cxgb4: Use __dev_uc_sync/__dev_mc_sync to sync MAC address
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb4vf / t4vf_hw.c
CommitLineData
16f8bd4b
CL
1/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
16f8bd4b
CL
36#include <linux/pci.h>
37
38#include "t4vf_common.h"
39#include "t4vf_defs.h"
40
41#include "../cxgb4/t4_regs.h"
f612b815 42#include "../cxgb4/t4_values.h"
16f8bd4b
CL
43#include "../cxgb4/t4fw_api.h"
44
45/*
46 * Wait for the device to become ready (signified by our "who am I" register
47 * returning a value other than all 1's). Return an error if it doesn't
48 * become ready ...
49 */
d289f864 50int t4vf_wait_dev_ready(struct adapter *adapter)
16f8bd4b
CL
51{
52 const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
53 const u32 notready1 = 0xffffffff;
54 const u32 notready2 = 0xeeeeeeee;
55 u32 val;
56
57 val = t4_read_reg(adapter, whoami);
58 if (val != notready1 && val != notready2)
59 return 0;
60 msleep(500);
61 val = t4_read_reg(adapter, whoami);
62 if (val != notready1 && val != notready2)
63 return 0;
64 else
65 return -EIO;
66}
67
68/*
69 * Get the reply to a mailbox command and store it in @rpl in big-endian order
70 * (since the firmware data structures are specified in a big-endian layout).
71 */
72static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
73 u32 mbox_data)
74{
75 for ( ; size; size -= 8, mbox_data += 8)
76 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
77}
78
79/*
80 * Dump contents of mailbox with a leading tag.
81 */
82static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data)
83{
84 dev_err(adapter->pdev_dev,
85 "mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag,
86 (unsigned long long)t4_read_reg64(adapter, mbox_data + 0),
87 (unsigned long long)t4_read_reg64(adapter, mbox_data + 8),
88 (unsigned long long)t4_read_reg64(adapter, mbox_data + 16),
89 (unsigned long long)t4_read_reg64(adapter, mbox_data + 24),
90 (unsigned long long)t4_read_reg64(adapter, mbox_data + 32),
91 (unsigned long long)t4_read_reg64(adapter, mbox_data + 40),
92 (unsigned long long)t4_read_reg64(adapter, mbox_data + 48),
93 (unsigned long long)t4_read_reg64(adapter, mbox_data + 56));
94}
95
96/**
97 * t4vf_wr_mbox_core - send a command to FW through the mailbox
98 * @adapter: the adapter
99 * @cmd: the command to write
100 * @size: command length in bytes
101 * @rpl: where to optionally store the reply
102 * @sleep_ok: if true we may sleep while awaiting command completion
103 *
104 * Sends the given command to FW through the mailbox and waits for the
105 * FW to execute the command. If @rpl is not %NULL it is used to store
106 * the FW's reply to the command. The command and its optional reply
107 * are of the same length. FW can take up to 500 ms to respond.
108 * @sleep_ok determines whether we may sleep while awaiting the response.
109 * If sleeping is allowed we use progressive backoff otherwise we spin.
110 *
111 * The return value is 0 on success or a negative errno on failure. A
112 * failure can happen either because we are not able to execute the
113 * command or FW executes it but signals an error. In the latter case
114 * the return value is the error code indicated by FW (negated).
115 */
116int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
117 void *rpl, bool sleep_ok)
118{
215faf9c 119 static const int delay[] = {
16f8bd4b
CL
120 1, 1, 3, 5, 10, 10, 20, 50, 100
121 };
122
10aa3b78 123 u32 v, mbox_data;
16f8bd4b
CL
124 int i, ms, delay_idx;
125 const __be64 *p;
16f8bd4b
CL
126 u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
127
10aa3b78
HS
128 /* In T6, mailbox size is changed to 128 bytes to avoid
129 * invalidating the entire prefetch buffer.
130 */
131 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
132 mbox_data = T4VF_MBDATA_BASE_ADDR;
133 else
134 mbox_data = T6VF_MBDATA_BASE_ADDR;
135
16f8bd4b
CL
136 /*
137 * Commands must be multiples of 16 bytes in length and may not be
138 * larger than the size of the Mailbox Data register array.
139 */
140 if ((size % 16) != 0 ||
141 size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
142 return -EINVAL;
143
144 /*
145 * Loop trying to get ownership of the mailbox. Return an error
146 * if we can't gain ownership.
147 */
89c3a86c 148 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
16f8bd4b 149 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
89c3a86c 150 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
16f8bd4b
CL
151 if (v != MBOX_OWNER_DRV)
152 return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT;
153
154 /*
155 * Write the command array into the Mailbox Data register array and
156 * transfer ownership of the mailbox to the firmware.
80ce3f67
CL
157 *
158 * For the VFs, the Mailbox Data "registers" are actually backed by
159 * T4's "MA" interface rather than PL Registers (as is the case for
160 * the PFs). Because these are in different coherency domains, the
161 * write to the VF's PL-register-backed Mailbox Control can race in
162 * front of the writes to the MA-backed VF Mailbox Data "registers".
163 * So we need to do a read-back on at least one byte of the VF Mailbox
164 * Data registers before doing the write to the VF Mailbox Control
165 * register.
16f8bd4b
CL
166 */
167 for (i = 0, p = cmd; i < size; i += 8)
168 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
80ce3f67
CL
169 t4_read_reg(adapter, mbox_data); /* flush write */
170
16f8bd4b 171 t4_write_reg(adapter, mbox_ctl,
89c3a86c 172 MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
16f8bd4b
CL
173 t4_read_reg(adapter, mbox_ctl); /* flush write */
174
175 /*
176 * Spin waiting for firmware to acknowledge processing our command.
177 */
178 delay_idx = 0;
179 ms = delay[0];
180
0550769b 181 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
16f8bd4b
CL
182 if (sleep_ok) {
183 ms = delay[delay_idx];
024e6293 184 if (delay_idx < ARRAY_SIZE(delay) - 1)
16f8bd4b
CL
185 delay_idx++;
186 msleep(ms);
187 } else
188 mdelay(ms);
189
190 /*
191 * If we're the owner, see if this is the reply we wanted.
192 */
193 v = t4_read_reg(adapter, mbox_ctl);
89c3a86c 194 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
16f8bd4b
CL
195 /*
196 * If the Message Valid bit isn't on, revoke ownership
197 * of the mailbox and continue waiting for our reply.
198 */
89c3a86c 199 if ((v & MBMSGVALID_F) == 0) {
16f8bd4b 200 t4_write_reg(adapter, mbox_ctl,
89c3a86c 201 MBOWNER_V(MBOX_OWNER_NONE));
16f8bd4b
CL
202 continue;
203 }
204
205 /*
206 * We now have our reply. Extract the command return
207 * value, copy the reply back to our caller's buffer
208 * (if specified) and revoke ownership of the mailbox.
209 * We return the (negated) firmware command return
210 * code (this depends on FW_SUCCESS == 0).
211 */
212
213 /* return value in low-order little-endian word */
214 v = t4_read_reg(adapter, mbox_data);
e2ac9628 215 if (FW_CMD_RETVAL_G(v))
16f8bd4b
CL
216 dump_mbox(adapter, "FW Error", mbox_data);
217
218 if (rpl) {
219 /* request bit in high-order BE word */
2ff2acf1 220 WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
e2ac9628 221 & FW_CMD_REQUEST_F) == 0);
16f8bd4b 222 get_mbox_rpl(adapter, rpl, size, mbox_data);
2ff2acf1 223 WARN_ON((be32_to_cpu(*(__be32 *)rpl)
e2ac9628 224 & FW_CMD_REQUEST_F) != 0);
16f8bd4b
CL
225 }
226 t4_write_reg(adapter, mbox_ctl,
89c3a86c 227 MBOWNER_V(MBOX_OWNER_NONE));
e2ac9628 228 return -FW_CMD_RETVAL_G(v);
16f8bd4b
CL
229 }
230 }
231
232 /*
233 * We timed out. Return the error ...
234 */
235 dump_mbox(adapter, "FW Timeout", mbox_data);
236 return -ETIMEDOUT;
237}
238
239/**
240 * hash_mac_addr - return the hash value of a MAC address
241 * @addr: the 48-bit Ethernet MAC address
242 *
243 * Hashes a MAC address according to the hash function used by hardware
244 * inexact (hash) address matching.
245 */
246static int hash_mac_addr(const u8 *addr)
247{
248 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
249 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
250 a ^= b;
251 a ^= (a >> 12);
252 a ^= (a >> 6);
253 return a & 0x3f;
254}
255
5ad24def
HS
256#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
257 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
258 FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)
259
16f8bd4b
CL
260/**
261 * init_link_config - initialize a link's SW state
262 * @lc: structure holding the link state
263 * @caps: link capabilities
264 *
265 * Initializes the SW state maintained for each link, including the link's
266 * capabilities and default speed/flow-control/autonegotiation settings.
267 */
1dd06ae8 268static void init_link_config(struct link_config *lc, unsigned int caps)
16f8bd4b
CL
269{
270 lc->supported = caps;
271 lc->requested_speed = 0;
272 lc->speed = 0;
273 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
5ad24def
HS
274 if (lc->supported & FW_PORT_CAP_ANEG) {
275 lc->advertising = lc->supported & ADVERT_MASK;
16f8bd4b
CL
276 lc->autoneg = AUTONEG_ENABLE;
277 lc->requested_fc |= PAUSE_AUTONEG;
278 } else {
279 lc->advertising = 0;
280 lc->autoneg = AUTONEG_DISABLE;
281 }
282}
283
284/**
285 * t4vf_port_init - initialize port hardware/software state
286 * @adapter: the adapter
287 * @pidx: the adapter port index
288 */
d289f864 289int t4vf_port_init(struct adapter *adapter, int pidx)
16f8bd4b
CL
290{
291 struct port_info *pi = adap2pinfo(adapter, pidx);
292 struct fw_vi_cmd vi_cmd, vi_rpl;
293 struct fw_port_cmd port_cmd, port_rpl;
294 int v;
16f8bd4b
CL
295
296 /*
297 * Execute a VI Read command to get our Virtual Interface information
298 * like MAC address, etc.
299 */
300 memset(&vi_cmd, 0, sizeof(vi_cmd));
e2ac9628
HS
301 vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
302 FW_CMD_REQUEST_F |
303 FW_CMD_READ_F);
16f8bd4b 304 vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
2b5fb1f2 305 vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
16f8bd4b
CL
306 v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
307 if (v)
308 return v;
309
2b5fb1f2
HS
310 BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
311 pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
16f8bd4b
CL
312 t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
313
314 /*
315 * If we don't have read access to our port information, we're done
316 * now. Otherwise, execute a PORT Read command to get it ...
317 */
318 if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
319 return 0;
320
321 memset(&port_cmd, 0, sizeof(port_cmd));
e2ac9628
HS
322 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
323 FW_CMD_REQUEST_F |
324 FW_CMD_READ_F |
2b5fb1f2 325 FW_PORT_CMD_PORTID_V(pi->port_id));
16f8bd4b 326 port_cmd.action_to_len16 =
2b5fb1f2 327 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
16f8bd4b
CL
328 FW_LEN16(port_cmd));
329 v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
330 if (v)
331 return v;
332
5ad24def 333 v = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
fd48e639
HS
334 pi->mdio_addr = (v & FW_PORT_CMD_MDIOCAP_F) ?
335 FW_PORT_CMD_MDIOADDR_G(v) : -1;
5ad24def
HS
336 pi->port_type = FW_PORT_CMD_PTYPE_G(v);
337 pi->mod_type = FW_PORT_MOD_TYPE_NA;
338
339 init_link_config(&pi->link_cfg, be16_to_cpu(port_rpl.u.info.pcap));
16f8bd4b
CL
340
341 return 0;
342}
343
e68e6133
CL
344/**
345 * t4vf_fw_reset - issue a reset to FW
346 * @adapter: the adapter
347 *
348 * Issues a reset command to FW. For a Physical Function this would
dbedd44e 349 * result in the Firmware resetting all of its state. For a Virtual
e68e6133
CL
350 * Function this just resets the state associated with the VF.
351 */
352int t4vf_fw_reset(struct adapter *adapter)
353{
354 struct fw_reset_cmd cmd;
355
356 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
357 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
358 FW_CMD_WRITE_F);
e68e6133
CL
359 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
360 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
361}
362
16f8bd4b
CL
363/**
364 * t4vf_query_params - query FW or device parameters
365 * @adapter: the adapter
366 * @nparams: the number of parameters
367 * @params: the parameter names
368 * @vals: the parameter values
369 *
370 * Reads the values of firmware or device parameters. Up to 7 parameters
371 * can be queried at once.
372 */
de5b8677 373static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
374 const u32 *params, u32 *vals)
16f8bd4b
CL
375{
376 int i, ret;
377 struct fw_params_cmd cmd, rpl;
378 struct fw_params_param *p;
379 size_t len16;
380
381 if (nparams > 7)
382 return -EINVAL;
383
384 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
385 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
386 FW_CMD_REQUEST_F |
387 FW_CMD_READ_F);
16f8bd4b
CL
388 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
389 param[nparams].mnem), 16);
e2ac9628 390 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
16f8bd4b
CL
391 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
392 p->mnem = htonl(*params++);
393
394 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
395 if (ret == 0)
396 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
397 *vals++ = be32_to_cpu(p->val);
398 return ret;
399}
400
401/**
402 * t4vf_set_params - sets FW or device parameters
403 * @adapter: the adapter
404 * @nparams: the number of parameters
405 * @params: the parameter names
406 * @vals: the parameter values
407 *
408 * Sets the values of firmware or device parameters. Up to 7 parameters
409 * can be specified at once.
410 */
411int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
412 const u32 *params, const u32 *vals)
413{
414 int i;
415 struct fw_params_cmd cmd;
416 struct fw_params_param *p;
417 size_t len16;
418
419 if (nparams > 7)
420 return -EINVAL;
421
422 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
423 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
424 FW_CMD_REQUEST_F |
425 FW_CMD_WRITE_F);
16f8bd4b
CL
426 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
427 param[nparams]), 16);
e2ac9628 428 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
16f8bd4b
CL
429 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
430 p->mnem = cpu_to_be32(*params++);
431 p->val = cpu_to_be32(*vals++);
432 }
433
434 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
435}
436
e85c9a7a 437/**
b2612722 438 * t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
e85c9a7a
HS
439 * @adapter: the adapter
440 * @qid: the Queue ID
441 * @qtype: the Ingress or Egress type for @qid
442 * @pbar2_qoffset: BAR2 Queue Offset
443 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
444 *
445 * Returns the BAR2 SGE Queue Registers information associated with the
446 * indicated Absolute Queue ID. These are passed back in return value
447 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
448 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
449 *
450 * This may return an error which indicates that BAR2 SGE Queue
451 * registers aren't available. If an error is not returned, then the
452 * following values are returned:
453 *
454 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
455 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
456 *
457 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
458 * require the "Inferred Queue ID" ability may be used. E.g. the
459 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
460 * then these "Inferred Queue ID" register may not be used.
461 */
b2612722
HS
462int t4vf_bar2_sge_qregs(struct adapter *adapter,
463 unsigned int qid,
464 enum t4_bar2_qtype qtype,
465 u64 *pbar2_qoffset,
466 unsigned int *pbar2_qid)
e85c9a7a
HS
467{
468 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
469 u64 bar2_page_offset, bar2_qoffset;
470 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
471
472 /* T4 doesn't support BAR2 SGE Queue registers.
473 */
474 if (is_t4(adapter->params.chip))
475 return -EINVAL;
476
477 /* Get our SGE Page Size parameters.
478 */
479 page_shift = adapter->params.sge.sge_vf_hps + 10;
480 page_size = 1 << page_shift;
481
482 /* Get the right Queues per Page parameters for our Queue.
483 */
484 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
485 ? adapter->params.sge.sge_vf_eq_qpp
486 : adapter->params.sge.sge_vf_iq_qpp);
487 qpp_mask = (1 << qpp_shift) - 1;
488
489 /* Calculate the basics of the BAR2 SGE Queue register area:
490 * o The BAR2 page the Queue registers will be in.
491 * o The BAR2 Queue ID.
492 * o The BAR2 Queue ID Offset into the BAR2 page.
493 */
2ff2acf1 494 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
e85c9a7a
HS
495 bar2_qid = qid & qpp_mask;
496 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
497
498 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
499 * hardware will infer the Absolute Queue ID simply from the writes to
500 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
501 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
502 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
503 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
504 * from the BAR2 Page and BAR2 Queue ID.
505 *
506 * One important censequence of this is that some BAR2 SGE registers
507 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
508 * there. But other registers synthesize the SGE Queue ID purely
509 * from the writes to the registers -- the Write Combined Doorbell
510 * Buffer is a good example. These BAR2 SGE Registers are only
511 * available for those BAR2 SGE Register areas where the SGE Absolute
512 * Queue ID can be inferred from simple writes.
513 */
514 bar2_qoffset = bar2_page_offset;
515 bar2_qinferred = (bar2_qid_offset < page_size);
516 if (bar2_qinferred) {
517 bar2_qoffset += bar2_qid_offset;
518 bar2_qid = 0;
519 }
520
521 *pbar2_qoffset = bar2_qoffset;
522 *pbar2_qid = bar2_qid;
523 return 0;
524}
525
16f8bd4b
CL
526/**
527 * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
528 * @adapter: the adapter
529 *
530 * Retrieves various core SGE parameters in the form of hardware SGE
531 * register values. The caller is responsible for decoding these as
532 * needed. The SGE parameters are stored in @adapter->params.sge.
533 */
534int t4vf_get_sge_params(struct adapter *adapter)
535{
536 struct sge_params *sge_params = &adapter->params.sge;
537 u32 params[7], vals[7];
538 int v;
539
5167865a 540 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
f612b815 541 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
5167865a 542 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
f612b815 543 FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
5167865a 544 params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
f612b815 545 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
5167865a 546 params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
f612b815 547 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
5167865a 548 params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
f061de42 549 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
5167865a 550 params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
f061de42 551 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
5167865a 552 params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
f061de42 553 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
16f8bd4b
CL
554 v = t4vf_query_params(adapter, 7, params, vals);
555 if (v)
556 return v;
557 sge_params->sge_control = vals[0];
558 sge_params->sge_host_page_size = vals[1];
559 sge_params->sge_fl_buffer_size[0] = vals[2];
560 sge_params->sge_fl_buffer_size[1] = vals[3];
561 sge_params->sge_timer_value_0_and_1 = vals[4];
562 sge_params->sge_timer_value_2_and_3 = vals[5];
563 sge_params->sge_timer_value_4_and_5 = vals[6];
564
ce8f407a
HS
565 /* T4 uses a single control field to specify both the PCIe Padding and
566 * Packing Boundary. T5 introduced the ability to specify these
567 * separately with the Padding Boundary in SGE_CONTROL and and Packing
568 * Boundary in SGE_CONTROL2. So for T5 and later we need to grab
569 * SGE_CONTROL in order to determine how ingress packet data will be
570 * laid out in Packed Buffer Mode. Unfortunately, older versions of
571 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
572 * failure grabbing it we throw an error since we can't figure out the
573 * right value.
574 */
575 if (!is_t4(adapter->params.chip)) {
5167865a
HS
576 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
577 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
ce8f407a
HS
578 v = t4vf_query_params(adapter, 1, params, vals);
579 if (v != FW_SUCCESS) {
580 dev_err(adapter->pdev_dev,
581 "Unable to get SGE Control2; "
582 "probably old firmware.\n");
583 return v;
584 }
585 sge_params->sge_control2 = vals[0];
586 }
587
5167865a 588 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
f612b815 589 FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
5167865a 590 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
f612b815 591 FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
50d21a66 592 v = t4vf_query_params(adapter, 2, params, vals);
16f8bd4b
CL
593 if (v)
594 return v;
595 sge_params->sge_ingress_rx_threshold = vals[0];
50d21a66 596 sge_params->sge_congestion_control = vals[1];
16f8bd4b 597
e0a8b34a
HS
598 /* For T5 and later we want to use the new BAR2 Doorbells.
599 * Unfortunately, older firmware didn't allow the this register to be
600 * read.
601 */
602 if (!is_t4(adapter->params.chip)) {
603 u32 whoami;
e85c9a7a 604 unsigned int pf, s_hps, s_qpp;
e0a8b34a
HS
605
606 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
607 FW_PARAMS_PARAM_XYZ_V(
608 SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
609 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
610 FW_PARAMS_PARAM_XYZ_V(
611 SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
612 v = t4vf_query_params(adapter, 2, params, vals);
613 if (v != FW_SUCCESS) {
614 dev_warn(adapter->pdev_dev,
615 "Unable to get VF SGE Queues/Page; "
616 "probably old firmware.\n");
617 return v;
618 }
619 sge_params->sge_egress_queues_per_page = vals[0];
620 sge_params->sge_ingress_queues_per_page = vals[1];
621
622 /* We need the Queues/Page for our VF. This is based on the
623 * PF from which we're instantiated and is indexed in the
624 * register we just read. Do it once here so other code in
625 * the driver can just use it.
626 */
627 whoami = t4_read_reg(adapter,
0d804338 628 T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
d86bd29e
HS
629 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
630 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
e85c9a7a
HS
631
632 s_hps = (HOSTPAGESIZEPF0_S +
633 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
634 sge_params->sge_vf_hps =
635 ((sge_params->sge_host_page_size >> s_hps)
636 & HOSTPAGESIZEPF0_M);
637
e0a8b34a
HS
638 s_qpp = (QUEUESPERPAGEPF0_S +
639 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
640 sge_params->sge_vf_eq_qpp =
641 ((sge_params->sge_egress_queues_per_page >> s_qpp)
f612b815 642 & QUEUESPERPAGEPF0_M);
e0a8b34a
HS
643 sge_params->sge_vf_iq_qpp =
644 ((sge_params->sge_ingress_queues_per_page >> s_qpp)
f612b815 645 & QUEUESPERPAGEPF0_M);
e0a8b34a
HS
646 }
647
16f8bd4b
CL
648 return 0;
649}
650
651/**
652 * t4vf_get_vpd_params - retrieve device VPD paremeters
653 * @adapter: the adapter
654 *
655 * Retrives various device Vital Product Data parameters. The parameters
656 * are stored in @adapter->params.vpd.
657 */
658int t4vf_get_vpd_params(struct adapter *adapter)
659{
660 struct vpd_params *vpd_params = &adapter->params.vpd;
661 u32 params[7], vals[7];
662 int v;
663
5167865a
HS
664 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
665 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
16f8bd4b
CL
666 v = t4vf_query_params(adapter, 1, params, vals);
667 if (v)
668 return v;
669 vpd_params->cclk = vals[0];
670
671 return 0;
672}
673
674/**
675 * t4vf_get_dev_params - retrieve device paremeters
676 * @adapter: the adapter
677 *
678 * Retrives various device parameters. The parameters are stored in
679 * @adapter->params.dev.
680 */
681int t4vf_get_dev_params(struct adapter *adapter)
682{
683 struct dev_params *dev_params = &adapter->params.dev;
684 u32 params[7], vals[7];
685 int v;
686
5167865a
HS
687 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
688 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
689 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
690 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
16f8bd4b
CL
691 v = t4vf_query_params(adapter, 2, params, vals);
692 if (v)
693 return v;
694 dev_params->fwrev = vals[0];
695 dev_params->tprev = vals[1];
696
697 return 0;
698}
699
700/**
701 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
702 * @adapter: the adapter
703 *
704 * Retrieves global RSS mode and parameters with which we have to live
705 * and stores them in the @adapter's RSS parameters.
706 */
707int t4vf_get_rss_glb_config(struct adapter *adapter)
708{
709 struct rss_params *rss = &adapter->params.rss;
710 struct fw_rss_glb_config_cmd cmd, rpl;
711 int v;
712
713 /*
714 * Execute an RSS Global Configuration read command to retrieve
715 * our RSS configuration.
716 */
717 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
718 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
719 FW_CMD_REQUEST_F |
720 FW_CMD_READ_F);
16f8bd4b
CL
721 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
722 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
723 if (v)
724 return v;
725
726 /*
727 * Transate the big-endian RSS Global Configuration into our
728 * cpu-endian format based on the RSS mode. We also do first level
729 * filtering at this point to weed out modes which don't support
730 * VF Drivers ...
731 */
b2e1a3f0 732 rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
16f8bd4b
CL
733 be32_to_cpu(rpl.u.manual.mode_pkd));
734 switch (rss->mode) {
735 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
736 u32 word = be32_to_cpu(
737 rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
738
739 rss->u.basicvirtual.synmapen =
b2e1a3f0 740 ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
16f8bd4b 741 rss->u.basicvirtual.syn4tupenipv6 =
b2e1a3f0 742 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
16f8bd4b 743 rss->u.basicvirtual.syn2tupenipv6 =
b2e1a3f0 744 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
16f8bd4b 745 rss->u.basicvirtual.syn4tupenipv4 =
b2e1a3f0 746 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
16f8bd4b 747 rss->u.basicvirtual.syn2tupenipv4 =
b2e1a3f0 748 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
16f8bd4b
CL
749
750 rss->u.basicvirtual.ofdmapen =
b2e1a3f0 751 ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
16f8bd4b
CL
752
753 rss->u.basicvirtual.tnlmapen =
b2e1a3f0 754 ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
16f8bd4b 755 rss->u.basicvirtual.tnlalllookup =
b2e1a3f0 756 ((word & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
16f8bd4b
CL
757
758 rss->u.basicvirtual.hashtoeplitz =
b2e1a3f0 759 ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
16f8bd4b
CL
760
761 /* we need at least Tunnel Map Enable to be set */
762 if (!rss->u.basicvirtual.tnlmapen)
763 return -EINVAL;
764 break;
765 }
766
767 default:
768 /* all unknown/unsupported RSS modes result in an error */
769 return -EINVAL;
770 }
771
772 return 0;
773}
774
775/**
776 * t4vf_get_vfres - retrieve VF resource limits
777 * @adapter: the adapter
778 *
779 * Retrieves configured resource limits and capabilities for a virtual
780 * function. The results are stored in @adapter->vfres.
781 */
782int t4vf_get_vfres(struct adapter *adapter)
783{
784 struct vf_resources *vfres = &adapter->params.vfres;
785 struct fw_pfvf_cmd cmd, rpl;
786 int v;
787 u32 word;
788
789 /*
790 * Execute PFVF Read command to get VF resource limits; bail out early
791 * with error on command failure.
792 */
793 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
794 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
795 FW_CMD_REQUEST_F |
796 FW_CMD_READ_F);
16f8bd4b
CL
797 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
798 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
799 if (v)
800 return v;
801
802 /*
803 * Extract VF resource limits and return success.
804 */
805 word = be32_to_cpu(rpl.niqflint_niq);
5167865a
HS
806 vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
807 vfres->niq = FW_PFVF_CMD_NIQ_G(word);
16f8bd4b
CL
808
809 word = be32_to_cpu(rpl.type_to_neq);
5167865a
HS
810 vfres->neq = FW_PFVF_CMD_NEQ_G(word);
811 vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
16f8bd4b
CL
812
813 word = be32_to_cpu(rpl.tc_to_nexactf);
5167865a
HS
814 vfres->tc = FW_PFVF_CMD_TC_G(word);
815 vfres->nvi = FW_PFVF_CMD_NVI_G(word);
816 vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
16f8bd4b
CL
817
818 word = be32_to_cpu(rpl.r_caps_to_nethctrl);
5167865a
HS
819 vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
820 vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
821 vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
16f8bd4b
CL
822
823 return 0;
824}
825
826/**
827 * t4vf_read_rss_vi_config - read a VI's RSS configuration
828 * @adapter: the adapter
829 * @viid: Virtual Interface ID
830 * @config: pointer to host-native VI RSS Configuration buffer
831 *
832 * Reads the Virtual Interface's RSS configuration information and
833 * translates it into CPU-native format.
834 */
835int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
836 union rss_vi_config *config)
837{
838 struct fw_rss_vi_config_cmd cmd, rpl;
839 int v;
840
841 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
842 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
843 FW_CMD_REQUEST_F |
844 FW_CMD_READ_F |
16f8bd4b
CL
845 FW_RSS_VI_CONFIG_CMD_VIID(viid));
846 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
847 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
848 if (v)
849 return v;
850
851 switch (adapter->params.rss.mode) {
852 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
853 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
854
855 config->basicvirtual.ip6fourtupen =
b2e1a3f0 856 ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
16f8bd4b 857 config->basicvirtual.ip6twotupen =
b2e1a3f0 858 ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
16f8bd4b 859 config->basicvirtual.ip4fourtupen =
b2e1a3f0 860 ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
16f8bd4b 861 config->basicvirtual.ip4twotupen =
b2e1a3f0 862 ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
16f8bd4b 863 config->basicvirtual.udpen =
b2e1a3f0 864 ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
16f8bd4b 865 config->basicvirtual.defaultq =
b2e1a3f0 866 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
16f8bd4b
CL
867 break;
868 }
869
870 default:
871 return -EINVAL;
872 }
873
874 return 0;
875}
876
877/**
878 * t4vf_write_rss_vi_config - write a VI's RSS configuration
879 * @adapter: the adapter
880 * @viid: Virtual Interface ID
881 * @config: pointer to host-native VI RSS Configuration buffer
882 *
883 * Write the Virtual Interface's RSS configuration information
884 * (translating it into firmware-native format before writing).
885 */
886int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
887 union rss_vi_config *config)
888{
889 struct fw_rss_vi_config_cmd cmd, rpl;
890
891 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
892 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
893 FW_CMD_REQUEST_F |
894 FW_CMD_WRITE_F |
16f8bd4b
CL
895 FW_RSS_VI_CONFIG_CMD_VIID(viid));
896 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
897 switch (adapter->params.rss.mode) {
898 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
899 u32 word = 0;
900
901 if (config->basicvirtual.ip6fourtupen)
b2e1a3f0 902 word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
16f8bd4b 903 if (config->basicvirtual.ip6twotupen)
b2e1a3f0 904 word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
16f8bd4b 905 if (config->basicvirtual.ip4fourtupen)
b2e1a3f0 906 word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
16f8bd4b 907 if (config->basicvirtual.ip4twotupen)
b2e1a3f0 908 word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
16f8bd4b 909 if (config->basicvirtual.udpen)
b2e1a3f0
HS
910 word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
911 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
16f8bd4b
CL
912 config->basicvirtual.defaultq);
913 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
914 break;
915 }
916
917 default:
918 return -EINVAL;
919 }
920
921 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
922}
923
924/**
925 * t4vf_config_rss_range - configure a portion of the RSS mapping table
926 * @adapter: the adapter
927 * @viid: Virtual Interface of RSS Table Slice
928 * @start: starting entry in the table to write
929 * @n: how many table entries to write
930 * @rspq: values for the "Response Queue" (Ingress Queue) lookup table
931 * @nrspq: number of values in @rspq
932 *
933 * Programs the selected part of the VI's RSS mapping table with the
934 * provided values. If @nrspq < @n the supplied values are used repeatedly
935 * until the full table range is populated.
936 *
937 * The caller must ensure the values in @rspq are in the range 0..1023.
938 */
939int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
940 int start, int n, const u16 *rspq, int nrspq)
941{
942 const u16 *rsp = rspq;
943 const u16 *rsp_end = rspq+nrspq;
944 struct fw_rss_ind_tbl_cmd cmd;
945
946 /*
947 * Initialize firmware command template to write the RSS table.
948 */
949 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
950 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
951 FW_CMD_REQUEST_F |
952 FW_CMD_WRITE_F |
b2e1a3f0 953 FW_RSS_IND_TBL_CMD_VIID_V(viid));
16f8bd4b
CL
954 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
955
956 /*
957 * Each firmware RSS command can accommodate up to 32 RSS Ingress
958 * Queue Identifiers. These Ingress Queue IDs are packed three to
959 * a 32-bit word as 10-bit values with the upper remaining 2 bits
960 * reserved.
961 */
962 while (n > 0) {
963 __be32 *qp = &cmd.iq0_to_iq2;
964 int nq = min(n, 32);
965 int ret;
966
967 /*
968 * Set up the firmware RSS command header to send the next
969 * "nq" Ingress Queue IDs to the firmware.
970 */
971 cmd.niqid = cpu_to_be16(nq);
972 cmd.startidx = cpu_to_be16(start);
973
974 /*
975 * "nq" more done for the start of the next loop.
976 */
977 start += nq;
978 n -= nq;
979
980 /*
981 * While there are still Ingress Queue IDs to stuff into the
982 * current firmware RSS command, retrieve them from the
983 * Ingress Queue ID array and insert them into the command.
984 */
985 while (nq > 0) {
986 /*
987 * Grab up to the next 3 Ingress Queue IDs (wrapping
988 * around the Ingress Queue ID array if necessary) and
989 * insert them into the firmware RSS command at the
990 * current 3-tuple position within the commad.
991 */
992 u16 qbuf[3];
993 u16 *qbp = qbuf;
994 int nqbuf = min(3, nq);
995
996 nq -= nqbuf;
997 qbuf[0] = qbuf[1] = qbuf[2] = 0;
998 while (nqbuf) {
999 nqbuf--;
1000 *qbp++ = *rsp++;
1001 if (rsp >= rsp_end)
1002 rsp = rspq;
1003 }
b2e1a3f0
HS
1004 *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
1005 FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1006 FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
16f8bd4b
CL
1007 }
1008
1009 /*
1010 * Send this portion of the RRS table update to the firmware;
1011 * bail out on any errors.
1012 */
1013 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1014 if (ret)
1015 return ret;
1016 }
1017 return 0;
1018}
1019
1020/**
1021 * t4vf_alloc_vi - allocate a virtual interface on a port
1022 * @adapter: the adapter
1023 * @port_id: physical port associated with the VI
1024 *
1025 * Allocate a new Virtual Interface and bind it to the indicated
1026 * physical port. Return the new Virtual Interface Identifier on
1027 * success, or a [negative] error number on failure.
1028 */
1029int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1030{
1031 struct fw_vi_cmd cmd, rpl;
1032 int v;
1033
1034 /*
1035 * Execute a VI command to allocate Virtual Interface and return its
1036 * VIID.
1037 */
1038 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1039 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1040 FW_CMD_REQUEST_F |
1041 FW_CMD_WRITE_F |
1042 FW_CMD_EXEC_F);
16f8bd4b 1043 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
2b5fb1f2
HS
1044 FW_VI_CMD_ALLOC_F);
1045 cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
16f8bd4b
CL
1046 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1047 if (v)
1048 return v;
1049
2b5fb1f2 1050 return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
16f8bd4b
CL
1051}
1052
1053/**
1054 * t4vf_free_vi -- free a virtual interface
1055 * @adapter: the adapter
1056 * @viid: the virtual interface identifier
1057 *
1058 * Free a previously allocated Virtual Interface. Return an error on
1059 * failure.
1060 */
1061int t4vf_free_vi(struct adapter *adapter, int viid)
1062{
1063 struct fw_vi_cmd cmd;
1064
1065 /*
1066 * Execute a VI command to free the Virtual Interface.
1067 */
1068 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1069 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1070 FW_CMD_REQUEST_F |
1071 FW_CMD_EXEC_F);
16f8bd4b 1072 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
2b5fb1f2
HS
1073 FW_VI_CMD_FREE_F);
1074 cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
16f8bd4b
CL
1075 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1076}
1077
1078/**
1079 * t4vf_enable_vi - enable/disable a virtual interface
1080 * @adapter: the adapter
1081 * @viid: the Virtual Interface ID
1082 * @rx_en: 1=enable Rx, 0=disable Rx
1083 * @tx_en: 1=enable Tx, 0=disable Tx
1084 *
1085 * Enables/disables a virtual interface.
1086 */
1087int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1088 bool rx_en, bool tx_en)
1089{
1090 struct fw_vi_enable_cmd cmd;
1091
1092 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1093 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1094 FW_CMD_REQUEST_F |
1095 FW_CMD_EXEC_F |
2b5fb1f2
HS
1096 FW_VI_ENABLE_CMD_VIID_V(viid));
1097 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1098 FW_VI_ENABLE_CMD_EEN_V(tx_en) |
16f8bd4b
CL
1099 FW_LEN16(cmd));
1100 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1101}
1102
1103/**
1104 * t4vf_identify_port - identify a VI's port by blinking its LED
1105 * @adapter: the adapter
1106 * @viid: the Virtual Interface ID
1107 * @nblinks: how many times to blink LED at 2.5 Hz
1108 *
1109 * Identifies a VI's port by blinking its LED.
1110 */
1111int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1112 unsigned int nblinks)
1113{
1114 struct fw_vi_enable_cmd cmd;
1115
1116 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1117 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1118 FW_CMD_REQUEST_F |
1119 FW_CMD_EXEC_F |
2b5fb1f2
HS
1120 FW_VI_ENABLE_CMD_VIID_V(viid));
1121 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
16f8bd4b
CL
1122 FW_LEN16(cmd));
1123 cmd.blinkdur = cpu_to_be16(nblinks);
1124 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1125}
1126
1127/**
1128 * t4vf_set_rxmode - set Rx properties of a virtual interface
1129 * @adapter: the adapter
1130 * @viid: the VI id
1131 * @mtu: the new MTU or -1 for no change
1132 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1133 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1134 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1135 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1136 * -1 no change
1137 *
1138 * Sets Rx properties of a virtual interface.
1139 */
1140int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1141 int mtu, int promisc, int all_multi, int bcast, int vlanex,
1142 bool sleep_ok)
1143{
1144 struct fw_vi_rxmode_cmd cmd;
1145
1146 /* convert to FW values */
1147 if (mtu < 0)
2b5fb1f2 1148 mtu = FW_VI_RXMODE_CMD_MTU_M;
16f8bd4b 1149 if (promisc < 0)
2b5fb1f2 1150 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
16f8bd4b 1151 if (all_multi < 0)
2b5fb1f2 1152 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
16f8bd4b 1153 if (bcast < 0)
2b5fb1f2 1154 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
16f8bd4b 1155 if (vlanex < 0)
2b5fb1f2 1156 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
16f8bd4b
CL
1157
1158 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1159 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1160 FW_CMD_REQUEST_F |
1161 FW_CMD_WRITE_F |
2b5fb1f2 1162 FW_VI_RXMODE_CMD_VIID_V(viid));
16f8bd4b
CL
1163 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1164 cmd.mtu_to_vlanexen =
2b5fb1f2
HS
1165 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1166 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1167 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1168 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1169 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
16f8bd4b
CL
1170 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1171}
1172
1173/**
1174 * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1175 * @adapter: the adapter
1176 * @viid: the Virtual Interface Identifier
1177 * @free: if true any existing filters for this VI id are first removed
1178 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
1179 * @addr: the MAC address(es)
1180 * @idx: where to store the index of each allocated filter
1181 * @hash: pointer to hash address filter bitmap
1182 * @sleep_ok: call is allowed to sleep
1183 *
1184 * Allocates an exact-match filter for each of the supplied addresses and
1185 * sets it to the corresponding address. If @idx is not %NULL it should
1186 * have at least @naddr entries, each of which will be set to the index of
1187 * the filter allocated for the corresponding MAC address. If a filter
1188 * could not be allocated for an address its index is set to 0xffff.
1189 * If @hash is not %NULL addresses that fail to allocate an exact filter
1190 * are hashed and update the hash filter bitmap pointed at by @hash.
1191 *
1192 * Returns a negative error number or the number of filters allocated.
1193 */
1194int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1195 unsigned int naddr, const u8 **addr, u16 *idx,
1196 u64 *hash, bool sleep_ok)
1197{
42eb59d3
CL
1198 int offset, ret = 0;
1199 unsigned nfilters = 0;
1200 unsigned int rem = naddr;
16f8bd4b 1201 struct fw_vi_mac_cmd cmd, rpl;
41fc2e41 1202 unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
16f8bd4b 1203
622c62b5 1204 if (naddr > max_naddr)
16f8bd4b 1205 return -EINVAL;
16f8bd4b 1206
42eb59d3
CL
1207 for (offset = 0; offset < naddr; /**/) {
1208 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1209 ? rem
1210 : ARRAY_SIZE(cmd.u.exact));
1211 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1212 u.exact[fw_naddr]), 16);
1213 struct fw_vi_mac_exact *p;
1214 int i;
1215
1216 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1217 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1218 FW_CMD_REQUEST_F |
1219 FW_CMD_WRITE_F |
1220 (free ? FW_CMD_EXEC_F : 0) |
2b5fb1f2 1221 FW_VI_MAC_CMD_VIID_V(viid));
42eb59d3 1222 cmd.freemacs_to_len16 =
2b5fb1f2 1223 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
e2ac9628 1224 FW_CMD_LEN16_V(len16));
42eb59d3
CL
1225
1226 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1227 p->valid_to_idx = cpu_to_be16(
2b5fb1f2
HS
1228 FW_VI_MAC_CMD_VALID_F |
1229 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
42eb59d3
CL
1230 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1231 }
16f8bd4b 1232
42eb59d3
CL
1233
1234 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1235 sleep_ok);
1236 if (ret && ret != -ENOMEM)
1237 break;
1238
1239 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
2b5fb1f2 1240 u16 index = FW_VI_MAC_CMD_IDX_G(
42eb59d3
CL
1241 be16_to_cpu(p->valid_to_idx));
1242
1243 if (idx)
1244 idx[offset+i] =
622c62b5 1245 (index >= max_naddr
42eb59d3
CL
1246 ? 0xffff
1247 : index);
622c62b5 1248 if (index < max_naddr)
42eb59d3
CL
1249 nfilters++;
1250 else if (hash)
1251 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1252 }
1253
1254 free = false;
1255 offset += fw_naddr;
1256 rem -= fw_naddr;
16f8bd4b 1257 }
42eb59d3
CL
1258
1259 /*
1260 * If there were no errors or we merely ran out of room in our MAC
1261 * address arena, return the number of filters actually written.
1262 */
1263 if (ret == 0 || ret == -ENOMEM)
1264 ret = nfilters;
16f8bd4b
CL
1265 return ret;
1266}
1267
1268/**
1269 * t4vf_change_mac - modifies the exact-match filter for a MAC address
1270 * @adapter: the adapter
1271 * @viid: the Virtual Interface ID
1272 * @idx: index of existing filter for old value of MAC address, or -1
1273 * @addr: the new MAC address value
1274 * @persist: if idx < 0, the new MAC allocation should be persistent
1275 *
1276 * Modifies an exact-match filter and sets it to the new MAC address.
1277 * Note that in general it is not possible to modify the value of a given
1278 * filter so the generic way to modify an address filter is to free the
1279 * one being used by the old address value and allocate a new filter for
1280 * the new address value. @idx can be -1 if the address is a new
1281 * addition.
1282 *
1283 * Returns a negative error number or the index of the filter with the new
1284 * MAC value.
1285 */
1286int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1287 int idx, const u8 *addr, bool persist)
1288{
1289 int ret;
1290 struct fw_vi_mac_cmd cmd, rpl;
1291 struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1292 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1293 u.exact[1]), 16);
41fc2e41 1294 unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
16f8bd4b
CL
1295
1296 /*
1297 * If this is a new allocation, determine whether it should be
1298 * persistent (across a "freemacs" operation) or not.
1299 */
1300 if (idx < 0)
1301 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1302
1303 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1304 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1305 FW_CMD_REQUEST_F |
1306 FW_CMD_WRITE_F |
2b5fb1f2 1307 FW_VI_MAC_CMD_VIID_V(viid));
e2ac9628 1308 cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
2b5fb1f2
HS
1309 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1310 FW_VI_MAC_CMD_IDX_V(idx));
16f8bd4b
CL
1311 memcpy(p->macaddr, addr, sizeof(p->macaddr));
1312
1313 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1314 if (ret == 0) {
1315 p = &rpl.u.exact[0];
2b5fb1f2 1316 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
41fc2e41 1317 if (ret >= max_mac_addr)
16f8bd4b
CL
1318 ret = -ENOMEM;
1319 }
1320 return ret;
1321}
1322
1323/**
1324 * t4vf_set_addr_hash - program the MAC inexact-match hash filter
1325 * @adapter: the adapter
1326 * @viid: the Virtual Interface Identifier
1327 * @ucast: whether the hash filter should also match unicast addresses
1328 * @vec: the value to be written to the hash filter
1329 * @sleep_ok: call is allowed to sleep
1330 *
1331 * Sets the 64-bit inexact-match hash filter for a virtual interface.
1332 */
1333int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1334 bool ucast, u64 vec, bool sleep_ok)
1335{
1336 struct fw_vi_mac_cmd cmd;
1337 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1338 u.exact[0]), 16);
1339
1340 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1341 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1342 FW_CMD_REQUEST_F |
1343 FW_CMD_WRITE_F |
2b5fb1f2
HS
1344 FW_VI_ENABLE_CMD_VIID_V(viid));
1345 cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1346 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
e2ac9628 1347 FW_CMD_LEN16_V(len16));
16f8bd4b
CL
1348 cmd.u.hash.hashvec = cpu_to_be64(vec);
1349 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1350}
1351
1352/**
1353 * t4vf_get_port_stats - collect "port" statistics
1354 * @adapter: the adapter
1355 * @pidx: the port index
1356 * @s: the stats structure to fill
1357 *
1358 * Collect statistics for the "port"'s Virtual Interface.
1359 */
1360int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1361 struct t4vf_port_stats *s)
1362{
1363 struct port_info *pi = adap2pinfo(adapter, pidx);
1364 struct fw_vi_stats_vf fwstats;
1365 unsigned int rem = VI_VF_NUM_STATS;
1366 __be64 *fwsp = (__be64 *)&fwstats;
1367
1368 /*
1369 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1370 * commands. We could use a Work Request and get all of them at once
1371 * but that's an asynchronous interface which is awkward to use.
1372 */
1373 while (rem) {
1374 unsigned int ix = VI_VF_NUM_STATS - rem;
1375 unsigned int nstats = min(6U, rem);
1376 struct fw_vi_stats_cmd cmd, rpl;
1377 size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1378 sizeof(struct fw_vi_stats_ctl));
1379 size_t len16 = DIV_ROUND_UP(len, 16);
1380 int ret;
1381
1382 memset(&cmd, 0, sizeof(cmd));
e2ac9628 1383 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
2b5fb1f2 1384 FW_VI_STATS_CMD_VIID_V(pi->viid) |
e2ac9628
HS
1385 FW_CMD_REQUEST_F |
1386 FW_CMD_READ_F);
1387 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
16f8bd4b 1388 cmd.u.ctl.nstats_ix =
2b5fb1f2
HS
1389 cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1390 FW_VI_STATS_CMD_NSTATS_V(nstats));
16f8bd4b
CL
1391 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1392 if (ret)
1393 return ret;
1394
1395 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1396
1397 rem -= nstats;
1398 fwsp += nstats;
1399 }
1400
1401 /*
1402 * Translate firmware statistics into host native statistics.
1403 */
1404 s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1405 s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1406 s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1407 s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1408 s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1409 s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1410 s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1411 s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1412 s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1413
1414 s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1415 s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1416 s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1417 s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1418 s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1419 s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1420
1421 s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1422
1423 return 0;
1424}
1425
1426/**
1427 * t4vf_iq_free - free an ingress queue and its free lists
1428 * @adapter: the adapter
1429 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1430 * @iqid: ingress queue ID
1431 * @fl0id: FL0 queue ID or 0xffff if no attached FL0
1432 * @fl1id: FL1 queue ID or 0xffff if no attached FL1
1433 *
1434 * Frees an ingress queue and its associated free lists, if any.
1435 */
1436int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1437 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1438{
1439 struct fw_iq_cmd cmd;
1440
1441 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1442 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1443 FW_CMD_REQUEST_F |
1444 FW_CMD_EXEC_F);
6e4b51a6 1445 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
16f8bd4b
CL
1446 FW_LEN16(cmd));
1447 cmd.type_to_iqandstindex =
6e4b51a6 1448 cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
16f8bd4b
CL
1449
1450 cmd.iqid = cpu_to_be16(iqid);
1451 cmd.fl0id = cpu_to_be16(fl0id);
1452 cmd.fl1id = cpu_to_be16(fl1id);
1453 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1454}
1455
1456/**
1457 * t4vf_eth_eq_free - free an Ethernet egress queue
1458 * @adapter: the adapter
1459 * @eqid: egress queue ID
1460 *
1461 * Frees an Ethernet egress queue.
1462 */
1463int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1464{
1465 struct fw_eq_eth_cmd cmd;
1466
1467 memset(&cmd, 0, sizeof(cmd));
e2ac9628
HS
1468 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1469 FW_CMD_REQUEST_F |
1470 FW_CMD_EXEC_F);
6e4b51a6 1471 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
16f8bd4b 1472 FW_LEN16(cmd));
6e4b51a6 1473 cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
16f8bd4b
CL
1474 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1475}
1476
1477/**
1478 * t4vf_handle_fw_rpl - process a firmware reply message
1479 * @adapter: the adapter
1480 * @rpl: start of the firmware message
1481 *
1482 * Processes a firmware message, such as link state change messages.
1483 */
1484int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
1485{
caedda35 1486 const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
e2ac9628 1487 u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
16f8bd4b
CL
1488
1489 switch (opcode) {
1490 case FW_PORT_CMD: {
1491 /*
1492 * Link/module state change message.
1493 */
caedda35
CL
1494 const struct fw_port_cmd *port_cmd =
1495 (const struct fw_port_cmd *)rpl;
5ad24def 1496 u32 stat, mod;
16f8bd4b
CL
1497 int action, port_id, link_ok, speed, fc, pidx;
1498
1499 /*
1500 * Extract various fields from port status change message.
1501 */
2b5fb1f2 1502 action = FW_PORT_CMD_ACTION_G(
16f8bd4b
CL
1503 be32_to_cpu(port_cmd->action_to_len16));
1504 if (action != FW_PORT_ACTION_GET_PORT_INFO) {
1505 dev_err(adapter->pdev_dev,
1506 "Unknown firmware PORT reply action %x\n",
1507 action);
1508 break;
1509 }
1510
2b5fb1f2 1511 port_id = FW_PORT_CMD_PORTID_G(
16f8bd4b
CL
1512 be32_to_cpu(port_cmd->op_to_portid));
1513
5ad24def
HS
1514 stat = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
1515 link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
16f8bd4b
CL
1516 speed = 0;
1517 fc = 0;
5ad24def 1518 if (stat & FW_PORT_CMD_RXPAUSE_F)
16f8bd4b 1519 fc |= PAUSE_RX;
5ad24def 1520 if (stat & FW_PORT_CMD_TXPAUSE_F)
16f8bd4b 1521 fc |= PAUSE_TX;
5ad24def 1522 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
897d55df 1523 speed = 100;
5ad24def 1524 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
897d55df 1525 speed = 1000;
5ad24def 1526 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
897d55df 1527 speed = 10000;
5ad24def 1528 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
897d55df 1529 speed = 40000;
16f8bd4b
CL
1530
1531 /*
1532 * Scan all of our "ports" (Virtual Interfaces) looking for
1533 * those bound to the physical port which has changed. If
1534 * our recorded state doesn't match the current state,
1535 * signal that change to the OS code.
1536 */
1537 for_each_port(adapter, pidx) {
1538 struct port_info *pi = adap2pinfo(adapter, pidx);
1539 struct link_config *lc;
1540
1541 if (pi->port_id != port_id)
1542 continue;
1543
1544 lc = &pi->link_cfg;
5ad24def
HS
1545
1546 mod = FW_PORT_CMD_MODTYPE_G(stat);
1547 if (mod != pi->mod_type) {
1548 pi->mod_type = mod;
1549 t4vf_os_portmod_changed(adapter, pidx);
1550 }
1551
16f8bd4b
CL
1552 if (link_ok != lc->link_ok || speed != lc->speed ||
1553 fc != lc->fc) {
1554 /* something changed */
1555 lc->link_ok = link_ok;
1556 lc->speed = speed;
1557 lc->fc = fc;
5ad24def
HS
1558 lc->supported =
1559 be16_to_cpu(port_cmd->u.info.pcap);
16f8bd4b
CL
1560 t4vf_os_link_changed(adapter, pidx, link_ok);
1561 }
1562 }
1563 break;
1564 }
1565
1566 default:
1567 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
1568 opcode);
1569 }
1570 return 0;
1571}
e0a8b34a
HS
1572
1573/**
1574 */
1575int t4vf_prep_adapter(struct adapter *adapter)
1576{
1577 int err;
1578 unsigned int chipid;
1579
1580 /* Wait for the device to become ready before proceeding ...
1581 */
1582 err = t4vf_wait_dev_ready(adapter);
1583 if (err)
1584 return err;
1585
1586 /* Default port and clock for debugging in case we can't reach
1587 * firmware.
1588 */
1589 adapter->params.nports = 1;
1590 adapter->params.vfres.pmask = 1;
1591 adapter->params.vpd.cclk = 50000;
1592
1593 adapter->params.chip = 0;
1594 switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
1595 case CHELSIO_T4:
1596 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
41fc2e41
HS
1597 adapter->params.arch.sge_fl_db = DBPRIO_F;
1598 adapter->params.arch.mps_tcam_size =
1599 NUM_MPS_CLS_SRAM_L_INSTANCES;
e0a8b34a
HS
1600 break;
1601
1602 case CHELSIO_T5:
0d804338 1603 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
e0a8b34a 1604 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
41fc2e41
HS
1605 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
1606 adapter->params.arch.mps_tcam_size =
1607 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1608 break;
1609
1610 case CHELSIO_T6:
1611 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
1612 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
1613 adapter->params.arch.sge_fl_db = 0;
1614 adapter->params.arch.mps_tcam_size =
1615 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
e0a8b34a
HS
1616 break;
1617 }
1618
1619 return 0;
1620}
This page took 0.621345 seconds and 5 git commands to generate.