tx_ring;
548 dma_addr_t rx_ring_dma;
549 dma_addr_t tx_ring_dma;
550 /* The addresses of rx/tx-in-place skbuffs. */
551 struct rx_ring_info rx_info[RX_RING_SIZE];
552 struct tx_ring_info tx_info[TX_RING_SIZE];
553 /* Pointers to completion queues (full pages). */
554 rx_done_desc *rx_done_q;
555 dma_addr_t rx_done_q_dma;
556 unsigned int rx_done;
557 struct tx_done_desc *tx_done_q;
558 dma_addr_t tx_done_q_dma;
559 unsigned int tx_done;
bea3348e
SH
560 struct napi_struct napi;
561 struct net_device *dev;
1da177e4
LT
562 struct pci_dev *pci_dev;
563#ifdef VLAN_SUPPORT
5da96be5 564 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
1da177e4
LT
565#endif
566 void *queue_mem;
567 dma_addr_t queue_mem_dma;
568 size_t queue_mem_size;
569
570 /* Frequently used values: keep some adjacent for cache effect. */
571 spinlock_t lock;
572 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
573 unsigned int cur_tx, dirty_tx, reap_tx;
574 unsigned int rx_buf_sz; /* Based on MTU+slack. */
575 /* These values keep track of the transceiver/media in use. */
576 int speed100; /* Set if speed == 100MBit. */
577 u32 tx_mode;
578 u32 intr_timer_ctrl;
579 u8 tx_threshold;
580 /* MII transceiver section. */
581 struct mii_if_info mii_if; /* MII lib hooks/info */
582 int phy_cnt; /* MII device addresses. */
583 unsigned char phys[PHY_CNT]; /* MII device addresses. */
584 void __iomem *base;
585};
586
587
588static int mdio_read(struct net_device *dev, int phy_id, int location);
589static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
590static int netdev_open(struct net_device *dev);
591static void check_duplex(struct net_device *dev);
592static void tx_timeout(struct net_device *dev);
593static void init_ring(struct net_device *dev);
61357325 594static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
7d12e780 595static irqreturn_t intr_handler(int irq, void *dev_instance);
1da177e4
LT
596static void netdev_error(struct net_device *dev, int intr_status);
597static int __netdev_rx(struct net_device *dev, int *quota);
a6676019 598static int netdev_poll(struct napi_struct *napi, int budget);
1da177e4
LT
599static void refill_rx_ring(struct net_device *dev);
600static void netdev_error(struct net_device *dev, int intr_status);
601static void set_rx_mode(struct net_device *dev);
602static struct net_device_stats *get_stats(struct net_device *dev);
603static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
604static int netdev_close(struct net_device *dev);
605static void netdev_media_change(struct net_device *dev);
7282d491 606static const struct ethtool_ops ethtool_ops;
1da177e4
LT
607
608
609#ifdef VLAN_SUPPORT
8e586137 610static int netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
1da177e4
LT
611{
612 struct netdev_private *np = netdev_priv(dev);
613
614 spin_lock(&np->lock);
615 if (debug > 1)
616 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
5da96be5 617 set_bit(vid, np->active_vlans);
1da177e4
LT
618 set_rx_mode(dev);
619 spin_unlock(&np->lock);
8e586137
JP
620
621 return 0;
1da177e4
LT
622}
623
8e586137 624static int netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
1da177e4
LT
625{
626 struct netdev_private *np = netdev_priv(dev);
627
628 spin_lock(&np->lock);
629 if (debug > 1)
630 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
5da96be5 631 clear_bit(vid, np->active_vlans);
1da177e4
LT
632 set_rx_mode(dev);
633 spin_unlock(&np->lock);
8e586137
JP
634
635 return 0;
1da177e4
LT
636}
637#endif /* VLAN_SUPPORT */
638
639
4fc8006e
SH
640static const struct net_device_ops netdev_ops = {
641 .ndo_open = netdev_open,
642 .ndo_stop = netdev_close,
643 .ndo_start_xmit = start_tx,
5da96be5
JP
644 .ndo_tx_timeout = tx_timeout,
645 .ndo_get_stats = get_stats,
afc4b13d 646 .ndo_set_rx_mode = set_rx_mode,
5da96be5 647 .ndo_do_ioctl = netdev_ioctl,
4fc8006e 648 .ndo_change_mtu = eth_change_mtu,
5da96be5 649 .ndo_set_mac_address = eth_mac_addr,
4fc8006e
SH
650 .ndo_validate_addr = eth_validate_addr,
651#ifdef VLAN_SUPPORT
4fc8006e
SH
652 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
653 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
654#endif
655};
656
1da177e4
LT
657static int __devinit starfire_init_one(struct pci_dev *pdev,
658 const struct pci_device_id *ent)
659{
660 struct netdev_private *np;
661 int i, irq, option, chip_idx = ent->driver_data;
662 struct net_device *dev;
663 static int card_idx = -1;
664 long ioaddr;
665 void __iomem *base;
666 int drv_flags, io_size;
667 int boguscnt;
668
669/* when built into the kernel, we only print version if device is found */
670#ifndef MODULE
671 static int printed_version;
672 if (!printed_version++)
673 printk(version);
674#endif
675
676 card_idx++;
677
678 if (pci_enable_device (pdev))
679 return -EIO;
680
681 ioaddr = pci_resource_start(pdev, 0);
682 io_size = pci_resource_len(pdev, 0);
683 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
684 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
685 return -ENODEV;
686 }
687
688 dev = alloc_etherdev(sizeof(*np));
41de8d4c 689 if (!dev)
1da177e4 690 return -ENOMEM;
41de8d4c 691
1da177e4
LT
692 SET_NETDEV_DEV(dev, &pdev->dev);
693
694 irq = pdev->irq;
695
696 if (pci_request_regions (pdev, DRV_NAME)) {
697 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
698 goto err_out_free_netdev;
699 }
700
1da177e4
LT
701 base = ioremap(ioaddr, io_size);
702 if (!base) {
703 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
704 card_idx, io_size, ioaddr);
705 goto err_out_free_res;
706 }
707
708 pci_set_master(pdev);
709
710 /* enable MWI -- it vastly improves Rx performance on sparc64 */
694625c0 711 pci_try_set_mwi(pdev);
1da177e4 712
1da177e4
LT
713#ifdef ZEROCOPY
714 /* Starfire can do TCP/UDP checksumming */
715 if (enable_hw_cksum)
fdecea66 716 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1da177e4 717#endif /* ZEROCOPY */
4fc8006e 718
1da177e4
LT
719#ifdef VLAN_SUPPORT
720 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
1da177e4
LT
721#endif /* VLAN_RX_KILL_VID */
722#ifdef ADDR_64BITS
723 dev->features |= NETIF_F_HIGHDMA;
724#endif /* ADDR_64BITS */
725
726 /* Serial EEPROM reads are hidden by the hardware. */
727 for (i = 0; i < 6; i++)
728 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
729
730#if ! defined(final_version) /* Dump the EEPROM contents during development. */
731 if (debug > 4)
732 for (i = 0; i < 0x20; i++)
733 printk("%2.2x%s",
734 (unsigned int)readb(base + EEPROMCtrl + i),
735 i % 16 != 15 ? " " : "\n");
736#endif
737
738 /* Issue soft reset */
739 writel(MiiSoftReset, base + TxMode);
740 udelay(1000);
741 writel(0, base + TxMode);
742
743 /* Reset the chip to erase previous misconfiguration. */
744 writel(1, base + PCIDeviceConfig);
745 boguscnt = 1000;
746 while (--boguscnt > 0) {
747 udelay(10);
748 if ((readl(base + PCIDeviceConfig) & 1) == 0)
749 break;
750 }
751 if (boguscnt == 0)
752 printk("%s: chipset reset never completed!\n", dev->name);
753 /* wait a little longer */
754 udelay(1000);
755
756 dev->base_addr = (unsigned long)base;
757 dev->irq = irq;
758
759 np = netdev_priv(dev);
bea3348e 760 np->dev = dev;
1da177e4
LT
761 np->base = base;
762 spin_lock_init(&np->lock);
763 pci_set_drvdata(pdev, dev);
764
765 np->pci_dev = pdev;
766
767 np->mii_if.dev = dev;
768 np->mii_if.mdio_read = mdio_read;
769 np->mii_if.mdio_write = mdio_write;
770 np->mii_if.phy_id_mask = 0x1f;
771 np->mii_if.reg_num_mask = 0x1f;
772
773 drv_flags = netdrv_tbl[chip_idx].drv_flags;
774
775 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
776 if (dev->mem_start)
777 option = dev->mem_start;
778
779 /* The lower four bits are the media type. */
780 if (option & 0x200)
781 np->mii_if.full_duplex = 1;
782
783 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
784 np->mii_if.full_duplex = 1;
785
786 if (np->mii_if.full_duplex)
787 np->mii_if.force_media = 1;
788 else
789 np->mii_if.force_media = 0;
790 np->speed100 = 1;
791
792 /* timer resolution is 128 * 0.8us */
793 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
794 Timer10X | EnableIntrMasking;
795
796 if (small_frames > 0) {
797 np->intr_timer_ctrl |= SmallFrameBypass;
798 switch (small_frames) {
799 case 1 ... 64:
800 np->intr_timer_ctrl |= SmallFrame64;
801 break;
802 case 65 ... 128:
803 np->intr_timer_ctrl |= SmallFrame128;
804 break;
805 case 129 ... 256:
806 np->intr_timer_ctrl |= SmallFrame256;
807 break;
808 default:
809 np->intr_timer_ctrl |= SmallFrame512;
810 if (small_frames > 512)
811 printk("Adjusting small_frames down to 512\n");
812 break;
813 }
814 }
815
4fc8006e 816 dev->netdev_ops = &netdev_ops;
fdecea66 817 dev->watchdog_timeo = TX_TIMEOUT;
1da177e4
LT
818 SET_ETHTOOL_OPS(dev, &ethtool_ops);
819
4fc8006e
SH
820 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
821
1da177e4
LT
822 if (mtu)
823 dev->mtu = mtu;
824
825 if (register_netdev(dev))
826 goto err_out_cleardev;
827
e174961c 828 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
0795af57 829 dev->name, netdrv_tbl[chip_idx].name, base,
e174961c 830 dev->dev_addr, irq);
1da177e4
LT
831
832 if (drv_flags & CanHaveMII) {
833 int phy, phy_idx = 0;
834 int mii_status;
835 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
836 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
837 mdelay(100);
838 boguscnt = 1000;
839 while (--boguscnt > 0)
840 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
841 break;
842 if (boguscnt == 0) {
fdecea66 843 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
1da177e4
LT
844 continue;
845 }
846 mii_status = mdio_read(dev, phy, MII_BMSR);
847 if (mii_status != 0) {
848 np->phys[phy_idx++] = phy;
849 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
850 printk(KERN_INFO "%s: MII PHY found at address %d, status "
851 "%#4.4x advertising %#4.4x.\n",
852 dev->name, phy, mii_status, np->mii_if.advertising);
853 /* there can be only one PHY on-board */
854 break;
855 }
856 }
857 np->phy_cnt = phy_idx;
858 if (np->phy_cnt > 0)
859 np->mii_if.phy_id = np->phys[0];
860 else
861 memset(&np->mii_if, 0, sizeof(np->mii_if));
862 }
863
864 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
865 dev->name, enable_hw_cksum ? "enabled" : "disabled");
866 return 0;
867
868err_out_cleardev:
869 pci_set_drvdata(pdev, NULL);
870 iounmap(base);
871err_out_free_res:
872 pci_release_regions (pdev);
873err_out_free_netdev:
874 free_netdev(dev);
875 return -ENODEV;
876}
877
878
879/* Read the MII Management Data I/O (MDIO) interfaces. */
880static int mdio_read(struct net_device *dev, int phy_id, int location)
881{
882 struct netdev_private *np = netdev_priv(dev);
883 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
884 int result, boguscnt=1000;
885 /* ??? Should we add a busy-wait here? */
e4c3c13c 886 do {
1da177e4 887 result = readl(mdio_addr);
e4c3c13c 888 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
1da177e4
LT
889 if (boguscnt == 0)
890 return 0;
891 if ((result & 0xffff) == 0xffff)
892 return 0;
893 return result & 0xffff;
894}
895
896
897static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
898{
899 struct netdev_private *np = netdev_priv(dev);
900 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
901 writel(value, mdio_addr);
902 /* The busy-wait will occur before a read. */
903}
904
905
906static int netdev_open(struct net_device *dev)
907{
cfc3a44c
JSR
908 const struct firmware *fw_rx, *fw_tx;
909 const __be32 *fw_rx_data, *fw_tx_data;
1da177e4
LT
910 struct netdev_private *np = netdev_priv(dev);
911 void __iomem *ioaddr = np->base;
912 int i, retval;
cfc3a44c 913 size_t tx_size, rx_size;
1da177e4
LT
914 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
915
916 /* Do we ever need to reset the chip??? */
fdecea66 917
a0607fd3 918 retval = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
1da177e4
LT
919 if (retval)
920 return retval;
921
922 /* Disable the Rx and Tx, and reset the chip. */
923 writel(0, ioaddr + GenCtrl);
924 writel(1, ioaddr + PCIDeviceConfig);
925 if (debug > 1)
926 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
927 dev->name, dev->irq);
928
929 /* Allocate the various queues. */
88b1943b 930 if (!np->queue_mem) {
1da177e4
LT
931 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
932 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
933 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
934 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
935 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
936 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
d8840ac9
AD
937 if (np->queue_mem == NULL) {
938 free_irq(dev->irq, dev);
1da177e4 939 return -ENOMEM;
d8840ac9 940 }
1da177e4
LT
941
942 np->tx_done_q = np->queue_mem;
943 np->tx_done_q_dma = np->queue_mem_dma;
944 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
945 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
946 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
947 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
948 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
949 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
950 }
951
952 /* Start with no carrier, it gets adjusted later */
953 netif_carrier_off(dev);
954 init_ring(dev);
955 /* Set the size of the Rx buffers. */
956 writel((np->rx_buf_sz << RxBufferLenShift) |
957 (0 << RxMinDescrThreshShift) |
958 RxPrefetchMode | RxVariableQ |
959 RX_Q_ENTRIES |
960 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
961 RxDescSpace4,
962 ioaddr + RxDescQCtrl);
963
964 /* Set up the Rx DMA controller. */
965 writel(RxChecksumIgnore |
966 (0 << RxEarlyIntThreshShift) |
967 (6 << RxHighPrioThreshShift) |
968 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
969 ioaddr + RxDMACtrl);
970
971 /* Set Tx descriptor */
972 writel((2 << TxHiPriFIFOThreshShift) |
973 (0 << TxPadLenShift) |
974 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
975 TX_DESC_Q_ADDR_SIZE |
976 TX_DESC_SPACING | TX_DESC_TYPE,
977 ioaddr + TxDescCtrl);
978
979 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
980 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
981 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
982 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
983 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
984
985 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
986 writel(np->rx_done_q_dma |
987 RxComplType |
988 (0 << RxComplThreshShift),
989 ioaddr + RxCompletionAddr);
990
991 if (debug > 1)
992 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
993
994 /* Fill both the Tx SA register and the Rx perfect filter. */
995 for (i = 0; i < 6; i++)
996 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
997 /* The first entry is special because it bypasses the VLAN filter.
998 Don't use it. */
999 writew(0, ioaddr + PerfFilterTable);
1000 writew(0, ioaddr + PerfFilterTable + 4);
1001 writew(0, ioaddr + PerfFilterTable + 8);
1002 for (i = 1; i < 16; i++) {
88b1943b 1003 __be16 *eaddrs = (__be16 *)dev->dev_addr;
1da177e4 1004 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
88b1943b
AV
1005 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
1006 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
1007 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
1da177e4
LT
1008 }
1009
1010 /* Initialize other registers. */
1011 /* Configure the PCI bus bursts and FIFO thresholds. */
1012 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
1013 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1014 udelay(1000);
1015 writel(np->tx_mode, ioaddr + TxMode);
1016 np->tx_threshold = 4;
1017 writel(np->tx_threshold, ioaddr + TxThreshold);
1018
1019 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1020
bea3348e 1021 napi_enable(&np->napi);
a6676019 1022
1da177e4
LT
1023 netif_start_queue(dev);
1024
1025 if (debug > 1)
1026 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1027 set_rx_mode(dev);
1028
1029 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1030 check_duplex(dev);
1031
1032 /* Enable GPIO interrupts on link change */
1033 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1034
1035 /* Set the interrupt mask */
1036 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1037 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1038 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1039 ioaddr + IntrEnable);
1040 /* Enable PCI interrupts. */
1041 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1042 ioaddr + PCIDeviceConfig);
1043
1044#ifdef VLAN_SUPPORT
1045 /* Set VLAN type to 802.1q */
1046 writel(ETH_P_8021Q, ioaddr + VlanType);
1047#endif /* VLAN_SUPPORT */
1048
cfc3a44c
JSR
1049 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1050 if (retval) {
1051 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1052 FIRMWARE_RX);
c928febf 1053 goto out_init;
cfc3a44c
JSR
1054 }
1055 if (fw_rx->size % 4) {
1056 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1057 fw_rx->size, FIRMWARE_RX);
1058 retval = -EINVAL;
1059 goto out_rx;
1060 }
1061 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1062 if (retval) {
1063 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1064 FIRMWARE_TX);
1065 goto out_rx;
1066 }
1067 if (fw_tx->size % 4) {
1068 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1069 fw_tx->size, FIRMWARE_TX);
1070 retval = -EINVAL;
1071 goto out_tx;
1072 }
1073 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1074 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1075 rx_size = fw_rx->size / 4;
1076 tx_size = fw_tx->size / 4;
1077
1da177e4 1078 /* Load Rx/Tx firmware into the frame processors */
cfc3a44c
JSR
1079 for (i = 0; i < rx_size; i++)
1080 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1081 for (i = 0; i < tx_size; i++)
1082 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1da177e4
LT
1083 if (enable_hw_cksum)
1084 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1085 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1086 else
1087 /* Enable the Rx and Tx units only. */
1088 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1089
1090 if (debug > 1)
1091 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1092 dev->name);
1093
cfc3a44c
JSR
1094out_tx:
1095 release_firmware(fw_tx);
1096out_rx:
1097 release_firmware(fw_rx);
c928febf
BH
1098out_init:
1099 if (retval)
1100 netdev_close(dev);
cfc3a44c 1101 return retval;
1da177e4
LT
1102}
1103
1104
1105static void check_duplex(struct net_device *dev)
1106{
1107 struct netdev_private *np = netdev_priv(dev);
1108 u16 reg0;
1109 int silly_count = 1000;
1110
1111 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1112 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1113 udelay(500);
1114 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1115 /* do nothing */;
1116 if (!silly_count) {
1117 printk("%s: MII reset failed!\n", dev->name);
1118 return;
1119 }
1120
1121 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1122
1123 if (!np->mii_if.force_media) {
1124 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1125 } else {
1126 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1127 if (np->speed100)
1128 reg0 |= BMCR_SPEED100;
1129 if (np->mii_if.full_duplex)
1130 reg0 |= BMCR_FULLDPLX;
1131 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1132 dev->name,
1133 np->speed100 ? "100" : "10",
1134 np->mii_if.full_duplex ? "full" : "half");
1135 }
1136 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1137}
1138
1139
1140static void tx_timeout(struct net_device *dev)
1141{
1142 struct netdev_private *np = netdev_priv(dev);
1143 void __iomem *ioaddr = np->base;
1144 int old_debug;
1145
1146 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1147 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1148
1149 /* Perhaps we should reinitialize the hardware here. */
1150
1151 /*
1152 * Stop and restart the interface.
1153 * Cheat and increase the debug level temporarily.
1154 */
1155 old_debug = debug;
1156 debug = 2;
1157 netdev_close(dev);
1158 netdev_open(dev);
1159 debug = old_debug;
1160
1161 /* Trigger an immediate transmit demand. */
1162
1ae5dc34 1163 dev->trans_start = jiffies; /* prevent tx timeout */
86678a20 1164 dev->stats.tx_errors++;
1da177e4
LT
1165 netif_wake_queue(dev);
1166}
1167
1168
1169/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1170static void init_ring(struct net_device *dev)
1171{
1172 struct netdev_private *np = netdev_priv(dev);
1173 int i;
1174
1175 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1176 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1177
1178 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1179
1180 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1181 for (i = 0; i < RX_RING_SIZE; i++) {
1182 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1183 np->rx_info[i].skb = skb;
1184 if (skb == NULL)
1185 break;
689be439 1186 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1da177e4
LT
1187 skb->dev = dev; /* Mark as being used by this device. */
1188 /* Grrr, we cannot offset to correctly align the IP header. */
1189 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1190 }
1191 writew(i - 1, np->base + RxDescQIdx);
1192 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1193
1194 /* Clear the remainder of the Rx buffer ring. */
1195 for ( ; i < RX_RING_SIZE; i++) {
1196 np->rx_ring[i].rxaddr = 0;
1197 np->rx_info[i].skb = NULL;
1198 np->rx_info[i].mapping = 0;
1199 }
1200 /* Mark the last entry as wrapping the ring. */
1201 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1202
1203 /* Clear the completion rings. */
1204 for (i = 0; i < DONE_Q_SIZE; i++) {
1205 np->rx_done_q[i].status = 0;
1206 np->tx_done_q[i].status = 0;
1207 }
1208
1209 for (i = 0; i < TX_RING_SIZE; i++)
1210 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1da177e4
LT
1211}
1212
1213
61357325 1214static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1215{
1216 struct netdev_private *np = netdev_priv(dev);
1217 unsigned int entry;
1218 u32 status;
1219 int i;
1220
1da177e4
LT
1221 /*
1222 * be cautious here, wrapping the queue has weird semantics
1223 * and we may not have enough slots even when it seems we do.
1224 */
1225 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1226 netif_stop_queue(dev);
5b548140 1227 return NETDEV_TX_BUSY;
1da177e4
LT
1228 }
1229
1230#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
84fa7933 1231 if (skb->ip_summed == CHECKSUM_PARTIAL) {
5b057c6b 1232 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
67974231 1233 return NETDEV_TX_OK;
1da177e4
LT
1234 }
1235#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1236
1237 entry = np->cur_tx % TX_RING_SIZE;
1238 for (i = 0; i < skb_num_frags(skb); i++) {
1239 int wrap_ring = 0;
1240 status = TxDescID;
1241
1242 if (i == 0) {
1243 np->tx_info[entry].skb = skb;
1244 status |= TxCRCEn;
1245 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1246 status |= TxRingWrap;
1247 wrap_ring = 1;
1248 }
1249 if (np->reap_tx) {
1250 status |= TxDescIntr;
1251 np->reap_tx = 0;
1252 }
84fa7933 1253 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1da177e4 1254 status |= TxCalTCP;
86678a20 1255 dev->stats.tx_compressed++;
1da177e4
LT
1256 }
1257 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1258
1259 np->tx_info[entry].mapping =
1260 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1261 } else {
9e903e08
ED
1262 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1263 status |= skb_frag_size(this_frag);
1da177e4 1264 np->tx_info[entry].mapping =
0cd83cc0
IC
1265 pci_map_single(np->pci_dev,
1266 skb_frag_address(this_frag),
9e903e08 1267 skb_frag_size(this_frag),
0cd83cc0 1268 PCI_DMA_TODEVICE);
1da177e4
LT
1269 }
1270
1271 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1272 np->tx_ring[entry].status = cpu_to_le32(status);
1273 if (debug > 3)
1274 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1275 dev->name, np->cur_tx, np->dirty_tx,
1276 entry, status);
1277 if (wrap_ring) {
1278 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1279 np->cur_tx += np->tx_info[entry].used_slots;
1280 entry = 0;
1281 } else {
1282 np->tx_info[entry].used_slots = 1;
1283 np->cur_tx += np->tx_info[entry].used_slots;
1284 entry++;
1285 }
1286 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1287 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1288 np->reap_tx = 1;
1289 }
1290
1291 /* Non-x86: explicitly flush descriptor cache lines here. */
1292 /* Ensure all descriptors are written back before the transmit is
1293 initiated. - Jes */
1294 wmb();
1295
1296 /* Update the producer index. */
1297 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1298
1299 /* 4 is arbitrary, but should be ok */
1300 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1301 netif_stop_queue(dev);
1302
6ed10654 1303 return NETDEV_TX_OK;
1da177e4
LT
1304}
1305
1306
1307/* The interrupt handler does all of the Rx thread work and cleans up
1308 after the Tx thread. */
7d12e780 1309static irqreturn_t intr_handler(int irq, void *dev_instance)
1da177e4
LT
1310{
1311 struct net_device *dev = dev_instance;
1312 struct netdev_private *np = netdev_priv(dev);
1313 void __iomem *ioaddr = np->base;
1314 int boguscnt = max_interrupt_work;
1315 int consumer;
1316 int tx_status;
1317 int handled = 0;
1318
1319 do {
1320 u32 intr_status = readl(ioaddr + IntrClear);
1321
1322 if (debug > 4)
1323 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1324 dev->name, intr_status);
1325
1326 if (intr_status == 0 || intr_status == (u32) -1)
1327 break;
1328
1329 handled = 1;
1330
a6676019
FR
1331 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1332 u32 enable;
1333
288379f0
BH
1334 if (likely(napi_schedule_prep(&np->napi))) {
1335 __napi_schedule(&np->napi);
a6676019
FR
1336 enable = readl(ioaddr + IntrEnable);
1337 enable &= ~(IntrRxDone | IntrRxEmpty);
1338 writel(enable, ioaddr + IntrEnable);
1339 /* flush PCI posting buffers */
1340 readl(ioaddr + IntrEnable);
1341 } else {
1342 /* Paranoia check */
1343 enable = readl(ioaddr + IntrEnable);
1344 if (enable & (IntrRxDone | IntrRxEmpty)) {
1345 printk(KERN_INFO
1346 "%s: interrupt while in poll!\n",
1347 dev->name);
1348 enable &= ~(IntrRxDone | IntrRxEmpty);
1349 writel(enable, ioaddr + IntrEnable);
1350 }
1351 }
1352 }
1da177e4
LT
1353
1354 /* Scavenge the skbuff list based on the Tx-done queue.
1355 There are redundant checks here that may be cleaned up
1356 after the driver has proven to be reliable. */
1357 consumer = readl(ioaddr + TxConsumerIdx);
1358 if (debug > 3)
1359 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1360 dev->name, consumer);
1361
1362 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1363 if (debug > 3)
1364 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1365 dev->name, np->dirty_tx, np->tx_done, tx_status);
1366 if ((tx_status & 0xe0000000) == 0xa0000000) {
86678a20 1367 dev->stats.tx_packets++;
1da177e4
LT
1368 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1369 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1370 struct sk_buff *skb = np->tx_info[entry].skb;
1371 np->tx_info[entry].skb = NULL;
1372 pci_unmap_single(np->pci_dev,
1373 np->tx_info[entry].mapping,
1374 skb_first_frag_len(skb),
1375 PCI_DMA_TODEVICE);
1376 np->tx_info[entry].mapping = 0;
1377 np->dirty_tx += np->tx_info[entry].used_slots;
1378 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1da177e4
LT
1379 {
1380 int i;
1381 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1382 pci_unmap_single(np->pci_dev,
1383 np->tx_info[entry].mapping,
9e903e08 1384 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1da177e4
LT
1385 PCI_DMA_TODEVICE);
1386 np->dirty_tx++;
1387 entry++;
1388 }
1389 }
fdecea66 1390
1da177e4
LT
1391 dev_kfree_skb_irq(skb);
1392 }
1393 np->tx_done_q[np->tx_done].status = 0;
1394 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1395 }
1396 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1397
1398 if (netif_queue_stopped(dev) &&
1399 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1400 /* The ring is no longer full, wake the queue. */
1401 netif_wake_queue(dev);
1402 }
1403
1404 /* Stats overflow */
1405 if (intr_status & IntrStatsMax)
1406 get_stats(dev);
1407
1408 /* Media change interrupt. */
1409 if (intr_status & IntrLinkChange)
1410 netdev_media_change(dev);
1411
1412 /* Abnormal error summary/uncommon events handlers. */
1413 if (intr_status & IntrAbnormalSummary)
1414 netdev_error(dev, intr_status);
1415
1416 if (--boguscnt < 0) {
1417 if (debug > 1)
1418 printk(KERN_WARNING "%s: Too much work at interrupt, "
1419 "status=%#8.8x.\n",
1420 dev->name, intr_status);
1421 break;
1422 }
1423 } while (1);
1424
1425 if (debug > 4)
1426 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1427 dev->name, (int) readl(ioaddr + IntrStatus));
1428 return IRQ_RETVAL(handled);
1429}
1430
1431
a6676019
FR
1432/*
1433 * This routine is logically part of the interrupt/poll handler, but separated
1434 * for clarity and better register allocation.
1435 */
1da177e4
LT
1436static int __netdev_rx(struct net_device *dev, int *quota)
1437{
1438 struct netdev_private *np = netdev_priv(dev);
1439 u32 desc_status;
1440 int retcode = 0;
1441
1442 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1443 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1444 struct sk_buff *skb;
1445 u16 pkt_len;
1446 int entry;
1447 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1448
1449 if (debug > 4)
1450 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1451 if (!(desc_status & RxOK)) {
fdecea66 1452 /* There was an error. */
1da177e4
LT
1453 if (debug > 2)
1454 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
86678a20 1455 dev->stats.rx_errors++;
1da177e4 1456 if (desc_status & RxFIFOErr)
86678a20 1457 dev->stats.rx_fifo_errors++;
1da177e4
LT
1458 goto next_rx;
1459 }
1460
1461 if (*quota <= 0) { /* out of rx quota */
1462 retcode = 1;
1463 goto out;
1464 }
1465 (*quota)--;
1466
1467 pkt_len = desc_status; /* Implicitly Truncate */
1468 entry = (desc_status >> 16) & 0x7ff;
1469
1470 if (debug > 4)
1471 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1472 /* Check if the packet is long enough to accept without copying
1473 to a minimally-sized skbuff. */
8e95a202
JP
1474 if (pkt_len < rx_copybreak &&
1475 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1da177e4
LT
1476 skb_reserve(skb, 2); /* 16 byte align the IP header */
1477 pci_dma_sync_single_for_cpu(np->pci_dev,
1478 np->rx_info[entry].mapping,
1479 pkt_len, PCI_DMA_FROMDEVICE);
8c7b7faa 1480 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1da177e4
LT
1481 pci_dma_sync_single_for_device(np->pci_dev,
1482 np->rx_info[entry].mapping,
1483 pkt_len, PCI_DMA_FROMDEVICE);
1484 skb_put(skb, pkt_len);
1485 } else {
1486 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1487 skb = np->rx_info[entry].skb;
1488 skb_put(skb, pkt_len);
1489 np->rx_info[entry].skb = NULL;
1490 np->rx_info[entry].mapping = 0;
1491 }
1492#ifndef final_version /* Remove after testing. */
1493 /* You will want this info for the initial debug. */
0795af57 1494 if (debug > 5) {
e174961c
JB
1495 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1496 skb->data, skb->data + 6,
0795af57
JP
1497 skb->data[12], skb->data[13]);
1498 }
1da177e4
LT
1499#endif
1500
1501 skb->protocol = eth_type_trans(skb, dev);
fdecea66 1502#ifdef VLAN_SUPPORT
1da177e4
LT
1503 if (debug > 4)
1504 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1505#endif
1da177e4
LT
1506 if (le16_to_cpu(desc->status2) & 0x0100) {
1507 skb->ip_summed = CHECKSUM_UNNECESSARY;
86678a20 1508 dev->stats.rx_compressed++;
1da177e4
LT
1509 }
1510 /*
1511 * This feature doesn't seem to be working, at least
1512 * with the two firmware versions I have. If the GFP sees
1513 * an IP fragment, it either ignores it completely, or reports
1514 * "bad checksum" on it.
1515 *
1516 * Maybe I missed something -- corrections are welcome.
1517 * Until then, the printk stays. :-) -Ion
1518 */
1519 else if (le16_to_cpu(desc->status2) & 0x0040) {
84fa7933 1520 skb->ip_summed = CHECKSUM_COMPLETE;
1da177e4
LT
1521 skb->csum = le16_to_cpu(desc->csum);
1522 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1523 }
1da177e4 1524#ifdef VLAN_SUPPORT
5da96be5 1525 if (le16_to_cpu(desc->status2) & 0x0200) {
a6676019
FR
1526 u16 vlid = le16_to_cpu(desc->vlanid);
1527
1528 if (debug > 4) {
1529 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1530 vlid);
1531 }
5da96be5
JP
1532 __vlan_hwaccel_put_tag(skb, vlid);
1533 }
1da177e4 1534#endif /* VLAN_SUPPORT */
5da96be5 1535 netif_receive_skb(skb);
86678a20 1536 dev->stats.rx_packets++;
1da177e4
LT
1537
1538 next_rx:
1539 np->cur_rx++;
1540 desc->status = 0;
1541 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1542 }
9a3de255
JP
1543
1544 if (*quota == 0) { /* out of rx quota */
1545 retcode = 1;
1546 goto out;
1547 }
1da177e4
LT
1548 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1549
1550 out:
1551 refill_rx_ring(dev);
1552 if (debug > 5)
1553 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1554 retcode, np->rx_done, desc_status);
1555 return retcode;
1556}
1557
bea3348e 1558static int netdev_poll(struct napi_struct *napi, int budget)
1da177e4 1559{
bea3348e
SH
1560 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1561 struct net_device *dev = np->dev;
1da177e4 1562 u32 intr_status;
1da177e4 1563 void __iomem *ioaddr = np->base;
bea3348e 1564 int quota = budget;
1da177e4
LT
1565
1566 do {
1567 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1568
bea3348e 1569 if (__netdev_rx(dev, &quota))
1da177e4
LT
1570 goto out;
1571
1572 intr_status = readl(ioaddr + IntrStatus);
1573 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1574
288379f0 1575 napi_complete(napi);
1da177e4
LT
1576 intr_status = readl(ioaddr + IntrEnable);
1577 intr_status |= IntrRxDone | IntrRxEmpty;
1578 writel(intr_status, ioaddr + IntrEnable);
1579
1580 out:
1581 if (debug > 5)
bea3348e
SH
1582 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1583 budget - quota);
1da177e4
LT
1584
1585 /* Restart Rx engine if stopped. */
bea3348e 1586 return budget - quota;
1da177e4 1587}
1da177e4
LT
1588
1589static void refill_rx_ring(struct net_device *dev)
1590{
1591 struct netdev_private *np = netdev_priv(dev);
1592 struct sk_buff *skb;
1593 int entry = -1;
1594
1595 /* Refill the Rx ring buffers. */
1596 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1597 entry = np->dirty_rx % RX_RING_SIZE;
1598 if (np->rx_info[entry].skb == NULL) {
1599 skb = dev_alloc_skb(np->rx_buf_sz);
1600 np->rx_info[entry].skb = skb;
1601 if (skb == NULL)
1602 break; /* Better luck next round. */
1603 np->rx_info[entry].mapping =
689be439 1604 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1da177e4
LT
1605 skb->dev = dev; /* Mark as being used by this device. */
1606 np->rx_ring[entry].rxaddr =
1607 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1608 }
1609 if (entry == RX_RING_SIZE - 1)
1610 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1611 }
1612 if (entry >= 0)
1613 writew(entry, np->base + RxDescQIdx);
1614}
1615
1616
1617static void netdev_media_change(struct net_device *dev)
1618{
1619 struct netdev_private *np = netdev_priv(dev);
1620 void __iomem *ioaddr = np->base;
1621 u16 reg0, reg1, reg4, reg5;
1622 u32 new_tx_mode;
1623 u32 new_intr_timer_ctrl;
1624
1625 /* reset status first */
1626 mdio_read(dev, np->phys[0], MII_BMCR);
1627 mdio_read(dev, np->phys[0], MII_BMSR);
1628
1629 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1630 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1631
1632 if (reg1 & BMSR_LSTATUS) {
1633 /* link is up */
1634 if (reg0 & BMCR_ANENABLE) {
1635 /* autonegotiation is enabled */
1636 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1637 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1638 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1639 np->speed100 = 1;
1640 np->mii_if.full_duplex = 1;
1641 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1642 np->speed100 = 1;
1643 np->mii_if.full_duplex = 0;
1644 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1645 np->speed100 = 0;
1646 np->mii_if.full_duplex = 1;
1647 } else {
1648 np->speed100 = 0;
1649 np->mii_if.full_duplex = 0;
1650 }
1651 } else {
1652 /* autonegotiation is disabled */
1653 if (reg0 & BMCR_SPEED100)
1654 np->speed100 = 1;
1655 else
1656 np->speed100 = 0;
1657 if (reg0 & BMCR_FULLDPLX)
1658 np->mii_if.full_duplex = 1;
1659 else
1660 np->mii_if.full_duplex = 0;
1661 }
1662 netif_carrier_on(dev);
1663 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1664 dev->name,
1665 np->speed100 ? "100" : "10",
1666 np->mii_if.full_duplex ? "full" : "half");
1667
1668 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1669 if (np->mii_if.full_duplex)
1670 new_tx_mode |= FullDuplex;
1671 if (np->tx_mode != new_tx_mode) {
1672 np->tx_mode = new_tx_mode;
1673 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1674 udelay(1000);
1675 writel(np->tx_mode, ioaddr + TxMode);
1676 }
1677
1678 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1679 if (np->speed100)
1680 new_intr_timer_ctrl |= Timer10X;
1681 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1682 np->intr_timer_ctrl = new_intr_timer_ctrl;
1683 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1684 }
1685 } else {
1686 netif_carrier_off(dev);
1687 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1688 }
1689}
1690
1691
1692static void netdev_error(struct net_device *dev, int intr_status)
1693{
1694 struct netdev_private *np = netdev_priv(dev);
1695
1696 /* Came close to underrunning the Tx FIFO, increase threshold. */
1697 if (intr_status & IntrTxDataLow) {
1698 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1699 writel(++np->tx_threshold, np->base + TxThreshold);
1700 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1701 dev->name, np->tx_threshold * 16);
1702 } else
1703 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1704 }
1705 if (intr_status & IntrRxGFPDead) {
86678a20
KV
1706 dev->stats.rx_fifo_errors++;
1707 dev->stats.rx_errors++;
1da177e4
LT
1708 }
1709 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
86678a20
KV
1710 dev->stats.tx_fifo_errors++;
1711 dev->stats.tx_errors++;
1da177e4
LT
1712 }
1713 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1714 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1715 dev->name, intr_status);
1716}
1717
1718
1719static struct net_device_stats *get_stats(struct net_device *dev)
1720{
1721 struct netdev_private *np = netdev_priv(dev);
1722 void __iomem *ioaddr = np->base;
1723
1724 /* This adapter architecture needs no SMP locks. */
86678a20
KV
1725 dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1726 dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1727 dev->stats.tx_packets = readl(ioaddr + 0x57000);
1728 dev->stats.tx_aborted_errors =
1da177e4 1729 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
86678a20
KV
1730 dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1731 dev->stats.collisions =
1da177e4
LT
1732 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1733
1734 /* The chip only need report frame silently dropped. */
86678a20 1735 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1da177e4 1736 writew(0, ioaddr + RxDMAStatus);
86678a20
KV
1737 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1738 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1739 dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1740 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1da177e4 1741
86678a20 1742 return &dev->stats;
1da177e4
LT
1743}
1744
5da96be5
JP
1745#ifdef VLAN_SUPPORT
1746static u32 set_vlan_mode(struct netdev_private *np)
1747{
1748 u32 ret = VlanMode;
1749 u16 vid;
1750 void __iomem *filter_addr = np->base + HashTable + 8;
1751 int vlan_count = 0;
1752
1753 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1754 if (vlan_count == 32)
1755 break;
1756 writew(vid, filter_addr);
1757 filter_addr += 16;
1758 vlan_count++;
1759 }
1760 if (vlan_count == 32) {
1761 ret |= PerfectFilterVlan;
1762 while (vlan_count < 32) {
1763 writew(0, filter_addr);
1764 filter_addr += 16;
1765 vlan_count++;
1766 }
1767 }
1768 return ret;
1769}
1770#endif /* VLAN_SUPPORT */
1da177e4 1771
1da177e4
LT
1772static void set_rx_mode(struct net_device *dev)
1773{
1774 struct netdev_private *np = netdev_priv(dev);
1775 void __iomem *ioaddr = np->base;
1776 u32 rx_mode = MinVLANPrio;
22bedad3 1777 struct netdev_hw_addr *ha;
1da177e4 1778 int i;
1da177e4 1779
5da96be5
JP
1780#ifdef VLAN_SUPPORT
1781 rx_mode |= set_vlan_mode(np);
1da177e4
LT
1782#endif /* VLAN_SUPPORT */
1783
1784 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1785 rx_mode |= AcceptAll;
4cd24eaf 1786 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
8e95a202 1787 (dev->flags & IFF_ALLMULTI)) {
1da177e4
LT
1788 /* Too many to match, or accept all multicasts. */
1789 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
4cd24eaf 1790 } else if (netdev_mc_count(dev) <= 14) {
1da177e4
LT
1791 /* Use the 16 element perfect filter, skip first two entries. */
1792 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
88b1943b 1793 __be16 *eaddrs;
22bedad3
JP
1794 netdev_for_each_mc_addr(ha, dev) {
1795 eaddrs = (__be16 *) ha->addr;
88b1943b
AV
1796 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1797 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1798 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1da177e4 1799 }
88b1943b 1800 eaddrs = (__be16 *)dev->dev_addr;
5508590c 1801 i = netdev_mc_count(dev) + 2;
1da177e4 1802 while (i++ < 16) {
88b1943b
AV
1803 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1804 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1805 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1da177e4
LT
1806 }
1807 rx_mode |= AcceptBroadcast|PerfectFilter;
1808 } else {
1809 /* Must use a multicast hash table. */
1810 void __iomem *filter_addr;
88b1943b
AV
1811 __be16 *eaddrs;
1812 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1da177e4
LT
1813
1814 memset(mc_filter, 0, sizeof(mc_filter));
22bedad3 1815 netdev_for_each_mc_addr(ha, dev) {
fdecea66
JG
1816 /* The chip uses the upper 9 CRC bits
1817 as index into the hash table */
22bedad3 1818 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
88b1943b 1819 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1da177e4
LT
1820
1821 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1822 }
1823 /* Clear the perfect filter list, skip first two entries. */
1824 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
88b1943b 1825 eaddrs = (__be16 *)dev->dev_addr;
1da177e4 1826 for (i = 2; i < 16; i++) {
88b1943b
AV
1827 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1828 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1829 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1da177e4
LT
1830 }
1831 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1832 writew(mc_filter[i], filter_addr);
1833 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1834 }
1835 writel(rx_mode, ioaddr + RxFilterMode);
1836}
1837
1838static int check_if_running(struct net_device *dev)
1839{
1840 if (!netif_running(dev))
1841 return -EINVAL;
1842 return 0;
1843}
1844
1845static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1846{
1847 struct netdev_private *np = netdev_priv(dev);
68aad78c
RJ
1848 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1849 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1850 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1da177e4
LT
1851}
1852
1853static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1854{
1855 struct netdev_private *np = netdev_priv(dev);
1856 spin_lock_irq(&np->lock);
1857 mii_ethtool_gset(&np->mii_if, ecmd);
1858 spin_unlock_irq(&np->lock);
1859 return 0;
1860}
1861
1862static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1863{
1864 struct netdev_private *np = netdev_priv(dev);
1865 int res;
1866 spin_lock_irq(&np->lock);
1867 res = mii_ethtool_sset(&np->mii_if, ecmd);
1868 spin_unlock_irq(&np->lock);
1869 check_duplex(dev);
1870 return res;
1871}
1872
1873static int nway_reset(struct net_device *dev)
1874{
1875 struct netdev_private *np = netdev_priv(dev);
1876 return mii_nway_restart(&np->mii_if);
1877}
1878
1879static u32 get_link(struct net_device *dev)
1880{
1881 struct netdev_private *np = netdev_priv(dev);
1882 return mii_link_ok(&np->mii_if);
1883}
1884
1885static u32 get_msglevel(struct net_device *dev)
1886{
1887 return debug;
1888}
1889
1890static void set_msglevel(struct net_device *dev, u32 val)
1891{
1892 debug = val;
1893}
1894
7282d491 1895static const struct ethtool_ops ethtool_ops = {
1da177e4
LT
1896 .begin = check_if_running,
1897 .get_drvinfo = get_drvinfo,
1898 .get_settings = get_settings,
1899 .set_settings = set_settings,
1900 .nway_reset = nway_reset,
1901 .get_link = get_link,
1902 .get_msglevel = get_msglevel,
1903 .set_msglevel = set_msglevel,
1904};
1905
1906static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1907{
1908 struct netdev_private *np = netdev_priv(dev);
1909 struct mii_ioctl_data *data = if_mii(rq);
1910 int rc;
1911
1912 if (!netif_running(dev))
1913 return -EINVAL;
1914
1915 spin_lock_irq(&np->lock);
1916 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1917 spin_unlock_irq(&np->lock);
1918
1919 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1920 check_duplex(dev);
1921
1922 return rc;
1923}
1924
1925static int netdev_close(struct net_device *dev)
1926{
1927 struct netdev_private *np = netdev_priv(dev);
1928 void __iomem *ioaddr = np->base;
1929 int i;
1930
1931 netif_stop_queue(dev);
a6676019 1932
bea3348e 1933 napi_disable(&np->napi);
1da177e4
LT
1934
1935 if (debug > 1) {
1936 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1937 dev->name, (int) readl(ioaddr + IntrStatus));
1938 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1939 dev->name, np->cur_tx, np->dirty_tx,
1940 np->cur_rx, np->dirty_rx);
1941 }
1942
1943 /* Disable interrupts by clearing the interrupt mask. */
1944 writel(0, ioaddr + IntrEnable);
1945
1946 /* Stop the chip's Tx and Rx processes. */
1947 writel(0, ioaddr + GenCtrl);
1948 readl(ioaddr + GenCtrl);
1949
1950 if (debug > 5) {
1951 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1952 (long long) np->tx_ring_dma);
1953 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1954 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1955 i, le32_to_cpu(np->tx_ring[i].status),
1956 (long long) dma_to_cpu(np->tx_ring[i].addr),
1957 le32_to_cpu(np->tx_done_q[i].status));
1958 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1959 (long long) np->rx_ring_dma, np->rx_done_q);
1960 if (np->rx_done_q)
1961 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1962 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1963 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1964 }
1965 }
1966
1967 free_irq(dev->irq, dev);
1968
1969 /* Free all the skbuffs in the Rx queue. */
1970 for (i = 0; i < RX_RING_SIZE; i++) {
1971 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1972 if (np->rx_info[i].skb != NULL) {
1973 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1974 dev_kfree_skb(np->rx_info[i].skb);
1975 }
1976 np->rx_info[i].skb = NULL;
1977 np->rx_info[i].mapping = 0;
1978 }
1979 for (i = 0; i < TX_RING_SIZE; i++) {
1980 struct sk_buff *skb = np->tx_info[i].skb;
1981 if (skb == NULL)
1982 continue;
1983 pci_unmap_single(np->pci_dev,
1984 np->tx_info[i].mapping,
1985 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1986 np->tx_info[i].mapping = 0;
1987 dev_kfree_skb(skb);
1988 np->tx_info[i].skb = NULL;
1989 }
1990
1991 return 0;
1992}
1993
d4fbeabb
SR
1994#ifdef CONFIG_PM
1995static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1996{
1997 struct net_device *dev = pci_get_drvdata(pdev);
1998
1999 if (netif_running(dev)) {
2000 netif_device_detach(dev);
2001 netdev_close(dev);
2002 }
2003
2004 pci_save_state(pdev);
2005 pci_set_power_state(pdev, pci_choose_state(pdev,state));
2006
2007 return 0;
2008}
2009
2010static int starfire_resume(struct pci_dev *pdev)
2011{
2012 struct net_device *dev = pci_get_drvdata(pdev);
6aa20a22 2013
d4fbeabb
SR
2014 pci_set_power_state(pdev, PCI_D0);
2015 pci_restore_state(pdev);
2016
2017 if (netif_running(dev)) {
2018 netdev_open(dev);
2019 netif_device_attach(dev);
2020 }
2021
2022 return 0;
2023}
2024#endif /* CONFIG_PM */
2025
1da177e4
LT
2026
2027static void __devexit starfire_remove_one (struct pci_dev *pdev)
2028{
2029 struct net_device *dev = pci_get_drvdata(pdev);
2030 struct netdev_private *np = netdev_priv(dev);
2031
5d9428de 2032 BUG_ON(!dev);
1da177e4
LT
2033
2034 unregister_netdev(dev);
2035
2036 if (np->queue_mem)
2037 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2038
2039
2040 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2041 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2042 pci_disable_device(pdev);
2043
2044 iounmap(np->base);
2045 pci_release_regions(pdev);
2046
2047 pci_set_drvdata(pdev, NULL);
2048 free_netdev(dev); /* Will also free np!! */
2049}
2050
2051
2052static struct pci_driver starfire_driver = {
2053 .name = DRV_NAME,
2054 .probe = starfire_init_one,
2055 .remove = __devexit_p(starfire_remove_one),
d4fbeabb
SR
2056#ifdef CONFIG_PM
2057 .suspend = starfire_suspend,
2058 .resume = starfire_resume,
2059#endif /* CONFIG_PM */
1da177e4
LT
2060 .id_table = starfire_pci_tbl,
2061};
2062
2063
2064static int __init starfire_init (void)
2065{
2066/* when a module, this is printed whether or not devices are found in probe */
2067#ifdef MODULE
2068 printk(version);
a6676019 2069
fdecea66 2070 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
fdecea66
JG
2071#endif
2072
56543af9 2073 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
67974231 2074
29917620 2075 return pci_register_driver(&starfire_driver);
1da177e4
LT
2076}
2077
2078
2079static void __exit starfire_cleanup (void)
2080{
2081 pci_unregister_driver (&starfire_driver);
2082}
2083
2084
2085module_init(starfire_init);
2086module_exit(starfire_cleanup);
2087
2088
2089/*
2090 * Local variables:
2091 * c-basic-offset: 8
2092 * tab-width: 8
2093 * End:
2094 */
This page took 1.058224 seconds and 5 git commands to generate.