Merge branch 'dp83640-next'
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
CommitLineData
b8ff05a9
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
ce100b8b 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
b8ff05a9
DM
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/bitmap.h>
38#include <linux/crc32.h>
39#include <linux/ctype.h>
40#include <linux/debugfs.h>
41#include <linux/err.h>
42#include <linux/etherdevice.h>
43#include <linux/firmware.h>
01789349 44#include <linux/if.h>
b8ff05a9
DM
45#include <linux/if_vlan.h>
46#include <linux/init.h>
47#include <linux/log2.h>
48#include <linux/mdio.h>
49#include <linux/module.h>
50#include <linux/moduleparam.h>
51#include <linux/mutex.h>
52#include <linux/netdevice.h>
53#include <linux/pci.h>
54#include <linux/aer.h>
55#include <linux/rtnetlink.h>
56#include <linux/sched.h>
57#include <linux/seq_file.h>
58#include <linux/sockios.h>
59#include <linux/vmalloc.h>
60#include <linux/workqueue.h>
61#include <net/neighbour.h>
62#include <net/netevent.h>
01bcca68 63#include <net/addrconf.h>
b8ff05a9
DM
64#include <asm/uaccess.h>
65
66#include "cxgb4.h"
67#include "t4_regs.h"
68#include "t4_msg.h"
69#include "t4fw_api.h"
688848b1 70#include "cxgb4_dcb.h"
b8ff05a9
DM
71#include "l2t.h"
72
01bcca68
VP
73#include <../drivers/net/bonding/bonding.h>
74
75#ifdef DRV_VERSION
76#undef DRV_VERSION
77#endif
3a7f8554
SR
78#define DRV_VERSION "2.0.0-ko"
79#define DRV_DESC "Chelsio T4/T5 Network Driver"
b8ff05a9
DM
80
81/*
82 * Max interrupt hold-off timer value in us. Queues fall back to this value
83 * under extreme memory pressure so it's largish to give the system time to
84 * recover.
85 */
86#define MAX_SGE_TIMERVAL 200U
87
7ee9ff94 88enum {
13ee15d3
VP
89 /*
90 * Physical Function provisioning constants.
91 */
92 PFRES_NVI = 4, /* # of Virtual Interfaces */
93 PFRES_NETHCTRL = 128, /* # of EQs used for ETH or CTRL Qs */
94 PFRES_NIQFLINT = 128, /* # of ingress Qs/w Free List(s)/intr
95 */
96 PFRES_NEQ = 256, /* # of egress queues */
97 PFRES_NIQ = 0, /* # of ingress queues */
98 PFRES_TC = 0, /* PCI-E traffic class */
99 PFRES_NEXACTF = 128, /* # of exact MPS filters */
100
101 PFRES_R_CAPS = FW_CMD_CAP_PF,
102 PFRES_WX_CAPS = FW_CMD_CAP_PF,
103
104#ifdef CONFIG_PCI_IOV
105 /*
106 * Virtual Function provisioning constants. We need two extra Ingress
107 * Queues with Interrupt capability to serve as the VF's Firmware
108 * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
109 * neither will have Free Lists associated with them). For each
110 * Ethernet/Control Egress Queue and for each Free List, we need an
111 * Egress Context.
112 */
7ee9ff94
CL
113 VFRES_NPORTS = 1, /* # of "ports" per VF */
114 VFRES_NQSETS = 2, /* # of "Queue Sets" per VF */
115
116 VFRES_NVI = VFRES_NPORTS, /* # of Virtual Interfaces */
117 VFRES_NETHCTRL = VFRES_NQSETS, /* # of EQs used for ETH or CTRL Qs */
118 VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
7ee9ff94 119 VFRES_NEQ = VFRES_NQSETS*2, /* # of egress queues */
13ee15d3 120 VFRES_NIQ = 0, /* # of non-fl/int ingress queues */
7ee9ff94
CL
121 VFRES_TC = 0, /* PCI-E traffic class */
122 VFRES_NEXACTF = 16, /* # of exact MPS filters */
123
124 VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
125 VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
13ee15d3 126#endif
7ee9ff94
CL
127};
128
129/*
130 * Provide a Port Access Rights Mask for the specified PF/VF. This is very
131 * static and likely not to be useful in the long run. We really need to
132 * implement some form of persistent configuration which the firmware
133 * controls.
134 */
135static unsigned int pfvfres_pmask(struct adapter *adapter,
136 unsigned int pf, unsigned int vf)
137{
138 unsigned int portn, portvec;
139
140 /*
141 * Give PF's access to all of the ports.
142 */
143 if (vf == 0)
144 return FW_PFVF_CMD_PMASK_MASK;
145
146 /*
147 * For VFs, we'll assign them access to the ports based purely on the
148 * PF. We assign active ports in order, wrapping around if there are
149 * fewer active ports than PFs: e.g. active port[pf % nports].
150 * Unfortunately the adapter's port_info structs haven't been
151 * initialized yet so we have to compute this.
152 */
153 if (adapter->params.nports == 0)
154 return 0;
155
156 portn = pf % adapter->params.nports;
157 portvec = adapter->params.portvec;
158 for (;;) {
159 /*
160 * Isolate the lowest set bit in the port vector. If we're at
161 * the port number that we want, return that as the pmask.
162 * otherwise mask that bit out of the port vector and
163 * decrement our port number ...
164 */
165 unsigned int pmask = portvec ^ (portvec & (portvec-1));
166 if (portn == 0)
167 return pmask;
168 portn--;
169 portvec &= ~pmask;
170 }
171 /*NOTREACHED*/
172}
7ee9ff94 173
b8ff05a9
DM
174enum {
175 MAX_TXQ_ENTRIES = 16384,
176 MAX_CTRL_TXQ_ENTRIES = 1024,
177 MAX_RSPQ_ENTRIES = 16384,
178 MAX_RX_BUFFERS = 16384,
179 MIN_TXQ_ENTRIES = 32,
180 MIN_CTRL_TXQ_ENTRIES = 32,
181 MIN_RSPQ_ENTRIES = 128,
182 MIN_FL_ENTRIES = 16
183};
184
f2b7e78d
VP
185/* Host shadow copy of ingress filter entry. This is in host native format
186 * and doesn't match the ordering or bit order, etc. of the hardware of the
187 * firmware command. The use of bit-field structure elements is purely to
188 * remind ourselves of the field size limitations and save memory in the case
189 * where the filter table is large.
190 */
191struct filter_entry {
192 /* Administrative fields for filter.
193 */
194 u32 valid:1; /* filter allocated and valid */
195 u32 locked:1; /* filter is administratively locked */
196
197 u32 pending:1; /* filter action is pending firmware reply */
198 u32 smtidx:8; /* Source MAC Table index for smac */
199 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */
200
201 /* The filter itself. Most of this is a straight copy of information
202 * provided by the extended ioctl(). Some fields are translated to
203 * internal forms -- for instance the Ingress Queue ID passed in from
204 * the ioctl() is translated into the Absolute Ingress Queue ID.
205 */
206 struct ch_filter_specification fs;
207};
208
b8ff05a9
DM
209#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
210 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
211 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
212
060e0c75 213#define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
b8ff05a9
DM
214
215static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = {
060e0c75 216 CH_DEVICE(0xa000, 0), /* PE10K */
ccea790e
DM
217 CH_DEVICE(0x4001, -1),
218 CH_DEVICE(0x4002, -1),
219 CH_DEVICE(0x4003, -1),
220 CH_DEVICE(0x4004, -1),
221 CH_DEVICE(0x4005, -1),
222 CH_DEVICE(0x4006, -1),
223 CH_DEVICE(0x4007, -1),
224 CH_DEVICE(0x4008, -1),
225 CH_DEVICE(0x4009, -1),
226 CH_DEVICE(0x400a, -1),
227 CH_DEVICE(0x4401, 4),
228 CH_DEVICE(0x4402, 4),
229 CH_DEVICE(0x4403, 4),
230 CH_DEVICE(0x4404, 4),
231 CH_DEVICE(0x4405, 4),
232 CH_DEVICE(0x4406, 4),
233 CH_DEVICE(0x4407, 4),
234 CH_DEVICE(0x4408, 4),
235 CH_DEVICE(0x4409, 4),
236 CH_DEVICE(0x440a, 4),
f637d577
VP
237 CH_DEVICE(0x440d, 4),
238 CH_DEVICE(0x440e, 4),
9ef603a0
VP
239 CH_DEVICE(0x5001, 4),
240 CH_DEVICE(0x5002, 4),
241 CH_DEVICE(0x5003, 4),
242 CH_DEVICE(0x5004, 4),
243 CH_DEVICE(0x5005, 4),
244 CH_DEVICE(0x5006, 4),
245 CH_DEVICE(0x5007, 4),
246 CH_DEVICE(0x5008, 4),
247 CH_DEVICE(0x5009, 4),
248 CH_DEVICE(0x500A, 4),
249 CH_DEVICE(0x500B, 4),
250 CH_DEVICE(0x500C, 4),
251 CH_DEVICE(0x500D, 4),
252 CH_DEVICE(0x500E, 4),
253 CH_DEVICE(0x500F, 4),
254 CH_DEVICE(0x5010, 4),
255 CH_DEVICE(0x5011, 4),
256 CH_DEVICE(0x5012, 4),
257 CH_DEVICE(0x5013, 4),
f0a8e6de
HS
258 CH_DEVICE(0x5014, 4),
259 CH_DEVICE(0x5015, 4),
0183aa62
HS
260 CH_DEVICE(0x5080, 4),
261 CH_DEVICE(0x5081, 4),
262 CH_DEVICE(0x5082, 4),
263 CH_DEVICE(0x5083, 4),
264 CH_DEVICE(0x5084, 4),
265 CH_DEVICE(0x5085, 4),
9ef603a0
VP
266 CH_DEVICE(0x5401, 4),
267 CH_DEVICE(0x5402, 4),
268 CH_DEVICE(0x5403, 4),
269 CH_DEVICE(0x5404, 4),
270 CH_DEVICE(0x5405, 4),
271 CH_DEVICE(0x5406, 4),
272 CH_DEVICE(0x5407, 4),
273 CH_DEVICE(0x5408, 4),
274 CH_DEVICE(0x5409, 4),
275 CH_DEVICE(0x540A, 4),
276 CH_DEVICE(0x540B, 4),
277 CH_DEVICE(0x540C, 4),
278 CH_DEVICE(0x540D, 4),
279 CH_DEVICE(0x540E, 4),
280 CH_DEVICE(0x540F, 4),
281 CH_DEVICE(0x5410, 4),
282 CH_DEVICE(0x5411, 4),
283 CH_DEVICE(0x5412, 4),
284 CH_DEVICE(0x5413, 4),
f0a8e6de
HS
285 CH_DEVICE(0x5414, 4),
286 CH_DEVICE(0x5415, 4),
0183aa62
HS
287 CH_DEVICE(0x5480, 4),
288 CH_DEVICE(0x5481, 4),
289 CH_DEVICE(0x5482, 4),
290 CH_DEVICE(0x5483, 4),
291 CH_DEVICE(0x5484, 4),
292 CH_DEVICE(0x5485, 4),
b8ff05a9
DM
293 { 0, }
294};
295
16e47624 296#define FW4_FNAME "cxgb4/t4fw.bin"
0a57a536 297#define FW5_FNAME "cxgb4/t5fw.bin"
16e47624 298#define FW4_CFNAME "cxgb4/t4-config.txt"
0a57a536 299#define FW5_CFNAME "cxgb4/t5-config.txt"
b8ff05a9
DM
300
301MODULE_DESCRIPTION(DRV_DESC);
302MODULE_AUTHOR("Chelsio Communications");
303MODULE_LICENSE("Dual BSD/GPL");
304MODULE_VERSION(DRV_VERSION);
305MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
16e47624 306MODULE_FIRMWARE(FW4_FNAME);
0a57a536 307MODULE_FIRMWARE(FW5_FNAME);
b8ff05a9 308
636f9d37
VP
309/*
310 * Normally we're willing to become the firmware's Master PF but will be happy
311 * if another PF has already become the Master and initialized the adapter.
312 * Setting "force_init" will cause this driver to forcibly establish itself as
313 * the Master PF and initialize the adapter.
314 */
315static uint force_init;
316
317module_param(force_init, uint, 0644);
318MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
319
13ee15d3
VP
320/*
321 * Normally if the firmware we connect to has Configuration File support, we
322 * use that and only fall back to the old Driver-based initialization if the
323 * Configuration File fails for some reason. If force_old_init is set, then
324 * we'll always use the old Driver-based initialization sequence.
325 */
326static uint force_old_init;
327
328module_param(force_old_init, uint, 0644);
329MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
330
b8ff05a9
DM
331static int dflt_msg_enable = DFLT_MSG_ENABLE;
332
333module_param(dflt_msg_enable, int, 0644);
334MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
335
336/*
337 * The driver uses the best interrupt scheme available on a platform in the
338 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
339 * of these schemes the driver may consider as follows:
340 *
341 * msi = 2: choose from among all three options
342 * msi = 1: only consider MSI and INTx interrupts
343 * msi = 0: force INTx interrupts
344 */
345static int msi = 2;
346
347module_param(msi, int, 0644);
348MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
349
350/*
351 * Queue interrupt hold-off timer values. Queues default to the first of these
352 * upon creation.
353 */
354static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
355
356module_param_array(intr_holdoff, uint, NULL, 0644);
357MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
358 "0..4 in microseconds");
359
360static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
361
362module_param_array(intr_cnt, uint, NULL, 0644);
363MODULE_PARM_DESC(intr_cnt,
364 "thresholds 1..3 for queue interrupt packet counters");
365
636f9d37
VP
366/*
367 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
368 * offset by 2 bytes in order to have the IP headers line up on 4-byte
369 * boundaries. This is a requirement for many architectures which will throw
370 * a machine check fault if an attempt is made to access one of the 4-byte IP
371 * header fields on a non-4-byte boundary. And it's a major performance issue
372 * even on some architectures which allow it like some implementations of the
373 * x86 ISA. However, some architectures don't mind this and for some very
374 * edge-case performance sensitive applications (like forwarding large volumes
375 * of small packets), setting this DMA offset to 0 will decrease the number of
376 * PCI-E Bus transfers enough to measurably affect performance.
377 */
378static int rx_dma_offset = 2;
379
eb939922 380static bool vf_acls;
b8ff05a9
DM
381
382#ifdef CONFIG_PCI_IOV
383module_param(vf_acls, bool, 0644);
384MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
385
7d6727cf
SR
386/* Configure the number of PCI-E Virtual Function which are to be instantiated
387 * on SR-IOV Capable Physical Functions.
0a57a536 388 */
7d6727cf 389static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
b8ff05a9
DM
390
391module_param_array(num_vf, uint, NULL, 0644);
7d6727cf 392MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
b8ff05a9
DM
393#endif
394
688848b1
AB
395/* TX Queue select used to determine what algorithm to use for selecting TX
396 * queue. Select between the kernel provided function (select_queue=0) or user
397 * cxgb_select_queue function (select_queue=1)
398 *
399 * Default: select_queue=0
400 */
401static int select_queue;
402module_param(select_queue, int, 0644);
403MODULE_PARM_DESC(select_queue,
404 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
405
13ee15d3
VP
406/*
407 * The filter TCAM has a fixed portion and a variable portion. The fixed
408 * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
409 * ports. The variable portion is 36 bits which can include things like Exact
410 * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
411 * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
412 * far exceed the 36-bit budget for this "compressed" header portion of the
413 * filter. Thus, we have a scarce resource which must be carefully managed.
414 *
415 * By default we set this up to mostly match the set of filter matching
416 * capabilities of T3 but with accommodations for some of T4's more
417 * interesting features:
418 *
419 * { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
420 * [Inner] VLAN (17), Port (3), FCoE (1) }
421 */
422enum {
423 TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
424 TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
425 TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
426};
427
428static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
429
f2b7e78d
VP
430module_param(tp_vlan_pri_map, uint, 0644);
431MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
432
b8ff05a9
DM
433static struct dentry *cxgb4_debugfs_root;
434
435static LIST_HEAD(adapter_list);
436static DEFINE_MUTEX(uld_mutex);
01bcca68
VP
437/* Adapter list to be accessed from atomic context */
438static LIST_HEAD(adap_rcu_list);
439static DEFINE_SPINLOCK(adap_rcu_lock);
b8ff05a9
DM
440static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
441static const char *uld_str[] = { "RDMA", "iSCSI" };
442
443static void link_report(struct net_device *dev)
444{
445 if (!netif_carrier_ok(dev))
446 netdev_info(dev, "link down\n");
447 else {
448 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
449
450 const char *s = "10Mbps";
451 const struct port_info *p = netdev_priv(dev);
452
453 switch (p->link_cfg.speed) {
e8b39015 454 case 10000:
b8ff05a9
DM
455 s = "10Gbps";
456 break;
e8b39015 457 case 1000:
b8ff05a9
DM
458 s = "1000Mbps";
459 break;
e8b39015 460 case 100:
b8ff05a9
DM
461 s = "100Mbps";
462 break;
e8b39015 463 case 40000:
72aca4bf
KS
464 s = "40Gbps";
465 break;
b8ff05a9
DM
466 }
467
468 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
469 fc[p->link_cfg.fc]);
470 }
471}
472
688848b1
AB
473#ifdef CONFIG_CHELSIO_T4_DCB
474/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
475static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
476{
477 struct port_info *pi = netdev_priv(dev);
478 struct adapter *adap = pi->adapter;
479 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
480 int i;
481
482 /* We use a simple mapping of Port TX Queue Index to DCB
483 * Priority when we're enabling DCB.
484 */
485 for (i = 0; i < pi->nqsets; i++, txq++) {
486 u32 name, value;
487 int err;
488
489 name = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
490 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
491 FW_PARAMS_PARAM_YZ(txq->q.cntxt_id));
492 value = enable ? i : 0xffffffff;
493
494 /* Since we can be called while atomic (from "interrupt
495 * level") we need to issue the Set Parameters Commannd
496 * without sleeping (timeout < 0).
497 */
498 err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
499 &name, &value);
500
501 if (err)
502 dev_err(adap->pdev_dev,
503 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
504 enable ? "set" : "unset", pi->port_id, i, -err);
505 }
506}
507#endif /* CONFIG_CHELSIO_T4_DCB */
508
b8ff05a9
DM
509void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
510{
511 struct net_device *dev = adapter->port[port_id];
512
513 /* Skip changes from disabled ports. */
514 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
515 if (link_stat)
516 netif_carrier_on(dev);
688848b1
AB
517 else {
518#ifdef CONFIG_CHELSIO_T4_DCB
519 cxgb4_dcb_state_init(dev);
520 dcb_tx_queue_prio_enable(dev, false);
521#endif /* CONFIG_CHELSIO_T4_DCB */
b8ff05a9 522 netif_carrier_off(dev);
688848b1 523 }
b8ff05a9
DM
524
525 link_report(dev);
526 }
527}
528
529void t4_os_portmod_changed(const struct adapter *adap, int port_id)
530{
531 static const char *mod_str[] = {
a0881cab 532 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
b8ff05a9
DM
533 };
534
535 const struct net_device *dev = adap->port[port_id];
536 const struct port_info *pi = netdev_priv(dev);
537
538 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
539 netdev_info(dev, "port module unplugged\n");
a0881cab 540 else if (pi->mod_type < ARRAY_SIZE(mod_str))
b8ff05a9
DM
541 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
542}
543
544/*
545 * Configure the exact and hash address filters to handle a port's multicast
546 * and secondary unicast MAC addresses.
547 */
548static int set_addr_filters(const struct net_device *dev, bool sleep)
549{
550 u64 mhash = 0;
551 u64 uhash = 0;
552 bool free = true;
553 u16 filt_idx[7];
554 const u8 *addr[7];
555 int ret, naddr = 0;
b8ff05a9
DM
556 const struct netdev_hw_addr *ha;
557 int uc_cnt = netdev_uc_count(dev);
4a35ecf8 558 int mc_cnt = netdev_mc_count(dev);
b8ff05a9 559 const struct port_info *pi = netdev_priv(dev);
060e0c75 560 unsigned int mb = pi->adapter->fn;
b8ff05a9
DM
561
562 /* first do the secondary unicast addresses */
563 netdev_for_each_uc_addr(ha, dev) {
564 addr[naddr++] = ha->addr;
565 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
060e0c75 566 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
b8ff05a9
DM
567 naddr, addr, filt_idx, &uhash, sleep);
568 if (ret < 0)
569 return ret;
570
571 free = false;
572 naddr = 0;
573 }
574 }
575
576 /* next set up the multicast addresses */
4a35ecf8
DM
577 netdev_for_each_mc_addr(ha, dev) {
578 addr[naddr++] = ha->addr;
579 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
060e0c75 580 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
b8ff05a9
DM
581 naddr, addr, filt_idx, &mhash, sleep);
582 if (ret < 0)
583 return ret;
584
585 free = false;
586 naddr = 0;
587 }
588 }
589
060e0c75 590 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
b8ff05a9
DM
591 uhash | mhash, sleep);
592}
593
3069ee9b
VP
594int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
595module_param(dbfifo_int_thresh, int, 0644);
596MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
597
404d9e3f
VP
598/*
599 * usecs to sleep while draining the dbfifo
600 */
601static int dbfifo_drain_delay = 1000;
3069ee9b
VP
602module_param(dbfifo_drain_delay, int, 0644);
603MODULE_PARM_DESC(dbfifo_drain_delay,
604 "usecs to sleep while draining the dbfifo");
605
b8ff05a9
DM
606/*
607 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
608 * If @mtu is -1 it is left unchanged.
609 */
610static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
611{
612 int ret;
613 struct port_info *pi = netdev_priv(dev);
614
615 ret = set_addr_filters(dev, sleep_ok);
616 if (ret == 0)
060e0c75 617 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
b8ff05a9 618 (dev->flags & IFF_PROMISC) ? 1 : 0,
f8f5aafa 619 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
b8ff05a9
DM
620 sleep_ok);
621 return ret;
622}
623
3069ee9b
VP
624static struct workqueue_struct *workq;
625
b8ff05a9
DM
626/**
627 * link_start - enable a port
628 * @dev: the port to enable
629 *
630 * Performs the MAC and PHY actions needed to enable a port.
631 */
632static int link_start(struct net_device *dev)
633{
634 int ret;
635 struct port_info *pi = netdev_priv(dev);
060e0c75 636 unsigned int mb = pi->adapter->fn;
b8ff05a9
DM
637
638 /*
639 * We do not set address filters and promiscuity here, the stack does
640 * that step explicitly.
641 */
060e0c75 642 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
f646968f 643 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
b8ff05a9 644 if (ret == 0) {
060e0c75 645 ret = t4_change_mac(pi->adapter, mb, pi->viid,
b8ff05a9 646 pi->xact_addr_filt, dev->dev_addr, true,
b6bd29e7 647 true);
b8ff05a9
DM
648 if (ret >= 0) {
649 pi->xact_addr_filt = ret;
650 ret = 0;
651 }
652 }
653 if (ret == 0)
060e0c75
DM
654 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
655 &pi->link_cfg);
b8ff05a9 656 if (ret == 0)
688848b1
AB
657 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
658 true, CXGB4_DCB_ENABLED);
659
b8ff05a9
DM
660 return ret;
661}
662
688848b1
AB
663int cxgb4_dcb_enabled(const struct net_device *dev)
664{
665#ifdef CONFIG_CHELSIO_T4_DCB
666 struct port_info *pi = netdev_priv(dev);
667
668 return pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED;
669#else
670 return 0;
671#endif
672}
673EXPORT_SYMBOL(cxgb4_dcb_enabled);
674
675#ifdef CONFIG_CHELSIO_T4_DCB
676/* Handle a Data Center Bridging update message from the firmware. */
677static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
678{
679 int port = FW_PORT_CMD_PORTID_GET(ntohl(pcmd->op_to_portid));
680 struct net_device *dev = adap->port[port];
681 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
682 int new_dcb_enabled;
683
684 cxgb4_dcb_handle_fw_update(adap, pcmd);
685 new_dcb_enabled = cxgb4_dcb_enabled(dev);
686
687 /* If the DCB has become enabled or disabled on the port then we're
688 * going to need to set up/tear down DCB Priority parameters for the
689 * TX Queues associated with the port.
690 */
691 if (new_dcb_enabled != old_dcb_enabled)
692 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
693}
694#endif /* CONFIG_CHELSIO_T4_DCB */
695
f2b7e78d
VP
696/* Clear a filter and release any of its resources that we own. This also
697 * clears the filter's "pending" status.
698 */
699static void clear_filter(struct adapter *adap, struct filter_entry *f)
700{
701 /* If the new or old filter have loopback rewriteing rules then we'll
702 * need to free any existing Layer Two Table (L2T) entries of the old
703 * filter rule. The firmware will handle freeing up any Source MAC
704 * Table (SMT) entries used for rewriting Source MAC Addresses in
705 * loopback rules.
706 */
707 if (f->l2t)
708 cxgb4_l2t_release(f->l2t);
709
710 /* The zeroing of the filter rule below clears the filter valid,
711 * pending, locked flags, l2t pointer, etc. so it's all we need for
712 * this operation.
713 */
714 memset(f, 0, sizeof(*f));
715}
716
717/* Handle a filter write/deletion reply.
718 */
719static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
720{
721 unsigned int idx = GET_TID(rpl);
722 unsigned int nidx = idx - adap->tids.ftid_base;
723 unsigned int ret;
724 struct filter_entry *f;
725
726 if (idx >= adap->tids.ftid_base && nidx <
727 (adap->tids.nftids + adap->tids.nsftids)) {
728 idx = nidx;
729 ret = GET_TCB_COOKIE(rpl->cookie);
730 f = &adap->tids.ftid_tab[idx];
731
732 if (ret == FW_FILTER_WR_FLT_DELETED) {
733 /* Clear the filter when we get confirmation from the
734 * hardware that the filter has been deleted.
735 */
736 clear_filter(adap, f);
737 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
738 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
739 idx);
740 clear_filter(adap, f);
741 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
742 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
743 f->pending = 0; /* asynchronous setup completed */
744 f->valid = 1;
745 } else {
746 /* Something went wrong. Issue a warning about the
747 * problem and clear everything out.
748 */
749 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
750 idx, ret);
751 clear_filter(adap, f);
752 }
753 }
754}
755
756/* Response queue handler for the FW event queue.
b8ff05a9
DM
757 */
758static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
759 const struct pkt_gl *gl)
760{
761 u8 opcode = ((const struct rss_header *)rsp)->opcode;
762
763 rsp++; /* skip RSS header */
b407a4a9
VP
764
765 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
766 */
767 if (unlikely(opcode == CPL_FW4_MSG &&
768 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
769 rsp++;
770 opcode = ((const struct rss_header *)rsp)->opcode;
771 rsp++;
772 if (opcode != CPL_SGE_EGR_UPDATE) {
773 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
774 , opcode);
775 goto out;
776 }
777 }
778
b8ff05a9
DM
779 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
780 const struct cpl_sge_egr_update *p = (void *)rsp;
781 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
e46dab4d 782 struct sge_txq *txq;
b8ff05a9 783
e46dab4d 784 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
b8ff05a9 785 txq->restarts++;
e46dab4d 786 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
b8ff05a9
DM
787 struct sge_eth_txq *eq;
788
789 eq = container_of(txq, struct sge_eth_txq, q);
790 netif_tx_wake_queue(eq->txq);
791 } else {
792 struct sge_ofld_txq *oq;
793
794 oq = container_of(txq, struct sge_ofld_txq, q);
795 tasklet_schedule(&oq->qresume_tsk);
796 }
797 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
798 const struct cpl_fw6_msg *p = (void *)rsp;
799
688848b1
AB
800#ifdef CONFIG_CHELSIO_T4_DCB
801 const struct fw_port_cmd *pcmd = (const void *)p->data;
802 unsigned int cmd = FW_CMD_OP_GET(ntohl(pcmd->op_to_portid));
803 unsigned int action =
804 FW_PORT_CMD_ACTION_GET(ntohl(pcmd->action_to_len16));
805
806 if (cmd == FW_PORT_CMD &&
807 action == FW_PORT_ACTION_GET_PORT_INFO) {
808 int port = FW_PORT_CMD_PORTID_GET(
809 be32_to_cpu(pcmd->op_to_portid));
810 struct net_device *dev = q->adap->port[port];
811 int state_input = ((pcmd->u.info.dcbxdis_pkd &
812 FW_PORT_CMD_DCBXDIS)
813 ? CXGB4_DCB_INPUT_FW_DISABLED
814 : CXGB4_DCB_INPUT_FW_ENABLED);
815
816 cxgb4_dcb_state_fsm(dev, state_input);
817 }
818
819 if (cmd == FW_PORT_CMD &&
820 action == FW_PORT_ACTION_L2_DCB_CFG)
821 dcb_rpl(q->adap, pcmd);
822 else
823#endif
824 if (p->type == 0)
825 t4_handle_fw_rpl(q->adap, p->data);
b8ff05a9
DM
826 } else if (opcode == CPL_L2T_WRITE_RPL) {
827 const struct cpl_l2t_write_rpl *p = (void *)rsp;
828
829 do_l2t_write_rpl(q->adap, p);
f2b7e78d
VP
830 } else if (opcode == CPL_SET_TCB_RPL) {
831 const struct cpl_set_tcb_rpl *p = (void *)rsp;
832
833 filter_rpl(q->adap, p);
b8ff05a9
DM
834 } else
835 dev_err(q->adap->pdev_dev,
836 "unexpected CPL %#x on FW event queue\n", opcode);
b407a4a9 837out:
b8ff05a9
DM
838 return 0;
839}
840
841/**
842 * uldrx_handler - response queue handler for ULD queues
843 * @q: the response queue that received the packet
844 * @rsp: the response queue descriptor holding the offload message
845 * @gl: the gather list of packet fragments
846 *
847 * Deliver an ingress offload packet to a ULD. All processing is done by
848 * the ULD, we just maintain statistics.
849 */
850static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
851 const struct pkt_gl *gl)
852{
853 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
854
b407a4a9
VP
855 /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
856 */
857 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
858 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
859 rsp += 2;
860
b8ff05a9
DM
861 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
862 rxq->stats.nomem++;
863 return -1;
864 }
865 if (gl == NULL)
866 rxq->stats.imm++;
867 else if (gl == CXGB4_MSG_AN)
868 rxq->stats.an++;
869 else
870 rxq->stats.pkts++;
871 return 0;
872}
873
874static void disable_msi(struct adapter *adapter)
875{
876 if (adapter->flags & USING_MSIX) {
877 pci_disable_msix(adapter->pdev);
878 adapter->flags &= ~USING_MSIX;
879 } else if (adapter->flags & USING_MSI) {
880 pci_disable_msi(adapter->pdev);
881 adapter->flags &= ~USING_MSI;
882 }
883}
884
885/*
886 * Interrupt handler for non-data events used with MSI-X.
887 */
888static irqreturn_t t4_nondata_intr(int irq, void *cookie)
889{
890 struct adapter *adap = cookie;
891
892 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
893 if (v & PFSW) {
894 adap->swintr = 1;
895 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
896 }
897 t4_slow_intr_handler(adap);
898 return IRQ_HANDLED;
899}
900
901/*
902 * Name the MSI-X interrupts.
903 */
904static void name_msix_vecs(struct adapter *adap)
905{
ba27816c 906 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
b8ff05a9
DM
907
908 /* non-data interrupts */
b1a3c2b6 909 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
b8ff05a9
DM
910
911 /* FW events */
b1a3c2b6
DM
912 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
913 adap->port[0]->name);
b8ff05a9
DM
914
915 /* Ethernet queues */
916 for_each_port(adap, j) {
917 struct net_device *d = adap->port[j];
918 const struct port_info *pi = netdev_priv(d);
919
ba27816c 920 for (i = 0; i < pi->nqsets; i++, msi_idx++)
b8ff05a9
DM
921 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
922 d->name, i);
b8ff05a9
DM
923 }
924
925 /* offload queues */
ba27816c
DM
926 for_each_ofldrxq(&adap->sge, i)
927 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
b1a3c2b6 928 adap->port[0]->name, i);
ba27816c
DM
929
930 for_each_rdmarxq(&adap->sge, i)
931 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
b1a3c2b6 932 adap->port[0]->name, i);
cf38be6d
HS
933
934 for_each_rdmaciq(&adap->sge, i)
935 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
936 adap->port[0]->name, i);
b8ff05a9
DM
937}
938
939static int request_msix_queue_irqs(struct adapter *adap)
940{
941 struct sge *s = &adap->sge;
cf38be6d
HS
942 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
943 int msi_index = 2;
b8ff05a9
DM
944
945 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
946 adap->msix_info[1].desc, &s->fw_evtq);
947 if (err)
948 return err;
949
950 for_each_ethrxq(s, ethqidx) {
404d9e3f
VP
951 err = request_irq(adap->msix_info[msi_index].vec,
952 t4_sge_intr_msix, 0,
953 adap->msix_info[msi_index].desc,
b8ff05a9
DM
954 &s->ethrxq[ethqidx].rspq);
955 if (err)
956 goto unwind;
404d9e3f 957 msi_index++;
b8ff05a9
DM
958 }
959 for_each_ofldrxq(s, ofldqidx) {
404d9e3f
VP
960 err = request_irq(adap->msix_info[msi_index].vec,
961 t4_sge_intr_msix, 0,
962 adap->msix_info[msi_index].desc,
b8ff05a9
DM
963 &s->ofldrxq[ofldqidx].rspq);
964 if (err)
965 goto unwind;
404d9e3f 966 msi_index++;
b8ff05a9
DM
967 }
968 for_each_rdmarxq(s, rdmaqidx) {
404d9e3f
VP
969 err = request_irq(adap->msix_info[msi_index].vec,
970 t4_sge_intr_msix, 0,
971 adap->msix_info[msi_index].desc,
b8ff05a9
DM
972 &s->rdmarxq[rdmaqidx].rspq);
973 if (err)
974 goto unwind;
404d9e3f 975 msi_index++;
b8ff05a9 976 }
cf38be6d
HS
977 for_each_rdmaciq(s, rdmaciqqidx) {
978 err = request_irq(adap->msix_info[msi_index].vec,
979 t4_sge_intr_msix, 0,
980 adap->msix_info[msi_index].desc,
981 &s->rdmaciq[rdmaciqqidx].rspq);
982 if (err)
983 goto unwind;
984 msi_index++;
985 }
b8ff05a9
DM
986 return 0;
987
988unwind:
cf38be6d
HS
989 while (--rdmaciqqidx >= 0)
990 free_irq(adap->msix_info[--msi_index].vec,
991 &s->rdmaciq[rdmaciqqidx].rspq);
b8ff05a9 992 while (--rdmaqidx >= 0)
404d9e3f 993 free_irq(adap->msix_info[--msi_index].vec,
b8ff05a9
DM
994 &s->rdmarxq[rdmaqidx].rspq);
995 while (--ofldqidx >= 0)
404d9e3f 996 free_irq(adap->msix_info[--msi_index].vec,
b8ff05a9
DM
997 &s->ofldrxq[ofldqidx].rspq);
998 while (--ethqidx >= 0)
404d9e3f
VP
999 free_irq(adap->msix_info[--msi_index].vec,
1000 &s->ethrxq[ethqidx].rspq);
b8ff05a9
DM
1001 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1002 return err;
1003}
1004
1005static void free_msix_queue_irqs(struct adapter *adap)
1006{
404d9e3f 1007 int i, msi_index = 2;
b8ff05a9
DM
1008 struct sge *s = &adap->sge;
1009
1010 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1011 for_each_ethrxq(s, i)
404d9e3f 1012 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
b8ff05a9 1013 for_each_ofldrxq(s, i)
404d9e3f 1014 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
b8ff05a9 1015 for_each_rdmarxq(s, i)
404d9e3f 1016 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
cf38be6d
HS
1017 for_each_rdmaciq(s, i)
1018 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
b8ff05a9
DM
1019}
1020
671b0060
DM
1021/**
1022 * write_rss - write the RSS table for a given port
1023 * @pi: the port
1024 * @queues: array of queue indices for RSS
1025 *
1026 * Sets up the portion of the HW RSS table for the port's VI to distribute
1027 * packets to the Rx queues in @queues.
1028 */
1029static int write_rss(const struct port_info *pi, const u16 *queues)
1030{
1031 u16 *rss;
1032 int i, err;
1033 const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
1034
1035 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
1036 if (!rss)
1037 return -ENOMEM;
1038
1039 /* map the queue indices to queue ids */
1040 for (i = 0; i < pi->rss_size; i++, queues++)
1041 rss[i] = q[*queues].rspq.abs_id;
1042
060e0c75
DM
1043 err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
1044 pi->rss_size, rss, pi->rss_size);
671b0060
DM
1045 kfree(rss);
1046 return err;
1047}
1048
b8ff05a9
DM
1049/**
1050 * setup_rss - configure RSS
1051 * @adap: the adapter
1052 *
671b0060 1053 * Sets up RSS for each port.
b8ff05a9
DM
1054 */
1055static int setup_rss(struct adapter *adap)
1056{
671b0060 1057 int i, err;
b8ff05a9
DM
1058
1059 for_each_port(adap, i) {
1060 const struct port_info *pi = adap2pinfo(adap, i);
b8ff05a9 1061
671b0060 1062 err = write_rss(pi, pi->rss);
b8ff05a9
DM
1063 if (err)
1064 return err;
1065 }
1066 return 0;
1067}
1068
e46dab4d
DM
1069/*
1070 * Return the channel of the ingress queue with the given qid.
1071 */
1072static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
1073{
1074 qid -= p->ingr_start;
1075 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
1076}
1077
b8ff05a9
DM
1078/*
1079 * Wait until all NAPI handlers are descheduled.
1080 */
1081static void quiesce_rx(struct adapter *adap)
1082{
1083 int i;
1084
1085 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1086 struct sge_rspq *q = adap->sge.ingr_map[i];
1087
1088 if (q && q->handler)
1089 napi_disable(&q->napi);
1090 }
1091}
1092
1093/*
1094 * Enable NAPI scheduling and interrupt generation for all Rx queues.
1095 */
1096static void enable_rx(struct adapter *adap)
1097{
1098 int i;
1099
1100 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1101 struct sge_rspq *q = adap->sge.ingr_map[i];
1102
1103 if (!q)
1104 continue;
1105 if (q->handler)
1106 napi_enable(&q->napi);
1107 /* 0-increment GTS to start the timer and enable interrupts */
1108 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
1109 SEINTARM(q->intr_params) |
1110 INGRESSQID(q->cntxt_id));
1111 }
1112}
1113
1114/**
1115 * setup_sge_queues - configure SGE Tx/Rx/response queues
1116 * @adap: the adapter
1117 *
1118 * Determines how many sets of SGE queues to use and initializes them.
1119 * We support multiple queue sets per port if we have MSI-X, otherwise
1120 * just one queue set per port.
1121 */
1122static int setup_sge_queues(struct adapter *adap)
1123{
1124 int err, msi_idx, i, j;
1125 struct sge *s = &adap->sge;
1126
1127 bitmap_zero(s->starving_fl, MAX_EGRQ);
1128 bitmap_zero(s->txq_maperr, MAX_EGRQ);
1129
1130 if (adap->flags & USING_MSIX)
1131 msi_idx = 1; /* vector 0 is for non-queue interrupts */
1132 else {
1133 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1134 NULL, NULL);
1135 if (err)
1136 return err;
1137 msi_idx = -((int)s->intrq.abs_id + 1);
1138 }
1139
1140 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1141 msi_idx, NULL, fwevtq_handler);
1142 if (err) {
1143freeout: t4_free_sge_resources(adap);
1144 return err;
1145 }
1146
1147 for_each_port(adap, i) {
1148 struct net_device *dev = adap->port[i];
1149 struct port_info *pi = netdev_priv(dev);
1150 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1151 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1152
1153 for (j = 0; j < pi->nqsets; j++, q++) {
1154 if (msi_idx > 0)
1155 msi_idx++;
1156 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1157 msi_idx, &q->fl,
1158 t4_ethrx_handler);
1159 if (err)
1160 goto freeout;
1161 q->rspq.idx = j;
1162 memset(&q->stats, 0, sizeof(q->stats));
1163 }
1164 for (j = 0; j < pi->nqsets; j++, t++) {
1165 err = t4_sge_alloc_eth_txq(adap, t, dev,
1166 netdev_get_tx_queue(dev, j),
1167 s->fw_evtq.cntxt_id);
1168 if (err)
1169 goto freeout;
1170 }
1171 }
1172
1173 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1174 for_each_ofldrxq(s, i) {
1175 struct sge_ofld_rxq *q = &s->ofldrxq[i];
1176 struct net_device *dev = adap->port[i / j];
1177
1178 if (msi_idx > 0)
1179 msi_idx++;
1180 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
cf38be6d
HS
1181 q->fl.size ? &q->fl : NULL,
1182 uldrx_handler);
b8ff05a9
DM
1183 if (err)
1184 goto freeout;
1185 memset(&q->stats, 0, sizeof(q->stats));
1186 s->ofld_rxq[i] = q->rspq.abs_id;
1187 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
1188 s->fw_evtq.cntxt_id);
1189 if (err)
1190 goto freeout;
1191 }
1192
1193 for_each_rdmarxq(s, i) {
1194 struct sge_ofld_rxq *q = &s->rdmarxq[i];
1195
1196 if (msi_idx > 0)
1197 msi_idx++;
1198 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
cf38be6d
HS
1199 msi_idx, q->fl.size ? &q->fl : NULL,
1200 uldrx_handler);
b8ff05a9
DM
1201 if (err)
1202 goto freeout;
1203 memset(&q->stats, 0, sizeof(q->stats));
1204 s->rdma_rxq[i] = q->rspq.abs_id;
1205 }
1206
cf38be6d
HS
1207 for_each_rdmaciq(s, i) {
1208 struct sge_ofld_rxq *q = &s->rdmaciq[i];
1209
1210 if (msi_idx > 0)
1211 msi_idx++;
1212 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1213 msi_idx, q->fl.size ? &q->fl : NULL,
1214 uldrx_handler);
1215 if (err)
1216 goto freeout;
1217 memset(&q->stats, 0, sizeof(q->stats));
1218 s->rdma_ciq[i] = q->rspq.abs_id;
1219 }
1220
b8ff05a9
DM
1221 for_each_port(adap, i) {
1222 /*
1223 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1224 * have RDMA queues, and that's the right value.
1225 */
1226 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1227 s->fw_evtq.cntxt_id,
1228 s->rdmarxq[i].rspq.cntxt_id);
1229 if (err)
1230 goto freeout;
1231 }
1232
1233 t4_write_reg(adap, MPS_TRC_RSS_CONTROL,
1234 RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
1235 QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
1236 return 0;
1237}
1238
b8ff05a9
DM
1239/*
1240 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1241 * The allocated memory is cleared.
1242 */
1243void *t4_alloc_mem(size_t size)
1244{
8be04b93 1245 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
b8ff05a9
DM
1246
1247 if (!p)
89bf67f1 1248 p = vzalloc(size);
b8ff05a9
DM
1249 return p;
1250}
1251
1252/*
1253 * Free memory allocated through alloc_mem().
1254 */
31b9c19b 1255static void t4_free_mem(void *addr)
b8ff05a9
DM
1256{
1257 if (is_vmalloc_addr(addr))
1258 vfree(addr);
1259 else
1260 kfree(addr);
1261}
1262
f2b7e78d
VP
1263/* Send a Work Request to write the filter at a specified index. We construct
1264 * a Firmware Filter Work Request to have the work done and put the indicated
1265 * filter into "pending" mode which will prevent any further actions against
1266 * it till we get a reply from the firmware on the completion status of the
1267 * request.
1268 */
1269static int set_filter_wr(struct adapter *adapter, int fidx)
1270{
1271 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1272 struct sk_buff *skb;
1273 struct fw_filter_wr *fwr;
1274 unsigned int ftid;
1275
1276 /* If the new filter requires loopback Destination MAC and/or VLAN
1277 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1278 * the filter.
1279 */
1280 if (f->fs.newdmac || f->fs.newvlan) {
1281 /* allocate L2T entry for new filter */
1282 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1283 if (f->l2t == NULL)
1284 return -EAGAIN;
1285 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1286 f->fs.eport, f->fs.dmac)) {
1287 cxgb4_l2t_release(f->l2t);
1288 f->l2t = NULL;
1289 return -ENOMEM;
1290 }
1291 }
1292
1293 ftid = adapter->tids.ftid_base + fidx;
1294
1295 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1296 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1297 memset(fwr, 0, sizeof(*fwr));
1298
1299 /* It would be nice to put most of the following in t4_hw.c but most
1300 * of the work is translating the cxgbtool ch_filter_specification
1301 * into the Work Request and the definition of that structure is
1302 * currently in cxgbtool.h which isn't appropriate to pull into the
1303 * common code. We may eventually try to come up with a more neutral
1304 * filter specification structure but for now it's easiest to simply
1305 * put this fairly direct code in line ...
1306 */
1307 fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
1308 fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16));
1309 fwr->tid_to_iq =
1310 htonl(V_FW_FILTER_WR_TID(ftid) |
1311 V_FW_FILTER_WR_RQTYPE(f->fs.type) |
1312 V_FW_FILTER_WR_NOREPLY(0) |
1313 V_FW_FILTER_WR_IQ(f->fs.iq));
1314 fwr->del_filter_to_l2tix =
1315 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
1316 V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
1317 V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
1318 V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
1319 V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
1320 V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
1321 V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
1322 V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
1323 V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
1324 f->fs.newvlan == VLAN_REWRITE) |
1325 V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
1326 f->fs.newvlan == VLAN_REWRITE) |
1327 V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
1328 V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
1329 V_FW_FILTER_WR_PRIO(f->fs.prio) |
1330 V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
1331 fwr->ethtype = htons(f->fs.val.ethtype);
1332 fwr->ethtypem = htons(f->fs.mask.ethtype);
1333 fwr->frag_to_ovlan_vldm =
1334 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
1335 V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
1336 V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
1337 V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
1338 V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
1339 V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
1340 fwr->smac_sel = 0;
1341 fwr->rx_chan_rx_rpl_iq =
1342 htons(V_FW_FILTER_WR_RX_CHAN(0) |
1343 V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
1344 fwr->maci_to_matchtypem =
1345 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
1346 V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
1347 V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
1348 V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
1349 V_FW_FILTER_WR_PORT(f->fs.val.iport) |
1350 V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
1351 V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
1352 V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
1353 fwr->ptcl = f->fs.val.proto;
1354 fwr->ptclm = f->fs.mask.proto;
1355 fwr->ttyp = f->fs.val.tos;
1356 fwr->ttypm = f->fs.mask.tos;
1357 fwr->ivlan = htons(f->fs.val.ivlan);
1358 fwr->ivlanm = htons(f->fs.mask.ivlan);
1359 fwr->ovlan = htons(f->fs.val.ovlan);
1360 fwr->ovlanm = htons(f->fs.mask.ovlan);
1361 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1362 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1363 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1364 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1365 fwr->lp = htons(f->fs.val.lport);
1366 fwr->lpm = htons(f->fs.mask.lport);
1367 fwr->fp = htons(f->fs.val.fport);
1368 fwr->fpm = htons(f->fs.mask.fport);
1369 if (f->fs.newsmac)
1370 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1371
1372 /* Mark the filter as "pending" and ship off the Filter Work Request.
1373 * When we get the Work Request Reply we'll clear the pending status.
1374 */
1375 f->pending = 1;
1376 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1377 t4_ofld_send(adapter, skb);
1378 return 0;
1379}
1380
1381/* Delete the filter at a specified index.
1382 */
1383static int del_filter_wr(struct adapter *adapter, int fidx)
1384{
1385 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1386 struct sk_buff *skb;
1387 struct fw_filter_wr *fwr;
1388 unsigned int len, ftid;
1389
1390 len = sizeof(*fwr);
1391 ftid = adapter->tids.ftid_base + fidx;
1392
1393 skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1394 fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1395 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1396
1397 /* Mark the filter as "pending" and ship off the Filter Work Request.
1398 * When we get the Work Request Reply we'll clear the pending status.
1399 */
1400 f->pending = 1;
1401 t4_mgmt_tx(adapter, skb);
1402 return 0;
1403}
1404
688848b1
AB
1405static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1406 void *accel_priv, select_queue_fallback_t fallback)
1407{
1408 int txq;
1409
1410#ifdef CONFIG_CHELSIO_T4_DCB
1411 /* If a Data Center Bridging has been successfully negotiated on this
1412 * link then we'll use the skb's priority to map it to a TX Queue.
1413 * The skb's priority is determined via the VLAN Tag Priority Code
1414 * Point field.
1415 */
1416 if (cxgb4_dcb_enabled(dev)) {
1417 u16 vlan_tci;
1418 int err;
1419
1420 err = vlan_get_tag(skb, &vlan_tci);
1421 if (unlikely(err)) {
1422 if (net_ratelimit())
1423 netdev_warn(dev,
1424 "TX Packet without VLAN Tag on DCB Link\n");
1425 txq = 0;
1426 } else {
1427 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1428 }
1429 return txq;
1430 }
1431#endif /* CONFIG_CHELSIO_T4_DCB */
1432
1433 if (select_queue) {
1434 txq = (skb_rx_queue_recorded(skb)
1435 ? skb_get_rx_queue(skb)
1436 : smp_processor_id());
1437
1438 while (unlikely(txq >= dev->real_num_tx_queues))
1439 txq -= dev->real_num_tx_queues;
1440
1441 return txq;
1442 }
1443
1444 return fallback(dev, skb) % dev->real_num_tx_queues;
1445}
1446
b8ff05a9
DM
1447static inline int is_offload(const struct adapter *adap)
1448{
1449 return adap->params.offload;
1450}
1451
1452/*
1453 * Implementation of ethtool operations.
1454 */
1455
1456static u32 get_msglevel(struct net_device *dev)
1457{
1458 return netdev2adap(dev)->msg_enable;
1459}
1460
1461static void set_msglevel(struct net_device *dev, u32 val)
1462{
1463 netdev2adap(dev)->msg_enable = val;
1464}
1465
1466static char stats_strings[][ETH_GSTRING_LEN] = {
1467 "TxOctetsOK ",
1468 "TxFramesOK ",
1469 "TxBroadcastFrames ",
1470 "TxMulticastFrames ",
1471 "TxUnicastFrames ",
1472 "TxErrorFrames ",
1473
1474 "TxFrames64 ",
1475 "TxFrames65To127 ",
1476 "TxFrames128To255 ",
1477 "TxFrames256To511 ",
1478 "TxFrames512To1023 ",
1479 "TxFrames1024To1518 ",
1480 "TxFrames1519ToMax ",
1481
1482 "TxFramesDropped ",
1483 "TxPauseFrames ",
1484 "TxPPP0Frames ",
1485 "TxPPP1Frames ",
1486 "TxPPP2Frames ",
1487 "TxPPP3Frames ",
1488 "TxPPP4Frames ",
1489 "TxPPP5Frames ",
1490 "TxPPP6Frames ",
1491 "TxPPP7Frames ",
1492
1493 "RxOctetsOK ",
1494 "RxFramesOK ",
1495 "RxBroadcastFrames ",
1496 "RxMulticastFrames ",
1497 "RxUnicastFrames ",
1498
1499 "RxFramesTooLong ",
1500 "RxJabberErrors ",
1501 "RxFCSErrors ",
1502 "RxLengthErrors ",
1503 "RxSymbolErrors ",
1504 "RxRuntFrames ",
1505
1506 "RxFrames64 ",
1507 "RxFrames65To127 ",
1508 "RxFrames128To255 ",
1509 "RxFrames256To511 ",
1510 "RxFrames512To1023 ",
1511 "RxFrames1024To1518 ",
1512 "RxFrames1519ToMax ",
1513
1514 "RxPauseFrames ",
1515 "RxPPP0Frames ",
1516 "RxPPP1Frames ",
1517 "RxPPP2Frames ",
1518 "RxPPP3Frames ",
1519 "RxPPP4Frames ",
1520 "RxPPP5Frames ",
1521 "RxPPP6Frames ",
1522 "RxPPP7Frames ",
1523
1524 "RxBG0FramesDropped ",
1525 "RxBG1FramesDropped ",
1526 "RxBG2FramesDropped ",
1527 "RxBG3FramesDropped ",
1528 "RxBG0FramesTrunc ",
1529 "RxBG1FramesTrunc ",
1530 "RxBG2FramesTrunc ",
1531 "RxBG3FramesTrunc ",
1532
1533 "TSO ",
1534 "TxCsumOffload ",
1535 "RxCsumGood ",
1536 "VLANextractions ",
1537 "VLANinsertions ",
4a6346d4
DM
1538 "GROpackets ",
1539 "GROmerged ",
22adfe0a
SR
1540 "WriteCoalSuccess ",
1541 "WriteCoalFail ",
b8ff05a9
DM
1542};
1543
1544static int get_sset_count(struct net_device *dev, int sset)
1545{
1546 switch (sset) {
1547 case ETH_SS_STATS:
1548 return ARRAY_SIZE(stats_strings);
1549 default:
1550 return -EOPNOTSUPP;
1551 }
1552}
1553
1554#define T4_REGMAP_SIZE (160 * 1024)
251f9e88 1555#define T5_REGMAP_SIZE (332 * 1024)
b8ff05a9
DM
1556
1557static int get_regs_len(struct net_device *dev)
1558{
251f9e88 1559 struct adapter *adap = netdev2adap(dev);
d14807dd 1560 if (is_t4(adap->params.chip))
251f9e88
SR
1561 return T4_REGMAP_SIZE;
1562 else
1563 return T5_REGMAP_SIZE;
b8ff05a9
DM
1564}
1565
1566static int get_eeprom_len(struct net_device *dev)
1567{
1568 return EEPROMSIZE;
1569}
1570
1571static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1572{
1573 struct adapter *adapter = netdev2adap(dev);
1574
23020ab3
RJ
1575 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1576 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1577 strlcpy(info->bus_info, pci_name(adapter->pdev),
1578 sizeof(info->bus_info));
b8ff05a9 1579
84b40501 1580 if (adapter->params.fw_vers)
b8ff05a9
DM
1581 snprintf(info->fw_version, sizeof(info->fw_version),
1582 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1583 FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1584 FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1585 FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1586 FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1587 FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1588 FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1589 FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1590 FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1591}
1592
1593static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1594{
1595 if (stringset == ETH_SS_STATS)
1596 memcpy(data, stats_strings, sizeof(stats_strings));
1597}
1598
1599/*
1600 * port stats maintained per queue of the port. They should be in the same
1601 * order as in stats_strings above.
1602 */
1603struct queue_port_stats {
1604 u64 tso;
1605 u64 tx_csum;
1606 u64 rx_csum;
1607 u64 vlan_ex;
1608 u64 vlan_ins;
4a6346d4
DM
1609 u64 gro_pkts;
1610 u64 gro_merged;
b8ff05a9
DM
1611};
1612
1613static void collect_sge_port_stats(const struct adapter *adap,
1614 const struct port_info *p, struct queue_port_stats *s)
1615{
1616 int i;
1617 const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1618 const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1619
1620 memset(s, 0, sizeof(*s));
1621 for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1622 s->tso += tx->tso;
1623 s->tx_csum += tx->tx_cso;
1624 s->rx_csum += rx->stats.rx_cso;
1625 s->vlan_ex += rx->stats.vlan_ex;
1626 s->vlan_ins += tx->vlan_ins;
4a6346d4
DM
1627 s->gro_pkts += rx->stats.lro_pkts;
1628 s->gro_merged += rx->stats.lro_merged;
b8ff05a9
DM
1629 }
1630}
1631
1632static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1633 u64 *data)
1634{
1635 struct port_info *pi = netdev_priv(dev);
1636 struct adapter *adapter = pi->adapter;
22adfe0a 1637 u32 val1, val2;
b8ff05a9
DM
1638
1639 t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1640
1641 data += sizeof(struct port_stats) / sizeof(u64);
1642 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
22adfe0a 1643 data += sizeof(struct queue_port_stats) / sizeof(u64);
d14807dd 1644 if (!is_t4(adapter->params.chip)) {
22adfe0a
SR
1645 t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7));
1646 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL);
1647 val2 = t4_read_reg(adapter, SGE_STAT_MATCH);
1648 *data = val1 - val2;
1649 data++;
1650 *data = val2;
1651 data++;
1652 } else {
1653 memset(data, 0, 2 * sizeof(u64));
1654 *data += 2;
1655 }
b8ff05a9
DM
1656}
1657
1658/*
1659 * Return a version number to identify the type of adapter. The scheme is:
1660 * - bits 0..9: chip version
1661 * - bits 10..15: chip revision
835bb606 1662 * - bits 16..23: register dump version
b8ff05a9
DM
1663 */
1664static inline unsigned int mk_adap_vers(const struct adapter *ap)
1665{
d14807dd
HS
1666 return CHELSIO_CHIP_VERSION(ap->params.chip) |
1667 (CHELSIO_CHIP_RELEASE(ap->params.chip) << 10) | (1 << 16);
b8ff05a9
DM
1668}
1669
1670static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1671 unsigned int end)
1672{
1673 u32 *p = buf + start;
1674
1675 for ( ; start <= end; start += sizeof(u32))
1676 *p++ = t4_read_reg(ap, start);
1677}
1678
1679static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1680 void *buf)
1681{
251f9e88 1682 static const unsigned int t4_reg_ranges[] = {
b8ff05a9
DM
1683 0x1008, 0x1108,
1684 0x1180, 0x11b4,
1685 0x11fc, 0x123c,
1686 0x1300, 0x173c,
1687 0x1800, 0x18fc,
1688 0x3000, 0x30d8,
1689 0x30e0, 0x5924,
1690 0x5960, 0x59d4,
1691 0x5a00, 0x5af8,
1692 0x6000, 0x6098,
1693 0x6100, 0x6150,
1694 0x6200, 0x6208,
1695 0x6240, 0x6248,
1696 0x6280, 0x6338,
1697 0x6370, 0x638c,
1698 0x6400, 0x643c,
1699 0x6500, 0x6524,
1700 0x6a00, 0x6a38,
1701 0x6a60, 0x6a78,
1702 0x6b00, 0x6b84,
1703 0x6bf0, 0x6c84,
1704 0x6cf0, 0x6d84,
1705 0x6df0, 0x6e84,
1706 0x6ef0, 0x6f84,
1707 0x6ff0, 0x7084,
1708 0x70f0, 0x7184,
1709 0x71f0, 0x7284,
1710 0x72f0, 0x7384,
1711 0x73f0, 0x7450,
1712 0x7500, 0x7530,
1713 0x7600, 0x761c,
1714 0x7680, 0x76cc,
1715 0x7700, 0x7798,
1716 0x77c0, 0x77fc,
1717 0x7900, 0x79fc,
1718 0x7b00, 0x7c38,
1719 0x7d00, 0x7efc,
1720 0x8dc0, 0x8e1c,
1721 0x8e30, 0x8e78,
1722 0x8ea0, 0x8f6c,
1723 0x8fc0, 0x9074,
1724 0x90fc, 0x90fc,
1725 0x9400, 0x9458,
1726 0x9600, 0x96bc,
1727 0x9800, 0x9808,
1728 0x9820, 0x983c,
1729 0x9850, 0x9864,
1730 0x9c00, 0x9c6c,
1731 0x9c80, 0x9cec,
1732 0x9d00, 0x9d6c,
1733 0x9d80, 0x9dec,
1734 0x9e00, 0x9e6c,
1735 0x9e80, 0x9eec,
1736 0x9f00, 0x9f6c,
1737 0x9f80, 0x9fec,
1738 0xd004, 0xd03c,
1739 0xdfc0, 0xdfe0,
1740 0xe000, 0xea7c,
1741 0xf000, 0x11190,
835bb606
DM
1742 0x19040, 0x1906c,
1743 0x19078, 0x19080,
1744 0x1908c, 0x19124,
b8ff05a9
DM
1745 0x19150, 0x191b0,
1746 0x191d0, 0x191e8,
1747 0x19238, 0x1924c,
1748 0x193f8, 0x19474,
1749 0x19490, 0x194f8,
1750 0x19800, 0x19f30,
1751 0x1a000, 0x1a06c,
1752 0x1a0b0, 0x1a120,
1753 0x1a128, 0x1a138,
1754 0x1a190, 0x1a1c4,
1755 0x1a1fc, 0x1a1fc,
1756 0x1e040, 0x1e04c,
835bb606 1757 0x1e284, 0x1e28c,
b8ff05a9
DM
1758 0x1e2c0, 0x1e2c0,
1759 0x1e2e0, 0x1e2e0,
1760 0x1e300, 0x1e384,
1761 0x1e3c0, 0x1e3c8,
1762 0x1e440, 0x1e44c,
835bb606 1763 0x1e684, 0x1e68c,
b8ff05a9
DM
1764 0x1e6c0, 0x1e6c0,
1765 0x1e6e0, 0x1e6e0,
1766 0x1e700, 0x1e784,
1767 0x1e7c0, 0x1e7c8,
1768 0x1e840, 0x1e84c,
835bb606 1769 0x1ea84, 0x1ea8c,
b8ff05a9
DM
1770 0x1eac0, 0x1eac0,
1771 0x1eae0, 0x1eae0,
1772 0x1eb00, 0x1eb84,
1773 0x1ebc0, 0x1ebc8,
1774 0x1ec40, 0x1ec4c,
835bb606 1775 0x1ee84, 0x1ee8c,
b8ff05a9
DM
1776 0x1eec0, 0x1eec0,
1777 0x1eee0, 0x1eee0,
1778 0x1ef00, 0x1ef84,
1779 0x1efc0, 0x1efc8,
1780 0x1f040, 0x1f04c,
835bb606 1781 0x1f284, 0x1f28c,
b8ff05a9
DM
1782 0x1f2c0, 0x1f2c0,
1783 0x1f2e0, 0x1f2e0,
1784 0x1f300, 0x1f384,
1785 0x1f3c0, 0x1f3c8,
1786 0x1f440, 0x1f44c,
835bb606 1787 0x1f684, 0x1f68c,
b8ff05a9
DM
1788 0x1f6c0, 0x1f6c0,
1789 0x1f6e0, 0x1f6e0,
1790 0x1f700, 0x1f784,
1791 0x1f7c0, 0x1f7c8,
1792 0x1f840, 0x1f84c,
835bb606 1793 0x1fa84, 0x1fa8c,
b8ff05a9
DM
1794 0x1fac0, 0x1fac0,
1795 0x1fae0, 0x1fae0,
1796 0x1fb00, 0x1fb84,
1797 0x1fbc0, 0x1fbc8,
1798 0x1fc40, 0x1fc4c,
835bb606 1799 0x1fe84, 0x1fe8c,
b8ff05a9
DM
1800 0x1fec0, 0x1fec0,
1801 0x1fee0, 0x1fee0,
1802 0x1ff00, 0x1ff84,
1803 0x1ffc0, 0x1ffc8,
1804 0x20000, 0x2002c,
1805 0x20100, 0x2013c,
1806 0x20190, 0x201c8,
1807 0x20200, 0x20318,
1808 0x20400, 0x20528,
1809 0x20540, 0x20614,
1810 0x21000, 0x21040,
1811 0x2104c, 0x21060,
1812 0x210c0, 0x210ec,
1813 0x21200, 0x21268,
1814 0x21270, 0x21284,
1815 0x212fc, 0x21388,
1816 0x21400, 0x21404,
1817 0x21500, 0x21518,
1818 0x2152c, 0x2153c,
1819 0x21550, 0x21554,
1820 0x21600, 0x21600,
1821 0x21608, 0x21628,
1822 0x21630, 0x2163c,
1823 0x21700, 0x2171c,
1824 0x21780, 0x2178c,
1825 0x21800, 0x21c38,
1826 0x21c80, 0x21d7c,
1827 0x21e00, 0x21e04,
1828 0x22000, 0x2202c,
1829 0x22100, 0x2213c,
1830 0x22190, 0x221c8,
1831 0x22200, 0x22318,
1832 0x22400, 0x22528,
1833 0x22540, 0x22614,
1834 0x23000, 0x23040,
1835 0x2304c, 0x23060,
1836 0x230c0, 0x230ec,
1837 0x23200, 0x23268,
1838 0x23270, 0x23284,
1839 0x232fc, 0x23388,
1840 0x23400, 0x23404,
1841 0x23500, 0x23518,
1842 0x2352c, 0x2353c,
1843 0x23550, 0x23554,
1844 0x23600, 0x23600,
1845 0x23608, 0x23628,
1846 0x23630, 0x2363c,
1847 0x23700, 0x2371c,
1848 0x23780, 0x2378c,
1849 0x23800, 0x23c38,
1850 0x23c80, 0x23d7c,
1851 0x23e00, 0x23e04,
1852 0x24000, 0x2402c,
1853 0x24100, 0x2413c,
1854 0x24190, 0x241c8,
1855 0x24200, 0x24318,
1856 0x24400, 0x24528,
1857 0x24540, 0x24614,
1858 0x25000, 0x25040,
1859 0x2504c, 0x25060,
1860 0x250c0, 0x250ec,
1861 0x25200, 0x25268,
1862 0x25270, 0x25284,
1863 0x252fc, 0x25388,
1864 0x25400, 0x25404,
1865 0x25500, 0x25518,
1866 0x2552c, 0x2553c,
1867 0x25550, 0x25554,
1868 0x25600, 0x25600,
1869 0x25608, 0x25628,
1870 0x25630, 0x2563c,
1871 0x25700, 0x2571c,
1872 0x25780, 0x2578c,
1873 0x25800, 0x25c38,
1874 0x25c80, 0x25d7c,
1875 0x25e00, 0x25e04,
1876 0x26000, 0x2602c,
1877 0x26100, 0x2613c,
1878 0x26190, 0x261c8,
1879 0x26200, 0x26318,
1880 0x26400, 0x26528,
1881 0x26540, 0x26614,
1882 0x27000, 0x27040,
1883 0x2704c, 0x27060,
1884 0x270c0, 0x270ec,
1885 0x27200, 0x27268,
1886 0x27270, 0x27284,
1887 0x272fc, 0x27388,
1888 0x27400, 0x27404,
1889 0x27500, 0x27518,
1890 0x2752c, 0x2753c,
1891 0x27550, 0x27554,
1892 0x27600, 0x27600,
1893 0x27608, 0x27628,
1894 0x27630, 0x2763c,
1895 0x27700, 0x2771c,
1896 0x27780, 0x2778c,
1897 0x27800, 0x27c38,
1898 0x27c80, 0x27d7c,
1899 0x27e00, 0x27e04
1900 };
1901
251f9e88
SR
1902 static const unsigned int t5_reg_ranges[] = {
1903 0x1008, 0x1148,
1904 0x1180, 0x11b4,
1905 0x11fc, 0x123c,
1906 0x1280, 0x173c,
1907 0x1800, 0x18fc,
1908 0x3000, 0x3028,
1909 0x3060, 0x30d8,
1910 0x30e0, 0x30fc,
1911 0x3140, 0x357c,
1912 0x35a8, 0x35cc,
1913 0x35ec, 0x35ec,
1914 0x3600, 0x5624,
1915 0x56cc, 0x575c,
1916 0x580c, 0x5814,
1917 0x5890, 0x58bc,
1918 0x5940, 0x59dc,
1919 0x59fc, 0x5a18,
1920 0x5a60, 0x5a9c,
1921 0x5b9c, 0x5bfc,
1922 0x6000, 0x6040,
1923 0x6058, 0x614c,
1924 0x7700, 0x7798,
1925 0x77c0, 0x78fc,
1926 0x7b00, 0x7c54,
1927 0x7d00, 0x7efc,
1928 0x8dc0, 0x8de0,
1929 0x8df8, 0x8e84,
1930 0x8ea0, 0x8f84,
1931 0x8fc0, 0x90f8,
1932 0x9400, 0x9470,
1933 0x9600, 0x96f4,
1934 0x9800, 0x9808,
1935 0x9820, 0x983c,
1936 0x9850, 0x9864,
1937 0x9c00, 0x9c6c,
1938 0x9c80, 0x9cec,
1939 0x9d00, 0x9d6c,
1940 0x9d80, 0x9dec,
1941 0x9e00, 0x9e6c,
1942 0x9e80, 0x9eec,
1943 0x9f00, 0x9f6c,
1944 0x9f80, 0xa020,
1945 0xd004, 0xd03c,
1946 0xdfc0, 0xdfe0,
1947 0xe000, 0x11088,
1948 0x1109c, 0x1117c,
1949 0x11190, 0x11204,
1950 0x19040, 0x1906c,
1951 0x19078, 0x19080,
1952 0x1908c, 0x19124,
1953 0x19150, 0x191b0,
1954 0x191d0, 0x191e8,
1955 0x19238, 0x19290,
1956 0x193f8, 0x19474,
1957 0x19490, 0x194cc,
1958 0x194f0, 0x194f8,
1959 0x19c00, 0x19c60,
1960 0x19c94, 0x19e10,
1961 0x19e50, 0x19f34,
1962 0x19f40, 0x19f50,
1963 0x19f90, 0x19fe4,
1964 0x1a000, 0x1a06c,
1965 0x1a0b0, 0x1a120,
1966 0x1a128, 0x1a138,
1967 0x1a190, 0x1a1c4,
1968 0x1a1fc, 0x1a1fc,
1969 0x1e008, 0x1e00c,
1970 0x1e040, 0x1e04c,
1971 0x1e284, 0x1e290,
1972 0x1e2c0, 0x1e2c0,
1973 0x1e2e0, 0x1e2e0,
1974 0x1e300, 0x1e384,
1975 0x1e3c0, 0x1e3c8,
1976 0x1e408, 0x1e40c,
1977 0x1e440, 0x1e44c,
1978 0x1e684, 0x1e690,
1979 0x1e6c0, 0x1e6c0,
1980 0x1e6e0, 0x1e6e0,
1981 0x1e700, 0x1e784,
1982 0x1e7c0, 0x1e7c8,
1983 0x1e808, 0x1e80c,
1984 0x1e840, 0x1e84c,
1985 0x1ea84, 0x1ea90,
1986 0x1eac0, 0x1eac0,
1987 0x1eae0, 0x1eae0,
1988 0x1eb00, 0x1eb84,
1989 0x1ebc0, 0x1ebc8,
1990 0x1ec08, 0x1ec0c,
1991 0x1ec40, 0x1ec4c,
1992 0x1ee84, 0x1ee90,
1993 0x1eec0, 0x1eec0,
1994 0x1eee0, 0x1eee0,
1995 0x1ef00, 0x1ef84,
1996 0x1efc0, 0x1efc8,
1997 0x1f008, 0x1f00c,
1998 0x1f040, 0x1f04c,
1999 0x1f284, 0x1f290,
2000 0x1f2c0, 0x1f2c0,
2001 0x1f2e0, 0x1f2e0,
2002 0x1f300, 0x1f384,
2003 0x1f3c0, 0x1f3c8,
2004 0x1f408, 0x1f40c,
2005 0x1f440, 0x1f44c,
2006 0x1f684, 0x1f690,
2007 0x1f6c0, 0x1f6c0,
2008 0x1f6e0, 0x1f6e0,
2009 0x1f700, 0x1f784,
2010 0x1f7c0, 0x1f7c8,
2011 0x1f808, 0x1f80c,
2012 0x1f840, 0x1f84c,
2013 0x1fa84, 0x1fa90,
2014 0x1fac0, 0x1fac0,
2015 0x1fae0, 0x1fae0,
2016 0x1fb00, 0x1fb84,
2017 0x1fbc0, 0x1fbc8,
2018 0x1fc08, 0x1fc0c,
2019 0x1fc40, 0x1fc4c,
2020 0x1fe84, 0x1fe90,
2021 0x1fec0, 0x1fec0,
2022 0x1fee0, 0x1fee0,
2023 0x1ff00, 0x1ff84,
2024 0x1ffc0, 0x1ffc8,
2025 0x30000, 0x30030,
2026 0x30100, 0x30144,
2027 0x30190, 0x301d0,
2028 0x30200, 0x30318,
2029 0x30400, 0x3052c,
2030 0x30540, 0x3061c,
2031 0x30800, 0x30834,
2032 0x308c0, 0x30908,
2033 0x30910, 0x309ac,
2034 0x30a00, 0x30a04,
2035 0x30a0c, 0x30a2c,
2036 0x30a44, 0x30a50,
2037 0x30a74, 0x30c24,
2038 0x30d08, 0x30d14,
2039 0x30d1c, 0x30d20,
2040 0x30d3c, 0x30d50,
2041 0x31200, 0x3120c,
2042 0x31220, 0x31220,
2043 0x31240, 0x31240,
2044 0x31600, 0x31600,
2045 0x31608, 0x3160c,
2046 0x31a00, 0x31a1c,
2047 0x31e04, 0x31e20,
2048 0x31e38, 0x31e3c,
2049 0x31e80, 0x31e80,
2050 0x31e88, 0x31ea8,
2051 0x31eb0, 0x31eb4,
2052 0x31ec8, 0x31ed4,
2053 0x31fb8, 0x32004,
2054 0x32208, 0x3223c,
2055 0x32600, 0x32630,
2056 0x32a00, 0x32abc,
2057 0x32b00, 0x32b70,
2058 0x33000, 0x33048,
2059 0x33060, 0x3309c,
2060 0x330f0, 0x33148,
2061 0x33160, 0x3319c,
2062 0x331f0, 0x332e4,
2063 0x332f8, 0x333e4,
2064 0x333f8, 0x33448,
2065 0x33460, 0x3349c,
2066 0x334f0, 0x33548,
2067 0x33560, 0x3359c,
2068 0x335f0, 0x336e4,
2069 0x336f8, 0x337e4,
2070 0x337f8, 0x337fc,
2071 0x33814, 0x33814,
2072 0x3382c, 0x3382c,
2073 0x33880, 0x3388c,
2074 0x338e8, 0x338ec,
2075 0x33900, 0x33948,
2076 0x33960, 0x3399c,
2077 0x339f0, 0x33ae4,
2078 0x33af8, 0x33b10,
2079 0x33b28, 0x33b28,
2080 0x33b3c, 0x33b50,
2081 0x33bf0, 0x33c10,
2082 0x33c28, 0x33c28,
2083 0x33c3c, 0x33c50,
2084 0x33cf0, 0x33cfc,
2085 0x34000, 0x34030,
2086 0x34100, 0x34144,
2087 0x34190, 0x341d0,
2088 0x34200, 0x34318,
2089 0x34400, 0x3452c,
2090 0x34540, 0x3461c,
2091 0x34800, 0x34834,
2092 0x348c0, 0x34908,
2093 0x34910, 0x349ac,
2094 0x34a00, 0x34a04,
2095 0x34a0c, 0x34a2c,
2096 0x34a44, 0x34a50,
2097 0x34a74, 0x34c24,
2098 0x34d08, 0x34d14,
2099 0x34d1c, 0x34d20,
2100 0x34d3c, 0x34d50,
2101 0x35200, 0x3520c,
2102 0x35220, 0x35220,
2103 0x35240, 0x35240,
2104 0x35600, 0x35600,
2105 0x35608, 0x3560c,
2106 0x35a00, 0x35a1c,
2107 0x35e04, 0x35e20,
2108 0x35e38, 0x35e3c,
2109 0x35e80, 0x35e80,
2110 0x35e88, 0x35ea8,
2111 0x35eb0, 0x35eb4,
2112 0x35ec8, 0x35ed4,
2113 0x35fb8, 0x36004,
2114 0x36208, 0x3623c,
2115 0x36600, 0x36630,
2116 0x36a00, 0x36abc,
2117 0x36b00, 0x36b70,
2118 0x37000, 0x37048,
2119 0x37060, 0x3709c,
2120 0x370f0, 0x37148,
2121 0x37160, 0x3719c,
2122 0x371f0, 0x372e4,
2123 0x372f8, 0x373e4,
2124 0x373f8, 0x37448,
2125 0x37460, 0x3749c,
2126 0x374f0, 0x37548,
2127 0x37560, 0x3759c,
2128 0x375f0, 0x376e4,
2129 0x376f8, 0x377e4,
2130 0x377f8, 0x377fc,
2131 0x37814, 0x37814,
2132 0x3782c, 0x3782c,
2133 0x37880, 0x3788c,
2134 0x378e8, 0x378ec,
2135 0x37900, 0x37948,
2136 0x37960, 0x3799c,
2137 0x379f0, 0x37ae4,
2138 0x37af8, 0x37b10,
2139 0x37b28, 0x37b28,
2140 0x37b3c, 0x37b50,
2141 0x37bf0, 0x37c10,
2142 0x37c28, 0x37c28,
2143 0x37c3c, 0x37c50,
2144 0x37cf0, 0x37cfc,
2145 0x38000, 0x38030,
2146 0x38100, 0x38144,
2147 0x38190, 0x381d0,
2148 0x38200, 0x38318,
2149 0x38400, 0x3852c,
2150 0x38540, 0x3861c,
2151 0x38800, 0x38834,
2152 0x388c0, 0x38908,
2153 0x38910, 0x389ac,
2154 0x38a00, 0x38a04,
2155 0x38a0c, 0x38a2c,
2156 0x38a44, 0x38a50,
2157 0x38a74, 0x38c24,
2158 0x38d08, 0x38d14,
2159 0x38d1c, 0x38d20,
2160 0x38d3c, 0x38d50,
2161 0x39200, 0x3920c,
2162 0x39220, 0x39220,
2163 0x39240, 0x39240,
2164 0x39600, 0x39600,
2165 0x39608, 0x3960c,
2166 0x39a00, 0x39a1c,
2167 0x39e04, 0x39e20,
2168 0x39e38, 0x39e3c,
2169 0x39e80, 0x39e80,
2170 0x39e88, 0x39ea8,
2171 0x39eb0, 0x39eb4,
2172 0x39ec8, 0x39ed4,
2173 0x39fb8, 0x3a004,
2174 0x3a208, 0x3a23c,
2175 0x3a600, 0x3a630,
2176 0x3aa00, 0x3aabc,
2177 0x3ab00, 0x3ab70,
2178 0x3b000, 0x3b048,
2179 0x3b060, 0x3b09c,
2180 0x3b0f0, 0x3b148,
2181 0x3b160, 0x3b19c,
2182 0x3b1f0, 0x3b2e4,
2183 0x3b2f8, 0x3b3e4,
2184 0x3b3f8, 0x3b448,
2185 0x3b460, 0x3b49c,
2186 0x3b4f0, 0x3b548,
2187 0x3b560, 0x3b59c,
2188 0x3b5f0, 0x3b6e4,
2189 0x3b6f8, 0x3b7e4,
2190 0x3b7f8, 0x3b7fc,
2191 0x3b814, 0x3b814,
2192 0x3b82c, 0x3b82c,
2193 0x3b880, 0x3b88c,
2194 0x3b8e8, 0x3b8ec,
2195 0x3b900, 0x3b948,
2196 0x3b960, 0x3b99c,
2197 0x3b9f0, 0x3bae4,
2198 0x3baf8, 0x3bb10,
2199 0x3bb28, 0x3bb28,
2200 0x3bb3c, 0x3bb50,
2201 0x3bbf0, 0x3bc10,
2202 0x3bc28, 0x3bc28,
2203 0x3bc3c, 0x3bc50,
2204 0x3bcf0, 0x3bcfc,
2205 0x3c000, 0x3c030,
2206 0x3c100, 0x3c144,
2207 0x3c190, 0x3c1d0,
2208 0x3c200, 0x3c318,
2209 0x3c400, 0x3c52c,
2210 0x3c540, 0x3c61c,
2211 0x3c800, 0x3c834,
2212 0x3c8c0, 0x3c908,
2213 0x3c910, 0x3c9ac,
2214 0x3ca00, 0x3ca04,
2215 0x3ca0c, 0x3ca2c,
2216 0x3ca44, 0x3ca50,
2217 0x3ca74, 0x3cc24,
2218 0x3cd08, 0x3cd14,
2219 0x3cd1c, 0x3cd20,
2220 0x3cd3c, 0x3cd50,
2221 0x3d200, 0x3d20c,
2222 0x3d220, 0x3d220,
2223 0x3d240, 0x3d240,
2224 0x3d600, 0x3d600,
2225 0x3d608, 0x3d60c,
2226 0x3da00, 0x3da1c,
2227 0x3de04, 0x3de20,
2228 0x3de38, 0x3de3c,
2229 0x3de80, 0x3de80,
2230 0x3de88, 0x3dea8,
2231 0x3deb0, 0x3deb4,
2232 0x3dec8, 0x3ded4,
2233 0x3dfb8, 0x3e004,
2234 0x3e208, 0x3e23c,
2235 0x3e600, 0x3e630,
2236 0x3ea00, 0x3eabc,
2237 0x3eb00, 0x3eb70,
2238 0x3f000, 0x3f048,
2239 0x3f060, 0x3f09c,
2240 0x3f0f0, 0x3f148,
2241 0x3f160, 0x3f19c,
2242 0x3f1f0, 0x3f2e4,
2243 0x3f2f8, 0x3f3e4,
2244 0x3f3f8, 0x3f448,
2245 0x3f460, 0x3f49c,
2246 0x3f4f0, 0x3f548,
2247 0x3f560, 0x3f59c,
2248 0x3f5f0, 0x3f6e4,
2249 0x3f6f8, 0x3f7e4,
2250 0x3f7f8, 0x3f7fc,
2251 0x3f814, 0x3f814,
2252 0x3f82c, 0x3f82c,
2253 0x3f880, 0x3f88c,
2254 0x3f8e8, 0x3f8ec,
2255 0x3f900, 0x3f948,
2256 0x3f960, 0x3f99c,
2257 0x3f9f0, 0x3fae4,
2258 0x3faf8, 0x3fb10,
2259 0x3fb28, 0x3fb28,
2260 0x3fb3c, 0x3fb50,
2261 0x3fbf0, 0x3fc10,
2262 0x3fc28, 0x3fc28,
2263 0x3fc3c, 0x3fc50,
2264 0x3fcf0, 0x3fcfc,
2265 0x40000, 0x4000c,
2266 0x40040, 0x40068,
2267 0x40080, 0x40144,
2268 0x40180, 0x4018c,
2269 0x40200, 0x40298,
2270 0x402ac, 0x4033c,
2271 0x403f8, 0x403fc,
c1f49e3e 2272 0x41304, 0x413c4,
251f9e88
SR
2273 0x41400, 0x4141c,
2274 0x41480, 0x414d0,
2275 0x44000, 0x44078,
2276 0x440c0, 0x44278,
2277 0x442c0, 0x44478,
2278 0x444c0, 0x44678,
2279 0x446c0, 0x44878,
2280 0x448c0, 0x449fc,
2281 0x45000, 0x45068,
2282 0x45080, 0x45084,
2283 0x450a0, 0x450b0,
2284 0x45200, 0x45268,
2285 0x45280, 0x45284,
2286 0x452a0, 0x452b0,
2287 0x460c0, 0x460e4,
2288 0x47000, 0x4708c,
2289 0x47200, 0x47250,
2290 0x47400, 0x47420,
2291 0x47600, 0x47618,
2292 0x47800, 0x47814,
2293 0x48000, 0x4800c,
2294 0x48040, 0x48068,
2295 0x48080, 0x48144,
2296 0x48180, 0x4818c,
2297 0x48200, 0x48298,
2298 0x482ac, 0x4833c,
2299 0x483f8, 0x483fc,
c1f49e3e 2300 0x49304, 0x493c4,
251f9e88
SR
2301 0x49400, 0x4941c,
2302 0x49480, 0x494d0,
2303 0x4c000, 0x4c078,
2304 0x4c0c0, 0x4c278,
2305 0x4c2c0, 0x4c478,
2306 0x4c4c0, 0x4c678,
2307 0x4c6c0, 0x4c878,
2308 0x4c8c0, 0x4c9fc,
2309 0x4d000, 0x4d068,
2310 0x4d080, 0x4d084,
2311 0x4d0a0, 0x4d0b0,
2312 0x4d200, 0x4d268,
2313 0x4d280, 0x4d284,
2314 0x4d2a0, 0x4d2b0,
2315 0x4e0c0, 0x4e0e4,
2316 0x4f000, 0x4f08c,
2317 0x4f200, 0x4f250,
2318 0x4f400, 0x4f420,
2319 0x4f600, 0x4f618,
2320 0x4f800, 0x4f814,
2321 0x50000, 0x500cc,
2322 0x50400, 0x50400,
2323 0x50800, 0x508cc,
2324 0x50c00, 0x50c00,
2325 0x51000, 0x5101c,
2326 0x51300, 0x51308,
2327 };
2328
b8ff05a9
DM
2329 int i;
2330 struct adapter *ap = netdev2adap(dev);
251f9e88
SR
2331 static const unsigned int *reg_ranges;
2332 int arr_size = 0, buf_size = 0;
2333
d14807dd 2334 if (is_t4(ap->params.chip)) {
251f9e88
SR
2335 reg_ranges = &t4_reg_ranges[0];
2336 arr_size = ARRAY_SIZE(t4_reg_ranges);
2337 buf_size = T4_REGMAP_SIZE;
2338 } else {
2339 reg_ranges = &t5_reg_ranges[0];
2340 arr_size = ARRAY_SIZE(t5_reg_ranges);
2341 buf_size = T5_REGMAP_SIZE;
2342 }
b8ff05a9
DM
2343
2344 regs->version = mk_adap_vers(ap);
2345
251f9e88
SR
2346 memset(buf, 0, buf_size);
2347 for (i = 0; i < arr_size; i += 2)
b8ff05a9
DM
2348 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2349}
2350
2351static int restart_autoneg(struct net_device *dev)
2352{
2353 struct port_info *p = netdev_priv(dev);
2354
2355 if (!netif_running(dev))
2356 return -EAGAIN;
2357 if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2358 return -EINVAL;
060e0c75 2359 t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
b8ff05a9
DM
2360 return 0;
2361}
2362
c5e06360
DM
2363static int identify_port(struct net_device *dev,
2364 enum ethtool_phys_id_state state)
b8ff05a9 2365{
c5e06360 2366 unsigned int val;
060e0c75
DM
2367 struct adapter *adap = netdev2adap(dev);
2368
c5e06360
DM
2369 if (state == ETHTOOL_ID_ACTIVE)
2370 val = 0xffff;
2371 else if (state == ETHTOOL_ID_INACTIVE)
2372 val = 0;
2373 else
2374 return -EINVAL;
b8ff05a9 2375
c5e06360 2376 return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
b8ff05a9
DM
2377}
2378
2379static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
2380{
2381 unsigned int v = 0;
2382
a0881cab
DM
2383 if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2384 type == FW_PORT_TYPE_BT_XAUI) {
b8ff05a9
DM
2385 v |= SUPPORTED_TP;
2386 if (caps & FW_PORT_CAP_SPEED_100M)
2387 v |= SUPPORTED_100baseT_Full;
2388 if (caps & FW_PORT_CAP_SPEED_1G)
2389 v |= SUPPORTED_1000baseT_Full;
2390 if (caps & FW_PORT_CAP_SPEED_10G)
2391 v |= SUPPORTED_10000baseT_Full;
2392 } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2393 v |= SUPPORTED_Backplane;
2394 if (caps & FW_PORT_CAP_SPEED_1G)
2395 v |= SUPPORTED_1000baseKX_Full;
2396 if (caps & FW_PORT_CAP_SPEED_10G)
2397 v |= SUPPORTED_10000baseKX4_Full;
2398 } else if (type == FW_PORT_TYPE_KR)
2399 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
a0881cab 2400 else if (type == FW_PORT_TYPE_BP_AP)
7d5e77aa
DM
2401 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2402 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2403 else if (type == FW_PORT_TYPE_BP4_AP)
2404 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2405 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2406 SUPPORTED_10000baseKX4_Full;
a0881cab
DM
2407 else if (type == FW_PORT_TYPE_FIBER_XFI ||
2408 type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
b8ff05a9 2409 v |= SUPPORTED_FIBRE;
72aca4bf
KS
2410 else if (type == FW_PORT_TYPE_BP40_BA)
2411 v |= SUPPORTED_40000baseSR4_Full;
b8ff05a9
DM
2412
2413 if (caps & FW_PORT_CAP_ANEG)
2414 v |= SUPPORTED_Autoneg;
2415 return v;
2416}
2417
2418static unsigned int to_fw_linkcaps(unsigned int caps)
2419{
2420 unsigned int v = 0;
2421
2422 if (caps & ADVERTISED_100baseT_Full)
2423 v |= FW_PORT_CAP_SPEED_100M;
2424 if (caps & ADVERTISED_1000baseT_Full)
2425 v |= FW_PORT_CAP_SPEED_1G;
2426 if (caps & ADVERTISED_10000baseT_Full)
2427 v |= FW_PORT_CAP_SPEED_10G;
72aca4bf
KS
2428 if (caps & ADVERTISED_40000baseSR4_Full)
2429 v |= FW_PORT_CAP_SPEED_40G;
b8ff05a9
DM
2430 return v;
2431}
2432
2433static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2434{
2435 const struct port_info *p = netdev_priv(dev);
2436
2437 if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
a0881cab 2438 p->port_type == FW_PORT_TYPE_BT_XFI ||
b8ff05a9
DM
2439 p->port_type == FW_PORT_TYPE_BT_XAUI)
2440 cmd->port = PORT_TP;
a0881cab
DM
2441 else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2442 p->port_type == FW_PORT_TYPE_FIBER_XAUI)
b8ff05a9 2443 cmd->port = PORT_FIBRE;
3e00a509
HS
2444 else if (p->port_type == FW_PORT_TYPE_SFP ||
2445 p->port_type == FW_PORT_TYPE_QSFP_10G ||
2446 p->port_type == FW_PORT_TYPE_QSFP) {
2447 if (p->mod_type == FW_PORT_MOD_TYPE_LR ||
2448 p->mod_type == FW_PORT_MOD_TYPE_SR ||
2449 p->mod_type == FW_PORT_MOD_TYPE_ER ||
2450 p->mod_type == FW_PORT_MOD_TYPE_LRM)
2451 cmd->port = PORT_FIBRE;
2452 else if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2453 p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
a0881cab
DM
2454 cmd->port = PORT_DA;
2455 else
3e00a509 2456 cmd->port = PORT_OTHER;
a0881cab 2457 } else
b8ff05a9
DM
2458 cmd->port = PORT_OTHER;
2459
2460 if (p->mdio_addr >= 0) {
2461 cmd->phy_address = p->mdio_addr;
2462 cmd->transceiver = XCVR_EXTERNAL;
2463 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2464 MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2465 } else {
2466 cmd->phy_address = 0; /* not really, but no better option */
2467 cmd->transceiver = XCVR_INTERNAL;
2468 cmd->mdio_support = 0;
2469 }
2470
2471 cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2472 cmd->advertising = from_fw_linkcaps(p->port_type,
2473 p->link_cfg.advertising);
70739497
DD
2474 ethtool_cmd_speed_set(cmd,
2475 netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
b8ff05a9
DM
2476 cmd->duplex = DUPLEX_FULL;
2477 cmd->autoneg = p->link_cfg.autoneg;
2478 cmd->maxtxpkt = 0;
2479 cmd->maxrxpkt = 0;
2480 return 0;
2481}
2482
2483static unsigned int speed_to_caps(int speed)
2484{
e8b39015 2485 if (speed == 100)
b8ff05a9 2486 return FW_PORT_CAP_SPEED_100M;
e8b39015 2487 if (speed == 1000)
b8ff05a9 2488 return FW_PORT_CAP_SPEED_1G;
e8b39015 2489 if (speed == 10000)
b8ff05a9 2490 return FW_PORT_CAP_SPEED_10G;
e8b39015 2491 if (speed == 40000)
72aca4bf 2492 return FW_PORT_CAP_SPEED_40G;
b8ff05a9
DM
2493 return 0;
2494}
2495
2496static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2497{
2498 unsigned int cap;
2499 struct port_info *p = netdev_priv(dev);
2500 struct link_config *lc = &p->link_cfg;
25db0338 2501 u32 speed = ethtool_cmd_speed(cmd);
b8ff05a9
DM
2502
2503 if (cmd->duplex != DUPLEX_FULL) /* only full-duplex supported */
2504 return -EINVAL;
2505
2506 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2507 /*
2508 * PHY offers a single speed. See if that's what's
2509 * being requested.
2510 */
2511 if (cmd->autoneg == AUTONEG_DISABLE &&
25db0338
DD
2512 (lc->supported & speed_to_caps(speed)))
2513 return 0;
b8ff05a9
DM
2514 return -EINVAL;
2515 }
2516
2517 if (cmd->autoneg == AUTONEG_DISABLE) {
25db0338 2518 cap = speed_to_caps(speed);
b8ff05a9 2519
72aca4bf 2520 if (!(lc->supported & cap) ||
e8b39015
BH
2521 (speed == 1000) ||
2522 (speed == 10000) ||
72aca4bf 2523 (speed == 40000))
b8ff05a9
DM
2524 return -EINVAL;
2525 lc->requested_speed = cap;
2526 lc->advertising = 0;
2527 } else {
2528 cap = to_fw_linkcaps(cmd->advertising);
2529 if (!(lc->supported & cap))
2530 return -EINVAL;
2531 lc->requested_speed = 0;
2532 lc->advertising = cap | FW_PORT_CAP_ANEG;
2533 }
2534 lc->autoneg = cmd->autoneg;
2535
2536 if (netif_running(dev))
060e0c75
DM
2537 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2538 lc);
b8ff05a9
DM
2539 return 0;
2540}
2541
2542static void get_pauseparam(struct net_device *dev,
2543 struct ethtool_pauseparam *epause)
2544{
2545 struct port_info *p = netdev_priv(dev);
2546
2547 epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2548 epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2549 epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2550}
2551
2552static int set_pauseparam(struct net_device *dev,
2553 struct ethtool_pauseparam *epause)
2554{
2555 struct port_info *p = netdev_priv(dev);
2556 struct link_config *lc = &p->link_cfg;
2557
2558 if (epause->autoneg == AUTONEG_DISABLE)
2559 lc->requested_fc = 0;
2560 else if (lc->supported & FW_PORT_CAP_ANEG)
2561 lc->requested_fc = PAUSE_AUTONEG;
2562 else
2563 return -EINVAL;
2564
2565 if (epause->rx_pause)
2566 lc->requested_fc |= PAUSE_RX;
2567 if (epause->tx_pause)
2568 lc->requested_fc |= PAUSE_TX;
2569 if (netif_running(dev))
060e0c75
DM
2570 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2571 lc);
b8ff05a9
DM
2572 return 0;
2573}
2574
b8ff05a9
DM
2575static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2576{
2577 const struct port_info *pi = netdev_priv(dev);
2578 const struct sge *s = &pi->adapter->sge;
2579
2580 e->rx_max_pending = MAX_RX_BUFFERS;
2581 e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2582 e->rx_jumbo_max_pending = 0;
2583 e->tx_max_pending = MAX_TXQ_ENTRIES;
2584
2585 e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2586 e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2587 e->rx_jumbo_pending = 0;
2588 e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2589}
2590
2591static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2592{
2593 int i;
2594 const struct port_info *pi = netdev_priv(dev);
2595 struct adapter *adapter = pi->adapter;
2596 struct sge *s = &adapter->sge;
2597
2598 if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2599 e->tx_pending > MAX_TXQ_ENTRIES ||
2600 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2601 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2602 e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2603 return -EINVAL;
2604
2605 if (adapter->flags & FULL_INIT_DONE)
2606 return -EBUSY;
2607
2608 for (i = 0; i < pi->nqsets; ++i) {
2609 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2610 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2611 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2612 }
2613 return 0;
2614}
2615
2616static int closest_timer(const struct sge *s, int time)
2617{
2618 int i, delta, match = 0, min_delta = INT_MAX;
2619
2620 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2621 delta = time - s->timer_val[i];
2622 if (delta < 0)
2623 delta = -delta;
2624 if (delta < min_delta) {
2625 min_delta = delta;
2626 match = i;
2627 }
2628 }
2629 return match;
2630}
2631
2632static int closest_thres(const struct sge *s, int thres)
2633{
2634 int i, delta, match = 0, min_delta = INT_MAX;
2635
2636 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2637 delta = thres - s->counter_val[i];
2638 if (delta < 0)
2639 delta = -delta;
2640 if (delta < min_delta) {
2641 min_delta = delta;
2642 match = i;
2643 }
2644 }
2645 return match;
2646}
2647
2648/*
2649 * Return a queue's interrupt hold-off time in us. 0 means no timer.
2650 */
2651static unsigned int qtimer_val(const struct adapter *adap,
2652 const struct sge_rspq *q)
2653{
2654 unsigned int idx = q->intr_params >> 1;
2655
2656 return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2657}
2658
2659/**
c887ad0e 2660 * set_rspq_intr_params - set a queue's interrupt holdoff parameters
b8ff05a9
DM
2661 * @q: the Rx queue
2662 * @us: the hold-off time in us, or 0 to disable timer
2663 * @cnt: the hold-off packet count, or 0 to disable counter
2664 *
2665 * Sets an Rx queue's interrupt hold-off time and packet count. At least
2666 * one of the two needs to be enabled for the queue to generate interrupts.
2667 */
c887ad0e
HS
2668static int set_rspq_intr_params(struct sge_rspq *q,
2669 unsigned int us, unsigned int cnt)
b8ff05a9 2670{
c887ad0e
HS
2671 struct adapter *adap = q->adap;
2672
b8ff05a9
DM
2673 if ((us | cnt) == 0)
2674 cnt = 1;
2675
2676 if (cnt) {
2677 int err;
2678 u32 v, new_idx;
2679
2680 new_idx = closest_thres(&adap->sge, cnt);
2681 if (q->desc && q->pktcnt_idx != new_idx) {
2682 /* the queue has already been created, update it */
2683 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2684 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2685 FW_PARAMS_PARAM_YZ(q->cntxt_id);
060e0c75
DM
2686 err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2687 &new_idx);
b8ff05a9
DM
2688 if (err)
2689 return err;
2690 }
2691 q->pktcnt_idx = new_idx;
2692 }
2693
2694 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2695 q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2696 return 0;
2697}
2698
c887ad0e
HS
2699/**
2700 * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete!
2701 * @dev: the network device
2702 * @us: the hold-off time in us, or 0 to disable timer
2703 * @cnt: the hold-off packet count, or 0 to disable counter
2704 *
2705 * Set the RX interrupt hold-off parameters for a network device.
2706 */
2707static int set_rx_intr_params(struct net_device *dev,
2708 unsigned int us, unsigned int cnt)
b8ff05a9 2709{
c887ad0e
HS
2710 int i, err;
2711 struct port_info *pi = netdev_priv(dev);
b8ff05a9 2712 struct adapter *adap = pi->adapter;
c887ad0e
HS
2713 struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2714
2715 for (i = 0; i < pi->nqsets; i++, q++) {
2716 err = set_rspq_intr_params(&q->rspq, us, cnt);
2717 if (err)
2718 return err;
d4fc9dc2 2719 }
c887ad0e
HS
2720 return 0;
2721}
2722
2723static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2724{
2725 return set_rx_intr_params(dev, c->rx_coalesce_usecs,
2726 c->rx_max_coalesced_frames);
b8ff05a9
DM
2727}
2728
2729static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2730{
2731 const struct port_info *pi = netdev_priv(dev);
2732 const struct adapter *adap = pi->adapter;
2733 const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2734
2735 c->rx_coalesce_usecs = qtimer_val(adap, rq);
2736 c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2737 adap->sge.counter_val[rq->pktcnt_idx] : 0;
2738 return 0;
2739}
2740
1478b3ee
DM
2741/**
2742 * eeprom_ptov - translate a physical EEPROM address to virtual
2743 * @phys_addr: the physical EEPROM address
2744 * @fn: the PCI function number
2745 * @sz: size of function-specific area
2746 *
2747 * Translate a physical EEPROM address to virtual. The first 1K is
2748 * accessed through virtual addresses starting at 31K, the rest is
2749 * accessed through virtual addresses starting at 0.
2750 *
2751 * The mapping is as follows:
2752 * [0..1K) -> [31K..32K)
2753 * [1K..1K+A) -> [31K-A..31K)
2754 * [1K+A..ES) -> [0..ES-A-1K)
2755 *
2756 * where A = @fn * @sz, and ES = EEPROM size.
b8ff05a9 2757 */
1478b3ee 2758static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
b8ff05a9 2759{
1478b3ee 2760 fn *= sz;
b8ff05a9
DM
2761 if (phys_addr < 1024)
2762 return phys_addr + (31 << 10);
1478b3ee
DM
2763 if (phys_addr < 1024 + fn)
2764 return 31744 - fn + phys_addr - 1024;
b8ff05a9 2765 if (phys_addr < EEPROMSIZE)
1478b3ee 2766 return phys_addr - 1024 - fn;
b8ff05a9
DM
2767 return -EINVAL;
2768}
2769
2770/*
2771 * The next two routines implement eeprom read/write from physical addresses.
b8ff05a9
DM
2772 */
2773static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2774{
1478b3ee 2775 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
b8ff05a9
DM
2776
2777 if (vaddr >= 0)
2778 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2779 return vaddr < 0 ? vaddr : 0;
2780}
2781
2782static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2783{
1478b3ee 2784 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
b8ff05a9
DM
2785
2786 if (vaddr >= 0)
2787 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2788 return vaddr < 0 ? vaddr : 0;
2789}
2790
2791#define EEPROM_MAGIC 0x38E2F10C
2792
2793static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2794 u8 *data)
2795{
2796 int i, err = 0;
2797 struct adapter *adapter = netdev2adap(dev);
2798
2799 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2800 if (!buf)
2801 return -ENOMEM;
2802
2803 e->magic = EEPROM_MAGIC;
2804 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2805 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2806
2807 if (!err)
2808 memcpy(data, buf + e->offset, e->len);
2809 kfree(buf);
2810 return err;
2811}
2812
2813static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2814 u8 *data)
2815{
2816 u8 *buf;
2817 int err = 0;
2818 u32 aligned_offset, aligned_len, *p;
2819 struct adapter *adapter = netdev2adap(dev);
2820
2821 if (eeprom->magic != EEPROM_MAGIC)
2822 return -EINVAL;
2823
2824 aligned_offset = eeprom->offset & ~3;
2825 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2826
1478b3ee
DM
2827 if (adapter->fn > 0) {
2828 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2829
2830 if (aligned_offset < start ||
2831 aligned_offset + aligned_len > start + EEPROMPFSIZE)
2832 return -EPERM;
2833 }
2834
b8ff05a9
DM
2835 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2836 /*
2837 * RMW possibly needed for first or last words.
2838 */
2839 buf = kmalloc(aligned_len, GFP_KERNEL);
2840 if (!buf)
2841 return -ENOMEM;
2842 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2843 if (!err && aligned_len > 4)
2844 err = eeprom_rd_phys(adapter,
2845 aligned_offset + aligned_len - 4,
2846 (u32 *)&buf[aligned_len - 4]);
2847 if (err)
2848 goto out;
2849 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2850 } else
2851 buf = data;
2852
2853 err = t4_seeprom_wp(adapter, false);
2854 if (err)
2855 goto out;
2856
2857 for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2858 err = eeprom_wr_phys(adapter, aligned_offset, *p);
2859 aligned_offset += 4;
2860 }
2861
2862 if (!err)
2863 err = t4_seeprom_wp(adapter, true);
2864out:
2865 if (buf != data)
2866 kfree(buf);
2867 return err;
2868}
2869
2870static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2871{
2872 int ret;
2873 const struct firmware *fw;
2874 struct adapter *adap = netdev2adap(netdev);
2875
2876 ef->data[sizeof(ef->data) - 1] = '\0';
2877 ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2878 if (ret < 0)
2879 return ret;
2880
2881 ret = t4_load_fw(adap, fw->data, fw->size);
2882 release_firmware(fw);
2883 if (!ret)
2884 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
2885 return ret;
2886}
2887
2888#define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2889#define BCAST_CRC 0xa0ccc1a6
2890
2891static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2892{
2893 wol->supported = WAKE_BCAST | WAKE_MAGIC;
2894 wol->wolopts = netdev2adap(dev)->wol;
2895 memset(&wol->sopass, 0, sizeof(wol->sopass));
2896}
2897
2898static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2899{
2900 int err = 0;
2901 struct port_info *pi = netdev_priv(dev);
2902
2903 if (wol->wolopts & ~WOL_SUPPORTED)
2904 return -EINVAL;
2905 t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2906 (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2907 if (wol->wolopts & WAKE_BCAST) {
2908 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2909 ~0ULL, 0, false);
2910 if (!err)
2911 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2912 ~6ULL, ~0ULL, BCAST_CRC, true);
2913 } else
2914 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2915 return err;
2916}
2917
c8f44aff 2918static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
87b6cf51 2919{
2ed28baa 2920 const struct port_info *pi = netdev_priv(dev);
c8f44aff 2921 netdev_features_t changed = dev->features ^ features;
19ecae2c 2922 int err;
19ecae2c 2923
f646968f 2924 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2ed28baa 2925 return 0;
19ecae2c 2926
2ed28baa
MM
2927 err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
2928 -1, -1, -1,
f646968f 2929 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
2ed28baa 2930 if (unlikely(err))
f646968f 2931 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
19ecae2c 2932 return err;
87b6cf51
DM
2933}
2934
7850f63f 2935static u32 get_rss_table_size(struct net_device *dev)
671b0060
DM
2936{
2937 const struct port_info *pi = netdev_priv(dev);
671b0060 2938
7850f63f
BH
2939 return pi->rss_size;
2940}
2941
fe62d001 2942static int get_rss_table(struct net_device *dev, u32 *p, u8 *key)
7850f63f
BH
2943{
2944 const struct port_info *pi = netdev_priv(dev);
2945 unsigned int n = pi->rss_size;
2946
671b0060 2947 while (n--)
7850f63f 2948 p[n] = pi->rss[n];
671b0060
DM
2949 return 0;
2950}
2951
fe62d001 2952static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key)
671b0060
DM
2953{
2954 unsigned int i;
2955 struct port_info *pi = netdev_priv(dev);
2956
7850f63f
BH
2957 for (i = 0; i < pi->rss_size; i++)
2958 pi->rss[i] = p[i];
671b0060
DM
2959 if (pi->adapter->flags & FULL_INIT_DONE)
2960 return write_rss(pi, pi->rss);
2961 return 0;
2962}
2963
2964static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
815c7db5 2965 u32 *rules)
671b0060 2966{
f796564a
DM
2967 const struct port_info *pi = netdev_priv(dev);
2968
671b0060 2969 switch (info->cmd) {
f796564a
DM
2970 case ETHTOOL_GRXFH: {
2971 unsigned int v = pi->rss_mode;
2972
2973 info->data = 0;
2974 switch (info->flow_type) {
2975 case TCP_V4_FLOW:
2976 if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
2977 info->data = RXH_IP_SRC | RXH_IP_DST |
2978 RXH_L4_B_0_1 | RXH_L4_B_2_3;
2979 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2980 info->data = RXH_IP_SRC | RXH_IP_DST;
2981 break;
2982 case UDP_V4_FLOW:
2983 if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
2984 (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
2985 info->data = RXH_IP_SRC | RXH_IP_DST |
2986 RXH_L4_B_0_1 | RXH_L4_B_2_3;
2987 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2988 info->data = RXH_IP_SRC | RXH_IP_DST;
2989 break;
2990 case SCTP_V4_FLOW:
2991 case AH_ESP_V4_FLOW:
2992 case IPV4_FLOW:
2993 if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2994 info->data = RXH_IP_SRC | RXH_IP_DST;
2995 break;
2996 case TCP_V6_FLOW:
2997 if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
2998 info->data = RXH_IP_SRC | RXH_IP_DST |
2999 RXH_L4_B_0_1 | RXH_L4_B_2_3;
3000 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3001 info->data = RXH_IP_SRC | RXH_IP_DST;
3002 break;
3003 case UDP_V6_FLOW:
3004 if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
3005 (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3006 info->data = RXH_IP_SRC | RXH_IP_DST |
3007 RXH_L4_B_0_1 | RXH_L4_B_2_3;
3008 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3009 info->data = RXH_IP_SRC | RXH_IP_DST;
3010 break;
3011 case SCTP_V6_FLOW:
3012 case AH_ESP_V6_FLOW:
3013 case IPV6_FLOW:
3014 if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3015 info->data = RXH_IP_SRC | RXH_IP_DST;
3016 break;
3017 }
3018 return 0;
3019 }
671b0060 3020 case ETHTOOL_GRXRINGS:
f796564a 3021 info->data = pi->nqsets;
671b0060
DM
3022 return 0;
3023 }
3024 return -EOPNOTSUPP;
3025}
3026
9b07be4b 3027static const struct ethtool_ops cxgb_ethtool_ops = {
b8ff05a9
DM
3028 .get_settings = get_settings,
3029 .set_settings = set_settings,
3030 .get_drvinfo = get_drvinfo,
3031 .get_msglevel = get_msglevel,
3032 .set_msglevel = set_msglevel,
3033 .get_ringparam = get_sge_param,
3034 .set_ringparam = set_sge_param,
3035 .get_coalesce = get_coalesce,
3036 .set_coalesce = set_coalesce,
3037 .get_eeprom_len = get_eeprom_len,
3038 .get_eeprom = get_eeprom,
3039 .set_eeprom = set_eeprom,
3040 .get_pauseparam = get_pauseparam,
3041 .set_pauseparam = set_pauseparam,
b8ff05a9
DM
3042 .get_link = ethtool_op_get_link,
3043 .get_strings = get_strings,
c5e06360 3044 .set_phys_id = identify_port,
b8ff05a9
DM
3045 .nway_reset = restart_autoneg,
3046 .get_sset_count = get_sset_count,
3047 .get_ethtool_stats = get_stats,
3048 .get_regs_len = get_regs_len,
3049 .get_regs = get_regs,
3050 .get_wol = get_wol,
3051 .set_wol = set_wol,
671b0060 3052 .get_rxnfc = get_rxnfc,
7850f63f 3053 .get_rxfh_indir_size = get_rss_table_size,
fe62d001
BH
3054 .get_rxfh = get_rss_table,
3055 .set_rxfh = set_rss_table,
b8ff05a9
DM
3056 .flash_device = set_flash,
3057};
3058
3059/*
3060 * debugfs support
3061 */
b8ff05a9
DM
3062static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
3063 loff_t *ppos)
3064{
3065 loff_t pos = *ppos;
496ad9aa 3066 loff_t avail = file_inode(file)->i_size;
b8ff05a9
DM
3067 unsigned int mem = (uintptr_t)file->private_data & 3;
3068 struct adapter *adap = file->private_data - mem;
3069
3070 if (pos < 0)
3071 return -EINVAL;
3072 if (pos >= avail)
3073 return 0;
3074 if (count > avail - pos)
3075 count = avail - pos;
3076
3077 while (count) {
3078 size_t len;
3079 int ret, ofst;
3080 __be32 data[16];
3081
19dd37ba
SR
3082 if ((mem == MEM_MC) || (mem == MEM_MC1))
3083 ret = t4_mc_read(adap, mem % MEM_MC, pos, data, NULL);
b8ff05a9
DM
3084 else
3085 ret = t4_edc_read(adap, mem, pos, data, NULL);
3086 if (ret)
3087 return ret;
3088
3089 ofst = pos % sizeof(data);
3090 len = min(count, sizeof(data) - ofst);
3091 if (copy_to_user(buf, (u8 *)data + ofst, len))
3092 return -EFAULT;
3093
3094 buf += len;
3095 pos += len;
3096 count -= len;
3097 }
3098 count = pos - *ppos;
3099 *ppos = pos;
3100 return count;
3101}
3102
3103static const struct file_operations mem_debugfs_fops = {
3104 .owner = THIS_MODULE,
234e3405 3105 .open = simple_open,
b8ff05a9 3106 .read = mem_read,
6038f373 3107 .llseek = default_llseek,
b8ff05a9
DM
3108};
3109
91744948 3110static void add_debugfs_mem(struct adapter *adap, const char *name,
1dd06ae8 3111 unsigned int idx, unsigned int size_mb)
b8ff05a9
DM
3112{
3113 struct dentry *de;
3114
3115 de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
3116 (void *)adap + idx, &mem_debugfs_fops);
3117 if (de && de->d_inode)
3118 de->d_inode->i_size = size_mb << 20;
3119}
3120
91744948 3121static int setup_debugfs(struct adapter *adap)
b8ff05a9
DM
3122{
3123 int i;
19dd37ba 3124 u32 size;
b8ff05a9
DM
3125
3126 if (IS_ERR_OR_NULL(adap->debugfs_root))
3127 return -1;
3128
3129 i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
19dd37ba
SR
3130 if (i & EDRAM0_ENABLE) {
3131 size = t4_read_reg(adap, MA_EDRAM0_BAR);
3132 add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM_SIZE_GET(size));
3133 }
3134 if (i & EDRAM1_ENABLE) {
3135 size = t4_read_reg(adap, MA_EDRAM1_BAR);
3136 add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM_SIZE_GET(size));
3137 }
d14807dd 3138 if (is_t4(adap->params.chip)) {
19dd37ba
SR
3139 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3140 if (i & EXT_MEM_ENABLE)
3141 add_debugfs_mem(adap, "mc", MEM_MC,
3142 EXT_MEM_SIZE_GET(size));
3143 } else {
3144 if (i & EXT_MEM_ENABLE) {
3145 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3146 add_debugfs_mem(adap, "mc0", MEM_MC0,
3147 EXT_MEM_SIZE_GET(size));
3148 }
3149 if (i & EXT_MEM1_ENABLE) {
3150 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR);
3151 add_debugfs_mem(adap, "mc1", MEM_MC1,
3152 EXT_MEM_SIZE_GET(size));
3153 }
3154 }
b8ff05a9
DM
3155 if (adap->l2t)
3156 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
3157 &t4_l2t_fops);
3158 return 0;
3159}
3160
3161/*
3162 * upper-layer driver support
3163 */
3164
3165/*
3166 * Allocate an active-open TID and set it to the supplied value.
3167 */
3168int cxgb4_alloc_atid(struct tid_info *t, void *data)
3169{
3170 int atid = -1;
3171
3172 spin_lock_bh(&t->atid_lock);
3173 if (t->afree) {
3174 union aopen_entry *p = t->afree;
3175
f2b7e78d 3176 atid = (p - t->atid_tab) + t->atid_base;
b8ff05a9
DM
3177 t->afree = p->next;
3178 p->data = data;
3179 t->atids_in_use++;
3180 }
3181 spin_unlock_bh(&t->atid_lock);
3182 return atid;
3183}
3184EXPORT_SYMBOL(cxgb4_alloc_atid);
3185
3186/*
3187 * Release an active-open TID.
3188 */
3189void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
3190{
f2b7e78d 3191 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
b8ff05a9
DM
3192
3193 spin_lock_bh(&t->atid_lock);
3194 p->next = t->afree;
3195 t->afree = p;
3196 t->atids_in_use--;
3197 spin_unlock_bh(&t->atid_lock);
3198}
3199EXPORT_SYMBOL(cxgb4_free_atid);
3200
3201/*
3202 * Allocate a server TID and set it to the supplied value.
3203 */
3204int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
3205{
3206 int stid;
3207
3208 spin_lock_bh(&t->stid_lock);
3209 if (family == PF_INET) {
3210 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
3211 if (stid < t->nstids)
3212 __set_bit(stid, t->stid_bmap);
3213 else
3214 stid = -1;
3215 } else {
3216 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
3217 if (stid < 0)
3218 stid = -1;
3219 }
3220 if (stid >= 0) {
3221 t->stid_tab[stid].data = data;
3222 stid += t->stid_base;
15f63b74
KS
3223 /* IPv6 requires max of 520 bits or 16 cells in TCAM
3224 * This is equivalent to 4 TIDs. With CLIP enabled it
3225 * needs 2 TIDs.
3226 */
3227 if (family == PF_INET)
3228 t->stids_in_use++;
3229 else
3230 t->stids_in_use += 4;
b8ff05a9
DM
3231 }
3232 spin_unlock_bh(&t->stid_lock);
3233 return stid;
3234}
3235EXPORT_SYMBOL(cxgb4_alloc_stid);
3236
dca4faeb
VP
3237/* Allocate a server filter TID and set it to the supplied value.
3238 */
3239int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
3240{
3241 int stid;
3242
3243 spin_lock_bh(&t->stid_lock);
3244 if (family == PF_INET) {
3245 stid = find_next_zero_bit(t->stid_bmap,
3246 t->nstids + t->nsftids, t->nstids);
3247 if (stid < (t->nstids + t->nsftids))
3248 __set_bit(stid, t->stid_bmap);
3249 else
3250 stid = -1;
3251 } else {
3252 stid = -1;
3253 }
3254 if (stid >= 0) {
3255 t->stid_tab[stid].data = data;
470c60c4
KS
3256 stid -= t->nstids;
3257 stid += t->sftid_base;
dca4faeb
VP
3258 t->stids_in_use++;
3259 }
3260 spin_unlock_bh(&t->stid_lock);
3261 return stid;
3262}
3263EXPORT_SYMBOL(cxgb4_alloc_sftid);
3264
3265/* Release a server TID.
b8ff05a9
DM
3266 */
3267void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3268{
470c60c4
KS
3269 /* Is it a server filter TID? */
3270 if (t->nsftids && (stid >= t->sftid_base)) {
3271 stid -= t->sftid_base;
3272 stid += t->nstids;
3273 } else {
3274 stid -= t->stid_base;
3275 }
3276
b8ff05a9
DM
3277 spin_lock_bh(&t->stid_lock);
3278 if (family == PF_INET)
3279 __clear_bit(stid, t->stid_bmap);
3280 else
3281 bitmap_release_region(t->stid_bmap, stid, 2);
3282 t->stid_tab[stid].data = NULL;
15f63b74
KS
3283 if (family == PF_INET)
3284 t->stids_in_use--;
3285 else
3286 t->stids_in_use -= 4;
b8ff05a9
DM
3287 spin_unlock_bh(&t->stid_lock);
3288}
3289EXPORT_SYMBOL(cxgb4_free_stid);
3290
3291/*
3292 * Populate a TID_RELEASE WR. Caller must properly size the skb.
3293 */
3294static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3295 unsigned int tid)
3296{
3297 struct cpl_tid_release *req;
3298
3299 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3300 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3301 INIT_TP_WR(req, tid);
3302 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3303}
3304
3305/*
3306 * Queue a TID release request and if necessary schedule a work queue to
3307 * process it.
3308 */
31b9c19b 3309static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3310 unsigned int tid)
b8ff05a9
DM
3311{
3312 void **p = &t->tid_tab[tid];
3313 struct adapter *adap = container_of(t, struct adapter, tids);
3314
3315 spin_lock_bh(&adap->tid_release_lock);
3316 *p = adap->tid_release_head;
3317 /* Low 2 bits encode the Tx channel number */
3318 adap->tid_release_head = (void **)((uintptr_t)p | chan);
3319 if (!adap->tid_release_task_busy) {
3320 adap->tid_release_task_busy = true;
3069ee9b 3321 queue_work(workq, &adap->tid_release_task);
b8ff05a9
DM
3322 }
3323 spin_unlock_bh(&adap->tid_release_lock);
3324}
b8ff05a9
DM
3325
3326/*
3327 * Process the list of pending TID release requests.
3328 */
3329static void process_tid_release_list(struct work_struct *work)
3330{
3331 struct sk_buff *skb;
3332 struct adapter *adap;
3333
3334 adap = container_of(work, struct adapter, tid_release_task);
3335
3336 spin_lock_bh(&adap->tid_release_lock);
3337 while (adap->tid_release_head) {
3338 void **p = adap->tid_release_head;
3339 unsigned int chan = (uintptr_t)p & 3;
3340 p = (void *)p - chan;
3341
3342 adap->tid_release_head = *p;
3343 *p = NULL;
3344 spin_unlock_bh(&adap->tid_release_lock);
3345
3346 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3347 GFP_KERNEL)))
3348 schedule_timeout_uninterruptible(1);
3349
3350 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3351 t4_ofld_send(adap, skb);
3352 spin_lock_bh(&adap->tid_release_lock);
3353 }
3354 adap->tid_release_task_busy = false;
3355 spin_unlock_bh(&adap->tid_release_lock);
3356}
3357
3358/*
3359 * Release a TID and inform HW. If we are unable to allocate the release
3360 * message we defer to a work queue.
3361 */
3362void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3363{
3364 void *old;
3365 struct sk_buff *skb;
3366 struct adapter *adap = container_of(t, struct adapter, tids);
3367
3368 old = t->tid_tab[tid];
3369 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3370 if (likely(skb)) {
3371 t->tid_tab[tid] = NULL;
3372 mk_tid_release(skb, chan, tid);
3373 t4_ofld_send(adap, skb);
3374 } else
3375 cxgb4_queue_tid_release(t, chan, tid);
3376 if (old)
3377 atomic_dec(&t->tids_in_use);
3378}
3379EXPORT_SYMBOL(cxgb4_remove_tid);
3380
3381/*
3382 * Allocate and initialize the TID tables. Returns 0 on success.
3383 */
3384static int tid_init(struct tid_info *t)
3385{
3386 size_t size;
f2b7e78d 3387 unsigned int stid_bmap_size;
b8ff05a9 3388 unsigned int natids = t->natids;
b6f8eaec 3389 struct adapter *adap = container_of(t, struct adapter, tids);
b8ff05a9 3390
dca4faeb 3391 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
f2b7e78d
VP
3392 size = t->ntids * sizeof(*t->tid_tab) +
3393 natids * sizeof(*t->atid_tab) +
b8ff05a9 3394 t->nstids * sizeof(*t->stid_tab) +
dca4faeb 3395 t->nsftids * sizeof(*t->stid_tab) +
f2b7e78d 3396 stid_bmap_size * sizeof(long) +
dca4faeb
VP
3397 t->nftids * sizeof(*t->ftid_tab) +
3398 t->nsftids * sizeof(*t->ftid_tab);
f2b7e78d 3399
b8ff05a9
DM
3400 t->tid_tab = t4_alloc_mem(size);
3401 if (!t->tid_tab)
3402 return -ENOMEM;
3403
3404 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3405 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
dca4faeb 3406 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
f2b7e78d 3407 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
b8ff05a9
DM
3408 spin_lock_init(&t->stid_lock);
3409 spin_lock_init(&t->atid_lock);
3410
3411 t->stids_in_use = 0;
3412 t->afree = NULL;
3413 t->atids_in_use = 0;
3414 atomic_set(&t->tids_in_use, 0);
3415
3416 /* Setup the free list for atid_tab and clear the stid bitmap. */
3417 if (natids) {
3418 while (--natids)
3419 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3420 t->afree = t->atid_tab;
3421 }
dca4faeb 3422 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
b6f8eaec
KS
3423 /* Reserve stid 0 for T4/T5 adapters */
3424 if (!t->stid_base &&
3425 (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
3426 __set_bit(0, t->stid_bmap);
3427
b8ff05a9
DM
3428 return 0;
3429}
3430
01bcca68
VP
3431static int cxgb4_clip_get(const struct net_device *dev,
3432 const struct in6_addr *lip)
3433{
3434 struct adapter *adap;
3435 struct fw_clip_cmd c;
3436
3437 adap = netdev2adap(dev);
3438 memset(&c, 0, sizeof(c));
3439 c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3440 FW_CMD_REQUEST | FW_CMD_WRITE);
3441 c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c));
12f2a479
JP
3442 c.ip_hi = *(__be64 *)(lip->s6_addr);
3443 c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
01bcca68
VP
3444 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3445}
3446
3447static int cxgb4_clip_release(const struct net_device *dev,
3448 const struct in6_addr *lip)
3449{
3450 struct adapter *adap;
3451 struct fw_clip_cmd c;
3452
3453 adap = netdev2adap(dev);
3454 memset(&c, 0, sizeof(c));
3455 c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3456 FW_CMD_REQUEST | FW_CMD_READ);
3457 c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c));
12f2a479
JP
3458 c.ip_hi = *(__be64 *)(lip->s6_addr);
3459 c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
01bcca68
VP
3460 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3461}
3462
b8ff05a9
DM
3463/**
3464 * cxgb4_create_server - create an IP server
3465 * @dev: the device
3466 * @stid: the server TID
3467 * @sip: local IP address to bind server to
3468 * @sport: the server's TCP port
3469 * @queue: queue to direct messages from this server to
3470 *
3471 * Create an IP server for the given port and address.
3472 * Returns <0 on error and one of the %NET_XMIT_* values on success.
3473 */
3474int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
793dad94
VP
3475 __be32 sip, __be16 sport, __be16 vlan,
3476 unsigned int queue)
b8ff05a9
DM
3477{
3478 unsigned int chan;
3479 struct sk_buff *skb;
3480 struct adapter *adap;
3481 struct cpl_pass_open_req *req;
80f40c1f 3482 int ret;
b8ff05a9
DM
3483
3484 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3485 if (!skb)
3486 return -ENOMEM;
3487
3488 adap = netdev2adap(dev);
3489 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3490 INIT_TP_WR(req, 0);
3491 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3492 req->local_port = sport;
3493 req->peer_port = htons(0);
3494 req->local_ip = sip;
3495 req->peer_ip = htonl(0);
e46dab4d 3496 chan = rxq_to_chan(&adap->sge, queue);
b8ff05a9
DM
3497 req->opt0 = cpu_to_be64(TX_CHAN(chan));
3498 req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3499 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
80f40c1f
VP
3500 ret = t4_mgmt_tx(adap, skb);
3501 return net_xmit_eval(ret);
b8ff05a9
DM
3502}
3503EXPORT_SYMBOL(cxgb4_create_server);
3504
80f40c1f
VP
3505/* cxgb4_create_server6 - create an IPv6 server
3506 * @dev: the device
3507 * @stid: the server TID
3508 * @sip: local IPv6 address to bind server to
3509 * @sport: the server's TCP port
3510 * @queue: queue to direct messages from this server to
3511 *
3512 * Create an IPv6 server for the given port and address.
3513 * Returns <0 on error and one of the %NET_XMIT_* values on success.
3514 */
3515int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
3516 const struct in6_addr *sip, __be16 sport,
3517 unsigned int queue)
3518{
3519 unsigned int chan;
3520 struct sk_buff *skb;
3521 struct adapter *adap;
3522 struct cpl_pass_open_req6 *req;
3523 int ret;
3524
3525 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3526 if (!skb)
3527 return -ENOMEM;
3528
3529 adap = netdev2adap(dev);
3530 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
3531 INIT_TP_WR(req, 0);
3532 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
3533 req->local_port = sport;
3534 req->peer_port = htons(0);
3535 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
3536 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
3537 req->peer_ip_hi = cpu_to_be64(0);
3538 req->peer_ip_lo = cpu_to_be64(0);
3539 chan = rxq_to_chan(&adap->sge, queue);
3540 req->opt0 = cpu_to_be64(TX_CHAN(chan));
3541 req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3542 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3543 ret = t4_mgmt_tx(adap, skb);
3544 return net_xmit_eval(ret);
3545}
3546EXPORT_SYMBOL(cxgb4_create_server6);
3547
3548int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
3549 unsigned int queue, bool ipv6)
3550{
3551 struct sk_buff *skb;
3552 struct adapter *adap;
3553 struct cpl_close_listsvr_req *req;
3554 int ret;
3555
3556 adap = netdev2adap(dev);
3557
3558 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3559 if (!skb)
3560 return -ENOMEM;
3561
3562 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
3563 INIT_TP_WR(req, 0);
3564 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
3565 req->reply_ctrl = htons(NO_REPLY(0) | (ipv6 ? LISTSVR_IPV6(1) :
3566 LISTSVR_IPV6(0)) | QUEUENO(queue));
3567 ret = t4_mgmt_tx(adap, skb);
3568 return net_xmit_eval(ret);
3569}
3570EXPORT_SYMBOL(cxgb4_remove_server);
3571
b8ff05a9
DM
3572/**
3573 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3574 * @mtus: the HW MTU table
3575 * @mtu: the target MTU
3576 * @idx: index of selected entry in the MTU table
3577 *
3578 * Returns the index and the value in the HW MTU table that is closest to
3579 * but does not exceed @mtu, unless @mtu is smaller than any value in the
3580 * table, in which case that smallest available value is selected.
3581 */
3582unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3583 unsigned int *idx)
3584{
3585 unsigned int i = 0;
3586
3587 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3588 ++i;
3589 if (idx)
3590 *idx = i;
3591 return mtus[i];
3592}
3593EXPORT_SYMBOL(cxgb4_best_mtu);
3594
92e7ae71
HS
3595/**
3596 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
3597 * @mtus: the HW MTU table
3598 * @header_size: Header Size
3599 * @data_size_max: maximum Data Segment Size
3600 * @data_size_align: desired Data Segment Size Alignment (2^N)
3601 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
3602 *
3603 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
3604 * MTU Table based solely on a Maximum MTU parameter, we break that
3605 * parameter up into a Header Size and Maximum Data Segment Size, and
3606 * provide a desired Data Segment Size Alignment. If we find an MTU in
3607 * the Hardware MTU Table which will result in a Data Segment Size with
3608 * the requested alignment _and_ that MTU isn't "too far" from the
3609 * closest MTU, then we'll return that rather than the closest MTU.
3610 */
3611unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
3612 unsigned short header_size,
3613 unsigned short data_size_max,
3614 unsigned short data_size_align,
3615 unsigned int *mtu_idxp)
3616{
3617 unsigned short max_mtu = header_size + data_size_max;
3618 unsigned short data_size_align_mask = data_size_align - 1;
3619 int mtu_idx, aligned_mtu_idx;
3620
3621 /* Scan the MTU Table till we find an MTU which is larger than our
3622 * Maximum MTU or we reach the end of the table. Along the way,
3623 * record the last MTU found, if any, which will result in a Data
3624 * Segment Length matching the requested alignment.
3625 */
3626 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
3627 unsigned short data_size = mtus[mtu_idx] - header_size;
3628
3629 /* If this MTU minus the Header Size would result in a
3630 * Data Segment Size of the desired alignment, remember it.
3631 */
3632 if ((data_size & data_size_align_mask) == 0)
3633 aligned_mtu_idx = mtu_idx;
3634
3635 /* If we're not at the end of the Hardware MTU Table and the
3636 * next element is larger than our Maximum MTU, drop out of
3637 * the loop.
3638 */
3639 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
3640 break;
3641 }
3642
3643 /* If we fell out of the loop because we ran to the end of the table,
3644 * then we just have to use the last [largest] entry.
3645 */
3646 if (mtu_idx == NMTUS)
3647 mtu_idx--;
3648
3649 /* If we found an MTU which resulted in the requested Data Segment
3650 * Length alignment and that's "not far" from the largest MTU which is
3651 * less than or equal to the maximum MTU, then use that.
3652 */
3653 if (aligned_mtu_idx >= 0 &&
3654 mtu_idx - aligned_mtu_idx <= 1)
3655 mtu_idx = aligned_mtu_idx;
3656
3657 /* If the caller has passed in an MTU Index pointer, pass the
3658 * MTU Index back. Return the MTU value.
3659 */
3660 if (mtu_idxp)
3661 *mtu_idxp = mtu_idx;
3662 return mtus[mtu_idx];
3663}
3664EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
3665
b8ff05a9
DM
3666/**
3667 * cxgb4_port_chan - get the HW channel of a port
3668 * @dev: the net device for the port
3669 *
3670 * Return the HW Tx channel of the given port.
3671 */
3672unsigned int cxgb4_port_chan(const struct net_device *dev)
3673{
3674 return netdev2pinfo(dev)->tx_chan;
3675}
3676EXPORT_SYMBOL(cxgb4_port_chan);
3677
881806bc
VP
3678unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3679{
3680 struct adapter *adap = netdev2adap(dev);
2cc301d2 3681 u32 v1, v2, lp_count, hp_count;
881806bc 3682
2cc301d2
SR
3683 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3684 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
d14807dd 3685 if (is_t4(adap->params.chip)) {
2cc301d2
SR
3686 lp_count = G_LP_COUNT(v1);
3687 hp_count = G_HP_COUNT(v1);
3688 } else {
3689 lp_count = G_LP_COUNT_T5(v1);
3690 hp_count = G_HP_COUNT_T5(v2);
3691 }
3692 return lpfifo ? lp_count : hp_count;
881806bc
VP
3693}
3694EXPORT_SYMBOL(cxgb4_dbfifo_count);
3695
b8ff05a9
DM
3696/**
3697 * cxgb4_port_viid - get the VI id of a port
3698 * @dev: the net device for the port
3699 *
3700 * Return the VI id of the given port.
3701 */
3702unsigned int cxgb4_port_viid(const struct net_device *dev)
3703{
3704 return netdev2pinfo(dev)->viid;
3705}
3706EXPORT_SYMBOL(cxgb4_port_viid);
3707
3708/**
3709 * cxgb4_port_idx - get the index of a port
3710 * @dev: the net device for the port
3711 *
3712 * Return the index of the given port.
3713 */
3714unsigned int cxgb4_port_idx(const struct net_device *dev)
3715{
3716 return netdev2pinfo(dev)->port_id;
3717}
3718EXPORT_SYMBOL(cxgb4_port_idx);
3719
b8ff05a9
DM
3720void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3721 struct tp_tcp_stats *v6)
3722{
3723 struct adapter *adap = pci_get_drvdata(pdev);
3724
3725 spin_lock(&adap->stats_lock);
3726 t4_tp_get_tcp_stats(adap, v4, v6);
3727 spin_unlock(&adap->stats_lock);
3728}
3729EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3730
3731void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3732 const unsigned int *pgsz_order)
3733{
3734 struct adapter *adap = netdev2adap(dev);
3735
3736 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
3737 t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
3738 HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
3739 HPZ3(pgsz_order[3]));
3740}
3741EXPORT_SYMBOL(cxgb4_iscsi_init);
3742
3069ee9b
VP
3743int cxgb4_flush_eq_cache(struct net_device *dev)
3744{
3745 struct adapter *adap = netdev2adap(dev);
3746 int ret;
3747
3748 ret = t4_fwaddrspace_write(adap, adap->mbox,
3749 0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
3750 return ret;
3751}
3752EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3753
3754static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3755{
3756 u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
3757 __be64 indices;
3758 int ret;
3759
3760 ret = t4_mem_win_read_len(adap, addr, (__be32 *)&indices, 8);
3761 if (!ret) {
404d9e3f
VP
3762 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3763 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3069ee9b
VP
3764 }
3765 return ret;
3766}
3767
3768int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3769 u16 size)
3770{
3771 struct adapter *adap = netdev2adap(dev);
3772 u16 hw_pidx, hw_cidx;
3773 int ret;
3774
3775 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3776 if (ret)
3777 goto out;
3778
3779 if (pidx != hw_pidx) {
3780 u16 delta;
3781
3782 if (pidx >= hw_pidx)
3783 delta = pidx - hw_pidx;
3784 else
3785 delta = size - hw_pidx + pidx;
3786 wmb();
840f3000
VP
3787 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3788 QID(qid) | PIDX(delta));
3069ee9b
VP
3789 }
3790out:
3791 return ret;
3792}
3793EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3794
3cbdb928
VP
3795void cxgb4_disable_db_coalescing(struct net_device *dev)
3796{
3797 struct adapter *adap;
3798
3799 adap = netdev2adap(dev);
3800 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE,
3801 F_NOCOALESCE);
3802}
3803EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
3804
3805void cxgb4_enable_db_coalescing(struct net_device *dev)
3806{
3807 struct adapter *adap;
3808
3809 adap = netdev2adap(dev);
3810 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 0);
3811}
3812EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
3813
b8ff05a9
DM
3814static struct pci_driver cxgb4_driver;
3815
3816static void check_neigh_update(struct neighbour *neigh)
3817{
3818 const struct device *parent;
3819 const struct net_device *netdev = neigh->dev;
3820
3821 if (netdev->priv_flags & IFF_802_1Q_VLAN)
3822 netdev = vlan_dev_real_dev(netdev);
3823 parent = netdev->dev.parent;
3824 if (parent && parent->driver == &cxgb4_driver.driver)
3825 t4_l2t_update(dev_get_drvdata(parent), neigh);
3826}
3827
3828static int netevent_cb(struct notifier_block *nb, unsigned long event,
3829 void *data)
3830{
3831 switch (event) {
3832 case NETEVENT_NEIGH_UPDATE:
3833 check_neigh_update(data);
3834 break;
b8ff05a9
DM
3835 case NETEVENT_REDIRECT:
3836 default:
3837 break;
3838 }
3839 return 0;
3840}
3841
3842static bool netevent_registered;
3843static struct notifier_block cxgb4_netevent_nb = {
3844 .notifier_call = netevent_cb
3845};
3846
3069ee9b
VP
3847static void drain_db_fifo(struct adapter *adap, int usecs)
3848{
2cc301d2 3849 u32 v1, v2, lp_count, hp_count;
3069ee9b
VP
3850
3851 do {
2cc301d2
SR
3852 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3853 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
d14807dd 3854 if (is_t4(adap->params.chip)) {
2cc301d2
SR
3855 lp_count = G_LP_COUNT(v1);
3856 hp_count = G_HP_COUNT(v1);
3857 } else {
3858 lp_count = G_LP_COUNT_T5(v1);
3859 hp_count = G_HP_COUNT_T5(v2);
3860 }
3861
3862 if (lp_count == 0 && hp_count == 0)
3863 break;
3069ee9b
VP
3864 set_current_state(TASK_UNINTERRUPTIBLE);
3865 schedule_timeout(usecs_to_jiffies(usecs));
3069ee9b
VP
3866 } while (1);
3867}
3868
3869static void disable_txq_db(struct sge_txq *q)
3870{
05eb2389
SW
3871 unsigned long flags;
3872
3873 spin_lock_irqsave(&q->db_lock, flags);
3069ee9b 3874 q->db_disabled = 1;
05eb2389 3875 spin_unlock_irqrestore(&q->db_lock, flags);
3069ee9b
VP
3876}
3877
05eb2389 3878static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
3069ee9b
VP
3879{
3880 spin_lock_irq(&q->db_lock);
05eb2389
SW
3881 if (q->db_pidx_inc) {
3882 /* Make sure that all writes to the TX descriptors
3883 * are committed before we tell HW about them.
3884 */
3885 wmb();
3886 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3887 QID(q->cntxt_id) | PIDX(q->db_pidx_inc));
3888 q->db_pidx_inc = 0;
3889 }
3069ee9b
VP
3890 q->db_disabled = 0;
3891 spin_unlock_irq(&q->db_lock);
3892}
3893
3894static void disable_dbs(struct adapter *adap)
3895{
3896 int i;
3897
3898 for_each_ethrxq(&adap->sge, i)
3899 disable_txq_db(&adap->sge.ethtxq[i].q);
3900 for_each_ofldrxq(&adap->sge, i)
3901 disable_txq_db(&adap->sge.ofldtxq[i].q);
3902 for_each_port(adap, i)
3903 disable_txq_db(&adap->sge.ctrlq[i].q);
3904}
3905
3906static void enable_dbs(struct adapter *adap)
3907{
3908 int i;
3909
3910 for_each_ethrxq(&adap->sge, i)
05eb2389 3911 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
3069ee9b 3912 for_each_ofldrxq(&adap->sge, i)
05eb2389 3913 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
3069ee9b 3914 for_each_port(adap, i)
05eb2389
SW
3915 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
3916}
3917
3918static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
3919{
3920 if (adap->uld_handle[CXGB4_ULD_RDMA])
3921 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
3922 cmd);
3923}
3924
3925static void process_db_full(struct work_struct *work)
3926{
3927 struct adapter *adap;
3928
3929 adap = container_of(work, struct adapter, db_full_task);
3930
3931 drain_db_fifo(adap, dbfifo_drain_delay);
3932 enable_dbs(adap);
3933 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
3934 t4_set_reg_field(adap, SGE_INT_ENABLE3,
3935 DBFIFO_HP_INT | DBFIFO_LP_INT,
3936 DBFIFO_HP_INT | DBFIFO_LP_INT);
3069ee9b
VP
3937}
3938
3939static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
3940{
3941 u16 hw_pidx, hw_cidx;
3942 int ret;
3943
05eb2389 3944 spin_lock_irq(&q->db_lock);
3069ee9b
VP
3945 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
3946 if (ret)
3947 goto out;
3948 if (q->db_pidx != hw_pidx) {
3949 u16 delta;
3950
3951 if (q->db_pidx >= hw_pidx)
3952 delta = q->db_pidx - hw_pidx;
3953 else
3954 delta = q->size - hw_pidx + q->db_pidx;
3955 wmb();
840f3000
VP
3956 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3957 QID(q->cntxt_id) | PIDX(delta));
3069ee9b
VP
3958 }
3959out:
3960 q->db_disabled = 0;
05eb2389
SW
3961 q->db_pidx_inc = 0;
3962 spin_unlock_irq(&q->db_lock);
3069ee9b
VP
3963 if (ret)
3964 CH_WARN(adap, "DB drop recovery failed.\n");
3965}
3966static void recover_all_queues(struct adapter *adap)
3967{
3968 int i;
3969
3970 for_each_ethrxq(&adap->sge, i)
3971 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
3972 for_each_ofldrxq(&adap->sge, i)
3973 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
3974 for_each_port(adap, i)
3975 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
3976}
3977
881806bc
VP
3978static void process_db_drop(struct work_struct *work)
3979{
3980 struct adapter *adap;
881806bc 3981
3069ee9b 3982 adap = container_of(work, struct adapter, db_drop_task);
881806bc 3983
d14807dd 3984 if (is_t4(adap->params.chip)) {
05eb2389 3985 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 3986 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
05eb2389 3987 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 3988 recover_all_queues(adap);
05eb2389 3989 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 3990 enable_dbs(adap);
05eb2389 3991 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2cc301d2
SR
3992 } else {
3993 u32 dropped_db = t4_read_reg(adap, 0x010ac);
3994 u16 qid = (dropped_db >> 15) & 0x1ffff;
3995 u16 pidx_inc = dropped_db & 0x1fff;
3996 unsigned int s_qpp;
3997 unsigned short udb_density;
3998 unsigned long qpshift;
3999 int page;
4000 u32 udb;
4001
4002 dev_warn(adap->pdev_dev,
4003 "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n",
4004 dropped_db, qid,
4005 (dropped_db >> 14) & 1,
4006 (dropped_db >> 13) & 1,
4007 pidx_inc);
4008
4009 drain_db_fifo(adap, 1);
4010
4011 s_qpp = QUEUESPERPAGEPF1 * adap->fn;
4012 udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap,
4013 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
4014 qpshift = PAGE_SHIFT - ilog2(udb_density);
4015 udb = qid << qpshift;
4016 udb &= PAGE_MASK;
4017 page = udb / PAGE_SIZE;
4018 udb += (qid - (page * udb_density)) * 128;
4019
4020 writel(PIDX(pidx_inc), adap->bar2 + udb + 8);
4021
4022 /* Re-enable BAR2 WC */
4023 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
4024 }
4025
3069ee9b 4026 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
881806bc
VP
4027}
4028
4029void t4_db_full(struct adapter *adap)
4030{
d14807dd 4031 if (is_t4(adap->params.chip)) {
05eb2389
SW
4032 disable_dbs(adap);
4033 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2cc301d2
SR
4034 t4_set_reg_field(adap, SGE_INT_ENABLE3,
4035 DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
4036 queue_work(workq, &adap->db_full_task);
4037 }
881806bc
VP
4038}
4039
4040void t4_db_dropped(struct adapter *adap)
4041{
05eb2389
SW
4042 if (is_t4(adap->params.chip)) {
4043 disable_dbs(adap);
4044 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4045 }
4046 queue_work(workq, &adap->db_drop_task);
881806bc
VP
4047}
4048
b8ff05a9
DM
4049static void uld_attach(struct adapter *adap, unsigned int uld)
4050{
4051 void *handle;
4052 struct cxgb4_lld_info lli;
dca4faeb 4053 unsigned short i;
b8ff05a9
DM
4054
4055 lli.pdev = adap->pdev;
4056 lli.l2t = adap->l2t;
4057 lli.tids = &adap->tids;
4058 lli.ports = adap->port;
4059 lli.vr = &adap->vres;
4060 lli.mtus = adap->params.mtus;
4061 if (uld == CXGB4_ULD_RDMA) {
4062 lli.rxq_ids = adap->sge.rdma_rxq;
cf38be6d 4063 lli.ciq_ids = adap->sge.rdma_ciq;
b8ff05a9 4064 lli.nrxq = adap->sge.rdmaqs;
cf38be6d 4065 lli.nciq = adap->sge.rdmaciqs;
b8ff05a9
DM
4066 } else if (uld == CXGB4_ULD_ISCSI) {
4067 lli.rxq_ids = adap->sge.ofld_rxq;
4068 lli.nrxq = adap->sge.ofldqsets;
4069 }
4070 lli.ntxq = adap->sge.ofldqsets;
4071 lli.nchan = adap->params.nports;
4072 lli.nports = adap->params.nports;
4073 lli.wr_cred = adap->params.ofldq_wr_cred;
d14807dd 4074 lli.adapter_type = adap->params.chip;
b8ff05a9
DM
4075 lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
4076 lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
060e0c75
DM
4077 t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
4078 (adap->fn * 4));
b8ff05a9 4079 lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
060e0c75
DM
4080 t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
4081 (adap->fn * 4));
dcf7b6f5 4082 lli.filt_mode = adap->params.tp.vlan_pri_map;
dca4faeb
VP
4083 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
4084 for (i = 0; i < NCHAN; i++)
4085 lli.tx_modq[i] = i;
b8ff05a9
DM
4086 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
4087 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
4088 lli.fw_vers = adap->params.fw_vers;
3069ee9b 4089 lli.dbfifo_int_thresh = dbfifo_int_thresh;
dca4faeb
VP
4090 lli.sge_pktshift = adap->sge.pktshift;
4091 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
1ac0f095 4092 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
b8ff05a9
DM
4093
4094 handle = ulds[uld].add(&lli);
4095 if (IS_ERR(handle)) {
4096 dev_warn(adap->pdev_dev,
4097 "could not attach to the %s driver, error %ld\n",
4098 uld_str[uld], PTR_ERR(handle));
4099 return;
4100 }
4101
4102 adap->uld_handle[uld] = handle;
4103
4104 if (!netevent_registered) {
4105 register_netevent_notifier(&cxgb4_netevent_nb);
4106 netevent_registered = true;
4107 }
e29f5dbc
DM
4108
4109 if (adap->flags & FULL_INIT_DONE)
4110 ulds[uld].state_change(handle, CXGB4_STATE_UP);
b8ff05a9
DM
4111}
4112
4113static void attach_ulds(struct adapter *adap)
4114{
4115 unsigned int i;
4116
01bcca68
VP
4117 spin_lock(&adap_rcu_lock);
4118 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
4119 spin_unlock(&adap_rcu_lock);
4120
b8ff05a9
DM
4121 mutex_lock(&uld_mutex);
4122 list_add_tail(&adap->list_node, &adapter_list);
4123 for (i = 0; i < CXGB4_ULD_MAX; i++)
4124 if (ulds[i].add)
4125 uld_attach(adap, i);
4126 mutex_unlock(&uld_mutex);
4127}
4128
4129static void detach_ulds(struct adapter *adap)
4130{
4131 unsigned int i;
4132
4133 mutex_lock(&uld_mutex);
4134 list_del(&adap->list_node);
4135 for (i = 0; i < CXGB4_ULD_MAX; i++)
4136 if (adap->uld_handle[i]) {
4137 ulds[i].state_change(adap->uld_handle[i],
4138 CXGB4_STATE_DETACH);
4139 adap->uld_handle[i] = NULL;
4140 }
4141 if (netevent_registered && list_empty(&adapter_list)) {
4142 unregister_netevent_notifier(&cxgb4_netevent_nb);
4143 netevent_registered = false;
4144 }
4145 mutex_unlock(&uld_mutex);
01bcca68
VP
4146
4147 spin_lock(&adap_rcu_lock);
4148 list_del_rcu(&adap->rcu_node);
4149 spin_unlock(&adap_rcu_lock);
b8ff05a9
DM
4150}
4151
4152static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
4153{
4154 unsigned int i;
4155
4156 mutex_lock(&uld_mutex);
4157 for (i = 0; i < CXGB4_ULD_MAX; i++)
4158 if (adap->uld_handle[i])
4159 ulds[i].state_change(adap->uld_handle[i], new_state);
4160 mutex_unlock(&uld_mutex);
4161}
4162
4163/**
4164 * cxgb4_register_uld - register an upper-layer driver
4165 * @type: the ULD type
4166 * @p: the ULD methods
4167 *
4168 * Registers an upper-layer driver with this driver and notifies the ULD
4169 * about any presently available devices that support its type. Returns
4170 * %-EBUSY if a ULD of the same type is already registered.
4171 */
4172int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
4173{
4174 int ret = 0;
4175 struct adapter *adap;
4176
4177 if (type >= CXGB4_ULD_MAX)
4178 return -EINVAL;
4179 mutex_lock(&uld_mutex);
4180 if (ulds[type].add) {
4181 ret = -EBUSY;
4182 goto out;
4183 }
4184 ulds[type] = *p;
4185 list_for_each_entry(adap, &adapter_list, list_node)
4186 uld_attach(adap, type);
4187out: mutex_unlock(&uld_mutex);
4188 return ret;
4189}
4190EXPORT_SYMBOL(cxgb4_register_uld);
4191
4192/**
4193 * cxgb4_unregister_uld - unregister an upper-layer driver
4194 * @type: the ULD type
4195 *
4196 * Unregisters an existing upper-layer driver.
4197 */
4198int cxgb4_unregister_uld(enum cxgb4_uld type)
4199{
4200 struct adapter *adap;
4201
4202 if (type >= CXGB4_ULD_MAX)
4203 return -EINVAL;
4204 mutex_lock(&uld_mutex);
4205 list_for_each_entry(adap, &adapter_list, list_node)
4206 adap->uld_handle[type] = NULL;
4207 ulds[type].add = NULL;
4208 mutex_unlock(&uld_mutex);
4209 return 0;
4210}
4211EXPORT_SYMBOL(cxgb4_unregister_uld);
4212
01bcca68 4213/* Check if netdev on which event is occured belongs to us or not. Return
ee9a33b2
LR
4214 * success (true) if it belongs otherwise failure (false).
4215 * Called with rcu_read_lock() held.
01bcca68 4216 */
ee9a33b2 4217static bool cxgb4_netdev(const struct net_device *netdev)
01bcca68
VP
4218{
4219 struct adapter *adap;
4220 int i;
4221
01bcca68
VP
4222 list_for_each_entry_rcu(adap, &adap_rcu_list, rcu_node)
4223 for (i = 0; i < MAX_NPORTS; i++)
ee9a33b2
LR
4224 if (adap->port[i] == netdev)
4225 return true;
4226 return false;
01bcca68
VP
4227}
4228
4229static int clip_add(struct net_device *event_dev, struct inet6_ifaddr *ifa,
4230 unsigned long event)
4231{
4232 int ret = NOTIFY_DONE;
4233
4234 rcu_read_lock();
4235 if (cxgb4_netdev(event_dev)) {
4236 switch (event) {
4237 case NETDEV_UP:
4238 ret = cxgb4_clip_get(event_dev,
4239 (const struct in6_addr *)ifa->addr.s6_addr);
4240 if (ret < 0) {
4241 rcu_read_unlock();
4242 return ret;
4243 }
4244 ret = NOTIFY_OK;
4245 break;
4246 case NETDEV_DOWN:
4247 cxgb4_clip_release(event_dev,
4248 (const struct in6_addr *)ifa->addr.s6_addr);
4249 ret = NOTIFY_OK;
4250 break;
4251 default:
4252 break;
4253 }
4254 }
4255 rcu_read_unlock();
4256 return ret;
4257}
4258
4259static int cxgb4_inet6addr_handler(struct notifier_block *this,
4260 unsigned long event, void *data)
4261{
4262 struct inet6_ifaddr *ifa = data;
4263 struct net_device *event_dev;
4264 int ret = NOTIFY_DONE;
01bcca68 4265 struct bonding *bond = netdev_priv(ifa->idev->dev);
9caff1e7 4266 struct list_head *iter;
01bcca68
VP
4267 struct slave *slave;
4268 struct pci_dev *first_pdev = NULL;
4269
4270 if (ifa->idev->dev->priv_flags & IFF_802_1Q_VLAN) {
4271 event_dev = vlan_dev_real_dev(ifa->idev->dev);
4272 ret = clip_add(event_dev, ifa, event);
4273 } else if (ifa->idev->dev->flags & IFF_MASTER) {
4274 /* It is possible that two different adapters are bonded in one
4275 * bond. We need to find such different adapters and add clip
4276 * in all of them only once.
4277 */
4278 read_lock(&bond->lock);
9caff1e7 4279 bond_for_each_slave(bond, slave, iter) {
01bcca68
VP
4280 if (!first_pdev) {
4281 ret = clip_add(slave->dev, ifa, event);
4282 /* If clip_add is success then only initialize
4283 * first_pdev since it means it is our device
4284 */
4285 if (ret == NOTIFY_OK)
4286 first_pdev = to_pci_dev(
4287 slave->dev->dev.parent);
4288 } else if (first_pdev !=
4289 to_pci_dev(slave->dev->dev.parent))
4290 ret = clip_add(slave->dev, ifa, event);
4291 }
4292 read_unlock(&bond->lock);
4293 } else
4294 ret = clip_add(ifa->idev->dev, ifa, event);
4295
4296 return ret;
4297}
4298
4299static struct notifier_block cxgb4_inet6addr_notifier = {
4300 .notifier_call = cxgb4_inet6addr_handler
4301};
4302
4303/* Retrieves IPv6 addresses from a root device (bond, vlan) associated with
4304 * a physical device.
4305 * The physical device reference is needed to send the actul CLIP command.
4306 */
4307static int update_dev_clip(struct net_device *root_dev, struct net_device *dev)
4308{
4309 struct inet6_dev *idev = NULL;
4310 struct inet6_ifaddr *ifa;
4311 int ret = 0;
4312
4313 idev = __in6_dev_get(root_dev);
4314 if (!idev)
4315 return ret;
4316
4317 read_lock_bh(&idev->lock);
4318 list_for_each_entry(ifa, &idev->addr_list, if_list) {
4319 ret = cxgb4_clip_get(dev,
4320 (const struct in6_addr *)ifa->addr.s6_addr);
4321 if (ret < 0)
4322 break;
4323 }
4324 read_unlock_bh(&idev->lock);
4325
4326 return ret;
4327}
4328
4329static int update_root_dev_clip(struct net_device *dev)
4330{
4331 struct net_device *root_dev = NULL;
4332 int i, ret = 0;
4333
4334 /* First populate the real net device's IPv6 addresses */
4335 ret = update_dev_clip(dev, dev);
4336 if (ret)
4337 return ret;
4338
4339 /* Parse all bond and vlan devices layered on top of the physical dev */
4340 for (i = 0; i < VLAN_N_VID; i++) {
f06c7f9f 4341 root_dev = __vlan_find_dev_deep_rcu(dev, htons(ETH_P_8021Q), i);
01bcca68
VP
4342 if (!root_dev)
4343 continue;
4344
4345 ret = update_dev_clip(root_dev, dev);
4346 if (ret)
4347 break;
4348 }
4349 return ret;
4350}
4351
4352static void update_clip(const struct adapter *adap)
4353{
4354 int i;
4355 struct net_device *dev;
4356 int ret;
4357
4358 rcu_read_lock();
4359
4360 for (i = 0; i < MAX_NPORTS; i++) {
4361 dev = adap->port[i];
4362 ret = 0;
4363
4364 if (dev)
4365 ret = update_root_dev_clip(dev);
4366
4367 if (ret < 0)
4368 break;
4369 }
4370 rcu_read_unlock();
4371}
4372
b8ff05a9
DM
4373/**
4374 * cxgb_up - enable the adapter
4375 * @adap: adapter being enabled
4376 *
4377 * Called when the first port is enabled, this function performs the
4378 * actions necessary to make an adapter operational, such as completing
4379 * the initialization of HW modules, and enabling interrupts.
4380 *
4381 * Must be called with the rtnl lock held.
4382 */
4383static int cxgb_up(struct adapter *adap)
4384{
aaefae9b 4385 int err;
b8ff05a9 4386
aaefae9b
DM
4387 err = setup_sge_queues(adap);
4388 if (err)
4389 goto out;
4390 err = setup_rss(adap);
4391 if (err)
4392 goto freeq;
b8ff05a9
DM
4393
4394 if (adap->flags & USING_MSIX) {
aaefae9b 4395 name_msix_vecs(adap);
b8ff05a9
DM
4396 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
4397 adap->msix_info[0].desc, adap);
4398 if (err)
4399 goto irq_err;
4400
4401 err = request_msix_queue_irqs(adap);
4402 if (err) {
4403 free_irq(adap->msix_info[0].vec, adap);
4404 goto irq_err;
4405 }
4406 } else {
4407 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
4408 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
b1a3c2b6 4409 adap->port[0]->name, adap);
b8ff05a9
DM
4410 if (err)
4411 goto irq_err;
4412 }
4413 enable_rx(adap);
4414 t4_sge_start(adap);
4415 t4_intr_enable(adap);
aaefae9b 4416 adap->flags |= FULL_INIT_DONE;
b8ff05a9 4417 notify_ulds(adap, CXGB4_STATE_UP);
01bcca68 4418 update_clip(adap);
b8ff05a9
DM
4419 out:
4420 return err;
4421 irq_err:
4422 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
aaefae9b
DM
4423 freeq:
4424 t4_free_sge_resources(adap);
b8ff05a9
DM
4425 goto out;
4426}
4427
4428static void cxgb_down(struct adapter *adapter)
4429{
4430 t4_intr_disable(adapter);
4431 cancel_work_sync(&adapter->tid_release_task);
881806bc
VP
4432 cancel_work_sync(&adapter->db_full_task);
4433 cancel_work_sync(&adapter->db_drop_task);
b8ff05a9 4434 adapter->tid_release_task_busy = false;
204dc3c0 4435 adapter->tid_release_head = NULL;
b8ff05a9
DM
4436
4437 if (adapter->flags & USING_MSIX) {
4438 free_msix_queue_irqs(adapter);
4439 free_irq(adapter->msix_info[0].vec, adapter);
4440 } else
4441 free_irq(adapter->pdev->irq, adapter);
4442 quiesce_rx(adapter);
aaefae9b
DM
4443 t4_sge_stop(adapter);
4444 t4_free_sge_resources(adapter);
4445 adapter->flags &= ~FULL_INIT_DONE;
b8ff05a9
DM
4446}
4447
4448/*
4449 * net_device operations
4450 */
4451static int cxgb_open(struct net_device *dev)
4452{
4453 int err;
4454 struct port_info *pi = netdev_priv(dev);
4455 struct adapter *adapter = pi->adapter;
4456
6a3c869a
DM
4457 netif_carrier_off(dev);
4458
aaefae9b
DM
4459 if (!(adapter->flags & FULL_INIT_DONE)) {
4460 err = cxgb_up(adapter);
4461 if (err < 0)
4462 return err;
4463 }
b8ff05a9 4464
f68707b8
DM
4465 err = link_start(dev);
4466 if (!err)
4467 netif_tx_start_all_queues(dev);
4468 return err;
b8ff05a9
DM
4469}
4470
4471static int cxgb_close(struct net_device *dev)
4472{
b8ff05a9
DM
4473 struct port_info *pi = netdev_priv(dev);
4474 struct adapter *adapter = pi->adapter;
4475
4476 netif_tx_stop_all_queues(dev);
4477 netif_carrier_off(dev);
060e0c75 4478 return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
b8ff05a9
DM
4479}
4480
f2b7e78d
VP
4481/* Return an error number if the indicated filter isn't writable ...
4482 */
4483static int writable_filter(struct filter_entry *f)
4484{
4485 if (f->locked)
4486 return -EPERM;
4487 if (f->pending)
4488 return -EBUSY;
4489
4490 return 0;
4491}
4492
4493/* Delete the filter at the specified index (if valid). The checks for all
4494 * the common problems with doing this like the filter being locked, currently
4495 * pending in another operation, etc.
4496 */
4497static int delete_filter(struct adapter *adapter, unsigned int fidx)
4498{
4499 struct filter_entry *f;
4500 int ret;
4501
dca4faeb 4502 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
f2b7e78d
VP
4503 return -EINVAL;
4504
4505 f = &adapter->tids.ftid_tab[fidx];
4506 ret = writable_filter(f);
4507 if (ret)
4508 return ret;
4509 if (f->valid)
4510 return del_filter_wr(adapter, fidx);
4511
4512 return 0;
4513}
4514
dca4faeb 4515int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
793dad94
VP
4516 __be32 sip, __be16 sport, __be16 vlan,
4517 unsigned int queue, unsigned char port, unsigned char mask)
dca4faeb
VP
4518{
4519 int ret;
4520 struct filter_entry *f;
4521 struct adapter *adap;
4522 int i;
4523 u8 *val;
4524
4525 adap = netdev2adap(dev);
4526
1cab775c 4527 /* Adjust stid to correct filter index */
470c60c4 4528 stid -= adap->tids.sftid_base;
1cab775c
VP
4529 stid += adap->tids.nftids;
4530
dca4faeb
VP
4531 /* Check to make sure the filter requested is writable ...
4532 */
4533 f = &adap->tids.ftid_tab[stid];
4534 ret = writable_filter(f);
4535 if (ret)
4536 return ret;
4537
4538 /* Clear out any old resources being used by the filter before
4539 * we start constructing the new filter.
4540 */
4541 if (f->valid)
4542 clear_filter(adap, f);
4543
4544 /* Clear out filter specifications */
4545 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
4546 f->fs.val.lport = cpu_to_be16(sport);
4547 f->fs.mask.lport = ~0;
4548 val = (u8 *)&sip;
793dad94 4549 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
dca4faeb
VP
4550 for (i = 0; i < 4; i++) {
4551 f->fs.val.lip[i] = val[i];
4552 f->fs.mask.lip[i] = ~0;
4553 }
dcf7b6f5 4554 if (adap->params.tp.vlan_pri_map & F_PORT) {
793dad94
VP
4555 f->fs.val.iport = port;
4556 f->fs.mask.iport = mask;
4557 }
4558 }
dca4faeb 4559
dcf7b6f5 4560 if (adap->params.tp.vlan_pri_map & F_PROTOCOL) {
7c89e555
KS
4561 f->fs.val.proto = IPPROTO_TCP;
4562 f->fs.mask.proto = ~0;
4563 }
4564
dca4faeb
VP
4565 f->fs.dirsteer = 1;
4566 f->fs.iq = queue;
4567 /* Mark filter as locked */
4568 f->locked = 1;
4569 f->fs.rpttid = 1;
4570
4571 ret = set_filter_wr(adap, stid);
4572 if (ret) {
4573 clear_filter(adap, f);
4574 return ret;
4575 }
4576
4577 return 0;
4578}
4579EXPORT_SYMBOL(cxgb4_create_server_filter);
4580
4581int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
4582 unsigned int queue, bool ipv6)
4583{
4584 int ret;
4585 struct filter_entry *f;
4586 struct adapter *adap;
4587
4588 adap = netdev2adap(dev);
1cab775c
VP
4589
4590 /* Adjust stid to correct filter index */
470c60c4 4591 stid -= adap->tids.sftid_base;
1cab775c
VP
4592 stid += adap->tids.nftids;
4593
dca4faeb
VP
4594 f = &adap->tids.ftid_tab[stid];
4595 /* Unlock the filter */
4596 f->locked = 0;
4597
4598 ret = delete_filter(adap, stid);
4599 if (ret)
4600 return ret;
4601
4602 return 0;
4603}
4604EXPORT_SYMBOL(cxgb4_remove_server_filter);
4605
f5152c90
DM
4606static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
4607 struct rtnl_link_stats64 *ns)
b8ff05a9
DM
4608{
4609 struct port_stats stats;
4610 struct port_info *p = netdev_priv(dev);
4611 struct adapter *adapter = p->adapter;
b8ff05a9 4612
9fe6cb58
GS
4613 /* Block retrieving statistics during EEH error
4614 * recovery. Otherwise, the recovery might fail
4615 * and the PCI device will be removed permanently
4616 */
b8ff05a9 4617 spin_lock(&adapter->stats_lock);
9fe6cb58
GS
4618 if (!netif_device_present(dev)) {
4619 spin_unlock(&adapter->stats_lock);
4620 return ns;
4621 }
b8ff05a9
DM
4622 t4_get_port_stats(adapter, p->tx_chan, &stats);
4623 spin_unlock(&adapter->stats_lock);
4624
4625 ns->tx_bytes = stats.tx_octets;
4626 ns->tx_packets = stats.tx_frames;
4627 ns->rx_bytes = stats.rx_octets;
4628 ns->rx_packets = stats.rx_frames;
4629 ns->multicast = stats.rx_mcast_frames;
4630
4631 /* detailed rx_errors */
4632 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
4633 stats.rx_runt;
4634 ns->rx_over_errors = 0;
4635 ns->rx_crc_errors = stats.rx_fcs_err;
4636 ns->rx_frame_errors = stats.rx_symbol_err;
4637 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 +
4638 stats.rx_ovflow2 + stats.rx_ovflow3 +
4639 stats.rx_trunc0 + stats.rx_trunc1 +
4640 stats.rx_trunc2 + stats.rx_trunc3;
4641 ns->rx_missed_errors = 0;
4642
4643 /* detailed tx_errors */
4644 ns->tx_aborted_errors = 0;
4645 ns->tx_carrier_errors = 0;
4646 ns->tx_fifo_errors = 0;
4647 ns->tx_heartbeat_errors = 0;
4648 ns->tx_window_errors = 0;
4649
4650 ns->tx_errors = stats.tx_error_frames;
4651 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
4652 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
4653 return ns;
4654}
4655
4656static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
4657{
060e0c75 4658 unsigned int mbox;
b8ff05a9
DM
4659 int ret = 0, prtad, devad;
4660 struct port_info *pi = netdev_priv(dev);
4661 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
4662
4663 switch (cmd) {
4664 case SIOCGMIIPHY:
4665 if (pi->mdio_addr < 0)
4666 return -EOPNOTSUPP;
4667 data->phy_id = pi->mdio_addr;
4668 break;
4669 case SIOCGMIIREG:
4670 case SIOCSMIIREG:
4671 if (mdio_phy_id_is_c45(data->phy_id)) {
4672 prtad = mdio_phy_id_prtad(data->phy_id);
4673 devad = mdio_phy_id_devad(data->phy_id);
4674 } else if (data->phy_id < 32) {
4675 prtad = data->phy_id;
4676 devad = 0;
4677 data->reg_num &= 0x1f;
4678 } else
4679 return -EINVAL;
4680
060e0c75 4681 mbox = pi->adapter->fn;
b8ff05a9 4682 if (cmd == SIOCGMIIREG)
060e0c75 4683 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
4684 data->reg_num, &data->val_out);
4685 else
060e0c75 4686 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
4687 data->reg_num, data->val_in);
4688 break;
4689 default:
4690 return -EOPNOTSUPP;
4691 }
4692 return ret;
4693}
4694
4695static void cxgb_set_rxmode(struct net_device *dev)
4696{
4697 /* unfortunately we can't return errors to the stack */
4698 set_rxmode(dev, -1, false);
4699}
4700
4701static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
4702{
4703 int ret;
4704 struct port_info *pi = netdev_priv(dev);
4705
4706 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */
4707 return -EINVAL;
060e0c75
DM
4708 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
4709 -1, -1, -1, true);
b8ff05a9
DM
4710 if (!ret)
4711 dev->mtu = new_mtu;
4712 return ret;
4713}
4714
4715static int cxgb_set_mac_addr(struct net_device *dev, void *p)
4716{
4717 int ret;
4718 struct sockaddr *addr = p;
4719 struct port_info *pi = netdev_priv(dev);
4720
4721 if (!is_valid_ether_addr(addr->sa_data))
504f9b5a 4722 return -EADDRNOTAVAIL;
b8ff05a9 4723
060e0c75
DM
4724 ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
4725 pi->xact_addr_filt, addr->sa_data, true, true);
b8ff05a9
DM
4726 if (ret < 0)
4727 return ret;
4728
4729 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4730 pi->xact_addr_filt = ret;
4731 return 0;
4732}
4733
b8ff05a9
DM
4734#ifdef CONFIG_NET_POLL_CONTROLLER
4735static void cxgb_netpoll(struct net_device *dev)
4736{
4737 struct port_info *pi = netdev_priv(dev);
4738 struct adapter *adap = pi->adapter;
4739
4740 if (adap->flags & USING_MSIX) {
4741 int i;
4742 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4743
4744 for (i = pi->nqsets; i; i--, rx++)
4745 t4_sge_intr_msix(0, &rx->rspq);
4746 } else
4747 t4_intr_handler(adap)(0, adap);
4748}
4749#endif
4750
4751static const struct net_device_ops cxgb4_netdev_ops = {
4752 .ndo_open = cxgb_open,
4753 .ndo_stop = cxgb_close,
4754 .ndo_start_xmit = t4_eth_xmit,
688848b1 4755 .ndo_select_queue = cxgb_select_queue,
9be793bf 4756 .ndo_get_stats64 = cxgb_get_stats,
b8ff05a9
DM
4757 .ndo_set_rx_mode = cxgb_set_rxmode,
4758 .ndo_set_mac_address = cxgb_set_mac_addr,
2ed28baa 4759 .ndo_set_features = cxgb_set_features,
b8ff05a9
DM
4760 .ndo_validate_addr = eth_validate_addr,
4761 .ndo_do_ioctl = cxgb_ioctl,
4762 .ndo_change_mtu = cxgb_change_mtu,
b8ff05a9
DM
4763#ifdef CONFIG_NET_POLL_CONTROLLER
4764 .ndo_poll_controller = cxgb_netpoll,
4765#endif
4766};
4767
4768void t4_fatal_err(struct adapter *adap)
4769{
4770 t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
4771 t4_intr_disable(adap);
4772 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4773}
4774
4775static void setup_memwin(struct adapter *adap)
4776{
19dd37ba 4777 u32 bar0, mem_win0_base, mem_win1_base, mem_win2_base;
b8ff05a9
DM
4778
4779 bar0 = pci_resource_start(adap->pdev, 0); /* truncation intentional */
d14807dd 4780 if (is_t4(adap->params.chip)) {
19dd37ba
SR
4781 mem_win0_base = bar0 + MEMWIN0_BASE;
4782 mem_win1_base = bar0 + MEMWIN1_BASE;
4783 mem_win2_base = bar0 + MEMWIN2_BASE;
4784 } else {
4785 /* For T5, only relative offset inside the PCIe BAR is passed */
4786 mem_win0_base = MEMWIN0_BASE;
4787 mem_win1_base = MEMWIN1_BASE_T5;
4788 mem_win2_base = MEMWIN2_BASE_T5;
4789 }
b8ff05a9 4790 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
19dd37ba 4791 mem_win0_base | BIR(0) |
b8ff05a9
DM
4792 WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
4793 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
19dd37ba 4794 mem_win1_base | BIR(0) |
b8ff05a9
DM
4795 WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
4796 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
19dd37ba 4797 mem_win2_base | BIR(0) |
b8ff05a9 4798 WINDOW(ilog2(MEMWIN2_APERTURE) - 10));
636f9d37
VP
4799}
4800
4801static void setup_memwin_rdma(struct adapter *adap)
4802{
1ae970e0
DM
4803 if (adap->vres.ocq.size) {
4804 unsigned int start, sz_kb;
4805
4806 start = pci_resource_start(adap->pdev, 2) +
4807 OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
4808 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
4809 t4_write_reg(adap,
4810 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
4811 start | BIR(1) | WINDOW(ilog2(sz_kb)));
4812 t4_write_reg(adap,
4813 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
4814 adap->vres.ocq.start);
4815 t4_read_reg(adap,
4816 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
4817 }
b8ff05a9
DM
4818}
4819
02b5fb8e
DM
4820static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4821{
4822 u32 v;
4823 int ret;
4824
4825 /* get device capabilities */
4826 memset(c, 0, sizeof(*c));
4827 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4828 FW_CMD_REQUEST | FW_CMD_READ);
ce91a923 4829 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
060e0c75 4830 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
02b5fb8e
DM
4831 if (ret < 0)
4832 return ret;
4833
4834 /* select capabilities we'll be using */
4835 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
4836 if (!vf_acls)
4837 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
4838 else
4839 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
4840 } else if (vf_acls) {
4841 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
4842 return ret;
4843 }
4844 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4845 FW_CMD_REQUEST | FW_CMD_WRITE);
060e0c75 4846 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
02b5fb8e
DM
4847 if (ret < 0)
4848 return ret;
4849
060e0c75 4850 ret = t4_config_glbl_rss(adap, adap->fn,
02b5fb8e
DM
4851 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4852 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
4853 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
4854 if (ret < 0)
4855 return ret;
4856
060e0c75
DM
4857 ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
4858 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
02b5fb8e
DM
4859 if (ret < 0)
4860 return ret;
4861
4862 t4_sge_init(adap);
4863
02b5fb8e
DM
4864 /* tweak some settings */
4865 t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
4866 t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
4867 t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
4868 v = t4_read_reg(adap, TP_PIO_DATA);
4869 t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
060e0c75 4870
dca4faeb
VP
4871 /* first 4 Tx modulation queues point to consecutive Tx channels */
4872 adap->params.tp.tx_modq_map = 0xE4;
4873 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
4874 V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
4875
4876 /* associate each Tx modulation queue with consecutive Tx channels */
4877 v = 0x84218421;
4878 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4879 &v, 1, A_TP_TX_SCHED_HDR);
4880 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4881 &v, 1, A_TP_TX_SCHED_FIFO);
4882 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4883 &v, 1, A_TP_TX_SCHED_PCMD);
4884
4885#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4886 if (is_offload(adap)) {
4887 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
4888 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4889 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4890 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4891 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4892 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
4893 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4894 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4895 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4896 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4897 }
4898
060e0c75
DM
4899 /* get basic stuff going */
4900 return t4_early_init(adap, adap->fn);
02b5fb8e
DM
4901}
4902
b8ff05a9
DM
4903/*
4904 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
4905 */
4906#define MAX_ATIDS 8192U
4907
636f9d37
VP
4908/*
4909 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4910 *
4911 * If the firmware we're dealing with has Configuration File support, then
4912 * we use that to perform all configuration
4913 */
4914
4915/*
4916 * Tweak configuration based on module parameters, etc. Most of these have
4917 * defaults assigned to them by Firmware Configuration Files (if we're using
4918 * them) but need to be explicitly set if we're using hard-coded
4919 * initialization. But even in the case of using Firmware Configuration
4920 * Files, we'd like to expose the ability to change these via module
4921 * parameters so these are essentially common tweaks/settings for
4922 * Configuration Files and hard-coded initialization ...
4923 */
4924static int adap_init0_tweaks(struct adapter *adapter)
4925{
4926 /*
4927 * Fix up various Host-Dependent Parameters like Page Size, Cache
4928 * Line Size, etc. The firmware default is for a 4KB Page Size and
4929 * 64B Cache Line Size ...
4930 */
4931 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4932
4933 /*
4934 * Process module parameters which affect early initialization.
4935 */
4936 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4937 dev_err(&adapter->pdev->dev,
4938 "Ignoring illegal rx_dma_offset=%d, using 2\n",
4939 rx_dma_offset);
4940 rx_dma_offset = 2;
4941 }
4942 t4_set_reg_field(adapter, SGE_CONTROL,
4943 PKTSHIFT_MASK,
4944 PKTSHIFT(rx_dma_offset));
4945
4946 /*
4947 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4948 * adds the pseudo header itself.
4949 */
4950 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
4951 CSUM_HAS_PSEUDO_HDR, 0);
4952
4953 return 0;
4954}
4955
4956/*
4957 * Attempt to initialize the adapter via a Firmware Configuration File.
4958 */
4959static int adap_init0_config(struct adapter *adapter, int reset)
4960{
4961 struct fw_caps_config_cmd caps_cmd;
4962 const struct firmware *cf;
4963 unsigned long mtype = 0, maddr = 0;
4964 u32 finiver, finicsum, cfcsum;
16e47624
HS
4965 int ret;
4966 int config_issued = 0;
0a57a536 4967 char *fw_config_file, fw_config_file_path[256];
16e47624 4968 char *config_name = NULL;
636f9d37
VP
4969
4970 /*
4971 * Reset device if necessary.
4972 */
4973 if (reset) {
4974 ret = t4_fw_reset(adapter, adapter->mbox,
4975 PIORSTMODE | PIORST);
4976 if (ret < 0)
4977 goto bye;
4978 }
4979
4980 /*
4981 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4982 * then use that. Otherwise, use the configuration file stored
4983 * in the adapter flash ...
4984 */
d14807dd 4985 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
0a57a536 4986 case CHELSIO_T4:
16e47624 4987 fw_config_file = FW4_CFNAME;
0a57a536
SR
4988 break;
4989 case CHELSIO_T5:
4990 fw_config_file = FW5_CFNAME;
4991 break;
4992 default:
4993 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4994 adapter->pdev->device);
4995 ret = -EINVAL;
4996 goto bye;
4997 }
4998
4999 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
636f9d37 5000 if (ret < 0) {
16e47624 5001 config_name = "On FLASH";
636f9d37
VP
5002 mtype = FW_MEMTYPE_CF_FLASH;
5003 maddr = t4_flash_cfg_addr(adapter);
5004 } else {
5005 u32 params[7], val[7];
5006
16e47624
HS
5007 sprintf(fw_config_file_path,
5008 "/lib/firmware/%s", fw_config_file);
5009 config_name = fw_config_file_path;
5010
636f9d37
VP
5011 if (cf->size >= FLASH_CFG_MAX_SIZE)
5012 ret = -ENOMEM;
5013 else {
5014 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5015 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5016 ret = t4_query_params(adapter, adapter->mbox,
5017 adapter->fn, 0, 1, params, val);
5018 if (ret == 0) {
5019 /*
5020 * For t4_memory_write() below addresses and
5021 * sizes have to be in terms of multiples of 4
5022 * bytes. So, if the Configuration File isn't
5023 * a multiple of 4 bytes in length we'll have
5024 * to write that out separately since we can't
5025 * guarantee that the bytes following the
5026 * residual byte in the buffer returned by
5027 * request_firmware() are zeroed out ...
5028 */
5029 size_t resid = cf->size & 0x3;
5030 size_t size = cf->size & ~0x3;
5031 __be32 *data = (__be32 *)cf->data;
5032
5033 mtype = FW_PARAMS_PARAM_Y_GET(val[0]);
5034 maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16;
5035
5036 ret = t4_memory_write(adapter, mtype, maddr,
5037 size, data);
5038 if (ret == 0 && resid != 0) {
5039 union {
5040 __be32 word;
5041 char buf[4];
5042 } last;
5043 int i;
5044
5045 last.word = data[size >> 2];
5046 for (i = resid; i < 4; i++)
5047 last.buf[i] = 0;
5048 ret = t4_memory_write(adapter, mtype,
5049 maddr + size,
5050 4, &last.word);
5051 }
5052 }
5053 }
5054
5055 release_firmware(cf);
5056 if (ret)
5057 goto bye;
5058 }
5059
5060 /*
5061 * Issue a Capability Configuration command to the firmware to get it
5062 * to parse the Configuration File. We don't use t4_fw_config_file()
5063 * because we want the ability to modify various features after we've
5064 * processed the configuration file ...
5065 */
5066 memset(&caps_cmd, 0, sizeof(caps_cmd));
5067 caps_cmd.op_to_write =
5068 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5069 FW_CMD_REQUEST |
5070 FW_CMD_READ);
ce91a923 5071 caps_cmd.cfvalid_to_len16 =
636f9d37
VP
5072 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
5073 FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5074 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
5075 FW_LEN16(caps_cmd));
5076 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5077 &caps_cmd);
16e47624
HS
5078
5079 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
5080 * Configuration File in FLASH), our last gasp effort is to use the
5081 * Firmware Configuration File which is embedded in the firmware. A
5082 * very few early versions of the firmware didn't have one embedded
5083 * but we can ignore those.
5084 */
5085 if (ret == -ENOENT) {
5086 memset(&caps_cmd, 0, sizeof(caps_cmd));
5087 caps_cmd.op_to_write =
5088 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5089 FW_CMD_REQUEST |
5090 FW_CMD_READ);
5091 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5092 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
5093 sizeof(caps_cmd), &caps_cmd);
5094 config_name = "Firmware Default";
5095 }
5096
5097 config_issued = 1;
636f9d37
VP
5098 if (ret < 0)
5099 goto bye;
5100
5101 finiver = ntohl(caps_cmd.finiver);
5102 finicsum = ntohl(caps_cmd.finicsum);
5103 cfcsum = ntohl(caps_cmd.cfcsum);
5104 if (finicsum != cfcsum)
5105 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
5106 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
5107 finicsum, cfcsum);
5108
636f9d37
VP
5109 /*
5110 * And now tell the firmware to use the configuration we just loaded.
5111 */
5112 caps_cmd.op_to_write =
5113 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5114 FW_CMD_REQUEST |
5115 FW_CMD_WRITE);
ce91a923 5116 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
5117 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5118 NULL);
5119 if (ret < 0)
5120 goto bye;
5121
5122 /*
5123 * Tweak configuration based on system architecture, module
5124 * parameters, etc.
5125 */
5126 ret = adap_init0_tweaks(adapter);
5127 if (ret < 0)
5128 goto bye;
5129
5130 /*
5131 * And finally tell the firmware to initialize itself using the
5132 * parameters from the Configuration File.
5133 */
5134 ret = t4_fw_initialize(adapter, adapter->mbox);
5135 if (ret < 0)
5136 goto bye;
5137
5138 /*
5139 * Return successfully and note that we're operating with parameters
5140 * not supplied by the driver, rather than from hard-wired
5141 * initialization constants burried in the driver.
5142 */
5143 adapter->flags |= USING_SOFT_PARAMS;
5144 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
16e47624
HS
5145 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
5146 config_name, finiver, cfcsum);
636f9d37
VP
5147 return 0;
5148
5149 /*
5150 * Something bad happened. Return the error ... (If the "error"
5151 * is that there's no Configuration File on the adapter we don't
5152 * want to issue a warning since this is fairly common.)
5153 */
5154bye:
16e47624
HS
5155 if (config_issued && ret != -ENOENT)
5156 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
5157 config_name, -ret);
636f9d37
VP
5158 return ret;
5159}
5160
13ee15d3
VP
5161/*
5162 * Attempt to initialize the adapter via hard-coded, driver supplied
5163 * parameters ...
5164 */
5165static int adap_init0_no_config(struct adapter *adapter, int reset)
5166{
5167 struct sge *s = &adapter->sge;
5168 struct fw_caps_config_cmd caps_cmd;
5169 u32 v;
5170 int i, ret;
5171
5172 /*
5173 * Reset device if necessary
5174 */
5175 if (reset) {
5176 ret = t4_fw_reset(adapter, adapter->mbox,
5177 PIORSTMODE | PIORST);
5178 if (ret < 0)
5179 goto bye;
5180 }
5181
5182 /*
5183 * Get device capabilities and select which we'll be using.
5184 */
5185 memset(&caps_cmd, 0, sizeof(caps_cmd));
5186 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5187 FW_CMD_REQUEST | FW_CMD_READ);
ce91a923 5188 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
13ee15d3
VP
5189 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5190 &caps_cmd);
5191 if (ret < 0)
5192 goto bye;
5193
13ee15d3
VP
5194 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5195 if (!vf_acls)
5196 caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5197 else
5198 caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5199 } else if (vf_acls) {
5200 dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
5201 goto bye;
5202 }
5203 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5204 FW_CMD_REQUEST | FW_CMD_WRITE);
5205 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5206 NULL);
5207 if (ret < 0)
5208 goto bye;
5209
5210 /*
5211 * Tweak configuration based on system architecture, module
5212 * parameters, etc.
5213 */
5214 ret = adap_init0_tweaks(adapter);
5215 if (ret < 0)
5216 goto bye;
5217
5218 /*
5219 * Select RSS Global Mode we want to use. We use "Basic Virtual"
5220 * mode which maps each Virtual Interface to its own section of
5221 * the RSS Table and we turn on all map and hash enables ...
5222 */
5223 adapter->flags |= RSS_TNLALLLOOKUP;
5224 ret = t4_config_glbl_rss(adapter, adapter->mbox,
5225 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5226 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5227 FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
5228 ((adapter->flags & RSS_TNLALLLOOKUP) ?
5229 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0));
5230 if (ret < 0)
5231 goto bye;
5232
5233 /*
5234 * Set up our own fundamental resource provisioning ...
5235 */
5236 ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
5237 PFRES_NEQ, PFRES_NETHCTRL,
5238 PFRES_NIQFLINT, PFRES_NIQ,
5239 PFRES_TC, PFRES_NVI,
5240 FW_PFVF_CMD_CMASK_MASK,
5241 pfvfres_pmask(adapter, adapter->fn, 0),
5242 PFRES_NEXACTF,
5243 PFRES_R_CAPS, PFRES_WX_CAPS);
5244 if (ret < 0)
5245 goto bye;
5246
5247 /*
5248 * Perform low level SGE initialization. We need to do this before we
5249 * send the firmware the INITIALIZE command because that will cause
5250 * any other PF Drivers which are waiting for the Master
5251 * Initialization to proceed forward.
5252 */
5253 for (i = 0; i < SGE_NTIMERS - 1; i++)
5254 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
5255 s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
5256 s->counter_val[0] = 1;
5257 for (i = 1; i < SGE_NCOUNTERS; i++)
5258 s->counter_val[i] = min(intr_cnt[i - 1],
5259 THRESHOLD_0_GET(THRESHOLD_0_MASK));
5260 t4_sge_init(adapter);
5261
5262#ifdef CONFIG_PCI_IOV
5263 /*
5264 * Provision resource limits for Virtual Functions. We currently
5265 * grant them all the same static resource limits except for the Port
5266 * Access Rights Mask which we're assigning based on the PF. All of
5267 * the static provisioning stuff for both the PF and VF really needs
5268 * to be managed in a persistent manner for each device which the
5269 * firmware controls.
5270 */
5271 {
5272 int pf, vf;
5273
7d6727cf 5274 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
13ee15d3
VP
5275 if (num_vf[pf] <= 0)
5276 continue;
5277
5278 /* VF numbering starts at 1! */
5279 for (vf = 1; vf <= num_vf[pf]; vf++) {
5280 ret = t4_cfg_pfvf(adapter, adapter->mbox,
5281 pf, vf,
5282 VFRES_NEQ, VFRES_NETHCTRL,
5283 VFRES_NIQFLINT, VFRES_NIQ,
5284 VFRES_TC, VFRES_NVI,
1f1e4958 5285 FW_PFVF_CMD_CMASK_MASK,
13ee15d3
VP
5286 pfvfres_pmask(
5287 adapter, pf, vf),
5288 VFRES_NEXACTF,
5289 VFRES_R_CAPS, VFRES_WX_CAPS);
5290 if (ret < 0)
5291 dev_warn(adapter->pdev_dev,
5292 "failed to "\
5293 "provision pf/vf=%d/%d; "
5294 "err=%d\n", pf, vf, ret);
5295 }
5296 }
5297 }
5298#endif
5299
5300 /*
5301 * Set up the default filter mode. Later we'll want to implement this
5302 * via a firmware command, etc. ... This needs to be done before the
5303 * firmare initialization command ... If the selected set of fields
5304 * isn't equal to the default value, we'll need to make sure that the
5305 * field selections will fit in the 36-bit budget.
5306 */
5307 if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
404d9e3f 5308 int j, bits = 0;
13ee15d3 5309
404d9e3f
VP
5310 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
5311 switch (tp_vlan_pri_map & (1 << j)) {
13ee15d3
VP
5312 case 0:
5313 /* compressed filter field not enabled */
5314 break;
5315 case FCOE_MASK:
5316 bits += 1;
5317 break;
5318 case PORT_MASK:
5319 bits += 3;
5320 break;
5321 case VNIC_ID_MASK:
5322 bits += 17;
5323 break;
5324 case VLAN_MASK:
5325 bits += 17;
5326 break;
5327 case TOS_MASK:
5328 bits += 8;
5329 break;
5330 case PROTOCOL_MASK:
5331 bits += 8;
5332 break;
5333 case ETHERTYPE_MASK:
5334 bits += 16;
5335 break;
5336 case MACMATCH_MASK:
5337 bits += 9;
5338 break;
5339 case MPSHITTYPE_MASK:
5340 bits += 3;
5341 break;
5342 case FRAGMENTATION_MASK:
5343 bits += 1;
5344 break;
5345 }
5346
5347 if (bits > 36) {
5348 dev_err(adapter->pdev_dev,
5349 "tp_vlan_pri_map=%#x needs %d bits > 36;"\
5350 " using %#x\n", tp_vlan_pri_map, bits,
5351 TP_VLAN_PRI_MAP_DEFAULT);
5352 tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
5353 }
5354 }
5355 v = tp_vlan_pri_map;
5356 t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
5357 &v, 1, TP_VLAN_PRI_MAP);
5358
5359 /*
5360 * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
5361 * to support any of the compressed filter fields above. Newer
5362 * versions of the firmware do this automatically but it doesn't hurt
5363 * to set it here. Meanwhile, we do _not_ need to set Lookup Every
5364 * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
5365 * since the firmware automatically turns this on and off when we have
5366 * a non-zero number of filters active (since it does have a
5367 * performance impact).
5368 */
5369 if (tp_vlan_pri_map)
5370 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
5371 FIVETUPLELOOKUP_MASK,
5372 FIVETUPLELOOKUP_MASK);
5373
5374 /*
5375 * Tweak some settings.
5376 */
5377 t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
5378 RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
5379 PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
5380 KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
5381
5382 /*
5383 * Get basic stuff going by issuing the Firmware Initialize command.
5384 * Note that this _must_ be after all PFVF commands ...
5385 */
5386 ret = t4_fw_initialize(adapter, adapter->mbox);
5387 if (ret < 0)
5388 goto bye;
5389
5390 /*
5391 * Return successfully!
5392 */
5393 dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
5394 "driver parameters\n");
5395 return 0;
5396
5397 /*
5398 * Something bad happened. Return the error ...
5399 */
5400bye:
5401 return ret;
5402}
5403
16e47624
HS
5404static struct fw_info fw_info_array[] = {
5405 {
5406 .chip = CHELSIO_T4,
5407 .fs_name = FW4_CFNAME,
5408 .fw_mod_name = FW4_FNAME,
5409 .fw_hdr = {
5410 .chip = FW_HDR_CHIP_T4,
5411 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
5412 .intfver_nic = FW_INTFVER(T4, NIC),
5413 .intfver_vnic = FW_INTFVER(T4, VNIC),
5414 .intfver_ri = FW_INTFVER(T4, RI),
5415 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
5416 .intfver_fcoe = FW_INTFVER(T4, FCOE),
5417 },
5418 }, {
5419 .chip = CHELSIO_T5,
5420 .fs_name = FW5_CFNAME,
5421 .fw_mod_name = FW5_FNAME,
5422 .fw_hdr = {
5423 .chip = FW_HDR_CHIP_T5,
5424 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
5425 .intfver_nic = FW_INTFVER(T5, NIC),
5426 .intfver_vnic = FW_INTFVER(T5, VNIC),
5427 .intfver_ri = FW_INTFVER(T5, RI),
5428 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
5429 .intfver_fcoe = FW_INTFVER(T5, FCOE),
5430 },
5431 }
5432};
5433
5434static struct fw_info *find_fw_info(int chip)
5435{
5436 int i;
5437
5438 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
5439 if (fw_info_array[i].chip == chip)
5440 return &fw_info_array[i];
5441 }
5442 return NULL;
5443}
5444
b8ff05a9
DM
5445/*
5446 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5447 */
5448static int adap_init0(struct adapter *adap)
5449{
5450 int ret;
5451 u32 v, port_vec;
5452 enum dev_state state;
5453 u32 params[7], val[7];
9a4da2cd 5454 struct fw_caps_config_cmd caps_cmd;
dcf7b6f5 5455 int reset = 1;
b8ff05a9 5456
636f9d37
VP
5457 /*
5458 * Contact FW, advertising Master capability (and potentially forcing
5459 * ourselves as the Master PF if our module parameter force_init is
5460 * set).
5461 */
5462 ret = t4_fw_hello(adap, adap->mbox, adap->fn,
5463 force_init ? MASTER_MUST : MASTER_MAY,
5464 &state);
b8ff05a9
DM
5465 if (ret < 0) {
5466 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
5467 ret);
5468 return ret;
5469 }
636f9d37
VP
5470 if (ret == adap->mbox)
5471 adap->flags |= MASTER_PF;
5472 if (force_init && state == DEV_STATE_INIT)
5473 state = DEV_STATE_UNINIT;
b8ff05a9 5474
636f9d37
VP
5475 /*
5476 * If we're the Master PF Driver and the device is uninitialized,
5477 * then let's consider upgrading the firmware ... (We always want
5478 * to check the firmware version number in order to A. get it for
5479 * later reporting and B. to warn if the currently loaded firmware
5480 * is excessively mismatched relative to the driver.)
5481 */
16e47624
HS
5482 t4_get_fw_version(adap, &adap->params.fw_vers);
5483 t4_get_tp_version(adap, &adap->params.tp_vers);
636f9d37 5484 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
16e47624
HS
5485 struct fw_info *fw_info;
5486 struct fw_hdr *card_fw;
5487 const struct firmware *fw;
5488 const u8 *fw_data = NULL;
5489 unsigned int fw_size = 0;
5490
5491 /* This is the firmware whose headers the driver was compiled
5492 * against
5493 */
5494 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
5495 if (fw_info == NULL) {
5496 dev_err(adap->pdev_dev,
5497 "unable to get firmware info for chip %d.\n",
5498 CHELSIO_CHIP_VERSION(adap->params.chip));
5499 return -EINVAL;
636f9d37 5500 }
16e47624
HS
5501
5502 /* allocate memory to read the header of the firmware on the
5503 * card
5504 */
5505 card_fw = t4_alloc_mem(sizeof(*card_fw));
5506
5507 /* Get FW from from /lib/firmware/ */
5508 ret = request_firmware(&fw, fw_info->fw_mod_name,
5509 adap->pdev_dev);
5510 if (ret < 0) {
5511 dev_err(adap->pdev_dev,
5512 "unable to load firmware image %s, error %d\n",
5513 fw_info->fw_mod_name, ret);
5514 } else {
5515 fw_data = fw->data;
5516 fw_size = fw->size;
5517 }
5518
5519 /* upgrade FW logic */
5520 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
5521 state, &reset);
5522
5523 /* Cleaning up */
5524 if (fw != NULL)
5525 release_firmware(fw);
5526 t4_free_mem(card_fw);
5527
636f9d37 5528 if (ret < 0)
16e47624 5529 goto bye;
636f9d37 5530 }
b8ff05a9 5531
636f9d37
VP
5532 /*
5533 * Grab VPD parameters. This should be done after we establish a
5534 * connection to the firmware since some of the VPD parameters
5535 * (notably the Core Clock frequency) are retrieved via requests to
5536 * the firmware. On the other hand, we need these fairly early on
5537 * so we do this right after getting ahold of the firmware.
5538 */
5539 ret = get_vpd_params(adap, &adap->params.vpd);
a0881cab
DM
5540 if (ret < 0)
5541 goto bye;
a0881cab 5542
636f9d37 5543 /*
13ee15d3
VP
5544 * Find out what ports are available to us. Note that we need to do
5545 * this before calling adap_init0_no_config() since it needs nports
5546 * and portvec ...
636f9d37
VP
5547 */
5548 v =
5549 FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5550 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
5551 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
a0881cab
DM
5552 if (ret < 0)
5553 goto bye;
5554
636f9d37
VP
5555 adap->params.nports = hweight32(port_vec);
5556 adap->params.portvec = port_vec;
5557
5558 /*
5559 * If the firmware is initialized already (and we're not forcing a
5560 * master initialization), note that we're living with existing
5561 * adapter parameters. Otherwise, it's time to try initializing the
5562 * adapter ...
5563 */
5564 if (state == DEV_STATE_INIT) {
5565 dev_info(adap->pdev_dev, "Coming up as %s: "\
5566 "Adapter already initialized\n",
5567 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
5568 adap->flags |= USING_SOFT_PARAMS;
5569 } else {
5570 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
5571 "Initializing adapter\n");
636f9d37
VP
5572
5573 /*
5574 * If the firmware doesn't support Configuration
5575 * Files warn user and exit,
5576 */
5577 if (ret < 0)
13ee15d3 5578 dev_warn(adap->pdev_dev, "Firmware doesn't support "
636f9d37 5579 "configuration file.\n");
13ee15d3
VP
5580 if (force_old_init)
5581 ret = adap_init0_no_config(adap, reset);
636f9d37
VP
5582 else {
5583 /*
13ee15d3
VP
5584 * Find out whether we're dealing with a version of
5585 * the firmware which has configuration file support.
636f9d37 5586 */
13ee15d3
VP
5587 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5588 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5589 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
5590 params, val);
636f9d37 5591
13ee15d3
VP
5592 /*
5593 * If the firmware doesn't support Configuration
5594 * Files, use the old Driver-based, hard-wired
5595 * initialization. Otherwise, try using the
5596 * Configuration File support and fall back to the
5597 * Driver-based initialization if there's no
5598 * Configuration File found.
5599 */
5600 if (ret < 0)
5601 ret = adap_init0_no_config(adap, reset);
5602 else {
5603 /*
5604 * The firmware provides us with a memory
5605 * buffer where we can load a Configuration
5606 * File from the host if we want to override
5607 * the Configuration File in flash.
5608 */
5609
5610 ret = adap_init0_config(adap, reset);
5611 if (ret == -ENOENT) {
5612 dev_info(adap->pdev_dev,
5613 "No Configuration File present "
16e47624 5614 "on adapter. Using hard-wired "
13ee15d3
VP
5615 "configuration parameters.\n");
5616 ret = adap_init0_no_config(adap, reset);
5617 }
636f9d37
VP
5618 }
5619 }
5620 if (ret < 0) {
5621 dev_err(adap->pdev_dev,
5622 "could not initialize adapter, error %d\n",
5623 -ret);
5624 goto bye;
5625 }
5626 }
5627
5628 /*
5629 * If we're living with non-hard-coded parameters (either from a
5630 * Firmware Configuration File or values programmed by a different PF
5631 * Driver), give the SGE code a chance to pull in anything that it
5632 * needs ... Note that this must be called after we retrieve our VPD
5633 * parameters in order to know how to convert core ticks to seconds.
5634 */
5635 if (adap->flags & USING_SOFT_PARAMS) {
5636 ret = t4_sge_init(adap);
5637 if (ret < 0)
5638 goto bye;
5639 }
5640
9a4da2cd
VP
5641 if (is_bypass_device(adap->pdev->device))
5642 adap->params.bypass = 1;
5643
636f9d37
VP
5644 /*
5645 * Grab some of our basic fundamental operating parameters.
5646 */
5647#define FW_PARAM_DEV(param) \
5648 (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5649 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5650
b8ff05a9 5651#define FW_PARAM_PFVF(param) \
636f9d37
VP
5652 FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5653 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)| \
5654 FW_PARAMS_PARAM_Y(0) | \
5655 FW_PARAMS_PARAM_Z(0)
b8ff05a9 5656
636f9d37 5657 params[0] = FW_PARAM_PFVF(EQ_START);
b8ff05a9
DM
5658 params[1] = FW_PARAM_PFVF(L2T_START);
5659 params[2] = FW_PARAM_PFVF(L2T_END);
5660 params[3] = FW_PARAM_PFVF(FILTER_START);
5661 params[4] = FW_PARAM_PFVF(FILTER_END);
e46dab4d 5662 params[5] = FW_PARAM_PFVF(IQFLINT_START);
636f9d37 5663 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
b8ff05a9
DM
5664 if (ret < 0)
5665 goto bye;
636f9d37
VP
5666 adap->sge.egr_start = val[0];
5667 adap->l2t_start = val[1];
5668 adap->l2t_end = val[2];
b8ff05a9
DM
5669 adap->tids.ftid_base = val[3];
5670 adap->tids.nftids = val[4] - val[3] + 1;
e46dab4d 5671 adap->sge.ingr_start = val[5];
b8ff05a9 5672
636f9d37
VP
5673 /* query params related to active filter region */
5674 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5675 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5676 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
5677 /* If Active filter size is set we enable establishing
5678 * offload connection through firmware work request
5679 */
5680 if ((val[0] != val[1]) && (ret >= 0)) {
5681 adap->flags |= FW_OFLD_CONN;
5682 adap->tids.aftid_base = val[0];
5683 adap->tids.aftid_end = val[1];
5684 }
5685
b407a4a9
VP
5686 /* If we're running on newer firmware, let it know that we're
5687 * prepared to deal with encapsulated CPL messages. Older
5688 * firmware won't understand this and we'll just get
5689 * unencapsulated messages ...
5690 */
5691 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5692 val[0] = 1;
5693 (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
5694
1ac0f095
KS
5695 /*
5696 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5697 * capability. Earlier versions of the firmware didn't have the
5698 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5699 * permission to use ULPTX MEMWRITE DSGL.
5700 */
5701 if (is_t4(adap->params.chip)) {
5702 adap->params.ulptx_memwrite_dsgl = false;
5703 } else {
5704 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5705 ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
5706 1, params, val);
5707 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5708 }
5709
636f9d37
VP
5710 /*
5711 * Get device capabilities so we can determine what resources we need
5712 * to manage.
5713 */
5714 memset(&caps_cmd, 0, sizeof(caps_cmd));
9a4da2cd 5715 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
13ee15d3 5716 FW_CMD_REQUEST | FW_CMD_READ);
ce91a923 5717 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
5718 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5719 &caps_cmd);
5720 if (ret < 0)
5721 goto bye;
5722
13ee15d3 5723 if (caps_cmd.ofldcaps) {
b8ff05a9
DM
5724 /* query offload-related parameters */
5725 params[0] = FW_PARAM_DEV(NTID);
5726 params[1] = FW_PARAM_PFVF(SERVER_START);
5727 params[2] = FW_PARAM_PFVF(SERVER_END);
5728 params[3] = FW_PARAM_PFVF(TDDP_START);
5729 params[4] = FW_PARAM_PFVF(TDDP_END);
5730 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
636f9d37
VP
5731 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5732 params, val);
b8ff05a9
DM
5733 if (ret < 0)
5734 goto bye;
5735 adap->tids.ntids = val[0];
5736 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5737 adap->tids.stid_base = val[1];
5738 adap->tids.nstids = val[2] - val[1] + 1;
636f9d37
VP
5739 /*
5740 * Setup server filter region. Divide the availble filter
5741 * region into two parts. Regular filters get 1/3rd and server
5742 * filters get 2/3rd part. This is only enabled if workarond
5743 * path is enabled.
5744 * 1. For regular filters.
5745 * 2. Server filter: This are special filters which are used
5746 * to redirect SYN packets to offload queue.
5747 */
5748 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
5749 adap->tids.sftid_base = adap->tids.ftid_base +
5750 DIV_ROUND_UP(adap->tids.nftids, 3);
5751 adap->tids.nsftids = adap->tids.nftids -
5752 DIV_ROUND_UP(adap->tids.nftids, 3);
5753 adap->tids.nftids = adap->tids.sftid_base -
5754 adap->tids.ftid_base;
5755 }
b8ff05a9
DM
5756 adap->vres.ddp.start = val[3];
5757 adap->vres.ddp.size = val[4] - val[3] + 1;
5758 adap->params.ofldq_wr_cred = val[5];
636f9d37 5759
b8ff05a9
DM
5760 adap->params.offload = 1;
5761 }
636f9d37 5762 if (caps_cmd.rdmacaps) {
b8ff05a9
DM
5763 params[0] = FW_PARAM_PFVF(STAG_START);
5764 params[1] = FW_PARAM_PFVF(STAG_END);
5765 params[2] = FW_PARAM_PFVF(RQ_START);
5766 params[3] = FW_PARAM_PFVF(RQ_END);
5767 params[4] = FW_PARAM_PFVF(PBL_START);
5768 params[5] = FW_PARAM_PFVF(PBL_END);
636f9d37
VP
5769 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5770 params, val);
b8ff05a9
DM
5771 if (ret < 0)
5772 goto bye;
5773 adap->vres.stag.start = val[0];
5774 adap->vres.stag.size = val[1] - val[0] + 1;
5775 adap->vres.rq.start = val[2];
5776 adap->vres.rq.size = val[3] - val[2] + 1;
5777 adap->vres.pbl.start = val[4];
5778 adap->vres.pbl.size = val[5] - val[4] + 1;
a0881cab
DM
5779
5780 params[0] = FW_PARAM_PFVF(SQRQ_START);
5781 params[1] = FW_PARAM_PFVF(SQRQ_END);
5782 params[2] = FW_PARAM_PFVF(CQ_START);
5783 params[3] = FW_PARAM_PFVF(CQ_END);
1ae970e0
DM
5784 params[4] = FW_PARAM_PFVF(OCQ_START);
5785 params[5] = FW_PARAM_PFVF(OCQ_END);
636f9d37 5786 ret = t4_query_params(adap, 0, 0, 0, 6, params, val);
a0881cab
DM
5787 if (ret < 0)
5788 goto bye;
5789 adap->vres.qp.start = val[0];
5790 adap->vres.qp.size = val[1] - val[0] + 1;
5791 adap->vres.cq.start = val[2];
5792 adap->vres.cq.size = val[3] - val[2] + 1;
1ae970e0
DM
5793 adap->vres.ocq.start = val[4];
5794 adap->vres.ocq.size = val[5] - val[4] + 1;
b8ff05a9 5795 }
636f9d37 5796 if (caps_cmd.iscsicaps) {
b8ff05a9
DM
5797 params[0] = FW_PARAM_PFVF(ISCSI_START);
5798 params[1] = FW_PARAM_PFVF(ISCSI_END);
636f9d37
VP
5799 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
5800 params, val);
b8ff05a9
DM
5801 if (ret < 0)
5802 goto bye;
5803 adap->vres.iscsi.start = val[0];
5804 adap->vres.iscsi.size = val[1] - val[0] + 1;
5805 }
5806#undef FW_PARAM_PFVF
5807#undef FW_PARAM_DEV
5808
92e7ae71
HS
5809 /* The MTU/MSS Table is initialized by now, so load their values. If
5810 * we're initializing the adapter, then we'll make any modifications
5811 * we want to the MTU/MSS Table and also initialize the congestion
5812 * parameters.
636f9d37 5813 */
b8ff05a9 5814 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
92e7ae71
HS
5815 if (state != DEV_STATE_INIT) {
5816 int i;
5817
5818 /* The default MTU Table contains values 1492 and 1500.
5819 * However, for TCP, it's better to have two values which are
5820 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5821 * This allows us to have a TCP Data Payload which is a
5822 * multiple of 8 regardless of what combination of TCP Options
5823 * are in use (always a multiple of 4 bytes) which is
5824 * important for performance reasons. For instance, if no
5825 * options are in use, then we have a 20-byte IP header and a
5826 * 20-byte TCP header. In this case, a 1500-byte MSS would
5827 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5828 * which is not a multiple of 8. So using an MSS of 1488 in
5829 * this case results in a TCP Data Payload of 1448 bytes which
5830 * is a multiple of 8. On the other hand, if 12-byte TCP Time
5831 * Stamps have been negotiated, then an MTU of 1500 bytes
5832 * results in a TCP Data Payload of 1448 bytes which, as
5833 * above, is a multiple of 8 bytes ...
5834 */
5835 for (i = 0; i < NMTUS; i++)
5836 if (adap->params.mtus[i] == 1492) {
5837 adap->params.mtus[i] = 1488;
5838 break;
5839 }
7ee9ff94 5840
92e7ae71
HS
5841 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5842 adap->params.b_wnd);
5843 }
dcf7b6f5 5844 t4_init_tp_params(adap);
636f9d37 5845 adap->flags |= FW_OK;
b8ff05a9
DM
5846 return 0;
5847
5848 /*
636f9d37
VP
5849 * Something bad happened. If a command timed out or failed with EIO
5850 * FW does not operate within its spec or something catastrophic
5851 * happened to HW/FW, stop issuing commands.
b8ff05a9 5852 */
636f9d37
VP
5853bye:
5854 if (ret != -ETIMEDOUT && ret != -EIO)
5855 t4_fw_bye(adap, adap->mbox);
b8ff05a9
DM
5856 return ret;
5857}
5858
204dc3c0
DM
5859/* EEH callbacks */
5860
5861static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5862 pci_channel_state_t state)
5863{
5864 int i;
5865 struct adapter *adap = pci_get_drvdata(pdev);
5866
5867 if (!adap)
5868 goto out;
5869
5870 rtnl_lock();
5871 adap->flags &= ~FW_OK;
5872 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
9fe6cb58 5873 spin_lock(&adap->stats_lock);
204dc3c0
DM
5874 for_each_port(adap, i) {
5875 struct net_device *dev = adap->port[i];
5876
5877 netif_device_detach(dev);
5878 netif_carrier_off(dev);
5879 }
9fe6cb58 5880 spin_unlock(&adap->stats_lock);
204dc3c0
DM
5881 if (adap->flags & FULL_INIT_DONE)
5882 cxgb_down(adap);
5883 rtnl_unlock();
144be3d9
GS
5884 if ((adap->flags & DEV_ENABLED)) {
5885 pci_disable_device(pdev);
5886 adap->flags &= ~DEV_ENABLED;
5887 }
204dc3c0
DM
5888out: return state == pci_channel_io_perm_failure ?
5889 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5890}
5891
5892static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5893{
5894 int i, ret;
5895 struct fw_caps_config_cmd c;
5896 struct adapter *adap = pci_get_drvdata(pdev);
5897
5898 if (!adap) {
5899 pci_restore_state(pdev);
5900 pci_save_state(pdev);
5901 return PCI_ERS_RESULT_RECOVERED;
5902 }
5903
144be3d9
GS
5904 if (!(adap->flags & DEV_ENABLED)) {
5905 if (pci_enable_device(pdev)) {
5906 dev_err(&pdev->dev, "Cannot reenable PCI "
5907 "device after reset\n");
5908 return PCI_ERS_RESULT_DISCONNECT;
5909 }
5910 adap->flags |= DEV_ENABLED;
204dc3c0
DM
5911 }
5912
5913 pci_set_master(pdev);
5914 pci_restore_state(pdev);
5915 pci_save_state(pdev);
5916 pci_cleanup_aer_uncorrect_error_status(pdev);
5917
5918 if (t4_wait_dev_ready(adap) < 0)
5919 return PCI_ERS_RESULT_DISCONNECT;
777c2300 5920 if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
204dc3c0
DM
5921 return PCI_ERS_RESULT_DISCONNECT;
5922 adap->flags |= FW_OK;
5923 if (adap_init1(adap, &c))
5924 return PCI_ERS_RESULT_DISCONNECT;
5925
5926 for_each_port(adap, i) {
5927 struct port_info *p = adap2pinfo(adap, i);
5928
060e0c75
DM
5929 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
5930 NULL, NULL);
204dc3c0
DM
5931 if (ret < 0)
5932 return PCI_ERS_RESULT_DISCONNECT;
5933 p->viid = ret;
5934 p->xact_addr_filt = -1;
5935 }
5936
5937 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5938 adap->params.b_wnd);
1ae970e0 5939 setup_memwin(adap);
204dc3c0
DM
5940 if (cxgb_up(adap))
5941 return PCI_ERS_RESULT_DISCONNECT;
5942 return PCI_ERS_RESULT_RECOVERED;
5943}
5944
5945static void eeh_resume(struct pci_dev *pdev)
5946{
5947 int i;
5948 struct adapter *adap = pci_get_drvdata(pdev);
5949
5950 if (!adap)
5951 return;
5952
5953 rtnl_lock();
5954 for_each_port(adap, i) {
5955 struct net_device *dev = adap->port[i];
5956
5957 if (netif_running(dev)) {
5958 link_start(dev);
5959 cxgb_set_rxmode(dev);
5960 }
5961 netif_device_attach(dev);
5962 }
5963 rtnl_unlock();
5964}
5965
3646f0e5 5966static const struct pci_error_handlers cxgb4_eeh = {
204dc3c0
DM
5967 .error_detected = eeh_err_detected,
5968 .slot_reset = eeh_slot_reset,
5969 .resume = eeh_resume,
5970};
5971
57d8b764 5972static inline bool is_x_10g_port(const struct link_config *lc)
b8ff05a9 5973{
57d8b764
KS
5974 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
5975 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
b8ff05a9
DM
5976}
5977
c887ad0e
HS
5978static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
5979 unsigned int us, unsigned int cnt,
b8ff05a9
DM
5980 unsigned int size, unsigned int iqe_size)
5981{
c887ad0e
HS
5982 q->adap = adap;
5983 set_rspq_intr_params(q, us, cnt);
b8ff05a9
DM
5984 q->iqe_len = iqe_size;
5985 q->size = size;
5986}
5987
5988/*
5989 * Perform default configuration of DMA queues depending on the number and type
5990 * of ports we found and the number of available CPUs. Most settings can be
5991 * modified by the admin prior to actual use.
5992 */
91744948 5993static void cfg_queues(struct adapter *adap)
b8ff05a9
DM
5994{
5995 struct sge *s = &adap->sge;
688848b1
AB
5996 int i, n10g = 0, qidx = 0;
5997#ifndef CONFIG_CHELSIO_T4_DCB
5998 int q10g = 0;
5999#endif
cf38be6d 6000 int ciq_size;
b8ff05a9
DM
6001
6002 for_each_port(adap, i)
57d8b764 6003 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
688848b1
AB
6004#ifdef CONFIG_CHELSIO_T4_DCB
6005 /* For Data Center Bridging support we need to be able to support up
6006 * to 8 Traffic Priorities; each of which will be assigned to its
6007 * own TX Queue in order to prevent Head-Of-Line Blocking.
6008 */
6009 if (adap->params.nports * 8 > MAX_ETH_QSETS) {
6010 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
6011 MAX_ETH_QSETS, adap->params.nports * 8);
6012 BUG_ON(1);
6013 }
b8ff05a9 6014
688848b1
AB
6015 for_each_port(adap, i) {
6016 struct port_info *pi = adap2pinfo(adap, i);
6017
6018 pi->first_qset = qidx;
6019 pi->nqsets = 8;
6020 qidx += pi->nqsets;
6021 }
6022#else /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
6023 /*
6024 * We default to 1 queue per non-10G port and up to # of cores queues
6025 * per 10G port.
6026 */
6027 if (n10g)
6028 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
5952dde7
YM
6029 if (q10g > netif_get_num_default_rss_queues())
6030 q10g = netif_get_num_default_rss_queues();
b8ff05a9
DM
6031
6032 for_each_port(adap, i) {
6033 struct port_info *pi = adap2pinfo(adap, i);
6034
6035 pi->first_qset = qidx;
57d8b764 6036 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
b8ff05a9
DM
6037 qidx += pi->nqsets;
6038 }
688848b1 6039#endif /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
6040
6041 s->ethqsets = qidx;
6042 s->max_ethqsets = qidx; /* MSI-X may lower it later */
6043
6044 if (is_offload(adap)) {
6045 /*
6046 * For offload we use 1 queue/channel if all ports are up to 1G,
6047 * otherwise we divide all available queues amongst the channels
6048 * capped by the number of available cores.
6049 */
6050 if (n10g) {
6051 i = min_t(int, ARRAY_SIZE(s->ofldrxq),
6052 num_online_cpus());
6053 s->ofldqsets = roundup(i, adap->params.nports);
6054 } else
6055 s->ofldqsets = adap->params.nports;
6056 /* For RDMA one Rx queue per channel suffices */
6057 s->rdmaqs = adap->params.nports;
cf38be6d 6058 s->rdmaciqs = adap->params.nports;
b8ff05a9
DM
6059 }
6060
6061 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
6062 struct sge_eth_rxq *r = &s->ethrxq[i];
6063
c887ad0e 6064 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
b8ff05a9
DM
6065 r->fl.size = 72;
6066 }
6067
6068 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
6069 s->ethtxq[i].q.size = 1024;
6070
6071 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
6072 s->ctrlq[i].q.size = 512;
6073
6074 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
6075 s->ofldtxq[i].q.size = 1024;
6076
6077 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
6078 struct sge_ofld_rxq *r = &s->ofldrxq[i];
6079
c887ad0e 6080 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
b8ff05a9
DM
6081 r->rspq.uld = CXGB4_ULD_ISCSI;
6082 r->fl.size = 72;
6083 }
6084
6085 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
6086 struct sge_ofld_rxq *r = &s->rdmarxq[i];
6087
c887ad0e 6088 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
b8ff05a9
DM
6089 r->rspq.uld = CXGB4_ULD_RDMA;
6090 r->fl.size = 72;
6091 }
6092
cf38be6d
HS
6093 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
6094 if (ciq_size > SGE_MAX_IQ_SIZE) {
6095 CH_WARN(adap, "CIQ size too small for available IQs\n");
6096 ciq_size = SGE_MAX_IQ_SIZE;
6097 }
6098
6099 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
6100 struct sge_ofld_rxq *r = &s->rdmaciq[i];
6101
c887ad0e 6102 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
cf38be6d
HS
6103 r->rspq.uld = CXGB4_ULD_RDMA;
6104 }
6105
c887ad0e
HS
6106 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
6107 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
b8ff05a9
DM
6108}
6109
6110/*
6111 * Reduce the number of Ethernet queues across all ports to at most n.
6112 * n provides at least one queue per port.
6113 */
91744948 6114static void reduce_ethqs(struct adapter *adap, int n)
b8ff05a9
DM
6115{
6116 int i;
6117 struct port_info *pi;
6118
6119 while (n < adap->sge.ethqsets)
6120 for_each_port(adap, i) {
6121 pi = adap2pinfo(adap, i);
6122 if (pi->nqsets > 1) {
6123 pi->nqsets--;
6124 adap->sge.ethqsets--;
6125 if (adap->sge.ethqsets <= n)
6126 break;
6127 }
6128 }
6129
6130 n = 0;
6131 for_each_port(adap, i) {
6132 pi = adap2pinfo(adap, i);
6133 pi->first_qset = n;
6134 n += pi->nqsets;
6135 }
6136}
6137
6138/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
6139#define EXTRA_VECS 2
6140
91744948 6141static int enable_msix(struct adapter *adap)
b8ff05a9
DM
6142{
6143 int ofld_need = 0;
c32ad224 6144 int i, want, need;
b8ff05a9
DM
6145 struct sge *s = &adap->sge;
6146 unsigned int nchan = adap->params.nports;
6147 struct msix_entry entries[MAX_INGQ + 1];
6148
6149 for (i = 0; i < ARRAY_SIZE(entries); ++i)
6150 entries[i].entry = i;
6151
6152 want = s->max_ethqsets + EXTRA_VECS;
6153 if (is_offload(adap)) {
cf38be6d 6154 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
b8ff05a9 6155 /* need nchan for each possible ULD */
cf38be6d 6156 ofld_need = 3 * nchan;
b8ff05a9 6157 }
688848b1
AB
6158#ifdef CONFIG_CHELSIO_T4_DCB
6159 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
6160 * each port.
6161 */
6162 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
6163#else
b8ff05a9 6164 need = adap->params.nports + EXTRA_VECS + ofld_need;
688848b1 6165#endif
c32ad224
AG
6166 want = pci_enable_msix_range(adap->pdev, entries, need, want);
6167 if (want < 0)
6168 return want;
b8ff05a9 6169
c32ad224
AG
6170 /*
6171 * Distribute available vectors to the various queue groups.
6172 * Every group gets its minimum requirement and NIC gets top
6173 * priority for leftovers.
6174 */
6175 i = want - EXTRA_VECS - ofld_need;
6176 if (i < s->max_ethqsets) {
6177 s->max_ethqsets = i;
6178 if (i < s->ethqsets)
6179 reduce_ethqs(adap, i);
6180 }
6181 if (is_offload(adap)) {
6182 i = want - EXTRA_VECS - s->max_ethqsets;
6183 i -= ofld_need - nchan;
6184 s->ofldqsets = (i / nchan) * nchan; /* round down */
6185 }
6186 for (i = 0; i < want; ++i)
6187 adap->msix_info[i].vec = entries[i].vector;
6188
6189 return 0;
b8ff05a9
DM
6190}
6191
6192#undef EXTRA_VECS
6193
91744948 6194static int init_rss(struct adapter *adap)
671b0060
DM
6195{
6196 unsigned int i, j;
6197
6198 for_each_port(adap, i) {
6199 struct port_info *pi = adap2pinfo(adap, i);
6200
6201 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6202 if (!pi->rss)
6203 return -ENOMEM;
6204 for (j = 0; j < pi->rss_size; j++)
278bc429 6205 pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
671b0060
DM
6206 }
6207 return 0;
6208}
6209
91744948 6210static void print_port_info(const struct net_device *dev)
b8ff05a9 6211{
b8ff05a9 6212 char buf[80];
118969ed 6213 char *bufp = buf;
f1a051b9 6214 const char *spd = "";
118969ed
DM
6215 const struct port_info *pi = netdev_priv(dev);
6216 const struct adapter *adap = pi->adapter;
f1a051b9
DM
6217
6218 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
6219 spd = " 2.5 GT/s";
6220 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
6221 spd = " 5 GT/s";
d2e752db
RD
6222 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
6223 spd = " 8 GT/s";
b8ff05a9 6224
118969ed
DM
6225 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
6226 bufp += sprintf(bufp, "100/");
6227 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
6228 bufp += sprintf(bufp, "1000/");
6229 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
6230 bufp += sprintf(bufp, "10G/");
72aca4bf
KS
6231 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
6232 bufp += sprintf(bufp, "40G/");
118969ed
DM
6233 if (bufp != buf)
6234 --bufp;
72aca4bf 6235 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
118969ed
DM
6236
6237 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
0a57a536 6238 adap->params.vpd.id,
d14807dd 6239 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
118969ed
DM
6240 is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
6241 (adap->flags & USING_MSIX) ? " MSI-X" :
6242 (adap->flags & USING_MSI) ? " MSI" : "");
a94cd705
KS
6243 netdev_info(dev, "S/N: %s, P/N: %s\n",
6244 adap->params.vpd.sn, adap->params.vpd.pn);
b8ff05a9
DM
6245}
6246
91744948 6247static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
ef306b50 6248{
e5c8ae5f 6249 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
ef306b50
DM
6250}
6251
06546391
DM
6252/*
6253 * Free the following resources:
6254 * - memory used for tables
6255 * - MSI/MSI-X
6256 * - net devices
6257 * - resources FW is holding for us
6258 */
6259static void free_some_resources(struct adapter *adapter)
6260{
6261 unsigned int i;
6262
6263 t4_free_mem(adapter->l2t);
6264 t4_free_mem(adapter->tids.tid_tab);
6265 disable_msi(adapter);
6266
6267 for_each_port(adapter, i)
671b0060
DM
6268 if (adapter->port[i]) {
6269 kfree(adap2pinfo(adapter, i)->rss);
06546391 6270 free_netdev(adapter->port[i]);
671b0060 6271 }
06546391 6272 if (adapter->flags & FW_OK)
060e0c75 6273 t4_fw_bye(adapter, adapter->fn);
06546391
DM
6274}
6275
2ed28baa 6276#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
35d35682 6277#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
b8ff05a9 6278 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
22adfe0a 6279#define SEGMENT_SIZE 128
b8ff05a9 6280
1dd06ae8 6281static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
b8ff05a9 6282{
22adfe0a 6283 int func, i, err, s_qpp, qpp, num_seg;
b8ff05a9 6284 struct port_info *pi;
c8f44aff 6285 bool highdma = false;
b8ff05a9
DM
6286 struct adapter *adapter = NULL;
6287
6288 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
6289
6290 err = pci_request_regions(pdev, KBUILD_MODNAME);
6291 if (err) {
6292 /* Just info, some other driver may have claimed the device. */
6293 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6294 return err;
6295 }
6296
060e0c75 6297 /* We control everything through one PF */
b8ff05a9 6298 func = PCI_FUNC(pdev->devfn);
060e0c75 6299 if (func != ent->driver_data) {
204dc3c0 6300 pci_save_state(pdev); /* to restore SR-IOV later */
b8ff05a9 6301 goto sriov;
204dc3c0 6302 }
b8ff05a9
DM
6303
6304 err = pci_enable_device(pdev);
6305 if (err) {
6306 dev_err(&pdev->dev, "cannot enable PCI device\n");
6307 goto out_release_regions;
6308 }
6309
6310 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c8f44aff 6311 highdma = true;
b8ff05a9
DM
6312 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6313 if (err) {
6314 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6315 "coherent allocations\n");
6316 goto out_disable_device;
6317 }
6318 } else {
6319 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6320 if (err) {
6321 dev_err(&pdev->dev, "no usable DMA configuration\n");
6322 goto out_disable_device;
6323 }
6324 }
6325
6326 pci_enable_pcie_error_reporting(pdev);
ef306b50 6327 enable_pcie_relaxed_ordering(pdev);
b8ff05a9
DM
6328 pci_set_master(pdev);
6329 pci_save_state(pdev);
6330
6331 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6332 if (!adapter) {
6333 err = -ENOMEM;
6334 goto out_disable_device;
6335 }
6336
144be3d9
GS
6337 /* PCI device has been enabled */
6338 adapter->flags |= DEV_ENABLED;
6339
b8ff05a9
DM
6340 adapter->regs = pci_ioremap_bar(pdev, 0);
6341 if (!adapter->regs) {
6342 dev_err(&pdev->dev, "cannot map device registers\n");
6343 err = -ENOMEM;
6344 goto out_free_adapter;
6345 }
6346
6347 adapter->pdev = pdev;
6348 adapter->pdev_dev = &pdev->dev;
3069ee9b 6349 adapter->mbox = func;
060e0c75 6350 adapter->fn = func;
b8ff05a9
DM
6351 adapter->msg_enable = dflt_msg_enable;
6352 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6353
6354 spin_lock_init(&adapter->stats_lock);
6355 spin_lock_init(&adapter->tid_release_lock);
6356
6357 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
881806bc
VP
6358 INIT_WORK(&adapter->db_full_task, process_db_full);
6359 INIT_WORK(&adapter->db_drop_task, process_db_drop);
b8ff05a9
DM
6360
6361 err = t4_prep_adapter(adapter);
6362 if (err)
22adfe0a
SR
6363 goto out_unmap_bar0;
6364
d14807dd 6365 if (!is_t4(adapter->params.chip)) {
22adfe0a
SR
6366 s_qpp = QUEUESPERPAGEPF1 * adapter->fn;
6367 qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter,
6368 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
6369 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6370
6371 /* Each segment size is 128B. Write coalescing is enabled only
6372 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6373 * queue is less no of segments that can be accommodated in
6374 * a page size.
6375 */
6376 if (qpp > num_seg) {
6377 dev_err(&pdev->dev,
6378 "Incorrect number of egress queues per page\n");
6379 err = -EINVAL;
6380 goto out_unmap_bar0;
6381 }
6382 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6383 pci_resource_len(pdev, 2));
6384 if (!adapter->bar2) {
6385 dev_err(&pdev->dev, "cannot map device bar2 region\n");
6386 err = -ENOMEM;
6387 goto out_unmap_bar0;
6388 }
6389 }
6390
636f9d37 6391 setup_memwin(adapter);
b8ff05a9 6392 err = adap_init0(adapter);
636f9d37 6393 setup_memwin_rdma(adapter);
b8ff05a9
DM
6394 if (err)
6395 goto out_unmap_bar;
6396
6397 for_each_port(adapter, i) {
6398 struct net_device *netdev;
6399
6400 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6401 MAX_ETH_QSETS);
6402 if (!netdev) {
6403 err = -ENOMEM;
6404 goto out_free_dev;
6405 }
6406
6407 SET_NETDEV_DEV(netdev, &pdev->dev);
6408
6409 adapter->port[i] = netdev;
6410 pi = netdev_priv(netdev);
6411 pi->adapter = adapter;
6412 pi->xact_addr_filt = -1;
b8ff05a9 6413 pi->port_id = i;
b8ff05a9
DM
6414 netdev->irq = pdev->irq;
6415
2ed28baa
MM
6416 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6417 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6418 NETIF_F_RXCSUM | NETIF_F_RXHASH |
f646968f 6419 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
c8f44aff
MM
6420 if (highdma)
6421 netdev->hw_features |= NETIF_F_HIGHDMA;
6422 netdev->features |= netdev->hw_features;
b8ff05a9
DM
6423 netdev->vlan_features = netdev->features & VLAN_FEAT;
6424
01789349
JP
6425 netdev->priv_flags |= IFF_UNICAST_FLT;
6426
b8ff05a9 6427 netdev->netdev_ops = &cxgb4_netdev_ops;
688848b1
AB
6428#ifdef CONFIG_CHELSIO_T4_DCB
6429 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6430 cxgb4_dcb_state_init(netdev);
6431#endif
7ad24ea4 6432 netdev->ethtool_ops = &cxgb_ethtool_ops;
b8ff05a9
DM
6433 }
6434
6435 pci_set_drvdata(pdev, adapter);
6436
6437 if (adapter->flags & FW_OK) {
060e0c75 6438 err = t4_port_init(adapter, func, func, 0);
b8ff05a9
DM
6439 if (err)
6440 goto out_free_dev;
6441 }
6442
6443 /*
6444 * Configure queues and allocate tables now, they can be needed as
6445 * soon as the first register_netdev completes.
6446 */
6447 cfg_queues(adapter);
6448
6449 adapter->l2t = t4_init_l2t();
6450 if (!adapter->l2t) {
6451 /* We tolerate a lack of L2T, giving up some functionality */
6452 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6453 adapter->params.offload = 0;
6454 }
6455
6456 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
6457 dev_warn(&pdev->dev, "could not allocate TID table, "
6458 "continuing\n");
6459 adapter->params.offload = 0;
6460 }
6461
f7cabcdd
DM
6462 /* See what interrupts we'll be using */
6463 if (msi > 1 && enable_msix(adapter) == 0)
6464 adapter->flags |= USING_MSIX;
6465 else if (msi > 0 && pci_enable_msi(pdev) == 0)
6466 adapter->flags |= USING_MSI;
6467
671b0060
DM
6468 err = init_rss(adapter);
6469 if (err)
6470 goto out_free_dev;
6471
b8ff05a9
DM
6472 /*
6473 * The card is now ready to go. If any errors occur during device
6474 * registration we do not fail the whole card but rather proceed only
6475 * with the ports we manage to register successfully. However we must
6476 * register at least one net device.
6477 */
6478 for_each_port(adapter, i) {
a57cabe0
DM
6479 pi = adap2pinfo(adapter, i);
6480 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6481 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6482
b8ff05a9
DM
6483 err = register_netdev(adapter->port[i]);
6484 if (err)
b1a3c2b6 6485 break;
b1a3c2b6
DM
6486 adapter->chan_map[pi->tx_chan] = i;
6487 print_port_info(adapter->port[i]);
b8ff05a9 6488 }
b1a3c2b6 6489 if (i == 0) {
b8ff05a9
DM
6490 dev_err(&pdev->dev, "could not register any net devices\n");
6491 goto out_free_dev;
6492 }
b1a3c2b6
DM
6493 if (err) {
6494 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6495 err = 0;
6403eab1 6496 }
b8ff05a9
DM
6497
6498 if (cxgb4_debugfs_root) {
6499 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6500 cxgb4_debugfs_root);
6501 setup_debugfs(adapter);
6502 }
6503
6482aa7c
DLR
6504 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6505 pdev->needs_freset = 1;
6506
b8ff05a9
DM
6507 if (is_offload(adapter))
6508 attach_ulds(adapter);
6509
b8ff05a9
DM
6510sriov:
6511#ifdef CONFIG_PCI_IOV
7d6727cf 6512 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
b8ff05a9
DM
6513 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
6514 dev_info(&pdev->dev,
6515 "instantiated %u virtual functions\n",
6516 num_vf[func]);
6517#endif
6518 return 0;
6519
6520 out_free_dev:
06546391 6521 free_some_resources(adapter);
b8ff05a9 6522 out_unmap_bar:
d14807dd 6523 if (!is_t4(adapter->params.chip))
22adfe0a
SR
6524 iounmap(adapter->bar2);
6525 out_unmap_bar0:
b8ff05a9
DM
6526 iounmap(adapter->regs);
6527 out_free_adapter:
6528 kfree(adapter);
6529 out_disable_device:
6530 pci_disable_pcie_error_reporting(pdev);
6531 pci_disable_device(pdev);
6532 out_release_regions:
6533 pci_release_regions(pdev);
b8ff05a9
DM
6534 return err;
6535}
6536
91744948 6537static void remove_one(struct pci_dev *pdev)
b8ff05a9
DM
6538{
6539 struct adapter *adapter = pci_get_drvdata(pdev);
6540
636f9d37 6541#ifdef CONFIG_PCI_IOV
b8ff05a9
DM
6542 pci_disable_sriov(pdev);
6543
636f9d37
VP
6544#endif
6545
b8ff05a9
DM
6546 if (adapter) {
6547 int i;
6548
6549 if (is_offload(adapter))
6550 detach_ulds(adapter);
6551
6552 for_each_port(adapter, i)
8f3a7676 6553 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
b8ff05a9
DM
6554 unregister_netdev(adapter->port[i]);
6555
6556 if (adapter->debugfs_root)
6557 debugfs_remove_recursive(adapter->debugfs_root);
6558
f2b7e78d
VP
6559 /* If we allocated filters, free up state associated with any
6560 * valid filters ...
6561 */
6562 if (adapter->tids.ftid_tab) {
6563 struct filter_entry *f = &adapter->tids.ftid_tab[0];
dca4faeb
VP
6564 for (i = 0; i < (adapter->tids.nftids +
6565 adapter->tids.nsftids); i++, f++)
f2b7e78d
VP
6566 if (f->valid)
6567 clear_filter(adapter, f);
6568 }
6569
aaefae9b
DM
6570 if (adapter->flags & FULL_INIT_DONE)
6571 cxgb_down(adapter);
b8ff05a9 6572
06546391 6573 free_some_resources(adapter);
b8ff05a9 6574 iounmap(adapter->regs);
d14807dd 6575 if (!is_t4(adapter->params.chip))
22adfe0a 6576 iounmap(adapter->bar2);
b8ff05a9 6577 pci_disable_pcie_error_reporting(pdev);
144be3d9
GS
6578 if ((adapter->flags & DEV_ENABLED)) {
6579 pci_disable_device(pdev);
6580 adapter->flags &= ~DEV_ENABLED;
6581 }
b8ff05a9 6582 pci_release_regions(pdev);
ee9a33b2 6583 synchronize_rcu();
8b662fe7 6584 kfree(adapter);
a069ec91 6585 } else
b8ff05a9
DM
6586 pci_release_regions(pdev);
6587}
6588
6589static struct pci_driver cxgb4_driver = {
6590 .name = KBUILD_MODNAME,
6591 .id_table = cxgb4_pci_tbl,
6592 .probe = init_one,
91744948 6593 .remove = remove_one,
687d705c 6594 .shutdown = remove_one,
204dc3c0 6595 .err_handler = &cxgb4_eeh,
b8ff05a9
DM
6596};
6597
6598static int __init cxgb4_init_module(void)
6599{
6600 int ret;
6601
3069ee9b
VP
6602 workq = create_singlethread_workqueue("cxgb4");
6603 if (!workq)
6604 return -ENOMEM;
6605
b8ff05a9
DM
6606 /* Debugfs support is optional, just warn if this fails */
6607 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6608 if (!cxgb4_debugfs_root)
428ac43f 6609 pr_warn("could not create debugfs entry, continuing\n");
b8ff05a9
DM
6610
6611 ret = pci_register_driver(&cxgb4_driver);
73a695f8 6612 if (ret < 0) {
b8ff05a9 6613 debugfs_remove(cxgb4_debugfs_root);
73a695f8
WY
6614 destroy_workqueue(workq);
6615 }
01bcca68
VP
6616
6617 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6618
b8ff05a9
DM
6619 return ret;
6620}
6621
6622static void __exit cxgb4_cleanup_module(void)
6623{
01bcca68 6624 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
b8ff05a9
DM
6625 pci_unregister_driver(&cxgb4_driver);
6626 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
3069ee9b
VP
6627 flush_workqueue(workq);
6628 destroy_workqueue(workq);
b8ff05a9
DM
6629}
6630
6631module_init(cxgb4_init_module);
6632module_exit(cxgb4_cleanup_module);
This page took 0.806641 seconds and 5 git commands to generate.