cxgb4: Adds support for T6 adapter
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb4vf / t4vf_hw.c
CommitLineData
16f8bd4b
CL
1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
16f8bd4b
CL
36#include <linux/pci.h>
37
38#include "t4vf_common.h"
39#include "t4vf_defs.h"
40
41#include "../cxgb4/t4_regs.h"
f612b815 42#include "../cxgb4/t4_values.h"
16f8bd4b
CL
43#include "../cxgb4/t4fw_api.h"
44
45/*
46 * Wait for the device to become ready (signified by our "who am I" register
47 * returning a value other than all 1's). Return an error if it doesn't
48 * become ready ...
49 */
d289f864 50int t4vf_wait_dev_ready(struct adapter *adapter)
16f8bd4b
CL
51{
52 const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
53 const u32 notready1 = 0xffffffff;
54 const u32 notready2 = 0xeeeeeeee;
55 u32 val;
56
57 val = t4_read_reg(adapter, whoami);
58 if (val != notready1 && val != notready2)
59 return 0;
60 msleep(500);
61 val = t4_read_reg(adapter, whoami);
62 if (val != notready1 && val != notready2)
63 return 0;
64 else
65 return -EIO;
66}
67
68/*
69 * Get the reply to a mailbox command and store it in @rpl in big-endian order
70 * (since the firmware data structures are specified in a big-endian layout).
71 */
72static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
73 u32 mbox_data)
74{
75 for ( ; size; size -= 8, mbox_data += 8)
76 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
77}
78
79/*
80 * Dump contents of mailbox with a leading tag.
81 */
82static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data)
83{
84 dev_err(adapter->pdev_dev,
85 "mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag,
86 (unsigned long long)t4_read_reg64(adapter, mbox_data + 0),
87 (unsigned long long)t4_read_reg64(adapter, mbox_data + 8),
88 (unsigned long long)t4_read_reg64(adapter, mbox_data + 16),
89 (unsigned long long)t4_read_reg64(adapter, mbox_data + 24),
90 (unsigned long long)t4_read_reg64(adapter, mbox_data + 32),
91 (unsigned long long)t4_read_reg64(adapter, mbox_data + 40),
92 (unsigned long long)t4_read_reg64(adapter, mbox_data + 48),
93 (unsigned long long)t4_read_reg64(adapter, mbox_data + 56));
94}
95
96/**
97 * t4vf_wr_mbox_core - send a command to FW through the mailbox
98 * @adapter: the adapter
99 * @cmd: the command to write
100 * @size: command length in bytes
101 * @rpl: where to optionally store the reply
102 * @sleep_ok: if true we may sleep while awaiting command completion
103 *
104 * Sends the given command to FW through the mailbox and waits for the
105 * FW to execute the command. If @rpl is not %NULL it is used to store
106 * the FW's reply to the command. The command and its optional reply
107 * are of the same length. FW can take up to 500 ms to respond.
108 * @sleep_ok determines whether we may sleep while awaiting the response.
109 * If sleeping is allowed we use progressive backoff otherwise we spin.
110 *
111 * The return value is 0 on success or a negative errno on failure. A
112 * failure can happen either because we are not able to execute the
113 * command or FW executes it but signals an error. In the latter case
114 * the return value is the error code indicated by FW (negated).
115 */
116int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
117 void *rpl, bool sleep_ok)
118{
215faf9c 119 static const int delay[] = {
16f8bd4b
CL
120 1, 1, 3, 5, 10, 10, 20, 50, 100
121 };
122
123 u32 v;
124 int i, ms, delay_idx;
125 const __be64 *p;
126 u32 mbox_data = T4VF_MBDATA_BASE_ADDR;
127 u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
128
129 /*
130 * Commands must be multiples of 16 bytes in length and may not be
131 * larger than the size of the Mailbox Data register array.
132 */
133 if ((size % 16) != 0 ||
134 size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
135 return -EINVAL;
136
137 /*
138 * Loop trying to get ownership of the mailbox. Return an error
139 * if we can't gain ownership.
140 */
89c3a86c 141 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
16f8bd4b 142 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
89c3a86c 143 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
16f8bd4b
CL
144 if (v != MBOX_OWNER_DRV)
145 return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT;
146
147 /*
148 * Write the command array into the Mailbox Data register array and
149 * transfer ownership of the mailbox to the firmware.
80ce3f67
CL
150 *
151 * For the VFs, the Mailbox Data "registers" are actually backed by
152 * T4's "MA" interface rather than PL Registers (as is the case for
153 * the PFs). Because these are in different coherency domains, the
154 * write to the VF's PL-register-backed Mailbox Control can race in
155 * front of the writes to the MA-backed VF Mailbox Data "registers".
156 * So we need to do a read-back on at least one byte of the VF Mailbox
157 * Data registers before doing the write to the VF Mailbox Control
158 * register.
16f8bd4b
CL
159 */
160 for (i = 0, p = cmd; i < size; i += 8)
161 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
80ce3f67
CL
162 t4_read_reg(adapter, mbox_data); /* flush write */
163
16f8bd4b 164 t4_write_reg(adapter, mbox_ctl,
89c3a86c 165 MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
16f8bd4b
CL
166 t4_read_reg(adapter, mbox_ctl); /* flush write */
167
168 /*
169 * Spin waiting for firmware to acknowledge processing our command.
170 */
171 delay_idx = 0;
172 ms = delay[0];
173
0550769b 174 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
16f8bd4b
CL
175 if (sleep_ok) {
176 ms = delay[delay_idx];
024e6293 177 if (delay_idx < ARRAY_SIZE(delay) - 1)
16f8bd4b
CL
178 delay_idx++;
179 msleep(ms);
180 } else
181 mdelay(ms);
182
183 /*
184 * If we're the owner, see if this is the reply we wanted.
185 */
186 v = t4_read_reg(adapter, mbox_ctl);
89c3a86c 187 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
16f8bd4b
CL
188 /*
189 * If the Message Valid bit isn't on, revoke ownership
190 * of the mailbox and continue waiting for our reply.
191 */
89c3a86c 192 if ((v & MBMSGVALID_F) == 0) {
16f8bd4b 193 t4_write_reg(adapter, mbox_ctl,
89c3a86c 194 MBOWNER_V(MBOX_OWNER_NONE));
16f8bd4b
CL
195 continue;
196 }
197
198 /*
199 * We now have our reply. Extract the command return
200 * value, copy the reply back to our caller's buffer
201 * (if specified) and revoke ownership of the mailbox.
202 * We return the (negated) firmware command return
203 * code (this depends on FW_SUCCESS == 0).
204 */
205
206 /* return value in low-order little-endian word */
207 v = t4_read_reg(adapter, mbox_data);
e2ac9628 208 if (FW_CMD_RETVAL_G(v))
16f8bd4b
CL
209 dump_mbox(adapter, "FW Error", mbox_data);
210
211 if (rpl) {
212 /* request bit in high-order BE word */
2ff2acf1 213 WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
e2ac9628 214 & FW_CMD_REQUEST_F) == 0);
16f8bd4b 215 get_mbox_rpl(adapter, rpl, size, mbox_data);
2ff2acf1 216 WARN_ON((be32_to_cpu(*(__be32 *)rpl)
e2ac9628 217 & FW_CMD_REQUEST_F) != 0);
16f8bd4b
CL
218 }
219 t4_write_reg(adapter, mbox_ctl,
89c3a86c 220 MBOWNER_V(MBOX_OWNER_NONE));
e2ac9628 221 return -FW_CMD_RETVAL_G(v);
16f8bd4b
CL
222 }
223 }
224
225 /*
226 * We timed out. Return the error ...
227 */
228 dump_mbox(adapter, "FW Timeout", mbox_data);
229 return -ETIMEDOUT;
230}
231
232/**
233 * hash_mac_addr - return the hash value of a MAC address
234 * @addr: the 48-bit Ethernet MAC address
235 *
236 * Hashes a MAC address according to the hash function used by hardware
237 * inexact (hash) address matching.
238 */
239static int hash_mac_addr(const u8 *addr)
240{
241 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
242 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
243 a ^= b;
244 a ^= (a >> 12);
245 a ^= (a >> 6);
246 return a & 0x3f;
247}
248
5ad24def
HS
249#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
250 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
251 FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)
252
16f8bd4b
CL
253/**
254 * init_link_config - initialize a link's SW state
255 * @lc: structure holding the link state
256 * @caps: link capabilities
257 *
258 * Initializes the SW state maintained for each link, including the link's
259 * capabilities and default speed/flow-control/autonegotiation settings.
260 */
1dd06ae8 261static void init_link_config(struct link_config *lc, unsigned int caps)
16f8bd4b
CL
262{
263 lc->supported = caps;
264 lc->requested_speed = 0;
265 lc->speed = 0;
266 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
5ad24def
HS
267 if (lc->supported & FW_PORT_CAP_ANEG) {
268 lc->advertising = lc->supported & ADVERT_MASK;
16f8bd4b
CL
269 lc->autoneg = AUTONEG_ENABLE;
270 lc->requested_fc |= PAUSE_AUTONEG;
271 } else {
272 lc->advertising = 0;
273 lc->autoneg = AUTONEG_DISABLE;
274 }
275}
276
277/**
278 * t4vf_port_init - initialize port hardware/software state
279 * @adapter: the adapter
280 * @pidx: the adapter port index
281 */
d289f864 282int t4vf_port_init(struct adapter *adapter, int pidx)
16f8bd4b
CL
283{
284 struct port_info *pi = adap2pinfo(adapter, pidx);
285 struct fw_vi_cmd vi_cmd, vi_rpl;
286 struct fw_port_cmd port_cmd, port_rpl;
287 int v;
16f8bd4b
CL
288
289 /*
290 * Execute a VI Read command to get our Virtual Interface information
291 * like MAC address, etc.
292 */
293 memset(&vi_cmd, 0, sizeof(vi_cmd));
e2ac9628
HS
294 vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
295 FW_CMD_REQUEST_F |
296 FW_CMD_READ_F);
16f8bd4b 297 vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
2b5fb1f2 298 vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
16f8bd4b
CL
299 v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
300 if (v)
301 return v;
302
2b5fb1f2
HS
303 BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
304 pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
16f8bd4b
CL
305 t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
306
307 /*
308 * If we don't have read access to our port information, we're done
309 * now. Otherwise, execute a PORT Read command to get it ...
310 */
311 if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
312 return 0;
313
314 memset(&port_cmd, 0, sizeof(port_cmd));
e2ac9628
HS
315 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
316 FW_CMD_REQUEST_F |
317 FW_CMD_READ_F |
2b5fb1f2 318 FW_PORT_CMD_PORTID_V(pi->port_id));
16f8bd4b 319 port_cmd.action_to_len16 =
2b5fb1f2 320 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
16f8bd4b
CL
321 FW_LEN16(port_cmd));
322 v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
323 if (v)
324 return v;
325
5ad24def 326 v = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
fd48e639
HS
327 pi->mdio_addr = (v & FW_PORT_CMD_MDIOCAP_F) ?
328 FW_PORT_CMD_MDIOADDR_G(v) : -1;
5ad24def
HS
329 pi->port_type = FW_PORT_CMD_PTYPE_G(v);
330 pi->mod_type = FW_PORT_MOD_TYPE_NA;
331
332 init_link_config(&pi->link_cfg, be16_to_cpu(port_rpl.u.info.pcap));
16f8bd4b
CL
333
334 return 0;
335}
336
e68e6133
CL
337/**
338 * t4vf_fw_reset - issue a reset to FW
339 * @adapter: the adapter
340 *
341 * Issues a reset command to FW. For a Physical Function this would
dbedd44e 342 * result in the Firmware resetting all of its state. For a Virtual
e68e6133
CL
343 * Function this just resets the state associated with the VF.
344 */
345int t4vf_fw_reset(struct adapter *adapter)
346{
347 struct fw_reset_cmd cmd;
348
349 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
350 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
351 FW_CMD_WRITE_F);
e68e6133
CL
352 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
353 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
354}
355
16f8bd4b
CL
356/**
357 * t4vf_query_params - query FW or device parameters
358 * @adapter: the adapter
359 * @nparams: the number of parameters
360 * @params: the parameter names
361 * @vals: the parameter values
362 *
363 * Reads the values of firmware or device parameters. Up to 7 parameters
364 * can be queried at once.
365 */
de5b8677 366static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
367 const u32 *params, u32 *vals)
16f8bd4b
CL
368{
369 int i, ret;
370 struct fw_params_cmd cmd, rpl;
371 struct fw_params_param *p;
372 size_t len16;
373
374 if (nparams > 7)
375 return -EINVAL;
376
377 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
378 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
379 FW_CMD_REQUEST_F |
380 FW_CMD_READ_F);
16f8bd4b
CL
381 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
382 param[nparams].mnem), 16);
e2ac9628 383 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
16f8bd4b
CL
384 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
385 p->mnem = htonl(*params++);
386
387 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
388 if (ret == 0)
389 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
390 *vals++ = be32_to_cpu(p->val);
391 return ret;
392}
393
394/**
395 * t4vf_set_params - sets FW or device parameters
396 * @adapter: the adapter
397 * @nparams: the number of parameters
398 * @params: the parameter names
399 * @vals: the parameter values
400 *
401 * Sets the values of firmware or device parameters. Up to 7 parameters
402 * can be specified at once.
403 */
404int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
405 const u32 *params, const u32 *vals)
406{
407 int i;
408 struct fw_params_cmd cmd;
409 struct fw_params_param *p;
410 size_t len16;
411
412 if (nparams > 7)
413 return -EINVAL;
414
415 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
416 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
417 FW_CMD_REQUEST_F |
418 FW_CMD_WRITE_F);
16f8bd4b
CL
419 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
420 param[nparams]), 16);
e2ac9628 421 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
16f8bd4b
CL
422 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
423 p->mnem = cpu_to_be32(*params++);
424 p->val = cpu_to_be32(*vals++);
425 }
426
427 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
428}
429
e85c9a7a 430/**
b2612722 431 * t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
e85c9a7a
HS
432 * @adapter: the adapter
433 * @qid: the Queue ID
434 * @qtype: the Ingress or Egress type for @qid
435 * @pbar2_qoffset: BAR2 Queue Offset
436 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
437 *
438 * Returns the BAR2 SGE Queue Registers information associated with the
439 * indicated Absolute Queue ID. These are passed back in return value
440 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
441 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
442 *
443 * This may return an error which indicates that BAR2 SGE Queue
444 * registers aren't available. If an error is not returned, then the
445 * following values are returned:
446 *
447 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
448 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
449 *
450 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
451 * require the "Inferred Queue ID" ability may be used. E.g. the
452 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
453 * then these "Inferred Queue ID" register may not be used.
454 */
b2612722
HS
455int t4vf_bar2_sge_qregs(struct adapter *adapter,
456 unsigned int qid,
457 enum t4_bar2_qtype qtype,
458 u64 *pbar2_qoffset,
459 unsigned int *pbar2_qid)
e85c9a7a
HS
460{
461 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
462 u64 bar2_page_offset, bar2_qoffset;
463 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
464
465 /* T4 doesn't support BAR2 SGE Queue registers.
466 */
467 if (is_t4(adapter->params.chip))
468 return -EINVAL;
469
470 /* Get our SGE Page Size parameters.
471 */
472 page_shift = adapter->params.sge.sge_vf_hps + 10;
473 page_size = 1 << page_shift;
474
475 /* Get the right Queues per Page parameters for our Queue.
476 */
477 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
478 ? adapter->params.sge.sge_vf_eq_qpp
479 : adapter->params.sge.sge_vf_iq_qpp);
480 qpp_mask = (1 << qpp_shift) - 1;
481
482 /* Calculate the basics of the BAR2 SGE Queue register area:
483 * o The BAR2 page the Queue registers will be in.
484 * o The BAR2 Queue ID.
485 * o The BAR2 Queue ID Offset into the BAR2 page.
486 */
2ff2acf1 487 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
e85c9a7a
HS
488 bar2_qid = qid & qpp_mask;
489 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
490
491 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
492 * hardware will infer the Absolute Queue ID simply from the writes to
493 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
494 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
495 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
496 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
497 * from the BAR2 Page and BAR2 Queue ID.
498 *
499 * One important censequence of this is that some BAR2 SGE registers
500 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
501 * there. But other registers synthesize the SGE Queue ID purely
502 * from the writes to the registers -- the Write Combined Doorbell
503 * Buffer is a good example. These BAR2 SGE Registers are only
504 * available for those BAR2 SGE Register areas where the SGE Absolute
505 * Queue ID can be inferred from simple writes.
506 */
507 bar2_qoffset = bar2_page_offset;
508 bar2_qinferred = (bar2_qid_offset < page_size);
509 if (bar2_qinferred) {
510 bar2_qoffset += bar2_qid_offset;
511 bar2_qid = 0;
512 }
513
514 *pbar2_qoffset = bar2_qoffset;
515 *pbar2_qid = bar2_qid;
516 return 0;
517}
518
16f8bd4b
CL
519/**
520 * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
521 * @adapter: the adapter
522 *
523 * Retrieves various core SGE parameters in the form of hardware SGE
524 * register values. The caller is responsible for decoding these as
525 * needed. The SGE parameters are stored in @adapter->params.sge.
526 */
527int t4vf_get_sge_params(struct adapter *adapter)
528{
529 struct sge_params *sge_params = &adapter->params.sge;
530 u32 params[7], vals[7];
531 int v;
532
5167865a 533 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
f612b815 534 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
5167865a 535 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
f612b815 536 FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
5167865a 537 params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
f612b815 538 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
5167865a 539 params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
f612b815 540 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
5167865a 541 params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
f061de42 542 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
5167865a 543 params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
f061de42 544 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
5167865a 545 params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
f061de42 546 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
16f8bd4b
CL
547 v = t4vf_query_params(adapter, 7, params, vals);
548 if (v)
549 return v;
550 sge_params->sge_control = vals[0];
551 sge_params->sge_host_page_size = vals[1];
552 sge_params->sge_fl_buffer_size[0] = vals[2];
553 sge_params->sge_fl_buffer_size[1] = vals[3];
554 sge_params->sge_timer_value_0_and_1 = vals[4];
555 sge_params->sge_timer_value_2_and_3 = vals[5];
556 sge_params->sge_timer_value_4_and_5 = vals[6];
557
ce8f407a
HS
558 /* T4 uses a single control field to specify both the PCIe Padding and
559 * Packing Boundary. T5 introduced the ability to specify these
560 * separately with the Padding Boundary in SGE_CONTROL and and Packing
561 * Boundary in SGE_CONTROL2. So for T5 and later we need to grab
562 * SGE_CONTROL in order to determine how ingress packet data will be
563 * laid out in Packed Buffer Mode. Unfortunately, older versions of
564 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
565 * failure grabbing it we throw an error since we can't figure out the
566 * right value.
567 */
568 if (!is_t4(adapter->params.chip)) {
5167865a
HS
569 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
570 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
ce8f407a
HS
571 v = t4vf_query_params(adapter, 1, params, vals);
572 if (v != FW_SUCCESS) {
573 dev_err(adapter->pdev_dev,
574 "Unable to get SGE Control2; "
575 "probably old firmware.\n");
576 return v;
577 }
578 sge_params->sge_control2 = vals[0];
579 }
580
5167865a 581 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
f612b815 582 FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
5167865a 583 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
f612b815 584 FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
50d21a66 585 v = t4vf_query_params(adapter, 2, params, vals);
16f8bd4b
CL
586 if (v)
587 return v;
588 sge_params->sge_ingress_rx_threshold = vals[0];
50d21a66 589 sge_params->sge_congestion_control = vals[1];
16f8bd4b 590
e0a8b34a
HS
591 /* For T5 and later we want to use the new BAR2 Doorbells.
592 * Unfortunately, older firmware didn't allow the this register to be
593 * read.
594 */
595 if (!is_t4(adapter->params.chip)) {
596 u32 whoami;
e85c9a7a 597 unsigned int pf, s_hps, s_qpp;
e0a8b34a
HS
598
599 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
600 FW_PARAMS_PARAM_XYZ_V(
601 SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
602 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
603 FW_PARAMS_PARAM_XYZ_V(
604 SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
605 v = t4vf_query_params(adapter, 2, params, vals);
606 if (v != FW_SUCCESS) {
607 dev_warn(adapter->pdev_dev,
608 "Unable to get VF SGE Queues/Page; "
609 "probably old firmware.\n");
610 return v;
611 }
612 sge_params->sge_egress_queues_per_page = vals[0];
613 sge_params->sge_ingress_queues_per_page = vals[1];
614
615 /* We need the Queues/Page for our VF. This is based on the
616 * PF from which we're instantiated and is indexed in the
617 * register we just read. Do it once here so other code in
618 * the driver can just use it.
619 */
620 whoami = t4_read_reg(adapter,
0d804338
HS
621 T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
622 pf = SOURCEPF_G(whoami);
e85c9a7a
HS
623
624 s_hps = (HOSTPAGESIZEPF0_S +
625 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
626 sge_params->sge_vf_hps =
627 ((sge_params->sge_host_page_size >> s_hps)
628 & HOSTPAGESIZEPF0_M);
629
e0a8b34a
HS
630 s_qpp = (QUEUESPERPAGEPF0_S +
631 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
632 sge_params->sge_vf_eq_qpp =
633 ((sge_params->sge_egress_queues_per_page >> s_qpp)
f612b815 634 & QUEUESPERPAGEPF0_M);
e0a8b34a
HS
635 sge_params->sge_vf_iq_qpp =
636 ((sge_params->sge_ingress_queues_per_page >> s_qpp)
f612b815 637 & QUEUESPERPAGEPF0_M);
e0a8b34a
HS
638 }
639
16f8bd4b
CL
640 return 0;
641}
642
643/**
644 * t4vf_get_vpd_params - retrieve device VPD paremeters
645 * @adapter: the adapter
646 *
647 * Retrives various device Vital Product Data parameters. The parameters
648 * are stored in @adapter->params.vpd.
649 */
650int t4vf_get_vpd_params(struct adapter *adapter)
651{
652 struct vpd_params *vpd_params = &adapter->params.vpd;
653 u32 params[7], vals[7];
654 int v;
655
5167865a
HS
656 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
657 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
16f8bd4b
CL
658 v = t4vf_query_params(adapter, 1, params, vals);
659 if (v)
660 return v;
661 vpd_params->cclk = vals[0];
662
663 return 0;
664}
665
666/**
667 * t4vf_get_dev_params - retrieve device paremeters
668 * @adapter: the adapter
669 *
670 * Retrives various device parameters. The parameters are stored in
671 * @adapter->params.dev.
672 */
673int t4vf_get_dev_params(struct adapter *adapter)
674{
675 struct dev_params *dev_params = &adapter->params.dev;
676 u32 params[7], vals[7];
677 int v;
678
5167865a
HS
679 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
680 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
681 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
682 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
16f8bd4b
CL
683 v = t4vf_query_params(adapter, 2, params, vals);
684 if (v)
685 return v;
686 dev_params->fwrev = vals[0];
687 dev_params->tprev = vals[1];
688
689 return 0;
690}
691
692/**
693 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
694 * @adapter: the adapter
695 *
696 * Retrieves global RSS mode and parameters with which we have to live
697 * and stores them in the @adapter's RSS parameters.
698 */
699int t4vf_get_rss_glb_config(struct adapter *adapter)
700{
701 struct rss_params *rss = &adapter->params.rss;
702 struct fw_rss_glb_config_cmd cmd, rpl;
703 int v;
704
705 /*
706 * Execute an RSS Global Configuration read command to retrieve
707 * our RSS configuration.
708 */
709 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
710 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
711 FW_CMD_REQUEST_F |
712 FW_CMD_READ_F);
16f8bd4b
CL
713 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
714 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
715 if (v)
716 return v;
717
718 /*
719 * Transate the big-endian RSS Global Configuration into our
720 * cpu-endian format based on the RSS mode. We also do first level
721 * filtering at this point to weed out modes which don't support
722 * VF Drivers ...
723 */
b2e1a3f0 724 rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
16f8bd4b
CL
725 be32_to_cpu(rpl.u.manual.mode_pkd));
726 switch (rss->mode) {
727 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
728 u32 word = be32_to_cpu(
729 rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
730
731 rss->u.basicvirtual.synmapen =
b2e1a3f0 732 ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
16f8bd4b 733 rss->u.basicvirtual.syn4tupenipv6 =
b2e1a3f0 734 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
16f8bd4b 735 rss->u.basicvirtual.syn2tupenipv6 =
b2e1a3f0 736 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
16f8bd4b 737 rss->u.basicvirtual.syn4tupenipv4 =
b2e1a3f0 738 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
16f8bd4b 739 rss->u.basicvirtual.syn2tupenipv4 =
b2e1a3f0 740 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
16f8bd4b
CL
741
742 rss->u.basicvirtual.ofdmapen =
b2e1a3f0 743 ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
16f8bd4b
CL
744
745 rss->u.basicvirtual.tnlmapen =
b2e1a3f0 746 ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
16f8bd4b 747 rss->u.basicvirtual.tnlalllookup =
b2e1a3f0 748 ((word & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
16f8bd4b
CL
749
750 rss->u.basicvirtual.hashtoeplitz =
b2e1a3f0 751 ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
16f8bd4b
CL
752
753 /* we need at least Tunnel Map Enable to be set */
754 if (!rss->u.basicvirtual.tnlmapen)
755 return -EINVAL;
756 break;
757 }
758
759 default:
760 /* all unknown/unsupported RSS modes result in an error */
761 return -EINVAL;
762 }
763
764 return 0;
765}
766
767/**
768 * t4vf_get_vfres - retrieve VF resource limits
769 * @adapter: the adapter
770 *
771 * Retrieves configured resource limits and capabilities for a virtual
772 * function. The results are stored in @adapter->vfres.
773 */
774int t4vf_get_vfres(struct adapter *adapter)
775{
776 struct vf_resources *vfres = &adapter->params.vfres;
777 struct fw_pfvf_cmd cmd, rpl;
778 int v;
779 u32 word;
780
781 /*
782 * Execute PFVF Read command to get VF resource limits; bail out early
783 * with error on command failure.
784 */
785 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
786 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
787 FW_CMD_REQUEST_F |
788 FW_CMD_READ_F);
16f8bd4b
CL
789 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
790 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
791 if (v)
792 return v;
793
794 /*
795 * Extract VF resource limits and return success.
796 */
797 word = be32_to_cpu(rpl.niqflint_niq);
5167865a
HS
798 vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
799 vfres->niq = FW_PFVF_CMD_NIQ_G(word);
16f8bd4b
CL
800
801 word = be32_to_cpu(rpl.type_to_neq);
5167865a
HS
802 vfres->neq = FW_PFVF_CMD_NEQ_G(word);
803 vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
16f8bd4b
CL
804
805 word = be32_to_cpu(rpl.tc_to_nexactf);
5167865a
HS
806 vfres->tc = FW_PFVF_CMD_TC_G(word);
807 vfres->nvi = FW_PFVF_CMD_NVI_G(word);
808 vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
16f8bd4b
CL
809
810 word = be32_to_cpu(rpl.r_caps_to_nethctrl);
5167865a
HS
811 vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
812 vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
813 vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
16f8bd4b
CL
814
815 return 0;
816}
817
818/**
819 * t4vf_read_rss_vi_config - read a VI's RSS configuration
820 * @adapter: the adapter
821 * @viid: Virtual Interface ID
822 * @config: pointer to host-native VI RSS Configuration buffer
823 *
824 * Reads the Virtual Interface's RSS configuration information and
825 * translates it into CPU-native format.
826 */
827int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
828 union rss_vi_config *config)
829{
830 struct fw_rss_vi_config_cmd cmd, rpl;
831 int v;
832
833 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
834 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
835 FW_CMD_REQUEST_F |
836 FW_CMD_READ_F |
16f8bd4b
CL
837 FW_RSS_VI_CONFIG_CMD_VIID(viid));
838 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
839 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
840 if (v)
841 return v;
842
843 switch (adapter->params.rss.mode) {
844 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
845 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
846
847 config->basicvirtual.ip6fourtupen =
b2e1a3f0 848 ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
16f8bd4b 849 config->basicvirtual.ip6twotupen =
b2e1a3f0 850 ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
16f8bd4b 851 config->basicvirtual.ip4fourtupen =
b2e1a3f0 852 ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
16f8bd4b 853 config->basicvirtual.ip4twotupen =
b2e1a3f0 854 ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
16f8bd4b 855 config->basicvirtual.udpen =
b2e1a3f0 856 ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
16f8bd4b 857 config->basicvirtual.defaultq =
b2e1a3f0 858 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
16f8bd4b
CL
859 break;
860 }
861
862 default:
863 return -EINVAL;
864 }
865
866 return 0;
867}
868
869/**
870 * t4vf_write_rss_vi_config - write a VI's RSS configuration
871 * @adapter: the adapter
872 * @viid: Virtual Interface ID
873 * @config: pointer to host-native VI RSS Configuration buffer
874 *
875 * Write the Virtual Interface's RSS configuration information
876 * (translating it into firmware-native format before writing).
877 */
878int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
879 union rss_vi_config *config)
880{
881 struct fw_rss_vi_config_cmd cmd, rpl;
882
883 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
884 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
885 FW_CMD_REQUEST_F |
886 FW_CMD_WRITE_F |
16f8bd4b
CL
887 FW_RSS_VI_CONFIG_CMD_VIID(viid));
888 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
889 switch (adapter->params.rss.mode) {
890 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
891 u32 word = 0;
892
893 if (config->basicvirtual.ip6fourtupen)
b2e1a3f0 894 word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
16f8bd4b 895 if (config->basicvirtual.ip6twotupen)
b2e1a3f0 896 word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
16f8bd4b 897 if (config->basicvirtual.ip4fourtupen)
b2e1a3f0 898 word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
16f8bd4b 899 if (config->basicvirtual.ip4twotupen)
b2e1a3f0 900 word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
16f8bd4b 901 if (config->basicvirtual.udpen)
b2e1a3f0
HS
902 word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
903 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
16f8bd4b
CL
904 config->basicvirtual.defaultq);
905 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
906 break;
907 }
908
909 default:
910 return -EINVAL;
911 }
912
913 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
914}
915
916/**
917 * t4vf_config_rss_range - configure a portion of the RSS mapping table
918 * @adapter: the adapter
919 * @viid: Virtual Interface of RSS Table Slice
920 * @start: starting entry in the table to write
921 * @n: how many table entries to write
922 * @rspq: values for the "Response Queue" (Ingress Queue) lookup table
923 * @nrspq: number of values in @rspq
924 *
925 * Programs the selected part of the VI's RSS mapping table with the
926 * provided values. If @nrspq < @n the supplied values are used repeatedly
927 * until the full table range is populated.
928 *
929 * The caller must ensure the values in @rspq are in the range 0..1023.
930 */
931int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
932 int start, int n, const u16 *rspq, int nrspq)
933{
934 const u16 *rsp = rspq;
935 const u16 *rsp_end = rspq+nrspq;
936 struct fw_rss_ind_tbl_cmd cmd;
937
938 /*
939 * Initialize firmware command template to write the RSS table.
940 */
941 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
942 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
943 FW_CMD_REQUEST_F |
944 FW_CMD_WRITE_F |
b2e1a3f0 945 FW_RSS_IND_TBL_CMD_VIID_V(viid));
16f8bd4b
CL
946 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
947
948 /*
949 * Each firmware RSS command can accommodate up to 32 RSS Ingress
950 * Queue Identifiers. These Ingress Queue IDs are packed three to
951 * a 32-bit word as 10-bit values with the upper remaining 2 bits
952 * reserved.
953 */
954 while (n > 0) {
955 __be32 *qp = &cmd.iq0_to_iq2;
956 int nq = min(n, 32);
957 int ret;
958
959 /*
960 * Set up the firmware RSS command header to send the next
961 * "nq" Ingress Queue IDs to the firmware.
962 */
963 cmd.niqid = cpu_to_be16(nq);
964 cmd.startidx = cpu_to_be16(start);
965
966 /*
967 * "nq" more done for the start of the next loop.
968 */
969 start += nq;
970 n -= nq;
971
972 /*
973 * While there are still Ingress Queue IDs to stuff into the
974 * current firmware RSS command, retrieve them from the
975 * Ingress Queue ID array and insert them into the command.
976 */
977 while (nq > 0) {
978 /*
979 * Grab up to the next 3 Ingress Queue IDs (wrapping
980 * around the Ingress Queue ID array if necessary) and
981 * insert them into the firmware RSS command at the
982 * current 3-tuple position within the commad.
983 */
984 u16 qbuf[3];
985 u16 *qbp = qbuf;
986 int nqbuf = min(3, nq);
987
988 nq -= nqbuf;
989 qbuf[0] = qbuf[1] = qbuf[2] = 0;
990 while (nqbuf) {
991 nqbuf--;
992 *qbp++ = *rsp++;
993 if (rsp >= rsp_end)
994 rsp = rspq;
995 }
b2e1a3f0
HS
996 *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
997 FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
998 FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
16f8bd4b
CL
999 }
1000
1001 /*
1002 * Send this portion of the RRS table update to the firmware;
1003 * bail out on any errors.
1004 */
1005 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1006 if (ret)
1007 return ret;
1008 }
1009 return 0;
1010}
1011
1012/**
1013 * t4vf_alloc_vi - allocate a virtual interface on a port
1014 * @adapter: the adapter
1015 * @port_id: physical port associated with the VI
1016 *
1017 * Allocate a new Virtual Interface and bind it to the indicated
1018 * physical port. Return the new Virtual Interface Identifier on
1019 * success, or a [negative] error number on failure.
1020 */
1021int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1022{
1023 struct fw_vi_cmd cmd, rpl;
1024 int v;
1025
1026 /*
1027 * Execute a VI command to allocate Virtual Interface and return its
1028 * VIID.
1029 */
1030 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1031 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1032 FW_CMD_REQUEST_F |
1033 FW_CMD_WRITE_F |
1034 FW_CMD_EXEC_F);
16f8bd4b 1035 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
2b5fb1f2
HS
1036 FW_VI_CMD_ALLOC_F);
1037 cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
16f8bd4b
CL
1038 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1039 if (v)
1040 return v;
1041
2b5fb1f2 1042 return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
16f8bd4b
CL
1043}
1044
1045/**
1046 * t4vf_free_vi -- free a virtual interface
1047 * @adapter: the adapter
1048 * @viid: the virtual interface identifier
1049 *
1050 * Free a previously allocated Virtual Interface. Return an error on
1051 * failure.
1052 */
1053int t4vf_free_vi(struct adapter *adapter, int viid)
1054{
1055 struct fw_vi_cmd cmd;
1056
1057 /*
1058 * Execute a VI command to free the Virtual Interface.
1059 */
1060 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1061 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1062 FW_CMD_REQUEST_F |
1063 FW_CMD_EXEC_F);
16f8bd4b 1064 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
2b5fb1f2
HS
1065 FW_VI_CMD_FREE_F);
1066 cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
16f8bd4b
CL
1067 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1068}
1069
1070/**
1071 * t4vf_enable_vi - enable/disable a virtual interface
1072 * @adapter: the adapter
1073 * @viid: the Virtual Interface ID
1074 * @rx_en: 1=enable Rx, 0=disable Rx
1075 * @tx_en: 1=enable Tx, 0=disable Tx
1076 *
1077 * Enables/disables a virtual interface.
1078 */
1079int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1080 bool rx_en, bool tx_en)
1081{
1082 struct fw_vi_enable_cmd cmd;
1083
1084 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1085 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1086 FW_CMD_REQUEST_F |
1087 FW_CMD_EXEC_F |
2b5fb1f2
HS
1088 FW_VI_ENABLE_CMD_VIID_V(viid));
1089 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1090 FW_VI_ENABLE_CMD_EEN_V(tx_en) |
16f8bd4b
CL
1091 FW_LEN16(cmd));
1092 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1093}
1094
1095/**
1096 * t4vf_identify_port - identify a VI's port by blinking its LED
1097 * @adapter: the adapter
1098 * @viid: the Virtual Interface ID
1099 * @nblinks: how many times to blink LED at 2.5 Hz
1100 *
1101 * Identifies a VI's port by blinking its LED.
1102 */
1103int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1104 unsigned int nblinks)
1105{
1106 struct fw_vi_enable_cmd cmd;
1107
1108 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1109 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1110 FW_CMD_REQUEST_F |
1111 FW_CMD_EXEC_F |
2b5fb1f2
HS
1112 FW_VI_ENABLE_CMD_VIID_V(viid));
1113 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
16f8bd4b
CL
1114 FW_LEN16(cmd));
1115 cmd.blinkdur = cpu_to_be16(nblinks);
1116 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1117}
1118
1119/**
1120 * t4vf_set_rxmode - set Rx properties of a virtual interface
1121 * @adapter: the adapter
1122 * @viid: the VI id
1123 * @mtu: the new MTU or -1 for no change
1124 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1125 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1126 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1127 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1128 * -1 no change
1129 *
1130 * Sets Rx properties of a virtual interface.
1131 */
1132int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1133 int mtu, int promisc, int all_multi, int bcast, int vlanex,
1134 bool sleep_ok)
1135{
1136 struct fw_vi_rxmode_cmd cmd;
1137
1138 /* convert to FW values */
1139 if (mtu < 0)
2b5fb1f2 1140 mtu = FW_VI_RXMODE_CMD_MTU_M;
16f8bd4b 1141 if (promisc < 0)
2b5fb1f2 1142 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
16f8bd4b 1143 if (all_multi < 0)
2b5fb1f2 1144 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
16f8bd4b 1145 if (bcast < 0)
2b5fb1f2 1146 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
16f8bd4b 1147 if (vlanex < 0)
2b5fb1f2 1148 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
16f8bd4b
CL
1149
1150 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1151 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1152 FW_CMD_REQUEST_F |
1153 FW_CMD_WRITE_F |
2b5fb1f2 1154 FW_VI_RXMODE_CMD_VIID_V(viid));
16f8bd4b
CL
1155 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1156 cmd.mtu_to_vlanexen =
2b5fb1f2
HS
1157 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1158 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1159 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1160 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1161 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
16f8bd4b
CL
1162 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1163}
1164
1165/**
1166 * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1167 * @adapter: the adapter
1168 * @viid: the Virtual Interface Identifier
1169 * @free: if true any existing filters for this VI id are first removed
1170 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
1171 * @addr: the MAC address(es)
1172 * @idx: where to store the index of each allocated filter
1173 * @hash: pointer to hash address filter bitmap
1174 * @sleep_ok: call is allowed to sleep
1175 *
1176 * Allocates an exact-match filter for each of the supplied addresses and
1177 * sets it to the corresponding address. If @idx is not %NULL it should
1178 * have at least @naddr entries, each of which will be set to the index of
1179 * the filter allocated for the corresponding MAC address. If a filter
1180 * could not be allocated for an address its index is set to 0xffff.
1181 * If @hash is not %NULL addresses that fail to allocate an exact filter
1182 * are hashed and update the hash filter bitmap pointed at by @hash.
1183 *
1184 * Returns a negative error number or the number of filters allocated.
1185 */
1186int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1187 unsigned int naddr, const u8 **addr, u16 *idx,
1188 u64 *hash, bool sleep_ok)
1189{
42eb59d3
CL
1190 int offset, ret = 0;
1191 unsigned nfilters = 0;
1192 unsigned int rem = naddr;
16f8bd4b 1193 struct fw_vi_mac_cmd cmd, rpl;
70ee3666 1194 unsigned int max_naddr = is_t4(adapter->params.chip) ?
622c62b5
SR
1195 NUM_MPS_CLS_SRAM_L_INSTANCES :
1196 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
16f8bd4b 1197
622c62b5 1198 if (naddr > max_naddr)
16f8bd4b 1199 return -EINVAL;
16f8bd4b 1200
42eb59d3
CL
1201 for (offset = 0; offset < naddr; /**/) {
1202 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1203 ? rem
1204 : ARRAY_SIZE(cmd.u.exact));
1205 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1206 u.exact[fw_naddr]), 16);
1207 struct fw_vi_mac_exact *p;
1208 int i;
1209
1210 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1211 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1212 FW_CMD_REQUEST_F |
1213 FW_CMD_WRITE_F |
1214 (free ? FW_CMD_EXEC_F : 0) |
2b5fb1f2 1215 FW_VI_MAC_CMD_VIID_V(viid));
42eb59d3 1216 cmd.freemacs_to_len16 =
2b5fb1f2 1217 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
e2ac9628 1218 FW_CMD_LEN16_V(len16));
42eb59d3
CL
1219
1220 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1221 p->valid_to_idx = cpu_to_be16(
2b5fb1f2
HS
1222 FW_VI_MAC_CMD_VALID_F |
1223 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
42eb59d3
CL
1224 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1225 }
16f8bd4b 1226
42eb59d3
CL
1227
1228 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1229 sleep_ok);
1230 if (ret && ret != -ENOMEM)
1231 break;
1232
1233 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
2b5fb1f2 1234 u16 index = FW_VI_MAC_CMD_IDX_G(
42eb59d3
CL
1235 be16_to_cpu(p->valid_to_idx));
1236
1237 if (idx)
1238 idx[offset+i] =
622c62b5 1239 (index >= max_naddr
42eb59d3
CL
1240 ? 0xffff
1241 : index);
622c62b5 1242 if (index < max_naddr)
42eb59d3
CL
1243 nfilters++;
1244 else if (hash)
1245 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1246 }
1247
1248 free = false;
1249 offset += fw_naddr;
1250 rem -= fw_naddr;
16f8bd4b 1251 }
42eb59d3
CL
1252
1253 /*
1254 * If there were no errors or we merely ran out of room in our MAC
1255 * address arena, return the number of filters actually written.
1256 */
1257 if (ret == 0 || ret == -ENOMEM)
1258 ret = nfilters;
16f8bd4b
CL
1259 return ret;
1260}
1261
1262/**
1263 * t4vf_change_mac - modifies the exact-match filter for a MAC address
1264 * @adapter: the adapter
1265 * @viid: the Virtual Interface ID
1266 * @idx: index of existing filter for old value of MAC address, or -1
1267 * @addr: the new MAC address value
1268 * @persist: if idx < 0, the new MAC allocation should be persistent
1269 *
1270 * Modifies an exact-match filter and sets it to the new MAC address.
1271 * Note that in general it is not possible to modify the value of a given
1272 * filter so the generic way to modify an address filter is to free the
1273 * one being used by the old address value and allocate a new filter for
1274 * the new address value. @idx can be -1 if the address is a new
1275 * addition.
1276 *
1277 * Returns a negative error number or the index of the filter with the new
1278 * MAC value.
1279 */
1280int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1281 int idx, const u8 *addr, bool persist)
1282{
1283 int ret;
1284 struct fw_vi_mac_cmd cmd, rpl;
1285 struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1286 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1287 u.exact[1]), 16);
70ee3666 1288 unsigned int max_naddr = is_t4(adapter->params.chip) ?
622c62b5
SR
1289 NUM_MPS_CLS_SRAM_L_INSTANCES :
1290 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
16f8bd4b
CL
1291
1292 /*
1293 * If this is a new allocation, determine whether it should be
1294 * persistent (across a "freemacs" operation) or not.
1295 */
1296 if (idx < 0)
1297 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1298
1299 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1300 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1301 FW_CMD_REQUEST_F |
1302 FW_CMD_WRITE_F |
2b5fb1f2 1303 FW_VI_MAC_CMD_VIID_V(viid));
e2ac9628 1304 cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
2b5fb1f2
HS
1305 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1306 FW_VI_MAC_CMD_IDX_V(idx));
16f8bd4b
CL
1307 memcpy(p->macaddr, addr, sizeof(p->macaddr));
1308
1309 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1310 if (ret == 0) {
1311 p = &rpl.u.exact[0];
2b5fb1f2 1312 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
622c62b5 1313 if (ret >= max_naddr)
16f8bd4b
CL
1314 ret = -ENOMEM;
1315 }
1316 return ret;
1317}
1318
1319/**
1320 * t4vf_set_addr_hash - program the MAC inexact-match hash filter
1321 * @adapter: the adapter
1322 * @viid: the Virtual Interface Identifier
1323 * @ucast: whether the hash filter should also match unicast addresses
1324 * @vec: the value to be written to the hash filter
1325 * @sleep_ok: call is allowed to sleep
1326 *
1327 * Sets the 64-bit inexact-match hash filter for a virtual interface.
1328 */
1329int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1330 bool ucast, u64 vec, bool sleep_ok)
1331{
1332 struct fw_vi_mac_cmd cmd;
1333 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1334 u.exact[0]), 16);
1335
1336 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1337 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1338 FW_CMD_REQUEST_F |
1339 FW_CMD_WRITE_F |
2b5fb1f2
HS
1340 FW_VI_ENABLE_CMD_VIID_V(viid));
1341 cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1342 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
e2ac9628 1343 FW_CMD_LEN16_V(len16));
16f8bd4b
CL
1344 cmd.u.hash.hashvec = cpu_to_be64(vec);
1345 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1346}
1347
1348/**
1349 * t4vf_get_port_stats - collect "port" statistics
1350 * @adapter: the adapter
1351 * @pidx: the port index
1352 * @s: the stats structure to fill
1353 *
1354 * Collect statistics for the "port"'s Virtual Interface.
1355 */
1356int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1357 struct t4vf_port_stats *s)
1358{
1359 struct port_info *pi = adap2pinfo(adapter, pidx);
1360 struct fw_vi_stats_vf fwstats;
1361 unsigned int rem = VI_VF_NUM_STATS;
1362 __be64 *fwsp = (__be64 *)&fwstats;
1363
1364 /*
1365 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1366 * commands. We could use a Work Request and get all of them at once
1367 * but that's an asynchronous interface which is awkward to use.
1368 */
1369 while (rem) {
1370 unsigned int ix = VI_VF_NUM_STATS - rem;
1371 unsigned int nstats = min(6U, rem);
1372 struct fw_vi_stats_cmd cmd, rpl;
1373 size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1374 sizeof(struct fw_vi_stats_ctl));
1375 size_t len16 = DIV_ROUND_UP(len, 16);
1376 int ret;
1377
1378 memset(&cmd, 0, sizeof(cmd));
e2ac9628 1379 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
2b5fb1f2 1380 FW_VI_STATS_CMD_VIID_V(pi->viid) |
e2ac9628
HS
1381 FW_CMD_REQUEST_F |
1382 FW_CMD_READ_F);
1383 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
16f8bd4b 1384 cmd.u.ctl.nstats_ix =
2b5fb1f2
HS
1385 cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1386 FW_VI_STATS_CMD_NSTATS_V(nstats));
16f8bd4b
CL
1387 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1388 if (ret)
1389 return ret;
1390
1391 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1392
1393 rem -= nstats;
1394 fwsp += nstats;
1395 }
1396
1397 /*
1398 * Translate firmware statistics into host native statistics.
1399 */
1400 s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1401 s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1402 s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1403 s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1404 s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1405 s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1406 s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1407 s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1408 s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1409
1410 s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1411 s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1412 s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1413 s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1414 s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1415 s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1416
1417 s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1418
1419 return 0;
1420}
1421
1422/**
1423 * t4vf_iq_free - free an ingress queue and its free lists
1424 * @adapter: the adapter
1425 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1426 * @iqid: ingress queue ID
1427 * @fl0id: FL0 queue ID or 0xffff if no attached FL0
1428 * @fl1id: FL1 queue ID or 0xffff if no attached FL1
1429 *
1430 * Frees an ingress queue and its associated free lists, if any.
1431 */
1432int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1433 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1434{
1435 struct fw_iq_cmd cmd;
1436
1437 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1438 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1439 FW_CMD_REQUEST_F |
1440 FW_CMD_EXEC_F);
6e4b51a6 1441 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
16f8bd4b
CL
1442 FW_LEN16(cmd));
1443 cmd.type_to_iqandstindex =
6e4b51a6 1444 cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
16f8bd4b
CL
1445
1446 cmd.iqid = cpu_to_be16(iqid);
1447 cmd.fl0id = cpu_to_be16(fl0id);
1448 cmd.fl1id = cpu_to_be16(fl1id);
1449 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1450}
1451
1452/**
1453 * t4vf_eth_eq_free - free an Ethernet egress queue
1454 * @adapter: the adapter
1455 * @eqid: egress queue ID
1456 *
1457 * Frees an Ethernet egress queue.
1458 */
1459int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1460{
1461 struct fw_eq_eth_cmd cmd;
1462
1463 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1464 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1465 FW_CMD_REQUEST_F |
1466 FW_CMD_EXEC_F);
6e4b51a6 1467 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
16f8bd4b 1468 FW_LEN16(cmd));
6e4b51a6 1469 cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
16f8bd4b
CL
1470 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1471}
1472
1473/**
1474 * t4vf_handle_fw_rpl - process a firmware reply message
1475 * @adapter: the adapter
1476 * @rpl: start of the firmware message
1477 *
1478 * Processes a firmware message, such as link state change messages.
1479 */
1480int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
1481{
caedda35 1482 const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
e2ac9628 1483 u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
16f8bd4b
CL
1484
1485 switch (opcode) {
1486 case FW_PORT_CMD: {
1487 /*
1488 * Link/module state change message.
1489 */
caedda35
CL
1490 const struct fw_port_cmd *port_cmd =
1491 (const struct fw_port_cmd *)rpl;
5ad24def 1492 u32 stat, mod;
16f8bd4b
CL
1493 int action, port_id, link_ok, speed, fc, pidx;
1494
1495 /*
1496 * Extract various fields from port status change message.
1497 */
2b5fb1f2 1498 action = FW_PORT_CMD_ACTION_G(
16f8bd4b
CL
1499 be32_to_cpu(port_cmd->action_to_len16));
1500 if (action != FW_PORT_ACTION_GET_PORT_INFO) {
1501 dev_err(adapter->pdev_dev,
1502 "Unknown firmware PORT reply action %x\n",
1503 action);
1504 break;
1505 }
1506
2b5fb1f2 1507 port_id = FW_PORT_CMD_PORTID_G(
16f8bd4b
CL
1508 be32_to_cpu(port_cmd->op_to_portid));
1509
5ad24def
HS
1510 stat = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
1511 link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
16f8bd4b
CL
1512 speed = 0;
1513 fc = 0;
5ad24def 1514 if (stat & FW_PORT_CMD_RXPAUSE_F)
16f8bd4b 1515 fc |= PAUSE_RX;
5ad24def 1516 if (stat & FW_PORT_CMD_TXPAUSE_F)
16f8bd4b 1517 fc |= PAUSE_TX;
5ad24def 1518 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
897d55df 1519 speed = 100;
5ad24def 1520 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
897d55df 1521 speed = 1000;
5ad24def 1522 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
897d55df 1523 speed = 10000;
5ad24def 1524 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
897d55df 1525 speed = 40000;
16f8bd4b
CL
1526
1527 /*
1528 * Scan all of our "ports" (Virtual Interfaces) looking for
1529 * those bound to the physical port which has changed. If
1530 * our recorded state doesn't match the current state,
1531 * signal that change to the OS code.
1532 */
1533 for_each_port(adapter, pidx) {
1534 struct port_info *pi = adap2pinfo(adapter, pidx);
1535 struct link_config *lc;
1536
1537 if (pi->port_id != port_id)
1538 continue;
1539
1540 lc = &pi->link_cfg;
5ad24def
HS
1541
1542 mod = FW_PORT_CMD_MODTYPE_G(stat);
1543 if (mod != pi->mod_type) {
1544 pi->mod_type = mod;
1545 t4vf_os_portmod_changed(adapter, pidx);
1546 }
1547
16f8bd4b
CL
1548 if (link_ok != lc->link_ok || speed != lc->speed ||
1549 fc != lc->fc) {
1550 /* something changed */
1551 lc->link_ok = link_ok;
1552 lc->speed = speed;
1553 lc->fc = fc;
5ad24def
HS
1554 lc->supported =
1555 be16_to_cpu(port_cmd->u.info.pcap);
16f8bd4b
CL
1556 t4vf_os_link_changed(adapter, pidx, link_ok);
1557 }
1558 }
1559 break;
1560 }
1561
1562 default:
1563 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
1564 opcode);
1565 }
1566 return 0;
1567}
e0a8b34a
HS
1568
1569/**
1570 */
1571int t4vf_prep_adapter(struct adapter *adapter)
1572{
1573 int err;
1574 unsigned int chipid;
1575
1576 /* Wait for the device to become ready before proceeding ...
1577 */
1578 err = t4vf_wait_dev_ready(adapter);
1579 if (err)
1580 return err;
1581
1582 /* Default port and clock for debugging in case we can't reach
1583 * firmware.
1584 */
1585 adapter->params.nports = 1;
1586 adapter->params.vfres.pmask = 1;
1587 adapter->params.vpd.cclk = 50000;
1588
1589 adapter->params.chip = 0;
1590 switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
1591 case CHELSIO_T4:
1592 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
1593 break;
1594
1595 case CHELSIO_T5:
0d804338 1596 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
e0a8b34a
HS
1597 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
1598 break;
1599 }
1600
1601 return 0;
1602}
This page took 0.461362 seconds and 5 git commands to generate.