igb: Fix code comments and whitespace
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / e1000_mac.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4b9ea462 4 Copyright(c) 2007-2013 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/if_ether.h>
29#include <linux/delay.h>
30#include <linux/pci.h>
31#include <linux/netdevice.h>
58d14d4f 32#include <linux/etherdevice.h>
9d5c8243
AK
33
34#include "e1000_mac.h"
35
36#include "igb.h"
37
38static s32 igb_set_default_fc(struct e1000_hw *hw);
39static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
9d5c8243 40
9d5c8243 41/**
733596be 42 * igb_get_bus_info_pcie - Get PCIe bus information
9d5c8243
AK
43 * @hw: pointer to the HW structure
44 *
45 * Determines and stores the system bus information for a particular
46 * network interface. The following bus information is determined and stored:
47 * bus speed, bus width, type (PCIe), and PCIe function.
48 **/
49s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
50{
51 struct e1000_bus_info *bus = &hw->bus;
52 s32 ret_val;
5e8427e5
AD
53 u32 reg;
54 u16 pcie_link_status;
9d5c8243
AK
55
56 bus->type = e1000_bus_type_pci_express;
9d5c8243
AK
57
58 ret_val = igb_read_pcie_cap_reg(hw,
ff846f52
AD
59 PCI_EXP_LNKSTA,
60 &pcie_link_status);
61 if (ret_val) {
9d5c8243 62 bus->width = e1000_bus_width_unknown;
ff846f52
AD
63 bus->speed = e1000_bus_speed_unknown;
64 } else {
65 switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
66 case PCI_EXP_LNKSTA_CLS_2_5GB:
67 bus->speed = e1000_bus_speed_2500;
68 break;
69 case PCI_EXP_LNKSTA_CLS_5_0GB:
70 bus->speed = e1000_bus_speed_5000;
71 break;
72 default:
73 bus->speed = e1000_bus_speed_unknown;
74 break;
75 }
76
9d5c8243 77 bus->width = (enum e1000_bus_width)((pcie_link_status &
ff846f52
AD
78 PCI_EXP_LNKSTA_NLW) >>
79 PCI_EXP_LNKSTA_NLW_SHIFT);
80 }
9d5c8243 81
5e8427e5
AD
82 reg = rd32(E1000_STATUS);
83 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
9d5c8243
AK
84
85 return 0;
86}
87
88/**
733596be 89 * igb_clear_vfta - Clear VLAN filter table
9d5c8243
AK
90 * @hw: pointer to the HW structure
91 *
92 * Clears the register array which contains the VLAN filter table by
93 * setting all the values to 0.
94 **/
95void igb_clear_vfta(struct e1000_hw *hw)
96{
97 u32 offset;
98
99 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
100 array_wr32(E1000_VFTA, offset, 0);
101 wrfl();
102 }
103}
104
105/**
733596be 106 * igb_write_vfta - Write value to VLAN filter table
9d5c8243
AK
107 * @hw: pointer to the HW structure
108 * @offset: register offset in VLAN filter table
109 * @value: register value written to VLAN filter table
110 *
111 * Writes value at the given offset in the register array which stores
112 * the VLAN filter table.
113 **/
ff6f63dd 114static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
9d5c8243
AK
115{
116 array_wr32(E1000_VFTA, offset, value);
117 wrfl();
118}
119
1128c756
CW
120/* Due to a hw errata, if the host tries to configure the VFTA register
121 * while performing queries from the BMC or DMA, then the VFTA in some
122 * cases won't be written.
123 */
124
125/**
126 * igb_clear_vfta_i350 - Clear VLAN filter table
127 * @hw: pointer to the HW structure
128 *
129 * Clears the register array which contains the VLAN filter table by
130 * setting all the values to 0.
131 **/
132void igb_clear_vfta_i350(struct e1000_hw *hw)
133{
134 u32 offset;
135 int i;
136
137 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
138 for (i = 0; i < 10; i++)
139 array_wr32(E1000_VFTA, offset, 0);
140
141 wrfl();
142 }
143}
144
145/**
146 * igb_write_vfta_i350 - Write value to VLAN filter table
147 * @hw: pointer to the HW structure
148 * @offset: register offset in VLAN filter table
149 * @value: register value written to VLAN filter table
150 *
151 * Writes value at the given offset in the register array which stores
152 * the VLAN filter table.
153 **/
c50b52a0 154static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
1128c756
CW
155{
156 int i;
157
158 for (i = 0; i < 10; i++)
159 array_wr32(E1000_VFTA, offset, value);
160
161 wrfl();
162}
163
5ac16659
AD
164/**
165 * igb_init_rx_addrs - Initialize receive address's
166 * @hw: pointer to the HW structure
167 * @rar_count: receive address registers
168 *
169 * Setups the receive address registers by setting the base receive address
170 * register to the devices MAC address and clearing all the other receive
171 * address registers to 0.
172 **/
173void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
174{
175 u32 i;
176 u8 mac_addr[ETH_ALEN] = {0};
177
178 /* Setup the receive address */
179 hw_dbg("Programming MAC Address into RAR[0]\n");
180
181 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
182
183 /* Zero out the other (rar_entry_count - 1) receive addresses */
184 hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
185 for (i = 1; i < rar_count; i++)
186 hw->mac.ops.rar_set(hw, mac_addr, i);
187}
188
4ae196df
AD
189/**
190 * igb_vfta_set - enable or disable vlan in VLAN filter table
191 * @hw: pointer to the HW structure
192 * @vid: VLAN id to add or remove
193 * @add: if true add filter, if false remove
194 *
195 * Sets or clears a bit in the VLAN filter table array based on VLAN id
196 * and if we are adding or removing the filter
197 **/
cad6d05f 198s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
4ae196df
AD
199{
200 u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
75f4f382 201 u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1128c756
CW
202 u32 vfta;
203 struct igb_adapter *adapter = hw->back;
cad6d05f 204 s32 ret_val = 0;
4ae196df 205
1128c756
CW
206 vfta = adapter->shadow_vfta[index];
207
cad6d05f
AD
208 /* bit was set/cleared before we started */
209 if ((!!(vfta & mask)) == add) {
210 ret_val = -E1000_ERR_CONFIG;
211 } else {
212 if (add)
213 vfta |= mask;
214 else
215 vfta &= ~mask;
216 }
1128c756
CW
217 if (hw->mac.type == e1000_i350)
218 igb_write_vfta_i350(hw, index, vfta);
219 else
220 igb_write_vfta(hw, index, vfta);
221 adapter->shadow_vfta[index] = vfta;
cad6d05f
AD
222
223 return ret_val;
4ae196df
AD
224}
225
9d5c8243 226/**
733596be 227 * igb_check_alt_mac_addr - Check for alternate MAC addr
9d5c8243
AK
228 * @hw: pointer to the HW structure
229 *
230 * Checks the nvm for an alternate MAC address. An alternate MAC address
231 * can be setup by pre-boot software and must be treated like a permanent
232 * address and must override the actual permanent MAC address. If an
b980ac18
JK
233 * alternate MAC address is found it is saved in the hw struct and
234 * programmed into RAR0 and the function returns success, otherwise the
25985edc 235 * function returns an error.
9d5c8243
AK
236 **/
237s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
238{
239 u32 i;
240 s32 ret_val = 0;
241 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
242 u8 alt_mac_addr[ETH_ALEN];
243
b980ac18 244 /* Alternate MAC address is handled by the option ROM for 82580
65189d28
CW
245 * and newer. SW support not required.
246 */
247 if (hw->mac.type >= e1000_82580)
248 goto out;
249
312c75ae 250 ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
9d5c8243
AK
251 &nvm_alt_mac_addr_offset);
252 if (ret_val) {
652fff32 253 hw_dbg("NVM Read Error\n");
9d5c8243
AK
254 goto out;
255 }
256
6538ee62
AA
257 if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
258 (nvm_alt_mac_addr_offset == 0x0000))
22896639 259 /* There is no Alternate MAC Address */
9d5c8243 260 goto out;
9d5c8243
AK
261
262 if (hw->bus.func == E1000_FUNC_1)
22896639 263 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
45b58465
AA
264 if (hw->bus.func == E1000_FUNC_2)
265 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
266
267 if (hw->bus.func == E1000_FUNC_3)
268 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
9d5c8243
AK
269 for (i = 0; i < ETH_ALEN; i += 2) {
270 offset = nvm_alt_mac_addr_offset + (i >> 1);
312c75ae 271 ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
9d5c8243 272 if (ret_val) {
652fff32 273 hw_dbg("NVM Read Error\n");
9d5c8243
AK
274 goto out;
275 }
276
277 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
278 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
279 }
280
281 /* if multicast bit is set, the alternate address will not be used */
58d14d4f 282 if (is_multicast_ether_addr(alt_mac_addr)) {
22896639 283 hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
9d5c8243
AK
284 goto out;
285 }
286
b980ac18 287 /* We have a valid alternate MAC address, and we want to treat it the
22896639
AD
288 * same as the normal permanent MAC address stored by the HW into the
289 * RAR. Do this by mapping this address into RAR0.
290 */
291 hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
9d5c8243
AK
292
293out:
294 return ret_val;
295}
296
297/**
733596be 298 * igb_rar_set - Set receive address register
9d5c8243
AK
299 * @hw: pointer to the HW structure
300 * @addr: pointer to the receive address
301 * @index: receive address array register
302 *
303 * Sets the receive address array register at index to the address passed
304 * in by addr.
305 **/
306void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
307{
308 u32 rar_low, rar_high;
309
b980ac18 310 /* HW expects these in little endian so we reverse the byte order
9d5c8243
AK
311 * from network order (big endian) to little endian
312 */
313 rar_low = ((u32) addr[0] |
314 ((u32) addr[1] << 8) |
315 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
316
317 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
318
8675737a
AD
319 /* If MAC address zero, no need to set the AV bit */
320 if (rar_low || rar_high)
9d5c8243
AK
321 rar_high |= E1000_RAH_AV;
322
b980ac18 323 /* Some bridges will combine consecutive 32-bit writes into
6deac6f2
AD
324 * a single burst write, which will malfunction on some parts.
325 * The flushes avoid this.
326 */
5e8427e5 327 wr32(E1000_RAL(index), rar_low);
6deac6f2 328 wrfl();
5e8427e5 329 wr32(E1000_RAH(index), rar_high);
6deac6f2 330 wrfl();
9d5c8243
AK
331}
332
333/**
733596be 334 * igb_mta_set - Set multicast filter table address
9d5c8243
AK
335 * @hw: pointer to the HW structure
336 * @hash_value: determines the MTA register and bit to set
337 *
338 * The multicast table address is a register array of 32-bit registers.
339 * The hash_value is used to determine what register the bit is in, the
340 * current value is read, the new bit is OR'd in and the new value is
341 * written back into the register.
342 **/
549bdd84 343void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
9d5c8243
AK
344{
345 u32 hash_bit, hash_reg, mta;
346
b980ac18 347 /* The MTA is a register array of 32-bit registers. It is
9d5c8243
AK
348 * treated like an array of (32*mta_reg_count) bits. We want to
349 * set bit BitArray[hash_value]. So we figure out what register
350 * the bit is in, read it, OR in the new bit, then write
351 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
352 * mask to bits 31:5 of the hash value which gives us the
353 * register we're modifying. The hash bit within that register
354 * is determined by the lower 5 bits of the hash value.
355 */
356 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
357 hash_bit = hash_value & 0x1F;
358
359 mta = array_rd32(E1000_MTA, hash_reg);
360
361 mta |= (1 << hash_bit);
362
363 array_wr32(E1000_MTA, hash_reg, mta);
364 wrfl();
365}
366
9d5c8243 367/**
733596be 368 * igb_hash_mc_addr - Generate a multicast hash value
9d5c8243
AK
369 * @hw: pointer to the HW structure
370 * @mc_addr: pointer to a multicast address
371 *
372 * Generates a multicast address hash value which is used to determine
373 * the multicast filter table array address and new table value. See
374 * igb_mta_set()
375 **/
44c852ea 376static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
9d5c8243
AK
377{
378 u32 hash_value, hash_mask;
379 u8 bit_shift = 0;
380
381 /* Register count multiplied by bits per register */
382 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
383
b980ac18 384 /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
9d5c8243
AK
385 * where 0xFF would still fall within the hash mask.
386 */
387 while (hash_mask >> bit_shift != 0xFF)
388 bit_shift++;
389
b980ac18 390 /* The portion of the address that is used for the hash table
9d5c8243
AK
391 * is determined by the mc_filter_type setting.
392 * The algorithm is such that there is a total of 8 bits of shifting.
393 * The bit_shift for a mc_filter_type of 0 represents the number of
394 * left-shifts where the MSB of mc_addr[5] would still fall within
395 * the hash_mask. Case 0 does this exactly. Since there are a total
396 * of 8 bits of shifting, then mc_addr[4] will shift right the
397 * remaining number of bits. Thus 8 - bit_shift. The rest of the
398 * cases are a variation of this algorithm...essentially raising the
399 * number of bits to shift mc_addr[5] left, while still keeping the
400 * 8-bit shifting total.
401 *
402 * For example, given the following Destination MAC Address and an
403 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
404 * we can see that the bit_shift for case 0 is 4. These are the hash
405 * values resulting from each mc_filter_type...
406 * [0] [1] [2] [3] [4] [5]
407 * 01 AA 00 12 34 56
408 * LSB MSB
409 *
410 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
411 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
412 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
413 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
414 */
415 switch (hw->mac.mc_filter_type) {
416 default:
417 case 0:
418 break;
419 case 1:
420 bit_shift += 1;
421 break;
422 case 2:
423 bit_shift += 2;
424 break;
425 case 3:
426 bit_shift += 4;
427 break;
428 }
429
430 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
431 (((u16) mc_addr[5]) << bit_shift)));
432
433 return hash_value;
434}
435
44c852ea
AD
436/**
437 * igb_update_mc_addr_list - Update Multicast addresses
438 * @hw: pointer to the HW structure
439 * @mc_addr_list: array of multicast addresses to program
440 * @mc_addr_count: number of multicast addresses to program
441 *
442 * Updates entire Multicast Table Array.
443 * The caller must have a packed mc_addr_list of multicast addresses.
444 **/
445void igb_update_mc_addr_list(struct e1000_hw *hw,
446 u8 *mc_addr_list, u32 mc_addr_count)
447{
448 u32 hash_value, hash_bit, hash_reg;
449 int i;
450
451 /* clear mta_shadow */
452 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
453
454 /* update mta_shadow from mc_addr_list */
455 for (i = 0; (u32) i < mc_addr_count; i++) {
456 hash_value = igb_hash_mc_addr(hw, mc_addr_list);
457
458 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
459 hash_bit = hash_value & 0x1F;
460
461 hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
462 mc_addr_list += (ETH_ALEN);
463 }
464
465 /* replace the entire MTA table */
466 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
467 array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
468 wrfl();
469}
470
9d5c8243 471/**
733596be 472 * igb_clear_hw_cntrs_base - Clear base hardware counters
9d5c8243
AK
473 * @hw: pointer to the HW structure
474 *
475 * Clears the base hardware counters by reading the counter registers.
476 **/
477void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
478{
cc9073bb
AD
479 rd32(E1000_CRCERRS);
480 rd32(E1000_SYMERRS);
481 rd32(E1000_MPC);
482 rd32(E1000_SCC);
483 rd32(E1000_ECOL);
484 rd32(E1000_MCC);
485 rd32(E1000_LATECOL);
486 rd32(E1000_COLC);
487 rd32(E1000_DC);
488 rd32(E1000_SEC);
489 rd32(E1000_RLEC);
490 rd32(E1000_XONRXC);
491 rd32(E1000_XONTXC);
492 rd32(E1000_XOFFRXC);
493 rd32(E1000_XOFFTXC);
494 rd32(E1000_FCRUC);
495 rd32(E1000_GPRC);
496 rd32(E1000_BPRC);
497 rd32(E1000_MPRC);
498 rd32(E1000_GPTC);
499 rd32(E1000_GORCL);
500 rd32(E1000_GORCH);
501 rd32(E1000_GOTCL);
502 rd32(E1000_GOTCH);
503 rd32(E1000_RNBC);
504 rd32(E1000_RUC);
505 rd32(E1000_RFC);
506 rd32(E1000_ROC);
507 rd32(E1000_RJC);
508 rd32(E1000_TORL);
509 rd32(E1000_TORH);
510 rd32(E1000_TOTL);
511 rd32(E1000_TOTH);
512 rd32(E1000_TPR);
513 rd32(E1000_TPT);
514 rd32(E1000_MPTC);
515 rd32(E1000_BPTC);
9d5c8243
AK
516}
517
518/**
733596be 519 * igb_check_for_copper_link - Check for link (Copper)
9d5c8243
AK
520 * @hw: pointer to the HW structure
521 *
522 * Checks to see of the link status of the hardware has changed. If a
523 * change in link status has been detected, then we read the PHY registers
524 * to get the current speed/duplex if link exists.
525 **/
526s32 igb_check_for_copper_link(struct e1000_hw *hw)
527{
528 struct e1000_mac_info *mac = &hw->mac;
529 s32 ret_val;
530 bool link;
531
b980ac18 532 /* We only want to go out to the PHY registers to see if Auto-Neg
9d5c8243
AK
533 * has completed and/or if our link status has changed. The
534 * get_link_status flag is set upon receiving a Link Status
535 * Change or Rx Sequence Error interrupt.
536 */
537 if (!mac->get_link_status) {
538 ret_val = 0;
539 goto out;
540 }
541
b980ac18 542 /* First we want to see if the MII Status Register reports
9d5c8243
AK
543 * link. If so, then we want to get the current speed/duplex
544 * of the PHY.
545 */
546 ret_val = igb_phy_has_link(hw, 1, 0, &link);
547 if (ret_val)
548 goto out;
549
550 if (!link)
551 goto out; /* No link detected */
552
553 mac->get_link_status = false;
554
b980ac18 555 /* Check if there was DownShift, must be checked
9d5c8243
AK
556 * immediately after link-up
557 */
558 igb_check_downshift(hw);
559
b980ac18 560 /* If we are forcing speed/duplex, then we simply return since
9d5c8243
AK
561 * we have already determined whether we have link or not.
562 */
563 if (!mac->autoneg) {
564 ret_val = -E1000_ERR_CONFIG;
565 goto out;
566 }
567
b980ac18 568 /* Auto-Neg is enabled. Auto Speed Detection takes care
9d5c8243
AK
569 * of MAC speed/duplex configuration. So we only need to
570 * configure Collision Distance in the MAC.
571 */
572 igb_config_collision_dist(hw);
573
b980ac18 574 /* Configure Flow Control now that Auto-Neg has completed.
9d5c8243
AK
575 * First, we need to restore the desired flow control
576 * settings because we may have had to re-autoneg with a
577 * different link partner.
578 */
579 ret_val = igb_config_fc_after_link_up(hw);
580 if (ret_val)
652fff32 581 hw_dbg("Error configuring flow control\n");
9d5c8243
AK
582
583out:
584 return ret_val;
585}
586
587/**
733596be 588 * igb_setup_link - Setup flow control and link settings
9d5c8243
AK
589 * @hw: pointer to the HW structure
590 *
591 * Determines which flow control settings to use, then configures flow
592 * control. Calls the appropriate media-specific link configuration
593 * function. Assuming the adapter has a valid link partner, a valid link
594 * should be established. Assumes the hardware has previously been reset
595 * and the transmitter and receiver are not enabled.
596 **/
597s32 igb_setup_link(struct e1000_hw *hw)
598{
599 s32 ret_val = 0;
600
b980ac18 601 /* In the case of the phy reset being blocked, we already have a link.
9d5c8243
AK
602 * We do not need to set it up again.
603 */
604 if (igb_check_reset_block(hw))
605 goto out;
606
b980ac18 607 /* If requested flow control is set to default, set flow control
0cce119a
AD
608 * based on the EEPROM flow control settings.
609 */
610 if (hw->fc.requested_mode == e1000_fc_default) {
611 ret_val = igb_set_default_fc(hw);
612 if (ret_val)
613 goto out;
614 }
9d5c8243 615
b980ac18 616 /* We want to save off the original Flow Control configuration just
9d5c8243
AK
617 * in case we get disconnected and then reconnected into a different
618 * hub or switch with different Flow Control capabilities.
619 */
0cce119a 620 hw->fc.current_mode = hw->fc.requested_mode;
9d5c8243 621
0cce119a 622 hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
9d5c8243
AK
623
624 /* Call the necessary media_type subroutine to configure the link. */
625 ret_val = hw->mac.ops.setup_physical_interface(hw);
626 if (ret_val)
627 goto out;
628
b980ac18 629 /* Initialize the flow control address, type, and PAUSE timer
9d5c8243
AK
630 * registers to their default values. This is done even if flow
631 * control is disabled, because it does not hurt anything to
632 * initialize these registers.
633 */
652fff32 634 hw_dbg("Initializing the Flow Control address, type and timer regs\n");
9d5c8243
AK
635 wr32(E1000_FCT, FLOW_CONTROL_TYPE);
636 wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
637 wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
638
639 wr32(E1000_FCTTV, hw->fc.pause_time);
640
641 ret_val = igb_set_fc_watermarks(hw);
642
643out:
f96a8a0b 644
9d5c8243
AK
645 return ret_val;
646}
647
648/**
733596be 649 * igb_config_collision_dist - Configure collision distance
9d5c8243
AK
650 * @hw: pointer to the HW structure
651 *
652 * Configures the collision distance to the default value and is used
653 * during link setup. Currently no func pointer exists and all
654 * implementations are handled in the generic version of this function.
655 **/
656void igb_config_collision_dist(struct e1000_hw *hw)
657{
658 u32 tctl;
659
660 tctl = rd32(E1000_TCTL);
661
662 tctl &= ~E1000_TCTL_COLD;
663 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
664
665 wr32(E1000_TCTL, tctl);
666 wrfl();
667}
668
669/**
733596be 670 * igb_set_fc_watermarks - Set flow control high/low watermarks
9d5c8243
AK
671 * @hw: pointer to the HW structure
672 *
673 * Sets the flow control high/low threshold (watermark) registers. If
674 * flow control XON frame transmission is enabled, then set XON frame
675 * tansmission as well.
676 **/
677static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
678{
679 s32 ret_val = 0;
680 u32 fcrtl = 0, fcrth = 0;
681
b980ac18 682 /* Set the flow control receive threshold registers. Normally,
9d5c8243
AK
683 * these registers will be set to a default threshold that may be
684 * adjusted later by the driver's runtime code. However, if the
685 * ability to transmit pause frames is not enabled, then these
686 * registers will be set to 0.
687 */
0cce119a 688 if (hw->fc.current_mode & e1000_fc_tx_pause) {
b980ac18 689 /* We need to set up the Receive Threshold high and low water
9d5c8243
AK
690 * marks as well as (optionally) enabling the transmission of
691 * XON frames.
692 */
693 fcrtl = hw->fc.low_water;
694 if (hw->fc.send_xon)
695 fcrtl |= E1000_FCRTL_XONE;
696
697 fcrth = hw->fc.high_water;
698 }
699 wr32(E1000_FCRTL, fcrtl);
700 wr32(E1000_FCRTH, fcrth);
701
702 return ret_val;
703}
704
705/**
733596be 706 * igb_set_default_fc - Set flow control default values
9d5c8243
AK
707 * @hw: pointer to the HW structure
708 *
709 * Read the EEPROM for the default values for flow control and store the
710 * values.
711 **/
712static s32 igb_set_default_fc(struct e1000_hw *hw)
713{
714 s32 ret_val = 0;
715 u16 nvm_data;
716
b980ac18 717 /* Read and store word 0x0F of the EEPROM. This word contains bits
9d5c8243
AK
718 * that determine the hardware's default PAUSE (flow control) mode,
719 * a bit that determines whether the HW defaults to enabling or
720 * disabling auto-negotiation, and the direction of the
721 * SW defined pins. If there is no SW over-ride of the flow
722 * control setting, then the variable hw->fc will
723 * be initialized based on a value in the EEPROM.
724 */
312c75ae 725 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
9d5c8243
AK
726
727 if (ret_val) {
652fff32 728 hw_dbg("NVM Read Error\n");
9d5c8243
AK
729 goto out;
730 }
731
732 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
0cce119a 733 hw->fc.requested_mode = e1000_fc_none;
9d5c8243
AK
734 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
735 NVM_WORD0F_ASM_DIR)
0cce119a 736 hw->fc.requested_mode = e1000_fc_tx_pause;
9d5c8243 737 else
0cce119a 738 hw->fc.requested_mode = e1000_fc_full;
9d5c8243
AK
739
740out:
741 return ret_val;
742}
743
744/**
733596be 745 * igb_force_mac_fc - Force the MAC's flow control settings
9d5c8243
AK
746 * @hw: pointer to the HW structure
747 *
748 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
749 * device control register to reflect the adapter settings. TFCE and RFCE
750 * need to be explicitly set by software when a copper PHY is used because
751 * autonegotiation is managed by the PHY rather than the MAC. Software must
752 * also configure these bits when link is forced on a fiber connection.
753 **/
754s32 igb_force_mac_fc(struct e1000_hw *hw)
755{
756 u32 ctrl;
757 s32 ret_val = 0;
758
759 ctrl = rd32(E1000_CTRL);
760
b980ac18 761 /* Because we didn't get link via the internal auto-negotiation
9d5c8243
AK
762 * mechanism (we either forced link or we got link via PHY
763 * auto-neg), we have to manually enable/disable transmit an
764 * receive flow control.
765 *
766 * The "Case" statement below enables/disable flow control
0cce119a 767 * according to the "hw->fc.current_mode" parameter.
9d5c8243
AK
768 *
769 * The possible values of the "fc" parameter are:
770 * 0: Flow control is completely disabled
771 * 1: Rx flow control is enabled (we can receive pause
772 * frames but not send pause frames).
773 * 2: Tx flow control is enabled (we can send pause frames
774 * frames but we do not receive pause frames).
775 * 3: Both Rx and TX flow control (symmetric) is enabled.
776 * other: No other values should be possible at this point.
777 */
0cce119a 778 hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
9d5c8243 779
0cce119a 780 switch (hw->fc.current_mode) {
9d5c8243
AK
781 case e1000_fc_none:
782 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
783 break;
784 case e1000_fc_rx_pause:
785 ctrl &= (~E1000_CTRL_TFCE);
786 ctrl |= E1000_CTRL_RFCE;
787 break;
788 case e1000_fc_tx_pause:
789 ctrl &= (~E1000_CTRL_RFCE);
790 ctrl |= E1000_CTRL_TFCE;
791 break;
792 case e1000_fc_full:
793 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
794 break;
795 default:
652fff32 796 hw_dbg("Flow control param set incorrectly\n");
9d5c8243
AK
797 ret_val = -E1000_ERR_CONFIG;
798 goto out;
799 }
800
801 wr32(E1000_CTRL, ctrl);
802
803out:
804 return ret_val;
805}
806
807/**
733596be 808 * igb_config_fc_after_link_up - Configures flow control after link
9d5c8243
AK
809 * @hw: pointer to the HW structure
810 *
811 * Checks the status of auto-negotiation after link up to ensure that the
812 * speed and duplex were not forced. If the link needed to be forced, then
813 * flow control needs to be forced also. If auto-negotiation is enabled
814 * and did not fail, then we configure flow control based on our link
815 * partner.
816 **/
817s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
818{
819 struct e1000_mac_info *mac = &hw->mac;
820 s32 ret_val = 0;
daf56e40 821 u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
9d5c8243
AK
822 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
823 u16 speed, duplex;
824
b980ac18 825 /* Check for the case where we have fiber media and auto-neg failed
9d5c8243
AK
826 * so we had to force link. In this case, we need to force the
827 * configuration of the MAC to match the "fc" parameter.
828 */
829 if (mac->autoneg_failed) {
dcc3ae9a 830 if (hw->phy.media_type == e1000_media_type_internal_serdes)
9d5c8243
AK
831 ret_val = igb_force_mac_fc(hw);
832 } else {
833 if (hw->phy.media_type == e1000_media_type_copper)
834 ret_val = igb_force_mac_fc(hw);
835 }
836
837 if (ret_val) {
652fff32 838 hw_dbg("Error forcing flow control settings\n");
9d5c8243
AK
839 goto out;
840 }
841
b980ac18 842 /* Check for the case where we have copper media and auto-neg is
9d5c8243
AK
843 * enabled. In this case, we need to check and see if Auto-Neg
844 * has completed, and if so, how the PHY and link partner has
845 * flow control configured.
846 */
847 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
b980ac18 848 /* Read the MII Status Register and check to see if AutoNeg
9d5c8243
AK
849 * has completed. We read this twice because this reg has
850 * some "sticky" (latched) bits.
851 */
a8d2a0c2 852 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
9d5c8243
AK
853 &mii_status_reg);
854 if (ret_val)
855 goto out;
a8d2a0c2 856 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
9d5c8243
AK
857 &mii_status_reg);
858 if (ret_val)
859 goto out;
860
861 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
652fff32 862 hw_dbg("Copper PHY and Auto Neg "
9d5c8243
AK
863 "has not completed.\n");
864 goto out;
865 }
866
b980ac18 867 /* The AutoNeg process has completed, so we now need to
9d5c8243
AK
868 * read both the Auto Negotiation Advertisement
869 * Register (Address 4) and the Auto_Negotiation Base
870 * Page Ability Register (Address 5) to determine how
871 * flow control was negotiated.
872 */
a8d2a0c2 873 ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
9d5c8243
AK
874 &mii_nway_adv_reg);
875 if (ret_val)
876 goto out;
a8d2a0c2 877 ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
9d5c8243
AK
878 &mii_nway_lp_ability_reg);
879 if (ret_val)
880 goto out;
881
b980ac18 882 /* Two bits in the Auto Negotiation Advertisement Register
9d5c8243
AK
883 * (Address 4) and two bits in the Auto Negotiation Base
884 * Page Ability Register (Address 5) determine flow control
885 * for both the PHY and the link partner. The following
886 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
887 * 1999, describes these PAUSE resolution bits and how flow
888 * control is determined based upon these settings.
889 * NOTE: DC = Don't Care
890 *
891 * LOCAL DEVICE | LINK PARTNER
892 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
893 *-------|---------|-------|---------|--------------------
894 * 0 | 0 | DC | DC | e1000_fc_none
895 * 0 | 1 | 0 | DC | e1000_fc_none
896 * 0 | 1 | 1 | 0 | e1000_fc_none
897 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
898 * 1 | 0 | 0 | DC | e1000_fc_none
899 * 1 | DC | 1 | DC | e1000_fc_full
900 * 1 | 1 | 0 | 0 | e1000_fc_none
901 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
902 *
903 * Are both PAUSE bits set to 1? If so, this implies
904 * Symmetric Flow Control is enabled at both ends. The
905 * ASM_DIR bits are irrelevant per the spec.
906 *
907 * For Symmetric Flow Control:
908 *
909 * LOCAL DEVICE | LINK PARTNER
910 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
911 *-------|---------|-------|---------|--------------------
912 * 1 | DC | 1 | DC | E1000_fc_full
913 *
914 */
915 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
916 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
b980ac18 917 /* Now we need to check if the user selected RX ONLY
9d5c8243
AK
918 * of pause frames. In this case, we had to advertise
919 * FULL flow control because we could not advertise RX
920 * ONLY. Hence, we must now check to see if we need to
921 * turn OFF the TRANSMISSION of PAUSE frames.
922 */
0cce119a
AD
923 if (hw->fc.requested_mode == e1000_fc_full) {
924 hw->fc.current_mode = e1000_fc_full;
652fff32 925 hw_dbg("Flow Control = FULL.\r\n");
9d5c8243 926 } else {
0cce119a 927 hw->fc.current_mode = e1000_fc_rx_pause;
652fff32
AK
928 hw_dbg("Flow Control = "
929 "RX PAUSE frames only.\r\n");
9d5c8243
AK
930 }
931 }
b980ac18 932 /* For receiving PAUSE frames ONLY.
9d5c8243
AK
933 *
934 * LOCAL DEVICE | LINK PARTNER
935 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
936 *-------|---------|-------|---------|--------------------
937 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
938 */
939 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
940 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
941 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
942 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
0cce119a 943 hw->fc.current_mode = e1000_fc_tx_pause;
652fff32 944 hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
9d5c8243 945 }
b980ac18 946 /* For transmitting PAUSE frames ONLY.
9d5c8243
AK
947 *
948 * LOCAL DEVICE | LINK PARTNER
949 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
950 *-------|---------|-------|---------|--------------------
951 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
952 */
953 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
954 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
955 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
956 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
0cce119a 957 hw->fc.current_mode = e1000_fc_rx_pause;
652fff32 958 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
9d5c8243 959 }
b980ac18 960 /* Per the IEEE spec, at this point flow control should be
9d5c8243
AK
961 * disabled. However, we want to consider that we could
962 * be connected to a legacy switch that doesn't advertise
963 * desired flow control, but can be forced on the link
964 * partner. So if we advertised no flow control, that is
965 * what we will resolve to. If we advertised some kind of
966 * receive capability (Rx Pause Only or Full Flow Control)
967 * and the link partner advertised none, we will configure
968 * ourselves to enable Rx Flow Control only. We can do
969 * this safely for two reasons: If the link partner really
970 * didn't want flow control enabled, and we enable Rx, no
971 * harm done since we won't be receiving any PAUSE frames
972 * anyway. If the intent on the link partner was to have
973 * flow control enabled, then by us enabling RX only, we
974 * can at least receive pause frames and process them.
975 * This is a good idea because in most cases, since we are
976 * predominantly a server NIC, more times than not we will
977 * be asked to delay transmission of packets than asking
978 * our link partner to pause transmission of frames.
979 */
5c17a203
AA
980 else if ((hw->fc.requested_mode == e1000_fc_none) ||
981 (hw->fc.requested_mode == e1000_fc_tx_pause) ||
982 (hw->fc.strict_ieee)) {
0cce119a 983 hw->fc.current_mode = e1000_fc_none;
652fff32 984 hw_dbg("Flow Control = NONE.\r\n");
9d5c8243 985 } else {
0cce119a 986 hw->fc.current_mode = e1000_fc_rx_pause;
652fff32 987 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
9d5c8243
AK
988 }
989
b980ac18 990 /* Now we need to do one last check... If we auto-
9d5c8243
AK
991 * negotiated to HALF DUPLEX, flow control should not be
992 * enabled per IEEE 802.3 spec.
993 */
994 ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
995 if (ret_val) {
652fff32 996 hw_dbg("Error getting link speed and duplex\n");
9d5c8243
AK
997 goto out;
998 }
999
1000 if (duplex == HALF_DUPLEX)
0cce119a 1001 hw->fc.current_mode = e1000_fc_none;
9d5c8243 1002
b980ac18 1003 /* Now we call a subroutine to actually force the MAC
9d5c8243
AK
1004 * controller to use the correct flow control settings.
1005 */
1006 ret_val = igb_force_mac_fc(hw);
1007 if (ret_val) {
652fff32 1008 hw_dbg("Error forcing flow control settings\n");
9d5c8243
AK
1009 goto out;
1010 }
1011 }
daf56e40
CW
1012 /* Check for the case where we have SerDes media and auto-neg is
1013 * enabled. In this case, we need to check and see if Auto-Neg
1014 * has completed, and if so, how the PHY and link partner has
1015 * flow control configured.
1016 */
1017 if ((hw->phy.media_type == e1000_media_type_internal_serdes)
1018 && mac->autoneg) {
1019 /* Read the PCS_LSTS and check to see if AutoNeg
1020 * has completed.
1021 */
1022 pcs_status_reg = rd32(E1000_PCS_LSTAT);
1023
1024 if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1025 hw_dbg("PCS Auto Neg has not completed.\n");
1026 return ret_val;
1027 }
1028
1029 /* The AutoNeg process has completed, so we now need to
1030 * read both the Auto Negotiation Advertisement
1031 * Register (PCS_ANADV) and the Auto_Negotiation Base
1032 * Page Ability Register (PCS_LPAB) to determine how
1033 * flow control was negotiated.
1034 */
1035 pcs_adv_reg = rd32(E1000_PCS_ANADV);
1036 pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
1037
1038 /* Two bits in the Auto Negotiation Advertisement Register
1039 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1040 * Page Ability Register (PCS_LPAB) determine flow control
1041 * for both the PHY and the link partner. The following
1042 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1043 * 1999, describes these PAUSE resolution bits and how flow
1044 * control is determined based upon these settings.
1045 * NOTE: DC = Don't Care
1046 *
1047 * LOCAL DEVICE | LINK PARTNER
1048 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1049 *-------|---------|-------|---------|--------------------
1050 * 0 | 0 | DC | DC | e1000_fc_none
1051 * 0 | 1 | 0 | DC | e1000_fc_none
1052 * 0 | 1 | 1 | 0 | e1000_fc_none
1053 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1054 * 1 | 0 | 0 | DC | e1000_fc_none
1055 * 1 | DC | 1 | DC | e1000_fc_full
1056 * 1 | 1 | 0 | 0 | e1000_fc_none
1057 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1058 *
1059 * Are both PAUSE bits set to 1? If so, this implies
1060 * Symmetric Flow Control is enabled at both ends. The
1061 * ASM_DIR bits are irrelevant per the spec.
1062 *
1063 * For Symmetric Flow Control:
1064 *
1065 * LOCAL DEVICE | LINK PARTNER
1066 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1067 *-------|---------|-------|---------|--------------------
1068 * 1 | DC | 1 | DC | e1000_fc_full
1069 *
1070 */
1071 if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1072 (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1073 /* Now we need to check if the user selected Rx ONLY
1074 * of pause frames. In this case, we had to advertise
1075 * FULL flow control because we could not advertise Rx
1076 * ONLY. Hence, we must now check to see if we need to
1077 * turn OFF the TRANSMISSION of PAUSE frames.
1078 */
1079 if (hw->fc.requested_mode == e1000_fc_full) {
1080 hw->fc.current_mode = e1000_fc_full;
1081 hw_dbg("Flow Control = FULL.\n");
1082 } else {
1083 hw->fc.current_mode = e1000_fc_rx_pause;
1084 hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1085 }
1086 }
1087 /* For receiving PAUSE frames ONLY.
1088 *
1089 * LOCAL DEVICE | LINK PARTNER
1090 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1091 *-------|---------|-------|---------|--------------------
1092 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1093 */
1094 else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1095 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1096 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1097 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1098 hw->fc.current_mode = e1000_fc_tx_pause;
1099 hw_dbg("Flow Control = Tx PAUSE frames only.\n");
1100 }
1101 /* For transmitting PAUSE frames ONLY.
1102 *
1103 * LOCAL DEVICE | LINK PARTNER
1104 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1105 *-------|---------|-------|---------|--------------------
1106 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1107 */
1108 else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1109 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1110 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1111 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1112 hw->fc.current_mode = e1000_fc_rx_pause;
1113 hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1114 } else {
1115 /* Per the IEEE spec, at this point flow control
1116 * should be disabled.
1117 */
1118 hw->fc.current_mode = e1000_fc_none;
1119 hw_dbg("Flow Control = NONE.\n");
1120 }
1121
1122 /* Now we call a subroutine to actually force the MAC
1123 * controller to use the correct flow control settings.
1124 */
1125 pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
1126 pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1127 wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
1128
1129 ret_val = igb_force_mac_fc(hw);
1130 if (ret_val) {
1131 hw_dbg("Error forcing flow control settings\n");
1132 return ret_val;
1133 }
1134 }
9d5c8243
AK
1135
1136out:
1137 return ret_val;
1138}
1139
1140/**
25985edc 1141 * igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
9d5c8243
AK
1142 * @hw: pointer to the HW structure
1143 * @speed: stores the current speed
1144 * @duplex: stores the current duplex
1145 *
1146 * Read the status register for the current speed/duplex and store the current
1147 * speed and duplex for copper connections.
1148 **/
1149s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1150 u16 *duplex)
1151{
1152 u32 status;
1153
1154 status = rd32(E1000_STATUS);
1155 if (status & E1000_STATUS_SPEED_1000) {
1156 *speed = SPEED_1000;
652fff32 1157 hw_dbg("1000 Mbs, ");
9d5c8243
AK
1158 } else if (status & E1000_STATUS_SPEED_100) {
1159 *speed = SPEED_100;
652fff32 1160 hw_dbg("100 Mbs, ");
9d5c8243
AK
1161 } else {
1162 *speed = SPEED_10;
652fff32 1163 hw_dbg("10 Mbs, ");
9d5c8243
AK
1164 }
1165
1166 if (status & E1000_STATUS_FD) {
1167 *duplex = FULL_DUPLEX;
652fff32 1168 hw_dbg("Full Duplex\n");
9d5c8243
AK
1169 } else {
1170 *duplex = HALF_DUPLEX;
652fff32 1171 hw_dbg("Half Duplex\n");
9d5c8243
AK
1172 }
1173
1174 return 0;
1175}
1176
1177/**
733596be 1178 * igb_get_hw_semaphore - Acquire hardware semaphore
9d5c8243
AK
1179 * @hw: pointer to the HW structure
1180 *
1181 * Acquire the HW semaphore to access the PHY or NVM
1182 **/
1183s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1184{
1185 u32 swsm;
1186 s32 ret_val = 0;
1187 s32 timeout = hw->nvm.word_size + 1;
1188 s32 i = 0;
1189
1190 /* Get the SW semaphore */
1191 while (i < timeout) {
1192 swsm = rd32(E1000_SWSM);
1193 if (!(swsm & E1000_SWSM_SMBI))
1194 break;
1195
1196 udelay(50);
1197 i++;
1198 }
1199
1200 if (i == timeout) {
652fff32 1201 hw_dbg("Driver can't access device - SMBI bit is set.\n");
9d5c8243
AK
1202 ret_val = -E1000_ERR_NVM;
1203 goto out;
1204 }
1205
1206 /* Get the FW semaphore. */
1207 for (i = 0; i < timeout; i++) {
1208 swsm = rd32(E1000_SWSM);
1209 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1210
1211 /* Semaphore acquired if bit latched */
1212 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1213 break;
1214
1215 udelay(50);
1216 }
1217
1218 if (i == timeout) {
1219 /* Release semaphores */
1220 igb_put_hw_semaphore(hw);
652fff32 1221 hw_dbg("Driver can't access the NVM\n");
9d5c8243
AK
1222 ret_val = -E1000_ERR_NVM;
1223 goto out;
1224 }
1225
1226out:
1227 return ret_val;
1228}
1229
1230/**
733596be 1231 * igb_put_hw_semaphore - Release hardware semaphore
9d5c8243
AK
1232 * @hw: pointer to the HW structure
1233 *
1234 * Release hardware semaphore used to access the PHY or NVM
1235 **/
1236void igb_put_hw_semaphore(struct e1000_hw *hw)
1237{
1238 u32 swsm;
1239
1240 swsm = rd32(E1000_SWSM);
1241
1242 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1243
1244 wr32(E1000_SWSM, swsm);
1245}
1246
1247/**
733596be 1248 * igb_get_auto_rd_done - Check for auto read completion
9d5c8243
AK
1249 * @hw: pointer to the HW structure
1250 *
1251 * Check EEPROM for Auto Read done bit.
1252 **/
1253s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1254{
1255 s32 i = 0;
1256 s32 ret_val = 0;
1257
1258
1259 while (i < AUTO_READ_DONE_TIMEOUT) {
1260 if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1261 break;
1262 msleep(1);
1263 i++;
1264 }
1265
1266 if (i == AUTO_READ_DONE_TIMEOUT) {
652fff32 1267 hw_dbg("Auto read by HW from NVM has not completed.\n");
9d5c8243
AK
1268 ret_val = -E1000_ERR_RESET;
1269 goto out;
1270 }
1271
1272out:
1273 return ret_val;
1274}
1275
1276/**
733596be 1277 * igb_valid_led_default - Verify a valid default LED config
9d5c8243
AK
1278 * @hw: pointer to the HW structure
1279 * @data: pointer to the NVM (EEPROM)
1280 *
1281 * Read the EEPROM for the current default LED configuration. If the
1282 * LED configuration is not valid, set to a valid LED configuration.
1283 **/
1284static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1285{
1286 s32 ret_val;
1287
312c75ae 1288 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
9d5c8243 1289 if (ret_val) {
652fff32 1290 hw_dbg("NVM Read Error\n");
9d5c8243
AK
1291 goto out;
1292 }
1293
099e1cb7
AD
1294 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1295 switch(hw->phy.media_type) {
1296 case e1000_media_type_internal_serdes:
1297 *data = ID_LED_DEFAULT_82575_SERDES;
1298 break;
1299 case e1000_media_type_copper:
1300 default:
1301 *data = ID_LED_DEFAULT;
1302 break;
1303 }
1304 }
9d5c8243
AK
1305out:
1306 return ret_val;
1307}
1308
1309/**
733596be 1310 * igb_id_led_init -
9d5c8243
AK
1311 * @hw: pointer to the HW structure
1312 *
1313 **/
1314s32 igb_id_led_init(struct e1000_hw *hw)
1315{
1316 struct e1000_mac_info *mac = &hw->mac;
1317 s32 ret_val;
1318 const u32 ledctl_mask = 0x000000FF;
1319 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1320 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1321 u16 data, i, temp;
1322 const u16 led_mask = 0x0F;
1323
1324 ret_val = igb_valid_led_default(hw, &data);
1325 if (ret_val)
1326 goto out;
1327
1328 mac->ledctl_default = rd32(E1000_LEDCTL);
1329 mac->ledctl_mode1 = mac->ledctl_default;
1330 mac->ledctl_mode2 = mac->ledctl_default;
1331
1332 for (i = 0; i < 4; i++) {
1333 temp = (data >> (i << 2)) & led_mask;
1334 switch (temp) {
1335 case ID_LED_ON1_DEF2:
1336 case ID_LED_ON1_ON2:
1337 case ID_LED_ON1_OFF2:
1338 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1339 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1340 break;
1341 case ID_LED_OFF1_DEF2:
1342 case ID_LED_OFF1_ON2:
1343 case ID_LED_OFF1_OFF2:
1344 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1345 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1346 break;
1347 default:
1348 /* Do nothing */
1349 break;
1350 }
1351 switch (temp) {
1352 case ID_LED_DEF1_ON2:
1353 case ID_LED_ON1_ON2:
1354 case ID_LED_OFF1_ON2:
1355 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1356 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1357 break;
1358 case ID_LED_DEF1_OFF2:
1359 case ID_LED_ON1_OFF2:
1360 case ID_LED_OFF1_OFF2:
1361 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1362 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1363 break;
1364 default:
1365 /* Do nothing */
1366 break;
1367 }
1368 }
1369
1370out:
1371 return ret_val;
1372}
1373
1374/**
733596be 1375 * igb_cleanup_led - Set LED config to default operation
9d5c8243
AK
1376 * @hw: pointer to the HW structure
1377 *
1378 * Remove the current LED configuration and set the LED configuration
1379 * to the default value, saved from the EEPROM.
1380 **/
1381s32 igb_cleanup_led(struct e1000_hw *hw)
1382{
1383 wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1384 return 0;
1385}
1386
1387/**
733596be 1388 * igb_blink_led - Blink LED
9d5c8243
AK
1389 * @hw: pointer to the HW structure
1390 *
1391 * Blink the led's which are set to be on.
1392 **/
1393s32 igb_blink_led(struct e1000_hw *hw)
1394{
1395 u32 ledctl_blink = 0;
1396 u32 i;
1397
b980ac18 1398 /* set the blink bit for each LED that's "on" (0x0E)
dcc3ae9a
AD
1399 * in ledctl_mode2
1400 */
1401 ledctl_blink = hw->mac.ledctl_mode2;
1402 for (i = 0; i < 4; i++)
1403 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1404 E1000_LEDCTL_MODE_LED_ON)
1405 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1406 (i * 8));
9d5c8243
AK
1407
1408 wr32(E1000_LEDCTL, ledctl_blink);
1409
1410 return 0;
1411}
1412
1413/**
733596be 1414 * igb_led_off - Turn LED off
9d5c8243
AK
1415 * @hw: pointer to the HW structure
1416 *
1417 * Turn LED off.
1418 **/
1419s32 igb_led_off(struct e1000_hw *hw)
1420{
9d5c8243 1421 switch (hw->phy.media_type) {
9d5c8243
AK
1422 case e1000_media_type_copper:
1423 wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1424 break;
1425 default:
1426 break;
1427 }
1428
1429 return 0;
1430}
1431
1432/**
733596be 1433 * igb_disable_pcie_master - Disables PCI-express master access
9d5c8243
AK
1434 * @hw: pointer to the HW structure
1435 *
1436 * Returns 0 (0) if successful, else returns -10
b980ac18 1437 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
9d5c8243
AK
1438 * the master requests to be disabled.
1439 *
1440 * Disables PCI-Express master access and verifies there are no pending
1441 * requests.
1442 **/
1443s32 igb_disable_pcie_master(struct e1000_hw *hw)
1444{
1445 u32 ctrl;
1446 s32 timeout = MASTER_DISABLE_TIMEOUT;
1447 s32 ret_val = 0;
1448
1449 if (hw->bus.type != e1000_bus_type_pci_express)
1450 goto out;
1451
1452 ctrl = rd32(E1000_CTRL);
1453 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1454 wr32(E1000_CTRL, ctrl);
1455
1456 while (timeout) {
1457 if (!(rd32(E1000_STATUS) &
1458 E1000_STATUS_GIO_MASTER_ENABLE))
1459 break;
1460 udelay(100);
1461 timeout--;
1462 }
1463
1464 if (!timeout) {
652fff32 1465 hw_dbg("Master requests are pending.\n");
9d5c8243
AK
1466 ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1467 goto out;
1468 }
1469
1470out:
1471 return ret_val;
1472}
1473
9d5c8243 1474/**
733596be 1475 * igb_validate_mdi_setting - Verify MDI/MDIx settings
9d5c8243
AK
1476 * @hw: pointer to the HW structure
1477 *
1478 * Verify that when not using auto-negotitation that MDI/MDIx is correctly
1479 * set, which is forced to MDI mode only.
1480 **/
1481s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1482{
1483 s32 ret_val = 0;
1484
9f0b8516
MV
1485 /* All MDI settings are supported on 82580 and newer. */
1486 if (hw->mac.type >= e1000_82580)
1487 goto out;
1488
9d5c8243 1489 if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
652fff32 1490 hw_dbg("Invalid MDI setting detected\n");
9d5c8243
AK
1491 hw->phy.mdix = 1;
1492 ret_val = -E1000_ERR_CONFIG;
1493 goto out;
1494 }
1495
1496out:
1497 return ret_val;
1498}
1499
1500/**
733596be 1501 * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
9d5c8243
AK
1502 * @hw: pointer to the HW structure
1503 * @reg: 32bit register offset such as E1000_SCTL
1504 * @offset: register offset to write to
1505 * @data: data to write at register offset
1506 *
1507 * Writes an address/data control type register. There are several of these
1508 * and they all have the format address << 8 | data and bit 31 is polled for
1509 * completion.
1510 **/
1511s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1512 u32 offset, u8 data)
1513{
1514 u32 i, regvalue = 0;
1515 s32 ret_val = 0;
1516
1517 /* Set up the address and data */
1518 regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1519 wr32(reg, regvalue);
1520
1521 /* Poll the ready bit to see if the MDI read completed */
1522 for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1523 udelay(5);
1524 regvalue = rd32(reg);
1525 if (regvalue & E1000_GEN_CTL_READY)
1526 break;
1527 }
1528 if (!(regvalue & E1000_GEN_CTL_READY)) {
652fff32 1529 hw_dbg("Reg %08x did not indicate ready\n", reg);
9d5c8243
AK
1530 ret_val = -E1000_ERR_PHY;
1531 goto out;
1532 }
1533
1534out:
1535 return ret_val;
1536}
1537
1538/**
733596be 1539 * igb_enable_mng_pass_thru - Enable processing of ARP's
9d5c8243
AK
1540 * @hw: pointer to the HW structure
1541 *
e017b603
AD
1542 * Verifies the hardware needs to leave interface enabled so that frames can
1543 * be directed to and from the management interface.
9d5c8243
AK
1544 **/
1545bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1546{
1547 u32 manc;
1548 u32 fwsm, factps;
1549 bool ret_val = false;
1550
1551 if (!hw->mac.asf_firmware_present)
1552 goto out;
1553
1554 manc = rd32(E1000_MANC);
1555
e017b603 1556 if (!(manc & E1000_MANC_RCV_TCO_EN))
9d5c8243
AK
1557 goto out;
1558
1559 if (hw->mac.arc_subsystem_valid) {
1560 fwsm = rd32(E1000_FWSM);
1561 factps = rd32(E1000_FACTPS);
1562
1563 if (!(factps & E1000_FACTPS_MNGCG) &&
1564 ((fwsm & E1000_FWSM_MODE_MASK) ==
1565 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1566 ret_val = true;
1567 goto out;
1568 }
1569 } else {
1570 if ((manc & E1000_MANC_SMBUS_EN) &&
1571 !(manc & E1000_MANC_ASF_EN)) {
1572 ret_val = true;
1573 goto out;
1574 }
1575 }
1576
1577out:
1578 return ret_val;
1579}
This page took 0.575751 seconds and 5 git commands to generate.