cxgb4: Update Congestion Channel map for T6 adapter
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
CommitLineData
56d36be4
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
ce100b8b 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
56d36be4
DM
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
56d36be4
DM
35#include <linux/delay.h>
36#include "cxgb4.h"
37#include "t4_regs.h"
f612b815 38#include "t4_values.h"
56d36be4 39#include "t4fw_api.h"
a69265e9 40#include "t4fw_version.h"
56d36be4
DM
41
42/**
43 * t4_wait_op_done_val - wait until an operation is completed
44 * @adapter: the adapter performing the operation
45 * @reg: the register to check for completion
46 * @mask: a single-bit field within @reg that indicates completion
47 * @polarity: the value of the field when the operation is completed
48 * @attempts: number of check iterations
49 * @delay: delay in usecs between iterations
50 * @valp: where to store the value of the register at completion time
51 *
52 * Wait until an operation is completed by checking a bit in a register
53 * up to @attempts times. If @valp is not NULL the value of the register
54 * at the time it indicated completion is stored there. Returns 0 if the
55 * operation completes and -EAGAIN otherwise.
56 */
de498c89
RD
57static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 int polarity, int attempts, int delay, u32 *valp)
56d36be4
DM
59{
60 while (1) {
61 u32 val = t4_read_reg(adapter, reg);
62
63 if (!!(val & mask) == polarity) {
64 if (valp)
65 *valp = val;
66 return 0;
67 }
68 if (--attempts == 0)
69 return -EAGAIN;
70 if (delay)
71 udelay(delay);
72 }
73}
74
75static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 int polarity, int attempts, int delay)
77{
78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 delay, NULL);
80}
81
82/**
83 * t4_set_reg_field - set a register field to a value
84 * @adapter: the adapter to program
85 * @addr: the register address
86 * @mask: specifies the portion of the register to modify
87 * @val: the new value for the register field
88 *
89 * Sets a register field specified by the supplied mask to the
90 * given value.
91 */
92void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 u32 val)
94{
95 u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97 t4_write_reg(adapter, addr, v | val);
98 (void) t4_read_reg(adapter, addr); /* flush */
99}
100
101/**
102 * t4_read_indirect - read indirectly addressed registers
103 * @adap: the adapter
104 * @addr_reg: register holding the indirect address
105 * @data_reg: register holding the value of the indirect register
106 * @vals: where the read register values are stored
107 * @nregs: how many indirect registers to read
108 * @start_idx: index of first indirect register to read
109 *
110 * Reads registers that are accessed indirectly through an address/data
111 * register pair.
112 */
f2b7e78d 113void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
de498c89
RD
114 unsigned int data_reg, u32 *vals,
115 unsigned int nregs, unsigned int start_idx)
56d36be4
DM
116{
117 while (nregs--) {
118 t4_write_reg(adap, addr_reg, start_idx);
119 *vals++ = t4_read_reg(adap, data_reg);
120 start_idx++;
121 }
122}
123
13ee15d3
VP
124/**
125 * t4_write_indirect - write indirectly addressed registers
126 * @adap: the adapter
127 * @addr_reg: register holding the indirect addresses
128 * @data_reg: register holding the value for the indirect registers
129 * @vals: values to write
130 * @nregs: how many indirect registers to write
131 * @start_idx: address of first indirect register to write
132 *
133 * Writes a sequential block of registers that are accessed indirectly
134 * through an address/data register pair.
135 */
136void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 unsigned int data_reg, const u32 *vals,
138 unsigned int nregs, unsigned int start_idx)
139{
140 while (nregs--) {
141 t4_write_reg(adap, addr_reg, start_idx++);
142 t4_write_reg(adap, data_reg, *vals++);
143 }
144}
145
0abfd152
HS
146/*
147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148 * mechanism. This guarantees that we get the real value even if we're
149 * operating within a Virtual Machine and the Hypervisor is trapping our
150 * Configuration Space accesses.
151 */
152void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153{
3ccc6cf7
HS
154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 req |= ENABLE_F;
158 else
159 req |= T6_ENABLE_F;
0abfd152
HS
160
161 if (is_t4(adap->params.chip))
f061de42 162 req |= LOCALCFG_F;
0abfd152 163
f061de42
HS
164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
0abfd152
HS
166
167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 * Configuration Space read. (None of the other fields matter when
169 * ENABLE is 0 so a simple register write is easier than a
170 * read-modify-write via t4_set_reg_field().)
171 */
f061de42 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
0abfd152
HS
173}
174
31d55c2d
HS
175/*
176 * t4_report_fw_error - report firmware error
177 * @adap: the adapter
178 *
179 * The adapter firmware can indicate error conditions to the host.
180 * If the firmware has indicated an error, print out the reason for
181 * the firmware error.
182 */
183static void t4_report_fw_error(struct adapter *adap)
184{
185 static const char *const reason[] = {
186 "Crash", /* PCIE_FW_EVAL_CRASH */
187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */
188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */
189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 "Reserved", /* reserved */
194 };
195 u32 pcie_fw;
196
f061de42
HS
197 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 if (pcie_fw & PCIE_FW_ERR_F)
31d55c2d 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
b2e1a3f0 200 reason[PCIE_FW_EVAL_G(pcie_fw)]);
31d55c2d
HS
201}
202
56d36be4
DM
203/*
204 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205 */
206static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207 u32 mbox_addr)
208{
209 for ( ; nflit; nflit--, mbox_addr += 8)
210 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211}
212
213/*
214 * Handle a FW assertion reported in a mailbox.
215 */
216static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217{
218 struct fw_debug_cmd asrt;
219
220 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221 dev_alert(adap->pdev_dev,
222 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
f404f80c
HS
223 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
56d36be4
DM
225}
226
227static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
228{
229 dev_err(adap->pdev_dev,
230 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
231 (unsigned long long)t4_read_reg64(adap, data_reg),
232 (unsigned long long)t4_read_reg64(adap, data_reg + 8),
233 (unsigned long long)t4_read_reg64(adap, data_reg + 16),
234 (unsigned long long)t4_read_reg64(adap, data_reg + 24),
235 (unsigned long long)t4_read_reg64(adap, data_reg + 32),
236 (unsigned long long)t4_read_reg64(adap, data_reg + 40),
237 (unsigned long long)t4_read_reg64(adap, data_reg + 48),
238 (unsigned long long)t4_read_reg64(adap, data_reg + 56));
239}
240
241/**
01b69614 242 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
56d36be4
DM
243 * @adap: the adapter
244 * @mbox: index of the mailbox to use
245 * @cmd: the command to write
246 * @size: command length in bytes
247 * @rpl: where to optionally store the reply
248 * @sleep_ok: if true we may sleep while awaiting command completion
01b69614 249 * @timeout: time to wait for command to finish before timing out
56d36be4
DM
250 *
251 * Sends the given command to FW through the selected mailbox and waits
252 * for the FW to execute the command. If @rpl is not %NULL it is used to
253 * store the FW's reply to the command. The command and its optional
254 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
255 * to respond. @sleep_ok determines whether we may sleep while awaiting
256 * the response. If sleeping is allowed we use progressive backoff
257 * otherwise we spin.
258 *
259 * The return value is 0 on success or a negative errno on failure. A
260 * failure can happen either because we are not able to execute the
261 * command or FW executes it but signals an error. In the latter case
262 * the return value is the error code indicated by FW (negated).
263 */
01b69614
HS
264int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
265 int size, void *rpl, bool sleep_ok, int timeout)
56d36be4 266{
005b5717 267 static const int delay[] = {
56d36be4
DM
268 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
269 };
270
271 u32 v;
272 u64 res;
273 int i, ms, delay_idx;
274 const __be64 *p = cmd;
89c3a86c
HS
275 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
276 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
56d36be4
DM
277
278 if ((size & 15) || size > MBOX_LEN)
279 return -EINVAL;
280
204dc3c0
DM
281 /*
282 * If the device is off-line, as in EEH, commands will time out.
283 * Fail them early so we don't waste time waiting.
284 */
285 if (adap->pdev->error_state != pci_channel_io_normal)
286 return -EIO;
287
89c3a86c 288 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
56d36be4 289 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
89c3a86c 290 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
56d36be4
DM
291
292 if (v != MBOX_OWNER_DRV)
293 return v ? -EBUSY : -ETIMEDOUT;
294
295 for (i = 0; i < size; i += 8)
296 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
297
89c3a86c 298 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
56d36be4
DM
299 t4_read_reg(adap, ctl_reg); /* flush write */
300
301 delay_idx = 0;
302 ms = delay[0];
303
01b69614 304 for (i = 0; i < timeout; i += ms) {
56d36be4
DM
305 if (sleep_ok) {
306 ms = delay[delay_idx]; /* last element may repeat */
307 if (delay_idx < ARRAY_SIZE(delay) - 1)
308 delay_idx++;
309 msleep(ms);
310 } else
311 mdelay(ms);
312
313 v = t4_read_reg(adap, ctl_reg);
89c3a86c
HS
314 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
315 if (!(v & MBMSGVALID_F)) {
56d36be4
DM
316 t4_write_reg(adap, ctl_reg, 0);
317 continue;
318 }
319
320 res = t4_read_reg64(adap, data_reg);
e2ac9628 321 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
56d36be4 322 fw_asrt(adap, data_reg);
e2ac9628
HS
323 res = FW_CMD_RETVAL_V(EIO);
324 } else if (rpl) {
56d36be4 325 get_mbox_rpl(adap, rpl, size / 8, data_reg);
e2ac9628 326 }
56d36be4 327
e2ac9628 328 if (FW_CMD_RETVAL_G((int)res))
56d36be4
DM
329 dump_mbox(adap, mbox, data_reg);
330 t4_write_reg(adap, ctl_reg, 0);
e2ac9628 331 return -FW_CMD_RETVAL_G((int)res);
56d36be4
DM
332 }
333 }
334
335 dump_mbox(adap, mbox, data_reg);
336 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
337 *(const u8 *)cmd, mbox);
31d55c2d 338 t4_report_fw_error(adap);
56d36be4
DM
339 return -ETIMEDOUT;
340}
341
01b69614
HS
342int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
343 void *rpl, bool sleep_ok)
56d36be4 344{
01b69614
HS
345 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
346 FW_CMD_MAX_TIMEOUT);
56d36be4
DM
347}
348
bf8ebb67
HS
349static int t4_edc_err_read(struct adapter *adap, int idx)
350{
351 u32 edc_ecc_err_addr_reg;
352 u32 rdata_reg;
353
354 if (is_t4(adap->params.chip)) {
355 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
356 return 0;
357 }
358 if (idx != 0 && idx != 1) {
359 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
360 return 0;
361 }
362
363 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
364 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
365
366 CH_WARN(adap,
367 "edc%d err addr 0x%x: 0x%x.\n",
368 idx, edc_ecc_err_addr_reg,
369 t4_read_reg(adap, edc_ecc_err_addr_reg));
370 CH_WARN(adap,
371 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
372 rdata_reg,
373 (unsigned long long)t4_read_reg64(adap, rdata_reg),
374 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
375 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
376 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
377 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
378 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
379 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
380 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
381 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
382
383 return 0;
384}
385
5afc8b84
VP
386/**
387 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
388 * @adap: the adapter
fc5ab020 389 * @win: PCI-E Memory Window to use
5afc8b84
VP
390 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
391 * @addr: address within indicated memory type
392 * @len: amount of memory to transfer
f01aa633 393 * @hbuf: host memory buffer
fc5ab020 394 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
5afc8b84
VP
395 *
396 * Reads/writes an [almost] arbitrary memory region in the firmware: the
fc5ab020
HS
397 * firmware memory address and host buffer must be aligned on 32-bit
398 * boudaries; the length may be arbitrary. The memory is transferred as
399 * a raw byte sequence from/to the firmware's memory. If this memory
400 * contains data structures which contain multi-byte integers, it's the
401 * caller's responsibility to perform appropriate byte order conversions.
5afc8b84 402 */
fc5ab020 403int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
f01aa633 404 u32 len, void *hbuf, int dir)
5afc8b84 405{
fc5ab020
HS
406 u32 pos, offset, resid, memoffset;
407 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
f01aa633 408 u32 *buf;
5afc8b84 409
fc5ab020 410 /* Argument sanity checks ...
5afc8b84 411 */
f01aa633 412 if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
5afc8b84 413 return -EINVAL;
f01aa633 414 buf = (u32 *)hbuf;
5afc8b84 415
fc5ab020
HS
416 /* It's convenient to be able to handle lengths which aren't a
417 * multiple of 32-bits because we often end up transferring files to
418 * the firmware. So we'll handle that by normalizing the length here
419 * and then handling any residual transfer at the end.
420 */
421 resid = len & 0x3;
422 len -= resid;
8c357ebd 423
19dd37ba 424 /* Offset into the region of memory which is being accessed
5afc8b84
VP
425 * MEM_EDC0 = 0
426 * MEM_EDC1 = 1
3ccc6cf7
HS
427 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller
428 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5)
5afc8b84 429 */
6559a7e8 430 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
19dd37ba
SR
431 if (mtype != MEM_MC1)
432 memoffset = (mtype * (edc_size * 1024 * 1024));
433 else {
6559a7e8 434 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
7f0b8a56 435 MA_EXT_MEMORY0_BAR_A));
19dd37ba
SR
436 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
437 }
5afc8b84
VP
438
439 /* Determine the PCIE_MEM_ACCESS_OFFSET */
440 addr = addr + memoffset;
441
fc5ab020
HS
442 /* Each PCI-E Memory Window is programmed with a window size -- or
443 * "aperture" -- which controls the granularity of its mapping onto
444 * adapter memory. We need to grab that aperture in order to know
445 * how to use the specified window. The window is also programmed
446 * with the base address of the Memory Window in BAR0's address
447 * space. For T4 this is an absolute PCI-E Bus Address. For T5
448 * the address is relative to BAR0.
5afc8b84 449 */
fc5ab020 450 mem_reg = t4_read_reg(adap,
f061de42 451 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
fc5ab020 452 win));
f061de42
HS
453 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
454 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
fc5ab020
HS
455 if (is_t4(adap->params.chip))
456 mem_base -= adap->t4_bar0;
b2612722 457 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
5afc8b84 458
fc5ab020
HS
459 /* Calculate our initial PCI-E Memory Window Position and Offset into
460 * that Window.
461 */
462 pos = addr & ~(mem_aperture-1);
463 offset = addr - pos;
5afc8b84 464
fc5ab020
HS
465 /* Set up initial PCI-E Memory Window to cover the start of our
466 * transfer. (Read it back to ensure that changes propagate before we
467 * attempt to use the new value.)
468 */
469 t4_write_reg(adap,
f061de42 470 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
fc5ab020
HS
471 pos | win_pf);
472 t4_read_reg(adap,
f061de42 473 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
fc5ab020
HS
474
475 /* Transfer data to/from the adapter as long as there's an integral
476 * number of 32-bit transfers to complete.
f01aa633
HS
477 *
478 * A note on Endianness issues:
479 *
480 * The "register" reads and writes below from/to the PCI-E Memory
481 * Window invoke the standard adapter Big-Endian to PCI-E Link
482 * Little-Endian "swizzel." As a result, if we have the following
483 * data in adapter memory:
484 *
485 * Memory: ... | b0 | b1 | b2 | b3 | ...
486 * Address: i+0 i+1 i+2 i+3
487 *
488 * Then a read of the adapter memory via the PCI-E Memory Window
489 * will yield:
490 *
491 * x = readl(i)
492 * 31 0
493 * [ b3 | b2 | b1 | b0 ]
494 *
495 * If this value is stored into local memory on a Little-Endian system
496 * it will show up correctly in local memory as:
497 *
498 * ( ..., b0, b1, b2, b3, ... )
499 *
500 * But on a Big-Endian system, the store will show up in memory
501 * incorrectly swizzled as:
502 *
503 * ( ..., b3, b2, b1, b0, ... )
504 *
505 * So we need to account for this in the reads and writes to the
506 * PCI-E Memory Window below by undoing the register read/write
507 * swizzels.
fc5ab020
HS
508 */
509 while (len > 0) {
510 if (dir == T4_MEMORY_READ)
f01aa633
HS
511 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
512 mem_base + offset));
fc5ab020
HS
513 else
514 t4_write_reg(adap, mem_base + offset,
f01aa633 515 (__force u32)cpu_to_le32(*buf++));
fc5ab020
HS
516 offset += sizeof(__be32);
517 len -= sizeof(__be32);
518
519 /* If we've reached the end of our current window aperture,
520 * move the PCI-E Memory Window on to the next. Note that
521 * doing this here after "len" may be 0 allows us to set up
522 * the PCI-E Memory Window for a possible final residual
523 * transfer below ...
5afc8b84 524 */
fc5ab020
HS
525 if (offset == mem_aperture) {
526 pos += mem_aperture;
527 offset = 0;
528 t4_write_reg(adap,
f061de42
HS
529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
530 win), pos | win_pf);
fc5ab020 531 t4_read_reg(adap,
f061de42
HS
532 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
533 win));
5afc8b84 534 }
5afc8b84
VP
535 }
536
fc5ab020
HS
537 /* If the original transfer had a length which wasn't a multiple of
538 * 32-bits, now's where we need to finish off the transfer of the
539 * residual amount. The PCI-E Memory Window has already been moved
540 * above (if necessary) to cover this final transfer.
541 */
542 if (resid) {
543 union {
f01aa633 544 u32 word;
fc5ab020
HS
545 char byte[4];
546 } last;
547 unsigned char *bp;
548 int i;
549
c81576c2 550 if (dir == T4_MEMORY_READ) {
f01aa633
HS
551 last.word = le32_to_cpu(
552 (__force __le32)t4_read_reg(adap,
553 mem_base + offset));
fc5ab020
HS
554 for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
555 bp[i] = last.byte[i];
556 } else {
557 last.word = *buf;
558 for (i = resid; i < 4; i++)
559 last.byte[i] = 0;
560 t4_write_reg(adap, mem_base + offset,
f01aa633 561 (__force u32)cpu_to_le32(last.word));
fc5ab020
HS
562 }
563 }
5afc8b84 564
fc5ab020 565 return 0;
5afc8b84
VP
566}
567
b562fc37
HS
568/* Return the specified PCI-E Configuration Space register from our Physical
569 * Function. We try first via a Firmware LDST Command since we prefer to let
570 * the firmware own all of these registers, but if that fails we go for it
571 * directly ourselves.
572 */
573u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
574{
575 u32 val, ldst_addrspace;
576
577 /* If fw_attach != 0, construct and send the Firmware LDST Command to
578 * retrieve the specified PCI-E Configuration Space register.
579 */
580 struct fw_ldst_cmd ldst_cmd;
581 int ret;
582
583 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
584 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
585 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
586 FW_CMD_REQUEST_F |
587 FW_CMD_READ_F |
588 ldst_addrspace);
589 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
590 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
591 ldst_cmd.u.pcie.ctrl_to_fn =
b2612722 592 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
b562fc37
HS
593 ldst_cmd.u.pcie.r = reg;
594
595 /* If the LDST Command succeeds, return the result, otherwise
596 * fall through to reading it directly ourselves ...
597 */
598 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
599 &ldst_cmd);
600 if (ret == 0)
601 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
602 else
603 /* Read the desired Configuration Space register via the PCI-E
604 * Backdoor mechanism.
605 */
606 t4_hw_pci_read_cfg4(adap, reg, &val);
607 return val;
608}
609
610/* Get the window based on base passed to it.
611 * Window aperture is currently unhandled, but there is no use case for it
612 * right now
613 */
614static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
615 u32 memwin_base)
616{
617 u32 ret;
618
619 if (is_t4(adap->params.chip)) {
620 u32 bar0;
621
622 /* Truncation intentional: we only read the bottom 32-bits of
623 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor
624 * mechanism to read BAR0 instead of using
625 * pci_resource_start() because we could be operating from
626 * within a Virtual Machine which is trapping our accesses to
627 * our Configuration Space and we need to set up the PCI-E
628 * Memory Window decoders with the actual addresses which will
629 * be coming across the PCI-E link.
630 */
631 bar0 = t4_read_pcie_cfg4(adap, pci_base);
632 bar0 &= pci_mask;
633 adap->t4_bar0 = bar0;
634
635 ret = bar0 + memwin_base;
636 } else {
637 /* For T5, only relative offset inside the PCIe BAR is passed */
638 ret = memwin_base;
639 }
640 return ret;
641}
642
643/* Get the default utility window (win0) used by everyone */
644u32 t4_get_util_window(struct adapter *adap)
645{
646 return t4_get_window(adap, PCI_BASE_ADDRESS_0,
647 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
648}
649
650/* Set up memory window for accessing adapter memory ranges. (Read
651 * back MA register to ensure that changes propagate before we attempt
652 * to use the new values.)
653 */
654void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
655{
656 t4_write_reg(adap,
657 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
658 memwin_base | BIR_V(0) |
659 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
660 t4_read_reg(adap,
661 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
662}
663
812034f1
HS
664/**
665 * t4_get_regs_len - return the size of the chips register set
666 * @adapter: the adapter
667 *
668 * Returns the size of the chip's BAR0 register space.
669 */
670unsigned int t4_get_regs_len(struct adapter *adapter)
671{
672 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
673
674 switch (chip_version) {
675 case CHELSIO_T4:
676 return T4_REGMAP_SIZE;
677
678 case CHELSIO_T5:
ab4b583b 679 case CHELSIO_T6:
812034f1
HS
680 return T5_REGMAP_SIZE;
681 }
682
683 dev_err(adapter->pdev_dev,
684 "Unsupported chip version %d\n", chip_version);
685 return 0;
686}
687
688/**
689 * t4_get_regs - read chip registers into provided buffer
690 * @adap: the adapter
691 * @buf: register buffer
692 * @buf_size: size (in bytes) of register buffer
693 *
694 * If the provided register buffer isn't large enough for the chip's
695 * full register range, the register dump will be truncated to the
696 * register buffer's size.
697 */
698void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
699{
700 static const unsigned int t4_reg_ranges[] = {
701 0x1008, 0x1108,
8119c018
HS
702 0x1180, 0x1184,
703 0x1190, 0x1194,
704 0x11a0, 0x11a4,
705 0x11b0, 0x11b4,
812034f1
HS
706 0x11fc, 0x123c,
707 0x1300, 0x173c,
708 0x1800, 0x18fc,
8119c018
HS
709 0x3000, 0x30d8,
710 0x30e0, 0x30e4,
711 0x30ec, 0x5910,
712 0x5920, 0x5924,
713 0x5960, 0x5960,
714 0x5968, 0x5968,
715 0x5970, 0x5970,
716 0x5978, 0x5978,
717 0x5980, 0x5980,
718 0x5988, 0x5988,
719 0x5990, 0x5990,
720 0x5998, 0x5998,
721 0x59a0, 0x59d4,
722 0x5a00, 0x5ae0,
723 0x5ae8, 0x5ae8,
724 0x5af0, 0x5af0,
725 0x5af8, 0x5af8,
812034f1
HS
726 0x6000, 0x6098,
727 0x6100, 0x6150,
728 0x6200, 0x6208,
729 0x6240, 0x6248,
8119c018
HS
730 0x6280, 0x62b0,
731 0x62c0, 0x6338,
812034f1
HS
732 0x6370, 0x638c,
733 0x6400, 0x643c,
734 0x6500, 0x6524,
8119c018
HS
735 0x6a00, 0x6a04,
736 0x6a14, 0x6a38,
737 0x6a60, 0x6a70,
738 0x6a78, 0x6a78,
739 0x6b00, 0x6b0c,
740 0x6b1c, 0x6b84,
741 0x6bf0, 0x6bf8,
742 0x6c00, 0x6c0c,
743 0x6c1c, 0x6c84,
744 0x6cf0, 0x6cf8,
745 0x6d00, 0x6d0c,
746 0x6d1c, 0x6d84,
747 0x6df0, 0x6df8,
748 0x6e00, 0x6e0c,
749 0x6e1c, 0x6e84,
750 0x6ef0, 0x6ef8,
751 0x6f00, 0x6f0c,
752 0x6f1c, 0x6f84,
753 0x6ff0, 0x6ff8,
754 0x7000, 0x700c,
755 0x701c, 0x7084,
756 0x70f0, 0x70f8,
757 0x7100, 0x710c,
758 0x711c, 0x7184,
759 0x71f0, 0x71f8,
760 0x7200, 0x720c,
761 0x721c, 0x7284,
762 0x72f0, 0x72f8,
763 0x7300, 0x730c,
764 0x731c, 0x7384,
765 0x73f0, 0x73f8,
766 0x7400, 0x7450,
812034f1 767 0x7500, 0x7530,
8119c018
HS
768 0x7600, 0x760c,
769 0x7614, 0x761c,
812034f1
HS
770 0x7680, 0x76cc,
771 0x7700, 0x7798,
772 0x77c0, 0x77fc,
773 0x7900, 0x79fc,
8119c018
HS
774 0x7b00, 0x7b58,
775 0x7b60, 0x7b84,
776 0x7b8c, 0x7c38,
777 0x7d00, 0x7d38,
778 0x7d40, 0x7d80,
779 0x7d8c, 0x7ddc,
780 0x7de4, 0x7e04,
781 0x7e10, 0x7e1c,
782 0x7e24, 0x7e38,
783 0x7e40, 0x7e44,
784 0x7e4c, 0x7e78,
785 0x7e80, 0x7ea4,
786 0x7eac, 0x7edc,
787 0x7ee8, 0x7efc,
788 0x8dc0, 0x8e04,
789 0x8e10, 0x8e1c,
812034f1 790 0x8e30, 0x8e78,
8119c018
HS
791 0x8ea0, 0x8eb8,
792 0x8ec0, 0x8f6c,
793 0x8fc0, 0x9008,
794 0x9010, 0x9058,
795 0x9060, 0x9060,
796 0x9068, 0x9074,
812034f1 797 0x90fc, 0x90fc,
8119c018
HS
798 0x9400, 0x9408,
799 0x9410, 0x9458,
800 0x9600, 0x9600,
801 0x9608, 0x9638,
802 0x9640, 0x96bc,
812034f1
HS
803 0x9800, 0x9808,
804 0x9820, 0x983c,
805 0x9850, 0x9864,
806 0x9c00, 0x9c6c,
807 0x9c80, 0x9cec,
808 0x9d00, 0x9d6c,
809 0x9d80, 0x9dec,
810 0x9e00, 0x9e6c,
811 0x9e80, 0x9eec,
812 0x9f00, 0x9f6c,
813 0x9f80, 0x9fec,
8119c018
HS
814 0xd004, 0xd004,
815 0xd010, 0xd03c,
812034f1
HS
816 0xdfc0, 0xdfe0,
817 0xe000, 0xea7c,
8119c018 818 0xf000, 0x11190,
812034f1
HS
819 0x19040, 0x1906c,
820 0x19078, 0x19080,
8119c018
HS
821 0x1908c, 0x190e4,
822 0x190f0, 0x190f8,
823 0x19100, 0x19110,
824 0x19120, 0x19124,
825 0x19150, 0x19194,
826 0x1919c, 0x191b0,
812034f1
HS
827 0x191d0, 0x191e8,
828 0x19238, 0x1924c,
8119c018
HS
829 0x193f8, 0x1943c,
830 0x1944c, 0x19474,
831 0x19490, 0x194e0,
832 0x194f0, 0x194f8,
833 0x19800, 0x19c08,
834 0x19c10, 0x19c90,
835 0x19ca0, 0x19ce4,
836 0x19cf0, 0x19d40,
837 0x19d50, 0x19d94,
838 0x19da0, 0x19de8,
839 0x19df0, 0x19e40,
840 0x19e50, 0x19e90,
841 0x19ea0, 0x19f4c,
842 0x1a000, 0x1a004,
843 0x1a010, 0x1a06c,
844 0x1a0b0, 0x1a0e4,
845 0x1a0ec, 0x1a0f4,
846 0x1a100, 0x1a108,
847 0x1a114, 0x1a120,
848 0x1a128, 0x1a130,
849 0x1a138, 0x1a138,
812034f1
HS
850 0x1a190, 0x1a1c4,
851 0x1a1fc, 0x1a1fc,
852 0x1e040, 0x1e04c,
853 0x1e284, 0x1e28c,
854 0x1e2c0, 0x1e2c0,
855 0x1e2e0, 0x1e2e0,
856 0x1e300, 0x1e384,
857 0x1e3c0, 0x1e3c8,
858 0x1e440, 0x1e44c,
859 0x1e684, 0x1e68c,
860 0x1e6c0, 0x1e6c0,
861 0x1e6e0, 0x1e6e0,
862 0x1e700, 0x1e784,
863 0x1e7c0, 0x1e7c8,
864 0x1e840, 0x1e84c,
865 0x1ea84, 0x1ea8c,
866 0x1eac0, 0x1eac0,
867 0x1eae0, 0x1eae0,
868 0x1eb00, 0x1eb84,
869 0x1ebc0, 0x1ebc8,
870 0x1ec40, 0x1ec4c,
871 0x1ee84, 0x1ee8c,
872 0x1eec0, 0x1eec0,
873 0x1eee0, 0x1eee0,
874 0x1ef00, 0x1ef84,
875 0x1efc0, 0x1efc8,
876 0x1f040, 0x1f04c,
877 0x1f284, 0x1f28c,
878 0x1f2c0, 0x1f2c0,
879 0x1f2e0, 0x1f2e0,
880 0x1f300, 0x1f384,
881 0x1f3c0, 0x1f3c8,
882 0x1f440, 0x1f44c,
883 0x1f684, 0x1f68c,
884 0x1f6c0, 0x1f6c0,
885 0x1f6e0, 0x1f6e0,
886 0x1f700, 0x1f784,
887 0x1f7c0, 0x1f7c8,
888 0x1f840, 0x1f84c,
889 0x1fa84, 0x1fa8c,
890 0x1fac0, 0x1fac0,
891 0x1fae0, 0x1fae0,
892 0x1fb00, 0x1fb84,
893 0x1fbc0, 0x1fbc8,
894 0x1fc40, 0x1fc4c,
895 0x1fe84, 0x1fe8c,
896 0x1fec0, 0x1fec0,
897 0x1fee0, 0x1fee0,
898 0x1ff00, 0x1ff84,
899 0x1ffc0, 0x1ffc8,
900 0x20000, 0x2002c,
901 0x20100, 0x2013c,
8119c018
HS
902 0x20190, 0x201a0,
903 0x201a8, 0x201b8,
904 0x201c4, 0x201c8,
812034f1 905 0x20200, 0x20318,
8119c018
HS
906 0x20400, 0x204b4,
907 0x204c0, 0x20528,
812034f1
HS
908 0x20540, 0x20614,
909 0x21000, 0x21040,
910 0x2104c, 0x21060,
911 0x210c0, 0x210ec,
912 0x21200, 0x21268,
913 0x21270, 0x21284,
914 0x212fc, 0x21388,
915 0x21400, 0x21404,
8119c018
HS
916 0x21500, 0x21500,
917 0x21510, 0x21518,
918 0x2152c, 0x21530,
919 0x2153c, 0x2153c,
812034f1
HS
920 0x21550, 0x21554,
921 0x21600, 0x21600,
8119c018
HS
922 0x21608, 0x2161c,
923 0x21624, 0x21628,
924 0x21630, 0x21634,
925 0x2163c, 0x2163c,
812034f1
HS
926 0x21700, 0x2171c,
927 0x21780, 0x2178c,
8119c018
HS
928 0x21800, 0x21818,
929 0x21820, 0x21828,
930 0x21830, 0x21848,
931 0x21850, 0x21854,
932 0x21860, 0x21868,
933 0x21870, 0x21870,
934 0x21878, 0x21898,
935 0x218a0, 0x218a8,
936 0x218b0, 0x218c8,
937 0x218d0, 0x218d4,
938 0x218e0, 0x218e8,
939 0x218f0, 0x218f0,
940 0x218f8, 0x21a18,
941 0x21a20, 0x21a28,
942 0x21a30, 0x21a48,
943 0x21a50, 0x21a54,
944 0x21a60, 0x21a68,
945 0x21a70, 0x21a70,
946 0x21a78, 0x21a98,
947 0x21aa0, 0x21aa8,
948 0x21ab0, 0x21ac8,
949 0x21ad0, 0x21ad4,
950 0x21ae0, 0x21ae8,
951 0x21af0, 0x21af0,
952 0x21af8, 0x21c18,
953 0x21c20, 0x21c20,
954 0x21c28, 0x21c30,
955 0x21c38, 0x21c38,
956 0x21c80, 0x21c98,
957 0x21ca0, 0x21ca8,
958 0x21cb0, 0x21cc8,
959 0x21cd0, 0x21cd4,
960 0x21ce0, 0x21ce8,
961 0x21cf0, 0x21cf0,
962 0x21cf8, 0x21d7c,
812034f1
HS
963 0x21e00, 0x21e04,
964 0x22000, 0x2202c,
965 0x22100, 0x2213c,
8119c018
HS
966 0x22190, 0x221a0,
967 0x221a8, 0x221b8,
968 0x221c4, 0x221c8,
812034f1 969 0x22200, 0x22318,
8119c018
HS
970 0x22400, 0x224b4,
971 0x224c0, 0x22528,
812034f1
HS
972 0x22540, 0x22614,
973 0x23000, 0x23040,
974 0x2304c, 0x23060,
975 0x230c0, 0x230ec,
976 0x23200, 0x23268,
977 0x23270, 0x23284,
978 0x232fc, 0x23388,
979 0x23400, 0x23404,
8119c018
HS
980 0x23500, 0x23500,
981 0x23510, 0x23518,
982 0x2352c, 0x23530,
983 0x2353c, 0x2353c,
812034f1
HS
984 0x23550, 0x23554,
985 0x23600, 0x23600,
8119c018
HS
986 0x23608, 0x2361c,
987 0x23624, 0x23628,
988 0x23630, 0x23634,
989 0x2363c, 0x2363c,
812034f1
HS
990 0x23700, 0x2371c,
991 0x23780, 0x2378c,
8119c018
HS
992 0x23800, 0x23818,
993 0x23820, 0x23828,
994 0x23830, 0x23848,
995 0x23850, 0x23854,
996 0x23860, 0x23868,
997 0x23870, 0x23870,
998 0x23878, 0x23898,
999 0x238a0, 0x238a8,
1000 0x238b0, 0x238c8,
1001 0x238d0, 0x238d4,
1002 0x238e0, 0x238e8,
1003 0x238f0, 0x238f0,
1004 0x238f8, 0x23a18,
1005 0x23a20, 0x23a28,
1006 0x23a30, 0x23a48,
1007 0x23a50, 0x23a54,
1008 0x23a60, 0x23a68,
1009 0x23a70, 0x23a70,
1010 0x23a78, 0x23a98,
1011 0x23aa0, 0x23aa8,
1012 0x23ab0, 0x23ac8,
1013 0x23ad0, 0x23ad4,
1014 0x23ae0, 0x23ae8,
1015 0x23af0, 0x23af0,
1016 0x23af8, 0x23c18,
1017 0x23c20, 0x23c20,
1018 0x23c28, 0x23c30,
1019 0x23c38, 0x23c38,
1020 0x23c80, 0x23c98,
1021 0x23ca0, 0x23ca8,
1022 0x23cb0, 0x23cc8,
1023 0x23cd0, 0x23cd4,
1024 0x23ce0, 0x23ce8,
1025 0x23cf0, 0x23cf0,
1026 0x23cf8, 0x23d7c,
812034f1
HS
1027 0x23e00, 0x23e04,
1028 0x24000, 0x2402c,
1029 0x24100, 0x2413c,
8119c018
HS
1030 0x24190, 0x241a0,
1031 0x241a8, 0x241b8,
1032 0x241c4, 0x241c8,
812034f1 1033 0x24200, 0x24318,
8119c018
HS
1034 0x24400, 0x244b4,
1035 0x244c0, 0x24528,
812034f1
HS
1036 0x24540, 0x24614,
1037 0x25000, 0x25040,
1038 0x2504c, 0x25060,
1039 0x250c0, 0x250ec,
1040 0x25200, 0x25268,
1041 0x25270, 0x25284,
1042 0x252fc, 0x25388,
1043 0x25400, 0x25404,
8119c018
HS
1044 0x25500, 0x25500,
1045 0x25510, 0x25518,
1046 0x2552c, 0x25530,
1047 0x2553c, 0x2553c,
812034f1
HS
1048 0x25550, 0x25554,
1049 0x25600, 0x25600,
8119c018
HS
1050 0x25608, 0x2561c,
1051 0x25624, 0x25628,
1052 0x25630, 0x25634,
1053 0x2563c, 0x2563c,
812034f1
HS
1054 0x25700, 0x2571c,
1055 0x25780, 0x2578c,
8119c018
HS
1056 0x25800, 0x25818,
1057 0x25820, 0x25828,
1058 0x25830, 0x25848,
1059 0x25850, 0x25854,
1060 0x25860, 0x25868,
1061 0x25870, 0x25870,
1062 0x25878, 0x25898,
1063 0x258a0, 0x258a8,
1064 0x258b0, 0x258c8,
1065 0x258d0, 0x258d4,
1066 0x258e0, 0x258e8,
1067 0x258f0, 0x258f0,
1068 0x258f8, 0x25a18,
1069 0x25a20, 0x25a28,
1070 0x25a30, 0x25a48,
1071 0x25a50, 0x25a54,
1072 0x25a60, 0x25a68,
1073 0x25a70, 0x25a70,
1074 0x25a78, 0x25a98,
1075 0x25aa0, 0x25aa8,
1076 0x25ab0, 0x25ac8,
1077 0x25ad0, 0x25ad4,
1078 0x25ae0, 0x25ae8,
1079 0x25af0, 0x25af0,
1080 0x25af8, 0x25c18,
1081 0x25c20, 0x25c20,
1082 0x25c28, 0x25c30,
1083 0x25c38, 0x25c38,
1084 0x25c80, 0x25c98,
1085 0x25ca0, 0x25ca8,
1086 0x25cb0, 0x25cc8,
1087 0x25cd0, 0x25cd4,
1088 0x25ce0, 0x25ce8,
1089 0x25cf0, 0x25cf0,
1090 0x25cf8, 0x25d7c,
812034f1
HS
1091 0x25e00, 0x25e04,
1092 0x26000, 0x2602c,
1093 0x26100, 0x2613c,
8119c018
HS
1094 0x26190, 0x261a0,
1095 0x261a8, 0x261b8,
1096 0x261c4, 0x261c8,
812034f1 1097 0x26200, 0x26318,
8119c018
HS
1098 0x26400, 0x264b4,
1099 0x264c0, 0x26528,
812034f1
HS
1100 0x26540, 0x26614,
1101 0x27000, 0x27040,
1102 0x2704c, 0x27060,
1103 0x270c0, 0x270ec,
1104 0x27200, 0x27268,
1105 0x27270, 0x27284,
1106 0x272fc, 0x27388,
1107 0x27400, 0x27404,
8119c018
HS
1108 0x27500, 0x27500,
1109 0x27510, 0x27518,
1110 0x2752c, 0x27530,
1111 0x2753c, 0x2753c,
812034f1
HS
1112 0x27550, 0x27554,
1113 0x27600, 0x27600,
8119c018
HS
1114 0x27608, 0x2761c,
1115 0x27624, 0x27628,
1116 0x27630, 0x27634,
1117 0x2763c, 0x2763c,
812034f1
HS
1118 0x27700, 0x2771c,
1119 0x27780, 0x2778c,
8119c018
HS
1120 0x27800, 0x27818,
1121 0x27820, 0x27828,
1122 0x27830, 0x27848,
1123 0x27850, 0x27854,
1124 0x27860, 0x27868,
1125 0x27870, 0x27870,
1126 0x27878, 0x27898,
1127 0x278a0, 0x278a8,
1128 0x278b0, 0x278c8,
1129 0x278d0, 0x278d4,
1130 0x278e0, 0x278e8,
1131 0x278f0, 0x278f0,
1132 0x278f8, 0x27a18,
1133 0x27a20, 0x27a28,
1134 0x27a30, 0x27a48,
1135 0x27a50, 0x27a54,
1136 0x27a60, 0x27a68,
1137 0x27a70, 0x27a70,
1138 0x27a78, 0x27a98,
1139 0x27aa0, 0x27aa8,
1140 0x27ab0, 0x27ac8,
1141 0x27ad0, 0x27ad4,
1142 0x27ae0, 0x27ae8,
1143 0x27af0, 0x27af0,
1144 0x27af8, 0x27c18,
1145 0x27c20, 0x27c20,
1146 0x27c28, 0x27c30,
1147 0x27c38, 0x27c38,
1148 0x27c80, 0x27c98,
1149 0x27ca0, 0x27ca8,
1150 0x27cb0, 0x27cc8,
1151 0x27cd0, 0x27cd4,
1152 0x27ce0, 0x27ce8,
1153 0x27cf0, 0x27cf0,
1154 0x27cf8, 0x27d7c,
9f5ac48d 1155 0x27e00, 0x27e04,
812034f1
HS
1156 };
1157
1158 static const unsigned int t5_reg_ranges[] = {
8119c018
HS
1159 0x1008, 0x10c0,
1160 0x10cc, 0x10f8,
1161 0x1100, 0x1100,
1162 0x110c, 0x1148,
1163 0x1180, 0x1184,
1164 0x1190, 0x1194,
1165 0x11a0, 0x11a4,
1166 0x11b0, 0x11b4,
812034f1
HS
1167 0x11fc, 0x123c,
1168 0x1280, 0x173c,
1169 0x1800, 0x18fc,
1170 0x3000, 0x3028,
8119c018
HS
1171 0x3060, 0x30b0,
1172 0x30b8, 0x30d8,
812034f1
HS
1173 0x30e0, 0x30fc,
1174 0x3140, 0x357c,
1175 0x35a8, 0x35cc,
1176 0x35ec, 0x35ec,
1177 0x3600, 0x5624,
8119c018
HS
1178 0x56cc, 0x56ec,
1179 0x56f4, 0x5720,
1180 0x5728, 0x575c,
812034f1 1181 0x580c, 0x5814,
8119c018
HS
1182 0x5890, 0x589c,
1183 0x58a4, 0x58ac,
1184 0x58b8, 0x58bc,
1185 0x5940, 0x59c8,
1186 0x59d0, 0x59dc,
812034f1 1187 0x59fc, 0x5a18,
8119c018
HS
1188 0x5a60, 0x5a70,
1189 0x5a80, 0x5a9c,
9f5ac48d 1190 0x5b94, 0x5bfc,
8119c018
HS
1191 0x6000, 0x6020,
1192 0x6028, 0x6040,
1193 0x6058, 0x609c,
1194 0x60a8, 0x614c,
812034f1
HS
1195 0x7700, 0x7798,
1196 0x77c0, 0x78fc,
8119c018
HS
1197 0x7b00, 0x7b58,
1198 0x7b60, 0x7b84,
1199 0x7b8c, 0x7c54,
1200 0x7d00, 0x7d38,
1201 0x7d40, 0x7d80,
1202 0x7d8c, 0x7ddc,
1203 0x7de4, 0x7e04,
1204 0x7e10, 0x7e1c,
1205 0x7e24, 0x7e38,
1206 0x7e40, 0x7e44,
1207 0x7e4c, 0x7e78,
1208 0x7e80, 0x7edc,
1209 0x7ee8, 0x7efc,
812034f1 1210 0x8dc0, 0x8de0,
8119c018
HS
1211 0x8df8, 0x8e04,
1212 0x8e10, 0x8e84,
812034f1 1213 0x8ea0, 0x8f84,
8119c018
HS
1214 0x8fc0, 0x9058,
1215 0x9060, 0x9060,
1216 0x9068, 0x90f8,
1217 0x9400, 0x9408,
1218 0x9410, 0x9470,
1219 0x9600, 0x9600,
1220 0x9608, 0x9638,
1221 0x9640, 0x96f4,
812034f1
HS
1222 0x9800, 0x9808,
1223 0x9820, 0x983c,
1224 0x9850, 0x9864,
1225 0x9c00, 0x9c6c,
1226 0x9c80, 0x9cec,
1227 0x9d00, 0x9d6c,
1228 0x9d80, 0x9dec,
1229 0x9e00, 0x9e6c,
1230 0x9e80, 0x9eec,
1231 0x9f00, 0x9f6c,
1232 0x9f80, 0xa020,
8119c018
HS
1233 0xd004, 0xd004,
1234 0xd010, 0xd03c,
812034f1 1235 0xdfc0, 0xdfe0,
8119c018
HS
1236 0xe000, 0x1106c,
1237 0x11074, 0x11088,
1238 0x1109c, 0x1117c,
812034f1
HS
1239 0x11190, 0x11204,
1240 0x19040, 0x1906c,
1241 0x19078, 0x19080,
8119c018
HS
1242 0x1908c, 0x190e8,
1243 0x190f0, 0x190f8,
1244 0x19100, 0x19110,
1245 0x19120, 0x19124,
1246 0x19150, 0x19194,
1247 0x1919c, 0x191b0,
812034f1
HS
1248 0x191d0, 0x191e8,
1249 0x19238, 0x19290,
8119c018
HS
1250 0x193f8, 0x19428,
1251 0x19430, 0x19444,
1252 0x1944c, 0x1946c,
1253 0x19474, 0x19474,
812034f1
HS
1254 0x19490, 0x194cc,
1255 0x194f0, 0x194f8,
8119c018
HS
1256 0x19c00, 0x19c08,
1257 0x19c10, 0x19c60,
1258 0x19c94, 0x19ce4,
1259 0x19cf0, 0x19d40,
1260 0x19d50, 0x19d94,
1261 0x19da0, 0x19de8,
1262 0x19df0, 0x19e10,
1263 0x19e50, 0x19e90,
1264 0x19ea0, 0x19f24,
1265 0x19f34, 0x19f34,
812034f1 1266 0x19f40, 0x19f50,
8119c018
HS
1267 0x19f90, 0x19fb4,
1268 0x19fc4, 0x19fe4,
1269 0x1a000, 0x1a004,
1270 0x1a010, 0x1a06c,
1271 0x1a0b0, 0x1a0e4,
1272 0x1a0ec, 0x1a0f8,
1273 0x1a100, 0x1a108,
1274 0x1a114, 0x1a120,
1275 0x1a128, 0x1a130,
1276 0x1a138, 0x1a138,
812034f1
HS
1277 0x1a190, 0x1a1c4,
1278 0x1a1fc, 0x1a1fc,
1279 0x1e008, 0x1e00c,
8119c018
HS
1280 0x1e040, 0x1e044,
1281 0x1e04c, 0x1e04c,
812034f1
HS
1282 0x1e284, 0x1e290,
1283 0x1e2c0, 0x1e2c0,
1284 0x1e2e0, 0x1e2e0,
1285 0x1e300, 0x1e384,
1286 0x1e3c0, 0x1e3c8,
1287 0x1e408, 0x1e40c,
8119c018
HS
1288 0x1e440, 0x1e444,
1289 0x1e44c, 0x1e44c,
812034f1
HS
1290 0x1e684, 0x1e690,
1291 0x1e6c0, 0x1e6c0,
1292 0x1e6e0, 0x1e6e0,
1293 0x1e700, 0x1e784,
1294 0x1e7c0, 0x1e7c8,
1295 0x1e808, 0x1e80c,
8119c018
HS
1296 0x1e840, 0x1e844,
1297 0x1e84c, 0x1e84c,
812034f1
HS
1298 0x1ea84, 0x1ea90,
1299 0x1eac0, 0x1eac0,
1300 0x1eae0, 0x1eae0,
1301 0x1eb00, 0x1eb84,
1302 0x1ebc0, 0x1ebc8,
1303 0x1ec08, 0x1ec0c,
8119c018
HS
1304 0x1ec40, 0x1ec44,
1305 0x1ec4c, 0x1ec4c,
812034f1
HS
1306 0x1ee84, 0x1ee90,
1307 0x1eec0, 0x1eec0,
1308 0x1eee0, 0x1eee0,
1309 0x1ef00, 0x1ef84,
1310 0x1efc0, 0x1efc8,
1311 0x1f008, 0x1f00c,
8119c018
HS
1312 0x1f040, 0x1f044,
1313 0x1f04c, 0x1f04c,
812034f1
HS
1314 0x1f284, 0x1f290,
1315 0x1f2c0, 0x1f2c0,
1316 0x1f2e0, 0x1f2e0,
1317 0x1f300, 0x1f384,
1318 0x1f3c0, 0x1f3c8,
1319 0x1f408, 0x1f40c,
8119c018
HS
1320 0x1f440, 0x1f444,
1321 0x1f44c, 0x1f44c,
812034f1
HS
1322 0x1f684, 0x1f690,
1323 0x1f6c0, 0x1f6c0,
1324 0x1f6e0, 0x1f6e0,
1325 0x1f700, 0x1f784,
1326 0x1f7c0, 0x1f7c8,
1327 0x1f808, 0x1f80c,
8119c018
HS
1328 0x1f840, 0x1f844,
1329 0x1f84c, 0x1f84c,
812034f1
HS
1330 0x1fa84, 0x1fa90,
1331 0x1fac0, 0x1fac0,
1332 0x1fae0, 0x1fae0,
1333 0x1fb00, 0x1fb84,
1334 0x1fbc0, 0x1fbc8,
1335 0x1fc08, 0x1fc0c,
8119c018
HS
1336 0x1fc40, 0x1fc44,
1337 0x1fc4c, 0x1fc4c,
812034f1
HS
1338 0x1fe84, 0x1fe90,
1339 0x1fec0, 0x1fec0,
1340 0x1fee0, 0x1fee0,
1341 0x1ff00, 0x1ff84,
1342 0x1ffc0, 0x1ffc8,
1343 0x30000, 0x30030,
8119c018
HS
1344 0x30038, 0x30038,
1345 0x30040, 0x30040,
812034f1 1346 0x30100, 0x30144,
8119c018
HS
1347 0x30190, 0x301a0,
1348 0x301a8, 0x301b8,
1349 0x301c4, 0x301c8,
1350 0x301d0, 0x301d0,
812034f1 1351 0x30200, 0x30318,
8119c018
HS
1352 0x30400, 0x304b4,
1353 0x304c0, 0x3052c,
812034f1 1354 0x30540, 0x3061c,
8119c018
HS
1355 0x30800, 0x30828,
1356 0x30834, 0x30834,
812034f1
HS
1357 0x308c0, 0x30908,
1358 0x30910, 0x309ac,
8119c018
HS
1359 0x30a00, 0x30a14,
1360 0x30a1c, 0x30a2c,
812034f1 1361 0x30a44, 0x30a50,
8119c018
HS
1362 0x30a74, 0x30a74,
1363 0x30a7c, 0x30afc,
1364 0x30b08, 0x30c24,
9f5ac48d 1365 0x30d00, 0x30d00,
812034f1
HS
1366 0x30d08, 0x30d14,
1367 0x30d1c, 0x30d20,
8119c018
HS
1368 0x30d3c, 0x30d3c,
1369 0x30d48, 0x30d50,
812034f1
HS
1370 0x31200, 0x3120c,
1371 0x31220, 0x31220,
1372 0x31240, 0x31240,
9f5ac48d 1373 0x31600, 0x3160c,
812034f1 1374 0x31a00, 0x31a1c,
9f5ac48d 1375 0x31e00, 0x31e20,
812034f1
HS
1376 0x31e38, 0x31e3c,
1377 0x31e80, 0x31e80,
1378 0x31e88, 0x31ea8,
1379 0x31eb0, 0x31eb4,
1380 0x31ec8, 0x31ed4,
1381 0x31fb8, 0x32004,
9f5ac48d
HS
1382 0x32200, 0x32200,
1383 0x32208, 0x32240,
1384 0x32248, 0x32280,
1385 0x32288, 0x322c0,
1386 0x322c8, 0x322fc,
812034f1
HS
1387 0x32600, 0x32630,
1388 0x32a00, 0x32abc,
8119c018
HS
1389 0x32b00, 0x32b10,
1390 0x32b20, 0x32b30,
1391 0x32b40, 0x32b50,
1392 0x32b60, 0x32b70,
1393 0x33000, 0x33028,
1394 0x33030, 0x33048,
1395 0x33060, 0x33068,
1396 0x33070, 0x3309c,
1397 0x330f0, 0x33128,
1398 0x33130, 0x33148,
1399 0x33160, 0x33168,
1400 0x33170, 0x3319c,
1401 0x331f0, 0x33238,
1402 0x33240, 0x33240,
1403 0x33248, 0x33250,
1404 0x3325c, 0x33264,
1405 0x33270, 0x332b8,
1406 0x332c0, 0x332e4,
1407 0x332f8, 0x33338,
1408 0x33340, 0x33340,
1409 0x33348, 0x33350,
1410 0x3335c, 0x33364,
1411 0x33370, 0x333b8,
1412 0x333c0, 0x333e4,
1413 0x333f8, 0x33428,
1414 0x33430, 0x33448,
1415 0x33460, 0x33468,
1416 0x33470, 0x3349c,
1417 0x334f0, 0x33528,
1418 0x33530, 0x33548,
1419 0x33560, 0x33568,
1420 0x33570, 0x3359c,
1421 0x335f0, 0x33638,
1422 0x33640, 0x33640,
1423 0x33648, 0x33650,
1424 0x3365c, 0x33664,
1425 0x33670, 0x336b8,
1426 0x336c0, 0x336e4,
1427 0x336f8, 0x33738,
1428 0x33740, 0x33740,
1429 0x33748, 0x33750,
1430 0x3375c, 0x33764,
1431 0x33770, 0x337b8,
1432 0x337c0, 0x337e4,
812034f1
HS
1433 0x337f8, 0x337fc,
1434 0x33814, 0x33814,
1435 0x3382c, 0x3382c,
1436 0x33880, 0x3388c,
1437 0x338e8, 0x338ec,
8119c018
HS
1438 0x33900, 0x33928,
1439 0x33930, 0x33948,
1440 0x33960, 0x33968,
1441 0x33970, 0x3399c,
1442 0x339f0, 0x33a38,
1443 0x33a40, 0x33a40,
1444 0x33a48, 0x33a50,
1445 0x33a5c, 0x33a64,
1446 0x33a70, 0x33ab8,
1447 0x33ac0, 0x33ae4,
812034f1
HS
1448 0x33af8, 0x33b10,
1449 0x33b28, 0x33b28,
1450 0x33b3c, 0x33b50,
1451 0x33bf0, 0x33c10,
1452 0x33c28, 0x33c28,
1453 0x33c3c, 0x33c50,
1454 0x33cf0, 0x33cfc,
1455 0x34000, 0x34030,
8119c018
HS
1456 0x34038, 0x34038,
1457 0x34040, 0x34040,
812034f1 1458 0x34100, 0x34144,
8119c018
HS
1459 0x34190, 0x341a0,
1460 0x341a8, 0x341b8,
1461 0x341c4, 0x341c8,
1462 0x341d0, 0x341d0,
812034f1 1463 0x34200, 0x34318,
8119c018
HS
1464 0x34400, 0x344b4,
1465 0x344c0, 0x3452c,
812034f1 1466 0x34540, 0x3461c,
8119c018
HS
1467 0x34800, 0x34828,
1468 0x34834, 0x34834,
812034f1
HS
1469 0x348c0, 0x34908,
1470 0x34910, 0x349ac,
8119c018
HS
1471 0x34a00, 0x34a14,
1472 0x34a1c, 0x34a2c,
812034f1 1473 0x34a44, 0x34a50,
8119c018
HS
1474 0x34a74, 0x34a74,
1475 0x34a7c, 0x34afc,
1476 0x34b08, 0x34c24,
9f5ac48d 1477 0x34d00, 0x34d00,
812034f1
HS
1478 0x34d08, 0x34d14,
1479 0x34d1c, 0x34d20,
8119c018
HS
1480 0x34d3c, 0x34d3c,
1481 0x34d48, 0x34d50,
812034f1
HS
1482 0x35200, 0x3520c,
1483 0x35220, 0x35220,
1484 0x35240, 0x35240,
9f5ac48d 1485 0x35600, 0x3560c,
812034f1 1486 0x35a00, 0x35a1c,
9f5ac48d 1487 0x35e00, 0x35e20,
812034f1
HS
1488 0x35e38, 0x35e3c,
1489 0x35e80, 0x35e80,
1490 0x35e88, 0x35ea8,
1491 0x35eb0, 0x35eb4,
1492 0x35ec8, 0x35ed4,
1493 0x35fb8, 0x36004,
9f5ac48d
HS
1494 0x36200, 0x36200,
1495 0x36208, 0x36240,
1496 0x36248, 0x36280,
1497 0x36288, 0x362c0,
1498 0x362c8, 0x362fc,
812034f1
HS
1499 0x36600, 0x36630,
1500 0x36a00, 0x36abc,
8119c018
HS
1501 0x36b00, 0x36b10,
1502 0x36b20, 0x36b30,
1503 0x36b40, 0x36b50,
1504 0x36b60, 0x36b70,
1505 0x37000, 0x37028,
1506 0x37030, 0x37048,
1507 0x37060, 0x37068,
1508 0x37070, 0x3709c,
1509 0x370f0, 0x37128,
1510 0x37130, 0x37148,
1511 0x37160, 0x37168,
1512 0x37170, 0x3719c,
1513 0x371f0, 0x37238,
1514 0x37240, 0x37240,
1515 0x37248, 0x37250,
1516 0x3725c, 0x37264,
1517 0x37270, 0x372b8,
1518 0x372c0, 0x372e4,
1519 0x372f8, 0x37338,
1520 0x37340, 0x37340,
1521 0x37348, 0x37350,
1522 0x3735c, 0x37364,
1523 0x37370, 0x373b8,
1524 0x373c0, 0x373e4,
1525 0x373f8, 0x37428,
1526 0x37430, 0x37448,
1527 0x37460, 0x37468,
1528 0x37470, 0x3749c,
1529 0x374f0, 0x37528,
1530 0x37530, 0x37548,
1531 0x37560, 0x37568,
1532 0x37570, 0x3759c,
1533 0x375f0, 0x37638,
1534 0x37640, 0x37640,
1535 0x37648, 0x37650,
1536 0x3765c, 0x37664,
1537 0x37670, 0x376b8,
1538 0x376c0, 0x376e4,
1539 0x376f8, 0x37738,
1540 0x37740, 0x37740,
1541 0x37748, 0x37750,
1542 0x3775c, 0x37764,
1543 0x37770, 0x377b8,
1544 0x377c0, 0x377e4,
812034f1
HS
1545 0x377f8, 0x377fc,
1546 0x37814, 0x37814,
1547 0x3782c, 0x3782c,
1548 0x37880, 0x3788c,
1549 0x378e8, 0x378ec,
8119c018
HS
1550 0x37900, 0x37928,
1551 0x37930, 0x37948,
1552 0x37960, 0x37968,
1553 0x37970, 0x3799c,
1554 0x379f0, 0x37a38,
1555 0x37a40, 0x37a40,
1556 0x37a48, 0x37a50,
1557 0x37a5c, 0x37a64,
1558 0x37a70, 0x37ab8,
1559 0x37ac0, 0x37ae4,
812034f1
HS
1560 0x37af8, 0x37b10,
1561 0x37b28, 0x37b28,
1562 0x37b3c, 0x37b50,
1563 0x37bf0, 0x37c10,
1564 0x37c28, 0x37c28,
1565 0x37c3c, 0x37c50,
1566 0x37cf0, 0x37cfc,
1567 0x38000, 0x38030,
8119c018
HS
1568 0x38038, 0x38038,
1569 0x38040, 0x38040,
812034f1 1570 0x38100, 0x38144,
8119c018
HS
1571 0x38190, 0x381a0,
1572 0x381a8, 0x381b8,
1573 0x381c4, 0x381c8,
1574 0x381d0, 0x381d0,
812034f1 1575 0x38200, 0x38318,
8119c018
HS
1576 0x38400, 0x384b4,
1577 0x384c0, 0x3852c,
812034f1 1578 0x38540, 0x3861c,
8119c018
HS
1579 0x38800, 0x38828,
1580 0x38834, 0x38834,
812034f1
HS
1581 0x388c0, 0x38908,
1582 0x38910, 0x389ac,
8119c018
HS
1583 0x38a00, 0x38a14,
1584 0x38a1c, 0x38a2c,
812034f1 1585 0x38a44, 0x38a50,
8119c018
HS
1586 0x38a74, 0x38a74,
1587 0x38a7c, 0x38afc,
1588 0x38b08, 0x38c24,
9f5ac48d 1589 0x38d00, 0x38d00,
812034f1
HS
1590 0x38d08, 0x38d14,
1591 0x38d1c, 0x38d20,
8119c018
HS
1592 0x38d3c, 0x38d3c,
1593 0x38d48, 0x38d50,
812034f1
HS
1594 0x39200, 0x3920c,
1595 0x39220, 0x39220,
1596 0x39240, 0x39240,
9f5ac48d 1597 0x39600, 0x3960c,
812034f1 1598 0x39a00, 0x39a1c,
9f5ac48d 1599 0x39e00, 0x39e20,
812034f1
HS
1600 0x39e38, 0x39e3c,
1601 0x39e80, 0x39e80,
1602 0x39e88, 0x39ea8,
1603 0x39eb0, 0x39eb4,
1604 0x39ec8, 0x39ed4,
1605 0x39fb8, 0x3a004,
9f5ac48d
HS
1606 0x3a200, 0x3a200,
1607 0x3a208, 0x3a240,
1608 0x3a248, 0x3a280,
1609 0x3a288, 0x3a2c0,
1610 0x3a2c8, 0x3a2fc,
812034f1
HS
1611 0x3a600, 0x3a630,
1612 0x3aa00, 0x3aabc,
8119c018
HS
1613 0x3ab00, 0x3ab10,
1614 0x3ab20, 0x3ab30,
1615 0x3ab40, 0x3ab50,
1616 0x3ab60, 0x3ab70,
1617 0x3b000, 0x3b028,
1618 0x3b030, 0x3b048,
1619 0x3b060, 0x3b068,
1620 0x3b070, 0x3b09c,
1621 0x3b0f0, 0x3b128,
1622 0x3b130, 0x3b148,
1623 0x3b160, 0x3b168,
1624 0x3b170, 0x3b19c,
1625 0x3b1f0, 0x3b238,
1626 0x3b240, 0x3b240,
1627 0x3b248, 0x3b250,
1628 0x3b25c, 0x3b264,
1629 0x3b270, 0x3b2b8,
1630 0x3b2c0, 0x3b2e4,
1631 0x3b2f8, 0x3b338,
1632 0x3b340, 0x3b340,
1633 0x3b348, 0x3b350,
1634 0x3b35c, 0x3b364,
1635 0x3b370, 0x3b3b8,
1636 0x3b3c0, 0x3b3e4,
1637 0x3b3f8, 0x3b428,
1638 0x3b430, 0x3b448,
1639 0x3b460, 0x3b468,
1640 0x3b470, 0x3b49c,
1641 0x3b4f0, 0x3b528,
1642 0x3b530, 0x3b548,
1643 0x3b560, 0x3b568,
1644 0x3b570, 0x3b59c,
1645 0x3b5f0, 0x3b638,
1646 0x3b640, 0x3b640,
1647 0x3b648, 0x3b650,
1648 0x3b65c, 0x3b664,
1649 0x3b670, 0x3b6b8,
1650 0x3b6c0, 0x3b6e4,
1651 0x3b6f8, 0x3b738,
1652 0x3b740, 0x3b740,
1653 0x3b748, 0x3b750,
1654 0x3b75c, 0x3b764,
1655 0x3b770, 0x3b7b8,
1656 0x3b7c0, 0x3b7e4,
812034f1
HS
1657 0x3b7f8, 0x3b7fc,
1658 0x3b814, 0x3b814,
1659 0x3b82c, 0x3b82c,
1660 0x3b880, 0x3b88c,
1661 0x3b8e8, 0x3b8ec,
8119c018
HS
1662 0x3b900, 0x3b928,
1663 0x3b930, 0x3b948,
1664 0x3b960, 0x3b968,
1665 0x3b970, 0x3b99c,
1666 0x3b9f0, 0x3ba38,
1667 0x3ba40, 0x3ba40,
1668 0x3ba48, 0x3ba50,
1669 0x3ba5c, 0x3ba64,
1670 0x3ba70, 0x3bab8,
1671 0x3bac0, 0x3bae4,
812034f1
HS
1672 0x3baf8, 0x3bb10,
1673 0x3bb28, 0x3bb28,
1674 0x3bb3c, 0x3bb50,
1675 0x3bbf0, 0x3bc10,
1676 0x3bc28, 0x3bc28,
1677 0x3bc3c, 0x3bc50,
1678 0x3bcf0, 0x3bcfc,
1679 0x3c000, 0x3c030,
8119c018
HS
1680 0x3c038, 0x3c038,
1681 0x3c040, 0x3c040,
812034f1 1682 0x3c100, 0x3c144,
8119c018
HS
1683 0x3c190, 0x3c1a0,
1684 0x3c1a8, 0x3c1b8,
1685 0x3c1c4, 0x3c1c8,
1686 0x3c1d0, 0x3c1d0,
812034f1 1687 0x3c200, 0x3c318,
8119c018
HS
1688 0x3c400, 0x3c4b4,
1689 0x3c4c0, 0x3c52c,
812034f1 1690 0x3c540, 0x3c61c,
8119c018
HS
1691 0x3c800, 0x3c828,
1692 0x3c834, 0x3c834,
812034f1
HS
1693 0x3c8c0, 0x3c908,
1694 0x3c910, 0x3c9ac,
8119c018
HS
1695 0x3ca00, 0x3ca14,
1696 0x3ca1c, 0x3ca2c,
812034f1 1697 0x3ca44, 0x3ca50,
8119c018
HS
1698 0x3ca74, 0x3ca74,
1699 0x3ca7c, 0x3cafc,
1700 0x3cb08, 0x3cc24,
9f5ac48d 1701 0x3cd00, 0x3cd00,
812034f1
HS
1702 0x3cd08, 0x3cd14,
1703 0x3cd1c, 0x3cd20,
8119c018
HS
1704 0x3cd3c, 0x3cd3c,
1705 0x3cd48, 0x3cd50,
812034f1
HS
1706 0x3d200, 0x3d20c,
1707 0x3d220, 0x3d220,
1708 0x3d240, 0x3d240,
9f5ac48d 1709 0x3d600, 0x3d60c,
812034f1 1710 0x3da00, 0x3da1c,
9f5ac48d 1711 0x3de00, 0x3de20,
812034f1
HS
1712 0x3de38, 0x3de3c,
1713 0x3de80, 0x3de80,
1714 0x3de88, 0x3dea8,
1715 0x3deb0, 0x3deb4,
1716 0x3dec8, 0x3ded4,
1717 0x3dfb8, 0x3e004,
9f5ac48d
HS
1718 0x3e200, 0x3e200,
1719 0x3e208, 0x3e240,
1720 0x3e248, 0x3e280,
1721 0x3e288, 0x3e2c0,
1722 0x3e2c8, 0x3e2fc,
812034f1
HS
1723 0x3e600, 0x3e630,
1724 0x3ea00, 0x3eabc,
8119c018
HS
1725 0x3eb00, 0x3eb10,
1726 0x3eb20, 0x3eb30,
1727 0x3eb40, 0x3eb50,
1728 0x3eb60, 0x3eb70,
1729 0x3f000, 0x3f028,
1730 0x3f030, 0x3f048,
1731 0x3f060, 0x3f068,
1732 0x3f070, 0x3f09c,
1733 0x3f0f0, 0x3f128,
1734 0x3f130, 0x3f148,
1735 0x3f160, 0x3f168,
1736 0x3f170, 0x3f19c,
1737 0x3f1f0, 0x3f238,
1738 0x3f240, 0x3f240,
1739 0x3f248, 0x3f250,
1740 0x3f25c, 0x3f264,
1741 0x3f270, 0x3f2b8,
1742 0x3f2c0, 0x3f2e4,
1743 0x3f2f8, 0x3f338,
1744 0x3f340, 0x3f340,
1745 0x3f348, 0x3f350,
1746 0x3f35c, 0x3f364,
1747 0x3f370, 0x3f3b8,
1748 0x3f3c0, 0x3f3e4,
1749 0x3f3f8, 0x3f428,
1750 0x3f430, 0x3f448,
1751 0x3f460, 0x3f468,
1752 0x3f470, 0x3f49c,
1753 0x3f4f0, 0x3f528,
1754 0x3f530, 0x3f548,
1755 0x3f560, 0x3f568,
1756 0x3f570, 0x3f59c,
1757 0x3f5f0, 0x3f638,
1758 0x3f640, 0x3f640,
1759 0x3f648, 0x3f650,
1760 0x3f65c, 0x3f664,
1761 0x3f670, 0x3f6b8,
1762 0x3f6c0, 0x3f6e4,
1763 0x3f6f8, 0x3f738,
1764 0x3f740, 0x3f740,
1765 0x3f748, 0x3f750,
1766 0x3f75c, 0x3f764,
1767 0x3f770, 0x3f7b8,
1768 0x3f7c0, 0x3f7e4,
812034f1
HS
1769 0x3f7f8, 0x3f7fc,
1770 0x3f814, 0x3f814,
1771 0x3f82c, 0x3f82c,
1772 0x3f880, 0x3f88c,
1773 0x3f8e8, 0x3f8ec,
8119c018
HS
1774 0x3f900, 0x3f928,
1775 0x3f930, 0x3f948,
1776 0x3f960, 0x3f968,
1777 0x3f970, 0x3f99c,
1778 0x3f9f0, 0x3fa38,
1779 0x3fa40, 0x3fa40,
1780 0x3fa48, 0x3fa50,
1781 0x3fa5c, 0x3fa64,
1782 0x3fa70, 0x3fab8,
1783 0x3fac0, 0x3fae4,
812034f1
HS
1784 0x3faf8, 0x3fb10,
1785 0x3fb28, 0x3fb28,
1786 0x3fb3c, 0x3fb50,
1787 0x3fbf0, 0x3fc10,
1788 0x3fc28, 0x3fc28,
1789 0x3fc3c, 0x3fc50,
1790 0x3fcf0, 0x3fcfc,
1791 0x40000, 0x4000c,
8119c018
HS
1792 0x40040, 0x40050,
1793 0x40060, 0x40068,
1794 0x4007c, 0x4008c,
1795 0x40094, 0x400b0,
1796 0x400c0, 0x40144,
812034f1 1797 0x40180, 0x4018c,
8119c018
HS
1798 0x40200, 0x40254,
1799 0x40260, 0x40264,
1800 0x40270, 0x40288,
1801 0x40290, 0x40298,
1802 0x402ac, 0x402c8,
1803 0x402d0, 0x402e0,
1804 0x402f0, 0x402f0,
1805 0x40300, 0x4033c,
812034f1
HS
1806 0x403f8, 0x403fc,
1807 0x41304, 0x413c4,
8119c018
HS
1808 0x41400, 0x4140c,
1809 0x41414, 0x4141c,
812034f1 1810 0x41480, 0x414d0,
8119c018
HS
1811 0x44000, 0x44054,
1812 0x4405c, 0x44078,
1813 0x440c0, 0x44174,
1814 0x44180, 0x441ac,
1815 0x441b4, 0x441b8,
1816 0x441c0, 0x44254,
1817 0x4425c, 0x44278,
1818 0x442c0, 0x44374,
1819 0x44380, 0x443ac,
1820 0x443b4, 0x443b8,
1821 0x443c0, 0x44454,
1822 0x4445c, 0x44478,
1823 0x444c0, 0x44574,
1824 0x44580, 0x445ac,
1825 0x445b4, 0x445b8,
1826 0x445c0, 0x44654,
1827 0x4465c, 0x44678,
1828 0x446c0, 0x44774,
1829 0x44780, 0x447ac,
1830 0x447b4, 0x447b8,
1831 0x447c0, 0x44854,
1832 0x4485c, 0x44878,
1833 0x448c0, 0x44974,
1834 0x44980, 0x449ac,
1835 0x449b4, 0x449b8,
1836 0x449c0, 0x449fc,
1837 0x45000, 0x45004,
1838 0x45010, 0x45030,
1839 0x45040, 0x45060,
1840 0x45068, 0x45068,
812034f1
HS
1841 0x45080, 0x45084,
1842 0x450a0, 0x450b0,
8119c018
HS
1843 0x45200, 0x45204,
1844 0x45210, 0x45230,
1845 0x45240, 0x45260,
1846 0x45268, 0x45268,
812034f1
HS
1847 0x45280, 0x45284,
1848 0x452a0, 0x452b0,
1849 0x460c0, 0x460e4,
8119c018
HS
1850 0x47000, 0x4703c,
1851 0x47044, 0x4708c,
812034f1 1852 0x47200, 0x47250,
8119c018
HS
1853 0x47400, 0x47408,
1854 0x47414, 0x47420,
812034f1
HS
1855 0x47600, 0x47618,
1856 0x47800, 0x47814,
1857 0x48000, 0x4800c,
8119c018
HS
1858 0x48040, 0x48050,
1859 0x48060, 0x48068,
1860 0x4807c, 0x4808c,
1861 0x48094, 0x480b0,
1862 0x480c0, 0x48144,
812034f1 1863 0x48180, 0x4818c,
8119c018
HS
1864 0x48200, 0x48254,
1865 0x48260, 0x48264,
1866 0x48270, 0x48288,
1867 0x48290, 0x48298,
1868 0x482ac, 0x482c8,
1869 0x482d0, 0x482e0,
1870 0x482f0, 0x482f0,
1871 0x48300, 0x4833c,
812034f1
HS
1872 0x483f8, 0x483fc,
1873 0x49304, 0x493c4,
8119c018
HS
1874 0x49400, 0x4940c,
1875 0x49414, 0x4941c,
812034f1 1876 0x49480, 0x494d0,
8119c018
HS
1877 0x4c000, 0x4c054,
1878 0x4c05c, 0x4c078,
1879 0x4c0c0, 0x4c174,
1880 0x4c180, 0x4c1ac,
1881 0x4c1b4, 0x4c1b8,
1882 0x4c1c0, 0x4c254,
1883 0x4c25c, 0x4c278,
1884 0x4c2c0, 0x4c374,
1885 0x4c380, 0x4c3ac,
1886 0x4c3b4, 0x4c3b8,
1887 0x4c3c0, 0x4c454,
1888 0x4c45c, 0x4c478,
1889 0x4c4c0, 0x4c574,
1890 0x4c580, 0x4c5ac,
1891 0x4c5b4, 0x4c5b8,
1892 0x4c5c0, 0x4c654,
1893 0x4c65c, 0x4c678,
1894 0x4c6c0, 0x4c774,
1895 0x4c780, 0x4c7ac,
1896 0x4c7b4, 0x4c7b8,
1897 0x4c7c0, 0x4c854,
1898 0x4c85c, 0x4c878,
1899 0x4c8c0, 0x4c974,
1900 0x4c980, 0x4c9ac,
1901 0x4c9b4, 0x4c9b8,
1902 0x4c9c0, 0x4c9fc,
1903 0x4d000, 0x4d004,
1904 0x4d010, 0x4d030,
1905 0x4d040, 0x4d060,
1906 0x4d068, 0x4d068,
812034f1
HS
1907 0x4d080, 0x4d084,
1908 0x4d0a0, 0x4d0b0,
8119c018
HS
1909 0x4d200, 0x4d204,
1910 0x4d210, 0x4d230,
1911 0x4d240, 0x4d260,
1912 0x4d268, 0x4d268,
812034f1
HS
1913 0x4d280, 0x4d284,
1914 0x4d2a0, 0x4d2b0,
1915 0x4e0c0, 0x4e0e4,
8119c018
HS
1916 0x4f000, 0x4f03c,
1917 0x4f044, 0x4f08c,
812034f1 1918 0x4f200, 0x4f250,
8119c018
HS
1919 0x4f400, 0x4f408,
1920 0x4f414, 0x4f420,
812034f1
HS
1921 0x4f600, 0x4f618,
1922 0x4f800, 0x4f814,
8119c018
HS
1923 0x50000, 0x50084,
1924 0x50090, 0x500cc,
812034f1 1925 0x50400, 0x50400,
8119c018
HS
1926 0x50800, 0x50884,
1927 0x50890, 0x508cc,
812034f1
HS
1928 0x50c00, 0x50c00,
1929 0x51000, 0x5101c,
1930 0x51300, 0x51308,
1931 };
1932
ab4b583b 1933 static const unsigned int t6_reg_ranges[] = {
8119c018
HS
1934 0x1008, 0x101c,
1935 0x1024, 0x10a8,
1936 0x10b4, 0x10f8,
1937 0x1100, 0x1114,
1938 0x111c, 0x112c,
1939 0x1138, 0x113c,
1940 0x1144, 0x114c,
1941 0x1180, 0x1184,
1942 0x1190, 0x1194,
1943 0x11a0, 0x11a4,
1944 0x11b0, 0x11b4,
676d6a75
HS
1945 0x11fc, 0x1258,
1946 0x1280, 0x12d4,
1947 0x12d9, 0x12d9,
1948 0x12de, 0x12de,
1949 0x12e3, 0x12e3,
1950 0x12e8, 0x133c,
ab4b583b
HS
1951 0x1800, 0x18fc,
1952 0x3000, 0x302c,
8119c018
HS
1953 0x3060, 0x30b0,
1954 0x30b8, 0x30d8,
ab4b583b
HS
1955 0x30e0, 0x30fc,
1956 0x3140, 0x357c,
1957 0x35a8, 0x35cc,
1958 0x35ec, 0x35ec,
1959 0x3600, 0x5624,
8119c018
HS
1960 0x56cc, 0x56ec,
1961 0x56f4, 0x5720,
1962 0x5728, 0x575c,
ab4b583b 1963 0x580c, 0x5814,
8119c018
HS
1964 0x5890, 0x589c,
1965 0x58a4, 0x58ac,
1966 0x58b8, 0x58bc,
ab4b583b
HS
1967 0x5940, 0x595c,
1968 0x5980, 0x598c,
8119c018
HS
1969 0x59b0, 0x59c8,
1970 0x59d0, 0x59dc,
ab4b583b
HS
1971 0x59fc, 0x5a18,
1972 0x5a60, 0x5a6c,
8119c018
HS
1973 0x5a80, 0x5a8c,
1974 0x5a94, 0x5a9c,
ab4b583b 1975 0x5b94, 0x5bfc,
8119c018
HS
1976 0x5c10, 0x5e48,
1977 0x5e50, 0x5e94,
1978 0x5ea0, 0x5eb0,
1979 0x5ec0, 0x5ec0,
676d6a75 1980 0x5ec8, 0x5ed0,
8119c018
HS
1981 0x6000, 0x6020,
1982 0x6028, 0x6040,
1983 0x6058, 0x609c,
1984 0x60a8, 0x619c,
ab4b583b
HS
1985 0x7700, 0x7798,
1986 0x77c0, 0x7880,
1987 0x78cc, 0x78fc,
8119c018
HS
1988 0x7b00, 0x7b58,
1989 0x7b60, 0x7b84,
1990 0x7b8c, 0x7c54,
1991 0x7d00, 0x7d38,
1992 0x7d40, 0x7d84,
1993 0x7d8c, 0x7ddc,
1994 0x7de4, 0x7e04,
1995 0x7e10, 0x7e1c,
1996 0x7e24, 0x7e38,
1997 0x7e40, 0x7e44,
1998 0x7e4c, 0x7e78,
1999 0x7e80, 0x7edc,
2000 0x7ee8, 0x7efc,
f109ff11 2001 0x8dc0, 0x8de4,
8119c018
HS
2002 0x8df8, 0x8e04,
2003 0x8e10, 0x8e84,
ab4b583b 2004 0x8ea0, 0x8f88,
8119c018
HS
2005 0x8fb8, 0x9058,
2006 0x9060, 0x9060,
2007 0x9068, 0x90f8,
2008 0x9100, 0x9124,
ab4b583b 2009 0x9400, 0x9470,
8119c018
HS
2010 0x9600, 0x9600,
2011 0x9608, 0x9638,
2012 0x9640, 0x9704,
2013 0x9710, 0x971c,
ab4b583b
HS
2014 0x9800, 0x9808,
2015 0x9820, 0x983c,
2016 0x9850, 0x9864,
2017 0x9c00, 0x9c6c,
2018 0x9c80, 0x9cec,
2019 0x9d00, 0x9d6c,
2020 0x9d80, 0x9dec,
2021 0x9e00, 0x9e6c,
2022 0x9e80, 0x9eec,
2023 0x9f00, 0x9f6c,
2024 0x9f80, 0xa020,
2025 0xd004, 0xd03c,
5b4e83e1 2026 0xd100, 0xd118,
8119c018
HS
2027 0xd200, 0xd214,
2028 0xd220, 0xd234,
2029 0xd240, 0xd254,
2030 0xd260, 0xd274,
2031 0xd280, 0xd294,
2032 0xd2a0, 0xd2b4,
2033 0xd2c0, 0xd2d4,
2034 0xd2e0, 0xd2f4,
2035 0xd300, 0xd31c,
ab4b583b
HS
2036 0xdfc0, 0xdfe0,
2037 0xe000, 0xf008,
2038 0x11000, 0x11014,
8119c018
HS
2039 0x11048, 0x1106c,
2040 0x11074, 0x11088,
2041 0x11098, 0x11120,
2042 0x1112c, 0x1117c,
2043 0x11190, 0x112e0,
ab4b583b 2044 0x11300, 0x1130c,
5b4e83e1 2045 0x12000, 0x1206c,
ab4b583b
HS
2046 0x19040, 0x1906c,
2047 0x19078, 0x19080,
8119c018
HS
2048 0x1908c, 0x190e8,
2049 0x190f0, 0x190f8,
2050 0x19100, 0x19110,
2051 0x19120, 0x19124,
2052 0x19150, 0x19194,
2053 0x1919c, 0x191b0,
ab4b583b 2054 0x191d0, 0x191e8,
676d6a75
HS
2055 0x19238, 0x19290,
2056 0x192a4, 0x192b0,
8119c018
HS
2057 0x192bc, 0x192bc,
2058 0x19348, 0x1934c,
2059 0x193f8, 0x19418,
2060 0x19420, 0x19428,
2061 0x19430, 0x19444,
2062 0x1944c, 0x1946c,
2063 0x19474, 0x19474,
ab4b583b
HS
2064 0x19490, 0x194cc,
2065 0x194f0, 0x194f8,
8119c018
HS
2066 0x19c00, 0x19c48,
2067 0x19c50, 0x19c80,
2068 0x19c94, 0x19c98,
2069 0x19ca0, 0x19cbc,
2070 0x19ce4, 0x19ce4,
2071 0x19cf0, 0x19cf8,
2072 0x19d00, 0x19d28,
ab4b583b 2073 0x19d50, 0x19d78,
8119c018
HS
2074 0x19d94, 0x19d98,
2075 0x19da0, 0x19dc8,
ab4b583b
HS
2076 0x19df0, 0x19e10,
2077 0x19e50, 0x19e6c,
8119c018
HS
2078 0x19ea0, 0x19ebc,
2079 0x19ec4, 0x19ef4,
2080 0x19f04, 0x19f2c,
2081 0x19f34, 0x19f34,
ab4b583b
HS
2082 0x19f40, 0x19f50,
2083 0x19f90, 0x19fac,
8119c018
HS
2084 0x19fc4, 0x19fc8,
2085 0x19fd0, 0x19fe4,
2086 0x1a000, 0x1a004,
2087 0x1a010, 0x1a06c,
2088 0x1a0b0, 0x1a0e4,
2089 0x1a0ec, 0x1a0f8,
2090 0x1a100, 0x1a108,
2091 0x1a114, 0x1a120,
2092 0x1a128, 0x1a130,
2093 0x1a138, 0x1a138,
ab4b583b
HS
2094 0x1a190, 0x1a1c4,
2095 0x1a1fc, 0x1a1fc,
2096 0x1e008, 0x1e00c,
8119c018
HS
2097 0x1e040, 0x1e044,
2098 0x1e04c, 0x1e04c,
ab4b583b
HS
2099 0x1e284, 0x1e290,
2100 0x1e2c0, 0x1e2c0,
2101 0x1e2e0, 0x1e2e0,
2102 0x1e300, 0x1e384,
2103 0x1e3c0, 0x1e3c8,
2104 0x1e408, 0x1e40c,
8119c018
HS
2105 0x1e440, 0x1e444,
2106 0x1e44c, 0x1e44c,
ab4b583b
HS
2107 0x1e684, 0x1e690,
2108 0x1e6c0, 0x1e6c0,
2109 0x1e6e0, 0x1e6e0,
2110 0x1e700, 0x1e784,
2111 0x1e7c0, 0x1e7c8,
2112 0x1e808, 0x1e80c,
8119c018
HS
2113 0x1e840, 0x1e844,
2114 0x1e84c, 0x1e84c,
ab4b583b
HS
2115 0x1ea84, 0x1ea90,
2116 0x1eac0, 0x1eac0,
2117 0x1eae0, 0x1eae0,
2118 0x1eb00, 0x1eb84,
2119 0x1ebc0, 0x1ebc8,
2120 0x1ec08, 0x1ec0c,
8119c018
HS
2121 0x1ec40, 0x1ec44,
2122 0x1ec4c, 0x1ec4c,
ab4b583b
HS
2123 0x1ee84, 0x1ee90,
2124 0x1eec0, 0x1eec0,
2125 0x1eee0, 0x1eee0,
2126 0x1ef00, 0x1ef84,
2127 0x1efc0, 0x1efc8,
2128 0x1f008, 0x1f00c,
8119c018
HS
2129 0x1f040, 0x1f044,
2130 0x1f04c, 0x1f04c,
ab4b583b
HS
2131 0x1f284, 0x1f290,
2132 0x1f2c0, 0x1f2c0,
2133 0x1f2e0, 0x1f2e0,
2134 0x1f300, 0x1f384,
2135 0x1f3c0, 0x1f3c8,
2136 0x1f408, 0x1f40c,
8119c018
HS
2137 0x1f440, 0x1f444,
2138 0x1f44c, 0x1f44c,
ab4b583b
HS
2139 0x1f684, 0x1f690,
2140 0x1f6c0, 0x1f6c0,
2141 0x1f6e0, 0x1f6e0,
2142 0x1f700, 0x1f784,
2143 0x1f7c0, 0x1f7c8,
2144 0x1f808, 0x1f80c,
8119c018
HS
2145 0x1f840, 0x1f844,
2146 0x1f84c, 0x1f84c,
ab4b583b
HS
2147 0x1fa84, 0x1fa90,
2148 0x1fac0, 0x1fac0,
2149 0x1fae0, 0x1fae0,
2150 0x1fb00, 0x1fb84,
2151 0x1fbc0, 0x1fbc8,
2152 0x1fc08, 0x1fc0c,
8119c018
HS
2153 0x1fc40, 0x1fc44,
2154 0x1fc4c, 0x1fc4c,
ab4b583b
HS
2155 0x1fe84, 0x1fe90,
2156 0x1fec0, 0x1fec0,
2157 0x1fee0, 0x1fee0,
2158 0x1ff00, 0x1ff84,
2159 0x1ffc0, 0x1ffc8,
8119c018
HS
2160 0x30000, 0x30030,
2161 0x30038, 0x30038,
2162 0x30040, 0x30040,
2163 0x30048, 0x30048,
2164 0x30050, 0x30050,
2165 0x3005c, 0x30060,
2166 0x30068, 0x30068,
2167 0x30070, 0x30070,
2168 0x30100, 0x30168,
2169 0x30190, 0x301a0,
2170 0x301a8, 0x301b8,
2171 0x301c4, 0x301c8,
2172 0x301d0, 0x301d0,
f109ff11 2173 0x30200, 0x30320,
8119c018
HS
2174 0x30400, 0x304b4,
2175 0x304c0, 0x3052c,
ab4b583b 2176 0x30540, 0x3061c,
8119c018 2177 0x30800, 0x308a0,
ab4b583b
HS
2178 0x308c0, 0x30908,
2179 0x30910, 0x309b8,
2180 0x30a00, 0x30a04,
8119c018
HS
2181 0x30a0c, 0x30a14,
2182 0x30a1c, 0x30a2c,
ab4b583b 2183 0x30a44, 0x30a50,
8119c018
HS
2184 0x30a74, 0x30a74,
2185 0x30a7c, 0x30afc,
2186 0x30b08, 0x30c24,
2187 0x30d00, 0x30d14,
2188 0x30d1c, 0x30d3c,
2189 0x30d44, 0x30d4c,
2190 0x30d54, 0x30d74,
2191 0x30d7c, 0x30d7c,
ab4b583b
HS
2192 0x30de0, 0x30de0,
2193 0x30e00, 0x30ed4,
2194 0x30f00, 0x30fa4,
2195 0x30fc0, 0x30fc4,
2196 0x31000, 0x31004,
2197 0x31080, 0x310fc,
2198 0x31208, 0x31220,
2199 0x3123c, 0x31254,
2200 0x31300, 0x31300,
2201 0x31308, 0x3131c,
2202 0x31338, 0x3133c,
2203 0x31380, 0x31380,
2204 0x31388, 0x313a8,
2205 0x313b4, 0x313b4,
2206 0x31400, 0x31420,
2207 0x31438, 0x3143c,
2208 0x31480, 0x31480,
2209 0x314a8, 0x314a8,
2210 0x314b0, 0x314b4,
2211 0x314c8, 0x314d4,
2212 0x31a40, 0x31a4c,
2213 0x31af0, 0x31b20,
2214 0x31b38, 0x31b3c,
2215 0x31b80, 0x31b80,
2216 0x31ba8, 0x31ba8,
2217 0x31bb0, 0x31bb4,
2218 0x31bc8, 0x31bd4,
2219 0x32140, 0x3218c,
8119c018
HS
2220 0x321f0, 0x321f4,
2221 0x32200, 0x32200,
ab4b583b
HS
2222 0x32218, 0x32218,
2223 0x32400, 0x32400,
2224 0x32408, 0x3241c,
2225 0x32618, 0x32620,
2226 0x32664, 0x32664,
2227 0x326a8, 0x326a8,
2228 0x326ec, 0x326ec,
2229 0x32a00, 0x32abc,
8119c018
HS
2230 0x32b00, 0x32b38,
2231 0x32b40, 0x32b58,
2232 0x32b60, 0x32b78,
ab4b583b
HS
2233 0x32c00, 0x32c00,
2234 0x32c08, 0x32c3c,
2235 0x32e00, 0x32e2c,
2236 0x32f00, 0x32f2c,
8119c018
HS
2237 0x33000, 0x3302c,
2238 0x33034, 0x33050,
2239 0x33058, 0x33058,
2240 0x33060, 0x3308c,
2241 0x3309c, 0x330ac,
2242 0x330c0, 0x330c0,
2243 0x330c8, 0x330d0,
2244 0x330d8, 0x330e0,
2245 0x330ec, 0x3312c,
2246 0x33134, 0x33150,
2247 0x33158, 0x33158,
2248 0x33160, 0x3318c,
2249 0x3319c, 0x331ac,
2250 0x331c0, 0x331c0,
2251 0x331c8, 0x331d0,
2252 0x331d8, 0x331e0,
2253 0x331ec, 0x33290,
2254 0x33298, 0x332c4,
2255 0x332e4, 0x33390,
2256 0x33398, 0x333c4,
2257 0x333e4, 0x3342c,
2258 0x33434, 0x33450,
2259 0x33458, 0x33458,
2260 0x33460, 0x3348c,
2261 0x3349c, 0x334ac,
2262 0x334c0, 0x334c0,
2263 0x334c8, 0x334d0,
2264 0x334d8, 0x334e0,
2265 0x334ec, 0x3352c,
2266 0x33534, 0x33550,
2267 0x33558, 0x33558,
2268 0x33560, 0x3358c,
2269 0x3359c, 0x335ac,
2270 0x335c0, 0x335c0,
2271 0x335c8, 0x335d0,
2272 0x335d8, 0x335e0,
2273 0x335ec, 0x33690,
2274 0x33698, 0x336c4,
2275 0x336e4, 0x33790,
2276 0x33798, 0x337c4,
ab4b583b
HS
2277 0x337e4, 0x337fc,
2278 0x33814, 0x33814,
2279 0x33854, 0x33868,
2280 0x33880, 0x3388c,
2281 0x338c0, 0x338d0,
2282 0x338e8, 0x338ec,
8119c018
HS
2283 0x33900, 0x3392c,
2284 0x33934, 0x33950,
2285 0x33958, 0x33958,
2286 0x33960, 0x3398c,
2287 0x3399c, 0x339ac,
2288 0x339c0, 0x339c0,
2289 0x339c8, 0x339d0,
2290 0x339d8, 0x339e0,
2291 0x339ec, 0x33a90,
2292 0x33a98, 0x33ac4,
ab4b583b 2293 0x33ae4, 0x33b10,
8119c018
HS
2294 0x33b24, 0x33b28,
2295 0x33b38, 0x33b50,
ab4b583b 2296 0x33bf0, 0x33c10,
8119c018
HS
2297 0x33c24, 0x33c28,
2298 0x33c38, 0x33c50,
ab4b583b 2299 0x33cf0, 0x33cfc,
8119c018
HS
2300 0x34000, 0x34030,
2301 0x34038, 0x34038,
2302 0x34040, 0x34040,
2303 0x34048, 0x34048,
2304 0x34050, 0x34050,
2305 0x3405c, 0x34060,
2306 0x34068, 0x34068,
2307 0x34070, 0x34070,
2308 0x34100, 0x34168,
2309 0x34190, 0x341a0,
2310 0x341a8, 0x341b8,
2311 0x341c4, 0x341c8,
2312 0x341d0, 0x341d0,
f109ff11 2313 0x34200, 0x34320,
8119c018
HS
2314 0x34400, 0x344b4,
2315 0x344c0, 0x3452c,
ab4b583b 2316 0x34540, 0x3461c,
8119c018 2317 0x34800, 0x348a0,
ab4b583b
HS
2318 0x348c0, 0x34908,
2319 0x34910, 0x349b8,
2320 0x34a00, 0x34a04,
8119c018
HS
2321 0x34a0c, 0x34a14,
2322 0x34a1c, 0x34a2c,
ab4b583b 2323 0x34a44, 0x34a50,
8119c018
HS
2324 0x34a74, 0x34a74,
2325 0x34a7c, 0x34afc,
2326 0x34b08, 0x34c24,
2327 0x34d00, 0x34d14,
2328 0x34d1c, 0x34d3c,
2329 0x34d44, 0x34d4c,
2330 0x34d54, 0x34d74,
2331 0x34d7c, 0x34d7c,
ab4b583b
HS
2332 0x34de0, 0x34de0,
2333 0x34e00, 0x34ed4,
2334 0x34f00, 0x34fa4,
2335 0x34fc0, 0x34fc4,
2336 0x35000, 0x35004,
2337 0x35080, 0x350fc,
2338 0x35208, 0x35220,
2339 0x3523c, 0x35254,
2340 0x35300, 0x35300,
2341 0x35308, 0x3531c,
2342 0x35338, 0x3533c,
2343 0x35380, 0x35380,
2344 0x35388, 0x353a8,
2345 0x353b4, 0x353b4,
2346 0x35400, 0x35420,
2347 0x35438, 0x3543c,
2348 0x35480, 0x35480,
2349 0x354a8, 0x354a8,
2350 0x354b0, 0x354b4,
2351 0x354c8, 0x354d4,
2352 0x35a40, 0x35a4c,
2353 0x35af0, 0x35b20,
2354 0x35b38, 0x35b3c,
2355 0x35b80, 0x35b80,
2356 0x35ba8, 0x35ba8,
2357 0x35bb0, 0x35bb4,
2358 0x35bc8, 0x35bd4,
2359 0x36140, 0x3618c,
8119c018
HS
2360 0x361f0, 0x361f4,
2361 0x36200, 0x36200,
ab4b583b
HS
2362 0x36218, 0x36218,
2363 0x36400, 0x36400,
2364 0x36408, 0x3641c,
2365 0x36618, 0x36620,
2366 0x36664, 0x36664,
2367 0x366a8, 0x366a8,
2368 0x366ec, 0x366ec,
2369 0x36a00, 0x36abc,
8119c018
HS
2370 0x36b00, 0x36b38,
2371 0x36b40, 0x36b58,
2372 0x36b60, 0x36b78,
ab4b583b
HS
2373 0x36c00, 0x36c00,
2374 0x36c08, 0x36c3c,
2375 0x36e00, 0x36e2c,
2376 0x36f00, 0x36f2c,
8119c018
HS
2377 0x37000, 0x3702c,
2378 0x37034, 0x37050,
2379 0x37058, 0x37058,
2380 0x37060, 0x3708c,
2381 0x3709c, 0x370ac,
2382 0x370c0, 0x370c0,
2383 0x370c8, 0x370d0,
2384 0x370d8, 0x370e0,
2385 0x370ec, 0x3712c,
2386 0x37134, 0x37150,
2387 0x37158, 0x37158,
2388 0x37160, 0x3718c,
2389 0x3719c, 0x371ac,
2390 0x371c0, 0x371c0,
2391 0x371c8, 0x371d0,
2392 0x371d8, 0x371e0,
2393 0x371ec, 0x37290,
2394 0x37298, 0x372c4,
2395 0x372e4, 0x37390,
2396 0x37398, 0x373c4,
2397 0x373e4, 0x3742c,
2398 0x37434, 0x37450,
2399 0x37458, 0x37458,
2400 0x37460, 0x3748c,
2401 0x3749c, 0x374ac,
2402 0x374c0, 0x374c0,
2403 0x374c8, 0x374d0,
2404 0x374d8, 0x374e0,
2405 0x374ec, 0x3752c,
2406 0x37534, 0x37550,
2407 0x37558, 0x37558,
2408 0x37560, 0x3758c,
2409 0x3759c, 0x375ac,
2410 0x375c0, 0x375c0,
2411 0x375c8, 0x375d0,
2412 0x375d8, 0x375e0,
2413 0x375ec, 0x37690,
2414 0x37698, 0x376c4,
2415 0x376e4, 0x37790,
2416 0x37798, 0x377c4,
ab4b583b
HS
2417 0x377e4, 0x377fc,
2418 0x37814, 0x37814,
2419 0x37854, 0x37868,
2420 0x37880, 0x3788c,
2421 0x378c0, 0x378d0,
2422 0x378e8, 0x378ec,
8119c018
HS
2423 0x37900, 0x3792c,
2424 0x37934, 0x37950,
2425 0x37958, 0x37958,
2426 0x37960, 0x3798c,
2427 0x3799c, 0x379ac,
2428 0x379c0, 0x379c0,
2429 0x379c8, 0x379d0,
2430 0x379d8, 0x379e0,
2431 0x379ec, 0x37a90,
2432 0x37a98, 0x37ac4,
ab4b583b 2433 0x37ae4, 0x37b10,
8119c018
HS
2434 0x37b24, 0x37b28,
2435 0x37b38, 0x37b50,
ab4b583b 2436 0x37bf0, 0x37c10,
8119c018
HS
2437 0x37c24, 0x37c28,
2438 0x37c38, 0x37c50,
ab4b583b
HS
2439 0x37cf0, 0x37cfc,
2440 0x40040, 0x40040,
2441 0x40080, 0x40084,
2442 0x40100, 0x40100,
2443 0x40140, 0x401bc,
2444 0x40200, 0x40214,
2445 0x40228, 0x40228,
2446 0x40240, 0x40258,
2447 0x40280, 0x40280,
2448 0x40304, 0x40304,
2449 0x40330, 0x4033c,
676d6a75
HS
2450 0x41304, 0x413b8,
2451 0x413c0, 0x413c8,
8119c018
HS
2452 0x413d0, 0x413dc,
2453 0x413f0, 0x413f0,
2454 0x41400, 0x4140c,
2455 0x41414, 0x4141c,
ab4b583b
HS
2456 0x41480, 0x414d0,
2457 0x44000, 0x4407c,
8119c018
HS
2458 0x440c0, 0x441ac,
2459 0x441b4, 0x4427c,
2460 0x442c0, 0x443ac,
2461 0x443b4, 0x4447c,
2462 0x444c0, 0x445ac,
2463 0x445b4, 0x4467c,
2464 0x446c0, 0x447ac,
2465 0x447b4, 0x4487c,
2466 0x448c0, 0x449ac,
2467 0x449b4, 0x44a7c,
2468 0x44ac0, 0x44bac,
2469 0x44bb4, 0x44c7c,
2470 0x44cc0, 0x44dac,
2471 0x44db4, 0x44e7c,
2472 0x44ec0, 0x44fac,
2473 0x44fb4, 0x4507c,
2474 0x450c0, 0x451ac,
2475 0x451b4, 0x451fc,
2476 0x45800, 0x45804,
2477 0x45810, 0x45830,
2478 0x45840, 0x45860,
2479 0x45868, 0x45868,
ab4b583b
HS
2480 0x45880, 0x45884,
2481 0x458a0, 0x458b0,
8119c018
HS
2482 0x45a00, 0x45a04,
2483 0x45a10, 0x45a30,
2484 0x45a40, 0x45a60,
2485 0x45a68, 0x45a68,
ab4b583b
HS
2486 0x45a80, 0x45a84,
2487 0x45aa0, 0x45ab0,
2488 0x460c0, 0x460e4,
8119c018
HS
2489 0x47000, 0x4703c,
2490 0x47044, 0x4708c,
ab4b583b 2491 0x47200, 0x47250,
8119c018
HS
2492 0x47400, 0x47408,
2493 0x47414, 0x47420,
ab4b583b 2494 0x47600, 0x47618,
8119c018
HS
2495 0x47800, 0x47814,
2496 0x47820, 0x4782c,
2497 0x50000, 0x50084,
2498 0x50090, 0x500cc,
2499 0x50300, 0x50384,
ab4b583b 2500 0x50400, 0x50400,
8119c018
HS
2501 0x50800, 0x50884,
2502 0x50890, 0x508cc,
2503 0x50b00, 0x50b84,
ab4b583b 2504 0x50c00, 0x50c00,
8119c018
HS
2505 0x51000, 0x51020,
2506 0x51028, 0x510b0,
ab4b583b
HS
2507 0x51300, 0x51324,
2508 };
2509
812034f1
HS
2510 u32 *buf_end = (u32 *)((char *)buf + buf_size);
2511 const unsigned int *reg_ranges;
2512 int reg_ranges_size, range;
2513 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2514
2515 /* Select the right set of register ranges to dump depending on the
2516 * adapter chip type.
2517 */
2518 switch (chip_version) {
2519 case CHELSIO_T4:
2520 reg_ranges = t4_reg_ranges;
2521 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2522 break;
2523
2524 case CHELSIO_T5:
2525 reg_ranges = t5_reg_ranges;
2526 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2527 break;
2528
ab4b583b
HS
2529 case CHELSIO_T6:
2530 reg_ranges = t6_reg_ranges;
2531 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2532 break;
2533
812034f1
HS
2534 default:
2535 dev_err(adap->pdev_dev,
2536 "Unsupported chip version %d\n", chip_version);
2537 return;
2538 }
2539
2540 /* Clear the register buffer and insert the appropriate register
2541 * values selected by the above register ranges.
2542 */
2543 memset(buf, 0, buf_size);
2544 for (range = 0; range < reg_ranges_size; range += 2) {
2545 unsigned int reg = reg_ranges[range];
2546 unsigned int last_reg = reg_ranges[range + 1];
2547 u32 *bufp = (u32 *)((char *)buf + reg);
2548
2549 /* Iterate across the register range filling in the register
2550 * buffer but don't write past the end of the register buffer.
2551 */
2552 while (reg <= last_reg && bufp < buf_end) {
2553 *bufp++ = t4_read_reg(adap, reg);
2554 reg += sizeof(u32);
2555 }
2556 }
2557}
2558
56d36be4 2559#define EEPROM_STAT_ADDR 0x7bfc
47ce9c48
SR
2560#define VPD_BASE 0x400
2561#define VPD_BASE_OLD 0
0a57a536 2562#define VPD_LEN 1024
63a92fe6 2563#define CHELSIO_VPD_UNIQUE_ID 0x82
56d36be4
DM
2564
2565/**
2566 * t4_seeprom_wp - enable/disable EEPROM write protection
2567 * @adapter: the adapter
2568 * @enable: whether to enable or disable write protection
2569 *
2570 * Enables or disables write protection on the serial EEPROM.
2571 */
2572int t4_seeprom_wp(struct adapter *adapter, bool enable)
2573{
2574 unsigned int v = enable ? 0xc : 0;
2575 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2576 return ret < 0 ? ret : 0;
2577}
2578
2579/**
098ef6c2 2580 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
56d36be4
DM
2581 * @adapter: adapter to read
2582 * @p: where to store the parameters
2583 *
2584 * Reads card parameters stored in VPD EEPROM.
2585 */
098ef6c2 2586int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
56d36be4 2587{
098ef6c2
HS
2588 int i, ret = 0, addr;
2589 int ec, sn, pn, na;
8c357ebd 2590 u8 *vpd, csum;
23d88e1d 2591 unsigned int vpdr_len, kw_offset, id_len;
56d36be4 2592
8c357ebd
VP
2593 vpd = vmalloc(VPD_LEN);
2594 if (!vpd)
2595 return -ENOMEM;
2596
098ef6c2
HS
2597 /* Card information normally starts at VPD_BASE but early cards had
2598 * it at 0.
2599 */
47ce9c48
SR
2600 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2601 if (ret < 0)
2602 goto out;
63a92fe6
HS
2603
2604 /* The VPD shall have a unique identifier specified by the PCI SIG.
2605 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2606 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2607 * is expected to automatically put this entry at the
2608 * beginning of the VPD.
2609 */
2610 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
47ce9c48
SR
2611
2612 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
56d36be4 2613 if (ret < 0)
8c357ebd 2614 goto out;
56d36be4 2615
23d88e1d
DM
2616 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2617 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
8c357ebd
VP
2618 ret = -EINVAL;
2619 goto out;
23d88e1d
DM
2620 }
2621
2622 id_len = pci_vpd_lrdt_size(vpd);
2623 if (id_len > ID_LEN)
2624 id_len = ID_LEN;
2625
2626 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2627 if (i < 0) {
2628 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
8c357ebd
VP
2629 ret = -EINVAL;
2630 goto out;
23d88e1d
DM
2631 }
2632
2633 vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2634 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2635 if (vpdr_len + kw_offset > VPD_LEN) {
226ec5fd 2636 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
8c357ebd
VP
2637 ret = -EINVAL;
2638 goto out;
226ec5fd
DM
2639 }
2640
2641#define FIND_VPD_KW(var, name) do { \
23d88e1d 2642 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
226ec5fd
DM
2643 if (var < 0) { \
2644 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
8c357ebd
VP
2645 ret = -EINVAL; \
2646 goto out; \
226ec5fd
DM
2647 } \
2648 var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2649} while (0)
2650
2651 FIND_VPD_KW(i, "RV");
2652 for (csum = 0; i >= 0; i--)
2653 csum += vpd[i];
56d36be4
DM
2654
2655 if (csum) {
2656 dev_err(adapter->pdev_dev,
2657 "corrupted VPD EEPROM, actual csum %u\n", csum);
8c357ebd
VP
2658 ret = -EINVAL;
2659 goto out;
56d36be4
DM
2660 }
2661
226ec5fd
DM
2662 FIND_VPD_KW(ec, "EC");
2663 FIND_VPD_KW(sn, "SN");
a94cd705 2664 FIND_VPD_KW(pn, "PN");
098ef6c2 2665 FIND_VPD_KW(na, "NA");
226ec5fd
DM
2666#undef FIND_VPD_KW
2667
23d88e1d 2668 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
56d36be4 2669 strim(p->id);
226ec5fd 2670 memcpy(p->ec, vpd + ec, EC_LEN);
56d36be4 2671 strim(p->ec);
226ec5fd
DM
2672 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2673 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
56d36be4 2674 strim(p->sn);
63a92fe6 2675 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
a94cd705
KS
2676 memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2677 strim(p->pn);
098ef6c2
HS
2678 memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2679 strim((char *)p->na);
636f9d37 2680
098ef6c2
HS
2681out:
2682 vfree(vpd);
2683 return ret;
2684}
2685
2686/**
2687 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2688 * @adapter: adapter to read
2689 * @p: where to store the parameters
2690 *
2691 * Reads card parameters stored in VPD EEPROM and retrieves the Core
2692 * Clock. This can only be called after a connection to the firmware
2693 * is established.
2694 */
2695int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2696{
2697 u32 cclk_param, cclk_val;
2698 int ret;
2699
2700 /* Grab the raw VPD parameters.
2701 */
2702 ret = t4_get_raw_vpd_params(adapter, p);
2703 if (ret)
2704 return ret;
2705
2706 /* Ask firmware for the Core Clock since it knows how to translate the
636f9d37
VP
2707 * Reference Clock ('V2') VPD field into a Core Clock value ...
2708 */
5167865a
HS
2709 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2710 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
098ef6c2 2711 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
636f9d37 2712 1, &cclk_param, &cclk_val);
8c357ebd 2713
636f9d37
VP
2714 if (ret)
2715 return ret;
2716 p->cclk = cclk_val;
2717
56d36be4
DM
2718 return 0;
2719}
2720
2721/* serial flash and firmware constants */
2722enum {
2723 SF_ATTEMPTS = 10, /* max retries for SF operations */
2724
2725 /* flash command opcodes */
2726 SF_PROG_PAGE = 2, /* program page */
2727 SF_WR_DISABLE = 4, /* disable writes */
2728 SF_RD_STATUS = 5, /* read status register */
2729 SF_WR_ENABLE = 6, /* enable writes */
2730 SF_RD_DATA_FAST = 0xb, /* read flash */
900a6596 2731 SF_RD_ID = 0x9f, /* read ID */
56d36be4
DM
2732 SF_ERASE_SECTOR = 0xd8, /* erase sector */
2733
6f1d7210 2734 FW_MAX_SIZE = 16 * SF_SEC_SIZE,
56d36be4
DM
2735};
2736
2737/**
2738 * sf1_read - read data from the serial flash
2739 * @adapter: the adapter
2740 * @byte_cnt: number of bytes to read
2741 * @cont: whether another operation will be chained
2742 * @lock: whether to lock SF for PL access only
2743 * @valp: where to store the read data
2744 *
2745 * Reads up to 4 bytes of data from the serial flash. The location of
2746 * the read needs to be specified prior to calling this by issuing the
2747 * appropriate commands to the serial flash.
2748 */
2749static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2750 int lock, u32 *valp)
2751{
2752 int ret;
2753
2754 if (!byte_cnt || byte_cnt > 4)
2755 return -EINVAL;
0d804338 2756 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
56d36be4 2757 return -EBUSY;
0d804338
HS
2758 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2759 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2760 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
56d36be4 2761 if (!ret)
0d804338 2762 *valp = t4_read_reg(adapter, SF_DATA_A);
56d36be4
DM
2763 return ret;
2764}
2765
2766/**
2767 * sf1_write - write data to the serial flash
2768 * @adapter: the adapter
2769 * @byte_cnt: number of bytes to write
2770 * @cont: whether another operation will be chained
2771 * @lock: whether to lock SF for PL access only
2772 * @val: value to write
2773 *
2774 * Writes up to 4 bytes of data to the serial flash. The location of
2775 * the write needs to be specified prior to calling this by issuing the
2776 * appropriate commands to the serial flash.
2777 */
2778static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2779 int lock, u32 val)
2780{
2781 if (!byte_cnt || byte_cnt > 4)
2782 return -EINVAL;
0d804338 2783 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
56d36be4 2784 return -EBUSY;
0d804338
HS
2785 t4_write_reg(adapter, SF_DATA_A, val);
2786 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2787 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2788 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
56d36be4
DM
2789}
2790
2791/**
2792 * flash_wait_op - wait for a flash operation to complete
2793 * @adapter: the adapter
2794 * @attempts: max number of polls of the status register
2795 * @delay: delay between polls in ms
2796 *
2797 * Wait for a flash operation to complete by polling the status register.
2798 */
2799static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2800{
2801 int ret;
2802 u32 status;
2803
2804 while (1) {
2805 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2806 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2807 return ret;
2808 if (!(status & 1))
2809 return 0;
2810 if (--attempts == 0)
2811 return -EAGAIN;
2812 if (delay)
2813 msleep(delay);
2814 }
2815}
2816
2817/**
2818 * t4_read_flash - read words from serial flash
2819 * @adapter: the adapter
2820 * @addr: the start address for the read
2821 * @nwords: how many 32-bit words to read
2822 * @data: where to store the read data
2823 * @byte_oriented: whether to store data as bytes or as words
2824 *
2825 * Read the specified number of 32-bit words from the serial flash.
2826 * If @byte_oriented is set the read data is stored as a byte array
2827 * (i.e., big-endian), otherwise as 32-bit words in the platform's
dbedd44e 2828 * natural endianness.
56d36be4 2829 */
49216c1c
HS
2830int t4_read_flash(struct adapter *adapter, unsigned int addr,
2831 unsigned int nwords, u32 *data, int byte_oriented)
56d36be4
DM
2832{
2833 int ret;
2834
900a6596 2835 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
56d36be4
DM
2836 return -EINVAL;
2837
2838 addr = swab32(addr) | SF_RD_DATA_FAST;
2839
2840 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2841 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2842 return ret;
2843
2844 for ( ; nwords; nwords--, data++) {
2845 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2846 if (nwords == 1)
0d804338 2847 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
2848 if (ret)
2849 return ret;
2850 if (byte_oriented)
f404f80c 2851 *data = (__force __u32)(cpu_to_be32(*data));
56d36be4
DM
2852 }
2853 return 0;
2854}
2855
2856/**
2857 * t4_write_flash - write up to a page of data to the serial flash
2858 * @adapter: the adapter
2859 * @addr: the start address to write
2860 * @n: length of data to write in bytes
2861 * @data: the data to write
2862 *
2863 * Writes up to a page of data (256 bytes) to the serial flash starting
2864 * at the given address. All the data must be written to the same page.
2865 */
2866static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2867 unsigned int n, const u8 *data)
2868{
2869 int ret;
2870 u32 buf[64];
2871 unsigned int i, c, left, val, offset = addr & 0xff;
2872
900a6596 2873 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
56d36be4
DM
2874 return -EINVAL;
2875
2876 val = swab32(addr) | SF_PROG_PAGE;
2877
2878 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2879 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2880 goto unlock;
2881
2882 for (left = n; left; left -= c) {
2883 c = min(left, 4U);
2884 for (val = 0, i = 0; i < c; ++i)
2885 val = (val << 8) + *data++;
2886
2887 ret = sf1_write(adapter, c, c != left, 1, val);
2888 if (ret)
2889 goto unlock;
2890 }
900a6596 2891 ret = flash_wait_op(adapter, 8, 1);
56d36be4
DM
2892 if (ret)
2893 goto unlock;
2894
0d804338 2895 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
2896
2897 /* Read the page to verify the write succeeded */
2898 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2899 if (ret)
2900 return ret;
2901
2902 if (memcmp(data - n, (u8 *)buf + offset, n)) {
2903 dev_err(adapter->pdev_dev,
2904 "failed to correctly write the flash page at %#x\n",
2905 addr);
2906 return -EIO;
2907 }
2908 return 0;
2909
2910unlock:
0d804338 2911 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
2912 return ret;
2913}
2914
2915/**
16e47624 2916 * t4_get_fw_version - read the firmware version
56d36be4
DM
2917 * @adapter: the adapter
2918 * @vers: where to place the version
2919 *
2920 * Reads the FW version from flash.
2921 */
16e47624 2922int t4_get_fw_version(struct adapter *adapter, u32 *vers)
56d36be4 2923{
16e47624
HS
2924 return t4_read_flash(adapter, FLASH_FW_START +
2925 offsetof(struct fw_hdr, fw_ver), 1,
2926 vers, 0);
56d36be4
DM
2927}
2928
2929/**
16e47624 2930 * t4_get_tp_version - read the TP microcode version
56d36be4
DM
2931 * @adapter: the adapter
2932 * @vers: where to place the version
2933 *
2934 * Reads the TP microcode version from flash.
2935 */
16e47624 2936int t4_get_tp_version(struct adapter *adapter, u32 *vers)
56d36be4 2937{
16e47624 2938 return t4_read_flash(adapter, FLASH_FW_START +
900a6596 2939 offsetof(struct fw_hdr, tp_microcode_ver),
56d36be4
DM
2940 1, vers, 0);
2941}
2942
ba3f8cd5
HS
2943/**
2944 * t4_get_exprom_version - return the Expansion ROM version (if any)
2945 * @adapter: the adapter
2946 * @vers: where to place the version
2947 *
2948 * Reads the Expansion ROM header from FLASH and returns the version
2949 * number (if present) through the @vers return value pointer. We return
2950 * this in the Firmware Version Format since it's convenient. Return
2951 * 0 on success, -ENOENT if no Expansion ROM is present.
2952 */
2953int t4_get_exprom_version(struct adapter *adap, u32 *vers)
2954{
2955 struct exprom_header {
2956 unsigned char hdr_arr[16]; /* must start with 0x55aa */
2957 unsigned char hdr_ver[4]; /* Expansion ROM version */
2958 } *hdr;
2959 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2960 sizeof(u32))];
2961 int ret;
2962
2963 ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
2964 ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
2965 0);
2966 if (ret)
2967 return ret;
2968
2969 hdr = (struct exprom_header *)exprom_header_buf;
2970 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2971 return -ENOENT;
2972
2973 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
2974 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
2975 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
2976 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
2977 return 0;
2978}
2979
a69265e9
HS
2980/**
2981 * t4_check_fw_version - check if the FW is supported with this driver
2982 * @adap: the adapter
2983 *
2984 * Checks if an adapter's FW is compatible with the driver. Returns 0
2985 * if there's exact match, a negative error if the version could not be
2986 * read or there's a major version mismatch
2987 */
2988int t4_check_fw_version(struct adapter *adap)
2989{
21d11bd6 2990 int i, ret, major, minor, micro;
a69265e9
HS
2991 int exp_major, exp_minor, exp_micro;
2992 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2993
2994 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
21d11bd6
HS
2995 /* Try multiple times before returning error */
2996 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
2997 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2998
a69265e9
HS
2999 if (ret)
3000 return ret;
3001
3002 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3003 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3004 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3005
3006 switch (chip_version) {
3007 case CHELSIO_T4:
3008 exp_major = T4FW_MIN_VERSION_MAJOR;
3009 exp_minor = T4FW_MIN_VERSION_MINOR;
3010 exp_micro = T4FW_MIN_VERSION_MICRO;
3011 break;
3012 case CHELSIO_T5:
3013 exp_major = T5FW_MIN_VERSION_MAJOR;
3014 exp_minor = T5FW_MIN_VERSION_MINOR;
3015 exp_micro = T5FW_MIN_VERSION_MICRO;
3016 break;
3017 case CHELSIO_T6:
3018 exp_major = T6FW_MIN_VERSION_MAJOR;
3019 exp_minor = T6FW_MIN_VERSION_MINOR;
3020 exp_micro = T6FW_MIN_VERSION_MICRO;
3021 break;
3022 default:
3023 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3024 adap->chip);
3025 return -EINVAL;
3026 }
3027
3028 if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3029 (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3030 dev_err(adap->pdev_dev,
3031 "Card has firmware version %u.%u.%u, minimum "
3032 "supported firmware is %u.%u.%u.\n", major, minor,
3033 micro, exp_major, exp_minor, exp_micro);
3034 return -EFAULT;
3035 }
3036 return 0;
3037}
3038
16e47624
HS
3039/* Is the given firmware API compatible with the one the driver was compiled
3040 * with?
56d36be4 3041 */
16e47624 3042static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
56d36be4 3043{
56d36be4 3044
16e47624
HS
3045 /* short circuit if it's the exact same firmware version */
3046 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3047 return 1;
56d36be4 3048
16e47624
HS
3049#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3050 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3051 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3052 return 1;
3053#undef SAME_INTF
0a57a536 3054
16e47624
HS
3055 return 0;
3056}
56d36be4 3057
16e47624
HS
3058/* The firmware in the filesystem is usable, but should it be installed?
3059 * This routine explains itself in detail if it indicates the filesystem
3060 * firmware should be installed.
3061 */
3062static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3063 int k, int c)
3064{
3065 const char *reason;
3066
3067 if (!card_fw_usable) {
3068 reason = "incompatible or unusable";
3069 goto install;
e69972f5
JH
3070 }
3071
16e47624
HS
3072 if (k > c) {
3073 reason = "older than the version supported with this driver";
3074 goto install;
56d36be4
DM
3075 }
3076
16e47624
HS
3077 return 0;
3078
3079install:
3080 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3081 "installing firmware %u.%u.%u.%u on card.\n",
b2e1a3f0
HS
3082 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3083 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3084 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3085 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
56d36be4 3086
56d36be4
DM
3087 return 1;
3088}
3089
16e47624
HS
3090int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3091 const u8 *fw_data, unsigned int fw_size,
3092 struct fw_hdr *card_fw, enum dev_state state,
3093 int *reset)
3094{
3095 int ret, card_fw_usable, fs_fw_usable;
3096 const struct fw_hdr *fs_fw;
3097 const struct fw_hdr *drv_fw;
3098
3099 drv_fw = &fw_info->fw_hdr;
3100
3101 /* Read the header of the firmware on the card */
3102 ret = -t4_read_flash(adap, FLASH_FW_START,
3103 sizeof(*card_fw) / sizeof(uint32_t),
3104 (uint32_t *)card_fw, 1);
3105 if (ret == 0) {
3106 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3107 } else {
3108 dev_err(adap->pdev_dev,
3109 "Unable to read card's firmware header: %d\n", ret);
3110 card_fw_usable = 0;
3111 }
3112
3113 if (fw_data != NULL) {
3114 fs_fw = (const void *)fw_data;
3115 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3116 } else {
3117 fs_fw = NULL;
3118 fs_fw_usable = 0;
3119 }
3120
3121 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3122 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3123 /* Common case: the firmware on the card is an exact match and
3124 * the filesystem one is an exact match too, or the filesystem
3125 * one is absent/incompatible.
3126 */
3127 } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3128 should_install_fs_fw(adap, card_fw_usable,
3129 be32_to_cpu(fs_fw->fw_ver),
3130 be32_to_cpu(card_fw->fw_ver))) {
3131 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3132 fw_size, 0);
3133 if (ret != 0) {
3134 dev_err(adap->pdev_dev,
3135 "failed to install firmware: %d\n", ret);
3136 goto bye;
3137 }
3138
3139 /* Installed successfully, update the cached header too. */
e3d50738 3140 *card_fw = *fs_fw;
16e47624
HS
3141 card_fw_usable = 1;
3142 *reset = 0; /* already reset as part of load_fw */
3143 }
3144
3145 if (!card_fw_usable) {
3146 uint32_t d, c, k;
3147
3148 d = be32_to_cpu(drv_fw->fw_ver);
3149 c = be32_to_cpu(card_fw->fw_ver);
3150 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3151
3152 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3153 "chip state %d, "
3154 "driver compiled with %d.%d.%d.%d, "
3155 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3156 state,
b2e1a3f0
HS
3157 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3158 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3159 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3160 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3161 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3162 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
16e47624
HS
3163 ret = EINVAL;
3164 goto bye;
3165 }
3166
3167 /* We're using whatever's on the card and it's known to be good. */
3168 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3169 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3170
3171bye:
3172 return ret;
3173}
3174
56d36be4
DM
3175/**
3176 * t4_flash_erase_sectors - erase a range of flash sectors
3177 * @adapter: the adapter
3178 * @start: the first sector to erase
3179 * @end: the last sector to erase
3180 *
3181 * Erases the sectors in the given inclusive range.
3182 */
3183static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3184{
3185 int ret = 0;
3186
c0d5b8cf
HS
3187 if (end >= adapter->params.sf_nsec)
3188 return -EINVAL;
3189
56d36be4
DM
3190 while (start <= end) {
3191 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3192 (ret = sf1_write(adapter, 4, 0, 1,
3193 SF_ERASE_SECTOR | (start << 8))) != 0 ||
900a6596 3194 (ret = flash_wait_op(adapter, 14, 500)) != 0) {
56d36be4
DM
3195 dev_err(adapter->pdev_dev,
3196 "erase of flash sector %d failed, error %d\n",
3197 start, ret);
3198 break;
3199 }
3200 start++;
3201 }
0d804338 3202 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
3203 return ret;
3204}
3205
636f9d37
VP
3206/**
3207 * t4_flash_cfg_addr - return the address of the flash configuration file
3208 * @adapter: the adapter
3209 *
3210 * Return the address within the flash where the Firmware Configuration
3211 * File is stored.
3212 */
3213unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3214{
3215 if (adapter->params.sf_size == 0x100000)
3216 return FLASH_FPGA_CFG_START;
3217 else
3218 return FLASH_CFG_START;
3219}
3220
79af221d
HS
3221/* Return TRUE if the specified firmware matches the adapter. I.e. T4
3222 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead
3223 * and emit an error message for mismatched firmware to save our caller the
3224 * effort ...
3225 */
3226static bool t4_fw_matches_chip(const struct adapter *adap,
3227 const struct fw_hdr *hdr)
3228{
3229 /* The expression below will return FALSE for any unsupported adapter
3230 * which will keep us "honest" in the future ...
3231 */
3232 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3ccc6cf7
HS
3233 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3234 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
79af221d
HS
3235 return true;
3236
3237 dev_err(adap->pdev_dev,
3238 "FW image (%d) is not suitable for this adapter (%d)\n",
3239 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3240 return false;
3241}
3242
56d36be4
DM
3243/**
3244 * t4_load_fw - download firmware
3245 * @adap: the adapter
3246 * @fw_data: the firmware image to write
3247 * @size: image size
3248 *
3249 * Write the supplied firmware image to the card's serial flash.
3250 */
3251int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3252{
3253 u32 csum;
3254 int ret, addr;
3255 unsigned int i;
3256 u8 first_page[SF_PAGE_SIZE];
404d9e3f 3257 const __be32 *p = (const __be32 *)fw_data;
56d36be4 3258 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
900a6596
DM
3259 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3260 unsigned int fw_img_start = adap->params.sf_fw_start;
3261 unsigned int fw_start_sec = fw_img_start / sf_sec_size;
56d36be4
DM
3262
3263 if (!size) {
3264 dev_err(adap->pdev_dev, "FW image has no data\n");
3265 return -EINVAL;
3266 }
3267 if (size & 511) {
3268 dev_err(adap->pdev_dev,
3269 "FW image size not multiple of 512 bytes\n");
3270 return -EINVAL;
3271 }
f404f80c 3272 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
56d36be4
DM
3273 dev_err(adap->pdev_dev,
3274 "FW image size differs from size in FW header\n");
3275 return -EINVAL;
3276 }
3277 if (size > FW_MAX_SIZE) {
3278 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3279 FW_MAX_SIZE);
3280 return -EFBIG;
3281 }
79af221d
HS
3282 if (!t4_fw_matches_chip(adap, hdr))
3283 return -EINVAL;
56d36be4
DM
3284
3285 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
f404f80c 3286 csum += be32_to_cpu(p[i]);
56d36be4
DM
3287
3288 if (csum != 0xffffffff) {
3289 dev_err(adap->pdev_dev,
3290 "corrupted firmware image, checksum %#x\n", csum);
3291 return -EINVAL;
3292 }
3293
900a6596
DM
3294 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
3295 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
56d36be4
DM
3296 if (ret)
3297 goto out;
3298
3299 /*
3300 * We write the correct version at the end so the driver can see a bad
3301 * version if the FW write fails. Start by writing a copy of the
3302 * first page with a bad version.
3303 */
3304 memcpy(first_page, fw_data, SF_PAGE_SIZE);
f404f80c 3305 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
900a6596 3306 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
56d36be4
DM
3307 if (ret)
3308 goto out;
3309
900a6596 3310 addr = fw_img_start;
56d36be4
DM
3311 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3312 addr += SF_PAGE_SIZE;
3313 fw_data += SF_PAGE_SIZE;
3314 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3315 if (ret)
3316 goto out;
3317 }
3318
3319 ret = t4_write_flash(adap,
900a6596 3320 fw_img_start + offsetof(struct fw_hdr, fw_ver),
56d36be4
DM
3321 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3322out:
3323 if (ret)
3324 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3325 ret);
dff04bce
HS
3326 else
3327 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
56d36be4
DM
3328 return ret;
3329}
3330
01b69614
HS
3331/**
3332 * t4_phy_fw_ver - return current PHY firmware version
3333 * @adap: the adapter
3334 * @phy_fw_ver: return value buffer for PHY firmware version
3335 *
3336 * Returns the current version of external PHY firmware on the
3337 * adapter.
3338 */
3339int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3340{
3341 u32 param, val;
3342 int ret;
3343
3344 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3345 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3346 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3347 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
b2612722 3348 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
3349 &param, &val);
3350 if (ret < 0)
3351 return ret;
3352 *phy_fw_ver = val;
3353 return 0;
3354}
3355
3356/**
3357 * t4_load_phy_fw - download port PHY firmware
3358 * @adap: the adapter
3359 * @win: the PCI-E Memory Window index to use for t4_memory_rw()
3360 * @win_lock: the lock to use to guard the memory copy
3361 * @phy_fw_version: function to check PHY firmware versions
3362 * @phy_fw_data: the PHY firmware image to write
3363 * @phy_fw_size: image size
3364 *
3365 * Transfer the specified PHY firmware to the adapter. If a non-NULL
3366 * @phy_fw_version is supplied, then it will be used to determine if
3367 * it's necessary to perform the transfer by comparing the version
3368 * of any existing adapter PHY firmware with that of the passed in
3369 * PHY firmware image. If @win_lock is non-NULL then it will be used
3370 * around the call to t4_memory_rw() which transfers the PHY firmware
3371 * to the adapter.
3372 *
3373 * A negative error number will be returned if an error occurs. If
3374 * version number support is available and there's no need to upgrade
3375 * the firmware, 0 will be returned. If firmware is successfully
3376 * transferred to the adapter, 1 will be retured.
3377 *
3378 * NOTE: some adapters only have local RAM to store the PHY firmware. As
3379 * a result, a RESET of the adapter would cause that RAM to lose its
3380 * contents. Thus, loading PHY firmware on such adapters must happen
3381 * after any FW_RESET_CMDs ...
3382 */
3383int t4_load_phy_fw(struct adapter *adap,
3384 int win, spinlock_t *win_lock,
3385 int (*phy_fw_version)(const u8 *, size_t),
3386 const u8 *phy_fw_data, size_t phy_fw_size)
3387{
3388 unsigned long mtype = 0, maddr = 0;
3389 u32 param, val;
3390 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3391 int ret;
3392
3393 /* If we have version number support, then check to see if the adapter
3394 * already has up-to-date PHY firmware loaded.
3395 */
3396 if (phy_fw_version) {
3397 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3398 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3399 if (ret < 0)
3400 return ret;
3401
3402 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3403 CH_WARN(adap, "PHY Firmware already up-to-date, "
3404 "version %#x\n", cur_phy_fw_ver);
3405 return 0;
3406 }
3407 }
3408
3409 /* Ask the firmware where it wants us to copy the PHY firmware image.
3410 * The size of the file requires a special version of the READ coommand
3411 * which will pass the file size via the values field in PARAMS_CMD and
3412 * retrieve the return value from firmware and place it in the same
3413 * buffer values
3414 */
3415 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3416 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3417 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3418 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3419 val = phy_fw_size;
b2612722 3420 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
3421 &param, &val, 1);
3422 if (ret < 0)
3423 return ret;
3424 mtype = val >> 8;
3425 maddr = (val & 0xff) << 16;
3426
3427 /* Copy the supplied PHY Firmware image to the adapter memory location
3428 * allocated by the adapter firmware.
3429 */
3430 if (win_lock)
3431 spin_lock_bh(win_lock);
3432 ret = t4_memory_rw(adap, win, mtype, maddr,
3433 phy_fw_size, (__be32 *)phy_fw_data,
3434 T4_MEMORY_WRITE);
3435 if (win_lock)
3436 spin_unlock_bh(win_lock);
3437 if (ret)
3438 return ret;
3439
3440 /* Tell the firmware that the PHY firmware image has been written to
3441 * RAM and it can now start copying it over to the PHYs. The chip
3442 * firmware will RESET the affected PHYs as part of this operation
3443 * leaving them running the new PHY firmware image.
3444 */
3445 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3446 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3447 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3448 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
b2612722 3449 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
3450 &param, &val, 30000);
3451
3452 /* If we have version number support, then check to see that the new
3453 * firmware got loaded properly.
3454 */
3455 if (phy_fw_version) {
3456 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3457 if (ret < 0)
3458 return ret;
3459
3460 if (cur_phy_fw_ver != new_phy_fw_vers) {
3461 CH_WARN(adap, "PHY Firmware did not update: "
3462 "version on adapter %#x, "
3463 "version flashed %#x\n",
3464 cur_phy_fw_ver, new_phy_fw_vers);
3465 return -ENXIO;
3466 }
3467 }
3468
3469 return 1;
3470}
3471
49216c1c
HS
3472/**
3473 * t4_fwcache - firmware cache operation
3474 * @adap: the adapter
3475 * @op : the operation (flush or flush and invalidate)
3476 */
3477int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3478{
3479 struct fw_params_cmd c;
3480
3481 memset(&c, 0, sizeof(c));
3482 c.op_to_vfn =
3483 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3484 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
b2612722 3485 FW_PARAMS_CMD_PFN_V(adap->pf) |
49216c1c
HS
3486 FW_PARAMS_CMD_VFN_V(0));
3487 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3488 c.param[0].mnem =
3489 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3490 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3491 c.param[0].val = (__force __be32)op;
3492
3493 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3494}
3495
19689609
HS
3496void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3497 unsigned int *pif_req_wrptr,
3498 unsigned int *pif_rsp_wrptr)
3499{
3500 int i, j;
3501 u32 cfg, val, req, rsp;
3502
3503 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3504 if (cfg & LADBGEN_F)
3505 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3506
3507 val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3508 req = POLADBGWRPTR_G(val);
3509 rsp = PILADBGWRPTR_G(val);
3510 if (pif_req_wrptr)
3511 *pif_req_wrptr = req;
3512 if (pif_rsp_wrptr)
3513 *pif_rsp_wrptr = rsp;
3514
3515 for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3516 for (j = 0; j < 6; j++) {
3517 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3518 PILADBGRDPTR_V(rsp));
3519 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3520 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3521 req++;
3522 rsp++;
3523 }
3524 req = (req + 2) & POLADBGRDPTR_M;
3525 rsp = (rsp + 2) & PILADBGRDPTR_M;
3526 }
3527 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3528}
3529
26fae93f
HS
3530void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3531{
3532 u32 cfg;
3533 int i, j, idx;
3534
3535 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3536 if (cfg & LADBGEN_F)
3537 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3538
3539 for (i = 0; i < CIM_MALA_SIZE; i++) {
3540 for (j = 0; j < 5; j++) {
3541 idx = 8 * i + j;
3542 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3543 PILADBGRDPTR_V(idx));
3544 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3545 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3546 }
3547 }
3548 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3549}
3550
797ff0f5
HS
3551void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3552{
3553 unsigned int i, j;
3554
3555 for (i = 0; i < 8; i++) {
3556 u32 *p = la_buf + i;
3557
3558 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3559 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3560 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3561 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3562 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3563 }
3564}
3565
56d36be4 3566#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
72aca4bf
KS
3567 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
3568 FW_PORT_CAP_ANEG)
56d36be4
DM
3569
3570/**
4036da90 3571 * t4_link_l1cfg - apply link configuration to MAC/PHY
56d36be4
DM
3572 * @phy: the PHY to setup
3573 * @mac: the MAC to setup
3574 * @lc: the requested link configuration
3575 *
3576 * Set up a port's MAC and PHY according to a desired link configuration.
3577 * - If the PHY can auto-negotiate first decide what to advertise, then
3578 * enable/disable auto-negotiation as desired, and reset.
3579 * - If the PHY does not auto-negotiate just reset it.
3580 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3581 * otherwise do it later based on the outcome of auto-negotiation.
3582 */
4036da90 3583int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
56d36be4
DM
3584 struct link_config *lc)
3585{
3586 struct fw_port_cmd c;
2b5fb1f2 3587 unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
56d36be4
DM
3588
3589 lc->link_ok = 0;
3590 if (lc->requested_fc & PAUSE_RX)
3591 fc |= FW_PORT_CAP_FC_RX;
3592 if (lc->requested_fc & PAUSE_TX)
3593 fc |= FW_PORT_CAP_FC_TX;
3594
3595 memset(&c, 0, sizeof(c));
f404f80c
HS
3596 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3597 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3598 FW_PORT_CMD_PORTID_V(port));
3599 c.action_to_len16 =
3600 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3601 FW_LEN16(c));
56d36be4
DM
3602
3603 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
f404f80c
HS
3604 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3605 fc);
56d36be4
DM
3606 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3607 } else if (lc->autoneg == AUTONEG_DISABLE) {
f404f80c 3608 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
56d36be4
DM
3609 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3610 } else
f404f80c 3611 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
56d36be4
DM
3612
3613 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3614}
3615
3616/**
3617 * t4_restart_aneg - restart autonegotiation
3618 * @adap: the adapter
3619 * @mbox: mbox to use for the FW command
3620 * @port: the port id
3621 *
3622 * Restarts autonegotiation for the selected port.
3623 */
3624int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3625{
3626 struct fw_port_cmd c;
3627
3628 memset(&c, 0, sizeof(c));
f404f80c
HS
3629 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3630 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3631 FW_PORT_CMD_PORTID_V(port));
3632 c.action_to_len16 =
3633 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3634 FW_LEN16(c));
3635 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
56d36be4
DM
3636 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3637}
3638
8caa1e84
VP
3639typedef void (*int_handler_t)(struct adapter *adap);
3640
56d36be4
DM
3641struct intr_info {
3642 unsigned int mask; /* bits to check in interrupt status */
3643 const char *msg; /* message to print or NULL */
3644 short stat_idx; /* stat counter to increment or -1 */
3645 unsigned short fatal; /* whether the condition reported is fatal */
8caa1e84 3646 int_handler_t int_handler; /* platform-specific int handler */
56d36be4
DM
3647};
3648
3649/**
3650 * t4_handle_intr_status - table driven interrupt handler
3651 * @adapter: the adapter that generated the interrupt
3652 * @reg: the interrupt status register to process
3653 * @acts: table of interrupt actions
3654 *
3655 * A table driven interrupt handler that applies a set of masks to an
3656 * interrupt status word and performs the corresponding actions if the
25985edc 3657 * interrupts described by the mask have occurred. The actions include
56d36be4
DM
3658 * optionally emitting a warning or alert message. The table is terminated
3659 * by an entry specifying mask 0. Returns the number of fatal interrupt
3660 * conditions.
3661 */
3662static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3663 const struct intr_info *acts)
3664{
3665 int fatal = 0;
3666 unsigned int mask = 0;
3667 unsigned int status = t4_read_reg(adapter, reg);
3668
3669 for ( ; acts->mask; ++acts) {
3670 if (!(status & acts->mask))
3671 continue;
3672 if (acts->fatal) {
3673 fatal++;
3674 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3675 status & acts->mask);
3676 } else if (acts->msg && printk_ratelimit())
3677 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3678 status & acts->mask);
8caa1e84
VP
3679 if (acts->int_handler)
3680 acts->int_handler(adapter);
56d36be4
DM
3681 mask |= acts->mask;
3682 }
3683 status &= mask;
3684 if (status) /* clear processed interrupts */
3685 t4_write_reg(adapter, reg, status);
3686 return fatal;
3687}
3688
3689/*
3690 * Interrupt handler for the PCIE module.
3691 */
3692static void pcie_intr_handler(struct adapter *adapter)
3693{
005b5717 3694 static const struct intr_info sysbus_intr_info[] = {
f061de42
HS
3695 { RNPP_F, "RXNP array parity error", -1, 1 },
3696 { RPCP_F, "RXPC array parity error", -1, 1 },
3697 { RCIP_F, "RXCIF array parity error", -1, 1 },
3698 { RCCP_F, "Rx completions control array parity error", -1, 1 },
3699 { RFTP_F, "RXFT array parity error", -1, 1 },
56d36be4
DM
3700 { 0 }
3701 };
005b5717 3702 static const struct intr_info pcie_port_intr_info[] = {
f061de42
HS
3703 { TPCP_F, "TXPC array parity error", -1, 1 },
3704 { TNPP_F, "TXNP array parity error", -1, 1 },
3705 { TFTP_F, "TXFT array parity error", -1, 1 },
3706 { TCAP_F, "TXCA array parity error", -1, 1 },
3707 { TCIP_F, "TXCIF array parity error", -1, 1 },
3708 { RCAP_F, "RXCA array parity error", -1, 1 },
3709 { OTDD_F, "outbound request TLP discarded", -1, 1 },
3710 { RDPE_F, "Rx data parity error", -1, 1 },
3711 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
56d36be4
DM
3712 { 0 }
3713 };
005b5717 3714 static const struct intr_info pcie_intr_info[] = {
f061de42
HS
3715 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
3716 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
3717 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
3718 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3719 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3720 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3721 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3722 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
3723 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
3724 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3725 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
3726 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3727 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3728 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
3729 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3730 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3731 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
3732 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3733 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3734 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3735 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3736 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
3737 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
3738 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3739 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
3740 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
3741 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
3742 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
3743 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
3744 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
3745 -1, 0 },
56d36be4
DM
3746 { 0 }
3747 };
3748
0a57a536 3749 static struct intr_info t5_pcie_intr_info[] = {
f061de42 3750 { MSTGRPPERR_F, "Master Response Read Queue parity error",
0a57a536 3751 -1, 1 },
f061de42
HS
3752 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
3753 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
3754 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3755 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3756 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3757 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3758 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
0a57a536 3759 -1, 1 },
f061de42 3760 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
0a57a536 3761 -1, 1 },
f061de42
HS
3762 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3763 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
3764 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3765 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3766 { DREQWRPERR_F, "PCI DMA channel write request parity error",
0a57a536 3767 -1, 1 },
f061de42
HS
3768 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3769 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3770 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
3771 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3772 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3773 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3774 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3775 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
3776 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
3777 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3778 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
0a57a536 3779 -1, 1 },
f061de42
HS
3780 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
3781 -1, 1 },
3782 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
3783 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
3784 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3785 { READRSPERR_F, "Outbound read error", -1, 0 },
0a57a536
SR
3786 { 0 }
3787 };
3788
56d36be4
DM
3789 int fat;
3790
9bb59b96
HS
3791 if (is_t4(adapter->params.chip))
3792 fat = t4_handle_intr_status(adapter,
f061de42
HS
3793 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
3794 sysbus_intr_info) +
9bb59b96 3795 t4_handle_intr_status(adapter,
f061de42
HS
3796 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
3797 pcie_port_intr_info) +
3798 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
9bb59b96
HS
3799 pcie_intr_info);
3800 else
f061de42 3801 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
9bb59b96 3802 t5_pcie_intr_info);
0a57a536 3803
56d36be4
DM
3804 if (fat)
3805 t4_fatal_err(adapter);
3806}
3807
3808/*
3809 * TP interrupt handler.
3810 */
3811static void tp_intr_handler(struct adapter *adapter)
3812{
005b5717 3813 static const struct intr_info tp_intr_info[] = {
56d36be4 3814 { 0x3fffffff, "TP parity error", -1, 1 },
837e4a42 3815 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
56d36be4
DM
3816 { 0 }
3817 };
3818
837e4a42 3819 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
56d36be4
DM
3820 t4_fatal_err(adapter);
3821}
3822
3823/*
3824 * SGE interrupt handler.
3825 */
3826static void sge_intr_handler(struct adapter *adapter)
3827{
3828 u64 v;
3ccc6cf7 3829 u32 err;
56d36be4 3830
005b5717 3831 static const struct intr_info sge_intr_info[] = {
f612b815 3832 { ERR_CPL_EXCEED_IQE_SIZE_F,
56d36be4 3833 "SGE received CPL exceeding IQE size", -1, 1 },
f612b815 3834 { ERR_INVALID_CIDX_INC_F,
56d36be4 3835 "SGE GTS CIDX increment too large", -1, 0 },
f612b815
HS
3836 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3837 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
f612b815 3838 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
56d36be4 3839 "SGE IQID > 1023 received CPL for FL", -1, 0 },
f612b815 3840 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
56d36be4 3841 0 },
f612b815 3842 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
56d36be4 3843 0 },
f612b815 3844 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
56d36be4 3845 0 },
f612b815 3846 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
56d36be4 3847 0 },
f612b815 3848 { ERR_ING_CTXT_PRIO_F,
56d36be4 3849 "SGE too many priority ingress contexts", -1, 0 },
f612b815
HS
3850 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3851 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
56d36be4
DM
3852 { 0 }
3853 };
3854
3ccc6cf7
HS
3855 static struct intr_info t4t5_sge_intr_info[] = {
3856 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
3857 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
3858 { ERR_EGR_CTXT_PRIO_F,
3859 "SGE too many priority egress contexts", -1, 0 },
3860 { 0 }
3861 };
3862
f612b815
HS
3863 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
3864 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
56d36be4
DM
3865 if (v) {
3866 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
8caa1e84 3867 (unsigned long long)v);
f612b815
HS
3868 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
3869 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
56d36be4
DM
3870 }
3871
3ccc6cf7
HS
3872 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
3873 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3874 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
3875 t4t5_sge_intr_info);
3876
3877 err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
3878 if (err & ERROR_QID_VALID_F) {
3879 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
3880 ERROR_QID_G(err));
3881 if (err & UNCAPTURED_ERROR_F)
3882 dev_err(adapter->pdev_dev,
3883 "SGE UNCAPTURED_ERROR set (clearing)\n");
3884 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
3885 UNCAPTURED_ERROR_F);
3886 }
3887
3888 if (v != 0)
56d36be4
DM
3889 t4_fatal_err(adapter);
3890}
3891
89c3a86c
HS
3892#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3893 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3894#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3895 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3896
56d36be4
DM
3897/*
3898 * CIM interrupt handler.
3899 */
3900static void cim_intr_handler(struct adapter *adapter)
3901{
005b5717 3902 static const struct intr_info cim_intr_info[] = {
89c3a86c
HS
3903 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3904 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3905 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3906 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3907 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3908 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3909 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
56d36be4
DM
3910 { 0 }
3911 };
005b5717 3912 static const struct intr_info cim_upintr_info[] = {
89c3a86c
HS
3913 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3914 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3915 { ILLWRINT_F, "CIM illegal write", -1, 1 },
3916 { ILLRDINT_F, "CIM illegal read", -1, 1 },
3917 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3918 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3919 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3920 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3921 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3922 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3923 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3924 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3925 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3926 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3927 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3928 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3929 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3930 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3931 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3932 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3933 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3934 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3935 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3936 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3937 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3938 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3939 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3940 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
56d36be4
DM
3941 { 0 }
3942 };
3943
3944 int fat;
3945
f061de42 3946 if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
31d55c2d
HS
3947 t4_report_fw_error(adapter);
3948
89c3a86c 3949 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
56d36be4 3950 cim_intr_info) +
89c3a86c 3951 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
56d36be4
DM
3952 cim_upintr_info);
3953 if (fat)
3954 t4_fatal_err(adapter);
3955}
3956
3957/*
3958 * ULP RX interrupt handler.
3959 */
3960static void ulprx_intr_handler(struct adapter *adapter)
3961{
005b5717 3962 static const struct intr_info ulprx_intr_info[] = {
91e9a1ec 3963 { 0x1800000, "ULPRX context error", -1, 1 },
56d36be4
DM
3964 { 0x7fffff, "ULPRX parity error", -1, 1 },
3965 { 0 }
3966 };
3967
0d804338 3968 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
56d36be4
DM
3969 t4_fatal_err(adapter);
3970}
3971
3972/*
3973 * ULP TX interrupt handler.
3974 */
3975static void ulptx_intr_handler(struct adapter *adapter)
3976{
005b5717 3977 static const struct intr_info ulptx_intr_info[] = {
837e4a42 3978 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
56d36be4 3979 0 },
837e4a42 3980 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
56d36be4 3981 0 },
837e4a42 3982 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
56d36be4 3983 0 },
837e4a42 3984 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
56d36be4
DM
3985 0 },
3986 { 0xfffffff, "ULPTX parity error", -1, 1 },
3987 { 0 }
3988 };
3989
837e4a42 3990 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
56d36be4
DM
3991 t4_fatal_err(adapter);
3992}
3993
3994/*
3995 * PM TX interrupt handler.
3996 */
3997static void pmtx_intr_handler(struct adapter *adapter)
3998{
005b5717 3999 static const struct intr_info pmtx_intr_info[] = {
837e4a42
HS
4000 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4001 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4002 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4003 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4004 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4005 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4006 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4007 -1, 1 },
4008 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4009 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
56d36be4
DM
4010 { 0 }
4011 };
4012
837e4a42 4013 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
56d36be4
DM
4014 t4_fatal_err(adapter);
4015}
4016
4017/*
4018 * PM RX interrupt handler.
4019 */
4020static void pmrx_intr_handler(struct adapter *adapter)
4021{
005b5717 4022 static const struct intr_info pmrx_intr_info[] = {
837e4a42
HS
4023 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4024 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4025 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4026 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4027 -1, 1 },
4028 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4029 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
56d36be4
DM
4030 { 0 }
4031 };
4032
837e4a42 4033 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
56d36be4
DM
4034 t4_fatal_err(adapter);
4035}
4036
4037/*
4038 * CPL switch interrupt handler.
4039 */
4040static void cplsw_intr_handler(struct adapter *adapter)
4041{
005b5717 4042 static const struct intr_info cplsw_intr_info[] = {
0d804338
HS
4043 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4044 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4045 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4046 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4047 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4048 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
56d36be4
DM
4049 { 0 }
4050 };
4051
0d804338 4052 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
56d36be4
DM
4053 t4_fatal_err(adapter);
4054}
4055
4056/*
4057 * LE interrupt handler.
4058 */
4059static void le_intr_handler(struct adapter *adap)
4060{
3ccc6cf7 4061 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
005b5717 4062 static const struct intr_info le_intr_info[] = {
0d804338
HS
4063 { LIPMISS_F, "LE LIP miss", -1, 0 },
4064 { LIP0_F, "LE 0 LIP error", -1, 0 },
4065 { PARITYERR_F, "LE parity error", -1, 1 },
4066 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4067 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
56d36be4
DM
4068 { 0 }
4069 };
4070
3ccc6cf7
HS
4071 static struct intr_info t6_le_intr_info[] = {
4072 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4073 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4074 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4075 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4076 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4077 { 0 }
4078 };
4079
4080 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4081 (chip <= CHELSIO_T5) ?
4082 le_intr_info : t6_le_intr_info))
56d36be4
DM
4083 t4_fatal_err(adap);
4084}
4085
4086/*
4087 * MPS interrupt handler.
4088 */
4089static void mps_intr_handler(struct adapter *adapter)
4090{
005b5717 4091 static const struct intr_info mps_rx_intr_info[] = {
56d36be4
DM
4092 { 0xffffff, "MPS Rx parity error", -1, 1 },
4093 { 0 }
4094 };
005b5717 4095 static const struct intr_info mps_tx_intr_info[] = {
837e4a42
HS
4096 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4097 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4098 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4099 -1, 1 },
4100 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4101 -1, 1 },
4102 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4103 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4104 { FRMERR_F, "MPS Tx framing error", -1, 1 },
56d36be4
DM
4105 { 0 }
4106 };
005b5717 4107 static const struct intr_info mps_trc_intr_info[] = {
837e4a42
HS
4108 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4109 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4110 -1, 1 },
4111 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
56d36be4
DM
4112 { 0 }
4113 };
005b5717 4114 static const struct intr_info mps_stat_sram_intr_info[] = {
56d36be4
DM
4115 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4116 { 0 }
4117 };
005b5717 4118 static const struct intr_info mps_stat_tx_intr_info[] = {
56d36be4
DM
4119 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4120 { 0 }
4121 };
005b5717 4122 static const struct intr_info mps_stat_rx_intr_info[] = {
56d36be4
DM
4123 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4124 { 0 }
4125 };
005b5717 4126 static const struct intr_info mps_cls_intr_info[] = {
837e4a42
HS
4127 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4128 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4129 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
56d36be4
DM
4130 { 0 }
4131 };
4132
4133 int fat;
4134
837e4a42 4135 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
56d36be4 4136 mps_rx_intr_info) +
837e4a42 4137 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
56d36be4 4138 mps_tx_intr_info) +
837e4a42 4139 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
56d36be4 4140 mps_trc_intr_info) +
837e4a42 4141 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
56d36be4 4142 mps_stat_sram_intr_info) +
837e4a42 4143 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
56d36be4 4144 mps_stat_tx_intr_info) +
837e4a42 4145 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
56d36be4 4146 mps_stat_rx_intr_info) +
837e4a42 4147 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
56d36be4
DM
4148 mps_cls_intr_info);
4149
837e4a42
HS
4150 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4151 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */
56d36be4
DM
4152 if (fat)
4153 t4_fatal_err(adapter);
4154}
4155
89c3a86c
HS
4156#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4157 ECC_UE_INT_CAUSE_F)
56d36be4
DM
4158
4159/*
4160 * EDC/MC interrupt handler.
4161 */
4162static void mem_intr_handler(struct adapter *adapter, int idx)
4163{
822dd8a8 4164 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
56d36be4
DM
4165
4166 unsigned int addr, cnt_addr, v;
4167
4168 if (idx <= MEM_EDC1) {
89c3a86c
HS
4169 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4170 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
822dd8a8
HS
4171 } else if (idx == MEM_MC) {
4172 if (is_t4(adapter->params.chip)) {
89c3a86c
HS
4173 addr = MC_INT_CAUSE_A;
4174 cnt_addr = MC_ECC_STATUS_A;
822dd8a8 4175 } else {
89c3a86c
HS
4176 addr = MC_P_INT_CAUSE_A;
4177 cnt_addr = MC_P_ECC_STATUS_A;
822dd8a8 4178 }
56d36be4 4179 } else {
89c3a86c
HS
4180 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4181 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
56d36be4
DM
4182 }
4183
4184 v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
89c3a86c 4185 if (v & PERR_INT_CAUSE_F)
56d36be4
DM
4186 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4187 name[idx]);
89c3a86c
HS
4188 if (v & ECC_CE_INT_CAUSE_F) {
4189 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
56d36be4 4190
bf8ebb67
HS
4191 t4_edc_err_read(adapter, idx);
4192
89c3a86c 4193 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
56d36be4
DM
4194 if (printk_ratelimit())
4195 dev_warn(adapter->pdev_dev,
4196 "%u %s correctable ECC data error%s\n",
4197 cnt, name[idx], cnt > 1 ? "s" : "");
4198 }
89c3a86c 4199 if (v & ECC_UE_INT_CAUSE_F)
56d36be4
DM
4200 dev_alert(adapter->pdev_dev,
4201 "%s uncorrectable ECC data error\n", name[idx]);
4202
4203 t4_write_reg(adapter, addr, v);
89c3a86c 4204 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
56d36be4
DM
4205 t4_fatal_err(adapter);
4206}
4207
4208/*
4209 * MA interrupt handler.
4210 */
4211static void ma_intr_handler(struct adapter *adap)
4212{
89c3a86c 4213 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
56d36be4 4214
89c3a86c 4215 if (status & MEM_PERR_INT_CAUSE_F) {
56d36be4
DM
4216 dev_alert(adap->pdev_dev,
4217 "MA parity error, parity status %#x\n",
89c3a86c 4218 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
9bb59b96
HS
4219 if (is_t5(adap->params.chip))
4220 dev_alert(adap->pdev_dev,
4221 "MA parity error, parity status %#x\n",
4222 t4_read_reg(adap,
89c3a86c 4223 MA_PARITY_ERROR_STATUS2_A));
9bb59b96 4224 }
89c3a86c
HS
4225 if (status & MEM_WRAP_INT_CAUSE_F) {
4226 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
56d36be4
DM
4227 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4228 "client %u to address %#x\n",
89c3a86c
HS
4229 MEM_WRAP_CLIENT_NUM_G(v),
4230 MEM_WRAP_ADDRESS_G(v) << 4);
56d36be4 4231 }
89c3a86c 4232 t4_write_reg(adap, MA_INT_CAUSE_A, status);
56d36be4
DM
4233 t4_fatal_err(adap);
4234}
4235
4236/*
4237 * SMB interrupt handler.
4238 */
4239static void smb_intr_handler(struct adapter *adap)
4240{
005b5717 4241 static const struct intr_info smb_intr_info[] = {
0d804338
HS
4242 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4243 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4244 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
56d36be4
DM
4245 { 0 }
4246 };
4247
0d804338 4248 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
56d36be4
DM
4249 t4_fatal_err(adap);
4250}
4251
4252/*
4253 * NC-SI interrupt handler.
4254 */
4255static void ncsi_intr_handler(struct adapter *adap)
4256{
005b5717 4257 static const struct intr_info ncsi_intr_info[] = {
0d804338
HS
4258 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4259 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4260 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4261 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
56d36be4
DM
4262 { 0 }
4263 };
4264
0d804338 4265 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
56d36be4
DM
4266 t4_fatal_err(adap);
4267}
4268
4269/*
4270 * XGMAC interrupt handler.
4271 */
4272static void xgmac_intr_handler(struct adapter *adap, int port)
4273{
0a57a536
SR
4274 u32 v, int_cause_reg;
4275
d14807dd 4276 if (is_t4(adap->params.chip))
0d804338 4277 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
0a57a536 4278 else
0d804338 4279 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
0a57a536
SR
4280
4281 v = t4_read_reg(adap, int_cause_reg);
56d36be4 4282
0d804338 4283 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
56d36be4
DM
4284 if (!v)
4285 return;
4286
0d804338 4287 if (v & TXFIFO_PRTY_ERR_F)
56d36be4
DM
4288 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4289 port);
0d804338 4290 if (v & RXFIFO_PRTY_ERR_F)
56d36be4
DM
4291 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4292 port);
0d804338 4293 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
56d36be4
DM
4294 t4_fatal_err(adap);
4295}
4296
4297/*
4298 * PL interrupt handler.
4299 */
4300static void pl_intr_handler(struct adapter *adap)
4301{
005b5717 4302 static const struct intr_info pl_intr_info[] = {
0d804338
HS
4303 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4304 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
56d36be4
DM
4305 { 0 }
4306 };
4307
0d804338 4308 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
56d36be4
DM
4309 t4_fatal_err(adap);
4310}
4311
0d804338
HS
4312#define PF_INTR_MASK (PFSW_F)
4313#define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4314 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4315 CPL_SWITCH_F | SGE_F | ULP_TX_F)
56d36be4
DM
4316
4317/**
4318 * t4_slow_intr_handler - control path interrupt handler
4319 * @adapter: the adapter
4320 *
4321 * T4 interrupt handler for non-data global interrupt events, e.g., errors.
4322 * The designation 'slow' is because it involves register reads, while
4323 * data interrupts typically don't involve any MMIOs.
4324 */
4325int t4_slow_intr_handler(struct adapter *adapter)
4326{
0d804338 4327 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
56d36be4
DM
4328
4329 if (!(cause & GLBL_INTR_MASK))
4330 return 0;
0d804338 4331 if (cause & CIM_F)
56d36be4 4332 cim_intr_handler(adapter);
0d804338 4333 if (cause & MPS_F)
56d36be4 4334 mps_intr_handler(adapter);
0d804338 4335 if (cause & NCSI_F)
56d36be4 4336 ncsi_intr_handler(adapter);
0d804338 4337 if (cause & PL_F)
56d36be4 4338 pl_intr_handler(adapter);
0d804338 4339 if (cause & SMB_F)
56d36be4 4340 smb_intr_handler(adapter);
0d804338 4341 if (cause & XGMAC0_F)
56d36be4 4342 xgmac_intr_handler(adapter, 0);
0d804338 4343 if (cause & XGMAC1_F)
56d36be4 4344 xgmac_intr_handler(adapter, 1);
0d804338 4345 if (cause & XGMAC_KR0_F)
56d36be4 4346 xgmac_intr_handler(adapter, 2);
0d804338 4347 if (cause & XGMAC_KR1_F)
56d36be4 4348 xgmac_intr_handler(adapter, 3);
0d804338 4349 if (cause & PCIE_F)
56d36be4 4350 pcie_intr_handler(adapter);
0d804338 4351 if (cause & MC_F)
56d36be4 4352 mem_intr_handler(adapter, MEM_MC);
3ccc6cf7 4353 if (is_t5(adapter->params.chip) && (cause & MC1_F))
822dd8a8 4354 mem_intr_handler(adapter, MEM_MC1);
0d804338 4355 if (cause & EDC0_F)
56d36be4 4356 mem_intr_handler(adapter, MEM_EDC0);
0d804338 4357 if (cause & EDC1_F)
56d36be4 4358 mem_intr_handler(adapter, MEM_EDC1);
0d804338 4359 if (cause & LE_F)
56d36be4 4360 le_intr_handler(adapter);
0d804338 4361 if (cause & TP_F)
56d36be4 4362 tp_intr_handler(adapter);
0d804338 4363 if (cause & MA_F)
56d36be4 4364 ma_intr_handler(adapter);
0d804338 4365 if (cause & PM_TX_F)
56d36be4 4366 pmtx_intr_handler(adapter);
0d804338 4367 if (cause & PM_RX_F)
56d36be4 4368 pmrx_intr_handler(adapter);
0d804338 4369 if (cause & ULP_RX_F)
56d36be4 4370 ulprx_intr_handler(adapter);
0d804338 4371 if (cause & CPL_SWITCH_F)
56d36be4 4372 cplsw_intr_handler(adapter);
0d804338 4373 if (cause & SGE_F)
56d36be4 4374 sge_intr_handler(adapter);
0d804338 4375 if (cause & ULP_TX_F)
56d36be4
DM
4376 ulptx_intr_handler(adapter);
4377
4378 /* Clear the interrupts just processed for which we are the master. */
0d804338
HS
4379 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4380 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
56d36be4
DM
4381 return 1;
4382}
4383
4384/**
4385 * t4_intr_enable - enable interrupts
4386 * @adapter: the adapter whose interrupts should be enabled
4387 *
4388 * Enable PF-specific interrupts for the calling function and the top-level
4389 * interrupt concentrator for global interrupts. Interrupts are already
4390 * enabled at each module, here we just enable the roots of the interrupt
4391 * hierarchies.
4392 *
4393 * Note: this function should be called only when the driver manages
4394 * non PF-specific interrupts from the various HW modules. Only one PCI
4395 * function at a time should be doing this.
4396 */
4397void t4_intr_enable(struct adapter *adapter)
4398{
3ccc6cf7 4399 u32 val = 0;
d86bd29e
HS
4400 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4401 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4402 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
56d36be4 4403
3ccc6cf7
HS
4404 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4405 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
f612b815
HS
4406 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4407 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
3ccc6cf7 4408 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
f612b815
HS
4409 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4410 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4411 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
3ccc6cf7 4412 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
0d804338
HS
4413 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4414 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
56d36be4
DM
4415}
4416
4417/**
4418 * t4_intr_disable - disable interrupts
4419 * @adapter: the adapter whose interrupts should be disabled
4420 *
4421 * Disable interrupts. We only disable the top-level interrupt
4422 * concentrators. The caller must be a PCI function managing global
4423 * interrupts.
4424 */
4425void t4_intr_disable(struct adapter *adapter)
4426{
d86bd29e
HS
4427 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4428 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4429 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
56d36be4 4430
0d804338
HS
4431 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4432 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
56d36be4
DM
4433}
4434
56d36be4
DM
4435/**
4436 * hash_mac_addr - return the hash value of a MAC address
4437 * @addr: the 48-bit Ethernet MAC address
4438 *
4439 * Hashes a MAC address according to the hash function used by HW inexact
4440 * (hash) address matching.
4441 */
4442static int hash_mac_addr(const u8 *addr)
4443{
4444 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4445 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4446 a ^= b;
4447 a ^= (a >> 12);
4448 a ^= (a >> 6);
4449 return a & 0x3f;
4450}
4451
4452/**
4453 * t4_config_rss_range - configure a portion of the RSS mapping table
4454 * @adapter: the adapter
4455 * @mbox: mbox to use for the FW command
4456 * @viid: virtual interface whose RSS subtable is to be written
4457 * @start: start entry in the table to write
4458 * @n: how many table entries to write
4459 * @rspq: values for the response queue lookup table
4460 * @nrspq: number of values in @rspq
4461 *
4462 * Programs the selected part of the VI's RSS mapping table with the
4463 * provided values. If @nrspq < @n the supplied values are used repeatedly
4464 * until the full table range is populated.
4465 *
4466 * The caller must ensure the values in @rspq are in the range allowed for
4467 * @viid.
4468 */
4469int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4470 int start, int n, const u16 *rspq, unsigned int nrspq)
4471{
4472 int ret;
4473 const u16 *rsp = rspq;
4474 const u16 *rsp_end = rspq + nrspq;
4475 struct fw_rss_ind_tbl_cmd cmd;
4476
4477 memset(&cmd, 0, sizeof(cmd));
f404f80c 4478 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
e2ac9628 4479 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
b2e1a3f0 4480 FW_RSS_IND_TBL_CMD_VIID_V(viid));
f404f80c 4481 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
56d36be4
DM
4482
4483 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4484 while (n > 0) {
4485 int nq = min(n, 32);
4486 __be32 *qp = &cmd.iq0_to_iq2;
4487
f404f80c
HS
4488 cmd.niqid = cpu_to_be16(nq);
4489 cmd.startidx = cpu_to_be16(start);
56d36be4
DM
4490
4491 start += nq;
4492 n -= nq;
4493
4494 while (nq > 0) {
4495 unsigned int v;
4496
b2e1a3f0 4497 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
56d36be4
DM
4498 if (++rsp >= rsp_end)
4499 rsp = rspq;
b2e1a3f0 4500 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
56d36be4
DM
4501 if (++rsp >= rsp_end)
4502 rsp = rspq;
b2e1a3f0 4503 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
56d36be4
DM
4504 if (++rsp >= rsp_end)
4505 rsp = rspq;
4506
f404f80c 4507 *qp++ = cpu_to_be32(v);
56d36be4
DM
4508 nq -= 3;
4509 }
4510
4511 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4512 if (ret)
4513 return ret;
4514 }
4515 return 0;
4516}
4517
4518/**
4519 * t4_config_glbl_rss - configure the global RSS mode
4520 * @adapter: the adapter
4521 * @mbox: mbox to use for the FW command
4522 * @mode: global RSS mode
4523 * @flags: mode-specific flags
4524 *
4525 * Sets the global RSS mode.
4526 */
4527int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4528 unsigned int flags)
4529{
4530 struct fw_rss_glb_config_cmd c;
4531
4532 memset(&c, 0, sizeof(c));
f404f80c
HS
4533 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4534 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4535 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
56d36be4 4536 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
f404f80c
HS
4537 c.u.manual.mode_pkd =
4538 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
56d36be4
DM
4539 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4540 c.u.basicvirtual.mode_pkd =
f404f80c
HS
4541 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4542 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
56d36be4
DM
4543 } else
4544 return -EINVAL;
4545 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4546}
4547
c035e183
HS
4548/**
4549 * t4_config_vi_rss - configure per VI RSS settings
4550 * @adapter: the adapter
4551 * @mbox: mbox to use for the FW command
4552 * @viid: the VI id
4553 * @flags: RSS flags
4554 * @defq: id of the default RSS queue for the VI.
4555 *
4556 * Configures VI-specific RSS properties.
4557 */
4558int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4559 unsigned int flags, unsigned int defq)
4560{
4561 struct fw_rss_vi_config_cmd c;
4562
4563 memset(&c, 0, sizeof(c));
4564 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4565 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4566 FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
4567 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4568 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4569 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
4570 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4571}
4572
688ea5fe
HS
4573/* Read an RSS table row */
4574static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4575{
4576 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
4577 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
4578 5, 0, val);
4579}
4580
4581/**
4582 * t4_read_rss - read the contents of the RSS mapping table
4583 * @adapter: the adapter
4584 * @map: holds the contents of the RSS mapping table
4585 *
4586 * Reads the contents of the RSS hash->queue mapping table.
4587 */
4588int t4_read_rss(struct adapter *adapter, u16 *map)
4589{
4590 u32 val;
4591 int i, ret;
4592
4593 for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4594 ret = rd_rss_row(adapter, i, &val);
4595 if (ret)
4596 return ret;
4597 *map++ = LKPTBLQUEUE0_G(val);
4598 *map++ = LKPTBLQUEUE1_G(val);
4599 }
4600 return 0;
4601}
4602
0b2c2a93
HS
4603static unsigned int t4_use_ldst(struct adapter *adap)
4604{
4605 return (adap->flags & FW_OK) || !adap->use_bd;
4606}
4607
c1e9af0c
HS
4608/**
4609 * t4_fw_tp_pio_rw - Access TP PIO through LDST
4610 * @adap: the adapter
4611 * @vals: where the indirect register values are stored/written
4612 * @nregs: how many indirect registers to read/write
4613 * @start_idx: index of first indirect register to read/write
4614 * @rw: Read (1) or Write (0)
4615 *
4616 * Access TP PIO registers through LDST
4617 */
4618static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4619 unsigned int start_index, unsigned int rw)
4620{
4621 int ret, i;
4622 int cmd = FW_LDST_ADDRSPC_TP_PIO;
4623 struct fw_ldst_cmd c;
4624
4625 for (i = 0 ; i < nregs; i++) {
4626 memset(&c, 0, sizeof(c));
4627 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4628 FW_CMD_REQUEST_F |
4629 (rw ? FW_CMD_READ_F :
4630 FW_CMD_WRITE_F) |
4631 FW_LDST_CMD_ADDRSPACE_V(cmd));
4632 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4633
4634 c.u.addrval.addr = cpu_to_be32(start_index + i);
4635 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]);
4636 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4637 if (!ret && rw)
4638 vals[i] = be32_to_cpu(c.u.addrval.val);
4639 }
4640}
4641
688ea5fe
HS
4642/**
4643 * t4_read_rss_key - read the global RSS key
4644 * @adap: the adapter
4645 * @key: 10-entry array holding the 320-bit RSS key
4646 *
4647 * Reads the global 320-bit RSS key.
4648 */
4649void t4_read_rss_key(struct adapter *adap, u32 *key)
4650{
0b2c2a93 4651 if (t4_use_ldst(adap))
c1e9af0c
HS
4652 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
4653 else
4654 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4655 TP_RSS_SECRET_KEY0_A);
688ea5fe
HS
4656}
4657
4658/**
4659 * t4_write_rss_key - program one of the RSS keys
4660 * @adap: the adapter
4661 * @key: 10-entry array holding the 320-bit RSS key
4662 * @idx: which RSS key to write
4663 *
4664 * Writes one of the RSS keys with the given 320-bit value. If @idx is
4665 * 0..15 the corresponding entry in the RSS key table is written,
4666 * otherwise the global RSS key is written.
4667 */
4668void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
4669{
3ccc6cf7
HS
4670 u8 rss_key_addr_cnt = 16;
4671 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
4672
4673 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4674 * allows access to key addresses 16-63 by using KeyWrAddrX
4675 * as index[5:4](upper 2) into key table
4676 */
4677 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
4678 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
4679 rss_key_addr_cnt = 32;
4680
0b2c2a93 4681 if (t4_use_ldst(adap))
c1e9af0c
HS
4682 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
4683 else
4684 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4685 TP_RSS_SECRET_KEY0_A);
3ccc6cf7
HS
4686
4687 if (idx >= 0 && idx < rss_key_addr_cnt) {
4688 if (rss_key_addr_cnt > 16)
4689 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4690 KEYWRADDRX_V(idx >> 4) |
4691 T6_VFWRADDR_V(idx) | KEYWREN_F);
4692 else
4693 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4694 KEYWRADDR_V(idx) | KEYWREN_F);
4695 }
688ea5fe
HS
4696}
4697
4698/**
4699 * t4_read_rss_pf_config - read PF RSS Configuration Table
4700 * @adapter: the adapter
4701 * @index: the entry in the PF RSS table to read
4702 * @valp: where to store the returned value
4703 *
4704 * Reads the PF RSS Configuration Table at the specified index and returns
4705 * the value found there.
4706 */
4707void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4708 u32 *valp)
4709{
0b2c2a93 4710 if (t4_use_ldst(adapter))
c1e9af0c
HS
4711 t4_fw_tp_pio_rw(adapter, valp, 1,
4712 TP_RSS_PF0_CONFIG_A + index, 1);
4713 else
4714 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4715 valp, 1, TP_RSS_PF0_CONFIG_A + index);
688ea5fe
HS
4716}
4717
4718/**
4719 * t4_read_rss_vf_config - read VF RSS Configuration Table
4720 * @adapter: the adapter
4721 * @index: the entry in the VF RSS table to read
4722 * @vfl: where to store the returned VFL
4723 * @vfh: where to store the returned VFH
4724 *
4725 * Reads the VF RSS Configuration Table at the specified index and returns
4726 * the (VFL, VFH) values found there.
4727 */
4728void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4729 u32 *vfl, u32 *vfh)
4730{
4731 u32 vrt, mask, data;
4732
3ccc6cf7
HS
4733 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
4734 mask = VFWRADDR_V(VFWRADDR_M);
4735 data = VFWRADDR_V(index);
4736 } else {
4737 mask = T6_VFWRADDR_V(T6_VFWRADDR_M);
4738 data = T6_VFWRADDR_V(index);
4739 }
688ea5fe
HS
4740
4741 /* Request that the index'th VF Table values be read into VFL/VFH.
4742 */
4743 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
4744 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
4745 vrt |= data | VFRDEN_F;
4746 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
4747
4748 /* Grab the VFL/VFH values ...
4749 */
0b2c2a93 4750 if (t4_use_ldst(adapter)) {
c1e9af0c
HS
4751 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
4752 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
4753 } else {
4754 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4755 vfl, 1, TP_RSS_VFL_CONFIG_A);
4756 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4757 vfh, 1, TP_RSS_VFH_CONFIG_A);
4758 }
688ea5fe
HS
4759}
4760
4761/**
4762 * t4_read_rss_pf_map - read PF RSS Map
4763 * @adapter: the adapter
4764 *
4765 * Reads the PF RSS Map register and returns its value.
4766 */
4767u32 t4_read_rss_pf_map(struct adapter *adapter)
4768{
4769 u32 pfmap;
4770
0b2c2a93 4771 if (t4_use_ldst(adapter))
c1e9af0c
HS
4772 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
4773 else
4774 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4775 &pfmap, 1, TP_RSS_PF_MAP_A);
688ea5fe
HS
4776 return pfmap;
4777}
4778
4779/**
4780 * t4_read_rss_pf_mask - read PF RSS Mask
4781 * @adapter: the adapter
4782 *
4783 * Reads the PF RSS Mask register and returns its value.
4784 */
4785u32 t4_read_rss_pf_mask(struct adapter *adapter)
4786{
4787 u32 pfmask;
4788
0b2c2a93 4789 if (t4_use_ldst(adapter))
c1e9af0c
HS
4790 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
4791 else
4792 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4793 &pfmask, 1, TP_RSS_PF_MSK_A);
688ea5fe
HS
4794 return pfmask;
4795}
4796
56d36be4
DM
4797/**
4798 * t4_tp_get_tcp_stats - read TP's TCP MIB counters
4799 * @adap: the adapter
4800 * @v4: holds the TCP/IP counter values
4801 * @v6: holds the TCP/IPv6 counter values
4802 *
4803 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4804 * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4805 */
4806void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4807 struct tp_tcp_stats *v6)
4808{
837e4a42 4809 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
56d36be4 4810
837e4a42 4811#define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
56d36be4
DM
4812#define STAT(x) val[STAT_IDX(x)]
4813#define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4814
4815 if (v4) {
837e4a42
HS
4816 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4817 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
a4cfd929
HS
4818 v4->tcp_out_rsts = STAT(OUT_RST);
4819 v4->tcp_in_segs = STAT64(IN_SEG);
4820 v4->tcp_out_segs = STAT64(OUT_SEG);
4821 v4->tcp_retrans_segs = STAT64(RXT_SEG);
56d36be4
DM
4822 }
4823 if (v6) {
837e4a42
HS
4824 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4825 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
a4cfd929
HS
4826 v6->tcp_out_rsts = STAT(OUT_RST);
4827 v6->tcp_in_segs = STAT64(IN_SEG);
4828 v6->tcp_out_segs = STAT64(OUT_SEG);
4829 v6->tcp_retrans_segs = STAT64(RXT_SEG);
56d36be4
DM
4830 }
4831#undef STAT64
4832#undef STAT
4833#undef STAT_IDX
4834}
4835
a4cfd929
HS
4836/**
4837 * t4_tp_get_err_stats - read TP's error MIB counters
4838 * @adap: the adapter
4839 * @st: holds the counter values
4840 *
4841 * Returns the values of TP's error counters.
4842 */
4843void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4844{
df459ebc
HS
4845 int nchan = adap->params.arch.nchan;
4846
4847 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4848 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
4849 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4850 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
4851 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4852 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
4853 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4854 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
4855 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4856 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
4857 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4858 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
4859 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4860 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
4861 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4862 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
4863
a4cfd929
HS
4864 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4865 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
4866}
4867
a6222975
HS
4868/**
4869 * t4_tp_get_cpl_stats - read TP's CPL MIB counters
4870 * @adap: the adapter
4871 * @st: holds the counter values
4872 *
4873 * Returns the values of TP's CPL counters.
4874 */
4875void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4876{
df459ebc
HS
4877 int nchan = adap->params.arch.nchan;
4878
4879 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4880 nchan, TP_MIB_CPL_IN_REQ_0_A);
4881 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4882 nchan, TP_MIB_CPL_OUT_RSP_0_A);
4883
a6222975
HS
4884}
4885
a4cfd929
HS
4886/**
4887 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters
4888 * @adap: the adapter
4889 * @st: holds the counter values
4890 *
4891 * Returns the values of TP's RDMA counters.
4892 */
4893void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
4894{
4895 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
4896 2, TP_MIB_RQE_DFR_PKT_A);
4897}
4898
a6222975
HS
4899/**
4900 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
4901 * @adap: the adapter
4902 * @idx: the port index
4903 * @st: holds the counter values
4904 *
4905 * Returns the values of TP's FCoE counters for the selected port.
4906 */
4907void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
4908 struct tp_fcoe_stats *st)
4909{
4910 u32 val[2];
4911
4912 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
4913 1, TP_MIB_FCOE_DDP_0_A + idx);
4914 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
4915 1, TP_MIB_FCOE_DROP_0_A + idx);
4916 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4917 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
4918 st->octets_ddp = ((u64)val[0] << 32) | val[1];
4919}
4920
a4cfd929
HS
4921/**
4922 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters
4923 * @adap: the adapter
4924 * @st: holds the counter values
4925 *
4926 * Returns the values of TP's counters for non-TCP directly-placed packets.
4927 */
4928void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
4929{
4930 u32 val[4];
4931
4932 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
4933 TP_MIB_USM_PKTS_A);
4934 st->frames = val[0];
4935 st->drops = val[1];
4936 st->octets = ((u64)val[2] << 32) | val[3];
4937}
4938
56d36be4
DM
4939/**
4940 * t4_read_mtu_tbl - returns the values in the HW path MTU table
4941 * @adap: the adapter
4942 * @mtus: where to store the MTU values
4943 * @mtu_log: where to store the MTU base-2 log (may be %NULL)
4944 *
4945 * Reads the HW path MTU table.
4946 */
4947void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
4948{
4949 u32 v;
4950 int i;
4951
4952 for (i = 0; i < NMTUS; ++i) {
837e4a42
HS
4953 t4_write_reg(adap, TP_MTU_TABLE_A,
4954 MTUINDEX_V(0xff) | MTUVALUE_V(i));
4955 v = t4_read_reg(adap, TP_MTU_TABLE_A);
4956 mtus[i] = MTUVALUE_G(v);
56d36be4 4957 if (mtu_log)
837e4a42 4958 mtu_log[i] = MTUWIDTH_G(v);
56d36be4
DM
4959 }
4960}
4961
bad43792
HS
4962/**
4963 * t4_read_cong_tbl - reads the congestion control table
4964 * @adap: the adapter
4965 * @incr: where to store the alpha values
4966 *
4967 * Reads the additive increments programmed into the HW congestion
4968 * control table.
4969 */
4970void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
4971{
4972 unsigned int mtu, w;
4973
4974 for (mtu = 0; mtu < NMTUS; ++mtu)
4975 for (w = 0; w < NCCTRL_WIN; ++w) {
4976 t4_write_reg(adap, TP_CCTRL_TABLE_A,
4977 ROWINDEX_V(0xffff) | (mtu << 5) | w);
4978 incr[mtu][w] = (u16)t4_read_reg(adap,
4979 TP_CCTRL_TABLE_A) & 0x1fff;
4980 }
4981}
4982
636f9d37
VP
4983/**
4984 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
4985 * @adap: the adapter
4986 * @addr: the indirect TP register address
4987 * @mask: specifies the field within the register to modify
4988 * @val: new value for the field
4989 *
4990 * Sets a field of an indirect TP register to the given value.
4991 */
4992void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
4993 unsigned int mask, unsigned int val)
4994{
837e4a42
HS
4995 t4_write_reg(adap, TP_PIO_ADDR_A, addr);
4996 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
4997 t4_write_reg(adap, TP_PIO_DATA_A, val);
636f9d37
VP
4998}
4999
56d36be4
DM
5000/**
5001 * init_cong_ctrl - initialize congestion control parameters
5002 * @a: the alpha values for congestion control
5003 * @b: the beta values for congestion control
5004 *
5005 * Initialize the congestion control parameters.
5006 */
91744948 5007static void init_cong_ctrl(unsigned short *a, unsigned short *b)
56d36be4
DM
5008{
5009 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5010 a[9] = 2;
5011 a[10] = 3;
5012 a[11] = 4;
5013 a[12] = 5;
5014 a[13] = 6;
5015 a[14] = 7;
5016 a[15] = 8;
5017 a[16] = 9;
5018 a[17] = 10;
5019 a[18] = 14;
5020 a[19] = 17;
5021 a[20] = 21;
5022 a[21] = 25;
5023 a[22] = 30;
5024 a[23] = 35;
5025 a[24] = 45;
5026 a[25] = 60;
5027 a[26] = 80;
5028 a[27] = 100;
5029 a[28] = 200;
5030 a[29] = 300;
5031 a[30] = 400;
5032 a[31] = 500;
5033
5034 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5035 b[9] = b[10] = 1;
5036 b[11] = b[12] = 2;
5037 b[13] = b[14] = b[15] = b[16] = 3;
5038 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5039 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5040 b[28] = b[29] = 6;
5041 b[30] = b[31] = 7;
5042}
5043
5044/* The minimum additive increment value for the congestion control table */
5045#define CC_MIN_INCR 2U
5046
5047/**
5048 * t4_load_mtus - write the MTU and congestion control HW tables
5049 * @adap: the adapter
5050 * @mtus: the values for the MTU table
5051 * @alpha: the values for the congestion control alpha parameter
5052 * @beta: the values for the congestion control beta parameter
5053 *
5054 * Write the HW MTU table with the supplied MTUs and the high-speed
5055 * congestion control table with the supplied alpha, beta, and MTUs.
5056 * We write the two tables together because the additive increments
5057 * depend on the MTUs.
5058 */
5059void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5060 const unsigned short *alpha, const unsigned short *beta)
5061{
5062 static const unsigned int avg_pkts[NCCTRL_WIN] = {
5063 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5064 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5065 28672, 40960, 57344, 81920, 114688, 163840, 229376
5066 };
5067
5068 unsigned int i, w;
5069
5070 for (i = 0; i < NMTUS; ++i) {
5071 unsigned int mtu = mtus[i];
5072 unsigned int log2 = fls(mtu);
5073
5074 if (!(mtu & ((1 << log2) >> 2))) /* round */
5075 log2--;
837e4a42
HS
5076 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5077 MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
56d36be4
DM
5078
5079 for (w = 0; w < NCCTRL_WIN; ++w) {
5080 unsigned int inc;
5081
5082 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5083 CC_MIN_INCR);
5084
837e4a42 5085 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
56d36be4
DM
5086 (w << 16) | (beta[w] << 13) | inc);
5087 }
5088 }
5089}
5090
7864026b
HS
5091/* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5092 * clocks. The formula is
5093 *
5094 * bytes/s = bytes256 * 256 * ClkFreq / 4096
5095 *
5096 * which is equivalent to
5097 *
5098 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5099 */
5100static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5101{
5102 u64 v = bytes256 * adap->params.vpd.cclk;
5103
5104 return v * 62 + v / 2;
5105}
5106
5107/**
5108 * t4_get_chan_txrate - get the current per channel Tx rates
5109 * @adap: the adapter
5110 * @nic_rate: rates for NIC traffic
5111 * @ofld_rate: rates for offloaded traffic
5112 *
5113 * Return the current Tx rates in bytes/s for NIC and offloaded traffic
5114 * for each channel.
5115 */
5116void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5117{
5118 u32 v;
5119
5120 v = t4_read_reg(adap, TP_TX_TRATE_A);
5121 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5122 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5123 if (adap->params.arch.nchan == NCHAN) {
5124 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5125 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5126 }
5127
5128 v = t4_read_reg(adap, TP_TX_ORATE_A);
5129 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5130 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5131 if (adap->params.arch.nchan == NCHAN) {
5132 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5133 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5134 }
5135}
5136
8e3d04fd
HS
5137/**
5138 * t4_set_trace_filter - configure one of the tracing filters
5139 * @adap: the adapter
5140 * @tp: the desired trace filter parameters
5141 * @idx: which filter to configure
5142 * @enable: whether to enable or disable the filter
5143 *
5144 * Configures one of the tracing filters available in HW. If @enable is
5145 * %0 @tp is not examined and may be %NULL. The user is responsible to
5146 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5147 */
5148int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5149 int idx, int enable)
5150{
5151 int i, ofst = idx * 4;
5152 u32 data_reg, mask_reg, cfg;
5153 u32 multitrc = TRCMULTIFILTER_F;
5154
5155 if (!enable) {
5156 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5157 return 0;
5158 }
5159
5160 cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5161 if (cfg & TRCMULTIFILTER_F) {
5162 /* If multiple tracers are enabled, then maximum
5163 * capture size is 2.5KB (FIFO size of a single channel)
5164 * minus 2 flits for CPL_TRACE_PKT header.
5165 */
5166 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5167 return -EINVAL;
5168 } else {
5169 /* If multiple tracers are disabled, to avoid deadlocks
5170 * maximum packet capture size of 9600 bytes is recommended.
5171 * Also in this mode, only trace0 can be enabled and running.
5172 */
5173 multitrc = 0;
5174 if (tp->snap_len > 9600 || idx)
5175 return -EINVAL;
5176 }
5177
5178 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5179 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5180 tp->min_len > TFMINPKTSIZE_M)
5181 return -EINVAL;
5182
5183 /* stop the tracer we'll be changing */
5184 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5185
5186 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5187 data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5188 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5189
5190 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5191 t4_write_reg(adap, data_reg, tp->data[i]);
5192 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5193 }
5194 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5195 TFCAPTUREMAX_V(tp->snap_len) |
5196 TFMINPKTSIZE_V(tp->min_len));
5197 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5198 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5199 (is_t4(adap->params.chip) ?
5200 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5201 T5_TFPORT_V(tp->port) | T5_TFEN_F |
5202 T5_TFINVERTMATCH_V(tp->invert)));
5203
5204 return 0;
5205}
5206
5207/**
5208 * t4_get_trace_filter - query one of the tracing filters
5209 * @adap: the adapter
5210 * @tp: the current trace filter parameters
5211 * @idx: which trace filter to query
5212 * @enabled: non-zero if the filter is enabled
5213 *
5214 * Returns the current settings of one of the HW tracing filters.
5215 */
5216void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5217 int *enabled)
5218{
5219 u32 ctla, ctlb;
5220 int i, ofst = idx * 4;
5221 u32 data_reg, mask_reg;
5222
5223 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5224 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5225
5226 if (is_t4(adap->params.chip)) {
5227 *enabled = !!(ctla & TFEN_F);
5228 tp->port = TFPORT_G(ctla);
5229 tp->invert = !!(ctla & TFINVERTMATCH_F);
5230 } else {
5231 *enabled = !!(ctla & T5_TFEN_F);
5232 tp->port = T5_TFPORT_G(ctla);
5233 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5234 }
5235 tp->snap_len = TFCAPTUREMAX_G(ctlb);
5236 tp->min_len = TFMINPKTSIZE_G(ctlb);
5237 tp->skip_ofst = TFOFFSET_G(ctla);
5238 tp->skip_len = TFLENGTH_G(ctla);
5239
5240 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5241 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5242 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5243
5244 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5245 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5246 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5247 }
5248}
5249
b3bbe36a
HS
5250/**
5251 * t4_pmtx_get_stats - returns the HW stats from PMTX
5252 * @adap: the adapter
5253 * @cnt: where to store the count statistics
5254 * @cycles: where to store the cycle statistics
5255 *
5256 * Returns performance statistics from PMTX.
5257 */
5258void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5259{
5260 int i;
5261 u32 data[2];
5262
44588560 5263 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
b3bbe36a
HS
5264 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5265 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5266 if (is_t4(adap->params.chip)) {
5267 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5268 } else {
5269 t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5270 PM_TX_DBG_DATA_A, data, 2,
5271 PM_TX_DBG_STAT_MSB_A);
5272 cycles[i] = (((u64)data[0] << 32) | data[1]);
5273 }
5274 }
5275}
5276
5277/**
5278 * t4_pmrx_get_stats - returns the HW stats from PMRX
5279 * @adap: the adapter
5280 * @cnt: where to store the count statistics
5281 * @cycles: where to store the cycle statistics
5282 *
5283 * Returns performance statistics from PMRX.
5284 */
5285void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5286{
5287 int i;
5288 u32 data[2];
5289
44588560 5290 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
b3bbe36a
HS
5291 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5292 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5293 if (is_t4(adap->params.chip)) {
5294 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5295 } else {
5296 t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5297 PM_RX_DBG_DATA_A, data, 2,
5298 PM_RX_DBG_STAT_MSB_A);
5299 cycles[i] = (((u64)data[0] << 32) | data[1]);
5300 }
5301 }
5302}
5303
56d36be4 5304/**
145ef8a5 5305 * t4_get_mps_bg_map - return the buffer groups associated with a port
56d36be4
DM
5306 * @adap: the adapter
5307 * @idx: the port index
5308 *
5309 * Returns a bitmap indicating which MPS buffer groups are associated
5310 * with the given port. Bit i is set if buffer group i is used by the
5311 * port.
5312 */
145ef8a5 5313unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
56d36be4 5314{
837e4a42 5315 u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
56d36be4
DM
5316
5317 if (n == 0)
5318 return idx == 0 ? 0xf : 0;
e9faeab8
HS
5319 /* In T6 (which is a 2 port card),
5320 * port 0 is mapped to channel 0 and port 1 is mapped to channel 1.
5321 * For 2 port T4/T5 adapter,
5322 * port 0 is mapped to channel 0 and 1,
5323 * port 1 is mapped to channel 2 and 3.
5324 */
5325 if ((n == 1) &&
5326 (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
56d36be4
DM
5327 return idx < 2 ? (3 << (2 * idx)) : 0;
5328 return 1 << idx;
5329}
5330
72aca4bf
KS
5331/**
5332 * t4_get_port_type_description - return Port Type string description
5333 * @port_type: firmware Port Type enumeration
5334 */
5335const char *t4_get_port_type_description(enum fw_port_type port_type)
5336{
5337 static const char *const port_type_description[] = {
5338 "R XFI",
5339 "R XAUI",
5340 "T SGMII",
5341 "T XFI",
5342 "T XAUI",
5343 "KX4",
5344 "CX4",
5345 "KX",
5346 "KR",
5347 "R SFP+",
5348 "KR/KX",
5349 "KR/KX/KX4",
5350 "R QSFP_10G",
5aa80e51 5351 "R QSA",
72aca4bf
KS
5352 "R QSFP",
5353 "R BP40_BA",
5354 };
5355
5356 if (port_type < ARRAY_SIZE(port_type_description))
5357 return port_type_description[port_type];
5358 return "UNKNOWN";
5359}
5360
a4cfd929
HS
5361/**
5362 * t4_get_port_stats_offset - collect port stats relative to a previous
5363 * snapshot
5364 * @adap: The adapter
5365 * @idx: The port
5366 * @stats: Current stats to fill
5367 * @offset: Previous stats snapshot
5368 */
5369void t4_get_port_stats_offset(struct adapter *adap, int idx,
5370 struct port_stats *stats,
5371 struct port_stats *offset)
5372{
5373 u64 *s, *o;
5374 int i;
5375
5376 t4_get_port_stats(adap, idx, stats);
5377 for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5378 i < (sizeof(struct port_stats) / sizeof(u64));
5379 i++, s++, o++)
5380 *s -= *o;
5381}
5382
56d36be4
DM
5383/**
5384 * t4_get_port_stats - collect port statistics
5385 * @adap: the adapter
5386 * @idx: the port index
5387 * @p: the stats structure to fill
5388 *
5389 * Collect statistics related to the given port from HW.
5390 */
5391void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5392{
145ef8a5 5393 u32 bgmap = t4_get_mps_bg_map(adap, idx);
56d36be4
DM
5394
5395#define GET_STAT(name) \
0a57a536 5396 t4_read_reg64(adap, \
d14807dd 5397 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
0a57a536 5398 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
56d36be4
DM
5399#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5400
5401 p->tx_octets = GET_STAT(TX_PORT_BYTES);
5402 p->tx_frames = GET_STAT(TX_PORT_FRAMES);
5403 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
5404 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
5405 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
5406 p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
5407 p->tx_frames_64 = GET_STAT(TX_PORT_64B);
5408 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
5409 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
5410 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
5411 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
5412 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5413 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
5414 p->tx_drop = GET_STAT(TX_PORT_DROP);
5415 p->tx_pause = GET_STAT(TX_PORT_PAUSE);
5416 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
5417 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
5418 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
5419 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
5420 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
5421 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
5422 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
5423 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
5424
5425 p->rx_octets = GET_STAT(RX_PORT_BYTES);
5426 p->rx_frames = GET_STAT(RX_PORT_FRAMES);
5427 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
5428 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
5429 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
5430 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
5431 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5432 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
5433 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
5434 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
5435 p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
5436 p->rx_frames_64 = GET_STAT(RX_PORT_64B);
5437 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
5438 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
5439 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
5440 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
5441 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
5442 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
5443 p->rx_pause = GET_STAT(RX_PORT_PAUSE);
5444 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
5445 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
5446 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
5447 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
5448 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
5449 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
5450 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
5451 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
5452
5453 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5454 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5455 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5456 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5457 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5458 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5459 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5460 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5461
5462#undef GET_STAT
5463#undef GET_STAT_COM
5464}
5465
56d36be4 5466/**
65046e84 5467 * t4_get_lb_stats - collect loopback port statistics
56d36be4 5468 * @adap: the adapter
65046e84
HS
5469 * @idx: the loopback port index
5470 * @p: the stats structure to fill
56d36be4 5471 *
65046e84 5472 * Return HW statistics for the given loopback port.
56d36be4 5473 */
65046e84 5474void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
56d36be4 5475{
65046e84 5476 u32 bgmap = t4_get_mps_bg_map(adap, idx);
56d36be4 5477
65046e84
HS
5478#define GET_STAT(name) \
5479 t4_read_reg64(adap, \
0d804338 5480 (is_t4(adap->params.chip) ? \
65046e84
HS
5481 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
5482 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
5483#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
56d36be4 5484
65046e84
HS
5485 p->octets = GET_STAT(BYTES);
5486 p->frames = GET_STAT(FRAMES);
5487 p->bcast_frames = GET_STAT(BCAST);
5488 p->mcast_frames = GET_STAT(MCAST);
5489 p->ucast_frames = GET_STAT(UCAST);
5490 p->error_frames = GET_STAT(ERROR);
5491
5492 p->frames_64 = GET_STAT(64B);
5493 p->frames_65_127 = GET_STAT(65B_127B);
5494 p->frames_128_255 = GET_STAT(128B_255B);
5495 p->frames_256_511 = GET_STAT(256B_511B);
5496 p->frames_512_1023 = GET_STAT(512B_1023B);
5497 p->frames_1024_1518 = GET_STAT(1024B_1518B);
5498 p->frames_1519_max = GET_STAT(1519B_MAX);
5499 p->drop = GET_STAT(DROP_FRAMES);
5500
5501 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5502 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5503 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5504 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5505 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5506 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5507 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5508 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
56d36be4 5509
65046e84
HS
5510#undef GET_STAT
5511#undef GET_STAT_COM
56d36be4
DM
5512}
5513
f2b7e78d
VP
5514/* t4_mk_filtdelwr - create a delete filter WR
5515 * @ftid: the filter ID
5516 * @wr: the filter work request to populate
5517 * @qid: ingress queue to receive the delete notification
5518 *
5519 * Creates a filter work request to delete the supplied filter. If @qid is
5520 * negative the delete notification is suppressed.
5521 */
5522void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5523{
5524 memset(wr, 0, sizeof(*wr));
f404f80c
HS
5525 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
5526 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
5527 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
5528 FW_FILTER_WR_NOREPLY_V(qid < 0));
5529 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
f2b7e78d 5530 if (qid >= 0)
f404f80c
HS
5531 wr->rx_chan_rx_rpl_iq =
5532 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
f2b7e78d
VP
5533}
5534
56d36be4 5535#define INIT_CMD(var, cmd, rd_wr) do { \
f404f80c
HS
5536 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
5537 FW_CMD_REQUEST_F | \
5538 FW_CMD_##rd_wr##_F); \
5539 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
56d36be4
DM
5540} while (0)
5541
8caa1e84
VP
5542int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5543 u32 addr, u32 val)
5544{
f404f80c 5545 u32 ldst_addrspace;
8caa1e84
VP
5546 struct fw_ldst_cmd c;
5547
5548 memset(&c, 0, sizeof(c));
f404f80c
HS
5549 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
5550 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5551 FW_CMD_REQUEST_F |
5552 FW_CMD_WRITE_F |
5553 ldst_addrspace);
5554 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5555 c.u.addrval.addr = cpu_to_be32(addr);
5556 c.u.addrval.val = cpu_to_be32(val);
8caa1e84
VP
5557
5558 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5559}
5560
56d36be4
DM
5561/**
5562 * t4_mdio_rd - read a PHY register through MDIO
5563 * @adap: the adapter
5564 * @mbox: mailbox to use for the FW command
5565 * @phy_addr: the PHY address
5566 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5567 * @reg: the register to read
5568 * @valp: where to store the value
5569 *
5570 * Issues a FW command through the given mailbox to read a PHY register.
5571 */
5572int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5573 unsigned int mmd, unsigned int reg, u16 *valp)
5574{
5575 int ret;
f404f80c 5576 u32 ldst_addrspace;
56d36be4
DM
5577 struct fw_ldst_cmd c;
5578
5579 memset(&c, 0, sizeof(c));
f404f80c
HS
5580 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5581 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5582 FW_CMD_REQUEST_F | FW_CMD_READ_F |
5583 ldst_addrspace);
5584 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5585 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5586 FW_LDST_CMD_MMD_V(mmd));
5587 c.u.mdio.raddr = cpu_to_be16(reg);
56d36be4
DM
5588
5589 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5590 if (ret == 0)
f404f80c 5591 *valp = be16_to_cpu(c.u.mdio.rval);
56d36be4
DM
5592 return ret;
5593}
5594
5595/**
5596 * t4_mdio_wr - write a PHY register through MDIO
5597 * @adap: the adapter
5598 * @mbox: mailbox to use for the FW command
5599 * @phy_addr: the PHY address
5600 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5601 * @reg: the register to write
5602 * @valp: value to write
5603 *
5604 * Issues a FW command through the given mailbox to write a PHY register.
5605 */
5606int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5607 unsigned int mmd, unsigned int reg, u16 val)
5608{
f404f80c 5609 u32 ldst_addrspace;
56d36be4
DM
5610 struct fw_ldst_cmd c;
5611
5612 memset(&c, 0, sizeof(c));
f404f80c
HS
5613 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5614 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5615 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5616 ldst_addrspace);
5617 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5618 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5619 FW_LDST_CMD_MMD_V(mmd));
5620 c.u.mdio.raddr = cpu_to_be16(reg);
5621 c.u.mdio.rval = cpu_to_be16(val);
56d36be4
DM
5622
5623 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5624}
5625
68bce192
KS
5626/**
5627 * t4_sge_decode_idma_state - decode the idma state
5628 * @adap: the adapter
5629 * @state: the state idma is stuck in
5630 */
5631void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5632{
5633 static const char * const t4_decode[] = {
5634 "IDMA_IDLE",
5635 "IDMA_PUSH_MORE_CPL_FIFO",
5636 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5637 "Not used",
5638 "IDMA_PHYSADDR_SEND_PCIEHDR",
5639 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5640 "IDMA_PHYSADDR_SEND_PAYLOAD",
5641 "IDMA_SEND_FIFO_TO_IMSG",
5642 "IDMA_FL_REQ_DATA_FL_PREP",
5643 "IDMA_FL_REQ_DATA_FL",
5644 "IDMA_FL_DROP",
5645 "IDMA_FL_H_REQ_HEADER_FL",
5646 "IDMA_FL_H_SEND_PCIEHDR",
5647 "IDMA_FL_H_PUSH_CPL_FIFO",
5648 "IDMA_FL_H_SEND_CPL",
5649 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5650 "IDMA_FL_H_SEND_IP_HDR",
5651 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5652 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5653 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5654 "IDMA_FL_D_SEND_PCIEHDR",
5655 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5656 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5657 "IDMA_FL_SEND_PCIEHDR",
5658 "IDMA_FL_PUSH_CPL_FIFO",
5659 "IDMA_FL_SEND_CPL",
5660 "IDMA_FL_SEND_PAYLOAD_FIRST",
5661 "IDMA_FL_SEND_PAYLOAD",
5662 "IDMA_FL_REQ_NEXT_DATA_FL",
5663 "IDMA_FL_SEND_NEXT_PCIEHDR",
5664 "IDMA_FL_SEND_PADDING",
5665 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5666 "IDMA_FL_SEND_FIFO_TO_IMSG",
5667 "IDMA_FL_REQ_DATAFL_DONE",
5668 "IDMA_FL_REQ_HEADERFL_DONE",
5669 };
5670 static const char * const t5_decode[] = {
5671 "IDMA_IDLE",
5672 "IDMA_ALMOST_IDLE",
5673 "IDMA_PUSH_MORE_CPL_FIFO",
5674 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5675 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5676 "IDMA_PHYSADDR_SEND_PCIEHDR",
5677 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5678 "IDMA_PHYSADDR_SEND_PAYLOAD",
5679 "IDMA_SEND_FIFO_TO_IMSG",
5680 "IDMA_FL_REQ_DATA_FL",
5681 "IDMA_FL_DROP",
5682 "IDMA_FL_DROP_SEND_INC",
5683 "IDMA_FL_H_REQ_HEADER_FL",
5684 "IDMA_FL_H_SEND_PCIEHDR",
5685 "IDMA_FL_H_PUSH_CPL_FIFO",
5686 "IDMA_FL_H_SEND_CPL",
5687 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5688 "IDMA_FL_H_SEND_IP_HDR",
5689 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5690 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5691 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5692 "IDMA_FL_D_SEND_PCIEHDR",
5693 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5694 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5695 "IDMA_FL_SEND_PCIEHDR",
5696 "IDMA_FL_PUSH_CPL_FIFO",
5697 "IDMA_FL_SEND_CPL",
5698 "IDMA_FL_SEND_PAYLOAD_FIRST",
5699 "IDMA_FL_SEND_PAYLOAD",
5700 "IDMA_FL_REQ_NEXT_DATA_FL",
5701 "IDMA_FL_SEND_NEXT_PCIEHDR",
5702 "IDMA_FL_SEND_PADDING",
5703 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5704 };
5705 static const u32 sge_regs[] = {
f061de42
HS
5706 SGE_DEBUG_DATA_LOW_INDEX_2_A,
5707 SGE_DEBUG_DATA_LOW_INDEX_3_A,
5708 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
68bce192
KS
5709 };
5710 const char **sge_idma_decode;
5711 int sge_idma_decode_nstates;
5712 int i;
5713
5714 if (is_t4(adapter->params.chip)) {
5715 sge_idma_decode = (const char **)t4_decode;
5716 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5717 } else {
5718 sge_idma_decode = (const char **)t5_decode;
5719 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5720 }
5721
5722 if (state < sge_idma_decode_nstates)
5723 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
5724 else
5725 CH_WARN(adapter, "idma state %d unknown\n", state);
5726
5727 for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
5728 CH_WARN(adapter, "SGE register %#x value %#x\n",
5729 sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
5730}
5731
5d700ecb
HS
5732/**
5733 * t4_sge_ctxt_flush - flush the SGE context cache
5734 * @adap: the adapter
5735 * @mbox: mailbox to use for the FW command
5736 *
5737 * Issues a FW command through the given mailbox to flush the
5738 * SGE context cache.
5739 */
5740int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
5741{
5742 int ret;
5743 u32 ldst_addrspace;
5744 struct fw_ldst_cmd c;
5745
5746 memset(&c, 0, sizeof(c));
5747 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
5748 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5749 FW_CMD_REQUEST_F | FW_CMD_READ_F |
5750 ldst_addrspace);
5751 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5752 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
5753
5754 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5755 return ret;
5756}
5757
56d36be4 5758/**
636f9d37
VP
5759 * t4_fw_hello - establish communication with FW
5760 * @adap: the adapter
5761 * @mbox: mailbox to use for the FW command
5762 * @evt_mbox: mailbox to receive async FW events
5763 * @master: specifies the caller's willingness to be the device master
5764 * @state: returns the current device state (if non-NULL)
56d36be4 5765 *
636f9d37
VP
5766 * Issues a command to establish communication with FW. Returns either
5767 * an error (negative integer) or the mailbox of the Master PF.
56d36be4
DM
5768 */
5769int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
5770 enum dev_master master, enum dev_state *state)
5771{
5772 int ret;
5773 struct fw_hello_cmd c;
636f9d37
VP
5774 u32 v;
5775 unsigned int master_mbox;
5776 int retries = FW_CMD_HELLO_RETRIES;
56d36be4 5777
636f9d37
VP
5778retry:
5779 memset(&c, 0, sizeof(c));
56d36be4 5780 INIT_CMD(c, HELLO, WRITE);
f404f80c 5781 c.err_to_clearinit = cpu_to_be32(
5167865a
HS
5782 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
5783 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
f404f80c
HS
5784 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
5785 mbox : FW_HELLO_CMD_MBMASTER_M) |
5167865a
HS
5786 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
5787 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
5788 FW_HELLO_CMD_CLEARINIT_F);
56d36be4 5789
636f9d37
VP
5790 /*
5791 * Issue the HELLO command to the firmware. If it's not successful
5792 * but indicates that we got a "busy" or "timeout" condition, retry
31d55c2d
HS
5793 * the HELLO until we exhaust our retry limit. If we do exceed our
5794 * retry limit, check to see if the firmware left us any error
5795 * information and report that if so.
636f9d37 5796 */
56d36be4 5797 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
636f9d37
VP
5798 if (ret < 0) {
5799 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
5800 goto retry;
f061de42 5801 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
31d55c2d 5802 t4_report_fw_error(adap);
636f9d37
VP
5803 return ret;
5804 }
5805
f404f80c 5806 v = be32_to_cpu(c.err_to_clearinit);
5167865a 5807 master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
636f9d37 5808 if (state) {
5167865a 5809 if (v & FW_HELLO_CMD_ERR_F)
56d36be4 5810 *state = DEV_STATE_ERR;
5167865a 5811 else if (v & FW_HELLO_CMD_INIT_F)
636f9d37 5812 *state = DEV_STATE_INIT;
56d36be4
DM
5813 else
5814 *state = DEV_STATE_UNINIT;
5815 }
636f9d37
VP
5816
5817 /*
5818 * If we're not the Master PF then we need to wait around for the
5819 * Master PF Driver to finish setting up the adapter.
5820 *
5821 * Note that we also do this wait if we're a non-Master-capable PF and
5822 * there is no current Master PF; a Master PF may show up momentarily
5823 * and we wouldn't want to fail pointlessly. (This can happen when an
5824 * OS loads lots of different drivers rapidly at the same time). In
5825 * this case, the Master PF returned by the firmware will be
b2e1a3f0 5826 * PCIE_FW_MASTER_M so the test below will work ...
636f9d37 5827 */
5167865a 5828 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
636f9d37
VP
5829 master_mbox != mbox) {
5830 int waiting = FW_CMD_HELLO_TIMEOUT;
5831
5832 /*
5833 * Wait for the firmware to either indicate an error or
5834 * initialized state. If we see either of these we bail out
5835 * and report the issue to the caller. If we exhaust the
5836 * "hello timeout" and we haven't exhausted our retries, try
5837 * again. Otherwise bail with a timeout error.
5838 */
5839 for (;;) {
5840 u32 pcie_fw;
5841
5842 msleep(50);
5843 waiting -= 50;
5844
5845 /*
5846 * If neither Error nor Initialialized are indicated
5847 * by the firmware keep waiting till we exaust our
5848 * timeout ... and then retry if we haven't exhausted
5849 * our retries ...
5850 */
f061de42
HS
5851 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
5852 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
636f9d37
VP
5853 if (waiting <= 0) {
5854 if (retries-- > 0)
5855 goto retry;
5856
5857 return -ETIMEDOUT;
5858 }
5859 continue;
5860 }
5861
5862 /*
5863 * We either have an Error or Initialized condition
5864 * report errors preferentially.
5865 */
5866 if (state) {
f061de42 5867 if (pcie_fw & PCIE_FW_ERR_F)
636f9d37 5868 *state = DEV_STATE_ERR;
f061de42 5869 else if (pcie_fw & PCIE_FW_INIT_F)
636f9d37
VP
5870 *state = DEV_STATE_INIT;
5871 }
5872
5873 /*
5874 * If we arrived before a Master PF was selected and
5875 * there's not a valid Master PF, grab its identity
5876 * for our caller.
5877 */
b2e1a3f0 5878 if (master_mbox == PCIE_FW_MASTER_M &&
f061de42 5879 (pcie_fw & PCIE_FW_MASTER_VLD_F))
b2e1a3f0 5880 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
636f9d37
VP
5881 break;
5882 }
5883 }
5884
5885 return master_mbox;
56d36be4
DM
5886}
5887
5888/**
5889 * t4_fw_bye - end communication with FW
5890 * @adap: the adapter
5891 * @mbox: mailbox to use for the FW command
5892 *
5893 * Issues a command to terminate communication with FW.
5894 */
5895int t4_fw_bye(struct adapter *adap, unsigned int mbox)
5896{
5897 struct fw_bye_cmd c;
5898
0062b15c 5899 memset(&c, 0, sizeof(c));
56d36be4
DM
5900 INIT_CMD(c, BYE, WRITE);
5901 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5902}
5903
5904/**
5905 * t4_init_cmd - ask FW to initialize the device
5906 * @adap: the adapter
5907 * @mbox: mailbox to use for the FW command
5908 *
5909 * Issues a command to FW to partially initialize the device. This
5910 * performs initialization that generally doesn't depend on user input.
5911 */
5912int t4_early_init(struct adapter *adap, unsigned int mbox)
5913{
5914 struct fw_initialize_cmd c;
5915
0062b15c 5916 memset(&c, 0, sizeof(c));
56d36be4
DM
5917 INIT_CMD(c, INITIALIZE, WRITE);
5918 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5919}
5920
5921/**
5922 * t4_fw_reset - issue a reset to FW
5923 * @adap: the adapter
5924 * @mbox: mailbox to use for the FW command
5925 * @reset: specifies the type of reset to perform
5926 *
5927 * Issues a reset command of the specified type to FW.
5928 */
5929int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
5930{
5931 struct fw_reset_cmd c;
5932
0062b15c 5933 memset(&c, 0, sizeof(c));
56d36be4 5934 INIT_CMD(c, RESET, WRITE);
f404f80c 5935 c.val = cpu_to_be32(reset);
56d36be4
DM
5936 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5937}
5938
26f7cbc0
VP
5939/**
5940 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
5941 * @adap: the adapter
5942 * @mbox: mailbox to use for the FW RESET command (if desired)
5943 * @force: force uP into RESET even if FW RESET command fails
5944 *
5945 * Issues a RESET command to firmware (if desired) with a HALT indication
5946 * and then puts the microprocessor into RESET state. The RESET command
5947 * will only be issued if a legitimate mailbox is provided (mbox <=
b2e1a3f0 5948 * PCIE_FW_MASTER_M).
26f7cbc0
VP
5949 *
5950 * This is generally used in order for the host to safely manipulate the
5951 * adapter without fear of conflicting with whatever the firmware might
5952 * be doing. The only way out of this state is to RESTART the firmware
5953 * ...
5954 */
de5b8677 5955static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
26f7cbc0
VP
5956{
5957 int ret = 0;
5958
5959 /*
5960 * If a legitimate mailbox is provided, issue a RESET command
5961 * with a HALT indication.
5962 */
b2e1a3f0 5963 if (mbox <= PCIE_FW_MASTER_M) {
26f7cbc0
VP
5964 struct fw_reset_cmd c;
5965
5966 memset(&c, 0, sizeof(c));
5967 INIT_CMD(c, RESET, WRITE);
f404f80c
HS
5968 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
5969 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
26f7cbc0
VP
5970 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5971 }
5972
5973 /*
5974 * Normally we won't complete the operation if the firmware RESET
5975 * command fails but if our caller insists we'll go ahead and put the
5976 * uP into RESET. This can be useful if the firmware is hung or even
5977 * missing ... We'll have to take the risk of putting the uP into
5978 * RESET without the cooperation of firmware in that case.
5979 *
5980 * We also force the firmware's HALT flag to be on in case we bypassed
5981 * the firmware RESET command above or we're dealing with old firmware
5982 * which doesn't have the HALT capability. This will serve as a flag
5983 * for the incoming firmware to know that it's coming out of a HALT
5984 * rather than a RESET ... if it's new enough to understand that ...
5985 */
5986 if (ret == 0 || force) {
89c3a86c 5987 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
f061de42 5988 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
b2e1a3f0 5989 PCIE_FW_HALT_F);
26f7cbc0
VP
5990 }
5991
5992 /*
5993 * And we always return the result of the firmware RESET command
5994 * even when we force the uP into RESET ...
5995 */
5996 return ret;
5997}
5998
5999/**
6000 * t4_fw_restart - restart the firmware by taking the uP out of RESET
6001 * @adap: the adapter
6002 * @reset: if we want to do a RESET to restart things
6003 *
6004 * Restart firmware previously halted by t4_fw_halt(). On successful
6005 * return the previous PF Master remains as the new PF Master and there
6006 * is no need to issue a new HELLO command, etc.
6007 *
6008 * We do this in two ways:
6009 *
6010 * 1. If we're dealing with newer firmware we'll simply want to take
6011 * the chip's microprocessor out of RESET. This will cause the
6012 * firmware to start up from its start vector. And then we'll loop
6013 * until the firmware indicates it's started again (PCIE_FW.HALT
6014 * reset to 0) or we timeout.
6015 *
6016 * 2. If we're dealing with older firmware then we'll need to RESET
6017 * the chip since older firmware won't recognize the PCIE_FW.HALT
6018 * flag and automatically RESET itself on startup.
6019 */
de5b8677 6020static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
26f7cbc0
VP
6021{
6022 if (reset) {
6023 /*
6024 * Since we're directing the RESET instead of the firmware
6025 * doing it automatically, we need to clear the PCIE_FW.HALT
6026 * bit.
6027 */
f061de42 6028 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
26f7cbc0
VP
6029
6030 /*
6031 * If we've been given a valid mailbox, first try to get the
6032 * firmware to do the RESET. If that works, great and we can
6033 * return success. Otherwise, if we haven't been given a
6034 * valid mailbox or the RESET command failed, fall back to
6035 * hitting the chip with a hammer.
6036 */
b2e1a3f0 6037 if (mbox <= PCIE_FW_MASTER_M) {
89c3a86c 6038 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
26f7cbc0
VP
6039 msleep(100);
6040 if (t4_fw_reset(adap, mbox,
0d804338 6041 PIORST_F | PIORSTMODE_F) == 0)
26f7cbc0
VP
6042 return 0;
6043 }
6044
0d804338 6045 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
26f7cbc0
VP
6046 msleep(2000);
6047 } else {
6048 int ms;
6049
89c3a86c 6050 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
26f7cbc0 6051 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
f061de42 6052 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
26f7cbc0
VP
6053 return 0;
6054 msleep(100);
6055 ms += 100;
6056 }
6057 return -ETIMEDOUT;
6058 }
6059 return 0;
6060}
6061
6062/**
6063 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6064 * @adap: the adapter
6065 * @mbox: mailbox to use for the FW RESET command (if desired)
6066 * @fw_data: the firmware image to write
6067 * @size: image size
6068 * @force: force upgrade even if firmware doesn't cooperate
6069 *
6070 * Perform all of the steps necessary for upgrading an adapter's
6071 * firmware image. Normally this requires the cooperation of the
6072 * existing firmware in order to halt all existing activities
6073 * but if an invalid mailbox token is passed in we skip that step
6074 * (though we'll still put the adapter microprocessor into RESET in
6075 * that case).
6076 *
6077 * On successful return the new firmware will have been loaded and
6078 * the adapter will have been fully RESET losing all previous setup
6079 * state. On unsuccessful return the adapter may be completely hosed ...
6080 * positive errno indicates that the adapter is ~probably~ intact, a
6081 * negative errno indicates that things are looking bad ...
6082 */
22c0b963
HS
6083int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6084 const u8 *fw_data, unsigned int size, int force)
26f7cbc0
VP
6085{
6086 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6087 int reset, ret;
6088
79af221d
HS
6089 if (!t4_fw_matches_chip(adap, fw_hdr))
6090 return -EINVAL;
6091
26f7cbc0
VP
6092 ret = t4_fw_halt(adap, mbox, force);
6093 if (ret < 0 && !force)
6094 return ret;
6095
6096 ret = t4_load_fw(adap, fw_data, size);
6097 if (ret < 0)
6098 return ret;
6099
6100 /*
6101 * Older versions of the firmware don't understand the new
6102 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6103 * restart. So for newly loaded older firmware we'll have to do the
6104 * RESET for it so it starts up on a clean slate. We can tell if
6105 * the newly loaded firmware will handle this right by checking
6106 * its header flags to see if it advertises the capability.
6107 */
f404f80c 6108 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
26f7cbc0
VP
6109 return t4_fw_restart(adap, mbox, reset);
6110}
6111
acac5962
HS
6112/**
6113 * t4_fl_pkt_align - return the fl packet alignment
6114 * @adap: the adapter
6115 *
6116 * T4 has a single field to specify the packing and padding boundary.
6117 * T5 onwards has separate fields for this and hence the alignment for
6118 * next packet offset is maximum of these two.
6119 *
6120 */
6121int t4_fl_pkt_align(struct adapter *adap)
6122{
6123 u32 sge_control, sge_control2;
6124 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6125
6126 sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6127
6128 /* T4 uses a single control field to specify both the PCIe Padding and
6129 * Packing Boundary. T5 introduced the ability to specify these
6130 * separately. The actual Ingress Packet Data alignment boundary
6131 * within Packed Buffer Mode is the maximum of these two
6132 * specifications. (Note that it makes no real practical sense to
6133 * have the Pading Boudary be larger than the Packing Boundary but you
6134 * could set the chip up that way and, in fact, legacy T4 code would
6135 * end doing this because it would initialize the Padding Boundary and
6136 * leave the Packing Boundary initialized to 0 (16 bytes).)
6137 * Padding Boundary values in T6 starts from 8B,
6138 * where as it is 32B for T4 and T5.
6139 */
6140 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6141 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6142 else
6143 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6144
6145 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6146
6147 fl_align = ingpadboundary;
6148 if (!is_t4(adap->params.chip)) {
6149 /* T5 has a weird interpretation of one of the PCIe Packing
6150 * Boundary values. No idea why ...
6151 */
6152 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6153 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6154 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6155 ingpackboundary = 16;
6156 else
6157 ingpackboundary = 1 << (ingpackboundary +
6158 INGPACKBOUNDARY_SHIFT_X);
6159
6160 fl_align = max(ingpadboundary, ingpackboundary);
6161 }
6162 return fl_align;
6163}
6164
636f9d37
VP
6165/**
6166 * t4_fixup_host_params - fix up host-dependent parameters
6167 * @adap: the adapter
6168 * @page_size: the host's Base Page Size
6169 * @cache_line_size: the host's Cache Line Size
6170 *
6171 * Various registers in T4 contain values which are dependent on the
6172 * host's Base Page and Cache Line Sizes. This function will fix all of
6173 * those registers with the appropriate values as passed in ...
6174 */
6175int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6176 unsigned int cache_line_size)
6177{
6178 unsigned int page_shift = fls(page_size) - 1;
6179 unsigned int sge_hps = page_shift - 10;
6180 unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6181 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6182 unsigned int fl_align_log = fls(fl_align) - 1;
acac5962 6183 unsigned int ingpad;
636f9d37 6184
f612b815
HS
6185 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6186 HOSTPAGESIZEPF0_V(sge_hps) |
6187 HOSTPAGESIZEPF1_V(sge_hps) |
6188 HOSTPAGESIZEPF2_V(sge_hps) |
6189 HOSTPAGESIZEPF3_V(sge_hps) |
6190 HOSTPAGESIZEPF4_V(sge_hps) |
6191 HOSTPAGESIZEPF5_V(sge_hps) |
6192 HOSTPAGESIZEPF6_V(sge_hps) |
6193 HOSTPAGESIZEPF7_V(sge_hps));
636f9d37 6194
ce8f407a 6195 if (is_t4(adap->params.chip)) {
f612b815
HS
6196 t4_set_reg_field(adap, SGE_CONTROL_A,
6197 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6198 EGRSTATUSPAGESIZE_F,
6199 INGPADBOUNDARY_V(fl_align_log -
6200 INGPADBOUNDARY_SHIFT_X) |
6201 EGRSTATUSPAGESIZE_V(stat_len != 64));
ce8f407a
HS
6202 } else {
6203 /* T5 introduced the separation of the Free List Padding and
6204 * Packing Boundaries. Thus, we can select a smaller Padding
6205 * Boundary to avoid uselessly chewing up PCIe Link and Memory
6206 * Bandwidth, and use a Packing Boundary which is large enough
6207 * to avoid false sharing between CPUs, etc.
6208 *
6209 * For the PCI Link, the smaller the Padding Boundary the
6210 * better. For the Memory Controller, a smaller Padding
6211 * Boundary is better until we cross under the Memory Line
6212 * Size (the minimum unit of transfer to/from Memory). If we
6213 * have a Padding Boundary which is smaller than the Memory
6214 * Line Size, that'll involve a Read-Modify-Write cycle on the
6215 * Memory Controller which is never good. For T5 the smallest
6216 * Padding Boundary which we can select is 32 bytes which is
6217 * larger than any known Memory Controller Line Size so we'll
6218 * use that.
6219 *
6220 * T5 has a different interpretation of the "0" value for the
6221 * Packing Boundary. This corresponds to 16 bytes instead of
6222 * the expected 32 bytes. We never have a Packing Boundary
6223 * less than 32 bytes so we can't use that special value but
6224 * on the other hand, if we wanted 32 bytes, the best we can
6225 * really do is 64 bytes.
6226 */
6227 if (fl_align <= 32) {
6228 fl_align = 64;
6229 fl_align_log = 6;
6230 }
acac5962
HS
6231
6232 if (is_t5(adap->params.chip))
6233 ingpad = INGPCIEBOUNDARY_32B_X;
6234 else
6235 ingpad = T6_INGPADBOUNDARY_32B_X;
6236
f612b815
HS
6237 t4_set_reg_field(adap, SGE_CONTROL_A,
6238 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6239 EGRSTATUSPAGESIZE_F,
acac5962 6240 INGPADBOUNDARY_V(ingpad) |
f612b815 6241 EGRSTATUSPAGESIZE_V(stat_len != 64));
ce8f407a
HS
6242 t4_set_reg_field(adap, SGE_CONTROL2_A,
6243 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
6244 INGPACKBOUNDARY_V(fl_align_log -
f612b815 6245 INGPACKBOUNDARY_SHIFT_X));
ce8f407a 6246 }
636f9d37
VP
6247 /*
6248 * Adjust various SGE Free List Host Buffer Sizes.
6249 *
6250 * This is something of a crock since we're using fixed indices into
6251 * the array which are also known by the sge.c code and the T4
6252 * Firmware Configuration File. We need to come up with a much better
6253 * approach to managing this array. For now, the first four entries
6254 * are:
6255 *
6256 * 0: Host Page Size
6257 * 1: 64KB
6258 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6259 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6260 *
6261 * For the single-MTU buffers in unpacked mode we need to include
6262 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6263 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
dbedd44e 6264 * Padding boundary. All of these are accommodated in the Factory
636f9d37
VP
6265 * Default Firmware Configuration File but we need to adjust it for
6266 * this host's cache line size.
6267 */
f612b815
HS
6268 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6269 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6270 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
636f9d37 6271 & ~(fl_align-1));
f612b815
HS
6272 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6273 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
636f9d37
VP
6274 & ~(fl_align-1));
6275
0d804338 6276 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
636f9d37
VP
6277
6278 return 0;
6279}
6280
6281/**
6282 * t4_fw_initialize - ask FW to initialize the device
6283 * @adap: the adapter
6284 * @mbox: mailbox to use for the FW command
6285 *
6286 * Issues a command to FW to partially initialize the device. This
6287 * performs initialization that generally doesn't depend on user input.
6288 */
6289int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6290{
6291 struct fw_initialize_cmd c;
6292
6293 memset(&c, 0, sizeof(c));
6294 INIT_CMD(c, INITIALIZE, WRITE);
6295 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6296}
6297
56d36be4 6298/**
01b69614 6299 * t4_query_params_rw - query FW or device parameters
56d36be4
DM
6300 * @adap: the adapter
6301 * @mbox: mailbox to use for the FW command
6302 * @pf: the PF
6303 * @vf: the VF
6304 * @nparams: the number of parameters
6305 * @params: the parameter names
6306 * @val: the parameter values
01b69614 6307 * @rw: Write and read flag
56d36be4
DM
6308 *
6309 * Reads the value of FW or device parameters. Up to 7 parameters can be
6310 * queried at once.
6311 */
01b69614
HS
6312int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6313 unsigned int vf, unsigned int nparams, const u32 *params,
6314 u32 *val, int rw)
56d36be4
DM
6315{
6316 int i, ret;
6317 struct fw_params_cmd c;
6318 __be32 *p = &c.param[0].mnem;
6319
6320 if (nparams > 7)
6321 return -EINVAL;
6322
6323 memset(&c, 0, sizeof(c));
f404f80c
HS
6324 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6325 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6326 FW_PARAMS_CMD_PFN_V(pf) |
6327 FW_PARAMS_CMD_VFN_V(vf));
6328 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6329
01b69614
HS
6330 for (i = 0; i < nparams; i++) {
6331 *p++ = cpu_to_be32(*params++);
6332 if (rw)
6333 *p = cpu_to_be32(*(val + i));
6334 p++;
6335 }
56d36be4
DM
6336
6337 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6338 if (ret == 0)
6339 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
f404f80c 6340 *val++ = be32_to_cpu(*p);
56d36be4
DM
6341 return ret;
6342}
6343
01b69614
HS
6344int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6345 unsigned int vf, unsigned int nparams, const u32 *params,
6346 u32 *val)
6347{
6348 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6349}
6350
688848b1 6351/**
01b69614 6352 * t4_set_params_timeout - sets FW or device parameters
688848b1
AB
6353 * @adap: the adapter
6354 * @mbox: mailbox to use for the FW command
6355 * @pf: the PF
6356 * @vf: the VF
6357 * @nparams: the number of parameters
6358 * @params: the parameter names
6359 * @val: the parameter values
01b69614 6360 * @timeout: the timeout time
688848b1 6361 *
688848b1
AB
6362 * Sets the value of FW or device parameters. Up to 7 parameters can be
6363 * specified at once.
6364 */
01b69614 6365int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
688848b1
AB
6366 unsigned int pf, unsigned int vf,
6367 unsigned int nparams, const u32 *params,
01b69614 6368 const u32 *val, int timeout)
688848b1
AB
6369{
6370 struct fw_params_cmd c;
6371 __be32 *p = &c.param[0].mnem;
6372
6373 if (nparams > 7)
6374 return -EINVAL;
6375
6376 memset(&c, 0, sizeof(c));
e2ac9628 6377 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
01b69614
HS
6378 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6379 FW_PARAMS_CMD_PFN_V(pf) |
6380 FW_PARAMS_CMD_VFN_V(vf));
688848b1
AB
6381 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6382
6383 while (nparams--) {
6384 *p++ = cpu_to_be32(*params++);
6385 *p++ = cpu_to_be32(*val++);
6386 }
6387
01b69614 6388 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
688848b1
AB
6389}
6390
56d36be4
DM
6391/**
6392 * t4_set_params - sets FW or device parameters
6393 * @adap: the adapter
6394 * @mbox: mailbox to use for the FW command
6395 * @pf: the PF
6396 * @vf: the VF
6397 * @nparams: the number of parameters
6398 * @params: the parameter names
6399 * @val: the parameter values
6400 *
6401 * Sets the value of FW or device parameters. Up to 7 parameters can be
6402 * specified at once.
6403 */
6404int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6405 unsigned int vf, unsigned int nparams, const u32 *params,
6406 const u32 *val)
6407{
01b69614
HS
6408 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6409 FW_CMD_MAX_TIMEOUT);
56d36be4
DM
6410}
6411
6412/**
6413 * t4_cfg_pfvf - configure PF/VF resource limits
6414 * @adap: the adapter
6415 * @mbox: mailbox to use for the FW command
6416 * @pf: the PF being configured
6417 * @vf: the VF being configured
6418 * @txq: the max number of egress queues
6419 * @txq_eth_ctrl: the max number of egress Ethernet or control queues
6420 * @rxqi: the max number of interrupt-capable ingress queues
6421 * @rxq: the max number of interruptless ingress queues
6422 * @tc: the PCI traffic class
6423 * @vi: the max number of virtual interfaces
6424 * @cmask: the channel access rights mask for the PF/VF
6425 * @pmask: the port access rights mask for the PF/VF
6426 * @nexact: the maximum number of exact MPS filters
6427 * @rcaps: read capabilities
6428 * @wxcaps: write/execute capabilities
6429 *
6430 * Configures resource limits and capabilities for a physical or virtual
6431 * function.
6432 */
6433int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6434 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6435 unsigned int rxqi, unsigned int rxq, unsigned int tc,
6436 unsigned int vi, unsigned int cmask, unsigned int pmask,
6437 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6438{
6439 struct fw_pfvf_cmd c;
6440
6441 memset(&c, 0, sizeof(c));
f404f80c
HS
6442 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
6443 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
6444 FW_PFVF_CMD_VFN_V(vf));
6445 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6446 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
6447 FW_PFVF_CMD_NIQ_V(rxq));
6448 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
6449 FW_PFVF_CMD_PMASK_V(pmask) |
6450 FW_PFVF_CMD_NEQ_V(txq));
6451 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
6452 FW_PFVF_CMD_NVI_V(vi) |
6453 FW_PFVF_CMD_NEXACTF_V(nexact));
6454 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
6455 FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
6456 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
56d36be4
DM
6457 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6458}
6459
6460/**
6461 * t4_alloc_vi - allocate a virtual interface
6462 * @adap: the adapter
6463 * @mbox: mailbox to use for the FW command
6464 * @port: physical port associated with the VI
6465 * @pf: the PF owning the VI
6466 * @vf: the VF owning the VI
6467 * @nmac: number of MAC addresses needed (1 to 5)
6468 * @mac: the MAC addresses of the VI
6469 * @rss_size: size of RSS table slice associated with this VI
6470 *
6471 * Allocates a virtual interface for the given physical port. If @mac is
6472 * not %NULL it contains the MAC addresses of the VI as assigned by FW.
6473 * @mac should be large enough to hold @nmac Ethernet addresses, they are
6474 * stored consecutively so the space needed is @nmac * 6 bytes.
6475 * Returns a negative error number or the non-negative VI id.
6476 */
6477int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6478 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6479 unsigned int *rss_size)
6480{
6481 int ret;
6482 struct fw_vi_cmd c;
6483
6484 memset(&c, 0, sizeof(c));
f404f80c
HS
6485 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
6486 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6487 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
6488 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
2b5fb1f2 6489 c.portid_pkd = FW_VI_CMD_PORTID_V(port);
56d36be4
DM
6490 c.nmac = nmac - 1;
6491
6492 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6493 if (ret)
6494 return ret;
6495
6496 if (mac) {
6497 memcpy(mac, c.mac, sizeof(c.mac));
6498 switch (nmac) {
6499 case 5:
6500 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6501 case 4:
6502 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6503 case 3:
6504 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6505 case 2:
6506 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
6507 }
6508 }
6509 if (rss_size)
f404f80c
HS
6510 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
6511 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
56d36be4
DM
6512}
6513
4f3a0fcf
HS
6514/**
6515 * t4_free_vi - free a virtual interface
6516 * @adap: the adapter
6517 * @mbox: mailbox to use for the FW command
6518 * @pf: the PF owning the VI
6519 * @vf: the VF owning the VI
6520 * @viid: virtual interface identifiler
6521 *
6522 * Free a previously allocated virtual interface.
6523 */
6524int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6525 unsigned int vf, unsigned int viid)
6526{
6527 struct fw_vi_cmd c;
6528
6529 memset(&c, 0, sizeof(c));
6530 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
6531 FW_CMD_REQUEST_F |
6532 FW_CMD_EXEC_F |
6533 FW_VI_CMD_PFN_V(pf) |
6534 FW_VI_CMD_VFN_V(vf));
6535 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
6536 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
6537
6538 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
56d36be4
DM
6539}
6540
56d36be4
DM
6541/**
6542 * t4_set_rxmode - set Rx properties of a virtual interface
6543 * @adap: the adapter
6544 * @mbox: mailbox to use for the FW command
6545 * @viid: the VI id
6546 * @mtu: the new MTU or -1
6547 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6548 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6549 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
f8f5aafa 6550 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
56d36be4
DM
6551 * @sleep_ok: if true we may sleep while awaiting command completion
6552 *
6553 * Sets Rx properties of a virtual interface.
6554 */
6555int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
f8f5aafa
DM
6556 int mtu, int promisc, int all_multi, int bcast, int vlanex,
6557 bool sleep_ok)
56d36be4
DM
6558{
6559 struct fw_vi_rxmode_cmd c;
6560
6561 /* convert to FW values */
6562 if (mtu < 0)
6563 mtu = FW_RXMODE_MTU_NO_CHG;
6564 if (promisc < 0)
2b5fb1f2 6565 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
56d36be4 6566 if (all_multi < 0)
2b5fb1f2 6567 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
56d36be4 6568 if (bcast < 0)
2b5fb1f2 6569 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
f8f5aafa 6570 if (vlanex < 0)
2b5fb1f2 6571 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
56d36be4
DM
6572
6573 memset(&c, 0, sizeof(c));
f404f80c
HS
6574 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
6575 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6576 FW_VI_RXMODE_CMD_VIID_V(viid));
6577 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6578 c.mtu_to_vlanexen =
6579 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
6580 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
6581 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
6582 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
6583 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
56d36be4
DM
6584 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6585}
6586
6587/**
6588 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6589 * @adap: the adapter
6590 * @mbox: mailbox to use for the FW command
6591 * @viid: the VI id
6592 * @free: if true any existing filters for this VI id are first removed
6593 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
6594 * @addr: the MAC address(es)
6595 * @idx: where to store the index of each allocated filter
6596 * @hash: pointer to hash address filter bitmap
6597 * @sleep_ok: call is allowed to sleep
6598 *
6599 * Allocates an exact-match filter for each of the supplied addresses and
6600 * sets it to the corresponding address. If @idx is not %NULL it should
6601 * have at least @naddr entries, each of which will be set to the index of
6602 * the filter allocated for the corresponding MAC address. If a filter
6603 * could not be allocated for an address its index is set to 0xffff.
6604 * If @hash is not %NULL addresses that fail to allocate an exact filter
6605 * are hashed and update the hash filter bitmap pointed at by @hash.
6606 *
6607 * Returns a negative error number or the number of filters allocated.
6608 */
6609int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6610 unsigned int viid, bool free, unsigned int naddr,
6611 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6612{
3ccc6cf7 6613 int offset, ret = 0;
56d36be4 6614 struct fw_vi_mac_cmd c;
3ccc6cf7
HS
6615 unsigned int nfilters = 0;
6616 unsigned int max_naddr = adap->params.arch.mps_tcam_size;
6617 unsigned int rem = naddr;
56d36be4 6618
3ccc6cf7 6619 if (naddr > max_naddr)
56d36be4
DM
6620 return -EINVAL;
6621
3ccc6cf7
HS
6622 for (offset = 0; offset < naddr ; /**/) {
6623 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
6624 rem : ARRAY_SIZE(c.u.exact));
6625 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6626 u.exact[fw_naddr]), 16);
6627 struct fw_vi_mac_exact *p;
6628 int i;
56d36be4 6629
3ccc6cf7
HS
6630 memset(&c, 0, sizeof(c));
6631 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6632 FW_CMD_REQUEST_F |
6633 FW_CMD_WRITE_F |
6634 FW_CMD_EXEC_V(free) |
6635 FW_VI_MAC_CMD_VIID_V(viid));
6636 c.freemacs_to_len16 =
6637 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
6638 FW_CMD_LEN16_V(len16));
6639
6640 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6641 p->valid_to_idx =
6642 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6643 FW_VI_MAC_CMD_IDX_V(
6644 FW_VI_MAC_ADD_MAC));
6645 memcpy(p->macaddr, addr[offset + i],
6646 sizeof(p->macaddr));
6647 }
56d36be4 6648
3ccc6cf7
HS
6649 /* It's okay if we run out of space in our MAC address arena.
6650 * Some of the addresses we submit may get stored so we need
6651 * to run through the reply to see what the results were ...
6652 */
6653 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6654 if (ret && ret != -FW_ENOMEM)
6655 break;
56d36be4 6656
3ccc6cf7
HS
6657 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6658 u16 index = FW_VI_MAC_CMD_IDX_G(
6659 be16_to_cpu(p->valid_to_idx));
6660
6661 if (idx)
6662 idx[offset + i] = (index >= max_naddr ?
6663 0xffff : index);
6664 if (index < max_naddr)
6665 nfilters++;
6666 else if (hash)
6667 *hash |= (1ULL <<
6668 hash_mac_addr(addr[offset + i]));
6669 }
56d36be4 6670
3ccc6cf7
HS
6671 free = false;
6672 offset += fw_naddr;
6673 rem -= fw_naddr;
56d36be4 6674 }
3ccc6cf7
HS
6675
6676 if (ret == 0 || ret == -FW_ENOMEM)
6677 ret = nfilters;
56d36be4
DM
6678 return ret;
6679}
6680
6681/**
6682 * t4_change_mac - modifies the exact-match filter for a MAC address
6683 * @adap: the adapter
6684 * @mbox: mailbox to use for the FW command
6685 * @viid: the VI id
6686 * @idx: index of existing filter for old value of MAC address, or -1
6687 * @addr: the new MAC address value
6688 * @persist: whether a new MAC allocation should be persistent
6689 * @add_smt: if true also add the address to the HW SMT
6690 *
6691 * Modifies an exact-match filter and sets it to the new MAC address.
6692 * Note that in general it is not possible to modify the value of a given
6693 * filter so the generic way to modify an address filter is to free the one
6694 * being used by the old address value and allocate a new filter for the
6695 * new address value. @idx can be -1 if the address is a new addition.
6696 *
6697 * Returns a negative error number or the index of the filter with the new
6698 * MAC value.
6699 */
6700int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
6701 int idx, const u8 *addr, bool persist, bool add_smt)
6702{
6703 int ret, mode;
6704 struct fw_vi_mac_cmd c;
6705 struct fw_vi_mac_exact *p = c.u.exact;
3ccc6cf7 6706 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
56d36be4
DM
6707
6708 if (idx < 0) /* new allocation */
6709 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
6710 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
6711
6712 memset(&c, 0, sizeof(c));
f404f80c
HS
6713 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6714 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6715 FW_VI_MAC_CMD_VIID_V(viid));
6716 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
6717 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6718 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
6719 FW_VI_MAC_CMD_IDX_V(idx));
56d36be4
DM
6720 memcpy(p->macaddr, addr, sizeof(p->macaddr));
6721
6722 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6723 if (ret == 0) {
f404f80c 6724 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
0a57a536 6725 if (ret >= max_mac_addr)
56d36be4
DM
6726 ret = -ENOMEM;
6727 }
6728 return ret;
6729}
6730
6731/**
6732 * t4_set_addr_hash - program the MAC inexact-match hash filter
6733 * @adap: the adapter
6734 * @mbox: mailbox to use for the FW command
6735 * @viid: the VI id
6736 * @ucast: whether the hash filter should also match unicast addresses
6737 * @vec: the value to be written to the hash filter
6738 * @sleep_ok: call is allowed to sleep
6739 *
6740 * Sets the 64-bit inexact-match hash filter for a virtual interface.
6741 */
6742int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
6743 bool ucast, u64 vec, bool sleep_ok)
6744{
6745 struct fw_vi_mac_cmd c;
6746
6747 memset(&c, 0, sizeof(c));
f404f80c
HS
6748 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6749 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6750 FW_VI_ENABLE_CMD_VIID_V(viid));
6751 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
6752 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
6753 FW_CMD_LEN16_V(1));
56d36be4
DM
6754 c.u.hash.hashvec = cpu_to_be64(vec);
6755 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6756}
6757
688848b1
AB
6758/**
6759 * t4_enable_vi_params - enable/disable a virtual interface
6760 * @adap: the adapter
6761 * @mbox: mailbox to use for the FW command
6762 * @viid: the VI id
6763 * @rx_en: 1=enable Rx, 0=disable Rx
6764 * @tx_en: 1=enable Tx, 0=disable Tx
6765 * @dcb_en: 1=enable delivery of Data Center Bridging messages.
6766 *
6767 * Enables/disables a virtual interface. Note that setting DCB Enable
6768 * only makes sense when enabling a Virtual Interface ...
6769 */
6770int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
6771 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
6772{
6773 struct fw_vi_enable_cmd c;
6774
6775 memset(&c, 0, sizeof(c));
f404f80c
HS
6776 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6777 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6778 FW_VI_ENABLE_CMD_VIID_V(viid));
6779 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
6780 FW_VI_ENABLE_CMD_EEN_V(tx_en) |
6781 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
6782 FW_LEN16(c));
30f00847 6783 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
688848b1
AB
6784}
6785
56d36be4
DM
6786/**
6787 * t4_enable_vi - enable/disable a virtual interface
6788 * @adap: the adapter
6789 * @mbox: mailbox to use for the FW command
6790 * @viid: the VI id
6791 * @rx_en: 1=enable Rx, 0=disable Rx
6792 * @tx_en: 1=enable Tx, 0=disable Tx
6793 *
6794 * Enables/disables a virtual interface.
6795 */
6796int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
6797 bool rx_en, bool tx_en)
6798{
688848b1 6799 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
56d36be4
DM
6800}
6801
6802/**
6803 * t4_identify_port - identify a VI's port by blinking its LED
6804 * @adap: the adapter
6805 * @mbox: mailbox to use for the FW command
6806 * @viid: the VI id
6807 * @nblinks: how many times to blink LED at 2.5 Hz
6808 *
6809 * Identifies a VI's port by blinking its LED.
6810 */
6811int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
6812 unsigned int nblinks)
6813{
6814 struct fw_vi_enable_cmd c;
6815
0062b15c 6816 memset(&c, 0, sizeof(c));
f404f80c
HS
6817 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6818 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6819 FW_VI_ENABLE_CMD_VIID_V(viid));
6820 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
6821 c.blinkdur = cpu_to_be16(nblinks);
56d36be4 6822 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
56d36be4
DM
6823}
6824
6825/**
6826 * t4_iq_free - free an ingress queue and its FLs
6827 * @adap: the adapter
6828 * @mbox: mailbox to use for the FW command
6829 * @pf: the PF owning the queues
6830 * @vf: the VF owning the queues
6831 * @iqtype: the ingress queue type
6832 * @iqid: ingress queue id
6833 * @fl0id: FL0 queue id or 0xffff if no attached FL0
6834 * @fl1id: FL1 queue id or 0xffff if no attached FL1
6835 *
6836 * Frees an ingress queue and its associated FLs, if any.
6837 */
6838int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6839 unsigned int vf, unsigned int iqtype, unsigned int iqid,
6840 unsigned int fl0id, unsigned int fl1id)
6841{
6842 struct fw_iq_cmd c;
6843
6844 memset(&c, 0, sizeof(c));
f404f80c
HS
6845 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
6846 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
6847 FW_IQ_CMD_VFN_V(vf));
6848 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
6849 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
6850 c.iqid = cpu_to_be16(iqid);
6851 c.fl0id = cpu_to_be16(fl0id);
6852 c.fl1id = cpu_to_be16(fl1id);
56d36be4
DM
6853 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6854}
6855
6856/**
6857 * t4_eth_eq_free - free an Ethernet egress queue
6858 * @adap: the adapter
6859 * @mbox: mailbox to use for the FW command
6860 * @pf: the PF owning the queue
6861 * @vf: the VF owning the queue
6862 * @eqid: egress queue id
6863 *
6864 * Frees an Ethernet egress queue.
6865 */
6866int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6867 unsigned int vf, unsigned int eqid)
6868{
6869 struct fw_eq_eth_cmd c;
6870
6871 memset(&c, 0, sizeof(c));
f404f80c
HS
6872 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
6873 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6874 FW_EQ_ETH_CMD_PFN_V(pf) |
6875 FW_EQ_ETH_CMD_VFN_V(vf));
6876 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
6877 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
56d36be4
DM
6878 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6879}
6880
6881/**
6882 * t4_ctrl_eq_free - free a control egress queue
6883 * @adap: the adapter
6884 * @mbox: mailbox to use for the FW command
6885 * @pf: the PF owning the queue
6886 * @vf: the VF owning the queue
6887 * @eqid: egress queue id
6888 *
6889 * Frees a control egress queue.
6890 */
6891int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6892 unsigned int vf, unsigned int eqid)
6893{
6894 struct fw_eq_ctrl_cmd c;
6895
6896 memset(&c, 0, sizeof(c));
f404f80c
HS
6897 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
6898 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6899 FW_EQ_CTRL_CMD_PFN_V(pf) |
6900 FW_EQ_CTRL_CMD_VFN_V(vf));
6901 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
6902 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
56d36be4
DM
6903 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6904}
6905
6906/**
6907 * t4_ofld_eq_free - free an offload egress queue
6908 * @adap: the adapter
6909 * @mbox: mailbox to use for the FW command
6910 * @pf: the PF owning the queue
6911 * @vf: the VF owning the queue
6912 * @eqid: egress queue id
6913 *
6914 * Frees a control egress queue.
6915 */
6916int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6917 unsigned int vf, unsigned int eqid)
6918{
6919 struct fw_eq_ofld_cmd c;
6920
6921 memset(&c, 0, sizeof(c));
f404f80c
HS
6922 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
6923 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6924 FW_EQ_OFLD_CMD_PFN_V(pf) |
6925 FW_EQ_OFLD_CMD_VFN_V(vf));
6926 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
6927 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
56d36be4
DM
6928 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6929}
6930
6931/**
6932 * t4_handle_fw_rpl - process a FW reply message
6933 * @adap: the adapter
6934 * @rpl: start of the FW message
6935 *
6936 * Processes a FW message, such as link state change messages.
6937 */
6938int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
6939{
6940 u8 opcode = *(const u8 *)rpl;
6941
6942 if (opcode == FW_PORT_CMD) { /* link/module state change message */
6943 int speed = 0, fc = 0;
6944 const struct fw_port_cmd *p = (void *)rpl;
f404f80c 6945 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
56d36be4
DM
6946 int port = adap->chan_map[chan];
6947 struct port_info *pi = adap2pinfo(adap, port);
6948 struct link_config *lc = &pi->link_cfg;
f404f80c 6949 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
2b5fb1f2
HS
6950 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
6951 u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
56d36be4 6952
2b5fb1f2 6953 if (stat & FW_PORT_CMD_RXPAUSE_F)
56d36be4 6954 fc |= PAUSE_RX;
2b5fb1f2 6955 if (stat & FW_PORT_CMD_TXPAUSE_F)
56d36be4 6956 fc |= PAUSE_TX;
2b5fb1f2 6957 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
e8b39015 6958 speed = 100;
2b5fb1f2 6959 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
e8b39015 6960 speed = 1000;
2b5fb1f2 6961 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
e8b39015 6962 speed = 10000;
2b5fb1f2 6963 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
e8b39015 6964 speed = 40000;
56d36be4
DM
6965
6966 if (link_ok != lc->link_ok || speed != lc->speed ||
6967 fc != lc->fc) { /* something changed */
6968 lc->link_ok = link_ok;
6969 lc->speed = speed;
6970 lc->fc = fc;
444018a7 6971 lc->supported = be16_to_cpu(p->u.info.pcap);
56d36be4
DM
6972 t4_os_link_changed(adap, port, link_ok);
6973 }
6974 if (mod != pi->mod_type) {
6975 pi->mod_type = mod;
6976 t4_os_portmod_changed(adap, port);
6977 }
6978 }
6979 return 0;
6980}
6981
1dd06ae8 6982static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
56d36be4
DM
6983{
6984 u16 val;
56d36be4 6985
e5c8ae5f
JL
6986 if (pci_is_pcie(adapter->pdev)) {
6987 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
56d36be4
DM
6988 p->speed = val & PCI_EXP_LNKSTA_CLS;
6989 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
6990 }
6991}
6992
6993/**
6994 * init_link_config - initialize a link's SW state
6995 * @lc: structure holding the link state
6996 * @caps: link capabilities
6997 *
6998 * Initializes the SW state maintained for each link, including the link's
6999 * capabilities and default speed/flow-control/autonegotiation settings.
7000 */
1dd06ae8 7001static void init_link_config(struct link_config *lc, unsigned int caps)
56d36be4
DM
7002{
7003 lc->supported = caps;
7004 lc->requested_speed = 0;
7005 lc->speed = 0;
7006 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7007 if (lc->supported & FW_PORT_CAP_ANEG) {
7008 lc->advertising = lc->supported & ADVERT_MASK;
7009 lc->autoneg = AUTONEG_ENABLE;
7010 lc->requested_fc |= PAUSE_AUTONEG;
7011 } else {
7012 lc->advertising = 0;
7013 lc->autoneg = AUTONEG_DISABLE;
7014 }
7015}
7016
8203b509
HS
7017#define CIM_PF_NOACCESS 0xeeeeeeee
7018
7019int t4_wait_dev_ready(void __iomem *regs)
56d36be4 7020{
8203b509
HS
7021 u32 whoami;
7022
0d804338 7023 whoami = readl(regs + PL_WHOAMI_A);
8203b509 7024 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
56d36be4 7025 return 0;
8203b509 7026
56d36be4 7027 msleep(500);
0d804338 7028 whoami = readl(regs + PL_WHOAMI_A);
8203b509 7029 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
56d36be4
DM
7030}
7031
fe2ee139
HS
7032struct flash_desc {
7033 u32 vendor_and_model_id;
7034 u32 size_mb;
7035};
7036
91744948 7037static int get_flash_params(struct adapter *adap)
900a6596 7038{
fe2ee139
HS
7039 /* Table for non-Numonix supported flash parts. Numonix parts are left
7040 * to the preexisting code. All flash parts have 64KB sectors.
7041 */
7042 static struct flash_desc supported_flash[] = {
7043 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
7044 };
7045
900a6596
DM
7046 int ret;
7047 u32 info;
7048
7049 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
7050 if (!ret)
7051 ret = sf1_read(adap, 3, 0, 1, &info);
0d804338 7052 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */
900a6596
DM
7053 if (ret)
7054 return ret;
7055
fe2ee139
HS
7056 for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7057 if (supported_flash[ret].vendor_and_model_id == info) {
7058 adap->params.sf_size = supported_flash[ret].size_mb;
7059 adap->params.sf_nsec =
7060 adap->params.sf_size / SF_SEC_SIZE;
7061 return 0;
7062 }
7063
900a6596
DM
7064 if ((info & 0xff) != 0x20) /* not a Numonix flash */
7065 return -EINVAL;
7066 info >>= 16; /* log2 of size */
7067 if (info >= 0x14 && info < 0x18)
7068 adap->params.sf_nsec = 1 << (info - 16);
7069 else if (info == 0x18)
7070 adap->params.sf_nsec = 64;
7071 else
7072 return -EINVAL;
7073 adap->params.sf_size = 1 << info;
7074 adap->params.sf_fw_start =
89c3a86c 7075 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
c290607e
HS
7076
7077 if (adap->params.sf_size < FLASH_MIN_SIZE)
7078 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
7079 adap->params.sf_size, FLASH_MIN_SIZE);
900a6596
DM
7080 return 0;
7081}
7082
eca0f6ee
HS
7083static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
7084{
7085 u16 val;
7086 u32 pcie_cap;
7087
7088 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
7089 if (pcie_cap) {
7090 pci_read_config_word(adapter->pdev,
7091 pcie_cap + PCI_EXP_DEVCTL2, &val);
7092 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
7093 val |= range;
7094 pci_write_config_word(adapter->pdev,
7095 pcie_cap + PCI_EXP_DEVCTL2, val);
7096 }
7097}
7098
56d36be4
DM
7099/**
7100 * t4_prep_adapter - prepare SW and HW for operation
7101 * @adapter: the adapter
7102 * @reset: if true perform a HW reset
7103 *
7104 * Initialize adapter SW state for the various HW modules, set initial
7105 * values for some adapter tunables, take PHYs out of reset, and
7106 * initialize the MDIO interface.
7107 */
91744948 7108int t4_prep_adapter(struct adapter *adapter)
56d36be4 7109{
0a57a536
SR
7110 int ret, ver;
7111 uint16_t device_id;
d14807dd 7112 u32 pl_rev;
56d36be4 7113
56d36be4 7114 get_pci_mode(adapter, &adapter->params.pci);
0d804338 7115 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
56d36be4 7116
900a6596
DM
7117 ret = get_flash_params(adapter);
7118 if (ret < 0) {
7119 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
7120 return ret;
7121 }
7122
0a57a536
SR
7123 /* Retrieve adapter's device ID
7124 */
7125 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
7126 ver = device_id >> 12;
d14807dd 7127 adapter->params.chip = 0;
0a57a536
SR
7128 switch (ver) {
7129 case CHELSIO_T4:
d14807dd 7130 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
3ccc6cf7
HS
7131 adapter->params.arch.sge_fl_db = DBPRIO_F;
7132 adapter->params.arch.mps_tcam_size =
7133 NUM_MPS_CLS_SRAM_L_INSTANCES;
7134 adapter->params.arch.mps_rplc_size = 128;
7135 adapter->params.arch.nchan = NCHAN;
44588560 7136 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
3ccc6cf7 7137 adapter->params.arch.vfcount = 128;
0a57a536
SR
7138 break;
7139 case CHELSIO_T5:
d14807dd 7140 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
3ccc6cf7
HS
7141 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
7142 adapter->params.arch.mps_tcam_size =
7143 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7144 adapter->params.arch.mps_rplc_size = 128;
7145 adapter->params.arch.nchan = NCHAN;
44588560 7146 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
3ccc6cf7
HS
7147 adapter->params.arch.vfcount = 128;
7148 break;
7149 case CHELSIO_T6:
7150 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
7151 adapter->params.arch.sge_fl_db = 0;
7152 adapter->params.arch.mps_tcam_size =
7153 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7154 adapter->params.arch.mps_rplc_size = 256;
7155 adapter->params.arch.nchan = 2;
44588560 7156 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
3ccc6cf7 7157 adapter->params.arch.vfcount = 256;
0a57a536
SR
7158 break;
7159 default:
7160 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
7161 device_id);
7162 return -EINVAL;
7163 }
7164
f1ff24aa 7165 adapter->params.cim_la_size = CIMLA_SIZE;
56d36be4
DM
7166 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7167
7168 /*
7169 * Default port for debugging in case we can't reach FW.
7170 */
7171 adapter->params.nports = 1;
7172 adapter->params.portvec = 1;
636f9d37 7173 adapter->params.vpd.cclk = 50000;
eca0f6ee
HS
7174
7175 /* Set pci completion timeout value to 4 seconds. */
7176 set_pcie_completion_timeout(adapter, 0xd);
56d36be4
DM
7177 return 0;
7178}
7179
e85c9a7a 7180/**
b2612722 7181 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
e85c9a7a
HS
7182 * @adapter: the adapter
7183 * @qid: the Queue ID
7184 * @qtype: the Ingress or Egress type for @qid
66cf188e 7185 * @user: true if this request is for a user mode queue
e85c9a7a
HS
7186 * @pbar2_qoffset: BAR2 Queue Offset
7187 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
7188 *
7189 * Returns the BAR2 SGE Queue Registers information associated with the
7190 * indicated Absolute Queue ID. These are passed back in return value
7191 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
7192 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
7193 *
7194 * This may return an error which indicates that BAR2 SGE Queue
7195 * registers aren't available. If an error is not returned, then the
7196 * following values are returned:
7197 *
7198 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
7199 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
7200 *
7201 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
7202 * require the "Inferred Queue ID" ability may be used. E.g. the
7203 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
7204 * then these "Inferred Queue ID" register may not be used.
7205 */
b2612722 7206int t4_bar2_sge_qregs(struct adapter *adapter,
e85c9a7a
HS
7207 unsigned int qid,
7208 enum t4_bar2_qtype qtype,
66cf188e 7209 int user,
e85c9a7a
HS
7210 u64 *pbar2_qoffset,
7211 unsigned int *pbar2_qid)
7212{
7213 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
7214 u64 bar2_page_offset, bar2_qoffset;
7215 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
7216
66cf188e
H
7217 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
7218 if (!user && is_t4(adapter->params.chip))
e85c9a7a
HS
7219 return -EINVAL;
7220
7221 /* Get our SGE Page Size parameters.
7222 */
7223 page_shift = adapter->params.sge.hps + 10;
7224 page_size = 1 << page_shift;
7225
7226 /* Get the right Queues per Page parameters for our Queue.
7227 */
7228 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
7229 ? adapter->params.sge.eq_qpp
7230 : adapter->params.sge.iq_qpp);
7231 qpp_mask = (1 << qpp_shift) - 1;
7232
7233 /* Calculate the basics of the BAR2 SGE Queue register area:
7234 * o The BAR2 page the Queue registers will be in.
7235 * o The BAR2 Queue ID.
7236 * o The BAR2 Queue ID Offset into the BAR2 page.
7237 */
513d1a1d 7238 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
e85c9a7a
HS
7239 bar2_qid = qid & qpp_mask;
7240 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
7241
7242 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
7243 * hardware will infer the Absolute Queue ID simply from the writes to
7244 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
7245 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
7246 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
7247 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
7248 * from the BAR2 Page and BAR2 Queue ID.
7249 *
7250 * One important censequence of this is that some BAR2 SGE registers
7251 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
7252 * there. But other registers synthesize the SGE Queue ID purely
7253 * from the writes to the registers -- the Write Combined Doorbell
7254 * Buffer is a good example. These BAR2 SGE Registers are only
7255 * available for those BAR2 SGE Register areas where the SGE Absolute
7256 * Queue ID can be inferred from simple writes.
7257 */
7258 bar2_qoffset = bar2_page_offset;
7259 bar2_qinferred = (bar2_qid_offset < page_size);
7260 if (bar2_qinferred) {
7261 bar2_qoffset += bar2_qid_offset;
7262 bar2_qid = 0;
7263 }
7264
7265 *pbar2_qoffset = bar2_qoffset;
7266 *pbar2_qid = bar2_qid;
7267 return 0;
7268}
7269
ae469b68
HS
7270/**
7271 * t4_init_devlog_params - initialize adapter->params.devlog
7272 * @adap: the adapter
7273 *
7274 * Initialize various fields of the adapter's Firmware Device Log
7275 * Parameters structure.
7276 */
7277int t4_init_devlog_params(struct adapter *adap)
7278{
7279 struct devlog_params *dparams = &adap->params.devlog;
7280 u32 pf_dparams;
7281 unsigned int devlog_meminfo;
7282 struct fw_devlog_cmd devlog_cmd;
7283 int ret;
7284
7285 /* If we're dealing with newer firmware, the Device Log Paramerters
7286 * are stored in a designated register which allows us to access the
7287 * Device Log even if we can't talk to the firmware.
7288 */
7289 pf_dparams =
7290 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
7291 if (pf_dparams) {
7292 unsigned int nentries, nentries128;
7293
7294 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
7295 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
7296
7297 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
7298 nentries = (nentries128 + 1) * 128;
7299 dparams->size = nentries * sizeof(struct fw_devlog_e);
7300
7301 return 0;
7302 }
7303
7304 /* Otherwise, ask the firmware for it's Device Log Parameters.
7305 */
7306 memset(&devlog_cmd, 0, sizeof(devlog_cmd));
f404f80c
HS
7307 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
7308 FW_CMD_REQUEST_F | FW_CMD_READ_F);
7309 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
ae469b68
HS
7310 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7311 &devlog_cmd);
7312 if (ret)
7313 return ret;
7314
f404f80c
HS
7315 devlog_meminfo =
7316 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
ae469b68
HS
7317 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
7318 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
f404f80c 7319 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
ae469b68
HS
7320
7321 return 0;
7322}
7323
e85c9a7a
HS
7324/**
7325 * t4_init_sge_params - initialize adap->params.sge
7326 * @adapter: the adapter
7327 *
7328 * Initialize various fields of the adapter's SGE Parameters structure.
7329 */
7330int t4_init_sge_params(struct adapter *adapter)
7331{
7332 struct sge_params *sge_params = &adapter->params.sge;
7333 u32 hps, qpp;
7334 unsigned int s_hps, s_qpp;
7335
7336 /* Extract the SGE Page Size for our PF.
7337 */
f612b815 7338 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
e85c9a7a 7339 s_hps = (HOSTPAGESIZEPF0_S +
b2612722 7340 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
e85c9a7a
HS
7341 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
7342
7343 /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
7344 */
7345 s_qpp = (QUEUESPERPAGEPF0_S +
b2612722 7346 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
f612b815
HS
7347 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
7348 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
f061de42 7349 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
f612b815 7350 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
e85c9a7a
HS
7351
7352 return 0;
7353}
7354
dcf7b6f5
KS
7355/**
7356 * t4_init_tp_params - initialize adap->params.tp
7357 * @adap: the adapter
7358 *
7359 * Initialize various fields of the adapter's TP Parameters structure.
7360 */
7361int t4_init_tp_params(struct adapter *adap)
7362{
7363 int chan;
7364 u32 v;
7365
837e4a42
HS
7366 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
7367 adap->params.tp.tre = TIMERRESOLUTION_G(v);
7368 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
dcf7b6f5
KS
7369
7370 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7371 for (chan = 0; chan < NCHAN; chan++)
7372 adap->params.tp.tx_modq[chan] = chan;
7373
7374 /* Cache the adapter's Compressed Filter Mode and global Incress
7375 * Configuration.
7376 */
0b2c2a93 7377 if (t4_use_ldst(adap)) {
c1e9af0c
HS
7378 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
7379 TP_VLAN_PRI_MAP_A, 1);
7380 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
7381 TP_INGRESS_CONFIG_A, 1);
7382 } else {
7383 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7384 &adap->params.tp.vlan_pri_map, 1,
7385 TP_VLAN_PRI_MAP_A);
7386 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7387 &adap->params.tp.ingress_config, 1,
7388 TP_INGRESS_CONFIG_A);
7389 }
dcf7b6f5
KS
7390
7391 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7392 * shift positions of several elements of the Compressed Filter Tuple
7393 * for this adapter which we need frequently ...
7394 */
0d804338
HS
7395 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
7396 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
7397 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
dcf7b6f5 7398 adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
0d804338 7399 PROTOCOL_F);
dcf7b6f5
KS
7400
7401 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
dbedd44e 7402 * represents the presence of an Outer VLAN instead of a VNIC ID.
dcf7b6f5 7403 */
0d804338 7404 if ((adap->params.tp.ingress_config & VNIC_F) == 0)
dcf7b6f5
KS
7405 adap->params.tp.vnic_shift = -1;
7406
7407 return 0;
7408}
7409
7410/**
7411 * t4_filter_field_shift - calculate filter field shift
7412 * @adap: the adapter
7413 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7414 *
7415 * Return the shift position of a filter field within the Compressed
7416 * Filter Tuple. The filter field is specified via its selection bit
7417 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
7418 */
7419int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7420{
7421 unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7422 unsigned int sel;
7423 int field_shift;
7424
7425 if ((filter_mode & filter_sel) == 0)
7426 return -1;
7427
7428 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7429 switch (filter_mode & sel) {
0d804338
HS
7430 case FCOE_F:
7431 field_shift += FT_FCOE_W;
dcf7b6f5 7432 break;
0d804338
HS
7433 case PORT_F:
7434 field_shift += FT_PORT_W;
dcf7b6f5 7435 break;
0d804338
HS
7436 case VNIC_ID_F:
7437 field_shift += FT_VNIC_ID_W;
dcf7b6f5 7438 break;
0d804338
HS
7439 case VLAN_F:
7440 field_shift += FT_VLAN_W;
dcf7b6f5 7441 break;
0d804338
HS
7442 case TOS_F:
7443 field_shift += FT_TOS_W;
dcf7b6f5 7444 break;
0d804338
HS
7445 case PROTOCOL_F:
7446 field_shift += FT_PROTOCOL_W;
dcf7b6f5 7447 break;
0d804338
HS
7448 case ETHERTYPE_F:
7449 field_shift += FT_ETHERTYPE_W;
dcf7b6f5 7450 break;
0d804338
HS
7451 case MACMATCH_F:
7452 field_shift += FT_MACMATCH_W;
dcf7b6f5 7453 break;
0d804338
HS
7454 case MPSHITTYPE_F:
7455 field_shift += FT_MPSHITTYPE_W;
dcf7b6f5 7456 break;
0d804338
HS
7457 case FRAGMENTATION_F:
7458 field_shift += FT_FRAGMENTATION_W;
dcf7b6f5
KS
7459 break;
7460 }
7461 }
7462 return field_shift;
7463}
7464
c035e183
HS
7465int t4_init_rss_mode(struct adapter *adap, int mbox)
7466{
7467 int i, ret;
7468 struct fw_rss_vi_config_cmd rvc;
7469
7470 memset(&rvc, 0, sizeof(rvc));
7471
7472 for_each_port(adap, i) {
7473 struct port_info *p = adap2pinfo(adap, i);
7474
f404f80c
HS
7475 rvc.op_to_viid =
7476 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7477 FW_CMD_REQUEST_F | FW_CMD_READ_F |
7478 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
7479 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
c035e183
HS
7480 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7481 if (ret)
7482 return ret;
f404f80c 7483 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
c035e183
HS
7484 }
7485 return 0;
7486}
7487
91744948 7488int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
56d36be4
DM
7489{
7490 u8 addr[6];
7491 int ret, i, j = 0;
7492 struct fw_port_cmd c;
f796564a 7493 struct fw_rss_vi_config_cmd rvc;
56d36be4
DM
7494
7495 memset(&c, 0, sizeof(c));
f796564a 7496 memset(&rvc, 0, sizeof(rvc));
56d36be4
DM
7497
7498 for_each_port(adap, i) {
7499 unsigned int rss_size;
7500 struct port_info *p = adap2pinfo(adap, i);
7501
7502 while ((adap->params.portvec & (1 << j)) == 0)
7503 j++;
7504
f404f80c
HS
7505 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
7506 FW_CMD_REQUEST_F | FW_CMD_READ_F |
7507 FW_PORT_CMD_PORTID_V(j));
7508 c.action_to_len16 = cpu_to_be32(
2b5fb1f2 7509 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
56d36be4
DM
7510 FW_LEN16(c));
7511 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7512 if (ret)
7513 return ret;
7514
7515 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
7516 if (ret < 0)
7517 return ret;
7518
7519 p->viid = ret;
7520 p->tx_chan = j;
7521 p->lport = j;
7522 p->rss_size = rss_size;
7523 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
40c9f8ab 7524 adap->port[i]->dev_port = j;
56d36be4 7525
f404f80c 7526 ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
2b5fb1f2
HS
7527 p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
7528 FW_PORT_CMD_MDIOADDR_G(ret) : -1;
7529 p->port_type = FW_PORT_CMD_PTYPE_G(ret);
a0881cab 7530 p->mod_type = FW_PORT_MOD_TYPE_NA;
56d36be4 7531
f404f80c
HS
7532 rvc.op_to_viid =
7533 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7534 FW_CMD_REQUEST_F | FW_CMD_READ_F |
7535 FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
7536 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
f796564a
DM
7537 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7538 if (ret)
7539 return ret;
f404f80c 7540 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
f796564a 7541
f404f80c 7542 init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
56d36be4
DM
7543 j++;
7544 }
7545 return 0;
7546}
f1ff24aa 7547
74b3092c
HS
7548/**
7549 * t4_read_cimq_cfg - read CIM queue configuration
7550 * @adap: the adapter
7551 * @base: holds the queue base addresses in bytes
7552 * @size: holds the queue sizes in bytes
7553 * @thres: holds the queue full thresholds in bytes
7554 *
7555 * Returns the current configuration of the CIM queues, starting with
7556 * the IBQs, then the OBQs.
7557 */
7558void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
7559{
7560 unsigned int i, v;
7561 int cim_num_obq = is_t4(adap->params.chip) ?
7562 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7563
7564 for (i = 0; i < CIM_NUM_IBQ; i++) {
7565 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
7566 QUENUMSELECT_V(i));
7567 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7568 /* value is in 256-byte units */
7569 *base++ = CIMQBASE_G(v) * 256;
7570 *size++ = CIMQSIZE_G(v) * 256;
7571 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
7572 }
7573 for (i = 0; i < cim_num_obq; i++) {
7574 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7575 QUENUMSELECT_V(i));
7576 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7577 /* value is in 256-byte units */
7578 *base++ = CIMQBASE_G(v) * 256;
7579 *size++ = CIMQSIZE_G(v) * 256;
7580 }
7581}
7582
e5f0e43b
HS
7583/**
7584 * t4_read_cim_ibq - read the contents of a CIM inbound queue
7585 * @adap: the adapter
7586 * @qid: the queue index
7587 * @data: where to store the queue contents
7588 * @n: capacity of @data in 32-bit words
7589 *
7590 * Reads the contents of the selected CIM queue starting at address 0 up
7591 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
7592 * error and the number of 32-bit words actually read on success.
7593 */
7594int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7595{
7596 int i, err, attempts;
7597 unsigned int addr;
7598 const unsigned int nwords = CIM_IBQ_SIZE * 4;
7599
7600 if (qid > 5 || (n & 3))
7601 return -EINVAL;
7602
7603 addr = qid * nwords;
7604 if (n > nwords)
7605 n = nwords;
7606
7607 /* It might take 3-10ms before the IBQ debug read access is allowed.
7608 * Wait for 1 Sec with a delay of 1 usec.
7609 */
7610 attempts = 1000000;
7611
7612 for (i = 0; i < n; i++, addr++) {
7613 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
7614 IBQDBGEN_F);
7615 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
7616 attempts, 1);
7617 if (err)
7618 return err;
7619 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
7620 }
7621 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
c778af7d
HS
7622 return i;
7623}
7624
7625/**
7626 * t4_read_cim_obq - read the contents of a CIM outbound queue
7627 * @adap: the adapter
7628 * @qid: the queue index
7629 * @data: where to store the queue contents
7630 * @n: capacity of @data in 32-bit words
7631 *
7632 * Reads the contents of the selected CIM queue starting at address 0 up
7633 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
7634 * error and the number of 32-bit words actually read on success.
7635 */
7636int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7637{
7638 int i, err;
7639 unsigned int addr, v, nwords;
7640 int cim_num_obq = is_t4(adap->params.chip) ?
7641 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7642
7643 if ((qid > (cim_num_obq - 1)) || (n & 3))
7644 return -EINVAL;
7645
7646 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7647 QUENUMSELECT_V(qid));
7648 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7649
7650 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */
7651 nwords = CIMQSIZE_G(v) * 64; /* same */
7652 if (n > nwords)
7653 n = nwords;
7654
7655 for (i = 0; i < n; i++, addr++) {
7656 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
7657 OBQDBGEN_F);
7658 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
7659 2, 1);
7660 if (err)
7661 return err;
7662 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
7663 }
7664 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
e5f0e43b
HS
7665 return i;
7666}
7667
f1ff24aa
HS
7668/**
7669 * t4_cim_read - read a block from CIM internal address space
7670 * @adap: the adapter
7671 * @addr: the start address within the CIM address space
7672 * @n: number of words to read
7673 * @valp: where to store the result
7674 *
7675 * Reads a block of 4-byte words from the CIM intenal address space.
7676 */
7677int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
7678 unsigned int *valp)
7679{
7680 int ret = 0;
7681
7682 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7683 return -EBUSY;
7684
7685 for ( ; !ret && n--; addr += 4) {
7686 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
7687 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7688 0, 5, 2);
7689 if (!ret)
7690 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
7691 }
7692 return ret;
7693}
7694
7695/**
7696 * t4_cim_write - write a block into CIM internal address space
7697 * @adap: the adapter
7698 * @addr: the start address within the CIM address space
7699 * @n: number of words to write
7700 * @valp: set of values to write
7701 *
7702 * Writes a block of 4-byte words into the CIM intenal address space.
7703 */
7704int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
7705 const unsigned int *valp)
7706{
7707 int ret = 0;
7708
7709 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7710 return -EBUSY;
7711
7712 for ( ; !ret && n--; addr += 4) {
7713 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
7714 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
7715 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7716 0, 5, 2);
7717 }
7718 return ret;
7719}
7720
7721static int t4_cim_write1(struct adapter *adap, unsigned int addr,
7722 unsigned int val)
7723{
7724 return t4_cim_write(adap, addr, 1, &val);
7725}
7726
7727/**
7728 * t4_cim_read_la - read CIM LA capture buffer
7729 * @adap: the adapter
7730 * @la_buf: where to store the LA data
7731 * @wrptr: the HW write pointer within the capture buffer
7732 *
7733 * Reads the contents of the CIM LA buffer with the most recent entry at
7734 * the end of the returned data and with the entry at @wrptr first.
7735 * We try to leave the LA in the running state we find it in.
7736 */
7737int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
7738{
7739 int i, ret;
7740 unsigned int cfg, val, idx;
7741
7742 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
7743 if (ret)
7744 return ret;
7745
7746 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */
7747 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
7748 if (ret)
7749 return ret;
7750 }
7751
7752 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
7753 if (ret)
7754 goto restart;
7755
7756 idx = UPDBGLAWRPTR_G(val);
7757 if (wrptr)
7758 *wrptr = idx;
7759
7760 for (i = 0; i < adap->params.cim_la_size; i++) {
7761 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
7762 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
7763 if (ret)
7764 break;
7765 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
7766 if (ret)
7767 break;
7768 if (val & UPDBGLARDEN_F) {
7769 ret = -ETIMEDOUT;
7770 break;
7771 }
7772 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
7773 if (ret)
7774 break;
7775 idx = (idx + 1) & UPDBGLARDPTR_M;
7776 }
7777restart:
7778 if (cfg & UPDBGLAEN_F) {
7779 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
7780 cfg & ~UPDBGLARDEN_F);
7781 if (!ret)
7782 ret = r;
7783 }
7784 return ret;
7785}
2d277b3b
HS
7786
7787/**
7788 * t4_tp_read_la - read TP LA capture buffer
7789 * @adap: the adapter
7790 * @la_buf: where to store the LA data
7791 * @wrptr: the HW write pointer within the capture buffer
7792 *
7793 * Reads the contents of the TP LA buffer with the most recent entry at
7794 * the end of the returned data and with the entry at @wrptr first.
7795 * We leave the LA in the running state we find it in.
7796 */
7797void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
7798{
7799 bool last_incomplete;
7800 unsigned int i, cfg, val, idx;
7801
7802 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
7803 if (cfg & DBGLAENABLE_F) /* freeze LA */
7804 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
7805 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
7806
7807 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
7808 idx = DBGLAWPTR_G(val);
7809 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
7810 if (last_incomplete)
7811 idx = (idx + 1) & DBGLARPTR_M;
7812 if (wrptr)
7813 *wrptr = idx;
7814
7815 val &= 0xffff;
7816 val &= ~DBGLARPTR_V(DBGLARPTR_M);
7817 val |= adap->params.tp.la_mask;
7818
7819 for (i = 0; i < TPLA_SIZE; i++) {
7820 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
7821 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
7822 idx = (idx + 1) & DBGLARPTR_M;
7823 }
7824
7825 /* Wipe out last entry if it isn't valid */
7826 if (last_incomplete)
7827 la_buf[TPLA_SIZE - 1] = ~0ULL;
7828
7829 if (cfg & DBGLAENABLE_F) /* restore running state */
7830 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
7831 cfg | adap->params.tp.la_mask);
7832}
a3bfb617
HS
7833
7834/* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
7835 * seconds). If we find one of the SGE Ingress DMA State Machines in the same
7836 * state for more than the Warning Threshold then we'll issue a warning about
7837 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel
7838 * appears to be hung every Warning Repeat second till the situation clears.
7839 * If the situation clears, we'll note that as well.
7840 */
7841#define SGE_IDMA_WARN_THRESH 1
7842#define SGE_IDMA_WARN_REPEAT 300
7843
7844/**
7845 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
7846 * @adapter: the adapter
7847 * @idma: the adapter IDMA Monitor state
7848 *
7849 * Initialize the state of an SGE Ingress DMA Monitor.
7850 */
7851void t4_idma_monitor_init(struct adapter *adapter,
7852 struct sge_idma_monitor_state *idma)
7853{
7854 /* Initialize the state variables for detecting an SGE Ingress DMA
7855 * hang. The SGE has internal counters which count up on each clock
7856 * tick whenever the SGE finds its Ingress DMA State Engines in the
7857 * same state they were on the previous clock tick. The clock used is
7858 * the Core Clock so we have a limit on the maximum "time" they can
7859 * record; typically a very small number of seconds. For instance,
7860 * with a 600MHz Core Clock, we can only count up to a bit more than
7861 * 7s. So we'll synthesize a larger counter in order to not run the
7862 * risk of having the "timers" overflow and give us the flexibility to
7863 * maintain a Hung SGE State Machine of our own which operates across
7864 * a longer time frame.
7865 */
7866 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
7867 idma->idma_stalled[0] = 0;
7868 idma->idma_stalled[1] = 0;
7869}
7870
7871/**
7872 * t4_idma_monitor - monitor SGE Ingress DMA state
7873 * @adapter: the adapter
7874 * @idma: the adapter IDMA Monitor state
7875 * @hz: number of ticks/second
7876 * @ticks: number of ticks since the last IDMA Monitor call
7877 */
7878void t4_idma_monitor(struct adapter *adapter,
7879 struct sge_idma_monitor_state *idma,
7880 int hz, int ticks)
7881{
7882 int i, idma_same_state_cnt[2];
7883
7884 /* Read the SGE Debug Ingress DMA Same State Count registers. These
7885 * are counters inside the SGE which count up on each clock when the
7886 * SGE finds its Ingress DMA State Engines in the same states they
7887 * were in the previous clock. The counters will peg out at
7888 * 0xffffffff without wrapping around so once they pass the 1s
7889 * threshold they'll stay above that till the IDMA state changes.
7890 */
7891 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
7892 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
7893 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7894
7895 for (i = 0; i < 2; i++) {
7896 u32 debug0, debug11;
7897
7898 /* If the Ingress DMA Same State Counter ("timer") is less
7899 * than 1s, then we can reset our synthesized Stall Timer and
7900 * continue. If we have previously emitted warnings about a
7901 * potential stalled Ingress Queue, issue a note indicating
7902 * that the Ingress Queue has resumed forward progress.
7903 */
7904 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
7905 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
7906 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
7907 "resumed after %d seconds\n",
7908 i, idma->idma_qid[i],
7909 idma->idma_stalled[i] / hz);
7910 idma->idma_stalled[i] = 0;
7911 continue;
7912 }
7913
7914 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
7915 * domain. The first time we get here it'll be because we
7916 * passed the 1s Threshold; each additional time it'll be
7917 * because the RX Timer Callback is being fired on its regular
7918 * schedule.
7919 *
7920 * If the stall is below our Potential Hung Ingress Queue
7921 * Warning Threshold, continue.
7922 */
7923 if (idma->idma_stalled[i] == 0) {
7924 idma->idma_stalled[i] = hz;
7925 idma->idma_warn[i] = 0;
7926 } else {
7927 idma->idma_stalled[i] += ticks;
7928 idma->idma_warn[i] -= ticks;
7929 }
7930
7931 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
7932 continue;
7933
7934 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
7935 */
7936 if (idma->idma_warn[i] > 0)
7937 continue;
7938 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
7939
7940 /* Read and save the SGE IDMA State and Queue ID information.
7941 * We do this every time in case it changes across time ...
7942 * can't be too careful ...
7943 */
7944 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
7945 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7946 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
7947
7948 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
7949 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7950 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
7951
7952 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
7953 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
7954 i, idma->idma_qid[i], idma->idma_state[i],
7955 idma->idma_stalled[i] / hz,
7956 debug0, debug11);
7957 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
7958 }
7959}
This page took 0.926571 seconds and 5 git commands to generate.