be2net: support TX batching using skb->xmit_more flag
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb4vf / t4vf_hw.c
CommitLineData
16f8bd4b
CL
1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
16f8bd4b
CL
36#include <linux/pci.h>
37
38#include "t4vf_common.h"
39#include "t4vf_defs.h"
40
41#include "../cxgb4/t4_regs.h"
42#include "../cxgb4/t4fw_api.h"
43
44/*
45 * Wait for the device to become ready (signified by our "who am I" register
46 * returning a value other than all 1's). Return an error if it doesn't
47 * become ready ...
48 */
d289f864 49int t4vf_wait_dev_ready(struct adapter *adapter)
16f8bd4b
CL
50{
51 const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
52 const u32 notready1 = 0xffffffff;
53 const u32 notready2 = 0xeeeeeeee;
54 u32 val;
55
56 val = t4_read_reg(adapter, whoami);
57 if (val != notready1 && val != notready2)
58 return 0;
59 msleep(500);
60 val = t4_read_reg(adapter, whoami);
61 if (val != notready1 && val != notready2)
62 return 0;
63 else
64 return -EIO;
65}
66
67/*
68 * Get the reply to a mailbox command and store it in @rpl in big-endian order
69 * (since the firmware data structures are specified in a big-endian layout).
70 */
71static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
72 u32 mbox_data)
73{
74 for ( ; size; size -= 8, mbox_data += 8)
75 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
76}
77
78/*
79 * Dump contents of mailbox with a leading tag.
80 */
81static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data)
82{
83 dev_err(adapter->pdev_dev,
84 "mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag,
85 (unsigned long long)t4_read_reg64(adapter, mbox_data + 0),
86 (unsigned long long)t4_read_reg64(adapter, mbox_data + 8),
87 (unsigned long long)t4_read_reg64(adapter, mbox_data + 16),
88 (unsigned long long)t4_read_reg64(adapter, mbox_data + 24),
89 (unsigned long long)t4_read_reg64(adapter, mbox_data + 32),
90 (unsigned long long)t4_read_reg64(adapter, mbox_data + 40),
91 (unsigned long long)t4_read_reg64(adapter, mbox_data + 48),
92 (unsigned long long)t4_read_reg64(adapter, mbox_data + 56));
93}
94
95/**
96 * t4vf_wr_mbox_core - send a command to FW through the mailbox
97 * @adapter: the adapter
98 * @cmd: the command to write
99 * @size: command length in bytes
100 * @rpl: where to optionally store the reply
101 * @sleep_ok: if true we may sleep while awaiting command completion
102 *
103 * Sends the given command to FW through the mailbox and waits for the
104 * FW to execute the command. If @rpl is not %NULL it is used to store
105 * the FW's reply to the command. The command and its optional reply
106 * are of the same length. FW can take up to 500 ms to respond.
107 * @sleep_ok determines whether we may sleep while awaiting the response.
108 * If sleeping is allowed we use progressive backoff otherwise we spin.
109 *
110 * The return value is 0 on success or a negative errno on failure. A
111 * failure can happen either because we are not able to execute the
112 * command or FW executes it but signals an error. In the latter case
113 * the return value is the error code indicated by FW (negated).
114 */
115int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
116 void *rpl, bool sleep_ok)
117{
215faf9c 118 static const int delay[] = {
16f8bd4b
CL
119 1, 1, 3, 5, 10, 10, 20, 50, 100
120 };
121
122 u32 v;
123 int i, ms, delay_idx;
124 const __be64 *p;
125 u32 mbox_data = T4VF_MBDATA_BASE_ADDR;
126 u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
127
128 /*
129 * Commands must be multiples of 16 bytes in length and may not be
130 * larger than the size of the Mailbox Data register array.
131 */
132 if ((size % 16) != 0 ||
133 size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
134 return -EINVAL;
135
136 /*
137 * Loop trying to get ownership of the mailbox. Return an error
138 * if we can't gain ownership.
139 */
140 v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
141 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
142 v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
143 if (v != MBOX_OWNER_DRV)
144 return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT;
145
146 /*
147 * Write the command array into the Mailbox Data register array and
148 * transfer ownership of the mailbox to the firmware.
80ce3f67
CL
149 *
150 * For the VFs, the Mailbox Data "registers" are actually backed by
151 * T4's "MA" interface rather than PL Registers (as is the case for
152 * the PFs). Because these are in different coherency domains, the
153 * write to the VF's PL-register-backed Mailbox Control can race in
154 * front of the writes to the MA-backed VF Mailbox Data "registers".
155 * So we need to do a read-back on at least one byte of the VF Mailbox
156 * Data registers before doing the write to the VF Mailbox Control
157 * register.
16f8bd4b
CL
158 */
159 for (i = 0, p = cmd; i < size; i += 8)
160 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
80ce3f67
CL
161 t4_read_reg(adapter, mbox_data); /* flush write */
162
16f8bd4b
CL
163 t4_write_reg(adapter, mbox_ctl,
164 MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
165 t4_read_reg(adapter, mbox_ctl); /* flush write */
166
167 /*
168 * Spin waiting for firmware to acknowledge processing our command.
169 */
170 delay_idx = 0;
171 ms = delay[0];
172
0550769b 173 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
16f8bd4b
CL
174 if (sleep_ok) {
175 ms = delay[delay_idx];
024e6293 176 if (delay_idx < ARRAY_SIZE(delay) - 1)
16f8bd4b
CL
177 delay_idx++;
178 msleep(ms);
179 } else
180 mdelay(ms);
181
182 /*
183 * If we're the owner, see if this is the reply we wanted.
184 */
185 v = t4_read_reg(adapter, mbox_ctl);
186 if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
187 /*
188 * If the Message Valid bit isn't on, revoke ownership
189 * of the mailbox and continue waiting for our reply.
190 */
191 if ((v & MBMSGVALID) == 0) {
192 t4_write_reg(adapter, mbox_ctl,
193 MBOWNER(MBOX_OWNER_NONE));
194 continue;
195 }
196
197 /*
198 * We now have our reply. Extract the command return
199 * value, copy the reply back to our caller's buffer
200 * (if specified) and revoke ownership of the mailbox.
201 * We return the (negated) firmware command return
202 * code (this depends on FW_SUCCESS == 0).
203 */
204
205 /* return value in low-order little-endian word */
206 v = t4_read_reg(adapter, mbox_data);
e2ac9628 207 if (FW_CMD_RETVAL_G(v))
16f8bd4b
CL
208 dump_mbox(adapter, "FW Error", mbox_data);
209
210 if (rpl) {
211 /* request bit in high-order BE word */
212 WARN_ON((be32_to_cpu(*(const u32 *)cmd)
e2ac9628 213 & FW_CMD_REQUEST_F) == 0);
16f8bd4b
CL
214 get_mbox_rpl(adapter, rpl, size, mbox_data);
215 WARN_ON((be32_to_cpu(*(u32 *)rpl)
e2ac9628 216 & FW_CMD_REQUEST_F) != 0);
16f8bd4b
CL
217 }
218 t4_write_reg(adapter, mbox_ctl,
219 MBOWNER(MBOX_OWNER_NONE));
e2ac9628 220 return -FW_CMD_RETVAL_G(v);
16f8bd4b
CL
221 }
222 }
223
224 /*
225 * We timed out. Return the error ...
226 */
227 dump_mbox(adapter, "FW Timeout", mbox_data);
228 return -ETIMEDOUT;
229}
230
231/**
232 * hash_mac_addr - return the hash value of a MAC address
233 * @addr: the 48-bit Ethernet MAC address
234 *
235 * Hashes a MAC address according to the hash function used by hardware
236 * inexact (hash) address matching.
237 */
238static int hash_mac_addr(const u8 *addr)
239{
240 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
241 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
242 a ^= b;
243 a ^= (a >> 12);
244 a ^= (a >> 6);
245 return a & 0x3f;
246}
247
5ad24def
HS
248#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
249 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
250 FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)
251
16f8bd4b
CL
252/**
253 * init_link_config - initialize a link's SW state
254 * @lc: structure holding the link state
255 * @caps: link capabilities
256 *
257 * Initializes the SW state maintained for each link, including the link's
258 * capabilities and default speed/flow-control/autonegotiation settings.
259 */
1dd06ae8 260static void init_link_config(struct link_config *lc, unsigned int caps)
16f8bd4b
CL
261{
262 lc->supported = caps;
263 lc->requested_speed = 0;
264 lc->speed = 0;
265 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
5ad24def
HS
266 if (lc->supported & FW_PORT_CAP_ANEG) {
267 lc->advertising = lc->supported & ADVERT_MASK;
16f8bd4b
CL
268 lc->autoneg = AUTONEG_ENABLE;
269 lc->requested_fc |= PAUSE_AUTONEG;
270 } else {
271 lc->advertising = 0;
272 lc->autoneg = AUTONEG_DISABLE;
273 }
274}
275
276/**
277 * t4vf_port_init - initialize port hardware/software state
278 * @adapter: the adapter
279 * @pidx: the adapter port index
280 */
d289f864 281int t4vf_port_init(struct adapter *adapter, int pidx)
16f8bd4b
CL
282{
283 struct port_info *pi = adap2pinfo(adapter, pidx);
284 struct fw_vi_cmd vi_cmd, vi_rpl;
285 struct fw_port_cmd port_cmd, port_rpl;
286 int v;
16f8bd4b
CL
287
288 /*
289 * Execute a VI Read command to get our Virtual Interface information
290 * like MAC address, etc.
291 */
292 memset(&vi_cmd, 0, sizeof(vi_cmd));
e2ac9628
HS
293 vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
294 FW_CMD_REQUEST_F |
295 FW_CMD_READ_F);
16f8bd4b 296 vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
2b5fb1f2 297 vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
16f8bd4b
CL
298 v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
299 if (v)
300 return v;
301
2b5fb1f2
HS
302 BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
303 pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
16f8bd4b
CL
304 t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
305
306 /*
307 * If we don't have read access to our port information, we're done
308 * now. Otherwise, execute a PORT Read command to get it ...
309 */
310 if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
311 return 0;
312
313 memset(&port_cmd, 0, sizeof(port_cmd));
e2ac9628
HS
314 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
315 FW_CMD_REQUEST_F |
316 FW_CMD_READ_F |
2b5fb1f2 317 FW_PORT_CMD_PORTID_V(pi->port_id));
16f8bd4b 318 port_cmd.action_to_len16 =
2b5fb1f2 319 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
16f8bd4b
CL
320 FW_LEN16(port_cmd));
321 v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
322 if (v)
323 return v;
324
5ad24def
HS
325 v = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
326 pi->port_type = FW_PORT_CMD_PTYPE_G(v);
327 pi->mod_type = FW_PORT_MOD_TYPE_NA;
328
329 init_link_config(&pi->link_cfg, be16_to_cpu(port_rpl.u.info.pcap));
16f8bd4b
CL
330
331 return 0;
332}
333
e68e6133
CL
334/**
335 * t4vf_fw_reset - issue a reset to FW
336 * @adapter: the adapter
337 *
338 * Issues a reset command to FW. For a Physical Function this would
339 * result in the Firmware reseting all of its state. For a Virtual
340 * Function this just resets the state associated with the VF.
341 */
342int t4vf_fw_reset(struct adapter *adapter)
343{
344 struct fw_reset_cmd cmd;
345
346 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
347 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
348 FW_CMD_WRITE_F);
e68e6133
CL
349 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
350 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
351}
352
16f8bd4b
CL
353/**
354 * t4vf_query_params - query FW or device parameters
355 * @adapter: the adapter
356 * @nparams: the number of parameters
357 * @params: the parameter names
358 * @vals: the parameter values
359 *
360 * Reads the values of firmware or device parameters. Up to 7 parameters
361 * can be queried at once.
362 */
de5b8677 363static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
364 const u32 *params, u32 *vals)
16f8bd4b
CL
365{
366 int i, ret;
367 struct fw_params_cmd cmd, rpl;
368 struct fw_params_param *p;
369 size_t len16;
370
371 if (nparams > 7)
372 return -EINVAL;
373
374 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
375 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
376 FW_CMD_REQUEST_F |
377 FW_CMD_READ_F);
16f8bd4b
CL
378 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
379 param[nparams].mnem), 16);
e2ac9628 380 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
16f8bd4b
CL
381 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
382 p->mnem = htonl(*params++);
383
384 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
385 if (ret == 0)
386 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
387 *vals++ = be32_to_cpu(p->val);
388 return ret;
389}
390
391/**
392 * t4vf_set_params - sets FW or device parameters
393 * @adapter: the adapter
394 * @nparams: the number of parameters
395 * @params: the parameter names
396 * @vals: the parameter values
397 *
398 * Sets the values of firmware or device parameters. Up to 7 parameters
399 * can be specified at once.
400 */
401int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
402 const u32 *params, const u32 *vals)
403{
404 int i;
405 struct fw_params_cmd cmd;
406 struct fw_params_param *p;
407 size_t len16;
408
409 if (nparams > 7)
410 return -EINVAL;
411
412 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
413 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
414 FW_CMD_REQUEST_F |
415 FW_CMD_WRITE_F);
16f8bd4b
CL
416 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
417 param[nparams]), 16);
e2ac9628 418 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
16f8bd4b
CL
419 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
420 p->mnem = cpu_to_be32(*params++);
421 p->val = cpu_to_be32(*vals++);
422 }
423
424 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
425}
426
e85c9a7a
HS
427/**
428 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
429 * @adapter: the adapter
430 * @qid: the Queue ID
431 * @qtype: the Ingress or Egress type for @qid
432 * @pbar2_qoffset: BAR2 Queue Offset
433 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
434 *
435 * Returns the BAR2 SGE Queue Registers information associated with the
436 * indicated Absolute Queue ID. These are passed back in return value
437 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
438 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
439 *
440 * This may return an error which indicates that BAR2 SGE Queue
441 * registers aren't available. If an error is not returned, then the
442 * following values are returned:
443 *
444 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
445 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
446 *
447 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
448 * require the "Inferred Queue ID" ability may be used. E.g. the
449 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
450 * then these "Inferred Queue ID" register may not be used.
451 */
452int t4_bar2_sge_qregs(struct adapter *adapter,
453 unsigned int qid,
454 enum t4_bar2_qtype qtype,
455 u64 *pbar2_qoffset,
456 unsigned int *pbar2_qid)
457{
458 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
459 u64 bar2_page_offset, bar2_qoffset;
460 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
461
462 /* T4 doesn't support BAR2 SGE Queue registers.
463 */
464 if (is_t4(adapter->params.chip))
465 return -EINVAL;
466
467 /* Get our SGE Page Size parameters.
468 */
469 page_shift = adapter->params.sge.sge_vf_hps + 10;
470 page_size = 1 << page_shift;
471
472 /* Get the right Queues per Page parameters for our Queue.
473 */
474 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
475 ? adapter->params.sge.sge_vf_eq_qpp
476 : adapter->params.sge.sge_vf_iq_qpp);
477 qpp_mask = (1 << qpp_shift) - 1;
478
479 /* Calculate the basics of the BAR2 SGE Queue register area:
480 * o The BAR2 page the Queue registers will be in.
481 * o The BAR2 Queue ID.
482 * o The BAR2 Queue ID Offset into the BAR2 page.
483 */
484 bar2_page_offset = ((qid >> qpp_shift) << page_shift);
485 bar2_qid = qid & qpp_mask;
486 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
487
488 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
489 * hardware will infer the Absolute Queue ID simply from the writes to
490 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
491 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
492 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
493 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
494 * from the BAR2 Page and BAR2 Queue ID.
495 *
496 * One important censequence of this is that some BAR2 SGE registers
497 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
498 * there. But other registers synthesize the SGE Queue ID purely
499 * from the writes to the registers -- the Write Combined Doorbell
500 * Buffer is a good example. These BAR2 SGE Registers are only
501 * available for those BAR2 SGE Register areas where the SGE Absolute
502 * Queue ID can be inferred from simple writes.
503 */
504 bar2_qoffset = bar2_page_offset;
505 bar2_qinferred = (bar2_qid_offset < page_size);
506 if (bar2_qinferred) {
507 bar2_qoffset += bar2_qid_offset;
508 bar2_qid = 0;
509 }
510
511 *pbar2_qoffset = bar2_qoffset;
512 *pbar2_qid = bar2_qid;
513 return 0;
514}
515
16f8bd4b
CL
516/**
517 * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
518 * @adapter: the adapter
519 *
520 * Retrieves various core SGE parameters in the form of hardware SGE
521 * register values. The caller is responsible for decoding these as
522 * needed. The SGE parameters are stored in @adapter->params.sge.
523 */
524int t4vf_get_sge_params(struct adapter *adapter)
525{
526 struct sge_params *sge_params = &adapter->params.sge;
527 u32 params[7], vals[7];
528 int v;
529
5167865a
HS
530 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
531 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL));
532 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
533 FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE));
534 params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
535 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0));
536 params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
537 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1));
538 params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
539 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1));
540 params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
541 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3));
542 params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
543 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5));
16f8bd4b
CL
544 v = t4vf_query_params(adapter, 7, params, vals);
545 if (v)
546 return v;
547 sge_params->sge_control = vals[0];
548 sge_params->sge_host_page_size = vals[1];
549 sge_params->sge_fl_buffer_size[0] = vals[2];
550 sge_params->sge_fl_buffer_size[1] = vals[3];
551 sge_params->sge_timer_value_0_and_1 = vals[4];
552 sge_params->sge_timer_value_2_and_3 = vals[5];
553 sge_params->sge_timer_value_4_and_5 = vals[6];
554
ce8f407a
HS
555 /* T4 uses a single control field to specify both the PCIe Padding and
556 * Packing Boundary. T5 introduced the ability to specify these
557 * separately with the Padding Boundary in SGE_CONTROL and and Packing
558 * Boundary in SGE_CONTROL2. So for T5 and later we need to grab
559 * SGE_CONTROL in order to determine how ingress packet data will be
560 * laid out in Packed Buffer Mode. Unfortunately, older versions of
561 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
562 * failure grabbing it we throw an error since we can't figure out the
563 * right value.
564 */
565 if (!is_t4(adapter->params.chip)) {
5167865a
HS
566 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
567 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
ce8f407a
HS
568 v = t4vf_query_params(adapter, 1, params, vals);
569 if (v != FW_SUCCESS) {
570 dev_err(adapter->pdev_dev,
571 "Unable to get SGE Control2; "
572 "probably old firmware.\n");
573 return v;
574 }
575 sge_params->sge_control2 = vals[0];
576 }
577
5167865a
HS
578 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
579 FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD));
580 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
581 FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL));
50d21a66 582 v = t4vf_query_params(adapter, 2, params, vals);
16f8bd4b
CL
583 if (v)
584 return v;
585 sge_params->sge_ingress_rx_threshold = vals[0];
50d21a66 586 sge_params->sge_congestion_control = vals[1];
16f8bd4b 587
e0a8b34a
HS
588 /* For T5 and later we want to use the new BAR2 Doorbells.
589 * Unfortunately, older firmware didn't allow the this register to be
590 * read.
591 */
592 if (!is_t4(adapter->params.chip)) {
593 u32 whoami;
e85c9a7a 594 unsigned int pf, s_hps, s_qpp;
e0a8b34a
HS
595
596 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
597 FW_PARAMS_PARAM_XYZ_V(
598 SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
599 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
600 FW_PARAMS_PARAM_XYZ_V(
601 SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
602 v = t4vf_query_params(adapter, 2, params, vals);
603 if (v != FW_SUCCESS) {
604 dev_warn(adapter->pdev_dev,
605 "Unable to get VF SGE Queues/Page; "
606 "probably old firmware.\n");
607 return v;
608 }
609 sge_params->sge_egress_queues_per_page = vals[0];
610 sge_params->sge_ingress_queues_per_page = vals[1];
611
612 /* We need the Queues/Page for our VF. This is based on the
613 * PF from which we're instantiated and is indexed in the
614 * register we just read. Do it once here so other code in
615 * the driver can just use it.
616 */
617 whoami = t4_read_reg(adapter,
618 T4VF_PL_BASE_ADDR + A_PL_VF_WHOAMI);
619 pf = SOURCEPF_GET(whoami);
e85c9a7a
HS
620
621 s_hps = (HOSTPAGESIZEPF0_S +
622 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
623 sge_params->sge_vf_hps =
624 ((sge_params->sge_host_page_size >> s_hps)
625 & HOSTPAGESIZEPF0_M);
626
e0a8b34a
HS
627 s_qpp = (QUEUESPERPAGEPF0_S +
628 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
629 sge_params->sge_vf_eq_qpp =
630 ((sge_params->sge_egress_queues_per_page >> s_qpp)
631 & QUEUESPERPAGEPF0_MASK);
632 sge_params->sge_vf_iq_qpp =
633 ((sge_params->sge_ingress_queues_per_page >> s_qpp)
634 & QUEUESPERPAGEPF0_MASK);
635 }
636
16f8bd4b
CL
637 return 0;
638}
639
640/**
641 * t4vf_get_vpd_params - retrieve device VPD paremeters
642 * @adapter: the adapter
643 *
644 * Retrives various device Vital Product Data parameters. The parameters
645 * are stored in @adapter->params.vpd.
646 */
647int t4vf_get_vpd_params(struct adapter *adapter)
648{
649 struct vpd_params *vpd_params = &adapter->params.vpd;
650 u32 params[7], vals[7];
651 int v;
652
5167865a
HS
653 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
654 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
16f8bd4b
CL
655 v = t4vf_query_params(adapter, 1, params, vals);
656 if (v)
657 return v;
658 vpd_params->cclk = vals[0];
659
660 return 0;
661}
662
663/**
664 * t4vf_get_dev_params - retrieve device paremeters
665 * @adapter: the adapter
666 *
667 * Retrives various device parameters. The parameters are stored in
668 * @adapter->params.dev.
669 */
670int t4vf_get_dev_params(struct adapter *adapter)
671{
672 struct dev_params *dev_params = &adapter->params.dev;
673 u32 params[7], vals[7];
674 int v;
675
5167865a
HS
676 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
677 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
678 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
679 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
16f8bd4b
CL
680 v = t4vf_query_params(adapter, 2, params, vals);
681 if (v)
682 return v;
683 dev_params->fwrev = vals[0];
684 dev_params->tprev = vals[1];
685
686 return 0;
687}
688
689/**
690 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
691 * @adapter: the adapter
692 *
693 * Retrieves global RSS mode and parameters with which we have to live
694 * and stores them in the @adapter's RSS parameters.
695 */
696int t4vf_get_rss_glb_config(struct adapter *adapter)
697{
698 struct rss_params *rss = &adapter->params.rss;
699 struct fw_rss_glb_config_cmd cmd, rpl;
700 int v;
701
702 /*
703 * Execute an RSS Global Configuration read command to retrieve
704 * our RSS configuration.
705 */
706 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
707 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
708 FW_CMD_REQUEST_F |
709 FW_CMD_READ_F);
16f8bd4b
CL
710 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
711 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
712 if (v)
713 return v;
714
715 /*
716 * Transate the big-endian RSS Global Configuration into our
717 * cpu-endian format based on the RSS mode. We also do first level
718 * filtering at this point to weed out modes which don't support
719 * VF Drivers ...
720 */
b2e1a3f0 721 rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
16f8bd4b
CL
722 be32_to_cpu(rpl.u.manual.mode_pkd));
723 switch (rss->mode) {
724 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
725 u32 word = be32_to_cpu(
726 rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
727
728 rss->u.basicvirtual.synmapen =
b2e1a3f0 729 ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
16f8bd4b 730 rss->u.basicvirtual.syn4tupenipv6 =
b2e1a3f0 731 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
16f8bd4b 732 rss->u.basicvirtual.syn2tupenipv6 =
b2e1a3f0 733 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
16f8bd4b 734 rss->u.basicvirtual.syn4tupenipv4 =
b2e1a3f0 735 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
16f8bd4b 736 rss->u.basicvirtual.syn2tupenipv4 =
b2e1a3f0 737 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
16f8bd4b
CL
738
739 rss->u.basicvirtual.ofdmapen =
b2e1a3f0 740 ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
16f8bd4b
CL
741
742 rss->u.basicvirtual.tnlmapen =
b2e1a3f0 743 ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
16f8bd4b 744 rss->u.basicvirtual.tnlalllookup =
b2e1a3f0 745 ((word & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
16f8bd4b
CL
746
747 rss->u.basicvirtual.hashtoeplitz =
b2e1a3f0 748 ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
16f8bd4b
CL
749
750 /* we need at least Tunnel Map Enable to be set */
751 if (!rss->u.basicvirtual.tnlmapen)
752 return -EINVAL;
753 break;
754 }
755
756 default:
757 /* all unknown/unsupported RSS modes result in an error */
758 return -EINVAL;
759 }
760
761 return 0;
762}
763
764/**
765 * t4vf_get_vfres - retrieve VF resource limits
766 * @adapter: the adapter
767 *
768 * Retrieves configured resource limits and capabilities for a virtual
769 * function. The results are stored in @adapter->vfres.
770 */
771int t4vf_get_vfres(struct adapter *adapter)
772{
773 struct vf_resources *vfres = &adapter->params.vfres;
774 struct fw_pfvf_cmd cmd, rpl;
775 int v;
776 u32 word;
777
778 /*
779 * Execute PFVF Read command to get VF resource limits; bail out early
780 * with error on command failure.
781 */
782 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
783 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
784 FW_CMD_REQUEST_F |
785 FW_CMD_READ_F);
16f8bd4b
CL
786 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
787 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
788 if (v)
789 return v;
790
791 /*
792 * Extract VF resource limits and return success.
793 */
794 word = be32_to_cpu(rpl.niqflint_niq);
5167865a
HS
795 vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
796 vfres->niq = FW_PFVF_CMD_NIQ_G(word);
16f8bd4b
CL
797
798 word = be32_to_cpu(rpl.type_to_neq);
5167865a
HS
799 vfres->neq = FW_PFVF_CMD_NEQ_G(word);
800 vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
16f8bd4b
CL
801
802 word = be32_to_cpu(rpl.tc_to_nexactf);
5167865a
HS
803 vfres->tc = FW_PFVF_CMD_TC_G(word);
804 vfres->nvi = FW_PFVF_CMD_NVI_G(word);
805 vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
16f8bd4b
CL
806
807 word = be32_to_cpu(rpl.r_caps_to_nethctrl);
5167865a
HS
808 vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
809 vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
810 vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
16f8bd4b
CL
811
812 return 0;
813}
814
815/**
816 * t4vf_read_rss_vi_config - read a VI's RSS configuration
817 * @adapter: the adapter
818 * @viid: Virtual Interface ID
819 * @config: pointer to host-native VI RSS Configuration buffer
820 *
821 * Reads the Virtual Interface's RSS configuration information and
822 * translates it into CPU-native format.
823 */
824int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
825 union rss_vi_config *config)
826{
827 struct fw_rss_vi_config_cmd cmd, rpl;
828 int v;
829
830 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
831 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
832 FW_CMD_REQUEST_F |
833 FW_CMD_READ_F |
16f8bd4b
CL
834 FW_RSS_VI_CONFIG_CMD_VIID(viid));
835 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
836 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
837 if (v)
838 return v;
839
840 switch (adapter->params.rss.mode) {
841 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
842 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
843
844 config->basicvirtual.ip6fourtupen =
b2e1a3f0 845 ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
16f8bd4b 846 config->basicvirtual.ip6twotupen =
b2e1a3f0 847 ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
16f8bd4b 848 config->basicvirtual.ip4fourtupen =
b2e1a3f0 849 ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
16f8bd4b 850 config->basicvirtual.ip4twotupen =
b2e1a3f0 851 ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
16f8bd4b 852 config->basicvirtual.udpen =
b2e1a3f0 853 ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
16f8bd4b 854 config->basicvirtual.defaultq =
b2e1a3f0 855 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
16f8bd4b
CL
856 break;
857 }
858
859 default:
860 return -EINVAL;
861 }
862
863 return 0;
864}
865
866/**
867 * t4vf_write_rss_vi_config - write a VI's RSS configuration
868 * @adapter: the adapter
869 * @viid: Virtual Interface ID
870 * @config: pointer to host-native VI RSS Configuration buffer
871 *
872 * Write the Virtual Interface's RSS configuration information
873 * (translating it into firmware-native format before writing).
874 */
875int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
876 union rss_vi_config *config)
877{
878 struct fw_rss_vi_config_cmd cmd, rpl;
879
880 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
881 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
882 FW_CMD_REQUEST_F |
883 FW_CMD_WRITE_F |
16f8bd4b
CL
884 FW_RSS_VI_CONFIG_CMD_VIID(viid));
885 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
886 switch (adapter->params.rss.mode) {
887 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
888 u32 word = 0;
889
890 if (config->basicvirtual.ip6fourtupen)
b2e1a3f0 891 word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
16f8bd4b 892 if (config->basicvirtual.ip6twotupen)
b2e1a3f0 893 word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
16f8bd4b 894 if (config->basicvirtual.ip4fourtupen)
b2e1a3f0 895 word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
16f8bd4b 896 if (config->basicvirtual.ip4twotupen)
b2e1a3f0 897 word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
16f8bd4b 898 if (config->basicvirtual.udpen)
b2e1a3f0
HS
899 word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
900 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
16f8bd4b
CL
901 config->basicvirtual.defaultq);
902 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
903 break;
904 }
905
906 default:
907 return -EINVAL;
908 }
909
910 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
911}
912
913/**
914 * t4vf_config_rss_range - configure a portion of the RSS mapping table
915 * @adapter: the adapter
916 * @viid: Virtual Interface of RSS Table Slice
917 * @start: starting entry in the table to write
918 * @n: how many table entries to write
919 * @rspq: values for the "Response Queue" (Ingress Queue) lookup table
920 * @nrspq: number of values in @rspq
921 *
922 * Programs the selected part of the VI's RSS mapping table with the
923 * provided values. If @nrspq < @n the supplied values are used repeatedly
924 * until the full table range is populated.
925 *
926 * The caller must ensure the values in @rspq are in the range 0..1023.
927 */
928int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
929 int start, int n, const u16 *rspq, int nrspq)
930{
931 const u16 *rsp = rspq;
932 const u16 *rsp_end = rspq+nrspq;
933 struct fw_rss_ind_tbl_cmd cmd;
934
935 /*
936 * Initialize firmware command template to write the RSS table.
937 */
938 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
939 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
940 FW_CMD_REQUEST_F |
941 FW_CMD_WRITE_F |
b2e1a3f0 942 FW_RSS_IND_TBL_CMD_VIID_V(viid));
16f8bd4b
CL
943 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
944
945 /*
946 * Each firmware RSS command can accommodate up to 32 RSS Ingress
947 * Queue Identifiers. These Ingress Queue IDs are packed three to
948 * a 32-bit word as 10-bit values with the upper remaining 2 bits
949 * reserved.
950 */
951 while (n > 0) {
952 __be32 *qp = &cmd.iq0_to_iq2;
953 int nq = min(n, 32);
954 int ret;
955
956 /*
957 * Set up the firmware RSS command header to send the next
958 * "nq" Ingress Queue IDs to the firmware.
959 */
960 cmd.niqid = cpu_to_be16(nq);
961 cmd.startidx = cpu_to_be16(start);
962
963 /*
964 * "nq" more done for the start of the next loop.
965 */
966 start += nq;
967 n -= nq;
968
969 /*
970 * While there are still Ingress Queue IDs to stuff into the
971 * current firmware RSS command, retrieve them from the
972 * Ingress Queue ID array and insert them into the command.
973 */
974 while (nq > 0) {
975 /*
976 * Grab up to the next 3 Ingress Queue IDs (wrapping
977 * around the Ingress Queue ID array if necessary) and
978 * insert them into the firmware RSS command at the
979 * current 3-tuple position within the commad.
980 */
981 u16 qbuf[3];
982 u16 *qbp = qbuf;
983 int nqbuf = min(3, nq);
984
985 nq -= nqbuf;
986 qbuf[0] = qbuf[1] = qbuf[2] = 0;
987 while (nqbuf) {
988 nqbuf--;
989 *qbp++ = *rsp++;
990 if (rsp >= rsp_end)
991 rsp = rspq;
992 }
b2e1a3f0
HS
993 *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
994 FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
995 FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
16f8bd4b
CL
996 }
997
998 /*
999 * Send this portion of the RRS table update to the firmware;
1000 * bail out on any errors.
1001 */
1002 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1003 if (ret)
1004 return ret;
1005 }
1006 return 0;
1007}
1008
1009/**
1010 * t4vf_alloc_vi - allocate a virtual interface on a port
1011 * @adapter: the adapter
1012 * @port_id: physical port associated with the VI
1013 *
1014 * Allocate a new Virtual Interface and bind it to the indicated
1015 * physical port. Return the new Virtual Interface Identifier on
1016 * success, or a [negative] error number on failure.
1017 */
1018int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1019{
1020 struct fw_vi_cmd cmd, rpl;
1021 int v;
1022
1023 /*
1024 * Execute a VI command to allocate Virtual Interface and return its
1025 * VIID.
1026 */
1027 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1028 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1029 FW_CMD_REQUEST_F |
1030 FW_CMD_WRITE_F |
1031 FW_CMD_EXEC_F);
16f8bd4b 1032 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
2b5fb1f2
HS
1033 FW_VI_CMD_ALLOC_F);
1034 cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
16f8bd4b
CL
1035 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1036 if (v)
1037 return v;
1038
2b5fb1f2 1039 return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
16f8bd4b
CL
1040}
1041
1042/**
1043 * t4vf_free_vi -- free a virtual interface
1044 * @adapter: the adapter
1045 * @viid: the virtual interface identifier
1046 *
1047 * Free a previously allocated Virtual Interface. Return an error on
1048 * failure.
1049 */
1050int t4vf_free_vi(struct adapter *adapter, int viid)
1051{
1052 struct fw_vi_cmd cmd;
1053
1054 /*
1055 * Execute a VI command to free the Virtual Interface.
1056 */
1057 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1058 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1059 FW_CMD_REQUEST_F |
1060 FW_CMD_EXEC_F);
16f8bd4b 1061 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
2b5fb1f2
HS
1062 FW_VI_CMD_FREE_F);
1063 cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
16f8bd4b
CL
1064 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1065}
1066
1067/**
1068 * t4vf_enable_vi - enable/disable a virtual interface
1069 * @adapter: the adapter
1070 * @viid: the Virtual Interface ID
1071 * @rx_en: 1=enable Rx, 0=disable Rx
1072 * @tx_en: 1=enable Tx, 0=disable Tx
1073 *
1074 * Enables/disables a virtual interface.
1075 */
1076int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1077 bool rx_en, bool tx_en)
1078{
1079 struct fw_vi_enable_cmd cmd;
1080
1081 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1082 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1083 FW_CMD_REQUEST_F |
1084 FW_CMD_EXEC_F |
2b5fb1f2
HS
1085 FW_VI_ENABLE_CMD_VIID_V(viid));
1086 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1087 FW_VI_ENABLE_CMD_EEN_V(tx_en) |
16f8bd4b
CL
1088 FW_LEN16(cmd));
1089 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1090}
1091
1092/**
1093 * t4vf_identify_port - identify a VI's port by blinking its LED
1094 * @adapter: the adapter
1095 * @viid: the Virtual Interface ID
1096 * @nblinks: how many times to blink LED at 2.5 Hz
1097 *
1098 * Identifies a VI's port by blinking its LED.
1099 */
1100int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1101 unsigned int nblinks)
1102{
1103 struct fw_vi_enable_cmd cmd;
1104
1105 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1106 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1107 FW_CMD_REQUEST_F |
1108 FW_CMD_EXEC_F |
2b5fb1f2
HS
1109 FW_VI_ENABLE_CMD_VIID_V(viid));
1110 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
16f8bd4b
CL
1111 FW_LEN16(cmd));
1112 cmd.blinkdur = cpu_to_be16(nblinks);
1113 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1114}
1115
1116/**
1117 * t4vf_set_rxmode - set Rx properties of a virtual interface
1118 * @adapter: the adapter
1119 * @viid: the VI id
1120 * @mtu: the new MTU or -1 for no change
1121 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1122 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1123 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1124 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1125 * -1 no change
1126 *
1127 * Sets Rx properties of a virtual interface.
1128 */
1129int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1130 int mtu, int promisc, int all_multi, int bcast, int vlanex,
1131 bool sleep_ok)
1132{
1133 struct fw_vi_rxmode_cmd cmd;
1134
1135 /* convert to FW values */
1136 if (mtu < 0)
2b5fb1f2 1137 mtu = FW_VI_RXMODE_CMD_MTU_M;
16f8bd4b 1138 if (promisc < 0)
2b5fb1f2 1139 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
16f8bd4b 1140 if (all_multi < 0)
2b5fb1f2 1141 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
16f8bd4b 1142 if (bcast < 0)
2b5fb1f2 1143 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
16f8bd4b 1144 if (vlanex < 0)
2b5fb1f2 1145 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
16f8bd4b
CL
1146
1147 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1148 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1149 FW_CMD_REQUEST_F |
1150 FW_CMD_WRITE_F |
2b5fb1f2 1151 FW_VI_RXMODE_CMD_VIID_V(viid));
16f8bd4b
CL
1152 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1153 cmd.mtu_to_vlanexen =
2b5fb1f2
HS
1154 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1155 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1156 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1157 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1158 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
16f8bd4b
CL
1159 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1160}
1161
1162/**
1163 * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1164 * @adapter: the adapter
1165 * @viid: the Virtual Interface Identifier
1166 * @free: if true any existing filters for this VI id are first removed
1167 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
1168 * @addr: the MAC address(es)
1169 * @idx: where to store the index of each allocated filter
1170 * @hash: pointer to hash address filter bitmap
1171 * @sleep_ok: call is allowed to sleep
1172 *
1173 * Allocates an exact-match filter for each of the supplied addresses and
1174 * sets it to the corresponding address. If @idx is not %NULL it should
1175 * have at least @naddr entries, each of which will be set to the index of
1176 * the filter allocated for the corresponding MAC address. If a filter
1177 * could not be allocated for an address its index is set to 0xffff.
1178 * If @hash is not %NULL addresses that fail to allocate an exact filter
1179 * are hashed and update the hash filter bitmap pointed at by @hash.
1180 *
1181 * Returns a negative error number or the number of filters allocated.
1182 */
1183int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1184 unsigned int naddr, const u8 **addr, u16 *idx,
1185 u64 *hash, bool sleep_ok)
1186{
42eb59d3
CL
1187 int offset, ret = 0;
1188 unsigned nfilters = 0;
1189 unsigned int rem = naddr;
16f8bd4b 1190 struct fw_vi_mac_cmd cmd, rpl;
70ee3666 1191 unsigned int max_naddr = is_t4(adapter->params.chip) ?
622c62b5
SR
1192 NUM_MPS_CLS_SRAM_L_INSTANCES :
1193 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
16f8bd4b 1194
622c62b5 1195 if (naddr > max_naddr)
16f8bd4b 1196 return -EINVAL;
16f8bd4b 1197
42eb59d3
CL
1198 for (offset = 0; offset < naddr; /**/) {
1199 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1200 ? rem
1201 : ARRAY_SIZE(cmd.u.exact));
1202 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1203 u.exact[fw_naddr]), 16);
1204 struct fw_vi_mac_exact *p;
1205 int i;
1206
1207 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1208 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1209 FW_CMD_REQUEST_F |
1210 FW_CMD_WRITE_F |
1211 (free ? FW_CMD_EXEC_F : 0) |
2b5fb1f2 1212 FW_VI_MAC_CMD_VIID_V(viid));
42eb59d3 1213 cmd.freemacs_to_len16 =
2b5fb1f2 1214 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
e2ac9628 1215 FW_CMD_LEN16_V(len16));
42eb59d3
CL
1216
1217 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1218 p->valid_to_idx = cpu_to_be16(
2b5fb1f2
HS
1219 FW_VI_MAC_CMD_VALID_F |
1220 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
42eb59d3
CL
1221 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1222 }
16f8bd4b 1223
42eb59d3
CL
1224
1225 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1226 sleep_ok);
1227 if (ret && ret != -ENOMEM)
1228 break;
1229
1230 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
2b5fb1f2 1231 u16 index = FW_VI_MAC_CMD_IDX_G(
42eb59d3
CL
1232 be16_to_cpu(p->valid_to_idx));
1233
1234 if (idx)
1235 idx[offset+i] =
622c62b5 1236 (index >= max_naddr
42eb59d3
CL
1237 ? 0xffff
1238 : index);
622c62b5 1239 if (index < max_naddr)
42eb59d3
CL
1240 nfilters++;
1241 else if (hash)
1242 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1243 }
1244
1245 free = false;
1246 offset += fw_naddr;
1247 rem -= fw_naddr;
16f8bd4b 1248 }
42eb59d3
CL
1249
1250 /*
1251 * If there were no errors or we merely ran out of room in our MAC
1252 * address arena, return the number of filters actually written.
1253 */
1254 if (ret == 0 || ret == -ENOMEM)
1255 ret = nfilters;
16f8bd4b
CL
1256 return ret;
1257}
1258
1259/**
1260 * t4vf_change_mac - modifies the exact-match filter for a MAC address
1261 * @adapter: the adapter
1262 * @viid: the Virtual Interface ID
1263 * @idx: index of existing filter for old value of MAC address, or -1
1264 * @addr: the new MAC address value
1265 * @persist: if idx < 0, the new MAC allocation should be persistent
1266 *
1267 * Modifies an exact-match filter and sets it to the new MAC address.
1268 * Note that in general it is not possible to modify the value of a given
1269 * filter so the generic way to modify an address filter is to free the
1270 * one being used by the old address value and allocate a new filter for
1271 * the new address value. @idx can be -1 if the address is a new
1272 * addition.
1273 *
1274 * Returns a negative error number or the index of the filter with the new
1275 * MAC value.
1276 */
1277int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1278 int idx, const u8 *addr, bool persist)
1279{
1280 int ret;
1281 struct fw_vi_mac_cmd cmd, rpl;
1282 struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1283 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1284 u.exact[1]), 16);
70ee3666 1285 unsigned int max_naddr = is_t4(adapter->params.chip) ?
622c62b5
SR
1286 NUM_MPS_CLS_SRAM_L_INSTANCES :
1287 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
16f8bd4b
CL
1288
1289 /*
1290 * If this is a new allocation, determine whether it should be
1291 * persistent (across a "freemacs" operation) or not.
1292 */
1293 if (idx < 0)
1294 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1295
1296 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1297 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1298 FW_CMD_REQUEST_F |
1299 FW_CMD_WRITE_F |
2b5fb1f2 1300 FW_VI_MAC_CMD_VIID_V(viid));
e2ac9628 1301 cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
2b5fb1f2
HS
1302 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1303 FW_VI_MAC_CMD_IDX_V(idx));
16f8bd4b
CL
1304 memcpy(p->macaddr, addr, sizeof(p->macaddr));
1305
1306 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1307 if (ret == 0) {
1308 p = &rpl.u.exact[0];
2b5fb1f2 1309 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
622c62b5 1310 if (ret >= max_naddr)
16f8bd4b
CL
1311 ret = -ENOMEM;
1312 }
1313 return ret;
1314}
1315
1316/**
1317 * t4vf_set_addr_hash - program the MAC inexact-match hash filter
1318 * @adapter: the adapter
1319 * @viid: the Virtual Interface Identifier
1320 * @ucast: whether the hash filter should also match unicast addresses
1321 * @vec: the value to be written to the hash filter
1322 * @sleep_ok: call is allowed to sleep
1323 *
1324 * Sets the 64-bit inexact-match hash filter for a virtual interface.
1325 */
1326int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1327 bool ucast, u64 vec, bool sleep_ok)
1328{
1329 struct fw_vi_mac_cmd cmd;
1330 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1331 u.exact[0]), 16);
1332
1333 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1334 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1335 FW_CMD_REQUEST_F |
1336 FW_CMD_WRITE_F |
2b5fb1f2
HS
1337 FW_VI_ENABLE_CMD_VIID_V(viid));
1338 cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1339 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
e2ac9628 1340 FW_CMD_LEN16_V(len16));
16f8bd4b
CL
1341 cmd.u.hash.hashvec = cpu_to_be64(vec);
1342 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1343}
1344
1345/**
1346 * t4vf_get_port_stats - collect "port" statistics
1347 * @adapter: the adapter
1348 * @pidx: the port index
1349 * @s: the stats structure to fill
1350 *
1351 * Collect statistics for the "port"'s Virtual Interface.
1352 */
1353int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1354 struct t4vf_port_stats *s)
1355{
1356 struct port_info *pi = adap2pinfo(adapter, pidx);
1357 struct fw_vi_stats_vf fwstats;
1358 unsigned int rem = VI_VF_NUM_STATS;
1359 __be64 *fwsp = (__be64 *)&fwstats;
1360
1361 /*
1362 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1363 * commands. We could use a Work Request and get all of them at once
1364 * but that's an asynchronous interface which is awkward to use.
1365 */
1366 while (rem) {
1367 unsigned int ix = VI_VF_NUM_STATS - rem;
1368 unsigned int nstats = min(6U, rem);
1369 struct fw_vi_stats_cmd cmd, rpl;
1370 size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1371 sizeof(struct fw_vi_stats_ctl));
1372 size_t len16 = DIV_ROUND_UP(len, 16);
1373 int ret;
1374
1375 memset(&cmd, 0, sizeof(cmd));
e2ac9628 1376 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
2b5fb1f2 1377 FW_VI_STATS_CMD_VIID_V(pi->viid) |
e2ac9628
HS
1378 FW_CMD_REQUEST_F |
1379 FW_CMD_READ_F);
1380 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
16f8bd4b 1381 cmd.u.ctl.nstats_ix =
2b5fb1f2
HS
1382 cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1383 FW_VI_STATS_CMD_NSTATS_V(nstats));
16f8bd4b
CL
1384 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1385 if (ret)
1386 return ret;
1387
1388 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1389
1390 rem -= nstats;
1391 fwsp += nstats;
1392 }
1393
1394 /*
1395 * Translate firmware statistics into host native statistics.
1396 */
1397 s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1398 s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1399 s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1400 s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1401 s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1402 s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1403 s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1404 s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1405 s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1406
1407 s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1408 s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1409 s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1410 s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1411 s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1412 s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1413
1414 s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1415
1416 return 0;
1417}
1418
1419/**
1420 * t4vf_iq_free - free an ingress queue and its free lists
1421 * @adapter: the adapter
1422 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1423 * @iqid: ingress queue ID
1424 * @fl0id: FL0 queue ID or 0xffff if no attached FL0
1425 * @fl1id: FL1 queue ID or 0xffff if no attached FL1
1426 *
1427 * Frees an ingress queue and its associated free lists, if any.
1428 */
1429int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1430 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1431{
1432 struct fw_iq_cmd cmd;
1433
1434 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1435 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1436 FW_CMD_REQUEST_F |
1437 FW_CMD_EXEC_F);
6e4b51a6 1438 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
16f8bd4b
CL
1439 FW_LEN16(cmd));
1440 cmd.type_to_iqandstindex =
6e4b51a6 1441 cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
16f8bd4b
CL
1442
1443 cmd.iqid = cpu_to_be16(iqid);
1444 cmd.fl0id = cpu_to_be16(fl0id);
1445 cmd.fl1id = cpu_to_be16(fl1id);
1446 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1447}
1448
1449/**
1450 * t4vf_eth_eq_free - free an Ethernet egress queue
1451 * @adapter: the adapter
1452 * @eqid: egress queue ID
1453 *
1454 * Frees an Ethernet egress queue.
1455 */
1456int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1457{
1458 struct fw_eq_eth_cmd cmd;
1459
1460 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1461 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1462 FW_CMD_REQUEST_F |
1463 FW_CMD_EXEC_F);
6e4b51a6 1464 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
16f8bd4b 1465 FW_LEN16(cmd));
6e4b51a6 1466 cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
16f8bd4b
CL
1467 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1468}
1469
1470/**
1471 * t4vf_handle_fw_rpl - process a firmware reply message
1472 * @adapter: the adapter
1473 * @rpl: start of the firmware message
1474 *
1475 * Processes a firmware message, such as link state change messages.
1476 */
1477int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
1478{
caedda35 1479 const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
e2ac9628 1480 u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
16f8bd4b
CL
1481
1482 switch (opcode) {
1483 case FW_PORT_CMD: {
1484 /*
1485 * Link/module state change message.
1486 */
caedda35
CL
1487 const struct fw_port_cmd *port_cmd =
1488 (const struct fw_port_cmd *)rpl;
5ad24def 1489 u32 stat, mod;
16f8bd4b
CL
1490 int action, port_id, link_ok, speed, fc, pidx;
1491
1492 /*
1493 * Extract various fields from port status change message.
1494 */
2b5fb1f2 1495 action = FW_PORT_CMD_ACTION_G(
16f8bd4b
CL
1496 be32_to_cpu(port_cmd->action_to_len16));
1497 if (action != FW_PORT_ACTION_GET_PORT_INFO) {
1498 dev_err(adapter->pdev_dev,
1499 "Unknown firmware PORT reply action %x\n",
1500 action);
1501 break;
1502 }
1503
2b5fb1f2 1504 port_id = FW_PORT_CMD_PORTID_G(
16f8bd4b
CL
1505 be32_to_cpu(port_cmd->op_to_portid));
1506
5ad24def
HS
1507 stat = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
1508 link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
16f8bd4b
CL
1509 speed = 0;
1510 fc = 0;
5ad24def 1511 if (stat & FW_PORT_CMD_RXPAUSE_F)
16f8bd4b 1512 fc |= PAUSE_RX;
5ad24def 1513 if (stat & FW_PORT_CMD_TXPAUSE_F)
16f8bd4b 1514 fc |= PAUSE_TX;
5ad24def 1515 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
897d55df 1516 speed = 100;
5ad24def 1517 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
897d55df 1518 speed = 1000;
5ad24def 1519 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
897d55df 1520 speed = 10000;
5ad24def 1521 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
897d55df 1522 speed = 40000;
16f8bd4b
CL
1523
1524 /*
1525 * Scan all of our "ports" (Virtual Interfaces) looking for
1526 * those bound to the physical port which has changed. If
1527 * our recorded state doesn't match the current state,
1528 * signal that change to the OS code.
1529 */
1530 for_each_port(adapter, pidx) {
1531 struct port_info *pi = adap2pinfo(adapter, pidx);
1532 struct link_config *lc;
1533
1534 if (pi->port_id != port_id)
1535 continue;
1536
1537 lc = &pi->link_cfg;
5ad24def
HS
1538
1539 mod = FW_PORT_CMD_MODTYPE_G(stat);
1540 if (mod != pi->mod_type) {
1541 pi->mod_type = mod;
1542 t4vf_os_portmod_changed(adapter, pidx);
1543 }
1544
16f8bd4b
CL
1545 if (link_ok != lc->link_ok || speed != lc->speed ||
1546 fc != lc->fc) {
1547 /* something changed */
1548 lc->link_ok = link_ok;
1549 lc->speed = speed;
1550 lc->fc = fc;
5ad24def
HS
1551 lc->supported =
1552 be16_to_cpu(port_cmd->u.info.pcap);
16f8bd4b
CL
1553 t4vf_os_link_changed(adapter, pidx, link_ok);
1554 }
1555 }
1556 break;
1557 }
1558
1559 default:
1560 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
1561 opcode);
1562 }
1563 return 0;
1564}
e0a8b34a
HS
1565
1566/**
1567 */
1568int t4vf_prep_adapter(struct adapter *adapter)
1569{
1570 int err;
1571 unsigned int chipid;
1572
1573 /* Wait for the device to become ready before proceeding ...
1574 */
1575 err = t4vf_wait_dev_ready(adapter);
1576 if (err)
1577 return err;
1578
1579 /* Default port and clock for debugging in case we can't reach
1580 * firmware.
1581 */
1582 adapter->params.nports = 1;
1583 adapter->params.vfres.pmask = 1;
1584 adapter->params.vpd.cclk = 50000;
1585
1586 adapter->params.chip = 0;
1587 switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
1588 case CHELSIO_T4:
1589 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
1590 break;
1591
1592 case CHELSIO_T5:
1593 chipid = G_REV(t4_read_reg(adapter, A_PL_VF_REV));
1594 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
1595 break;
1596 }
1597
1598 return 0;
1599}
This page took 0.43106 seconds and 5 git commands to generate.