arch: Mass conversion of smp_mb__*()
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb4 / sge.c
CommitLineData
fd3a4790
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#include <linux/skbuff.h>
36#include <linux/netdevice.h>
37#include <linux/etherdevice.h>
38#include <linux/if_vlan.h>
39#include <linux/ip.h>
40#include <linux/dma-mapping.h>
41#include <linux/jiffies.h>
70c71606 42#include <linux/prefetch.h>
ee40fa06 43#include <linux/export.h>
fd3a4790
DM
44#include <net/ipv6.h>
45#include <net/tcp.h>
46#include "cxgb4.h"
47#include "t4_regs.h"
48#include "t4_msg.h"
49#include "t4fw_api.h"
50
51/*
52 * Rx buffer size. We use largish buffers if possible but settle for single
53 * pages under memory shortage.
54 */
55#if PAGE_SHIFT >= 16
56# define FL_PG_ORDER 0
57#else
58# define FL_PG_ORDER (16 - PAGE_SHIFT)
59#endif
60
61/* RX_PULL_LEN should be <= RX_COPY_THRES */
62#define RX_COPY_THRES 256
63#define RX_PULL_LEN 128
64
65/*
66 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
67 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
68 */
69#define RX_PKT_SKB_LEN 512
70
fd3a4790
DM
71/*
72 * Max number of Tx descriptors we clean up at a time. Should be modest as
73 * freeing skbs isn't cheap and it happens while holding locks. We just need
74 * to free packets faster than they arrive, we eventually catch up and keep
75 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES.
76 */
77#define MAX_TX_RECLAIM 16
78
79/*
80 * Max number of Rx buffers we replenish at a time. Again keep this modest,
81 * allocating buffers isn't cheap either.
82 */
83#define MAX_RX_REFILL 16U
84
85/*
86 * Period of the Rx queue check timer. This timer is infrequent as it has
87 * something to do only when the system experiences severe memory shortage.
88 */
89#define RX_QCHECK_PERIOD (HZ / 2)
90
91/*
92 * Period of the Tx queue check timer.
93 */
94#define TX_QCHECK_PERIOD (HZ / 2)
95
0f4d201f
KS
96/* SGE Hung Ingress DMA Threshold Warning time (in Hz) and Warning Repeat Rate
97 * (in RX_QCHECK_PERIOD multiples). If we find one of the SGE Ingress DMA
98 * State Machines in the same state for this amount of time (in HZ) then we'll
99 * issue a warning about a potential hang. We'll repeat the warning as the
100 * SGE Ingress DMA Channel appears to be hung every N RX_QCHECK_PERIODs till
101 * the situation clears. If the situation clears, we'll note that as well.
102 */
103#define SGE_IDMA_WARN_THRESH (1 * HZ)
104#define SGE_IDMA_WARN_REPEAT (20 * RX_QCHECK_PERIOD)
105
fd3a4790
DM
106/*
107 * Max number of Tx descriptors to be reclaimed by the Tx timer.
108 */
109#define MAX_TIMER_TX_RECLAIM 100
110
111/*
112 * Timer index used when backing off due to memory shortage.
113 */
114#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
115
116/*
117 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will
118 * attempt to refill it.
119 */
120#define FL_STARVE_THRES 4
121
122/*
123 * Suspend an Ethernet Tx queue with fewer available descriptors than this.
124 * This is the same as calc_tx_descs() for a TSO packet with
125 * nr_frags == MAX_SKB_FRAGS.
126 */
127#define ETHTXQ_STOP_THRES \
128 (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
129
130/*
131 * Suspension threshold for non-Ethernet Tx queues. We require enough room
132 * for a full sized WR.
133 */
134#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
135
136/*
137 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
138 * into a WR.
139 */
140#define MAX_IMM_TX_PKT_LEN 128
141
142/*
143 * Max size of a WR sent through a control Tx queue.
144 */
145#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
146
fd3a4790
DM
147struct tx_sw_desc { /* SW state per Tx descriptor */
148 struct sk_buff *skb;
149 struct ulptx_sgl *sgl;
150};
151
152struct rx_sw_desc { /* SW state per Rx descriptor */
153 struct page *page;
154 dma_addr_t dma_addr;
155};
156
157/*
52367a76
VP
158 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
159 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs.
160 * We could easily support more but there doesn't seem to be much need for
161 * that ...
162 */
163#define FL_MTU_SMALL 1500
164#define FL_MTU_LARGE 9000
165
166static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
167 unsigned int mtu)
168{
169 struct sge *s = &adapter->sge;
170
171 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
172}
173
174#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
175#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
176
177/*
178 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
179 * these to specify the buffer size as an index into the SGE Free List Buffer
180 * Size register array. We also use bit 4, when the buffer has been unmapped
181 * for DMA, but this is of course never sent to the hardware and is only used
182 * to prevent double unmappings. All of the above requires that the Free List
183 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
184 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
185 * Free List Buffer alignment is 32 bytes, this works out for us ...
fd3a4790
DM
186 */
187enum {
52367a76
VP
188 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
189 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
190 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
191
192 /*
193 * XXX We shouldn't depend on being able to use these indices.
194 * XXX Especially when some other Master PF has initialized the
195 * XXX adapter or we use the Firmware Configuration File. We
196 * XXX should really search through the Host Buffer Size register
197 * XXX array for the appropriately sized buffer indices.
198 */
199 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
200 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */
201
202 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
203 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
fd3a4790
DM
204};
205
206static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
207{
52367a76 208 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
fd3a4790
DM
209}
210
211static inline bool is_buf_mapped(const struct rx_sw_desc *d)
212{
213 return !(d->dma_addr & RX_UNMAPPED_BUF);
214}
215
216/**
217 * txq_avail - return the number of available slots in a Tx queue
218 * @q: the Tx queue
219 *
220 * Returns the number of descriptors in a Tx queue available to write new
221 * packets.
222 */
223static inline unsigned int txq_avail(const struct sge_txq *q)
224{
225 return q->size - 1 - q->in_use;
226}
227
228/**
229 * fl_cap - return the capacity of a free-buffer list
230 * @fl: the FL
231 *
232 * Returns the capacity of a free-buffer list. The capacity is less than
233 * the size because one descriptor needs to be left unpopulated, otherwise
234 * HW will think the FL is empty.
235 */
236static inline unsigned int fl_cap(const struct sge_fl *fl)
237{
238 return fl->size - 8; /* 1 descriptor = 8 buffers */
239}
240
241static inline bool fl_starving(const struct sge_fl *fl)
242{
243 return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
244}
245
246static int map_skb(struct device *dev, const struct sk_buff *skb,
247 dma_addr_t *addr)
248{
249 const skb_frag_t *fp, *end;
250 const struct skb_shared_info *si;
251
252 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
253 if (dma_mapping_error(dev, *addr))
254 goto out_err;
255
256 si = skb_shinfo(skb);
257 end = &si->frags[si->nr_frags];
258
259 for (fp = si->frags; fp < end; fp++) {
e91b0f24
IC
260 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
261 DMA_TO_DEVICE);
fd3a4790
DM
262 if (dma_mapping_error(dev, *addr))
263 goto unwind;
264 }
265 return 0;
266
267unwind:
268 while (fp-- > si->frags)
9e903e08 269 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
fd3a4790
DM
270
271 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
272out_err:
273 return -ENOMEM;
274}
275
276#ifdef CONFIG_NEED_DMA_MAP_STATE
277static void unmap_skb(struct device *dev, const struct sk_buff *skb,
278 const dma_addr_t *addr)
279{
280 const skb_frag_t *fp, *end;
281 const struct skb_shared_info *si;
282
283 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
284
285 si = skb_shinfo(skb);
286 end = &si->frags[si->nr_frags];
287 for (fp = si->frags; fp < end; fp++)
9e903e08 288 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
fd3a4790
DM
289}
290
291/**
292 * deferred_unmap_destructor - unmap a packet when it is freed
293 * @skb: the packet
294 *
295 * This is the packet destructor used for Tx packets that need to remain
296 * mapped until they are freed rather than until their Tx descriptors are
297 * freed.
298 */
299static void deferred_unmap_destructor(struct sk_buff *skb)
300{
301 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
302}
303#endif
304
305static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
306 const struct ulptx_sgl *sgl, const struct sge_txq *q)
307{
308 const struct ulptx_sge_pair *p;
309 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
310
311 if (likely(skb_headlen(skb)))
312 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
313 DMA_TO_DEVICE);
314 else {
315 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
316 DMA_TO_DEVICE);
317 nfrags--;
318 }
319
320 /*
321 * the complexity below is because of the possibility of a wrap-around
322 * in the middle of an SGL
323 */
324 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
325 if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
326unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
327 ntohl(p->len[0]), DMA_TO_DEVICE);
328 dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
329 ntohl(p->len[1]), DMA_TO_DEVICE);
330 p++;
331 } else if ((u8 *)p == (u8 *)q->stat) {
332 p = (const struct ulptx_sge_pair *)q->desc;
333 goto unmap;
334 } else if ((u8 *)p + 8 == (u8 *)q->stat) {
335 const __be64 *addr = (const __be64 *)q->desc;
336
337 dma_unmap_page(dev, be64_to_cpu(addr[0]),
338 ntohl(p->len[0]), DMA_TO_DEVICE);
339 dma_unmap_page(dev, be64_to_cpu(addr[1]),
340 ntohl(p->len[1]), DMA_TO_DEVICE);
341 p = (const struct ulptx_sge_pair *)&addr[2];
342 } else {
343 const __be64 *addr = (const __be64 *)q->desc;
344
345 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
346 ntohl(p->len[0]), DMA_TO_DEVICE);
347 dma_unmap_page(dev, be64_to_cpu(addr[0]),
348 ntohl(p->len[1]), DMA_TO_DEVICE);
349 p = (const struct ulptx_sge_pair *)&addr[1];
350 }
351 }
352 if (nfrags) {
353 __be64 addr;
354
355 if ((u8 *)p == (u8 *)q->stat)
356 p = (const struct ulptx_sge_pair *)q->desc;
357 addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
358 *(const __be64 *)q->desc;
359 dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
360 DMA_TO_DEVICE);
361 }
362}
363
364/**
365 * free_tx_desc - reclaims Tx descriptors and their buffers
366 * @adapter: the adapter
367 * @q: the Tx queue to reclaim descriptors from
368 * @n: the number of descriptors to reclaim
369 * @unmap: whether the buffers should be unmapped for DMA
370 *
371 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
372 * Tx buffers. Called with the Tx queue lock held.
373 */
374static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
375 unsigned int n, bool unmap)
376{
377 struct tx_sw_desc *d;
378 unsigned int cidx = q->cidx;
379 struct device *dev = adap->pdev_dev;
380
381 d = &q->sdesc[cidx];
382 while (n--) {
383 if (d->skb) { /* an SGL is present */
384 if (unmap)
385 unmap_sgl(dev, d->skb, d->sgl, q);
a7525198 386 dev_consume_skb_any(d->skb);
fd3a4790
DM
387 d->skb = NULL;
388 }
389 ++d;
390 if (++cidx == q->size) {
391 cidx = 0;
392 d = q->sdesc;
393 }
394 }
395 q->cidx = cidx;
396}
397
398/*
399 * Return the number of reclaimable descriptors in a Tx queue.
400 */
401static inline int reclaimable(const struct sge_txq *q)
402{
403 int hw_cidx = ntohs(q->stat->cidx);
404 hw_cidx -= q->cidx;
405 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
406}
407
408/**
409 * reclaim_completed_tx - reclaims completed Tx descriptors
410 * @adap: the adapter
411 * @q: the Tx queue to reclaim completed descriptors from
412 * @unmap: whether the buffers should be unmapped for DMA
413 *
414 * Reclaims Tx descriptors that the SGE has indicated it has processed,
415 * and frees the associated buffers if possible. Called with the Tx
416 * queue locked.
417 */
418static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
419 bool unmap)
420{
421 int avail = reclaimable(q);
422
423 if (avail) {
424 /*
425 * Limit the amount of clean up work we do at a time to keep
426 * the Tx lock hold time O(1).
427 */
428 if (avail > MAX_TX_RECLAIM)
429 avail = MAX_TX_RECLAIM;
430
431 free_tx_desc(adap, q, avail, unmap);
432 q->in_use -= avail;
433 }
434}
435
52367a76
VP
436static inline int get_buf_size(struct adapter *adapter,
437 const struct rx_sw_desc *d)
fd3a4790 438{
52367a76
VP
439 struct sge *s = &adapter->sge;
440 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
441 int buf_size;
442
443 switch (rx_buf_size_idx) {
444 case RX_SMALL_PG_BUF:
445 buf_size = PAGE_SIZE;
446 break;
447
448 case RX_LARGE_PG_BUF:
449 buf_size = PAGE_SIZE << s->fl_pg_order;
450 break;
451
452 case RX_SMALL_MTU_BUF:
453 buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
454 break;
455
456 case RX_LARGE_MTU_BUF:
457 buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
458 break;
459
460 default:
461 BUG_ON(1);
462 }
463
464 return buf_size;
fd3a4790
DM
465}
466
467/**
468 * free_rx_bufs - free the Rx buffers on an SGE free list
469 * @adap: the adapter
470 * @q: the SGE free list to free buffers from
471 * @n: how many buffers to free
472 *
473 * Release the next @n buffers on an SGE free-buffer Rx queue. The
474 * buffers must be made inaccessible to HW before calling this function.
475 */
476static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
477{
478 while (n--) {
479 struct rx_sw_desc *d = &q->sdesc[q->cidx];
480
481 if (is_buf_mapped(d))
482 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
52367a76
VP
483 get_buf_size(adap, d),
484 PCI_DMA_FROMDEVICE);
fd3a4790
DM
485 put_page(d->page);
486 d->page = NULL;
487 if (++q->cidx == q->size)
488 q->cidx = 0;
489 q->avail--;
490 }
491}
492
493/**
494 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
495 * @adap: the adapter
496 * @q: the SGE free list
497 *
498 * Unmap the current buffer on an SGE free-buffer Rx queue. The
499 * buffer must be made inaccessible to HW before calling this function.
500 *
501 * This is similar to @free_rx_bufs above but does not free the buffer.
502 * Do note that the FL still loses any further access to the buffer.
503 */
504static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
505{
506 struct rx_sw_desc *d = &q->sdesc[q->cidx];
507
508 if (is_buf_mapped(d))
509 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
52367a76 510 get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
fd3a4790
DM
511 d->page = NULL;
512 if (++q->cidx == q->size)
513 q->cidx = 0;
514 q->avail--;
515}
516
517static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
518{
0a57a536 519 u32 val;
fd3a4790 520 if (q->pend_cred >= 8) {
0a57a536 521 val = PIDX(q->pend_cred / 8);
d14807dd 522 if (!is_t4(adap->params.chip))
0a57a536 523 val |= DBTYPE(1);
fd3a4790 524 wmb();
ce91a923 525 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), DBPRIO(1) |
0a57a536 526 QID(q->cntxt_id) | val);
fd3a4790
DM
527 q->pend_cred &= 7;
528 }
529}
530
531static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
532 dma_addr_t mapping)
533{
534 sd->page = pg;
535 sd->dma_addr = mapping; /* includes size low bits */
536}
537
538/**
539 * refill_fl - refill an SGE Rx buffer ring
540 * @adap: the adapter
541 * @q: the ring to refill
542 * @n: the number of new buffers to allocate
543 * @gfp: the gfp flags for the allocations
544 *
545 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
546 * allocated with the supplied gfp flags. The caller must assure that
547 * @n does not exceed the queue's capacity. If afterwards the queue is
548 * found critically low mark it as starving in the bitmap of starving FLs.
549 *
550 * Returns the number of buffers allocated.
551 */
552static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
553 gfp_t gfp)
554{
52367a76 555 struct sge *s = &adap->sge;
fd3a4790
DM
556 struct page *pg;
557 dma_addr_t mapping;
558 unsigned int cred = q->avail;
559 __be64 *d = &q->desc[q->pidx];
560 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
561
1f2149c1 562 gfp |= __GFP_NOWARN | __GFP_COLD;
fd3a4790 563
52367a76
VP
564 if (s->fl_pg_order == 0)
565 goto alloc_small_pages;
566
fd3a4790
DM
567 /*
568 * Prefer large buffers
569 */
570 while (n) {
52367a76 571 pg = alloc_pages(gfp | __GFP_COMP, s->fl_pg_order);
fd3a4790
DM
572 if (unlikely(!pg)) {
573 q->large_alloc_failed++;
574 break; /* fall back to single pages */
575 }
576
577 mapping = dma_map_page(adap->pdev_dev, pg, 0,
52367a76 578 PAGE_SIZE << s->fl_pg_order,
fd3a4790
DM
579 PCI_DMA_FROMDEVICE);
580 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
52367a76 581 __free_pages(pg, s->fl_pg_order);
fd3a4790
DM
582 goto out; /* do not try small pages for this error */
583 }
52367a76 584 mapping |= RX_LARGE_PG_BUF;
fd3a4790
DM
585 *d++ = cpu_to_be64(mapping);
586
587 set_rx_sw_desc(sd, pg, mapping);
588 sd++;
589
590 q->avail++;
591 if (++q->pidx == q->size) {
592 q->pidx = 0;
593 sd = q->sdesc;
594 d = q->desc;
595 }
596 n--;
597 }
fd3a4790 598
52367a76 599alloc_small_pages:
fd3a4790 600 while (n--) {
0614002b 601 pg = __skb_alloc_page(gfp, NULL);
fd3a4790
DM
602 if (unlikely(!pg)) {
603 q->alloc_failed++;
604 break;
605 }
606
607 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
608 PCI_DMA_FROMDEVICE);
609 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
1f2149c1 610 put_page(pg);
fd3a4790
DM
611 goto out;
612 }
613 *d++ = cpu_to_be64(mapping);
614
615 set_rx_sw_desc(sd, pg, mapping);
616 sd++;
617
618 q->avail++;
619 if (++q->pidx == q->size) {
620 q->pidx = 0;
621 sd = q->sdesc;
622 d = q->desc;
623 }
624 }
625
626out: cred = q->avail - cred;
627 q->pend_cred += cred;
628 ring_fl_db(adap, q);
629
630 if (unlikely(fl_starving(q))) {
631 smp_wmb();
e46dab4d
DM
632 set_bit(q->cntxt_id - adap->sge.egr_start,
633 adap->sge.starving_fl);
fd3a4790
DM
634 }
635
636 return cred;
637}
638
639static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
640{
641 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
642 GFP_ATOMIC);
643}
644
645/**
646 * alloc_ring - allocate resources for an SGE descriptor ring
647 * @dev: the PCI device's core device
648 * @nelem: the number of descriptors
649 * @elem_size: the size of each descriptor
650 * @sw_size: the size of the SW state associated with each ring element
651 * @phys: the physical address of the allocated ring
652 * @metadata: address of the array holding the SW state for the ring
653 * @stat_size: extra space in HW ring for status information
ad6bad3e 654 * @node: preferred node for memory allocations
fd3a4790
DM
655 *
656 * Allocates resources for an SGE descriptor ring, such as Tx queues,
657 * free buffer lists, or response queues. Each SGE ring requires
658 * space for its HW descriptors plus, optionally, space for the SW state
659 * associated with each HW entry (the metadata). The function returns
660 * three values: the virtual address for the HW ring (the return value
661 * of the function), the bus address of the HW ring, and the address
662 * of the SW ring.
663 */
664static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
665 size_t sw_size, dma_addr_t *phys, void *metadata,
ad6bad3e 666 size_t stat_size, int node)
fd3a4790
DM
667{
668 size_t len = nelem * elem_size + stat_size;
669 void *s = NULL;
670 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
671
672 if (!p)
673 return NULL;
674 if (sw_size) {
ad6bad3e 675 s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
fd3a4790
DM
676
677 if (!s) {
678 dma_free_coherent(dev, len, p, *phys);
679 return NULL;
680 }
681 }
682 if (metadata)
683 *(void **)metadata = s;
684 memset(p, 0, len);
685 return p;
686}
687
688/**
689 * sgl_len - calculates the size of an SGL of the given capacity
690 * @n: the number of SGL entries
691 *
692 * Calculates the number of flits needed for a scatter/gather list that
693 * can hold the given number of entries.
694 */
695static inline unsigned int sgl_len(unsigned int n)
696{
697 n--;
698 return (3 * n) / 2 + (n & 1) + 2;
699}
700
701/**
702 * flits_to_desc - returns the num of Tx descriptors for the given flits
703 * @n: the number of flits
704 *
705 * Returns the number of Tx descriptors needed for the supplied number
706 * of flits.
707 */
708static inline unsigned int flits_to_desc(unsigned int n)
709{
710 BUG_ON(n > SGE_MAX_WR_LEN / 8);
711 return DIV_ROUND_UP(n, 8);
712}
713
714/**
715 * is_eth_imm - can an Ethernet packet be sent as immediate data?
716 * @skb: the packet
717 *
718 * Returns whether an Ethernet packet is small enough to fit as
0034b298 719 * immediate data. Return value corresponds to headroom required.
fd3a4790
DM
720 */
721static inline int is_eth_imm(const struct sk_buff *skb)
722{
0034b298
KS
723 int hdrlen = skb_shinfo(skb)->gso_size ?
724 sizeof(struct cpl_tx_pkt_lso_core) : 0;
725
726 hdrlen += sizeof(struct cpl_tx_pkt);
727 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
728 return hdrlen;
729 return 0;
fd3a4790
DM
730}
731
732/**
733 * calc_tx_flits - calculate the number of flits for a packet Tx WR
734 * @skb: the packet
735 *
736 * Returns the number of flits needed for a Tx WR for the given Ethernet
737 * packet, including the needed WR and CPL headers.
738 */
739static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
740{
741 unsigned int flits;
0034b298 742 int hdrlen = is_eth_imm(skb);
fd3a4790 743
0034b298
KS
744 if (hdrlen)
745 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
fd3a4790
DM
746
747 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4;
748 if (skb_shinfo(skb)->gso_size)
749 flits += 2;
750 return flits;
751}
752
753/**
754 * calc_tx_descs - calculate the number of Tx descriptors for a packet
755 * @skb: the packet
756 *
757 * Returns the number of Tx descriptors needed for the given Ethernet
758 * packet, including the needed WR and CPL headers.
759 */
760static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
761{
762 return flits_to_desc(calc_tx_flits(skb));
763}
764
765/**
766 * write_sgl - populate a scatter/gather list for a packet
767 * @skb: the packet
768 * @q: the Tx queue we are writing into
769 * @sgl: starting location for writing the SGL
770 * @end: points right after the end of the SGL
771 * @start: start offset into skb main-body data to include in the SGL
772 * @addr: the list of bus addresses for the SGL elements
773 *
774 * Generates a gather list for the buffers that make up a packet.
775 * The caller must provide adequate space for the SGL that will be written.
776 * The SGL includes all of the packet's page fragments and the data in its
777 * main body except for the first @start bytes. @sgl must be 16-byte
778 * aligned and within a Tx descriptor with available space. @end points
779 * right after the end of the SGL but does not account for any potential
780 * wrap around, i.e., @end > @sgl.
781 */
782static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
783 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
784 const dma_addr_t *addr)
785{
786 unsigned int i, len;
787 struct ulptx_sge_pair *to;
788 const struct skb_shared_info *si = skb_shinfo(skb);
789 unsigned int nfrags = si->nr_frags;
790 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
791
792 len = skb_headlen(skb) - start;
793 if (likely(len)) {
794 sgl->len0 = htonl(len);
795 sgl->addr0 = cpu_to_be64(addr[0] + start);
796 nfrags++;
797 } else {
9e903e08 798 sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
fd3a4790
DM
799 sgl->addr0 = cpu_to_be64(addr[1]);
800 }
801
802 sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) | ULPTX_NSGE(nfrags));
803 if (likely(--nfrags == 0))
804 return;
805 /*
806 * Most of the complexity below deals with the possibility we hit the
807 * end of the queue in the middle of writing the SGL. For this case
808 * only we create the SGL in a temporary buffer and then copy it.
809 */
810 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
811
812 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
9e903e08
ED
813 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
814 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
fd3a4790
DM
815 to->addr[0] = cpu_to_be64(addr[i]);
816 to->addr[1] = cpu_to_be64(addr[++i]);
817 }
818 if (nfrags) {
9e903e08 819 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
fd3a4790
DM
820 to->len[1] = cpu_to_be32(0);
821 to->addr[0] = cpu_to_be64(addr[i + 1]);
822 }
823 if (unlikely((u8 *)end > (u8 *)q->stat)) {
824 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
825
826 if (likely(part0))
827 memcpy(sgl->sge, buf, part0);
828 part1 = (u8 *)end - (u8 *)q->stat;
829 memcpy(q->desc, (u8 *)buf + part0, part1);
830 end = (void *)q->desc + part1;
831 }
832 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
64699336 833 *end = 0;
fd3a4790
DM
834}
835
22adfe0a
SR
836/* This function copies 64 byte coalesced work request to
837 * memory mapped BAR2 space(user space writes).
838 * For coalesced WR SGE, fetches data from the FIFO instead of from Host.
839 */
840static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
841{
842 int count = 8;
843
844 while (count) {
845 writeq(*src, dst);
846 src++;
847 dst++;
848 count--;
849 }
850}
851
fd3a4790
DM
852/**
853 * ring_tx_db - check and potentially ring a Tx queue's doorbell
854 * @adap: the adapter
855 * @q: the Tx queue
856 * @n: number of new descriptors to give to HW
857 *
858 * Ring the doorbel for a Tx queue.
859 */
860static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
861{
22adfe0a 862 unsigned int *wr, index;
05eb2389 863 unsigned long flags;
22adfe0a 864
fd3a4790 865 wmb(); /* write descriptors before telling HW */
05eb2389 866 spin_lock_irqsave(&q->db_lock, flags);
3069ee9b 867 if (!q->db_disabled) {
d14807dd 868 if (is_t4(adap->params.chip)) {
22adfe0a
SR
869 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
870 QID(q->cntxt_id) | PIDX(n));
871 } else {
872 if (n == 1) {
873 index = q->pidx ? (q->pidx - 1) : (q->size - 1);
874 wr = (unsigned int *)&q->desc[index];
875 cxgb_pio_copy((u64 __iomem *)
876 (adap->bar2 + q->udb + 64),
877 (u64 *)wr);
878 } else
879 writel(n, adap->bar2 + q->udb + 8);
880 wmb();
881 }
05eb2389
SW
882 } else
883 q->db_pidx_inc += n;
3069ee9b 884 q->db_pidx = q->pidx;
05eb2389 885 spin_unlock_irqrestore(&q->db_lock, flags);
fd3a4790
DM
886}
887
888/**
889 * inline_tx_skb - inline a packet's data into Tx descriptors
890 * @skb: the packet
891 * @q: the Tx queue where the packet will be inlined
892 * @pos: starting position in the Tx queue where to inline the packet
893 *
894 * Inline a packet's contents directly into Tx descriptors, starting at
895 * the given position within the Tx DMA ring.
896 * Most of the complexity of this operation is dealing with wrap arounds
897 * in the middle of the packet we want to inline.
898 */
899static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
900 void *pos)
901{
902 u64 *p;
903 int left = (void *)q->stat - pos;
904
905 if (likely(skb->len <= left)) {
906 if (likely(!skb->data_len))
907 skb_copy_from_linear_data(skb, pos, skb->len);
908 else
909 skb_copy_bits(skb, 0, pos, skb->len);
910 pos += skb->len;
911 } else {
912 skb_copy_bits(skb, 0, pos, left);
913 skb_copy_bits(skb, left, q->desc, skb->len - left);
914 pos = (void *)q->desc + (skb->len - left);
915 }
916
917 /* 0-pad to multiple of 16 */
918 p = PTR_ALIGN(pos, 8);
919 if ((uintptr_t)p & 8)
920 *p = 0;
921}
922
923/*
924 * Figure out what HW csum a packet wants and return the appropriate control
925 * bits.
926 */
927static u64 hwcsum(const struct sk_buff *skb)
928{
929 int csum_type;
930 const struct iphdr *iph = ip_hdr(skb);
931
932 if (iph->version == 4) {
933 if (iph->protocol == IPPROTO_TCP)
934 csum_type = TX_CSUM_TCPIP;
935 else if (iph->protocol == IPPROTO_UDP)
936 csum_type = TX_CSUM_UDPIP;
937 else {
938nocsum: /*
939 * unknown protocol, disable HW csum
940 * and hope a bad packet is detected
941 */
942 return TXPKT_L4CSUM_DIS;
943 }
944 } else {
945 /*
946 * this doesn't work with extension headers
947 */
948 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
949
950 if (ip6h->nexthdr == IPPROTO_TCP)
951 csum_type = TX_CSUM_TCPIP6;
952 else if (ip6h->nexthdr == IPPROTO_UDP)
953 csum_type = TX_CSUM_UDPIP6;
954 else
955 goto nocsum;
956 }
957
958 if (likely(csum_type >= TX_CSUM_TCPIP))
959 return TXPKT_CSUM_TYPE(csum_type) |
960 TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
961 TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
962 else {
963 int start = skb_transport_offset(skb);
964
965 return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) |
966 TXPKT_CSUM_LOC(start + skb->csum_offset);
967 }
968}
969
970static void eth_txq_stop(struct sge_eth_txq *q)
971{
972 netif_tx_stop_queue(q->txq);
973 q->q.stops++;
974}
975
976static inline void txq_advance(struct sge_txq *q, unsigned int n)
977{
978 q->in_use += n;
979 q->pidx += n;
980 if (q->pidx >= q->size)
981 q->pidx -= q->size;
982}
983
984/**
985 * t4_eth_xmit - add a packet to an Ethernet Tx queue
986 * @skb: the packet
987 * @dev: the egress net device
988 *
989 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
990 */
991netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
992{
0034b298 993 int len;
fd3a4790
DM
994 u32 wr_mid;
995 u64 cntrl, *end;
996 int qidx, credits;
997 unsigned int flits, ndesc;
998 struct adapter *adap;
999 struct sge_eth_txq *q;
1000 const struct port_info *pi;
1001 struct fw_eth_tx_pkt_wr *wr;
1002 struct cpl_tx_pkt_core *cpl;
1003 const struct skb_shared_info *ssi;
1004 dma_addr_t addr[MAX_SKB_FRAGS + 1];
0034b298 1005 bool immediate = false;
fd3a4790
DM
1006
1007 /*
1008 * The chip min packet length is 10 octets but play safe and reject
1009 * anything shorter than an Ethernet header.
1010 */
1011 if (unlikely(skb->len < ETH_HLEN)) {
a7525198 1012out_free: dev_kfree_skb_any(skb);
fd3a4790
DM
1013 return NETDEV_TX_OK;
1014 }
1015
1016 pi = netdev_priv(dev);
1017 adap = pi->adapter;
1018 qidx = skb_get_queue_mapping(skb);
1019 q = &adap->sge.ethtxq[qidx + pi->first_qset];
1020
1021 reclaim_completed_tx(adap, &q->q, true);
1022
1023 flits = calc_tx_flits(skb);
1024 ndesc = flits_to_desc(flits);
1025 credits = txq_avail(&q->q) - ndesc;
1026
1027 if (unlikely(credits < 0)) {
1028 eth_txq_stop(q);
1029 dev_err(adap->pdev_dev,
1030 "%s: Tx ring %u full while queue awake!\n",
1031 dev->name, qidx);
1032 return NETDEV_TX_BUSY;
1033 }
1034
0034b298
KS
1035 if (is_eth_imm(skb))
1036 immediate = true;
1037
1038 if (!immediate &&
fd3a4790
DM
1039 unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
1040 q->mapping_err++;
1041 goto out_free;
1042 }
1043
1044 wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
1045 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1046 eth_txq_stop(q);
1047 wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ;
1048 }
1049
1050 wr = (void *)&q->q.desc[q->q.pidx];
1051 wr->equiq_to_len16 = htonl(wr_mid);
1052 wr->r3 = cpu_to_be64(0);
1053 end = (u64 *)wr + flits;
1054
0034b298 1055 len = immediate ? skb->len : 0;
fd3a4790
DM
1056 ssi = skb_shinfo(skb);
1057 if (ssi->gso_size) {
625ac6ae 1058 struct cpl_tx_pkt_lso *lso = (void *)wr;
fd3a4790
DM
1059 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1060 int l3hdr_len = skb_network_header_len(skb);
1061 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1062
0034b298 1063 len += sizeof(*lso);
fd3a4790 1064 wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
0034b298 1065 FW_WR_IMMDLEN(len));
625ac6ae
DM
1066 lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) |
1067 LSO_FIRST_SLICE | LSO_LAST_SLICE |
1068 LSO_IPV6(v6) |
1069 LSO_ETHHDR_LEN(eth_xtra_len / 4) |
1070 LSO_IPHDR_LEN(l3hdr_len / 4) |
1071 LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
1072 lso->c.ipid_ofst = htons(0);
1073 lso->c.mss = htons(ssi->gso_size);
1074 lso->c.seqno_offset = htonl(0);
1075 lso->c.len = htonl(skb->len);
fd3a4790
DM
1076 cpl = (void *)(lso + 1);
1077 cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1078 TXPKT_IPHDR_LEN(l3hdr_len) |
1079 TXPKT_ETHHDR_LEN(eth_xtra_len);
1080 q->tso++;
1081 q->tx_cso += ssi->gso_segs;
1082 } else {
ca71de6b 1083 len += sizeof(*cpl);
fd3a4790
DM
1084 wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
1085 FW_WR_IMMDLEN(len));
1086 cpl = (void *)(wr + 1);
1087 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1088 cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
1089 q->tx_cso++;
1090 } else
1091 cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
1092 }
1093
1094 if (vlan_tx_tag_present(skb)) {
1095 q->vlan_ins++;
1096 cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
1097 }
1098
1099 cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1707aec9 1100 TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn));
fd3a4790
DM
1101 cpl->pack = htons(0);
1102 cpl->len = htons(skb->len);
1103 cpl->ctrl1 = cpu_to_be64(cntrl);
1104
0034b298 1105 if (immediate) {
fd3a4790 1106 inline_tx_skb(skb, &q->q, cpl + 1);
a7525198 1107 dev_consume_skb_any(skb);
fd3a4790
DM
1108 } else {
1109 int last_desc;
1110
1111 write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
1112 addr);
1113 skb_orphan(skb);
1114
1115 last_desc = q->q.pidx + ndesc - 1;
1116 if (last_desc >= q->q.size)
1117 last_desc -= q->q.size;
1118 q->q.sdesc[last_desc].skb = skb;
1119 q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1120 }
1121
1122 txq_advance(&q->q, ndesc);
1123
1124 ring_tx_db(adap, &q->q, ndesc);
1125 return NETDEV_TX_OK;
1126}
1127
1128/**
1129 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1130 * @q: the SGE control Tx queue
1131 *
1132 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1133 * that send only immediate data (presently just the control queues) and
1134 * thus do not have any sk_buffs to release.
1135 */
1136static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1137{
1138 int hw_cidx = ntohs(q->stat->cidx);
1139 int reclaim = hw_cidx - q->cidx;
1140
1141 if (reclaim < 0)
1142 reclaim += q->size;
1143
1144 q->in_use -= reclaim;
1145 q->cidx = hw_cidx;
1146}
1147
1148/**
1149 * is_imm - check whether a packet can be sent as immediate data
1150 * @skb: the packet
1151 *
1152 * Returns true if a packet can be sent as a WR with immediate data.
1153 */
1154static inline int is_imm(const struct sk_buff *skb)
1155{
1156 return skb->len <= MAX_CTRL_WR_LEN;
1157}
1158
1159/**
1160 * ctrlq_check_stop - check if a control queue is full and should stop
1161 * @q: the queue
1162 * @wr: most recent WR written to the queue
1163 *
1164 * Check if a control queue has become full and should be stopped.
1165 * We clean up control queue descriptors very lazily, only when we are out.
1166 * If the queue is still full after reclaiming any completed descriptors
1167 * we suspend it and have the last WR wake it up.
1168 */
1169static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
1170{
1171 reclaim_completed_tx_imm(&q->q);
1172 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1173 wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
1174 q->q.stops++;
1175 q->full = 1;
1176 }
1177}
1178
1179/**
1180 * ctrl_xmit - send a packet through an SGE control Tx queue
1181 * @q: the control queue
1182 * @skb: the packet
1183 *
1184 * Send a packet through an SGE control Tx queue. Packets sent through
1185 * a control queue must fit entirely as immediate data.
1186 */
1187static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
1188{
1189 unsigned int ndesc;
1190 struct fw_wr_hdr *wr;
1191
1192 if (unlikely(!is_imm(skb))) {
1193 WARN_ON(1);
1194 dev_kfree_skb(skb);
1195 return NET_XMIT_DROP;
1196 }
1197
1198 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
1199 spin_lock(&q->sendq.lock);
1200
1201 if (unlikely(q->full)) {
1202 skb->priority = ndesc; /* save for restart */
1203 __skb_queue_tail(&q->sendq, skb);
1204 spin_unlock(&q->sendq.lock);
1205 return NET_XMIT_CN;
1206 }
1207
1208 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1209 inline_tx_skb(skb, &q->q, wr);
1210
1211 txq_advance(&q->q, ndesc);
1212 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
1213 ctrlq_check_stop(q, wr);
1214
1215 ring_tx_db(q->adap, &q->q, ndesc);
1216 spin_unlock(&q->sendq.lock);
1217
1218 kfree_skb(skb);
1219 return NET_XMIT_SUCCESS;
1220}
1221
1222/**
1223 * restart_ctrlq - restart a suspended control queue
1224 * @data: the control queue to restart
1225 *
1226 * Resumes transmission on a suspended Tx control queue.
1227 */
1228static void restart_ctrlq(unsigned long data)
1229{
1230 struct sk_buff *skb;
1231 unsigned int written = 0;
1232 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
1233
1234 spin_lock(&q->sendq.lock);
1235 reclaim_completed_tx_imm(&q->q);
1236 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */
1237
1238 while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
1239 struct fw_wr_hdr *wr;
1240 unsigned int ndesc = skb->priority; /* previously saved */
1241
1242 /*
1243 * Write descriptors and free skbs outside the lock to limit
1244 * wait times. q->full is still set so new skbs will be queued.
1245 */
1246 spin_unlock(&q->sendq.lock);
1247
1248 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1249 inline_tx_skb(skb, &q->q, wr);
1250 kfree_skb(skb);
1251
1252 written += ndesc;
1253 txq_advance(&q->q, ndesc);
1254 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1255 unsigned long old = q->q.stops;
1256
1257 ctrlq_check_stop(q, wr);
1258 if (q->q.stops != old) { /* suspended anew */
1259 spin_lock(&q->sendq.lock);
1260 goto ringdb;
1261 }
1262 }
1263 if (written > 16) {
1264 ring_tx_db(q->adap, &q->q, written);
1265 written = 0;
1266 }
1267 spin_lock(&q->sendq.lock);
1268 }
1269 q->full = 0;
1270ringdb: if (written)
1271 ring_tx_db(q->adap, &q->q, written);
1272 spin_unlock(&q->sendq.lock);
1273}
1274
1275/**
1276 * t4_mgmt_tx - send a management message
1277 * @adap: the adapter
1278 * @skb: the packet containing the management message
1279 *
1280 * Send a management message through control queue 0.
1281 */
1282int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1283{
1284 int ret;
1285
1286 local_bh_disable();
1287 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
1288 local_bh_enable();
1289 return ret;
1290}
1291
1292/**
1293 * is_ofld_imm - check whether a packet can be sent as immediate data
1294 * @skb: the packet
1295 *
1296 * Returns true if a packet can be sent as an offload WR with immediate
1297 * data. We currently use the same limit as for Ethernet packets.
1298 */
1299static inline int is_ofld_imm(const struct sk_buff *skb)
1300{
1301 return skb->len <= MAX_IMM_TX_PKT_LEN;
1302}
1303
1304/**
1305 * calc_tx_flits_ofld - calculate # of flits for an offload packet
1306 * @skb: the packet
1307 *
1308 * Returns the number of flits needed for the given offload packet.
1309 * These packets are already fully constructed and no additional headers
1310 * will be added.
1311 */
1312static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
1313{
1314 unsigned int flits, cnt;
1315
1316 if (is_ofld_imm(skb))
1317 return DIV_ROUND_UP(skb->len, 8);
1318
1319 flits = skb_transport_offset(skb) / 8U; /* headers */
1320 cnt = skb_shinfo(skb)->nr_frags;
15dd16c2 1321 if (skb_tail_pointer(skb) != skb_transport_header(skb))
fd3a4790
DM
1322 cnt++;
1323 return flits + sgl_len(cnt);
1324}
1325
1326/**
1327 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1328 * @adap: the adapter
1329 * @q: the queue to stop
1330 *
1331 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1332 * inability to map packets. A periodic timer attempts to restart
1333 * queues so marked.
1334 */
1335static void txq_stop_maperr(struct sge_ofld_txq *q)
1336{
1337 q->mapping_err++;
1338 q->q.stops++;
e46dab4d
DM
1339 set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
1340 q->adap->sge.txq_maperr);
fd3a4790
DM
1341}
1342
1343/**
1344 * ofldtxq_stop - stop an offload Tx queue that has become full
1345 * @q: the queue to stop
1346 * @skb: the packet causing the queue to become full
1347 *
1348 * Stops an offload Tx queue that has become full and modifies the packet
1349 * being written to request a wakeup.
1350 */
1351static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
1352{
1353 struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
1354
1355 wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
1356 q->q.stops++;
1357 q->full = 1;
1358}
1359
1360/**
1361 * service_ofldq - restart a suspended offload queue
1362 * @q: the offload queue
1363 *
1364 * Services an offload Tx queue by moving packets from its packet queue
1365 * to the HW Tx ring. The function starts and ends with the queue locked.
1366 */
1367static void service_ofldq(struct sge_ofld_txq *q)
1368{
1369 u64 *pos;
1370 int credits;
1371 struct sk_buff *skb;
1372 unsigned int written = 0;
1373 unsigned int flits, ndesc;
1374
1375 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
1376 /*
1377 * We drop the lock but leave skb on sendq, thus retaining
1378 * exclusive access to the state of the queue.
1379 */
1380 spin_unlock(&q->sendq.lock);
1381
1382 reclaim_completed_tx(q->adap, &q->q, false);
1383
1384 flits = skb->priority; /* previously saved */
1385 ndesc = flits_to_desc(flits);
1386 credits = txq_avail(&q->q) - ndesc;
1387 BUG_ON(credits < 0);
1388 if (unlikely(credits < TXQ_STOP_THRES))
1389 ofldtxq_stop(q, skb);
1390
1391 pos = (u64 *)&q->q.desc[q->q.pidx];
1392 if (is_ofld_imm(skb))
1393 inline_tx_skb(skb, &q->q, pos);
1394 else if (map_skb(q->adap->pdev_dev, skb,
1395 (dma_addr_t *)skb->head)) {
1396 txq_stop_maperr(q);
1397 spin_lock(&q->sendq.lock);
1398 break;
1399 } else {
1400 int last_desc, hdr_len = skb_transport_offset(skb);
1401
1402 memcpy(pos, skb->data, hdr_len);
1403 write_sgl(skb, &q->q, (void *)pos + hdr_len,
1404 pos + flits, hdr_len,
1405 (dma_addr_t *)skb->head);
1406#ifdef CONFIG_NEED_DMA_MAP_STATE
1407 skb->dev = q->adap->port[0];
1408 skb->destructor = deferred_unmap_destructor;
1409#endif
1410 last_desc = q->q.pidx + ndesc - 1;
1411 if (last_desc >= q->q.size)
1412 last_desc -= q->q.size;
1413 q->q.sdesc[last_desc].skb = skb;
1414 }
1415
1416 txq_advance(&q->q, ndesc);
1417 written += ndesc;
1418 if (unlikely(written > 32)) {
1419 ring_tx_db(q->adap, &q->q, written);
1420 written = 0;
1421 }
1422
1423 spin_lock(&q->sendq.lock);
1424 __skb_unlink(skb, &q->sendq);
1425 if (is_ofld_imm(skb))
1426 kfree_skb(skb);
1427 }
1428 if (likely(written))
1429 ring_tx_db(q->adap, &q->q, written);
1430}
1431
1432/**
1433 * ofld_xmit - send a packet through an offload queue
1434 * @q: the Tx offload queue
1435 * @skb: the packet
1436 *
1437 * Send an offload packet through an SGE offload queue.
1438 */
1439static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
1440{
1441 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */
1442 spin_lock(&q->sendq.lock);
1443 __skb_queue_tail(&q->sendq, skb);
1444 if (q->sendq.qlen == 1)
1445 service_ofldq(q);
1446 spin_unlock(&q->sendq.lock);
1447 return NET_XMIT_SUCCESS;
1448}
1449
1450/**
1451 * restart_ofldq - restart a suspended offload queue
1452 * @data: the offload queue to restart
1453 *
1454 * Resumes transmission on a suspended Tx offload queue.
1455 */
1456static void restart_ofldq(unsigned long data)
1457{
1458 struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
1459
1460 spin_lock(&q->sendq.lock);
1461 q->full = 0; /* the queue actually is completely empty now */
1462 service_ofldq(q);
1463 spin_unlock(&q->sendq.lock);
1464}
1465
1466/**
1467 * skb_txq - return the Tx queue an offload packet should use
1468 * @skb: the packet
1469 *
1470 * Returns the Tx queue an offload packet should use as indicated by bits
1471 * 1-15 in the packet's queue_mapping.
1472 */
1473static inline unsigned int skb_txq(const struct sk_buff *skb)
1474{
1475 return skb->queue_mapping >> 1;
1476}
1477
1478/**
1479 * is_ctrl_pkt - return whether an offload packet is a control packet
1480 * @skb: the packet
1481 *
1482 * Returns whether an offload packet should use an OFLD or a CTRL
1483 * Tx queue as indicated by bit 0 in the packet's queue_mapping.
1484 */
1485static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
1486{
1487 return skb->queue_mapping & 1;
1488}
1489
1490static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
1491{
1492 unsigned int idx = skb_txq(skb);
1493
4fe44dd7
KS
1494 if (unlikely(is_ctrl_pkt(skb))) {
1495 /* Single ctrl queue is a requirement for LE workaround path */
1496 if (adap->tids.nsftids)
1497 idx = 0;
fd3a4790 1498 return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
4fe44dd7 1499 }
fd3a4790
DM
1500 return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
1501}
1502
1503/**
1504 * t4_ofld_send - send an offload packet
1505 * @adap: the adapter
1506 * @skb: the packet
1507 *
1508 * Sends an offload packet. We use the packet queue_mapping to select the
1509 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1510 * should be sent as regular or control, bits 1-15 select the queue.
1511 */
1512int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
1513{
1514 int ret;
1515
1516 local_bh_disable();
1517 ret = ofld_send(adap, skb);
1518 local_bh_enable();
1519 return ret;
1520}
1521
1522/**
1523 * cxgb4_ofld_send - send an offload packet
1524 * @dev: the net device
1525 * @skb: the packet
1526 *
1527 * Sends an offload packet. This is an exported version of @t4_ofld_send,
1528 * intended for ULDs.
1529 */
1530int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
1531{
1532 return t4_ofld_send(netdev2adap(dev), skb);
1533}
1534EXPORT_SYMBOL(cxgb4_ofld_send);
1535
e91b0f24 1536static inline void copy_frags(struct sk_buff *skb,
fd3a4790
DM
1537 const struct pkt_gl *gl, unsigned int offset)
1538{
e91b0f24 1539 int i;
fd3a4790
DM
1540
1541 /* usually there's just one frag */
e91b0f24
IC
1542 __skb_fill_page_desc(skb, 0, gl->frags[0].page,
1543 gl->frags[0].offset + offset,
1544 gl->frags[0].size - offset);
1545 skb_shinfo(skb)->nr_frags = gl->nfrags;
1546 for (i = 1; i < gl->nfrags; i++)
1547 __skb_fill_page_desc(skb, i, gl->frags[i].page,
1548 gl->frags[i].offset,
1549 gl->frags[i].size);
fd3a4790
DM
1550
1551 /* get a reference to the last page, we don't own it */
e91b0f24 1552 get_page(gl->frags[gl->nfrags - 1].page);
fd3a4790
DM
1553}
1554
1555/**
1556 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
1557 * @gl: the gather list
1558 * @skb_len: size of sk_buff main body if it carries fragments
1559 * @pull_len: amount of data to move to the sk_buff's main body
1560 *
1561 * Builds an sk_buff from the given packet gather list. Returns the
1562 * sk_buff or %NULL if sk_buff allocation failed.
1563 */
1564struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
1565 unsigned int skb_len, unsigned int pull_len)
1566{
1567 struct sk_buff *skb;
1568
1569 /*
1570 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
1571 * size, which is expected since buffers are at least PAGE_SIZEd.
1572 * In this case packets up to RX_COPY_THRES have only one fragment.
1573 */
1574 if (gl->tot_len <= RX_COPY_THRES) {
1575 skb = dev_alloc_skb(gl->tot_len);
1576 if (unlikely(!skb))
1577 goto out;
1578 __skb_put(skb, gl->tot_len);
1579 skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1580 } else {
1581 skb = dev_alloc_skb(skb_len);
1582 if (unlikely(!skb))
1583 goto out;
1584 __skb_put(skb, pull_len);
1585 skb_copy_to_linear_data(skb, gl->va, pull_len);
1586
e91b0f24 1587 copy_frags(skb, gl, pull_len);
fd3a4790
DM
1588 skb->len = gl->tot_len;
1589 skb->data_len = skb->len - pull_len;
1590 skb->truesize += skb->data_len;
1591 }
1592out: return skb;
1593}
1594EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
1595
1596/**
1597 * t4_pktgl_free - free a packet gather list
1598 * @gl: the gather list
1599 *
1600 * Releases the pages of a packet gather list. We do not own the last
1601 * page on the list and do not free it.
1602 */
de498c89 1603static void t4_pktgl_free(const struct pkt_gl *gl)
fd3a4790
DM
1604{
1605 int n;
e91b0f24 1606 const struct page_frag *p;
fd3a4790
DM
1607
1608 for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
1609 put_page(p->page);
1610}
1611
1612/*
1613 * Process an MPS trace packet. Give it an unused protocol number so it won't
1614 * be delivered to anyone and send it to the stack for capture.
1615 */
1616static noinline int handle_trace_pkt(struct adapter *adap,
1617 const struct pkt_gl *gl)
1618{
1619 struct sk_buff *skb;
fd3a4790
DM
1620
1621 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
1622 if (unlikely(!skb)) {
1623 t4_pktgl_free(gl);
1624 return 0;
1625 }
1626
d14807dd 1627 if (is_t4(adap->params.chip))
0a57a536
SR
1628 __skb_pull(skb, sizeof(struct cpl_trace_pkt));
1629 else
1630 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
1631
fd3a4790
DM
1632 skb_reset_mac_header(skb);
1633 skb->protocol = htons(0xffff);
1634 skb->dev = adap->port[0];
1635 netif_receive_skb(skb);
1636 return 0;
1637}
1638
1639static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1640 const struct cpl_rx_pkt *pkt)
1641{
52367a76
VP
1642 struct adapter *adapter = rxq->rspq.adap;
1643 struct sge *s = &adapter->sge;
fd3a4790
DM
1644 int ret;
1645 struct sk_buff *skb;
1646
1647 skb = napi_get_frags(&rxq->rspq.napi);
1648 if (unlikely(!skb)) {
1649 t4_pktgl_free(gl);
1650 rxq->stats.rx_drops++;
1651 return;
1652 }
1653
52367a76
VP
1654 copy_frags(skb, gl, s->pktshift);
1655 skb->len = gl->tot_len - s->pktshift;
fd3a4790
DM
1656 skb->data_len = skb->len;
1657 skb->truesize += skb->data_len;
1658 skb->ip_summed = CHECKSUM_UNNECESSARY;
1659 skb_record_rx_queue(skb, rxq->rspq.idx);
87b6cf51 1660 if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
8264989c
TH
1661 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
1662 PKT_HASH_TYPE_L3);
fd3a4790
DM
1663
1664 if (unlikely(pkt->vlan_ex)) {
86a9bad3 1665 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
fd3a4790 1666 rxq->stats.vlan_ex++;
fd3a4790
DM
1667 }
1668 ret = napi_gro_frags(&rxq->rspq.napi);
19ecae2c 1669 if (ret == GRO_HELD)
fd3a4790
DM
1670 rxq->stats.lro_pkts++;
1671 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1672 rxq->stats.lro_merged++;
1673 rxq->stats.pkts++;
1674 rxq->stats.rx_cso++;
1675}
1676
1677/**
1678 * t4_ethrx_handler - process an ingress ethernet packet
1679 * @q: the response queue that received the packet
1680 * @rsp: the response queue descriptor holding the RX_PKT message
1681 * @si: the gather list of packet fragments
1682 *
1683 * Process an ingress ethernet packet and deliver it to the stack.
1684 */
1685int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
1686 const struct pkt_gl *si)
1687{
1688 bool csum_ok;
1689 struct sk_buff *skb;
fd3a4790
DM
1690 const struct cpl_rx_pkt *pkt;
1691 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
52367a76 1692 struct sge *s = &q->adap->sge;
d14807dd 1693 int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
0a57a536 1694 CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
fd3a4790 1695
0a57a536 1696 if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
fd3a4790
DM
1697 return handle_trace_pkt(q->adap, si);
1698
87b6cf51 1699 pkt = (const struct cpl_rx_pkt *)rsp;
fd3a4790
DM
1700 csum_ok = pkt->csum_calc && !pkt->err_vec;
1701 if ((pkt->l2info & htonl(RXF_TCP)) &&
1702 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
1703 do_gro(rxq, si, pkt);
1704 return 0;
1705 }
1706
1707 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
1708 if (unlikely(!skb)) {
1709 t4_pktgl_free(si);
1710 rxq->stats.rx_drops++;
1711 return 0;
1712 }
1713
52367a76 1714 __skb_pull(skb, s->pktshift); /* remove ethernet header padding */
fd3a4790
DM
1715 skb->protocol = eth_type_trans(skb, q->netdev);
1716 skb_record_rx_queue(skb, q->idx);
87b6cf51 1717 if (skb->dev->features & NETIF_F_RXHASH)
8264989c
TH
1718 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
1719 PKT_HASH_TYPE_L3);
87b6cf51 1720
fd3a4790
DM
1721 rxq->stats.pkts++;
1722
2ed28baa 1723 if (csum_ok && (q->netdev->features & NETIF_F_RXCSUM) &&
fd3a4790 1724 (pkt->l2info & htonl(RXF_UDP | RXF_TCP))) {
ba5d3c66 1725 if (!pkt->ip_frag) {
fd3a4790 1726 skb->ip_summed = CHECKSUM_UNNECESSARY;
ba5d3c66
DM
1727 rxq->stats.rx_cso++;
1728 } else if (pkt->l2info & htonl(RXF_IP)) {
fd3a4790
DM
1729 __sum16 c = (__force __sum16)pkt->csum;
1730 skb->csum = csum_unfold(c);
1731 skb->ip_summed = CHECKSUM_COMPLETE;
ba5d3c66 1732 rxq->stats.rx_cso++;
fd3a4790 1733 }
fd3a4790 1734 } else
bc8acf2c 1735 skb_checksum_none_assert(skb);
fd3a4790
DM
1736
1737 if (unlikely(pkt->vlan_ex)) {
86a9bad3 1738 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
fd3a4790 1739 rxq->stats.vlan_ex++;
19ecae2c
DM
1740 }
1741 netif_receive_skb(skb);
fd3a4790
DM
1742 return 0;
1743}
1744
1745/**
1746 * restore_rx_bufs - put back a packet's Rx buffers
1747 * @si: the packet gather list
1748 * @q: the SGE free list
1749 * @frags: number of FL buffers to restore
1750 *
1751 * Puts back on an FL the Rx buffers associated with @si. The buffers
1752 * have already been unmapped and are left unmapped, we mark them so to
1753 * prevent further unmapping attempts.
1754 *
1755 * This function undoes a series of @unmap_rx_buf calls when we find out
1756 * that the current packet can't be processed right away afterall and we
1757 * need to come back to it later. This is a very rare event and there's
1758 * no effort to make this particularly efficient.
1759 */
1760static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
1761 int frags)
1762{
1763 struct rx_sw_desc *d;
1764
1765 while (frags--) {
1766 if (q->cidx == 0)
1767 q->cidx = q->size - 1;
1768 else
1769 q->cidx--;
1770 d = &q->sdesc[q->cidx];
1771 d->page = si->frags[frags].page;
1772 d->dma_addr |= RX_UNMAPPED_BUF;
1773 q->avail++;
1774 }
1775}
1776
1777/**
1778 * is_new_response - check if a response is newly written
1779 * @r: the response descriptor
1780 * @q: the response queue
1781 *
1782 * Returns true if a response descriptor contains a yet unprocessed
1783 * response.
1784 */
1785static inline bool is_new_response(const struct rsp_ctrl *r,
1786 const struct sge_rspq *q)
1787{
1788 return RSPD_GEN(r->type_gen) == q->gen;
1789}
1790
1791/**
1792 * rspq_next - advance to the next entry in a response queue
1793 * @q: the queue
1794 *
1795 * Updates the state of a response queue to advance it to the next entry.
1796 */
1797static inline void rspq_next(struct sge_rspq *q)
1798{
1799 q->cur_desc = (void *)q->cur_desc + q->iqe_len;
1800 if (unlikely(++q->cidx == q->size)) {
1801 q->cidx = 0;
1802 q->gen ^= 1;
1803 q->cur_desc = q->desc;
1804 }
1805}
1806
1807/**
1808 * process_responses - process responses from an SGE response queue
1809 * @q: the ingress queue to process
1810 * @budget: how many responses can be processed in this round
1811 *
1812 * Process responses from an SGE response queue up to the supplied budget.
1813 * Responses include received packets as well as control messages from FW
1814 * or HW.
1815 *
1816 * Additionally choose the interrupt holdoff time for the next interrupt
1817 * on this queue. If the system is under memory shortage use a fairly
1818 * long delay to help recovery.
1819 */
1820static int process_responses(struct sge_rspq *q, int budget)
1821{
1822 int ret, rsp_type;
1823 int budget_left = budget;
1824 const struct rsp_ctrl *rc;
1825 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
52367a76
VP
1826 struct adapter *adapter = q->adap;
1827 struct sge *s = &adapter->sge;
fd3a4790
DM
1828
1829 while (likely(budget_left)) {
1830 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
1831 if (!is_new_response(rc, q))
1832 break;
1833
1834 rmb();
1835 rsp_type = RSPD_TYPE(rc->type_gen);
1836 if (likely(rsp_type == RSP_TYPE_FLBUF)) {
e91b0f24 1837 struct page_frag *fp;
fd3a4790
DM
1838 struct pkt_gl si;
1839 const struct rx_sw_desc *rsd;
1840 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
1841
1842 if (len & RSPD_NEWBUF) {
1843 if (likely(q->offset > 0)) {
1844 free_rx_bufs(q->adap, &rxq->fl, 1);
1845 q->offset = 0;
1846 }
1704d748 1847 len = RSPD_LEN(len);
fd3a4790
DM
1848 }
1849 si.tot_len = len;
1850
1851 /* gather packet fragments */
1852 for (frags = 0, fp = si.frags; ; frags++, fp++) {
1853 rsd = &rxq->fl.sdesc[rxq->fl.cidx];
52367a76 1854 bufsz = get_buf_size(adapter, rsd);
fd3a4790 1855 fp->page = rsd->page;
e91b0f24
IC
1856 fp->offset = q->offset;
1857 fp->size = min(bufsz, len);
1858 len -= fp->size;
fd3a4790
DM
1859 if (!len)
1860 break;
1861 unmap_rx_buf(q->adap, &rxq->fl);
1862 }
1863
1864 /*
1865 * Last buffer remains mapped so explicitly make it
1866 * coherent for CPU access.
1867 */
1868 dma_sync_single_for_cpu(q->adap->pdev_dev,
1869 get_buf_addr(rsd),
e91b0f24 1870 fp->size, DMA_FROM_DEVICE);
fd3a4790
DM
1871
1872 si.va = page_address(si.frags[0].page) +
e91b0f24 1873 si.frags[0].offset;
fd3a4790
DM
1874 prefetch(si.va);
1875
1876 si.nfrags = frags + 1;
1877 ret = q->handler(q, q->cur_desc, &si);
1878 if (likely(ret == 0))
52367a76 1879 q->offset += ALIGN(fp->size, s->fl_align);
fd3a4790
DM
1880 else
1881 restore_rx_bufs(&si, &rxq->fl, frags);
1882 } else if (likely(rsp_type == RSP_TYPE_CPL)) {
1883 ret = q->handler(q, q->cur_desc, NULL);
1884 } else {
1885 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
1886 }
1887
1888 if (unlikely(ret)) {
1889 /* couldn't process descriptor, back off for recovery */
1890 q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX);
1891 break;
1892 }
1893
1894 rspq_next(q);
1895 budget_left--;
1896 }
1897
1898 if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16)
1899 __refill_fl(q->adap, &rxq->fl);
1900 return budget - budget_left;
1901}
1902
1903/**
1904 * napi_rx_handler - the NAPI handler for Rx processing
1905 * @napi: the napi instance
1906 * @budget: how many packets we can process in this round
1907 *
1908 * Handler for new data events when using NAPI. This does not need any
1909 * locking or protection from interrupts as data interrupts are off at
1910 * this point and other adapter interrupts do not interfere (the latter
1911 * in not a concern at all with MSI-X as non-data interrupts then have
1912 * a separate handler).
1913 */
1914static int napi_rx_handler(struct napi_struct *napi, int budget)
1915{
1916 unsigned int params;
1917 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
1918 int work_done = process_responses(q, budget);
1919
1920 if (likely(work_done < budget)) {
1921 napi_complete(napi);
1922 params = q->next_intr_params;
1923 q->next_intr_params = q->intr_params;
1924 } else
1925 params = QINTR_TIMER_IDX(7);
1926
1927 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS), CIDXINC(work_done) |
1928 INGRESSQID((u32)q->cntxt_id) | SEINTARM(params));
1929 return work_done;
1930}
1931
1932/*
1933 * The MSI-X interrupt handler for an SGE response queue.
1934 */
1935irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
1936{
1937 struct sge_rspq *q = cookie;
1938
1939 napi_schedule(&q->napi);
1940 return IRQ_HANDLED;
1941}
1942
1943/*
1944 * Process the indirect interrupt entries in the interrupt queue and kick off
1945 * NAPI for each queue that has generated an entry.
1946 */
1947static unsigned int process_intrq(struct adapter *adap)
1948{
1949 unsigned int credits;
1950 const struct rsp_ctrl *rc;
1951 struct sge_rspq *q = &adap->sge.intrq;
1952
1953 spin_lock(&adap->sge.intrq_lock);
1954 for (credits = 0; ; credits++) {
1955 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
1956 if (!is_new_response(rc, q))
1957 break;
1958
1959 rmb();
1960 if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) {
1961 unsigned int qid = ntohl(rc->pldbuflen_qid);
1962
e46dab4d 1963 qid -= adap->sge.ingr_start;
fd3a4790
DM
1964 napi_schedule(&adap->sge.ingr_map[qid]->napi);
1965 }
1966
1967 rspq_next(q);
1968 }
1969
1970 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS), CIDXINC(credits) |
1971 INGRESSQID(q->cntxt_id) | SEINTARM(q->intr_params));
1972 spin_unlock(&adap->sge.intrq_lock);
1973 return credits;
1974}
1975
1976/*
1977 * The MSI interrupt handler, which handles data events from SGE response queues
1978 * as well as error and other async events as they all use the same MSI vector.
1979 */
1980static irqreturn_t t4_intr_msi(int irq, void *cookie)
1981{
1982 struct adapter *adap = cookie;
1983
1984 t4_slow_intr_handler(adap);
1985 process_intrq(adap);
1986 return IRQ_HANDLED;
1987}
1988
1989/*
1990 * Interrupt handler for legacy INTx interrupts.
1991 * Handles data events from SGE response queues as well as error and other
1992 * async events as they all use the same interrupt line.
1993 */
1994static irqreturn_t t4_intr_intx(int irq, void *cookie)
1995{
1996 struct adapter *adap = cookie;
1997
1998 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI), 0);
1999 if (t4_slow_intr_handler(adap) | process_intrq(adap))
2000 return IRQ_HANDLED;
2001 return IRQ_NONE; /* probably shared interrupt */
2002}
2003
2004/**
2005 * t4_intr_handler - select the top-level interrupt handler
2006 * @adap: the adapter
2007 *
2008 * Selects the top-level interrupt handler based on the type of interrupts
2009 * (MSI-X, MSI, or INTx).
2010 */
2011irq_handler_t t4_intr_handler(struct adapter *adap)
2012{
2013 if (adap->flags & USING_MSIX)
2014 return t4_sge_intr_msix;
2015 if (adap->flags & USING_MSI)
2016 return t4_intr_msi;
2017 return t4_intr_intx;
2018}
2019
2020static void sge_rx_timer_cb(unsigned long data)
2021{
2022 unsigned long m;
0f4d201f 2023 unsigned int i, idma_same_state_cnt[2];
fd3a4790
DM
2024 struct adapter *adap = (struct adapter *)data;
2025 struct sge *s = &adap->sge;
2026
2027 for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++)
2028 for (m = s->starving_fl[i]; m; m &= m - 1) {
2029 struct sge_eth_rxq *rxq;
2030 unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2031 struct sge_fl *fl = s->egr_map[id];
2032
2033 clear_bit(id, s->starving_fl);
4e857c58 2034 smp_mb__after_atomic();
fd3a4790
DM
2035
2036 if (fl_starving(fl)) {
2037 rxq = container_of(fl, struct sge_eth_rxq, fl);
2038 if (napi_reschedule(&rxq->rspq.napi))
2039 fl->starving++;
2040 else
2041 set_bit(id, s->starving_fl);
2042 }
2043 }
2044
2045 t4_write_reg(adap, SGE_DEBUG_INDEX, 13);
0f4d201f
KS
2046 idma_same_state_cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH);
2047 idma_same_state_cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
2048
2049 for (i = 0; i < 2; i++) {
2050 u32 debug0, debug11;
2051
2052 /* If the Ingress DMA Same State Counter ("timer") is less
2053 * than 1s, then we can reset our synthesized Stall Timer and
2054 * continue. If we have previously emitted warnings about a
2055 * potential stalled Ingress Queue, issue a note indicating
2056 * that the Ingress Queue has resumed forward progress.
2057 */
2058 if (idma_same_state_cnt[i] < s->idma_1s_thresh) {
2059 if (s->idma_stalled[i] >= SGE_IDMA_WARN_THRESH)
2060 CH_WARN(adap, "SGE idma%d, queue%u,resumed after %d sec\n",
2061 i, s->idma_qid[i],
2062 s->idma_stalled[i]/HZ);
2063 s->idma_stalled[i] = 0;
2064 continue;
2065 }
2066
2067 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
2068 * domain. The first time we get here it'll be because we
2069 * passed the 1s Threshold; each additional time it'll be
2070 * because the RX Timer Callback is being fired on its regular
2071 * schedule.
2072 *
2073 * If the stall is below our Potential Hung Ingress Queue
2074 * Warning Threshold, continue.
2075 */
2076 if (s->idma_stalled[i] == 0)
2077 s->idma_stalled[i] = HZ;
2078 else
2079 s->idma_stalled[i] += RX_QCHECK_PERIOD;
2080
2081 if (s->idma_stalled[i] < SGE_IDMA_WARN_THRESH)
2082 continue;
2083
2084 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT Hz */
2085 if (((s->idma_stalled[i] - HZ) % SGE_IDMA_WARN_REPEAT) != 0)
2086 continue;
2087
2088 /* Read and save the SGE IDMA State and Queue ID information.
2089 * We do this every time in case it changes across time ...
2090 */
2091 t4_write_reg(adap, SGE_DEBUG_INDEX, 0);
2092 debug0 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
2093 s->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
2094
2095 t4_write_reg(adap, SGE_DEBUG_INDEX, 11);
2096 debug11 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
2097 s->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
2098
2099 CH_WARN(adap, "SGE idma%u, queue%u, maybe stuck state%u %dsecs (debug0=%#x, debug11=%#x)\n",
2100 i, s->idma_qid[i], s->idma_state[i],
2101 s->idma_stalled[i]/HZ, debug0, debug11);
2102 t4_sge_decode_idma_state(adap, s->idma_state[i]);
2103 }
fd3a4790
DM
2104
2105 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2106}
2107
2108static void sge_tx_timer_cb(unsigned long data)
2109{
2110 unsigned long m;
2111 unsigned int i, budget;
2112 struct adapter *adap = (struct adapter *)data;
2113 struct sge *s = &adap->sge;
2114
2115 for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++)
2116 for (m = s->txq_maperr[i]; m; m &= m - 1) {
2117 unsigned long id = __ffs(m) + i * BITS_PER_LONG;
2118 struct sge_ofld_txq *txq = s->egr_map[id];
2119
2120 clear_bit(id, s->txq_maperr);
2121 tasklet_schedule(&txq->qresume_tsk);
2122 }
2123
2124 budget = MAX_TIMER_TX_RECLAIM;
2125 i = s->ethtxq_rover;
2126 do {
2127 struct sge_eth_txq *q = &s->ethtxq[i];
2128
2129 if (q->q.in_use &&
2130 time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
2131 __netif_tx_trylock(q->txq)) {
2132 int avail = reclaimable(&q->q);
2133
2134 if (avail) {
2135 if (avail > budget)
2136 avail = budget;
2137
2138 free_tx_desc(adap, &q->q, avail, true);
2139 q->q.in_use -= avail;
2140 budget -= avail;
2141 }
2142 __netif_tx_unlock(q->txq);
2143 }
2144
2145 if (++i >= s->ethqsets)
2146 i = 0;
2147 } while (budget && i != s->ethtxq_rover);
2148 s->ethtxq_rover = i;
2149 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2150}
2151
2152int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
2153 struct net_device *dev, int intr_idx,
2154 struct sge_fl *fl, rspq_handler_t hnd)
2155{
2156 int ret, flsz = 0;
2157 struct fw_iq_cmd c;
52367a76 2158 struct sge *s = &adap->sge;
fd3a4790
DM
2159 struct port_info *pi = netdev_priv(dev);
2160
2161 /* Size needs to be multiple of 16, including status entry. */
2162 iq->size = roundup(iq->size, 16);
2163
2164 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
ad6bad3e 2165 &iq->phys_addr, NULL, 0, NUMA_NO_NODE);
fd3a4790
DM
2166 if (!iq->desc)
2167 return -ENOMEM;
2168
2169 memset(&c, 0, sizeof(c));
2170 c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
2171 FW_CMD_WRITE | FW_CMD_EXEC |
060e0c75 2172 FW_IQ_CMD_PFN(adap->fn) | FW_IQ_CMD_VFN(0));
fd3a4790
DM
2173 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC | FW_IQ_CMD_IQSTART(1) |
2174 FW_LEN16(c));
2175 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2176 FW_IQ_CMD_IQASYNCH(fwevtq) | FW_IQ_CMD_VIID(pi->viid) |
2177 FW_IQ_CMD_IQANDST(intr_idx < 0) | FW_IQ_CMD_IQANUD(1) |
2178 FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx :
2179 -intr_idx - 1));
2180 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2181 FW_IQ_CMD_IQGTSMODE |
2182 FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) |
2183 FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4));
2184 c.iqsize = htons(iq->size);
2185 c.iqaddr = cpu_to_be64(iq->phys_addr);
2186
2187 if (fl) {
2188 fl->size = roundup(fl->size, 8);
2189 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
2190 sizeof(struct rx_sw_desc), &fl->addr,
52367a76 2191 &fl->sdesc, s->stat_len, NUMA_NO_NODE);
fd3a4790
DM
2192 if (!fl->desc)
2193 goto fl_nomem;
2194
52367a76 2195 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
ce91a923 2196 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN(1) |
ef306b50
DM
2197 FW_IQ_CMD_FL0FETCHRO(1) |
2198 FW_IQ_CMD_FL0DATARO(1) |
ce91a923 2199 FW_IQ_CMD_FL0PADEN(1));
fd3a4790
DM
2200 c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN(2) |
2201 FW_IQ_CMD_FL0FBMAX(3));
2202 c.fl0size = htons(flsz);
2203 c.fl0addr = cpu_to_be64(fl->addr);
2204 }
2205
060e0c75 2206 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
fd3a4790
DM
2207 if (ret)
2208 goto err;
2209
2210 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
2211 iq->cur_desc = iq->desc;
2212 iq->cidx = 0;
2213 iq->gen = 1;
2214 iq->next_intr_params = iq->intr_params;
2215 iq->cntxt_id = ntohs(c.iqid);
2216 iq->abs_id = ntohs(c.physiqid);
2217 iq->size--; /* subtract status entry */
2218 iq->adap = adap;
2219 iq->netdev = dev;
2220 iq->handler = hnd;
2221
2222 /* set offset to -1 to distinguish ingress queues without FL */
2223 iq->offset = fl ? 0 : -1;
2224
e46dab4d 2225 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
fd3a4790
DM
2226
2227 if (fl) {
62718b32 2228 fl->cntxt_id = ntohs(c.fl0id);
fd3a4790
DM
2229 fl->avail = fl->pend_cred = 0;
2230 fl->pidx = fl->cidx = 0;
2231 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
e46dab4d 2232 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
fd3a4790
DM
2233 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
2234 }
2235 return 0;
2236
2237fl_nomem:
2238 ret = -ENOMEM;
2239err:
2240 if (iq->desc) {
2241 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
2242 iq->desc, iq->phys_addr);
2243 iq->desc = NULL;
2244 }
2245 if (fl && fl->desc) {
2246 kfree(fl->sdesc);
2247 fl->sdesc = NULL;
2248 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
2249 fl->desc, fl->addr);
2250 fl->desc = NULL;
2251 }
2252 return ret;
2253}
2254
2255static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
2256{
22adfe0a 2257 q->cntxt_id = id;
d14807dd 2258 if (!is_t4(adap->params.chip)) {
22adfe0a
SR
2259 unsigned int s_qpp;
2260 unsigned short udb_density;
2261 unsigned long qpshift;
2262 int page;
2263
2264 s_qpp = QUEUESPERPAGEPF1 * adap->fn;
2265 udb_density = 1 << QUEUESPERPAGEPF0_GET((t4_read_reg(adap,
2266 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp));
2267 qpshift = PAGE_SHIFT - ilog2(udb_density);
2268 q->udb = q->cntxt_id << qpshift;
2269 q->udb &= PAGE_MASK;
2270 page = q->udb / PAGE_SIZE;
2271 q->udb += (q->cntxt_id - (page * udb_density)) * 128;
2272 }
2273
fd3a4790
DM
2274 q->in_use = 0;
2275 q->cidx = q->pidx = 0;
2276 q->stops = q->restarts = 0;
2277 q->stat = (void *)&q->desc[q->size];
3069ee9b 2278 spin_lock_init(&q->db_lock);
e46dab4d 2279 adap->sge.egr_map[id - adap->sge.egr_start] = q;
fd3a4790
DM
2280}
2281
2282int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
2283 struct net_device *dev, struct netdev_queue *netdevq,
2284 unsigned int iqid)
2285{
2286 int ret, nentries;
2287 struct fw_eq_eth_cmd c;
52367a76 2288 struct sge *s = &adap->sge;
fd3a4790
DM
2289 struct port_info *pi = netdev_priv(dev);
2290
2291 /* Add status entries */
52367a76 2292 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
fd3a4790
DM
2293
2294 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2295 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
52367a76 2296 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
ad6bad3e 2297 netdev_queue_numa_node_read(netdevq));
fd3a4790
DM
2298 if (!txq->q.desc)
2299 return -ENOMEM;
2300
2301 memset(&c, 0, sizeof(c));
2302 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
2303 FW_CMD_WRITE | FW_CMD_EXEC |
060e0c75 2304 FW_EQ_ETH_CMD_PFN(adap->fn) | FW_EQ_ETH_CMD_VFN(0));
fd3a4790
DM
2305 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC |
2306 FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
2307 c.viid_pkd = htonl(FW_EQ_ETH_CMD_VIID(pi->viid));
2308 c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE(2) |
2309 FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) |
ef306b50 2310 FW_EQ_ETH_CMD_FETCHRO(1) |
fd3a4790
DM
2311 FW_EQ_ETH_CMD_IQID(iqid));
2312 c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN(2) |
2313 FW_EQ_ETH_CMD_FBMAX(3) |
2314 FW_EQ_ETH_CMD_CIDXFTHRESH(5) |
2315 FW_EQ_ETH_CMD_EQSIZE(nentries));
2316 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2317
060e0c75 2318 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
fd3a4790
DM
2319 if (ret) {
2320 kfree(txq->q.sdesc);
2321 txq->q.sdesc = NULL;
2322 dma_free_coherent(adap->pdev_dev,
2323 nentries * sizeof(struct tx_desc),
2324 txq->q.desc, txq->q.phys_addr);
2325 txq->q.desc = NULL;
2326 return ret;
2327 }
2328
2329 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_GET(ntohl(c.eqid_pkd)));
2330 txq->txq = netdevq;
2331 txq->tso = txq->tx_cso = txq->vlan_ins = 0;
2332 txq->mapping_err = 0;
2333 return 0;
2334}
2335
2336int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
2337 struct net_device *dev, unsigned int iqid,
2338 unsigned int cmplqid)
2339{
2340 int ret, nentries;
2341 struct fw_eq_ctrl_cmd c;
52367a76 2342 struct sge *s = &adap->sge;
fd3a4790
DM
2343 struct port_info *pi = netdev_priv(dev);
2344
2345 /* Add status entries */
52367a76 2346 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
fd3a4790
DM
2347
2348 txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
2349 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
ad6bad3e 2350 NULL, 0, NUMA_NO_NODE);
fd3a4790
DM
2351 if (!txq->q.desc)
2352 return -ENOMEM;
2353
2354 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
2355 FW_CMD_WRITE | FW_CMD_EXEC |
060e0c75
DM
2356 FW_EQ_CTRL_CMD_PFN(adap->fn) |
2357 FW_EQ_CTRL_CMD_VFN(0));
fd3a4790
DM
2358 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC |
2359 FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
2360 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID(cmplqid));
2361 c.physeqid_pkd = htonl(0);
2362 c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE(2) |
2363 FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) |
ef306b50 2364 FW_EQ_CTRL_CMD_FETCHRO |
fd3a4790
DM
2365 FW_EQ_CTRL_CMD_IQID(iqid));
2366 c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN(2) |
2367 FW_EQ_CTRL_CMD_FBMAX(3) |
2368 FW_EQ_CTRL_CMD_CIDXFTHRESH(5) |
2369 FW_EQ_CTRL_CMD_EQSIZE(nentries));
2370 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2371
060e0c75 2372 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
fd3a4790
DM
2373 if (ret) {
2374 dma_free_coherent(adap->pdev_dev,
2375 nentries * sizeof(struct tx_desc),
2376 txq->q.desc, txq->q.phys_addr);
2377 txq->q.desc = NULL;
2378 return ret;
2379 }
2380
2381 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_GET(ntohl(c.cmpliqid_eqid)));
2382 txq->adap = adap;
2383 skb_queue_head_init(&txq->sendq);
2384 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
2385 txq->full = 0;
2386 return 0;
2387}
2388
2389int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
2390 struct net_device *dev, unsigned int iqid)
2391{
2392 int ret, nentries;
2393 struct fw_eq_ofld_cmd c;
52367a76 2394 struct sge *s = &adap->sge;
fd3a4790
DM
2395 struct port_info *pi = netdev_priv(dev);
2396
2397 /* Add status entries */
52367a76 2398 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
fd3a4790
DM
2399
2400 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2401 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
52367a76 2402 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
ad6bad3e 2403 NUMA_NO_NODE);
fd3a4790
DM
2404 if (!txq->q.desc)
2405 return -ENOMEM;
2406
2407 memset(&c, 0, sizeof(c));
2408 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
2409 FW_CMD_WRITE | FW_CMD_EXEC |
060e0c75
DM
2410 FW_EQ_OFLD_CMD_PFN(adap->fn) |
2411 FW_EQ_OFLD_CMD_VFN(0));
fd3a4790
DM
2412 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC |
2413 FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2414 c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE(2) |
2415 FW_EQ_OFLD_CMD_PCIECHN(pi->tx_chan) |
ef306b50 2416 FW_EQ_OFLD_CMD_FETCHRO(1) |
fd3a4790
DM
2417 FW_EQ_OFLD_CMD_IQID(iqid));
2418 c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN(2) |
2419 FW_EQ_OFLD_CMD_FBMAX(3) |
2420 FW_EQ_OFLD_CMD_CIDXFTHRESH(5) |
2421 FW_EQ_OFLD_CMD_EQSIZE(nentries));
2422 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2423
060e0c75 2424 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
fd3a4790
DM
2425 if (ret) {
2426 kfree(txq->q.sdesc);
2427 txq->q.sdesc = NULL;
2428 dma_free_coherent(adap->pdev_dev,
2429 nentries * sizeof(struct tx_desc),
2430 txq->q.desc, txq->q.phys_addr);
2431 txq->q.desc = NULL;
2432 return ret;
2433 }
2434
2435 init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_GET(ntohl(c.eqid_pkd)));
2436 txq->adap = adap;
2437 skb_queue_head_init(&txq->sendq);
2438 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
2439 txq->full = 0;
2440 txq->mapping_err = 0;
2441 return 0;
2442}
2443
2444static void free_txq(struct adapter *adap, struct sge_txq *q)
2445{
52367a76
VP
2446 struct sge *s = &adap->sge;
2447
fd3a4790 2448 dma_free_coherent(adap->pdev_dev,
52367a76 2449 q->size * sizeof(struct tx_desc) + s->stat_len,
fd3a4790
DM
2450 q->desc, q->phys_addr);
2451 q->cntxt_id = 0;
2452 q->sdesc = NULL;
2453 q->desc = NULL;
2454}
2455
2456static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
2457 struct sge_fl *fl)
2458{
52367a76 2459 struct sge *s = &adap->sge;
fd3a4790
DM
2460 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
2461
e46dab4d 2462 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
060e0c75
DM
2463 t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP,
2464 rq->cntxt_id, fl_id, 0xffff);
fd3a4790
DM
2465 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
2466 rq->desc, rq->phys_addr);
2467 netif_napi_del(&rq->napi);
2468 rq->netdev = NULL;
2469 rq->cntxt_id = rq->abs_id = 0;
2470 rq->desc = NULL;
2471
2472 if (fl) {
2473 free_rx_bufs(adap, fl, fl->avail);
52367a76 2474 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
fd3a4790
DM
2475 fl->desc, fl->addr);
2476 kfree(fl->sdesc);
2477 fl->sdesc = NULL;
2478 fl->cntxt_id = 0;
2479 fl->desc = NULL;
2480 }
2481}
2482
2483/**
2484 * t4_free_sge_resources - free SGE resources
2485 * @adap: the adapter
2486 *
2487 * Frees resources used by the SGE queue sets.
2488 */
2489void t4_free_sge_resources(struct adapter *adap)
2490{
2491 int i;
2492 struct sge_eth_rxq *eq = adap->sge.ethrxq;
2493 struct sge_eth_txq *etq = adap->sge.ethtxq;
2494 struct sge_ofld_rxq *oq = adap->sge.ofldrxq;
2495
2496 /* clean up Ethernet Tx/Rx queues */
2497 for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) {
2498 if (eq->rspq.desc)
2499 free_rspq_fl(adap, &eq->rspq, &eq->fl);
2500 if (etq->q.desc) {
060e0c75
DM
2501 t4_eth_eq_free(adap, adap->fn, adap->fn, 0,
2502 etq->q.cntxt_id);
fd3a4790
DM
2503 free_tx_desc(adap, &etq->q, etq->q.in_use, true);
2504 kfree(etq->q.sdesc);
2505 free_txq(adap, &etq->q);
2506 }
2507 }
2508
2509 /* clean up RDMA and iSCSI Rx queues */
2510 for (i = 0; i < adap->sge.ofldqsets; i++, oq++) {
2511 if (oq->rspq.desc)
2512 free_rspq_fl(adap, &oq->rspq, &oq->fl);
2513 }
2514 for (i = 0, oq = adap->sge.rdmarxq; i < adap->sge.rdmaqs; i++, oq++) {
2515 if (oq->rspq.desc)
2516 free_rspq_fl(adap, &oq->rspq, &oq->fl);
2517 }
2518
2519 /* clean up offload Tx queues */
2520 for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
2521 struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
2522
2523 if (q->q.desc) {
2524 tasklet_kill(&q->qresume_tsk);
060e0c75
DM
2525 t4_ofld_eq_free(adap, adap->fn, adap->fn, 0,
2526 q->q.cntxt_id);
fd3a4790
DM
2527 free_tx_desc(adap, &q->q, q->q.in_use, false);
2528 kfree(q->q.sdesc);
2529 __skb_queue_purge(&q->sendq);
2530 free_txq(adap, &q->q);
2531 }
2532 }
2533
2534 /* clean up control Tx queues */
2535 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
2536 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
2537
2538 if (cq->q.desc) {
2539 tasklet_kill(&cq->qresume_tsk);
060e0c75
DM
2540 t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0,
2541 cq->q.cntxt_id);
fd3a4790
DM
2542 __skb_queue_purge(&cq->sendq);
2543 free_txq(adap, &cq->q);
2544 }
2545 }
2546
2547 if (adap->sge.fw_evtq.desc)
2548 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
2549
2550 if (adap->sge.intrq.desc)
2551 free_rspq_fl(adap, &adap->sge.intrq, NULL);
2552
2553 /* clear the reverse egress queue map */
2554 memset(adap->sge.egr_map, 0, sizeof(adap->sge.egr_map));
2555}
2556
2557void t4_sge_start(struct adapter *adap)
2558{
2559 adap->sge.ethtxq_rover = 0;
2560 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2561 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2562}
2563
2564/**
2565 * t4_sge_stop - disable SGE operation
2566 * @adap: the adapter
2567 *
2568 * Stop tasklets and timers associated with the DMA engine. Note that
2569 * this is effective only if measures have been taken to disable any HW
2570 * events that may restart them.
2571 */
2572void t4_sge_stop(struct adapter *adap)
2573{
2574 int i;
2575 struct sge *s = &adap->sge;
2576
2577 if (in_interrupt()) /* actions below require waiting */
2578 return;
2579
2580 if (s->rx_timer.function)
2581 del_timer_sync(&s->rx_timer);
2582 if (s->tx_timer.function)
2583 del_timer_sync(&s->tx_timer);
2584
2585 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
2586 struct sge_ofld_txq *q = &s->ofldtxq[i];
2587
2588 if (q->q.desc)
2589 tasklet_kill(&q->qresume_tsk);
2590 }
2591 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
2592 struct sge_ctrl_txq *cq = &s->ctrlq[i];
2593
2594 if (cq->q.desc)
2595 tasklet_kill(&cq->qresume_tsk);
2596 }
2597}
2598
2599/**
2600 * t4_sge_init - initialize SGE
2601 * @adap: the adapter
2602 *
2603 * Performs SGE initialization needed every time after a chip reset.
2604 * We do not initialize any of the queues here, instead the driver
2605 * top-level must request them individually.
52367a76
VP
2606 *
2607 * Called in two different modes:
2608 *
2609 * 1. Perform actual hardware initialization and record hard-coded
2610 * parameters which were used. This gets used when we're the
2611 * Master PF and the Firmware Configuration File support didn't
2612 * work for some reason.
2613 *
2614 * 2. We're not the Master PF or initialization was performed with
2615 * a Firmware Configuration File. In this case we need to grab
2616 * any of the SGE operating parameters that we need to have in
2617 * order to do our job and make sure we can live with them ...
fd3a4790 2618 */
52367a76
VP
2619
2620static int t4_sge_init_soft(struct adapter *adap)
fd3a4790
DM
2621{
2622 struct sge *s = &adap->sge;
52367a76
VP
2623 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
2624 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
2625 u32 ingress_rx_threshold;
fd3a4790 2626
52367a76
VP
2627 /*
2628 * Verify that CPL messages are going to the Ingress Queue for
2629 * process_responses() and that only packet data is going to the
2630 * Free Lists.
2631 */
2632 if ((t4_read_reg(adap, SGE_CONTROL) & RXPKTCPLMODE_MASK) !=
2633 RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) {
2634 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
2635 return -EINVAL;
2636 }
2637
2638 /*
2639 * Validate the Host Buffer Register Array indices that we want to
2640 * use ...
2641 *
2642 * XXX Note that we should really read through the Host Buffer Size
2643 * XXX register array and find the indices of the Buffer Sizes which
2644 * XXX meet our needs!
2645 */
2646 #define READ_FL_BUF(x) \
2647 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0+(x)*sizeof(u32))
2648
2649 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
2650 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
2651 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
2652 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
2653
92ddcc7b
KS
2654 /* We only bother using the Large Page logic if the Large Page Buffer
2655 * is larger than our Page Size Buffer.
2656 */
2657 if (fl_large_pg <= fl_small_pg)
2658 fl_large_pg = 0;
2659
52367a76
VP
2660 #undef READ_FL_BUF
2661
92ddcc7b
KS
2662 /* The Page Size Buffer must be exactly equal to our Page Size and the
2663 * Large Page Size Buffer should be 0 (per above) or a power of 2.
2664 */
52367a76 2665 if (fl_small_pg != PAGE_SIZE ||
92ddcc7b 2666 (fl_large_pg & (fl_large_pg-1)) != 0) {
52367a76
VP
2667 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
2668 fl_small_pg, fl_large_pg);
2669 return -EINVAL;
2670 }
2671 if (fl_large_pg)
2672 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2673
2674 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
2675 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
2676 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
2677 fl_small_mtu, fl_large_mtu);
2678 return -EINVAL;
2679 }
2680
2681 /*
2682 * Retrieve our RX interrupt holdoff timer values and counter
2683 * threshold values from the SGE parameters.
2684 */
2685 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1);
2686 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3);
2687 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5);
2688 s->timer_val[0] = core_ticks_to_us(adap,
2689 TIMERVALUE0_GET(timer_value_0_and_1));
2690 s->timer_val[1] = core_ticks_to_us(adap,
2691 TIMERVALUE1_GET(timer_value_0_and_1));
2692 s->timer_val[2] = core_ticks_to_us(adap,
2693 TIMERVALUE2_GET(timer_value_2_and_3));
2694 s->timer_val[3] = core_ticks_to_us(adap,
2695 TIMERVALUE3_GET(timer_value_2_and_3));
2696 s->timer_val[4] = core_ticks_to_us(adap,
2697 TIMERVALUE4_GET(timer_value_4_and_5));
2698 s->timer_val[5] = core_ticks_to_us(adap,
2699 TIMERVALUE5_GET(timer_value_4_and_5));
2700
2701 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD);
2702 s->counter_val[0] = THRESHOLD_0_GET(ingress_rx_threshold);
2703 s->counter_val[1] = THRESHOLD_1_GET(ingress_rx_threshold);
2704 s->counter_val[2] = THRESHOLD_2_GET(ingress_rx_threshold);
2705 s->counter_val[3] = THRESHOLD_3_GET(ingress_rx_threshold);
2706
2707 return 0;
2708}
2709
2710static int t4_sge_init_hard(struct adapter *adap)
2711{
2712 struct sge *s = &adap->sge;
2713
2714 /*
2715 * Set up our basic SGE mode to deliver CPL messages to our Ingress
2716 * Queue and Packet Date to the Free List.
2717 */
2718 t4_set_reg_field(adap, SGE_CONTROL, RXPKTCPLMODE_MASK,
2719 RXPKTCPLMODE_MASK);
060e0c75 2720
3069ee9b
VP
2721 /*
2722 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
2723 * and generate an interrupt when this occurs so we can recover.
2724 */
d14807dd 2725 if (is_t4(adap->params.chip)) {
0a57a536
SR
2726 t4_set_reg_field(adap, A_SGE_DBFIFO_STATUS,
2727 V_HP_INT_THRESH(M_HP_INT_THRESH) |
2728 V_LP_INT_THRESH(M_LP_INT_THRESH),
2729 V_HP_INT_THRESH(dbfifo_int_thresh) |
2730 V_LP_INT_THRESH(dbfifo_int_thresh));
2731 } else {
2732 t4_set_reg_field(adap, A_SGE_DBFIFO_STATUS,
2733 V_LP_INT_THRESH_T5(M_LP_INT_THRESH_T5),
2734 V_LP_INT_THRESH_T5(dbfifo_int_thresh));
2735 t4_set_reg_field(adap, SGE_DBFIFO_STATUS2,
2736 V_HP_INT_THRESH_T5(M_HP_INT_THRESH_T5),
2737 V_HP_INT_THRESH_T5(dbfifo_int_thresh));
2738 }
881806bc
VP
2739 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_ENABLE_DROP,
2740 F_ENABLE_DROP);
2741
52367a76
VP
2742 /*
2743 * SGE_FL_BUFFER_SIZE0 (RX_SMALL_PG_BUF) is set up by
2744 * t4_fixup_host_params().
2745 */
2746 s->fl_pg_order = FL_PG_ORDER;
2747 if (s->fl_pg_order)
2748 t4_write_reg(adap,
2749 SGE_FL_BUFFER_SIZE0+RX_LARGE_PG_BUF*sizeof(u32),
2750 PAGE_SIZE << FL_PG_ORDER);
2751 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0+RX_SMALL_MTU_BUF*sizeof(u32),
2752 FL_MTU_SMALL_BUFSIZE(adap));
2753 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0+RX_LARGE_MTU_BUF*sizeof(u32),
2754 FL_MTU_LARGE_BUFSIZE(adap));
2755
2756 /*
2757 * Note that the SGE Ingress Packet Count Interrupt Threshold and
2758 * Timer Holdoff values must be supplied by our caller.
2759 */
fd3a4790
DM
2760 t4_write_reg(adap, SGE_INGRESS_RX_THRESHOLD,
2761 THRESHOLD_0(s->counter_val[0]) |
2762 THRESHOLD_1(s->counter_val[1]) |
2763 THRESHOLD_2(s->counter_val[2]) |
2764 THRESHOLD_3(s->counter_val[3]));
2765 t4_write_reg(adap, SGE_TIMER_VALUE_0_AND_1,
2766 TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[0])) |
2767 TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[1])));
2768 t4_write_reg(adap, SGE_TIMER_VALUE_2_AND_3,
52367a76
VP
2769 TIMERVALUE2(us_to_core_ticks(adap, s->timer_val[2])) |
2770 TIMERVALUE3(us_to_core_ticks(adap, s->timer_val[3])));
fd3a4790 2771 t4_write_reg(adap, SGE_TIMER_VALUE_4_AND_5,
52367a76
VP
2772 TIMERVALUE4(us_to_core_ticks(adap, s->timer_val[4])) |
2773 TIMERVALUE5(us_to_core_ticks(adap, s->timer_val[5])));
2774
2775 return 0;
2776}
2777
2778int t4_sge_init(struct adapter *adap)
2779{
2780 struct sge *s = &adap->sge;
c2b955e0
KS
2781 u32 sge_control, sge_conm_ctrl;
2782 int ret, egress_threshold;
52367a76
VP
2783
2784 /*
2785 * Ingress Padding Boundary and Egress Status Page Size are set up by
2786 * t4_fixup_host_params().
2787 */
2788 sge_control = t4_read_reg(adap, SGE_CONTROL);
2789 s->pktshift = PKTSHIFT_GET(sge_control);
2790 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_MASK) ? 128 : 64;
2791 s->fl_align = 1 << (INGPADBOUNDARY_GET(sge_control) +
2792 X_INGPADBOUNDARY_SHIFT);
2793
2794 if (adap->flags & USING_SOFT_PARAMS)
2795 ret = t4_sge_init_soft(adap);
2796 else
2797 ret = t4_sge_init_hard(adap);
2798 if (ret < 0)
2799 return ret;
2800
2801 /*
2802 * A FL with <= fl_starve_thres buffers is starving and a periodic
2803 * timer will attempt to refill it. This needs to be larger than the
2804 * SGE's Egress Congestion Threshold. If it isn't, then we can get
2805 * stuck waiting for new packets while the SGE is waiting for us to
2806 * give it more Free List entries. (Note that the SGE's Egress
c2b955e0
KS
2807 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
2808 * there was only a single field to control this. For T5 there's the
2809 * original field which now only applies to Unpacked Mode Free List
2810 * buffers and a new field which only applies to Packed Mode Free List
2811 * buffers.
52367a76 2812 */
c2b955e0
KS
2813 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL);
2814 if (is_t4(adap->params.chip))
2815 egress_threshold = EGRTHRESHOLD_GET(sge_conm_ctrl);
2816 else
2817 egress_threshold = EGRTHRESHOLDPACKING_GET(sge_conm_ctrl);
2818 s->fl_starve_thres = 2*egress_threshold + 1;
52367a76 2819
fd3a4790
DM
2820 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
2821 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
0f4d201f
KS
2822 s->idma_1s_thresh = core_ticks_per_usec(adap) * 1000000; /* 1 s */
2823 s->idma_stalled[0] = 0;
2824 s->idma_stalled[1] = 0;
fd3a4790 2825 spin_lock_init(&s->intrq_lock);
52367a76
VP
2826
2827 return 0;
fd3a4790 2828}
This page took 0.503993 seconds and 5 git commands to generate.