e1000e: cosmetic cleanup of comments
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000e / phy.c
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
f5e261e6 4 Copyright(c) 1999 - 2012 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
bc7f75fa
AK
29#include "e1000.h"
30
31static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
32static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
33static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
34static s32 e1000_wait_autoneg(struct e1000_hw *hw);
97ac8cae
BA
35static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
36static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2b6b168d 37 u16 *data, bool read, bool page_set);
a4f58f54
BA
38static u32 e1000_get_phy_addr_for_hv_page(u32 page);
39static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
40 u16 *data, bool read);
bc7f75fa
AK
41
42/* Cable length tables */
6480641e
BA
43static const u16 e1000_m88_cable_length_table[] = {
44 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
eb656d45
BA
45#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
46 ARRAY_SIZE(e1000_m88_cable_length_table)
bc7f75fa 47
6480641e
BA
48static const u16 e1000_igp_2_cable_length_table[] = {
49 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
50 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
51 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
52 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
53 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
54 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
55 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
56 124};
bc7f75fa 57#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
c00acf46 58 ARRAY_SIZE(e1000_igp_2_cable_length_table)
bc7f75fa 59
a4f58f54
BA
60#define BM_PHY_REG_PAGE(offset) \
61 ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
62#define BM_PHY_REG_NUM(offset) \
63 ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
64 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
65 ~MAX_PHY_REG_ADDRESS)))
66
67#define HV_INTC_FC_PAGE_START 768
68#define I82578_ADDR_REG 29
69#define I82577_ADDR_REG 16
70#define I82577_CFG_REG 22
71#define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
72#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */
73#define I82577_CTRL_REG 23
a4f58f54
BA
74
75/* 82577 specific PHY registers */
76#define I82577_PHY_CTRL_2 18
77#define I82577_PHY_STATUS_2 26
78#define I82577_PHY_DIAG_STATUS 31
79
80/* I82577 PHY Status 2 */
81#define I82577_PHY_STATUS2_REV_POLARITY 0x0400
82#define I82577_PHY_STATUS2_MDIX 0x0800
83#define I82577_PHY_STATUS2_SPEED_MASK 0x0300
84#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
85
86/* I82577 PHY Control 2 */
e86fd891
BA
87#define I82577_PHY_CTRL2_MANUAL_MDIX 0x0200
88#define I82577_PHY_CTRL2_AUTO_MDI_MDIX 0x0400
89#define I82577_PHY_CTRL2_MDIX_CFG_MASK 0x0600
a4f58f54
BA
90
91/* I82577 PHY Diagnostics Status */
92#define I82577_DSTATUS_CABLE_LENGTH 0x03FC
93#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
94
95/* BM PHY Copper Specific Control 1 */
96#define BM_CS_CTRL1 16
97
a4f58f54
BA
98#define HV_MUX_DATA_CTRL PHY_REG(776, 16)
99#define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400
100#define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004
101
bc7f75fa
AK
102/**
103 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
104 * @hw: pointer to the HW structure
105 *
106 * Read the PHY management control register and check whether a PHY reset
107 * is blocked. If a reset is not blocked return 0, otherwise
108 * return E1000_BLK_PHY_RESET (12).
109 **/
110s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
111{
112 u32 manc;
113
114 manc = er32(MANC);
115
116 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
117 E1000_BLK_PHY_RESET : 0;
118}
119
120/**
121 * e1000e_get_phy_id - Retrieve the PHY ID and revision
122 * @hw: pointer to the HW structure
123 *
124 * Reads the PHY registers and stores the PHY ID and possibly the PHY
125 * revision in the hardware structure.
126 **/
127s32 e1000e_get_phy_id(struct e1000_hw *hw)
128{
129 struct e1000_phy_info *phy = &hw->phy;
a4f58f54 130 s32 ret_val = 0;
bc7f75fa 131 u16 phy_id;
a4f58f54 132 u16 retry_count = 0;
bc7f75fa 133
668018d7 134 if (!phy->ops.read_reg)
5015e53a 135 return 0;
bc7f75fa 136
a4f58f54
BA
137 while (retry_count < 2) {
138 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
139 if (ret_val)
5015e53a 140 return ret_val;
bc7f75fa 141
a4f58f54
BA
142 phy->id = (u32)(phy_id << 16);
143 udelay(20);
144 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
145 if (ret_val)
5015e53a 146 return ret_val;
bc7f75fa 147
a4f58f54
BA
148 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
149 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
150
151 if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
5015e53a 152 return 0;
a4f58f54 153
a4f58f54
BA
154 retry_count++;
155 }
5015e53a
BA
156
157 return 0;
bc7f75fa
AK
158}
159
160/**
161 * e1000e_phy_reset_dsp - Reset PHY DSP
162 * @hw: pointer to the HW structure
163 *
164 * Reset the digital signal processor.
165 **/
166s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
167{
168 s32 ret_val;
169
170 ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
171 if (ret_val)
172 return ret_val;
173
174 return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
175}
176
177/**
2d9498f3 178 * e1000e_read_phy_reg_mdic - Read MDI control register
bc7f75fa
AK
179 * @hw: pointer to the HW structure
180 * @offset: register offset to be read
181 * @data: pointer to the read data
182 *
489815ce 183 * Reads the MDI control register in the PHY at offset and stores the
bc7f75fa
AK
184 * information read to data.
185 **/
2d9498f3 186s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
bc7f75fa
AK
187{
188 struct e1000_phy_info *phy = &hw->phy;
189 u32 i, mdic = 0;
190
191 if (offset > MAX_PHY_REG_ADDRESS) {
3bb99fe2 192 e_dbg("PHY Address %d is out of range\n", offset);
bc7f75fa
AK
193 return -E1000_ERR_PARAM;
194 }
195
e921eb1a 196 /* Set up Op-code, Phy Address, and register offset in the MDI
bc7f75fa
AK
197 * Control register. The MAC will take care of interfacing with the
198 * PHY to retrieve the desired data.
199 */
200 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
201 (phy->addr << E1000_MDIC_PHY_SHIFT) |
202 (E1000_MDIC_OP_READ));
203
204 ew32(MDIC, mdic);
205
e921eb1a 206 /* Poll the ready bit to see if the MDI read completed
ad68076e
BA
207 * Increasing the time out as testing showed failures with
208 * the lower time out
209 */
2d9498f3 210 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
bc7f75fa
AK
211 udelay(50);
212 mdic = er32(MDIC);
213 if (mdic & E1000_MDIC_READY)
214 break;
215 }
216 if (!(mdic & E1000_MDIC_READY)) {
3bb99fe2 217 e_dbg("MDI Read did not complete\n");
bc7f75fa
AK
218 return -E1000_ERR_PHY;
219 }
220 if (mdic & E1000_MDIC_ERROR) {
3bb99fe2 221 e_dbg("MDI Error\n");
bc7f75fa
AK
222 return -E1000_ERR_PHY;
223 }
224 *data = (u16) mdic;
225
e921eb1a 226 /* Allow some time after each MDIC transaction to avoid
664dc878
BA
227 * reading duplicate data in the next MDIC transaction.
228 */
229 if (hw->mac.type == e1000_pch2lan)
230 udelay(100);
231
bc7f75fa
AK
232 return 0;
233}
234
235/**
2d9498f3 236 * e1000e_write_phy_reg_mdic - Write MDI control register
bc7f75fa
AK
237 * @hw: pointer to the HW structure
238 * @offset: register offset to write to
239 * @data: data to write to register at offset
240 *
241 * Writes data to MDI control register in the PHY at offset.
242 **/
2d9498f3 243s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
bc7f75fa
AK
244{
245 struct e1000_phy_info *phy = &hw->phy;
246 u32 i, mdic = 0;
247
248 if (offset > MAX_PHY_REG_ADDRESS) {
3bb99fe2 249 e_dbg("PHY Address %d is out of range\n", offset);
bc7f75fa
AK
250 return -E1000_ERR_PARAM;
251 }
252
e921eb1a 253 /* Set up Op-code, Phy Address, and register offset in the MDI
bc7f75fa
AK
254 * Control register. The MAC will take care of interfacing with the
255 * PHY to retrieve the desired data.
256 */
257 mdic = (((u32)data) |
258 (offset << E1000_MDIC_REG_SHIFT) |
259 (phy->addr << E1000_MDIC_PHY_SHIFT) |
260 (E1000_MDIC_OP_WRITE));
261
262 ew32(MDIC, mdic);
263
e921eb1a 264 /* Poll the ready bit to see if the MDI read completed
2d9498f3
DG
265 * Increasing the time out as testing showed failures with
266 * the lower time out
267 */
268 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
269 udelay(50);
bc7f75fa
AK
270 mdic = er32(MDIC);
271 if (mdic & E1000_MDIC_READY)
272 break;
273 }
274 if (!(mdic & E1000_MDIC_READY)) {
3bb99fe2 275 e_dbg("MDI Write did not complete\n");
bc7f75fa
AK
276 return -E1000_ERR_PHY;
277 }
2d9498f3 278 if (mdic & E1000_MDIC_ERROR) {
3bb99fe2 279 e_dbg("MDI Error\n");
2d9498f3
DG
280 return -E1000_ERR_PHY;
281 }
bc7f75fa 282
e921eb1a 283 /* Allow some time after each MDIC transaction to avoid
664dc878
BA
284 * reading duplicate data in the next MDIC transaction.
285 */
286 if (hw->mac.type == e1000_pch2lan)
287 udelay(100);
288
bc7f75fa
AK
289 return 0;
290}
291
292/**
293 * e1000e_read_phy_reg_m88 - Read m88 PHY register
294 * @hw: pointer to the HW structure
295 * @offset: register offset to be read
296 * @data: pointer to the read data
297 *
298 * Acquires semaphore, if necessary, then reads the PHY register at offset
299 * and storing the retrieved information in data. Release any acquired
300 * semaphores before exiting.
301 **/
302s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
303{
304 s32 ret_val;
305
94d8186a 306 ret_val = hw->phy.ops.acquire(hw);
bc7f75fa
AK
307 if (ret_val)
308 return ret_val;
309
2d9498f3
DG
310 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
311 data);
bc7f75fa 312
94d8186a 313 hw->phy.ops.release(hw);
bc7f75fa
AK
314
315 return ret_val;
316}
317
318/**
319 * e1000e_write_phy_reg_m88 - Write m88 PHY register
320 * @hw: pointer to the HW structure
321 * @offset: register offset to write to
322 * @data: data to write at register offset
323 *
324 * Acquires semaphore, if necessary, then writes the data to PHY register
325 * at the offset. Release any acquired semaphores before exiting.
326 **/
327s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
328{
329 s32 ret_val;
330
94d8186a 331 ret_val = hw->phy.ops.acquire(hw);
bc7f75fa
AK
332 if (ret_val)
333 return ret_val;
334
2d9498f3
DG
335 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
336 data);
bc7f75fa 337
94d8186a 338 hw->phy.ops.release(hw);
bc7f75fa
AK
339
340 return ret_val;
341}
342
2b6b168d
BA
343/**
344 * e1000_set_page_igp - Set page as on IGP-like PHY(s)
345 * @hw: pointer to the HW structure
346 * @page: page to set (shifted left when necessary)
347 *
348 * Sets PHY page required for PHY register access. Assumes semaphore is
349 * already acquired. Note, this function sets phy.addr to 1 so the caller
350 * must set it appropriately (if necessary) after this function returns.
351 **/
352s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
353{
354 e_dbg("Setting page 0x%x\n", page);
355
356 hw->phy.addr = 1;
357
358 return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
359}
360
bc7f75fa 361/**
5ccdcecb 362 * __e1000e_read_phy_reg_igp - Read igp PHY register
bc7f75fa
AK
363 * @hw: pointer to the HW structure
364 * @offset: register offset to be read
365 * @data: pointer to the read data
5ccdcecb 366 * @locked: semaphore has already been acquired or not
bc7f75fa
AK
367 *
368 * Acquires semaphore, if necessary, then reads the PHY register at offset
5ccdcecb 369 * and stores the retrieved information in data. Release any acquired
bc7f75fa
AK
370 * semaphores before exiting.
371 **/
5ccdcecb
BA
372static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
373 bool locked)
bc7f75fa 374{
5ccdcecb 375 s32 ret_val = 0;
bc7f75fa 376
5ccdcecb 377 if (!locked) {
668018d7 378 if (!hw->phy.ops.acquire)
5015e53a 379 return 0;
5ccdcecb 380
94d8186a 381 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb 382 if (ret_val)
5015e53a 383 return ret_val;
5ccdcecb 384 }
bc7f75fa 385
5015e53a 386 if (offset > MAX_PHY_MULTI_PAGE_REG)
2d9498f3
DG
387 ret_val = e1000e_write_phy_reg_mdic(hw,
388 IGP01E1000_PHY_PAGE_SELECT,
389 (u16)offset);
5015e53a
BA
390 if (!ret_val)
391 ret_val = e1000e_read_phy_reg_mdic(hw,
392 MAX_PHY_REG_ADDRESS & offset,
393 data);
5ccdcecb 394 if (!locked)
94d8186a 395 hw->phy.ops.release(hw);
5015e53a 396
bc7f75fa
AK
397 return ret_val;
398}
399
5ccdcecb
BA
400/**
401 * e1000e_read_phy_reg_igp - Read igp PHY register
402 * @hw: pointer to the HW structure
403 * @offset: register offset to be read
404 * @data: pointer to the read data
405 *
406 * Acquires semaphore then reads the PHY register at offset and stores the
407 * retrieved information in data.
408 * Release the acquired semaphore before exiting.
409 **/
410s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
411{
412 return __e1000e_read_phy_reg_igp(hw, offset, data, false);
413}
414
415/**
416 * e1000e_read_phy_reg_igp_locked - Read igp PHY register
417 * @hw: pointer to the HW structure
418 * @offset: register offset to be read
419 * @data: pointer to the read data
420 *
421 * Reads the PHY register at offset and stores the retrieved information
422 * in data. Assumes semaphore already acquired.
423 **/
424s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
425{
426 return __e1000e_read_phy_reg_igp(hw, offset, data, true);
427}
428
bc7f75fa
AK
429/**
430 * e1000e_write_phy_reg_igp - Write igp PHY register
431 * @hw: pointer to the HW structure
432 * @offset: register offset to write to
433 * @data: data to write at register offset
5ccdcecb 434 * @locked: semaphore has already been acquired or not
bc7f75fa
AK
435 *
436 * Acquires semaphore, if necessary, then writes the data to PHY register
437 * at the offset. Release any acquired semaphores before exiting.
438 **/
5ccdcecb
BA
439static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
440 bool locked)
bc7f75fa 441{
5ccdcecb 442 s32 ret_val = 0;
bc7f75fa 443
5ccdcecb 444 if (!locked) {
668018d7 445 if (!hw->phy.ops.acquire)
5015e53a 446 return 0;
5ccdcecb 447
94d8186a 448 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb 449 if (ret_val)
5015e53a 450 return ret_val;
5ccdcecb 451 }
bc7f75fa 452
5015e53a 453 if (offset > MAX_PHY_MULTI_PAGE_REG)
2d9498f3
DG
454 ret_val = e1000e_write_phy_reg_mdic(hw,
455 IGP01E1000_PHY_PAGE_SELECT,
456 (u16)offset);
5015e53a
BA
457 if (!ret_val)
458 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
459 offset,
460 data);
5ccdcecb 461 if (!locked)
94d8186a 462 hw->phy.ops.release(hw);
bc7f75fa
AK
463
464 return ret_val;
465}
466
467/**
5ccdcecb
BA
468 * e1000e_write_phy_reg_igp - Write igp PHY register
469 * @hw: pointer to the HW structure
470 * @offset: register offset to write to
471 * @data: data to write at register offset
472 *
473 * Acquires semaphore then writes the data to PHY register
474 * at the offset. Release any acquired semaphores before exiting.
475 **/
476s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
477{
478 return __e1000e_write_phy_reg_igp(hw, offset, data, false);
479}
480
481/**
482 * e1000e_write_phy_reg_igp_locked - Write igp PHY register
483 * @hw: pointer to the HW structure
484 * @offset: register offset to write to
485 * @data: data to write at register offset
486 *
487 * Writes the data to PHY register at the offset.
488 * Assumes semaphore already acquired.
489 **/
490s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
491{
492 return __e1000e_write_phy_reg_igp(hw, offset, data, true);
493}
494
495/**
496 * __e1000_read_kmrn_reg - Read kumeran register
bc7f75fa
AK
497 * @hw: pointer to the HW structure
498 * @offset: register offset to be read
499 * @data: pointer to the read data
5ccdcecb 500 * @locked: semaphore has already been acquired or not
bc7f75fa
AK
501 *
502 * Acquires semaphore, if necessary. Then reads the PHY register at offset
503 * using the kumeran interface. The information retrieved is stored in data.
504 * Release any acquired semaphores before exiting.
505 **/
5ccdcecb
BA
506static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
507 bool locked)
bc7f75fa
AK
508{
509 u32 kmrnctrlsta;
bc7f75fa 510
5ccdcecb 511 if (!locked) {
5015e53a
BA
512 s32 ret_val = 0;
513
668018d7 514 if (!hw->phy.ops.acquire)
5015e53a 515 return 0;
5ccdcecb 516
94d8186a 517 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb 518 if (ret_val)
5015e53a 519 return ret_val;
5ccdcecb 520 }
bc7f75fa
AK
521
522 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
523 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
524 ew32(KMRNCTRLSTA, kmrnctrlsta);
945a5151 525 e1e_flush();
bc7f75fa
AK
526
527 udelay(2);
528
529 kmrnctrlsta = er32(KMRNCTRLSTA);
530 *data = (u16)kmrnctrlsta;
531
5ccdcecb 532 if (!locked)
94d8186a 533 hw->phy.ops.release(hw);
bc7f75fa 534
5015e53a 535 return 0;
bc7f75fa
AK
536}
537
538/**
5ccdcecb
BA
539 * e1000e_read_kmrn_reg - Read kumeran register
540 * @hw: pointer to the HW structure
541 * @offset: register offset to be read
542 * @data: pointer to the read data
543 *
544 * Acquires semaphore then reads the PHY register at offset using the
545 * kumeran interface. The information retrieved is stored in data.
546 * Release the acquired semaphore before exiting.
547 **/
548s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
549{
550 return __e1000_read_kmrn_reg(hw, offset, data, false);
551}
552
553/**
1d5846b9 554 * e1000e_read_kmrn_reg_locked - Read kumeran register
5ccdcecb
BA
555 * @hw: pointer to the HW structure
556 * @offset: register offset to be read
557 * @data: pointer to the read data
558 *
559 * Reads the PHY register at offset using the kumeran interface. The
560 * information retrieved is stored in data.
561 * Assumes semaphore already acquired.
562 **/
1d5846b9 563s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
5ccdcecb
BA
564{
565 return __e1000_read_kmrn_reg(hw, offset, data, true);
566}
567
568/**
569 * __e1000_write_kmrn_reg - Write kumeran register
bc7f75fa
AK
570 * @hw: pointer to the HW structure
571 * @offset: register offset to write to
572 * @data: data to write at register offset
5ccdcecb 573 * @locked: semaphore has already been acquired or not
bc7f75fa
AK
574 *
575 * Acquires semaphore, if necessary. Then write the data to PHY register
576 * at the offset using the kumeran interface. Release any acquired semaphores
577 * before exiting.
578 **/
5ccdcecb
BA
579static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
580 bool locked)
bc7f75fa
AK
581{
582 u32 kmrnctrlsta;
bc7f75fa 583
5ccdcecb 584 if (!locked) {
5015e53a
BA
585 s32 ret_val = 0;
586
668018d7 587 if (!hw->phy.ops.acquire)
5015e53a 588 return 0;
5ccdcecb 589
94d8186a 590 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb 591 if (ret_val)
5015e53a 592 return ret_val;
5ccdcecb 593 }
bc7f75fa
AK
594
595 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
596 E1000_KMRNCTRLSTA_OFFSET) | data;
597 ew32(KMRNCTRLSTA, kmrnctrlsta);
945a5151 598 e1e_flush();
bc7f75fa
AK
599
600 udelay(2);
bc7f75fa 601
5ccdcecb 602 if (!locked)
94d8186a 603 hw->phy.ops.release(hw);
5ccdcecb 604
5015e53a 605 return 0;
bc7f75fa
AK
606}
607
5ccdcecb
BA
608/**
609 * e1000e_write_kmrn_reg - Write kumeran register
610 * @hw: pointer to the HW structure
611 * @offset: register offset to write to
612 * @data: data to write at register offset
613 *
614 * Acquires semaphore then writes the data to the PHY register at the offset
615 * using the kumeran interface. Release the acquired semaphore before exiting.
616 **/
617s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
618{
619 return __e1000_write_kmrn_reg(hw, offset, data, false);
620}
621
622/**
1d5846b9 623 * e1000e_write_kmrn_reg_locked - Write kumeran register
5ccdcecb
BA
624 * @hw: pointer to the HW structure
625 * @offset: register offset to write to
626 * @data: data to write at register offset
627 *
628 * Write the data to PHY register at the offset using the kumeran interface.
629 * Assumes semaphore already acquired.
630 **/
1d5846b9 631s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
5ccdcecb
BA
632{
633 return __e1000_write_kmrn_reg(hw, offset, data, true);
634}
635
7b9f7e35
BA
636/**
637 * e1000_set_master_slave_mode - Setup PHY for Master/slave mode
638 * @hw: pointer to the HW structure
639 *
640 * Sets up Master/slave mode
641 **/
642static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
643{
644 s32 ret_val;
645 u16 phy_data;
646
647 /* Resolve Master/Slave mode */
648 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &phy_data);
649 if (ret_val)
650 return ret_val;
651
652 /* load defaults for future use */
653 hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
654 ((phy_data & CR_1000T_MS_VALUE) ?
655 e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
656
657 switch (hw->phy.ms_type) {
658 case e1000_ms_force_master:
659 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
660 break;
661 case e1000_ms_force_slave:
662 phy_data |= CR_1000T_MS_ENABLE;
663 phy_data &= ~(CR_1000T_MS_VALUE);
664 break;
665 case e1000_ms_auto:
666 phy_data &= ~CR_1000T_MS_ENABLE;
667 /* fall-through */
668 default:
669 break;
670 }
671
672 return e1e_wphy(hw, PHY_1000T_CTRL, phy_data);
673}
674
a4f58f54
BA
675/**
676 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
677 * @hw: pointer to the HW structure
678 *
679 * Sets up Carrier-sense on Transmit and downshift values.
680 **/
681s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
682{
a4f58f54
BA
683 s32 ret_val;
684 u16 phy_data;
685
af667a29 686 /* Enable CRS on Tx. This must be set for half-duplex operation. */
482fed85 687 ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
a4f58f54 688 if (ret_val)
5015e53a 689 return ret_val;
a4f58f54
BA
690
691 phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
692
693 /* Enable downshift */
694 phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
695
7b9f7e35
BA
696 ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
697 if (ret_val)
698 return ret_val;
699
e86fd891
BA
700 /* Set MDI/MDIX mode */
701 ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
702 if (ret_val)
703 return ret_val;
704 phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
e921eb1a 705 /* Options:
e86fd891
BA
706 * 0 - Auto (default)
707 * 1 - MDI mode
708 * 2 - MDI-X mode
709 */
710 switch (hw->phy.mdix) {
711 case 1:
712 break;
713 case 2:
714 phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
715 break;
716 case 0:
717 default:
718 phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
719 break;
720 }
721 ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
722 if (ret_val)
723 return ret_val;
724
7b9f7e35 725 return e1000_set_master_slave_mode(hw);
a4f58f54
BA
726}
727
bc7f75fa
AK
728/**
729 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
730 * @hw: pointer to the HW structure
731 *
732 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
733 * and downshift values are set also.
734 **/
735s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
736{
737 struct e1000_phy_info *phy = &hw->phy;
738 s32 ret_val;
739 u16 phy_data;
740
ad68076e 741 /* Enable CRS on Tx. This must be set for half-duplex operation. */
bc7f75fa
AK
742 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
743 if (ret_val)
744 return ret_val;
745
a4f58f54
BA
746 /* For BM PHY this bit is downshift enable */
747 if (phy->type != e1000_phy_bm)
2d9498f3 748 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
bc7f75fa 749
e921eb1a 750 /* Options:
bc7f75fa
AK
751 * MDI/MDI-X = 0 (default)
752 * 0 - Auto for all speeds
753 * 1 - MDI mode
754 * 2 - MDI-X mode
755 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
756 */
757 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
758
759 switch (phy->mdix) {
760 case 1:
761 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
762 break;
763 case 2:
764 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
765 break;
766 case 3:
767 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
768 break;
769 case 0:
770 default:
771 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
772 break;
773 }
774
e921eb1a 775 /* Options:
bc7f75fa
AK
776 * disable_polarity_correction = 0 (default)
777 * Automatic Correction for Reversed Cable Polarity
778 * 0 - Disabled
779 * 1 - Enabled
780 */
781 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
04499ec4 782 if (phy->disable_polarity_correction)
bc7f75fa
AK
783 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
784
97ac8cae 785 /* Enable downshift on BM (disabled by default) */
885fe7be
MV
786 if (phy->type == e1000_phy_bm) {
787 /* For 82574/82583, first disable then enable downshift */
788 if (phy->id == BME1000_E_PHY_ID_R2) {
789 phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
790 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
791 phy_data);
792 if (ret_val)
793 return ret_val;
794 /* Commit the changes. */
795 ret_val = e1000e_commit_phy(hw);
796 if (ret_val) {
797 e_dbg("Error committing the PHY changes\n");
798 return ret_val;
799 }
800 }
801
97ac8cae 802 phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
885fe7be 803 }
97ac8cae 804
bc7f75fa
AK
805 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
806 if (ret_val)
807 return ret_val;
808
4662e82b
BA
809 if ((phy->type == e1000_phy_m88) &&
810 (phy->revision < E1000_REVISION_4) &&
811 (phy->id != BME1000_E_PHY_ID_R2)) {
e921eb1a 812 /* Force TX_CLK in the Extended PHY Specific Control Register
bc7f75fa
AK
813 * to 25MHz clock.
814 */
815 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
816 if (ret_val)
817 return ret_val;
818
819 phy_data |= M88E1000_EPSCR_TX_CLK_25;
820
821 if ((phy->revision == 2) &&
822 (phy->id == M88E1111_I_PHY_ID)) {
823 /* 82573L PHY - set the downshift counter to 5x. */
824 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
825 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
826 } else {
827 /* Configure Master and Slave downshift values */
828 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
829 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
830 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
831 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
832 }
833 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
834 if (ret_val)
835 return ret_val;
836 }
837
4662e82b
BA
838 if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
839 /* Set PHY page 0, register 29 to 0x0003 */
840 ret_val = e1e_wphy(hw, 29, 0x0003);
841 if (ret_val)
842 return ret_val;
843
844 /* Set PHY page 0, register 30 to 0x0000 */
845 ret_val = e1e_wphy(hw, 30, 0x0000);
846 if (ret_val)
847 return ret_val;
848 }
849
bc7f75fa
AK
850 /* Commit the changes. */
851 ret_val = e1000e_commit_phy(hw);
a4f58f54 852 if (ret_val) {
3bb99fe2 853 e_dbg("Error committing the PHY changes\n");
a4f58f54
BA
854 return ret_val;
855 }
bc7f75fa 856
a4f58f54 857 if (phy->type == e1000_phy_82578) {
482fed85 858 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
a4f58f54
BA
859 if (ret_val)
860 return ret_val;
861
862 /* 82578 PHY - set the downshift count to 1x. */
863 phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
864 phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
482fed85 865 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
a4f58f54
BA
866 if (ret_val)
867 return ret_val;
868 }
869
870 return 0;
bc7f75fa
AK
871}
872
873/**
874 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
875 * @hw: pointer to the HW structure
876 *
877 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
878 * igp PHY's.
879 **/
880s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
881{
882 struct e1000_phy_info *phy = &hw->phy;
883 s32 ret_val;
884 u16 data;
885
886 ret_val = e1000_phy_hw_reset(hw);
887 if (ret_val) {
3bb99fe2 888 e_dbg("Error resetting the PHY.\n");
bc7f75fa
AK
889 return ret_val;
890 }
891
e921eb1a 892 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
2d9498f3
DG
893 * timeout issues when LFS is enabled.
894 */
895 msleep(100);
bc7f75fa
AK
896
897 /* disable lplu d0 during driver init */
564ea9bb 898 ret_val = e1000_set_d0_lplu_state(hw, false);
bc7f75fa 899 if (ret_val) {
3bb99fe2 900 e_dbg("Error Disabling LPLU D0\n");
bc7f75fa
AK
901 return ret_val;
902 }
903 /* Configure mdi-mdix settings */
904 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
905 if (ret_val)
906 return ret_val;
907
908 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
909
910 switch (phy->mdix) {
911 case 1:
912 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
913 break;
914 case 2:
915 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
916 break;
917 case 0:
918 default:
919 data |= IGP01E1000_PSCR_AUTO_MDIX;
920 break;
921 }
922 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
923 if (ret_val)
924 return ret_val;
925
926 /* set auto-master slave resolution settings */
927 if (hw->mac.autoneg) {
e921eb1a 928 /* when autonegotiation advertisement is only 1000Mbps then we
bc7f75fa 929 * should disable SmartSpeed and enable Auto MasterSlave
ad68076e
BA
930 * resolution as hardware default.
931 */
bc7f75fa
AK
932 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
933 /* Disable SmartSpeed */
934 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 935 &data);
bc7f75fa
AK
936 if (ret_val)
937 return ret_val;
938
939 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
940 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 941 data);
bc7f75fa
AK
942 if (ret_val)
943 return ret_val;
944
945 /* Set auto Master/Slave resolution process */
946 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
947 if (ret_val)
948 return ret_val;
949
950 data &= ~CR_1000T_MS_ENABLE;
951 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
952 if (ret_val)
953 return ret_val;
954 }
955
7b9f7e35 956 ret_val = e1000_set_master_slave_mode(hw);
bc7f75fa
AK
957 }
958
959 return ret_val;
960}
961
962/**
963 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
964 * @hw: pointer to the HW structure
965 *
966 * Reads the MII auto-neg advertisement register and/or the 1000T control
967 * register and if the PHY is already setup for auto-negotiation, then
968 * return successful. Otherwise, setup advertisement and flow control to
969 * the appropriate values for the wanted auto-negotiation.
970 **/
971static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
972{
973 struct e1000_phy_info *phy = &hw->phy;
974 s32 ret_val;
975 u16 mii_autoneg_adv_reg;
976 u16 mii_1000t_ctrl_reg = 0;
977
978 phy->autoneg_advertised &= phy->autoneg_mask;
979
980 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
981 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
982 if (ret_val)
983 return ret_val;
984
985 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
986 /* Read the MII 1000Base-T Control Register (Address 9). */
987 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
988 if (ret_val)
989 return ret_val;
990 }
991
e921eb1a 992 /* Need to parse both autoneg_advertised and fc and set up
bc7f75fa
AK
993 * the appropriate PHY registers. First we will parse for
994 * autoneg_advertised software override. Since we can advertise
995 * a plethora of combinations, we need to check each bit
996 * individually.
997 */
998
e921eb1a 999 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
bc7f75fa
AK
1000 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1001 * the 1000Base-T Control Register (Address 9).
1002 */
1003 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
1004 NWAY_AR_100TX_HD_CAPS |
1005 NWAY_AR_10T_FD_CAPS |
1006 NWAY_AR_10T_HD_CAPS);
1007 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
1008
3bb99fe2 1009 e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
bc7f75fa
AK
1010
1011 /* Do we want to advertise 10 Mb Half Duplex? */
1012 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
3bb99fe2 1013 e_dbg("Advertise 10mb Half duplex\n");
bc7f75fa
AK
1014 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1015 }
1016
1017 /* Do we want to advertise 10 Mb Full Duplex? */
1018 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
3bb99fe2 1019 e_dbg("Advertise 10mb Full duplex\n");
bc7f75fa
AK
1020 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1021 }
1022
1023 /* Do we want to advertise 100 Mb Half Duplex? */
1024 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
3bb99fe2 1025 e_dbg("Advertise 100mb Half duplex\n");
bc7f75fa
AK
1026 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1027 }
1028
1029 /* Do we want to advertise 100 Mb Full Duplex? */
1030 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
3bb99fe2 1031 e_dbg("Advertise 100mb Full duplex\n");
bc7f75fa
AK
1032 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1033 }
1034
1035 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1036 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
3bb99fe2 1037 e_dbg("Advertise 1000mb Half duplex request denied!\n");
bc7f75fa
AK
1038
1039 /* Do we want to advertise 1000 Mb Full Duplex? */
1040 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
3bb99fe2 1041 e_dbg("Advertise 1000mb Full duplex\n");
bc7f75fa
AK
1042 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1043 }
1044
e921eb1a 1045 /* Check for a software override of the flow control settings, and
bc7f75fa
AK
1046 * setup the PHY advertisement registers accordingly. If
1047 * auto-negotiation is enabled, then software will have to set the
1048 * "PAUSE" bits to the correct value in the Auto-Negotiation
1049 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1050 * negotiation.
1051 *
1052 * The possible values of the "fc" parameter are:
1053 * 0: Flow control is completely disabled
1054 * 1: Rx flow control is enabled (we can receive pause frames
3d3a1676 1055 * but not send pause frames).
bc7f75fa 1056 * 2: Tx flow control is enabled (we can send pause frames
3d3a1676 1057 * but we do not support receiving pause frames).
ad68076e 1058 * 3: Both Rx and Tx flow control (symmetric) are enabled.
bc7f75fa 1059 * other: No software override. The flow control configuration
3d3a1676 1060 * in the EEPROM is used.
bc7f75fa 1061 */
5c48ef3e 1062 switch (hw->fc.current_mode) {
bc7f75fa 1063 case e1000_fc_none:
e921eb1a 1064 /* Flow control (Rx & Tx) is completely disabled by a
bc7f75fa
AK
1065 * software over-ride.
1066 */
1067 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1068 break;
1069 case e1000_fc_rx_pause:
e921eb1a 1070 /* Rx Flow control is enabled, and Tx Flow control is
bc7f75fa 1071 * disabled, by a software over-ride.
ad68076e
BA
1072 *
1073 * Since there really isn't a way to advertise that we are
1074 * capable of Rx Pause ONLY, we will advertise that we
1075 * support both symmetric and asymmetric Rx PAUSE. Later
bc7f75fa
AK
1076 * (in e1000e_config_fc_after_link_up) we will disable the
1077 * hw's ability to send PAUSE frames.
1078 */
1079 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1080 break;
1081 case e1000_fc_tx_pause:
e921eb1a 1082 /* Tx Flow control is enabled, and Rx Flow control is
bc7f75fa
AK
1083 * disabled, by a software over-ride.
1084 */
1085 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1086 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1087 break;
1088 case e1000_fc_full:
e921eb1a 1089 /* Flow control (both Rx and Tx) is enabled by a software
bc7f75fa
AK
1090 * over-ride.
1091 */
1092 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1093 break;
1094 default:
3bb99fe2 1095 e_dbg("Flow control param set incorrectly\n");
7eb61d81 1096 return -E1000_ERR_CONFIG;
bc7f75fa
AK
1097 }
1098
1099 ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1100 if (ret_val)
1101 return ret_val;
1102
3bb99fe2 1103 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
bc7f75fa 1104
b1cdfead 1105 if (phy->autoneg_mask & ADVERTISE_1000_FULL)
bc7f75fa 1106 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
bc7f75fa
AK
1107
1108 return ret_val;
1109}
1110
1111/**
1112 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1113 * @hw: pointer to the HW structure
1114 *
1115 * Performs initial bounds checking on autoneg advertisement parameter, then
1116 * configure to advertise the full capability. Setup the PHY to autoneg
1117 * and restart the negotiation process between the link partner. If
ad68076e 1118 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
bc7f75fa
AK
1119 **/
1120static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1121{
1122 struct e1000_phy_info *phy = &hw->phy;
1123 s32 ret_val;
1124 u16 phy_ctrl;
1125
e921eb1a 1126 /* Perform some bounds checking on the autoneg advertisement
bc7f75fa
AK
1127 * parameter.
1128 */
1129 phy->autoneg_advertised &= phy->autoneg_mask;
1130
e921eb1a 1131 /* If autoneg_advertised is zero, we assume it was not defaulted
bc7f75fa
AK
1132 * by the calling code so we set to advertise full capability.
1133 */
04499ec4 1134 if (!phy->autoneg_advertised)
bc7f75fa
AK
1135 phy->autoneg_advertised = phy->autoneg_mask;
1136
3bb99fe2 1137 e_dbg("Reconfiguring auto-neg advertisement params\n");
bc7f75fa
AK
1138 ret_val = e1000_phy_setup_autoneg(hw);
1139 if (ret_val) {
3bb99fe2 1140 e_dbg("Error Setting up Auto-Negotiation\n");
bc7f75fa
AK
1141 return ret_val;
1142 }
3bb99fe2 1143 e_dbg("Restarting Auto-Neg\n");
bc7f75fa 1144
e921eb1a 1145 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
bc7f75fa
AK
1146 * the Auto Neg Restart bit in the PHY control register.
1147 */
1148 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1149 if (ret_val)
1150 return ret_val;
1151
1152 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1153 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1154 if (ret_val)
1155 return ret_val;
1156
e921eb1a 1157 /* Does the user want to wait for Auto-Neg to complete here, or
bc7f75fa
AK
1158 * check at a later time (for example, callback routine).
1159 */
318a94d6 1160 if (phy->autoneg_wait_to_complete) {
bc7f75fa
AK
1161 ret_val = e1000_wait_autoneg(hw);
1162 if (ret_val) {
434f1392 1163 e_dbg("Error while waiting for autoneg to complete\n");
bc7f75fa
AK
1164 return ret_val;
1165 }
1166 }
1167
f92518dd 1168 hw->mac.get_link_status = true;
bc7f75fa
AK
1169
1170 return ret_val;
1171}
1172
1173/**
1174 * e1000e_setup_copper_link - Configure copper link settings
1175 * @hw: pointer to the HW structure
1176 *
1177 * Calls the appropriate function to configure the link for auto-neg or forced
1178 * speed and duplex. Then we check for link, once link is established calls
1179 * to configure collision distance and flow control are called. If link is
1180 * not established, we return -E1000_ERR_PHY (-2).
1181 **/
1182s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1183{
1184 s32 ret_val;
1185 bool link;
1186
1187 if (hw->mac.autoneg) {
e921eb1a 1188 /* Setup autoneg and flow control advertisement and perform
ad68076e
BA
1189 * autonegotiation.
1190 */
bc7f75fa
AK
1191 ret_val = e1000_copper_link_autoneg(hw);
1192 if (ret_val)
1193 return ret_val;
1194 } else {
e921eb1a 1195 /* PHY will be set to 10H, 10F, 100H or 100F
ad68076e
BA
1196 * depending on user settings.
1197 */
3bb99fe2 1198 e_dbg("Forcing Speed and Duplex\n");
bc7f75fa
AK
1199 ret_val = e1000_phy_force_speed_duplex(hw);
1200 if (ret_val) {
3bb99fe2 1201 e_dbg("Error Forcing Speed and Duplex\n");
bc7f75fa
AK
1202 return ret_val;
1203 }
1204 }
1205
e921eb1a 1206 /* Check link status. Wait up to 100 microseconds for link to become
bc7f75fa
AK
1207 * valid.
1208 */
3d3a1676
BA
1209 ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1210 &link);
bc7f75fa
AK
1211 if (ret_val)
1212 return ret_val;
1213
1214 if (link) {
3bb99fe2 1215 e_dbg("Valid link established!!!\n");
57cde763 1216 hw->mac.ops.config_collision_dist(hw);
bc7f75fa
AK
1217 ret_val = e1000e_config_fc_after_link_up(hw);
1218 } else {
3bb99fe2 1219 e_dbg("Unable to establish link!!!\n");
bc7f75fa
AK
1220 }
1221
1222 return ret_val;
1223}
1224
1225/**
1226 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1227 * @hw: pointer to the HW structure
1228 *
1229 * Calls the PHY setup function to force speed and duplex. Clears the
1230 * auto-crossover to force MDI manually. Waits for link and returns
1231 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1232 **/
1233s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1234{
1235 struct e1000_phy_info *phy = &hw->phy;
1236 s32 ret_val;
1237 u16 phy_data;
1238 bool link;
1239
1240 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1241 if (ret_val)
1242 return ret_val;
1243
1244 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1245
1246 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1247 if (ret_val)
1248 return ret_val;
1249
e921eb1a 1250 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
bc7f75fa
AK
1251 * forced whenever speed and duplex are forced.
1252 */
1253 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1254 if (ret_val)
1255 return ret_val;
1256
1257 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1258 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1259
1260 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1261 if (ret_val)
1262 return ret_val;
1263
3bb99fe2 1264 e_dbg("IGP PSCR: %X\n", phy_data);
bc7f75fa
AK
1265
1266 udelay(1);
1267
318a94d6 1268 if (phy->autoneg_wait_to_complete) {
3bb99fe2 1269 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
bc7f75fa 1270
3d3a1676
BA
1271 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1272 100000, &link);
bc7f75fa
AK
1273 if (ret_val)
1274 return ret_val;
1275
1276 if (!link)
3bb99fe2 1277 e_dbg("Link taking longer than expected.\n");
bc7f75fa
AK
1278
1279 /* Try once more */
3d3a1676
BA
1280 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1281 100000, &link);
bc7f75fa
AK
1282 }
1283
1284 return ret_val;
1285}
1286
1287/**
1288 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1289 * @hw: pointer to the HW structure
1290 *
1291 * Calls the PHY setup function to force speed and duplex. Clears the
1292 * auto-crossover to force MDI manually. Resets the PHY to commit the
1293 * changes. If time expires while waiting for link up, we reset the DSP.
ad68076e 1294 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
bc7f75fa
AK
1295 * successful completion, else return corresponding error code.
1296 **/
1297s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1298{
1299 struct e1000_phy_info *phy = &hw->phy;
1300 s32 ret_val;
1301 u16 phy_data;
1302 bool link;
1303
e921eb1a 1304 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
bc7f75fa
AK
1305 * forced whenever speed and duplex are forced.
1306 */
1307 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1308 if (ret_val)
1309 return ret_val;
1310
1311 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1312 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1313 if (ret_val)
1314 return ret_val;
1315
3bb99fe2 1316 e_dbg("M88E1000 PSCR: %X\n", phy_data);
bc7f75fa
AK
1317
1318 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1319 if (ret_val)
1320 return ret_val;
1321
1322 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1323
bc7f75fa
AK
1324 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1325 if (ret_val)
1326 return ret_val;
1327
5aa49c82
BA
1328 /* Reset the phy to commit changes. */
1329 ret_val = e1000e_commit_phy(hw);
1330 if (ret_val)
1331 return ret_val;
bc7f75fa 1332
318a94d6 1333 if (phy->autoneg_wait_to_complete) {
3bb99fe2 1334 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
bc7f75fa
AK
1335
1336 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1337 100000, &link);
1338 if (ret_val)
1339 return ret_val;
1340
1341 if (!link) {
0be84010
BA
1342 if (hw->phy.type != e1000_phy_m88) {
1343 e_dbg("Link taking longer than expected.\n");
1344 } else {
e921eb1a 1345 /* We didn't get link.
0be84010
BA
1346 * Reset the DSP and cross our fingers.
1347 */
482fed85
BA
1348 ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1349 0x001d);
0be84010
BA
1350 if (ret_val)
1351 return ret_val;
1352 ret_val = e1000e_phy_reset_dsp(hw);
1353 if (ret_val)
1354 return ret_val;
1355 }
bc7f75fa
AK
1356 }
1357
1358 /* Try once more */
1359 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1360 100000, &link);
1361 if (ret_val)
1362 return ret_val;
1363 }
1364
0be84010
BA
1365 if (hw->phy.type != e1000_phy_m88)
1366 return 0;
1367
bc7f75fa
AK
1368 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1369 if (ret_val)
1370 return ret_val;
1371
e921eb1a 1372 /* Resetting the phy means we need to re-force TX_CLK in the
bc7f75fa
AK
1373 * Extended PHY Specific Control Register to 25MHz clock from
1374 * the reset value of 2.5MHz.
1375 */
1376 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1377 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1378 if (ret_val)
1379 return ret_val;
1380
e921eb1a 1381 /* In addition, we must re-enable CRS on Tx for both half and full
bc7f75fa
AK
1382 * duplex.
1383 */
1384 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1385 if (ret_val)
1386 return ret_val;
1387
1388 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1389 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1390
1391 return ret_val;
1392}
1393
0be84010
BA
1394/**
1395 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1396 * @hw: pointer to the HW structure
1397 *
1398 * Forces the speed and duplex settings of the PHY.
1399 * This is a function pointer entry point only called by
1400 * PHY setup routines.
1401 **/
1402s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1403{
1404 struct e1000_phy_info *phy = &hw->phy;
1405 s32 ret_val;
1406 u16 data;
1407 bool link;
1408
1409 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
1410 if (ret_val)
5015e53a 1411 return ret_val;
0be84010
BA
1412
1413 e1000e_phy_force_speed_duplex_setup(hw, &data);
1414
1415 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
1416 if (ret_val)
5015e53a 1417 return ret_val;
0be84010
BA
1418
1419 /* Disable MDI-X support for 10/100 */
1420 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1421 if (ret_val)
5015e53a 1422 return ret_val;
0be84010
BA
1423
1424 data &= ~IFE_PMC_AUTO_MDIX;
1425 data &= ~IFE_PMC_FORCE_MDIX;
1426
1427 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1428 if (ret_val)
5015e53a 1429 return ret_val;
0be84010
BA
1430
1431 e_dbg("IFE PMC: %X\n", data);
1432
1433 udelay(1);
1434
1435 if (phy->autoneg_wait_to_complete) {
1436 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1437
3d3a1676
BA
1438 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1439 100000, &link);
0be84010 1440 if (ret_val)
5015e53a 1441 return ret_val;
0be84010
BA
1442
1443 if (!link)
1444 e_dbg("Link taking longer than expected.\n");
1445
1446 /* Try once more */
3d3a1676
BA
1447 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1448 100000, &link);
0be84010 1449 if (ret_val)
5015e53a 1450 return ret_val;
0be84010
BA
1451 }
1452
5015e53a 1453 return 0;
0be84010
BA
1454}
1455
bc7f75fa
AK
1456/**
1457 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1458 * @hw: pointer to the HW structure
1459 * @phy_ctrl: pointer to current value of PHY_CONTROL
1460 *
1461 * Forces speed and duplex on the PHY by doing the following: disable flow
1462 * control, force speed/duplex on the MAC, disable auto speed detection,
1463 * disable auto-negotiation, configure duplex, configure speed, configure
1464 * the collision distance, write configuration to CTRL register. The
1465 * caller must write to the PHY_CONTROL register for these settings to
1466 * take affect.
1467 **/
1468void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1469{
1470 struct e1000_mac_info *mac = &hw->mac;
1471 u32 ctrl;
1472
1473 /* Turn off flow control when forcing speed/duplex */
5c48ef3e 1474 hw->fc.current_mode = e1000_fc_none;
bc7f75fa
AK
1475
1476 /* Force speed/duplex on the mac */
1477 ctrl = er32(CTRL);
1478 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1479 ctrl &= ~E1000_CTRL_SPD_SEL;
1480
1481 /* Disable Auto Speed Detection */
1482 ctrl &= ~E1000_CTRL_ASDE;
1483
1484 /* Disable autoneg on the phy */
1485 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1486
1487 /* Forcing Full or Half Duplex? */
1488 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1489 ctrl &= ~E1000_CTRL_FD;
1490 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
3bb99fe2 1491 e_dbg("Half Duplex\n");
bc7f75fa
AK
1492 } else {
1493 ctrl |= E1000_CTRL_FD;
1494 *phy_ctrl |= MII_CR_FULL_DUPLEX;
3bb99fe2 1495 e_dbg("Full Duplex\n");
bc7f75fa
AK
1496 }
1497
1498 /* Forcing 10mb or 100mb? */
1499 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1500 ctrl |= E1000_CTRL_SPD_100;
1501 *phy_ctrl |= MII_CR_SPEED_100;
1502 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
3bb99fe2 1503 e_dbg("Forcing 100mb\n");
bc7f75fa
AK
1504 } else {
1505 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1506 *phy_ctrl |= MII_CR_SPEED_10;
1507 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
3bb99fe2 1508 e_dbg("Forcing 10mb\n");
bc7f75fa
AK
1509 }
1510
57cde763 1511 hw->mac.ops.config_collision_dist(hw);
bc7f75fa
AK
1512
1513 ew32(CTRL, ctrl);
1514}
1515
1516/**
1517 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1518 * @hw: pointer to the HW structure
1519 * @active: boolean used to enable/disable lplu
1520 *
1521 * Success returns 0, Failure returns 1
1522 *
1523 * The low power link up (lplu) state is set to the power management level D3
1524 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1525 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1526 * is used during Dx states where the power conservation is most important.
1527 * During driver activity, SmartSpeed should be enabled so performance is
1528 * maintained.
1529 **/
1530s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1531{
1532 struct e1000_phy_info *phy = &hw->phy;
1533 s32 ret_val;
1534 u16 data;
1535
1536 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1537 if (ret_val)
1538 return ret_val;
1539
1540 if (!active) {
1541 data &= ~IGP02E1000_PM_D3_LPLU;
2d9498f3 1542 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
bc7f75fa
AK
1543 if (ret_val)
1544 return ret_val;
e921eb1a 1545 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
bc7f75fa
AK
1546 * during Dx states where the power conservation is most
1547 * important. During driver activity we should enable
ad68076e
BA
1548 * SmartSpeed, so performance is maintained.
1549 */
bc7f75fa
AK
1550 if (phy->smart_speed == e1000_smart_speed_on) {
1551 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1552 &data);
bc7f75fa
AK
1553 if (ret_val)
1554 return ret_val;
1555
1556 data |= IGP01E1000_PSCFR_SMART_SPEED;
1557 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1558 data);
bc7f75fa
AK
1559 if (ret_val)
1560 return ret_val;
1561 } else if (phy->smart_speed == e1000_smart_speed_off) {
1562 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1563 &data);
bc7f75fa
AK
1564 if (ret_val)
1565 return ret_val;
1566
1567 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1568 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
ad68076e 1569 data);
bc7f75fa
AK
1570 if (ret_val)
1571 return ret_val;
1572 }
1573 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1574 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1575 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1576 data |= IGP02E1000_PM_D3_LPLU;
1577 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1578 if (ret_val)
1579 return ret_val;
1580
1581 /* When LPLU is enabled, we should disable SmartSpeed */
1582 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1583 if (ret_val)
1584 return ret_val;
1585
1586 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1587 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1588 }
1589
1590 return ret_val;
1591}
1592
1593/**
489815ce 1594 * e1000e_check_downshift - Checks whether a downshift in speed occurred
bc7f75fa
AK
1595 * @hw: pointer to the HW structure
1596 *
1597 * Success returns 0, Failure returns 1
1598 *
1599 * A downshift is detected by querying the PHY link health.
1600 **/
1601s32 e1000e_check_downshift(struct e1000_hw *hw)
1602{
1603 struct e1000_phy_info *phy = &hw->phy;
1604 s32 ret_val;
1605 u16 phy_data, offset, mask;
1606
1607 switch (phy->type) {
1608 case e1000_phy_m88:
1609 case e1000_phy_gg82563:
07f025e6 1610 case e1000_phy_bm:
a4f58f54 1611 case e1000_phy_82578:
bc7f75fa
AK
1612 offset = M88E1000_PHY_SPEC_STATUS;
1613 mask = M88E1000_PSSR_DOWNSHIFT;
1614 break;
1615 case e1000_phy_igp_2:
1616 case e1000_phy_igp_3:
1617 offset = IGP01E1000_PHY_LINK_HEALTH;
1618 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1619 break;
1620 default:
1621 /* speed downshift not supported */
564ea9bb 1622 phy->speed_downgraded = false;
bc7f75fa
AK
1623 return 0;
1624 }
1625
1626 ret_val = e1e_rphy(hw, offset, &phy_data);
1627
1628 if (!ret_val)
04499ec4 1629 phy->speed_downgraded = !!(phy_data & mask);
bc7f75fa
AK
1630
1631 return ret_val;
1632}
1633
1634/**
1635 * e1000_check_polarity_m88 - Checks the polarity.
1636 * @hw: pointer to the HW structure
1637 *
1638 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1639 *
1640 * Polarity is determined based on the PHY specific status register.
1641 **/
0be84010 1642s32 e1000_check_polarity_m88(struct e1000_hw *hw)
bc7f75fa
AK
1643{
1644 struct e1000_phy_info *phy = &hw->phy;
1645 s32 ret_val;
1646 u16 data;
1647
1648 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1649
1650 if (!ret_val)
1651 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1652 ? e1000_rev_polarity_reversed
1653 : e1000_rev_polarity_normal;
1654
1655 return ret_val;
1656}
1657
1658/**
1659 * e1000_check_polarity_igp - Checks the polarity.
1660 * @hw: pointer to the HW structure
1661 *
1662 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1663 *
1664 * Polarity is determined based on the PHY port status register, and the
1665 * current speed (since there is no polarity at 100Mbps).
1666 **/
0be84010 1667s32 e1000_check_polarity_igp(struct e1000_hw *hw)
bc7f75fa
AK
1668{
1669 struct e1000_phy_info *phy = &hw->phy;
1670 s32 ret_val;
1671 u16 data, offset, mask;
1672
e921eb1a 1673 /* Polarity is determined based on the speed of
ad68076e
BA
1674 * our connection.
1675 */
bc7f75fa
AK
1676 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1677 if (ret_val)
1678 return ret_val;
1679
1680 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1681 IGP01E1000_PSSR_SPEED_1000MBPS) {
1682 offset = IGP01E1000_PHY_PCS_INIT_REG;
1683 mask = IGP01E1000_PHY_POLARITY_MASK;
1684 } else {
e921eb1a 1685 /* This really only applies to 10Mbps since
bc7f75fa
AK
1686 * there is no polarity for 100Mbps (always 0).
1687 */
1688 offset = IGP01E1000_PHY_PORT_STATUS;
1689 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1690 }
1691
1692 ret_val = e1e_rphy(hw, offset, &data);
1693
1694 if (!ret_val)
1695 phy->cable_polarity = (data & mask)
1696 ? e1000_rev_polarity_reversed
1697 : e1000_rev_polarity_normal;
1698
1699 return ret_val;
1700}
1701
0be84010
BA
1702/**
1703 * e1000_check_polarity_ife - Check cable polarity for IFE PHY
1704 * @hw: pointer to the HW structure
1705 *
1706 * Polarity is determined on the polarity reversal feature being enabled.
1707 **/
1708s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1709{
1710 struct e1000_phy_info *phy = &hw->phy;
1711 s32 ret_val;
1712 u16 phy_data, offset, mask;
1713
e921eb1a 1714 /* Polarity is determined based on the reversal feature being enabled.
0be84010
BA
1715 */
1716 if (phy->polarity_correction) {
1717 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1718 mask = IFE_PESC_POLARITY_REVERSED;
1719 } else {
1720 offset = IFE_PHY_SPECIAL_CONTROL;
1721 mask = IFE_PSC_FORCE_POLARITY;
1722 }
1723
1724 ret_val = e1e_rphy(hw, offset, &phy_data);
1725
1726 if (!ret_val)
1727 phy->cable_polarity = (phy_data & mask)
1728 ? e1000_rev_polarity_reversed
1729 : e1000_rev_polarity_normal;
1730
1731 return ret_val;
1732}
1733
bc7f75fa 1734/**
ad68076e 1735 * e1000_wait_autoneg - Wait for auto-neg completion
bc7f75fa
AK
1736 * @hw: pointer to the HW structure
1737 *
1738 * Waits for auto-negotiation to complete or for the auto-negotiation time
1739 * limit to expire, which ever happens first.
1740 **/
1741static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1742{
1743 s32 ret_val = 0;
1744 u16 i, phy_status;
1745
1746 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1747 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1748 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1749 if (ret_val)
1750 break;
1751 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1752 if (ret_val)
1753 break;
1754 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1755 break;
1756 msleep(100);
1757 }
1758
e921eb1a 1759 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
bc7f75fa
AK
1760 * has completed.
1761 */
1762 return ret_val;
1763}
1764
1765/**
1766 * e1000e_phy_has_link_generic - Polls PHY for link
1767 * @hw: pointer to the HW structure
1768 * @iterations: number of times to poll for link
1769 * @usec_interval: delay between polling attempts
1770 * @success: pointer to whether polling was successful or not
1771 *
1772 * Polls the PHY status register for link, 'iterations' number of times.
1773 **/
1774s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1775 u32 usec_interval, bool *success)
1776{
1777 s32 ret_val = 0;
1778 u16 i, phy_status;
1779
1780 for (i = 0; i < iterations; i++) {
e921eb1a 1781 /* Some PHYs require the PHY_STATUS register to be read
bc7f75fa
AK
1782 * twice due to the link bit being sticky. No harm doing
1783 * it across the board.
1784 */
1785 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1786 if (ret_val)
e921eb1a 1787 /* If the first read fails, another entity may have
906e8d97
BA
1788 * ownership of the resources, wait and try again to
1789 * see if they have relinquished the resources yet.
1790 */
1791 udelay(usec_interval);
bc7f75fa
AK
1792 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1793 if (ret_val)
1794 break;
1795 if (phy_status & MII_SR_LINK_STATUS)
1796 break;
1797 if (usec_interval >= 1000)
1798 mdelay(usec_interval/1000);
1799 else
1800 udelay(usec_interval);
1801 }
1802
1803 *success = (i < iterations);
1804
1805 return ret_val;
1806}
1807
1808/**
1809 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1810 * @hw: pointer to the HW structure
1811 *
1812 * Reads the PHY specific status register to retrieve the cable length
1813 * information. The cable length is determined by averaging the minimum and
1814 * maximum values to get the "average" cable length. The m88 PHY has four
1815 * possible cable length values, which are:
1816 * Register Value Cable Length
1817 * 0 < 50 meters
1818 * 1 50 - 80 meters
1819 * 2 80 - 110 meters
1820 * 3 110 - 140 meters
1821 * 4 > 140 meters
1822 **/
1823s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1824{
1825 struct e1000_phy_info *phy = &hw->phy;
1826 s32 ret_val;
1827 u16 phy_data, index;
1828
1829 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1830 if (ret_val)
5015e53a 1831 return ret_val;
bc7f75fa
AK
1832
1833 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
eb656d45 1834 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
5015e53a
BA
1835
1836 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1837 return -E1000_ERR_PHY;
eb656d45 1838
bc7f75fa 1839 phy->min_cable_length = e1000_m88_cable_length_table[index];
eb656d45 1840 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
bc7f75fa
AK
1841
1842 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1843
5015e53a 1844 return 0;
bc7f75fa
AK
1845}
1846
1847/**
1848 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1849 * @hw: pointer to the HW structure
1850 *
1851 * The automatic gain control (agc) normalizes the amplitude of the
1852 * received signal, adjusting for the attenuation produced by the
489815ce 1853 * cable. By reading the AGC registers, which represent the
5ff5b664 1854 * combination of coarse and fine gain value, the value can be put
bc7f75fa
AK
1855 * into a lookup table to obtain the approximate cable length
1856 * for each channel.
1857 **/
1858s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1859{
1860 struct e1000_phy_info *phy = &hw->phy;
1861 s32 ret_val;
1862 u16 phy_data, i, agc_value = 0;
1863 u16 cur_agc_index, max_agc_index = 0;
1864 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
66744500
JK
1865 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1866 IGP02E1000_PHY_AGC_A,
1867 IGP02E1000_PHY_AGC_B,
1868 IGP02E1000_PHY_AGC_C,
1869 IGP02E1000_PHY_AGC_D
1870 };
bc7f75fa
AK
1871
1872 /* Read the AGC registers for all channels */
1873 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1874 ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1875 if (ret_val)
1876 return ret_val;
1877
e921eb1a 1878 /* Getting bits 15:9, which represent the combination of
5ff5b664 1879 * coarse and fine gain values. The result is a number
bc7f75fa 1880 * that can be put into the lookup table to obtain the
ad68076e
BA
1881 * approximate cable length.
1882 */
bc7f75fa
AK
1883 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1884 IGP02E1000_AGC_LENGTH_MASK;
1885
1886 /* Array index bound check. */
1887 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1888 (cur_agc_index == 0))
1889 return -E1000_ERR_PHY;
1890
1891 /* Remove min & max AGC values from calculation. */
1892 if (e1000_igp_2_cable_length_table[min_agc_index] >
1893 e1000_igp_2_cable_length_table[cur_agc_index])
1894 min_agc_index = cur_agc_index;
1895 if (e1000_igp_2_cable_length_table[max_agc_index] <
1896 e1000_igp_2_cable_length_table[cur_agc_index])
1897 max_agc_index = cur_agc_index;
1898
1899 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1900 }
1901
1902 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1903 e1000_igp_2_cable_length_table[max_agc_index]);
1904 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1905
1906 /* Calculate cable length with the error range of +/- 10 meters. */
1907 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1908 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1909 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1910
1911 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1912
82607255 1913 return 0;
bc7f75fa
AK
1914}
1915
1916/**
1917 * e1000e_get_phy_info_m88 - Retrieve PHY information
1918 * @hw: pointer to the HW structure
1919 *
1920 * Valid for only copper links. Read the PHY status register (sticky read)
1921 * to verify that link is up. Read the PHY special control register to
1922 * determine the polarity and 10base-T extended distance. Read the PHY
1923 * special status register to determine MDI/MDIx and current speed. If
1924 * speed is 1000, then determine cable length, local and remote receiver.
1925 **/
1926s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1927{
1928 struct e1000_phy_info *phy = &hw->phy;
1929 s32 ret_val;
1930 u16 phy_data;
1931 bool link;
1932
0be84010 1933 if (phy->media_type != e1000_media_type_copper) {
3bb99fe2 1934 e_dbg("Phy info is only valid for copper media\n");
bc7f75fa
AK
1935 return -E1000_ERR_CONFIG;
1936 }
1937
1938 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1939 if (ret_val)
1940 return ret_val;
1941
1942 if (!link) {
3bb99fe2 1943 e_dbg("Phy info is only valid if link is up\n");
bc7f75fa
AK
1944 return -E1000_ERR_CONFIG;
1945 }
1946
1947 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1948 if (ret_val)
1949 return ret_val;
1950
04499ec4
BA
1951 phy->polarity_correction = !!(phy_data &
1952 M88E1000_PSCR_POLARITY_REVERSAL);
bc7f75fa
AK
1953
1954 ret_val = e1000_check_polarity_m88(hw);
1955 if (ret_val)
1956 return ret_val;
1957
1958 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1959 if (ret_val)
1960 return ret_val;
1961
04499ec4 1962 phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
bc7f75fa
AK
1963
1964 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1965 ret_val = e1000_get_cable_length(hw);
1966 if (ret_val)
1967 return ret_val;
1968
1969 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
1970 if (ret_val)
1971 return ret_val;
1972
1973 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1974 ? e1000_1000t_rx_status_ok
1975 : e1000_1000t_rx_status_not_ok;
1976
1977 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1978 ? e1000_1000t_rx_status_ok
1979 : e1000_1000t_rx_status_not_ok;
1980 } else {
1981 /* Set values to "undefined" */
1982 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1983 phy->local_rx = e1000_1000t_rx_status_undefined;
1984 phy->remote_rx = e1000_1000t_rx_status_undefined;
1985 }
1986
1987 return ret_val;
1988}
1989
1990/**
1991 * e1000e_get_phy_info_igp - Retrieve igp PHY information
1992 * @hw: pointer to the HW structure
1993 *
1994 * Read PHY status to determine if link is up. If link is up, then
1995 * set/determine 10base-T extended distance and polarity correction. Read
1996 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1997 * determine on the cable length, local and remote receiver.
1998 **/
1999s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
2000{
2001 struct e1000_phy_info *phy = &hw->phy;
2002 s32 ret_val;
2003 u16 data;
2004 bool link;
2005
2006 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2007 if (ret_val)
2008 return ret_val;
2009
2010 if (!link) {
3bb99fe2 2011 e_dbg("Phy info is only valid if link is up\n");
bc7f75fa
AK
2012 return -E1000_ERR_CONFIG;
2013 }
2014
564ea9bb 2015 phy->polarity_correction = true;
bc7f75fa
AK
2016
2017 ret_val = e1000_check_polarity_igp(hw);
2018 if (ret_val)
2019 return ret_val;
2020
2021 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2022 if (ret_val)
2023 return ret_val;
2024
04499ec4 2025 phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
bc7f75fa
AK
2026
2027 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2028 IGP01E1000_PSSR_SPEED_1000MBPS) {
2029 ret_val = e1000_get_cable_length(hw);
2030 if (ret_val)
2031 return ret_val;
2032
2033 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
2034 if (ret_val)
2035 return ret_val;
2036
2037 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2038 ? e1000_1000t_rx_status_ok
2039 : e1000_1000t_rx_status_not_ok;
2040
2041 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2042 ? e1000_1000t_rx_status_ok
2043 : e1000_1000t_rx_status_not_ok;
2044 } else {
2045 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2046 phy->local_rx = e1000_1000t_rx_status_undefined;
2047 phy->remote_rx = e1000_1000t_rx_status_undefined;
2048 }
2049
2050 return ret_val;
2051}
2052
0be84010
BA
2053/**
2054 * e1000_get_phy_info_ife - Retrieves various IFE PHY states
2055 * @hw: pointer to the HW structure
2056 *
2057 * Populates "phy" structure with various feature states.
2058 **/
2059s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2060{
2061 struct e1000_phy_info *phy = &hw->phy;
2062 s32 ret_val;
2063 u16 data;
2064 bool link;
2065
2066 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2067 if (ret_val)
5015e53a 2068 return ret_val;
0be84010
BA
2069
2070 if (!link) {
2071 e_dbg("Phy info is only valid if link is up\n");
5015e53a 2072 return -E1000_ERR_CONFIG;
0be84010
BA
2073 }
2074
2075 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2076 if (ret_val)
5015e53a 2077 return ret_val;
04499ec4 2078 phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
0be84010
BA
2079
2080 if (phy->polarity_correction) {
2081 ret_val = e1000_check_polarity_ife(hw);
2082 if (ret_val)
5015e53a 2083 return ret_val;
0be84010
BA
2084 } else {
2085 /* Polarity is forced */
2086 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
2087 ? e1000_rev_polarity_reversed
2088 : e1000_rev_polarity_normal;
2089 }
2090
2091 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2092 if (ret_val)
5015e53a 2093 return ret_val;
0be84010 2094
04499ec4 2095 phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
0be84010
BA
2096
2097 /* The following parameters are undefined for 10/100 operation. */
2098 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2099 phy->local_rx = e1000_1000t_rx_status_undefined;
2100 phy->remote_rx = e1000_1000t_rx_status_undefined;
2101
5015e53a 2102 return 0;
0be84010
BA
2103}
2104
bc7f75fa
AK
2105/**
2106 * e1000e_phy_sw_reset - PHY software reset
2107 * @hw: pointer to the HW structure
2108 *
2109 * Does a software reset of the PHY by reading the PHY control register and
2110 * setting/write the control register reset bit to the PHY.
2111 **/
2112s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2113{
2114 s32 ret_val;
2115 u16 phy_ctrl;
2116
2117 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
2118 if (ret_val)
2119 return ret_val;
2120
2121 phy_ctrl |= MII_CR_RESET;
2122 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
2123 if (ret_val)
2124 return ret_val;
2125
2126 udelay(1);
2127
2128 return ret_val;
2129}
2130
2131/**
2132 * e1000e_phy_hw_reset_generic - PHY hardware reset
2133 * @hw: pointer to the HW structure
2134 *
2135 * Verify the reset block is not blocking us from resetting. Acquire
2136 * semaphore (if necessary) and read/set/write the device control reset
2137 * bit in the PHY. Wait the appropriate delay time for the device to
489815ce 2138 * reset and release the semaphore (if necessary).
bc7f75fa
AK
2139 **/
2140s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2141{
2142 struct e1000_phy_info *phy = &hw->phy;
2143 s32 ret_val;
2144 u32 ctrl;
2145
470a5420
BA
2146 if (phy->ops.check_reset_block) {
2147 ret_val = phy->ops.check_reset_block(hw);
2148 if (ret_val)
2149 return 0;
2150 }
bc7f75fa 2151
94d8186a 2152 ret_val = phy->ops.acquire(hw);
bc7f75fa
AK
2153 if (ret_val)
2154 return ret_val;
2155
2156 ctrl = er32(CTRL);
2157 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2158 e1e_flush();
2159
2160 udelay(phy->reset_delay_us);
2161
2162 ew32(CTRL, ctrl);
2163 e1e_flush();
2164
2165 udelay(150);
2166
94d8186a 2167 phy->ops.release(hw);
bc7f75fa
AK
2168
2169 return e1000_get_phy_cfg_done(hw);
2170}
2171
2172/**
2173 * e1000e_get_cfg_done - Generic configuration done
2174 * @hw: pointer to the HW structure
2175 *
2176 * Generic function to wait 10 milli-seconds for configuration to complete
2177 * and return success.
2178 **/
2179s32 e1000e_get_cfg_done(struct e1000_hw *hw)
2180{
2181 mdelay(10);
3d3a1676 2182
bc7f75fa
AK
2183 return 0;
2184}
2185
f4187b56
BA
2186/**
2187 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2188 * @hw: pointer to the HW structure
2189 *
2190 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2191 **/
2192s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2193{
3bb99fe2 2194 e_dbg("Running IGP 3 PHY init script\n");
f4187b56
BA
2195
2196 /* PHY init IGP 3 */
2197 /* Enable rise/fall, 10-mode work in class-A */
2198 e1e_wphy(hw, 0x2F5B, 0x9018);
2199 /* Remove all caps from Replica path filter */
2200 e1e_wphy(hw, 0x2F52, 0x0000);
2201 /* Bias trimming for ADC, AFE and Driver (Default) */
2202 e1e_wphy(hw, 0x2FB1, 0x8B24);
2203 /* Increase Hybrid poly bias */
2204 e1e_wphy(hw, 0x2FB2, 0xF8F0);
2205 /* Add 4% to Tx amplitude in Gig mode */
2206 e1e_wphy(hw, 0x2010, 0x10B0);
2207 /* Disable trimming (TTT) */
2208 e1e_wphy(hw, 0x2011, 0x0000);
2209 /* Poly DC correction to 94.6% + 2% for all channels */
2210 e1e_wphy(hw, 0x20DD, 0x249A);
2211 /* ABS DC correction to 95.9% */
2212 e1e_wphy(hw, 0x20DE, 0x00D3);
2213 /* BG temp curve trim */
2214 e1e_wphy(hw, 0x28B4, 0x04CE);
2215 /* Increasing ADC OPAMP stage 1 currents to max */
2216 e1e_wphy(hw, 0x2F70, 0x29E4);
2217 /* Force 1000 ( required for enabling PHY regs configuration) */
2218 e1e_wphy(hw, 0x0000, 0x0140);
2219 /* Set upd_freq to 6 */
2220 e1e_wphy(hw, 0x1F30, 0x1606);
2221 /* Disable NPDFE */
2222 e1e_wphy(hw, 0x1F31, 0xB814);
2223 /* Disable adaptive fixed FFE (Default) */
2224 e1e_wphy(hw, 0x1F35, 0x002A);
2225 /* Enable FFE hysteresis */
2226 e1e_wphy(hw, 0x1F3E, 0x0067);
2227 /* Fixed FFE for short cable lengths */
2228 e1e_wphy(hw, 0x1F54, 0x0065);
2229 /* Fixed FFE for medium cable lengths */
2230 e1e_wphy(hw, 0x1F55, 0x002A);
2231 /* Fixed FFE for long cable lengths */
2232 e1e_wphy(hw, 0x1F56, 0x002A);
2233 /* Enable Adaptive Clip Threshold */
2234 e1e_wphy(hw, 0x1F72, 0x3FB0);
2235 /* AHT reset limit to 1 */
2236 e1e_wphy(hw, 0x1F76, 0xC0FF);
2237 /* Set AHT master delay to 127 msec */
2238 e1e_wphy(hw, 0x1F77, 0x1DEC);
2239 /* Set scan bits for AHT */
2240 e1e_wphy(hw, 0x1F78, 0xF9EF);
2241 /* Set AHT Preset bits */
2242 e1e_wphy(hw, 0x1F79, 0x0210);
2243 /* Change integ_factor of channel A to 3 */
2244 e1e_wphy(hw, 0x1895, 0x0003);
2245 /* Change prop_factor of channels BCD to 8 */
2246 e1e_wphy(hw, 0x1796, 0x0008);
2247 /* Change cg_icount + enable integbp for channels BCD */
2248 e1e_wphy(hw, 0x1798, 0xD008);
e921eb1a 2249 /* Change cg_icount + enable integbp + change prop_factor_master
f4187b56
BA
2250 * to 8 for channel A
2251 */
2252 e1e_wphy(hw, 0x1898, 0xD918);
2253 /* Disable AHT in Slave mode on channel A */
2254 e1e_wphy(hw, 0x187A, 0x0800);
e921eb1a 2255 /* Enable LPLU and disable AN to 1000 in non-D0a states,
f4187b56
BA
2256 * Enable SPD+B2B
2257 */
2258 e1e_wphy(hw, 0x0019, 0x008D);
2259 /* Enable restart AN on an1000_dis change */
2260 e1e_wphy(hw, 0x001B, 0x2080);
2261 /* Enable wh_fifo read clock in 10/100 modes */
2262 e1e_wphy(hw, 0x0014, 0x0045);
2263 /* Restart AN, Speed selection is 1000 */
2264 e1e_wphy(hw, 0x0000, 0x1340);
2265
2266 return 0;
2267}
2268
bc7f75fa
AK
2269/* Internal function pointers */
2270
2271/**
2272 * e1000_get_phy_cfg_done - Generic PHY configuration done
2273 * @hw: pointer to the HW structure
2274 *
2275 * Return success if silicon family did not implement a family specific
2276 * get_cfg_done function.
2277 **/
2278static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
2279{
2280 if (hw->phy.ops.get_cfg_done)
2281 return hw->phy.ops.get_cfg_done(hw);
2282
2283 return 0;
2284}
2285
2286/**
2287 * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2288 * @hw: pointer to the HW structure
2289 *
2290 * When the silicon family has not implemented a forced speed/duplex
2291 * function for the PHY, simply return 0.
2292 **/
2293static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2294{
2295 if (hw->phy.ops.force_speed_duplex)
2296 return hw->phy.ops.force_speed_duplex(hw);
2297
2298 return 0;
2299}
2300
2301/**
2302 * e1000e_get_phy_type_from_id - Get PHY type from id
2303 * @phy_id: phy_id read from the phy
2304 *
2305 * Returns the phy type from the id.
2306 **/
2307enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2308{
2309 enum e1000_phy_type phy_type = e1000_phy_unknown;
2310
2311 switch (phy_id) {
2312 case M88E1000_I_PHY_ID:
2313 case M88E1000_E_PHY_ID:
2314 case M88E1111_I_PHY_ID:
2315 case M88E1011_I_PHY_ID:
2316 phy_type = e1000_phy_m88;
2317 break;
2318 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2319 phy_type = e1000_phy_igp_2;
2320 break;
2321 case GG82563_E_PHY_ID:
2322 phy_type = e1000_phy_gg82563;
2323 break;
2324 case IGP03E1000_E_PHY_ID:
2325 phy_type = e1000_phy_igp_3;
2326 break;
2327 case IFE_E_PHY_ID:
2328 case IFE_PLUS_E_PHY_ID:
2329 case IFE_C_E_PHY_ID:
2330 phy_type = e1000_phy_ife;
2331 break;
97ac8cae
BA
2332 case BME1000_E_PHY_ID:
2333 case BME1000_E_PHY_ID_R2:
2334 phy_type = e1000_phy_bm;
2335 break;
a4f58f54
BA
2336 case I82578_E_PHY_ID:
2337 phy_type = e1000_phy_82578;
2338 break;
2339 case I82577_E_PHY_ID:
2340 phy_type = e1000_phy_82577;
2341 break;
d3738bb8
BA
2342 case I82579_E_PHY_ID:
2343 phy_type = e1000_phy_82579;
2344 break;
2fbe4526
BA
2345 case I217_E_PHY_ID:
2346 phy_type = e1000_phy_i217;
2347 break;
bc7f75fa
AK
2348 default:
2349 phy_type = e1000_phy_unknown;
2350 break;
2351 }
2352 return phy_type;
2353}
2354
97ac8cae
BA
2355/**
2356 * e1000e_determine_phy_address - Determines PHY address.
2357 * @hw: pointer to the HW structure
2358 *
2359 * This uses a trial and error method to loop through possible PHY
2360 * addresses. It tests each by reading the PHY ID registers and
2361 * checking for a match.
2362 **/
2363s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2364{
5eb6f3c7
BA
2365 u32 phy_addr = 0;
2366 u32 i;
97ac8cae
BA
2367 enum e1000_phy_type phy_type = e1000_phy_unknown;
2368
5eb6f3c7
BA
2369 hw->phy.id = phy_type;
2370
2371 for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2372 hw->phy.addr = phy_addr;
2373 i = 0;
2374
2375 do {
97ac8cae
BA
2376 e1000e_get_phy_id(hw);
2377 phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2378
e921eb1a 2379 /* If phy_type is valid, break - we found our
97ac8cae
BA
2380 * PHY address
2381 */
5015e53a
BA
2382 if (phy_type != e1000_phy_unknown)
2383 return 0;
2384
1bba4386 2385 usleep_range(1000, 2000);
5eb6f3c7
BA
2386 i++;
2387 } while (i < 10);
2388 }
97ac8cae 2389
5015e53a 2390 return -E1000_ERR_PHY_TYPE;
97ac8cae
BA
2391}
2392
2393/**
2394 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2395 * @page: page to access
2396 *
2397 * Returns the phy address for the page requested.
2398 **/
2399static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2400{
2401 u32 phy_addr = 2;
2402
2403 if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2404 phy_addr = 1;
2405
2406 return phy_addr;
2407}
2408
2409/**
2410 * e1000e_write_phy_reg_bm - Write BM PHY register
2411 * @hw: pointer to the HW structure
2412 * @offset: register offset to write to
2413 * @data: data to write at register offset
2414 *
2415 * Acquires semaphore, if necessary, then writes the data to PHY register
2416 * at the offset. Release any acquired semaphores before exiting.
2417 **/
2418s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2419{
2420 s32 ret_val;
97ac8cae 2421 u32 page = offset >> IGP_PAGE_SHIFT;
97ac8cae 2422
94d8186a 2423 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
2424 if (ret_val)
2425 return ret_val;
2426
97ac8cae
BA
2427 /* Page 800 works differently than the rest so it has its own func */
2428 if (page == BM_WUC_PAGE) {
2429 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2b6b168d 2430 false, false);
75ce1532 2431 goto release;
97ac8cae
BA
2432 }
2433
97ac8cae
BA
2434 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2435
2436 if (offset > MAX_PHY_MULTI_PAGE_REG) {
90da0669
BA
2437 u32 page_shift, page_select;
2438
e921eb1a 2439 /* Page select is register 31 for phy address 1 and 22 for
97ac8cae
BA
2440 * phy address 2 and 3. Page select is shifted only for
2441 * phy address 1.
2442 */
2443 if (hw->phy.addr == 1) {
2444 page_shift = IGP_PAGE_SHIFT;
2445 page_select = IGP01E1000_PHY_PAGE_SELECT;
2446 } else {
2447 page_shift = 0;
2448 page_select = BM_PHY_PAGE_SELECT;
2449 }
2450
2451 /* Page is shifted left, PHY expects (page x 32) */
2452 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2453 (page << page_shift));
5ccdcecb 2454 if (ret_val)
75ce1532 2455 goto release;
97ac8cae
BA
2456 }
2457
2458 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2459 data);
2460
75ce1532 2461release:
94d8186a 2462 hw->phy.ops.release(hw);
97ac8cae
BA
2463 return ret_val;
2464}
2465
2466/**
2467 * e1000e_read_phy_reg_bm - Read BM PHY register
2468 * @hw: pointer to the HW structure
2469 * @offset: register offset to be read
2470 * @data: pointer to the read data
2471 *
2472 * Acquires semaphore, if necessary, then reads the PHY register at offset
2473 * and storing the retrieved information in data. Release any acquired
2474 * semaphores before exiting.
2475 **/
2476s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2477{
2478 s32 ret_val;
97ac8cae 2479 u32 page = offset >> IGP_PAGE_SHIFT;
97ac8cae 2480
94d8186a 2481 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
2482 if (ret_val)
2483 return ret_val;
2484
97ac8cae
BA
2485 /* Page 800 works differently than the rest so it has its own func */
2486 if (page == BM_WUC_PAGE) {
2487 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2b6b168d 2488 true, false);
75ce1532 2489 goto release;
97ac8cae
BA
2490 }
2491
97ac8cae
BA
2492 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2493
2494 if (offset > MAX_PHY_MULTI_PAGE_REG) {
90da0669
BA
2495 u32 page_shift, page_select;
2496
e921eb1a 2497 /* Page select is register 31 for phy address 1 and 22 for
97ac8cae
BA
2498 * phy address 2 and 3. Page select is shifted only for
2499 * phy address 1.
2500 */
2501 if (hw->phy.addr == 1) {
2502 page_shift = IGP_PAGE_SHIFT;
2503 page_select = IGP01E1000_PHY_PAGE_SELECT;
2504 } else {
2505 page_shift = 0;
2506 page_select = BM_PHY_PAGE_SELECT;
2507 }
2508
2509 /* Page is shifted left, PHY expects (page x 32) */
2510 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2511 (page << page_shift));
5ccdcecb 2512 if (ret_val)
75ce1532 2513 goto release;
97ac8cae
BA
2514 }
2515
2516 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2517 data);
75ce1532 2518release:
94d8186a 2519 hw->phy.ops.release(hw);
97ac8cae
BA
2520 return ret_val;
2521}
2522
4662e82b
BA
2523/**
2524 * e1000e_read_phy_reg_bm2 - Read BM PHY register
2525 * @hw: pointer to the HW structure
2526 * @offset: register offset to be read
2527 * @data: pointer to the read data
2528 *
2529 * Acquires semaphore, if necessary, then reads the PHY register at offset
2530 * and storing the retrieved information in data. Release any acquired
2531 * semaphores before exiting.
2532 **/
2533s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2534{
2535 s32 ret_val;
2536 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2537
94d8186a 2538 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
2539 if (ret_val)
2540 return ret_val;
2541
4662e82b
BA
2542 /* Page 800 works differently than the rest so it has its own func */
2543 if (page == BM_WUC_PAGE) {
2544 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2b6b168d 2545 true, false);
75ce1532 2546 goto release;
4662e82b
BA
2547 }
2548
4662e82b
BA
2549 hw->phy.addr = 1;
2550
2551 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2552
2553 /* Page is shifted left, PHY expects (page x 32) */
2554 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2555 page);
2556
5ccdcecb 2557 if (ret_val)
75ce1532 2558 goto release;
4662e82b
BA
2559 }
2560
2561 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2562 data);
75ce1532 2563release:
94d8186a 2564 hw->phy.ops.release(hw);
4662e82b
BA
2565 return ret_val;
2566}
2567
2568/**
2569 * e1000e_write_phy_reg_bm2 - Write BM PHY register
2570 * @hw: pointer to the HW structure
2571 * @offset: register offset to write to
2572 * @data: data to write at register offset
2573 *
2574 * Acquires semaphore, if necessary, then writes the data to PHY register
2575 * at the offset. Release any acquired semaphores before exiting.
2576 **/
2577s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2578{
2579 s32 ret_val;
2580 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2581
94d8186a 2582 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
2583 if (ret_val)
2584 return ret_val;
2585
4662e82b
BA
2586 /* Page 800 works differently than the rest so it has its own func */
2587 if (page == BM_WUC_PAGE) {
2588 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2b6b168d 2589 false, false);
75ce1532 2590 goto release;
4662e82b
BA
2591 }
2592
4662e82b
BA
2593 hw->phy.addr = 1;
2594
2595 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2596 /* Page is shifted left, PHY expects (page x 32) */
2597 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2598 page);
2599
5ccdcecb 2600 if (ret_val)
75ce1532 2601 goto release;
4662e82b
BA
2602 }
2603
2604 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2605 data);
2606
75ce1532 2607release:
94d8186a 2608 hw->phy.ops.release(hw);
4662e82b
BA
2609 return ret_val;
2610}
2611
97ac8cae 2612/**
2b6b168d 2613 * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
97ac8cae 2614 * @hw: pointer to the HW structure
2b6b168d 2615 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
97ac8cae 2616 *
2b6b168d
BA
2617 * Assumes semaphore already acquired and phy_reg points to a valid memory
2618 * address to store contents of the BM_WUC_ENABLE_REG register.
97ac8cae 2619 **/
2b6b168d 2620s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
97ac8cae
BA
2621{
2622 s32 ret_val;
2b6b168d 2623 u16 temp;
97ac8cae 2624
2b6b168d 2625 /* All page select, port ctrl and wakeup registers use phy address 1 */
97ac8cae
BA
2626 hw->phy.addr = 1;
2627
2b6b168d
BA
2628 /* Select Port Control Registers page */
2629 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2630 if (ret_val) {
2631 e_dbg("Could not set Port Control page\n");
5015e53a 2632 return ret_val;
2b6b168d 2633 }
97ac8cae 2634
2b6b168d 2635 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
9b71b419 2636 if (ret_val) {
2b6b168d
BA
2637 e_dbg("Could not read PHY register %d.%d\n",
2638 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
5015e53a 2639 return ret_val;
9b71b419 2640 }
97ac8cae 2641
e921eb1a 2642 /* Enable both PHY wakeup mode and Wakeup register page writes.
2b6b168d
BA
2643 * Prevent a power state change by disabling ME and Host PHY wakeup.
2644 */
2645 temp = *phy_reg;
2646 temp |= BM_WUC_ENABLE_BIT;
2647 temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2648
2649 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
9b71b419 2650 if (ret_val) {
2b6b168d
BA
2651 e_dbg("Could not write PHY register %d.%d\n",
2652 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
5015e53a 2653 return ret_val;
9b71b419 2654 }
97ac8cae 2655
e921eb1a 2656 /* Select Host Wakeup Registers page - caller now able to write
5015e53a
BA
2657 * registers on the Wakeup registers page
2658 */
2659 return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2b6b168d
BA
2660}
2661
2662/**
2663 * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2664 * @hw: pointer to the HW structure
2665 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2666 *
2667 * Restore BM_WUC_ENABLE_REG to its original value.
2668 *
2669 * Assumes semaphore already acquired and *phy_reg is the contents of the
2670 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2671 * caller.
2672 **/
2673s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2674{
2675 s32 ret_val = 0;
2676
2677 /* Select Port Control Registers page */
2678 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
9b71b419 2679 if (ret_val) {
2b6b168d 2680 e_dbg("Could not set Port Control page\n");
5015e53a 2681 return ret_val;
9b71b419 2682 }
97ac8cae 2683
2b6b168d
BA
2684 /* Restore 769.17 to its original value */
2685 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2686 if (ret_val)
2687 e_dbg("Could not restore PHY register %d.%d\n",
2688 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
5015e53a 2689
2b6b168d
BA
2690 return ret_val;
2691}
97ac8cae 2692
2b6b168d
BA
2693/**
2694 * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2695 * @hw: pointer to the HW structure
2696 * @offset: register offset to be read or written
2697 * @data: pointer to the data to read or write
2698 * @read: determines if operation is read or write
2699 * @page_set: BM_WUC_PAGE already set and access enabled
2700 *
2701 * Read the PHY register at offset and store the retrieved information in
2702 * data, or write data to PHY register at offset. Note the procedure to
2703 * access the PHY wakeup registers is different than reading the other PHY
2704 * registers. It works as such:
2705 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2706 * 2) Set page to 800 for host (801 if we were manageability)
2707 * 3) Write the address using the address opcode (0x11)
2708 * 4) Read or write the data using the data opcode (0x12)
2709 * 5) Restore 769.17.2 to its original value
2710 *
2711 * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2712 * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2713 *
2714 * Assumes semaphore is already acquired. When page_set==true, assumes
2715 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2716 * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2717 **/
2718static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2719 u16 *data, bool read, bool page_set)
2720{
2721 s32 ret_val;
2722 u16 reg = BM_PHY_REG_NUM(offset);
2723 u16 page = BM_PHY_REG_PAGE(offset);
2724 u16 phy_reg = 0;
2725
2726 /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2727 if ((hw->mac.type == e1000_pchlan) &&
2728 (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2729 e_dbg("Attempting to access page %d while gig enabled.\n",
2730 page);
2731
2732 if (!page_set) {
2733 /* Enable access to PHY wakeup registers */
2734 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2735 if (ret_val) {
2736 e_dbg("Could not enable PHY wakeup reg access\n");
5015e53a 2737 return ret_val;
2b6b168d
BA
2738 }
2739 }
2740
2741 e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2742
2743 /* Write the Wakeup register page offset value using opcode 0x11 */
97ac8cae 2744 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
9b71b419 2745 if (ret_val) {
2b6b168d 2746 e_dbg("Could not write address opcode to page %d\n", page);
5015e53a 2747 return ret_val;
9b71b419 2748 }
97ac8cae
BA
2749
2750 if (read) {
2b6b168d 2751 /* Read the Wakeup register page value using opcode 0x12 */
97ac8cae
BA
2752 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2753 data);
2754 } else {
2b6b168d 2755 /* Write the Wakeup register page value using opcode 0x12 */
97ac8cae
BA
2756 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2757 *data);
2758 }
2759
9b71b419 2760 if (ret_val) {
2b6b168d 2761 e_dbg("Could not access PHY reg %d.%d\n", page, reg);
5015e53a 2762 return ret_val;
9b71b419 2763 }
97ac8cae 2764
2b6b168d
BA
2765 if (!page_set)
2766 ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
97ac8cae 2767
97ac8cae
BA
2768 return ret_val;
2769}
2770
17f208de
BA
2771/**
2772 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2773 * @hw: pointer to the HW structure
2774 *
2775 * In the case of a PHY power down to save power, or to turn off link during a
2776 * driver unload, or wake on lan is not enabled, restore the link to previous
2777 * settings.
2778 **/
2779void e1000_power_up_phy_copper(struct e1000_hw *hw)
2780{
2781 u16 mii_reg = 0;
2782
2783 /* The PHY will retain its settings across a power down/up cycle */
2784 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2785 mii_reg &= ~MII_CR_POWER_DOWN;
2786 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2787}
2788
2789/**
2790 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2791 * @hw: pointer to the HW structure
2792 *
2793 * In the case of a PHY power down to save power, or to turn off link during a
2794 * driver unload, or wake on lan is not enabled, restore the link to previous
2795 * settings.
2796 **/
2797void e1000_power_down_phy_copper(struct e1000_hw *hw)
2798{
2799 u16 mii_reg = 0;
2800
2801 /* The PHY will retain its settings across a power down/up cycle */
2802 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2803 mii_reg |= MII_CR_POWER_DOWN;
2804 e1e_wphy(hw, PHY_CONTROL, mii_reg);
1bba4386 2805 usleep_range(1000, 2000);
17f208de
BA
2806}
2807
bc7f75fa
AK
2808/**
2809 * e1000e_commit_phy - Soft PHY reset
2810 * @hw: pointer to the HW structure
2811 *
2812 * Performs a soft PHY reset on those that apply. This is a function pointer
2813 * entry point called by drivers.
2814 **/
2815s32 e1000e_commit_phy(struct e1000_hw *hw)
2816{
94d8186a
BA
2817 if (hw->phy.ops.commit)
2818 return hw->phy.ops.commit(hw);
bc7f75fa
AK
2819
2820 return 0;
2821}
2822
2823/**
2824 * e1000_set_d0_lplu_state - Sets low power link up state for D0
2825 * @hw: pointer to the HW structure
2826 * @active: boolean used to enable/disable lplu
2827 *
2828 * Success returns 0, Failure returns 1
2829 *
2830 * The low power link up (lplu) state is set to the power management level D0
2831 * and SmartSpeed is disabled when active is true, else clear lplu for D0
2832 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
2833 * is used during Dx states where the power conservation is most important.
2834 * During driver activity, SmartSpeed should be enabled so performance is
2835 * maintained. This is a function pointer entry point called by drivers.
2836 **/
2837static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2838{
2839 if (hw->phy.ops.set_d0_lplu_state)
2840 return hw->phy.ops.set_d0_lplu_state(hw, active);
2841
2842 return 0;
2843}
a4f58f54 2844
a4f58f54 2845/**
5ccdcecb 2846 * __e1000_read_phy_reg_hv - Read HV PHY register
a4f58f54
BA
2847 * @hw: pointer to the HW structure
2848 * @offset: register offset to be read
2849 * @data: pointer to the read data
5ccdcecb 2850 * @locked: semaphore has already been acquired or not
a4f58f54
BA
2851 *
2852 * Acquires semaphore, if necessary, then reads the PHY register at offset
5ccdcecb 2853 * and stores the retrieved information in data. Release any acquired
a4f58f54
BA
2854 * semaphore before exiting.
2855 **/
5ccdcecb 2856static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2b6b168d 2857 bool locked, bool page_set)
a4f58f54
BA
2858{
2859 s32 ret_val;
2860 u16 page = BM_PHY_REG_PAGE(offset);
2861 u16 reg = BM_PHY_REG_NUM(offset);
2b6b168d 2862 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
a4f58f54 2863
5ccdcecb 2864 if (!locked) {
94d8186a 2865 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
2866 if (ret_val)
2867 return ret_val;
2868 }
2869
a4f58f54
BA
2870 /* Page 800 works differently than the rest so it has its own func */
2871 if (page == BM_WUC_PAGE) {
2b6b168d
BA
2872 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2873 true, page_set);
a4f58f54
BA
2874 goto out;
2875 }
2876
2877 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2878 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2879 data, true);
2880 goto out;
2881 }
2882
2b6b168d
BA
2883 if (!page_set) {
2884 if (page == HV_INTC_FC_PAGE_START)
2885 page = 0;
a4f58f54 2886
2b6b168d
BA
2887 if (reg > MAX_PHY_MULTI_PAGE_REG) {
2888 /* Page is shifted left, PHY expects (page x 32) */
2889 ret_val = e1000_set_page_igp(hw,
2890 (page << IGP_PAGE_SHIFT));
a4f58f54 2891
2b6b168d 2892 hw->phy.addr = phy_addr;
842ec8b6 2893
2b6b168d
BA
2894 if (ret_val)
2895 goto out;
2896 }
a4f58f54
BA
2897 }
2898
2b6b168d
BA
2899 e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2900 page << IGP_PAGE_SHIFT, reg);
2901
a4f58f54
BA
2902 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2903 data);
a4f58f54 2904out:
5ccdcecb 2905 if (!locked)
94d8186a 2906 hw->phy.ops.release(hw);
5ccdcecb 2907
a4f58f54
BA
2908 return ret_val;
2909}
2910
2911/**
5ccdcecb
BA
2912 * e1000_read_phy_reg_hv - Read HV PHY register
2913 * @hw: pointer to the HW structure
2914 * @offset: register offset to be read
2915 * @data: pointer to the read data
2916 *
2917 * Acquires semaphore then reads the PHY register at offset and stores
2918 * the retrieved information in data. Release the acquired semaphore
2919 * before exiting.
2920 **/
2921s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2922{
2b6b168d 2923 return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
5ccdcecb
BA
2924}
2925
2926/**
2927 * e1000_read_phy_reg_hv_locked - Read HV PHY register
2928 * @hw: pointer to the HW structure
2929 * @offset: register offset to be read
2930 * @data: pointer to the read data
2931 *
2932 * Reads the PHY register at offset and stores the retrieved information
2933 * in data. Assumes semaphore already acquired.
2934 **/
2935s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2936{
2b6b168d
BA
2937 return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2938}
2939
2940/**
2941 * e1000_read_phy_reg_page_hv - Read HV PHY register
2942 * @hw: pointer to the HW structure
2943 * @offset: register offset to write to
2944 * @data: data to write at register offset
2945 *
2946 * Reads the PHY register at offset and stores the retrieved information
2947 * in data. Assumes semaphore already acquired and page already set.
2948 **/
2949s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2950{
2951 return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
5ccdcecb
BA
2952}
2953
2954/**
2955 * __e1000_write_phy_reg_hv - Write HV PHY register
a4f58f54
BA
2956 * @hw: pointer to the HW structure
2957 * @offset: register offset to write to
2958 * @data: data to write at register offset
5ccdcecb 2959 * @locked: semaphore has already been acquired or not
a4f58f54
BA
2960 *
2961 * Acquires semaphore, if necessary, then writes the data to PHY register
2962 * at the offset. Release any acquired semaphores before exiting.
2963 **/
5ccdcecb 2964static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2b6b168d 2965 bool locked, bool page_set)
a4f58f54
BA
2966{
2967 s32 ret_val;
2968 u16 page = BM_PHY_REG_PAGE(offset);
2969 u16 reg = BM_PHY_REG_NUM(offset);
2b6b168d 2970 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
a4f58f54 2971
5ccdcecb 2972 if (!locked) {
94d8186a 2973 ret_val = hw->phy.ops.acquire(hw);
5ccdcecb
BA
2974 if (ret_val)
2975 return ret_val;
2976 }
2977
a4f58f54
BA
2978 /* Page 800 works differently than the rest so it has its own func */
2979 if (page == BM_WUC_PAGE) {
2b6b168d
BA
2980 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2981 false, page_set);
a4f58f54
BA
2982 goto out;
2983 }
2984
2985 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2986 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2987 &data, false);
2988 goto out;
2989 }
2990
2b6b168d
BA
2991 if (!page_set) {
2992 if (page == HV_INTC_FC_PAGE_START)
2993 page = 0;
a4f58f54 2994
e921eb1a 2995 /* Workaround MDIO accesses being disabled after entering IEEE
2b6b168d
BA
2996 * Power Down (when bit 11 of the PHY Control register is set)
2997 */
2998 if ((hw->phy.type == e1000_phy_82578) &&
2999 (hw->phy.revision >= 1) &&
3000 (hw->phy.addr == 2) &&
04499ec4 3001 !(MAX_PHY_REG_ADDRESS & reg) && (data & (1 << 11))) {
2b6b168d
BA
3002 u16 data2 = 0x7EFF;
3003 ret_val = e1000_access_phy_debug_regs_hv(hw,
3004 (1 << 6) | 0x3,
3005 &data2, false);
3006 if (ret_val)
3007 goto out;
3008 }
a4f58f54 3009
2b6b168d
BA
3010 if (reg > MAX_PHY_MULTI_PAGE_REG) {
3011 /* Page is shifted left, PHY expects (page x 32) */
3012 ret_val = e1000_set_page_igp(hw,
3013 (page << IGP_PAGE_SHIFT));
a4f58f54 3014
2b6b168d 3015 hw->phy.addr = phy_addr;
842ec8b6 3016
2b6b168d
BA
3017 if (ret_val)
3018 goto out;
3019 }
a4f58f54
BA
3020 }
3021
2b6b168d
BA
3022 e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
3023 page << IGP_PAGE_SHIFT, reg);
3024
a4f58f54
BA
3025 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
3026 data);
a4f58f54
BA
3027
3028out:
5ccdcecb 3029 if (!locked)
94d8186a 3030 hw->phy.ops.release(hw);
5ccdcecb 3031
a4f58f54
BA
3032 return ret_val;
3033}
3034
5ccdcecb
BA
3035/**
3036 * e1000_write_phy_reg_hv - Write HV PHY register
3037 * @hw: pointer to the HW structure
3038 * @offset: register offset to write to
3039 * @data: data to write at register offset
3040 *
3041 * Acquires semaphore then writes the data to PHY register at the offset.
3042 * Release the acquired semaphores before exiting.
3043 **/
3044s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
3045{
2b6b168d 3046 return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
5ccdcecb
BA
3047}
3048
3049/**
3050 * e1000_write_phy_reg_hv_locked - Write HV PHY register
3051 * @hw: pointer to the HW structure
3052 * @offset: register offset to write to
3053 * @data: data to write at register offset
3054 *
3055 * Writes the data to PHY register at the offset. Assumes semaphore
3056 * already acquired.
3057 **/
3058s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
3059{
2b6b168d
BA
3060 return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
3061}
3062
3063/**
3064 * e1000_write_phy_reg_page_hv - Write HV PHY register
3065 * @hw: pointer to the HW structure
3066 * @offset: register offset to write to
3067 * @data: data to write at register offset
3068 *
3069 * Writes the data to PHY register at the offset. Assumes semaphore
3070 * already acquired and page already set.
3071 **/
3072s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
3073{
3074 return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
5ccdcecb
BA
3075}
3076
a4f58f54 3077/**
b595076a 3078 * e1000_get_phy_addr_for_hv_page - Get PHY address based on page
a4f58f54
BA
3079 * @page: page to be accessed
3080 **/
3081static u32 e1000_get_phy_addr_for_hv_page(u32 page)
3082{
3083 u32 phy_addr = 2;
3084
3085 if (page >= HV_INTC_FC_PAGE_START)
3086 phy_addr = 1;
3087
3088 return phy_addr;
3089}
3090
3091/**
3092 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3093 * @hw: pointer to the HW structure
3094 * @offset: register offset to be read or written
3095 * @data: pointer to the data to be read or written
2b6b168d 3096 * @read: determines if operation is read or write
a4f58f54 3097 *
5ccdcecb
BA
3098 * Reads the PHY register at offset and stores the retreived information
3099 * in data. Assumes semaphore already acquired. Note that the procedure
2b6b168d
BA
3100 * to access these regs uses the address port and data port to read/write.
3101 * These accesses done with PHY address 2 and without using pages.
a4f58f54
BA
3102 **/
3103static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3104 u16 *data, bool read)
3105{
3106 s32 ret_val;
3107 u32 addr_reg = 0;
3108 u32 data_reg = 0;
a4f58f54
BA
3109
3110 /* This takes care of the difference with desktop vs mobile phy */
3111 addr_reg = (hw->phy.type == e1000_phy_82578) ?
3112 I82578_ADDR_REG : I82577_ADDR_REG;
3113 data_reg = addr_reg + 1;
3114
a4f58f54
BA
3115 /* All operations in this function are phy address 2 */
3116 hw->phy.addr = 2;
3117
3118 /* masking with 0x3F to remove the page from offset */
3119 ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3120 if (ret_val) {
2b6b168d 3121 e_dbg("Could not write the Address Offset port register\n");
5015e53a 3122 return ret_val;
a4f58f54
BA
3123 }
3124
3125 /* Read or write the data value next */
3126 if (read)
3127 ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3128 else
3129 ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3130
5015e53a 3131 if (ret_val)
2b6b168d 3132 e_dbg("Could not access the Data port register\n");
a4f58f54 3133
a4f58f54
BA
3134 return ret_val;
3135}
3136
3137/**
3138 * e1000_link_stall_workaround_hv - Si workaround
3139 * @hw: pointer to the HW structure
3140 *
3141 * This function works around a Si bug where the link partner can get
3142 * a link up indication before the PHY does. If small packets are sent
3143 * by the link partner they can be placed in the packet buffer without
3144 * being properly accounted for by the PHY and will stall preventing
3145 * further packets from being received. The workaround is to clear the
3146 * packet buffer after the PHY detects link up.
3147 **/
3148s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3149{
3150 s32 ret_val = 0;
3151 u16 data;
3152
3153 if (hw->phy.type != e1000_phy_82578)
5015e53a 3154 return 0;
a4f58f54 3155
e65fa87c 3156 /* Do not apply workaround if in PHY loopback bit 14 set */
482fed85 3157 e1e_rphy(hw, PHY_CONTROL, &data);
e65fa87c 3158 if (data & PHY_CONTROL_LB)
5015e53a 3159 return 0;
e65fa87c 3160
a4f58f54 3161 /* check if link is up and at 1Gbps */
482fed85 3162 ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
a4f58f54 3163 if (ret_val)
5015e53a 3164 return ret_val;
a4f58f54 3165
3d3a1676
BA
3166 data &= BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3167 BM_CS_STATUS_SPEED_MASK;
a4f58f54 3168
3d3a1676
BA
3169 if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3170 BM_CS_STATUS_SPEED_1000))
5015e53a 3171 return 0;
a4f58f54 3172
bb9c5ee1 3173 msleep(200);
a4f58f54
BA
3174
3175 /* flush the packets in the fifo buffer */
482fed85
BA
3176 ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC |
3177 HV_MUX_DATA_CTRL_FORCE_SPEED);
a4f58f54 3178 if (ret_val)
5015e53a 3179 return ret_val;
a4f58f54 3180
5015e53a 3181 return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
a4f58f54
BA
3182}
3183
3184/**
3185 * e1000_check_polarity_82577 - Checks the polarity.
3186 * @hw: pointer to the HW structure
3187 *
3188 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3189 *
3190 * Polarity is determined based on the PHY specific status register.
3191 **/
3192s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3193{
3194 struct e1000_phy_info *phy = &hw->phy;
3195 s32 ret_val;
3196 u16 data;
3197
482fed85 3198 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
a4f58f54
BA
3199
3200 if (!ret_val)
3201 phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
3202 ? e1000_rev_polarity_reversed
3203 : e1000_rev_polarity_normal;
3204
3205 return ret_val;
3206}
3207
3208/**
3209 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3210 * @hw: pointer to the HW structure
3211 *
eab50ffb 3212 * Calls the PHY setup function to force speed and duplex.
a4f58f54
BA
3213 **/
3214s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3215{
3216 struct e1000_phy_info *phy = &hw->phy;
3217 s32 ret_val;
3218 u16 phy_data;
3219 bool link;
3220
482fed85 3221 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
a4f58f54 3222 if (ret_val)
5015e53a 3223 return ret_val;
a4f58f54
BA
3224
3225 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3226
482fed85 3227 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
a4f58f54 3228 if (ret_val)
5015e53a 3229 return ret_val;
a4f58f54 3230
a4f58f54
BA
3231 udelay(1);
3232
3233 if (phy->autoneg_wait_to_complete) {
3bb99fe2 3234 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
a4f58f54 3235
3d3a1676
BA
3236 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3237 100000, &link);
a4f58f54 3238 if (ret_val)
5015e53a 3239 return ret_val;
a4f58f54
BA
3240
3241 if (!link)
3bb99fe2 3242 e_dbg("Link taking longer than expected.\n");
a4f58f54
BA
3243
3244 /* Try once more */
3d3a1676
BA
3245 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3246 100000, &link);
a4f58f54
BA
3247 }
3248
a4f58f54
BA
3249 return ret_val;
3250}
3251
3252/**
3253 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3254 * @hw: pointer to the HW structure
3255 *
3256 * Read PHY status to determine if link is up. If link is up, then
3257 * set/determine 10base-T extended distance and polarity correction. Read
3258 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
3259 * determine on the cable length, local and remote receiver.
3260 **/
3261s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3262{
3263 struct e1000_phy_info *phy = &hw->phy;
3264 s32 ret_val;
3265 u16 data;
3266 bool link;
3267
3268 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3269 if (ret_val)
5015e53a 3270 return ret_val;
a4f58f54
BA
3271
3272 if (!link) {
3bb99fe2 3273 e_dbg("Phy info is only valid if link is up\n");
5015e53a 3274 return -E1000_ERR_CONFIG;
a4f58f54
BA
3275 }
3276
3277 phy->polarity_correction = true;
3278
3279 ret_val = e1000_check_polarity_82577(hw);
3280 if (ret_val)
5015e53a 3281 return ret_val;
a4f58f54 3282
482fed85 3283 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
a4f58f54 3284 if (ret_val)
5015e53a 3285 return ret_val;
a4f58f54 3286
04499ec4 3287 phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
a4f58f54
BA
3288
3289 if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3290 I82577_PHY_STATUS2_SPEED_1000MBPS) {
3291 ret_val = hw->phy.ops.get_cable_length(hw);
3292 if (ret_val)
5015e53a 3293 return ret_val;
a4f58f54 3294
482fed85 3295 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
a4f58f54 3296 if (ret_val)
5015e53a 3297 return ret_val;
a4f58f54
BA
3298
3299 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3300 ? e1000_1000t_rx_status_ok
3301 : e1000_1000t_rx_status_not_ok;
3302
3303 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3304 ? e1000_1000t_rx_status_ok
3305 : e1000_1000t_rx_status_not_ok;
3306 } else {
3307 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3308 phy->local_rx = e1000_1000t_rx_status_undefined;
3309 phy->remote_rx = e1000_1000t_rx_status_undefined;
3310 }
3311
5015e53a 3312 return 0;
a4f58f54
BA
3313}
3314
3315/**
3316 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3317 * @hw: pointer to the HW structure
3318 *
3319 * Reads the diagnostic status register and verifies result is valid before
3320 * placing it in the phy_cable_length field.
3321 **/
3322s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3323{
3324 struct e1000_phy_info *phy = &hw->phy;
3325 s32 ret_val;
3326 u16 phy_data, length;
3327
482fed85 3328 ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
a4f58f54 3329 if (ret_val)
5015e53a 3330 return ret_val;
a4f58f54
BA
3331
3332 length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3333 I82577_DSTATUS_CABLE_LENGTH_SHIFT;
3334
3335 if (length == E1000_CABLE_LENGTH_UNDEFINED)
98086a95 3336 ret_val = -E1000_ERR_PHY;
a4f58f54
BA
3337
3338 phy->cable_length = length;
3339
5015e53a 3340 return 0;
a4f58f54 3341}
This page took 0.707227 seconds and 5 git commands to generate.