ixgbe: disable link when adapter goes down
[deliverable/linux.git] / drivers / net / ethernet / intel / ixgbe / ixgbe_common.c
CommitLineData
9a799d71
AK
1/*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
434c5e39 4 Copyright(c) 1999 - 2013 Intel Corporation.
9a799d71
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
9a799d71
AK
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/pci.h>
29#include <linux/delay.h>
30#include <linux/sched.h>
ccffad25 31#include <linux/netdevice.h>
9a799d71 32
11afc1b1 33#include "ixgbe.h"
9a799d71
AK
34#include "ixgbe_common.h"
35#include "ixgbe_phy.h"
36
c44ade9e 37static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
9a799d71
AK
38static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
39static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
c44ade9e
JB
40static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
41static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
42static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
43 u16 count);
44static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
45static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
46static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
9a799d71 48
9a799d71 49static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
eb9c3e3e 50static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
68c7005d
ET
51static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
52 u16 words, u16 *data);
53static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
54 u16 words, u16 *data);
55static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
56 u16 offset);
ff9d1a5a 57static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
9a799d71 58
67a79df2
AD
59/**
60 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
61 * control
62 * @hw: pointer to hardware structure
63 *
64 * There are several phys that do not support autoneg flow control. This
65 * function check the device id to see if the associated phy supports
66 * autoneg flow control.
67 **/
73d80953 68bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
67a79df2 69{
73d80953
DS
70 bool supported = false;
71 ixgbe_link_speed speed;
72 bool link_up;
67a79df2 73
73d80953 74 switch (hw->phy.media_type) {
4e8e1bca 75 case ixgbe_media_type_fiber_fixed:
73d80953
DS
76 case ixgbe_media_type_fiber:
77 hw->mac.ops.check_link(hw, &speed, &link_up, false);
78 /* if link is down, assume supported */
79 if (link_up)
80 supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
81 true : false;
82 else
83 supported = true;
84 break;
85 case ixgbe_media_type_backplane:
86 supported = true;
87 break;
88 case ixgbe_media_type_copper:
89 /* only some copper devices support flow control autoneg */
90 switch (hw->device_id) {
91 case IXGBE_DEV_ID_82599_T3_LOM:
92 case IXGBE_DEV_ID_X540T:
93 case IXGBE_DEV_ID_X540T1:
94 supported = true;
95 break;
96 default:
97 break;
98 }
67a79df2 99 default:
73d80953 100 break;
67a79df2 101 }
73d80953
DS
102
103 return supported;
67a79df2
AD
104}
105
106/**
107 * ixgbe_setup_fc - Set up flow control
108 * @hw: pointer to hardware structure
109 *
110 * Called at init time to set up flow control.
111 **/
041441d0 112static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
67a79df2
AD
113{
114 s32 ret_val = 0;
115 u32 reg = 0, reg_bp = 0;
116 u16 reg_cu = 0;
d7bbcd32 117 bool got_lock = false;
67a79df2 118
67a79df2
AD
119 /*
120 * Validate the requested mode. Strict IEEE mode does not allow
121 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
122 */
123 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
124 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
125 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
126 goto out;
127 }
128
129 /*
130 * 10gig parts do not have a word in the EEPROM to determine the
131 * default flow control setting, so we explicitly set it to full.
132 */
133 if (hw->fc.requested_mode == ixgbe_fc_default)
134 hw->fc.requested_mode = ixgbe_fc_full;
135
136 /*
137 * Set up the 1G and 10G flow control advertisement registers so the
138 * HW will be able to do fc autoneg once the cable is plugged in. If
139 * we link at 10G, the 1G advertisement is harmless and vice versa.
140 */
67a79df2 141 switch (hw->phy.media_type) {
4e8e1bca 142 case ixgbe_media_type_fiber_fixed:
67a79df2
AD
143 case ixgbe_media_type_fiber:
144 case ixgbe_media_type_backplane:
145 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
146 reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
147 break;
67a79df2
AD
148 case ixgbe_media_type_copper:
149 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
150 MDIO_MMD_AN, &reg_cu);
151 break;
67a79df2 152 default:
041441d0 153 break;
67a79df2
AD
154 }
155
156 /*
157 * The possible values of fc.requested_mode are:
158 * 0: Flow control is completely disabled
159 * 1: Rx flow control is enabled (we can receive pause frames,
160 * but not send pause frames).
161 * 2: Tx flow control is enabled (we can send pause frames but
162 * we do not support receiving pause frames).
163 * 3: Both Rx and Tx flow control (symmetric) are enabled.
67a79df2
AD
164 * other: Invalid.
165 */
166 switch (hw->fc.requested_mode) {
167 case ixgbe_fc_none:
168 /* Flow control completely disabled by software override. */
169 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
170 if (hw->phy.media_type == ixgbe_media_type_backplane)
171 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
172 IXGBE_AUTOC_ASM_PAUSE);
173 else if (hw->phy.media_type == ixgbe_media_type_copper)
174 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
175 break;
67a79df2
AD
176 case ixgbe_fc_tx_pause:
177 /*
178 * Tx Flow control is enabled, and Rx Flow control is
179 * disabled by software override.
180 */
041441d0
AD
181 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
182 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
67a79df2 183 if (hw->phy.media_type == ixgbe_media_type_backplane) {
041441d0
AD
184 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
185 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
67a79df2 186 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
041441d0
AD
187 reg_cu |= IXGBE_TAF_ASM_PAUSE;
188 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
67a79df2
AD
189 }
190 break;
041441d0
AD
191 case ixgbe_fc_rx_pause:
192 /*
193 * Rx Flow control is enabled and Tx Flow control is
194 * disabled by software override. Since there really
195 * isn't a way to advertise that we are capable of RX
196 * Pause ONLY, we will advertise that we support both
197 * symmetric and asymmetric Rx PAUSE, as such we fall
198 * through to the fc_full statement. Later, we will
199 * disable the adapter's ability to send PAUSE frames.
200 */
67a79df2
AD
201 case ixgbe_fc_full:
202 /* Flow control (both Rx and Tx) is enabled by SW override. */
041441d0 203 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
67a79df2 204 if (hw->phy.media_type == ixgbe_media_type_backplane)
041441d0
AD
205 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
206 IXGBE_AUTOC_ASM_PAUSE;
67a79df2 207 else if (hw->phy.media_type == ixgbe_media_type_copper)
041441d0 208 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
67a79df2 209 break;
67a79df2
AD
210 default:
211 hw_dbg(hw, "Flow control param set incorrectly\n");
212 ret_val = IXGBE_ERR_CONFIG;
213 goto out;
214 break;
215 }
216
217 if (hw->mac.type != ixgbe_mac_X540) {
218 /*
219 * Enable auto-negotiation between the MAC & PHY;
220 * the MAC will advertise clause 37 flow control.
221 */
222 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
223 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
224
225 /* Disable AN timeout */
226 if (hw->fc.strict_ieee)
227 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
228
229 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
230 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
231 }
232
233 /*
234 * AUTOC restart handles negotiation of 1G and 10G on backplane
235 * and copper. There is no need to set the PCS1GCTL register.
236 *
237 */
238 if (hw->phy.media_type == ixgbe_media_type_backplane) {
d7bbcd32
DS
239 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
240 * LESM is on, likewise reset_pipeline requries the lock as
241 * it also writes AUTOC.
242 */
243 if ((hw->mac.type == ixgbe_mac_82599EB) &&
244 ixgbe_verify_lesm_fw_enabled_82599(hw)) {
245 ret_val = hw->mac.ops.acquire_swfw_sync(hw,
246 IXGBE_GSSR_MAC_CSR_SM);
247 if (ret_val)
248 goto out;
249
250 got_lock = true;
251 }
252
67a79df2 253 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
d7bbcd32
DS
254
255 if (hw->mac.type == ixgbe_mac_82599EB)
256 ixgbe_reset_pipeline_82599(hw);
257
258 if (got_lock)
259 hw->mac.ops.release_swfw_sync(hw,
260 IXGBE_GSSR_MAC_CSR_SM);
261
67a79df2 262 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
73d80953 263 ixgbe_device_supports_autoneg_fc(hw)) {
67a79df2
AD
264 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
265 MDIO_MMD_AN, reg_cu);
266 }
267
268 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
269out:
270 return ret_val;
271}
272
9a799d71 273/**
c44ade9e 274 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
9a799d71
AK
275 * @hw: pointer to hardware structure
276 *
277 * Starts the hardware by filling the bus info structure and media type, clears
278 * all on chip counters, initializes receive address registers, multicast
279 * table, VLAN filter table, calls routine to set up link and flow control
280 * settings, and leaves transmit and receive units disabled and uninitialized
281 **/
c44ade9e 282s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
9a799d71
AK
283{
284 u32 ctrl_ext;
285
286 /* Set the media type */
287 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
288
289 /* Identify the PHY */
c44ade9e 290 hw->phy.ops.identify(hw);
9a799d71 291
9a799d71 292 /* Clear the VLAN filter table */
c44ade9e 293 hw->mac.ops.clear_vfta(hw);
9a799d71 294
9a799d71 295 /* Clear statistics registers */
c44ade9e 296 hw->mac.ops.clear_hw_cntrs(hw);
9a799d71
AK
297
298 /* Set No Snoop Disable */
299 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
300 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
301 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
3957d63d 302 IXGBE_WRITE_FLUSH(hw);
9a799d71 303
620fa036 304 /* Setup flow control */
041441d0 305 ixgbe_setup_fc(hw);
620fa036 306
9a799d71
AK
307 /* Clear adapter stopped flag */
308 hw->adapter_stopped = false;
309
310 return 0;
311}
312
7184b7cf
ET
313/**
314 * ixgbe_start_hw_gen2 - Init sequence for common device family
315 * @hw: pointer to hw structure
316 *
317 * Performs the init sequence common to the second generation
318 * of 10 GbE devices.
319 * Devices in the second generation:
320 * 82599
321 * X540
322 **/
323s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
324{
325 u32 i;
3d5c5207 326 u32 regval;
7184b7cf
ET
327
328 /* Clear the rate limiters */
329 for (i = 0; i < hw->mac.max_tx_queues; i++) {
330 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
331 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
332 }
333 IXGBE_WRITE_FLUSH(hw);
334
3d5c5207
ET
335 /* Disable relaxed ordering */
336 for (i = 0; i < hw->mac.max_tx_queues; i++) {
337 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
bdda1a61 338 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
3d5c5207
ET
339 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
340 }
341
342 for (i = 0; i < hw->mac.max_rx_queues; i++) {
343 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
bdda1a61
AD
344 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
345 IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
3d5c5207
ET
346 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
347 }
348
7184b7cf
ET
349 return 0;
350}
351
9a799d71 352/**
c44ade9e 353 * ixgbe_init_hw_generic - Generic hardware initialization
9a799d71
AK
354 * @hw: pointer to hardware structure
355 *
c44ade9e 356 * Initialize the hardware by resetting the hardware, filling the bus info
9a799d71
AK
357 * structure and media type, clears all on chip counters, initializes receive
358 * address registers, multicast table, VLAN filter table, calls routine to set
359 * up link and flow control settings, and leaves transmit and receive units
360 * disabled and uninitialized
361 **/
c44ade9e 362s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
9a799d71 363{
794caeb2
PWJ
364 s32 status;
365
9a799d71 366 /* Reset the hardware */
794caeb2 367 status = hw->mac.ops.reset_hw(hw);
9a799d71 368
794caeb2
PWJ
369 if (status == 0) {
370 /* Start the HW */
371 status = hw->mac.ops.start_hw(hw);
372 }
9a799d71 373
794caeb2 374 return status;
9a799d71
AK
375}
376
377/**
c44ade9e 378 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
9a799d71
AK
379 * @hw: pointer to hardware structure
380 *
381 * Clears all hardware statistics counters by reading them from the hardware
382 * Statistics counters are clear on read.
383 **/
c44ade9e 384s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
9a799d71
AK
385{
386 u16 i = 0;
387
388 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
389 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
390 IXGBE_READ_REG(hw, IXGBE_ERRBC);
391 IXGBE_READ_REG(hw, IXGBE_MSPDC);
392 for (i = 0; i < 8; i++)
393 IXGBE_READ_REG(hw, IXGBE_MPC(i));
394
395 IXGBE_READ_REG(hw, IXGBE_MLFC);
396 IXGBE_READ_REG(hw, IXGBE_MRFC);
397 IXGBE_READ_REG(hw, IXGBE_RLEC);
398 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
9a799d71 399 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
667c7565
ET
400 if (hw->mac.type >= ixgbe_mac_82599EB) {
401 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
402 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
403 } else {
404 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
405 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
406 }
9a799d71
AK
407
408 for (i = 0; i < 8; i++) {
409 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
9a799d71 410 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
667c7565
ET
411 if (hw->mac.type >= ixgbe_mac_82599EB) {
412 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
413 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
414 } else {
415 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
416 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
417 }
9a799d71 418 }
667c7565
ET
419 if (hw->mac.type >= ixgbe_mac_82599EB)
420 for (i = 0; i < 8; i++)
421 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
9a799d71
AK
422 IXGBE_READ_REG(hw, IXGBE_PRC64);
423 IXGBE_READ_REG(hw, IXGBE_PRC127);
424 IXGBE_READ_REG(hw, IXGBE_PRC255);
425 IXGBE_READ_REG(hw, IXGBE_PRC511);
426 IXGBE_READ_REG(hw, IXGBE_PRC1023);
427 IXGBE_READ_REG(hw, IXGBE_PRC1522);
428 IXGBE_READ_REG(hw, IXGBE_GPRC);
429 IXGBE_READ_REG(hw, IXGBE_BPRC);
430 IXGBE_READ_REG(hw, IXGBE_MPRC);
431 IXGBE_READ_REG(hw, IXGBE_GPTC);
432 IXGBE_READ_REG(hw, IXGBE_GORCL);
433 IXGBE_READ_REG(hw, IXGBE_GORCH);
434 IXGBE_READ_REG(hw, IXGBE_GOTCL);
435 IXGBE_READ_REG(hw, IXGBE_GOTCH);
f3116f62
ET
436 if (hw->mac.type == ixgbe_mac_82598EB)
437 for (i = 0; i < 8; i++)
438 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
9a799d71
AK
439 IXGBE_READ_REG(hw, IXGBE_RUC);
440 IXGBE_READ_REG(hw, IXGBE_RFC);
441 IXGBE_READ_REG(hw, IXGBE_ROC);
442 IXGBE_READ_REG(hw, IXGBE_RJC);
443 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
444 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
445 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
446 IXGBE_READ_REG(hw, IXGBE_TORL);
447 IXGBE_READ_REG(hw, IXGBE_TORH);
448 IXGBE_READ_REG(hw, IXGBE_TPR);
449 IXGBE_READ_REG(hw, IXGBE_TPT);
450 IXGBE_READ_REG(hw, IXGBE_PTC64);
451 IXGBE_READ_REG(hw, IXGBE_PTC127);
452 IXGBE_READ_REG(hw, IXGBE_PTC255);
453 IXGBE_READ_REG(hw, IXGBE_PTC511);
454 IXGBE_READ_REG(hw, IXGBE_PTC1023);
455 IXGBE_READ_REG(hw, IXGBE_PTC1522);
456 IXGBE_READ_REG(hw, IXGBE_MPTC);
457 IXGBE_READ_REG(hw, IXGBE_BPTC);
458 for (i = 0; i < 16; i++) {
459 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
9a799d71 460 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
667c7565
ET
461 if (hw->mac.type >= ixgbe_mac_82599EB) {
462 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
463 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
464 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
465 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
466 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
467 } else {
468 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
469 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
470 }
9a799d71
AK
471 }
472
a3aeea0e
ET
473 if (hw->mac.type == ixgbe_mac_X540) {
474 if (hw->phy.id == 0)
475 hw->phy.ops.identify(hw);
c1085b10
ET
476 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
477 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
478 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
479 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
a3aeea0e
ET
480 }
481
9a799d71
AK
482 return 0;
483}
484
485/**
289700db 486 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
c44ade9e 487 * @hw: pointer to hardware structure
289700db
DS
488 * @pba_num: stores the part number string from the EEPROM
489 * @pba_num_size: part number string buffer length
c44ade9e 490 *
289700db 491 * Reads the part number string from the EEPROM.
c44ade9e 492 **/
289700db
DS
493s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
494 u32 pba_num_size)
c44ade9e
JB
495{
496 s32 ret_val;
497 u16 data;
289700db
DS
498 u16 pba_ptr;
499 u16 offset;
500 u16 length;
501
502 if (pba_num == NULL) {
503 hw_dbg(hw, "PBA string buffer was null\n");
504 return IXGBE_ERR_INVALID_ARGUMENT;
505 }
c44ade9e
JB
506
507 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
508 if (ret_val) {
509 hw_dbg(hw, "NVM Read Error\n");
510 return ret_val;
511 }
c44ade9e 512
289700db 513 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
c44ade9e
JB
514 if (ret_val) {
515 hw_dbg(hw, "NVM Read Error\n");
516 return ret_val;
517 }
289700db
DS
518
519 /*
520 * if data is not ptr guard the PBA must be in legacy format which
521 * means pba_ptr is actually our second data word for the PBA number
522 * and we can decode it into an ascii string
523 */
524 if (data != IXGBE_PBANUM_PTR_GUARD) {
525 hw_dbg(hw, "NVM PBA number is not stored as string\n");
526
527 /* we will need 11 characters to store the PBA */
528 if (pba_num_size < 11) {
529 hw_dbg(hw, "PBA string buffer too small\n");
530 return IXGBE_ERR_NO_SPACE;
531 }
532
533 /* extract hex string from data and pba_ptr */
534 pba_num[0] = (data >> 12) & 0xF;
535 pba_num[1] = (data >> 8) & 0xF;
536 pba_num[2] = (data >> 4) & 0xF;
537 pba_num[3] = data & 0xF;
538 pba_num[4] = (pba_ptr >> 12) & 0xF;
539 pba_num[5] = (pba_ptr >> 8) & 0xF;
540 pba_num[6] = '-';
541 pba_num[7] = 0;
542 pba_num[8] = (pba_ptr >> 4) & 0xF;
543 pba_num[9] = pba_ptr & 0xF;
544
545 /* put a null character on the end of our string */
546 pba_num[10] = '\0';
547
548 /* switch all the data but the '-' to hex char */
549 for (offset = 0; offset < 10; offset++) {
550 if (pba_num[offset] < 0xA)
551 pba_num[offset] += '0';
552 else if (pba_num[offset] < 0x10)
553 pba_num[offset] += 'A' - 0xA;
554 }
555
556 return 0;
557 }
558
559 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
560 if (ret_val) {
561 hw_dbg(hw, "NVM Read Error\n");
562 return ret_val;
563 }
564
565 if (length == 0xFFFF || length == 0) {
566 hw_dbg(hw, "NVM PBA number section invalid length\n");
567 return IXGBE_ERR_PBA_SECTION;
568 }
569
570 /* check if pba_num buffer is big enough */
571 if (pba_num_size < (((u32)length * 2) - 1)) {
572 hw_dbg(hw, "PBA string buffer too small\n");
573 return IXGBE_ERR_NO_SPACE;
574 }
575
576 /* trim pba length from start of string */
577 pba_ptr++;
578 length--;
579
580 for (offset = 0; offset < length; offset++) {
581 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
582 if (ret_val) {
583 hw_dbg(hw, "NVM Read Error\n");
584 return ret_val;
585 }
586 pba_num[offset * 2] = (u8)(data >> 8);
587 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
588 }
589 pba_num[offset * 2] = '\0';
c44ade9e
JB
590
591 return 0;
592}
593
594/**
595 * ixgbe_get_mac_addr_generic - Generic get MAC address
9a799d71
AK
596 * @hw: pointer to hardware structure
597 * @mac_addr: Adapter MAC address
598 *
599 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
600 * A reset of the adapter must be performed prior to calling this function
601 * in order for the MAC address to have been loaded from the EEPROM into RAR0
602 **/
c44ade9e 603s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
9a799d71
AK
604{
605 u32 rar_high;
606 u32 rar_low;
607 u16 i;
608
609 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
610 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
611
612 for (i = 0; i < 4; i++)
613 mac_addr[i] = (u8)(rar_low >> (i*8));
614
615 for (i = 0; i < 2; i++)
616 mac_addr[i+4] = (u8)(rar_high >> (i*8));
617
618 return 0;
619}
620
ef1889d5
JK
621enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
622{
623 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
624 case IXGBE_PCI_LINK_WIDTH_1:
625 return ixgbe_bus_width_pcie_x1;
626 case IXGBE_PCI_LINK_WIDTH_2:
627 return ixgbe_bus_width_pcie_x2;
628 case IXGBE_PCI_LINK_WIDTH_4:
629 return ixgbe_bus_width_pcie_x4;
630 case IXGBE_PCI_LINK_WIDTH_8:
631 return ixgbe_bus_width_pcie_x8;
632 default:
633 return ixgbe_bus_width_unknown;
634 }
635}
636
637enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
638{
639 switch (link_status & IXGBE_PCI_LINK_SPEED) {
640 case IXGBE_PCI_LINK_SPEED_2500:
641 return ixgbe_bus_speed_2500;
642 case IXGBE_PCI_LINK_SPEED_5000:
643 return ixgbe_bus_speed_5000;
644 case IXGBE_PCI_LINK_SPEED_8000:
645 return ixgbe_bus_speed_8000;
646 default:
647 return ixgbe_bus_speed_unknown;
648 }
649}
650
11afc1b1
PW
651/**
652 * ixgbe_get_bus_info_generic - Generic set PCI bus info
653 * @hw: pointer to hardware structure
654 *
655 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
656 **/
657s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
658{
659 struct ixgbe_adapter *adapter = hw->back;
660 struct ixgbe_mac_info *mac = &hw->mac;
661 u16 link_status;
662
663 hw->bus.type = ixgbe_bus_type_pci_express;
664
665 /* Get the negotiated link width and speed from PCI config space */
666 pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
667 &link_status);
668
ef1889d5
JK
669 hw->bus.width = ixgbe_convert_bus_width(link_status);
670 hw->bus.speed = ixgbe_convert_bus_speed(link_status);
11afc1b1
PW
671
672 mac->ops.set_lan_id(hw);
673
674 return 0;
675}
676
677/**
678 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
679 * @hw: pointer to the HW structure
680 *
681 * Determines the LAN function id by reading memory-mapped registers
682 * and swaps the port value if requested.
683 **/
684void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
685{
686 struct ixgbe_bus_info *bus = &hw->bus;
687 u32 reg;
688
689 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
690 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
691 bus->lan_id = bus->func;
692
693 /* check for a port swap */
694 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
695 if (reg & IXGBE_FACTPS_LFS)
696 bus->func ^= 0x1;
697}
698
9a799d71 699/**
c44ade9e 700 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
9a799d71
AK
701 * @hw: pointer to hardware structure
702 *
703 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
704 * disables transmit and receive units. The adapter_stopped flag is used by
705 * the shared code and drivers to determine if the adapter is in a stopped
706 * state and should not touch the hardware.
707 **/
c44ade9e 708s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
9a799d71 709{
9a799d71
AK
710 u32 reg_val;
711 u16 i;
712
713 /*
714 * Set the adapter_stopped flag so other driver functions stop touching
715 * the hardware
716 */
717 hw->adapter_stopped = true;
718
719 /* Disable the receive unit */
ff9d1a5a 720 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
9a799d71 721
ff9d1a5a 722 /* Clear interrupt mask to stop interrupts from being generated */
9a799d71
AK
723 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
724
ff9d1a5a 725 /* Clear any pending interrupts, flush previous writes */
9a799d71
AK
726 IXGBE_READ_REG(hw, IXGBE_EICR);
727
728 /* Disable the transmit unit. Each queue must be disabled. */
ff9d1a5a
ET
729 for (i = 0; i < hw->mac.max_tx_queues; i++)
730 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
731
732 /* Disable the receive unit by stopping each queue */
733 for (i = 0; i < hw->mac.max_rx_queues; i++) {
734 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
735 reg_val &= ~IXGBE_RXDCTL_ENABLE;
736 reg_val |= IXGBE_RXDCTL_SWFLSH;
737 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
9a799d71
AK
738 }
739
ff9d1a5a
ET
740 /* flush all queues disables */
741 IXGBE_WRITE_FLUSH(hw);
742 usleep_range(1000, 2000);
743
c44ade9e
JB
744 /*
745 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
746 * access and verify no pending requests
747 */
ff9d1a5a 748 return ixgbe_disable_pcie_master(hw);
9a799d71
AK
749}
750
751/**
c44ade9e 752 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
9a799d71
AK
753 * @hw: pointer to hardware structure
754 * @index: led number to turn on
755 **/
c44ade9e 756s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
9a799d71
AK
757{
758 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
759
760 /* To turn on the LED, set mode to ON. */
761 led_reg &= ~IXGBE_LED_MODE_MASK(index);
762 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
763 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3957d63d 764 IXGBE_WRITE_FLUSH(hw);
9a799d71
AK
765
766 return 0;
767}
768
769/**
c44ade9e 770 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
9a799d71
AK
771 * @hw: pointer to hardware structure
772 * @index: led number to turn off
773 **/
c44ade9e 774s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
9a799d71
AK
775{
776 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
777
778 /* To turn off the LED, set mode to OFF. */
779 led_reg &= ~IXGBE_LED_MODE_MASK(index);
780 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
781 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3957d63d 782 IXGBE_WRITE_FLUSH(hw);
9a799d71
AK
783
784 return 0;
785}
786
9a799d71 787/**
c44ade9e 788 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
9a799d71
AK
789 * @hw: pointer to hardware structure
790 *
791 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
792 * ixgbe_hw struct in order to set up EEPROM access.
793 **/
c44ade9e 794s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
9a799d71
AK
795{
796 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
797 u32 eec;
798 u16 eeprom_size;
799
800 if (eeprom->type == ixgbe_eeprom_uninitialized) {
801 eeprom->type = ixgbe_eeprom_none;
c44ade9e
JB
802 /* Set default semaphore delay to 10ms which is a well
803 * tested value */
804 eeprom->semaphore_delay = 10;
68c7005d
ET
805 /* Clear EEPROM page size, it will be initialized as needed */
806 eeprom->word_page_size = 0;
9a799d71
AK
807
808 /*
809 * Check for EEPROM present first.
810 * If not present leave as none
811 */
812 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
813 if (eec & IXGBE_EEC_PRES) {
814 eeprom->type = ixgbe_eeprom_spi;
815
816 /*
817 * SPI EEPROM is assumed here. This code would need to
818 * change if a future EEPROM is not SPI.
819 */
820 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
821 IXGBE_EEC_SIZE_SHIFT);
822 eeprom->word_size = 1 << (eeprom_size +
823 IXGBE_EEPROM_WORD_SIZE_SHIFT);
824 }
825
826 if (eec & IXGBE_EEC_ADDR_SIZE)
827 eeprom->address_bits = 16;
828 else
829 eeprom->address_bits = 8;
830 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
831 "%d\n", eeprom->type, eeprom->word_size,
832 eeprom->address_bits);
833 }
834
835 return 0;
836}
837
11afc1b1 838/**
68c7005d 839 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
11afc1b1 840 * @hw: pointer to hardware structure
68c7005d
ET
841 * @offset: offset within the EEPROM to write
842 * @words: number of words
843 * @data: 16 bit word(s) to write to EEPROM
11afc1b1 844 *
68c7005d 845 * Reads 16 bit word(s) from EEPROM through bit-bang method
11afc1b1 846 **/
68c7005d
ET
847s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
848 u16 words, u16 *data)
11afc1b1 849{
68c7005d
ET
850 s32 status = 0;
851 u16 i, count;
11afc1b1
PW
852
853 hw->eeprom.ops.init_params(hw);
854
68c7005d
ET
855 if (words == 0) {
856 status = IXGBE_ERR_INVALID_ARGUMENT;
857 goto out;
858 }
859
860 if (offset + words > hw->eeprom.word_size) {
11afc1b1
PW
861 status = IXGBE_ERR_EEPROM;
862 goto out;
863 }
864
68c7005d
ET
865 /*
866 * The EEPROM page size cannot be queried from the chip. We do lazy
867 * initialization. It is worth to do that when we write large buffer.
868 */
869 if ((hw->eeprom.word_page_size == 0) &&
870 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
871 ixgbe_detect_eeprom_page_size_generic(hw, offset);
872
873 /*
874 * We cannot hold synchronization semaphores for too long
875 * to avoid other entity starvation. However it is more efficient
876 * to read in bursts than synchronizing access for each word.
877 */
878 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
879 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
880 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
881 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
882 count, &data[i]);
883
884 if (status != 0)
885 break;
886 }
887
888out:
889 return status;
890}
891
892/**
893 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
894 * @hw: pointer to hardware structure
895 * @offset: offset within the EEPROM to be written to
896 * @words: number of word(s)
897 * @data: 16 bit word(s) to be written to the EEPROM
898 *
899 * If ixgbe_eeprom_update_checksum is not called after this function, the
900 * EEPROM will most likely contain an invalid checksum.
901 **/
902static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
903 u16 words, u16 *data)
904{
905 s32 status;
906 u16 word;
907 u16 page_size;
908 u16 i;
909 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
910
11afc1b1
PW
911 /* Prepare the EEPROM for writing */
912 status = ixgbe_acquire_eeprom(hw);
913
914 if (status == 0) {
915 if (ixgbe_ready_eeprom(hw) != 0) {
916 ixgbe_release_eeprom(hw);
917 status = IXGBE_ERR_EEPROM;
918 }
919 }
920
921 if (status == 0) {
68c7005d
ET
922 for (i = 0; i < words; i++) {
923 ixgbe_standby_eeprom(hw);
11afc1b1 924
68c7005d
ET
925 /* Send the WRITE ENABLE command (8 bit opcode ) */
926 ixgbe_shift_out_eeprom_bits(hw,
927 IXGBE_EEPROM_WREN_OPCODE_SPI,
928 IXGBE_EEPROM_OPCODE_BITS);
11afc1b1 929
68c7005d 930 ixgbe_standby_eeprom(hw);
11afc1b1 931
68c7005d
ET
932 /*
933 * Some SPI eeproms use the 8th address bit embedded
934 * in the opcode
935 */
936 if ((hw->eeprom.address_bits == 8) &&
937 ((offset + i) >= 128))
938 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
939
940 /* Send the Write command (8-bit opcode + addr) */
941 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
942 IXGBE_EEPROM_OPCODE_BITS);
943 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
944 hw->eeprom.address_bits);
945
946 page_size = hw->eeprom.word_page_size;
947
948 /* Send the data in burst via SPI*/
949 do {
950 word = data[i];
951 word = (word >> 8) | (word << 8);
952 ixgbe_shift_out_eeprom_bits(hw, word, 16);
953
954 if (page_size == 0)
955 break;
956
957 /* do not wrap around page */
958 if (((offset + i) & (page_size - 1)) ==
959 (page_size - 1))
960 break;
961 } while (++i < words);
962
963 ixgbe_standby_eeprom(hw);
964 usleep_range(10000, 20000);
965 }
966 /* Done with writing - release the EEPROM */
967 ixgbe_release_eeprom(hw);
968 }
11afc1b1 969
68c7005d
ET
970 return status;
971}
972
973/**
974 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
975 * @hw: pointer to hardware structure
976 * @offset: offset within the EEPROM to be written to
977 * @data: 16 bit word to be written to the EEPROM
978 *
979 * If ixgbe_eeprom_update_checksum is not called after this function, the
980 * EEPROM will most likely contain an invalid checksum.
981 **/
982s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
983{
984 s32 status;
11afc1b1 985
68c7005d 986 hw->eeprom.ops.init_params(hw);
11afc1b1 987
68c7005d
ET
988 if (offset >= hw->eeprom.word_size) {
989 status = IXGBE_ERR_EEPROM;
990 goto out;
11afc1b1
PW
991 }
992
68c7005d
ET
993 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
994
11afc1b1
PW
995out:
996 return status;
997}
998
9a799d71 999/**
68c7005d 1000 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
c44ade9e
JB
1001 * @hw: pointer to hardware structure
1002 * @offset: offset within the EEPROM to be read
68c7005d
ET
1003 * @words: number of word(s)
1004 * @data: read 16 bit words(s) from EEPROM
c44ade9e 1005 *
68c7005d 1006 * Reads 16 bit word(s) from EEPROM through bit-bang method
c44ade9e 1007 **/
68c7005d
ET
1008s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1009 u16 words, u16 *data)
c44ade9e 1010{
68c7005d
ET
1011 s32 status = 0;
1012 u16 i, count;
c44ade9e
JB
1013
1014 hw->eeprom.ops.init_params(hw);
1015
68c7005d
ET
1016 if (words == 0) {
1017 status = IXGBE_ERR_INVALID_ARGUMENT;
1018 goto out;
1019 }
1020
1021 if (offset + words > hw->eeprom.word_size) {
c44ade9e
JB
1022 status = IXGBE_ERR_EEPROM;
1023 goto out;
1024 }
1025
68c7005d
ET
1026 /*
1027 * We cannot hold synchronization semaphores for too long
1028 * to avoid other entity starvation. However it is more efficient
1029 * to read in bursts than synchronizing access for each word.
1030 */
1031 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1032 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1033 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1034
1035 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1036 count, &data[i]);
1037
1038 if (status != 0)
1039 break;
1040 }
1041
1042out:
1043 return status;
1044}
1045
1046/**
1047 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1048 * @hw: pointer to hardware structure
1049 * @offset: offset within the EEPROM to be read
1050 * @words: number of word(s)
1051 * @data: read 16 bit word(s) from EEPROM
1052 *
1053 * Reads 16 bit word(s) from EEPROM through bit-bang method
1054 **/
1055static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1056 u16 words, u16 *data)
1057{
1058 s32 status;
1059 u16 word_in;
1060 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1061 u16 i;
1062
c44ade9e
JB
1063 /* Prepare the EEPROM for reading */
1064 status = ixgbe_acquire_eeprom(hw);
1065
1066 if (status == 0) {
1067 if (ixgbe_ready_eeprom(hw) != 0) {
1068 ixgbe_release_eeprom(hw);
1069 status = IXGBE_ERR_EEPROM;
1070 }
1071 }
1072
1073 if (status == 0) {
68c7005d
ET
1074 for (i = 0; i < words; i++) {
1075 ixgbe_standby_eeprom(hw);
1076 /*
1077 * Some SPI eeproms use the 8th address bit embedded
1078 * in the opcode
1079 */
1080 if ((hw->eeprom.address_bits == 8) &&
1081 ((offset + i) >= 128))
1082 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1083
1084 /* Send the READ command (opcode + addr) */
1085 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1086 IXGBE_EEPROM_OPCODE_BITS);
1087 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1088 hw->eeprom.address_bits);
1089
1090 /* Read the data. */
1091 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1092 data[i] = (word_in >> 8) | (word_in << 8);
1093 }
c44ade9e 1094
68c7005d
ET
1095 /* End this read operation */
1096 ixgbe_release_eeprom(hw);
1097 }
c44ade9e 1098
68c7005d
ET
1099 return status;
1100}
c44ade9e 1101
68c7005d
ET
1102/**
1103 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1104 * @hw: pointer to hardware structure
1105 * @offset: offset within the EEPROM to be read
1106 * @data: read 16 bit value from EEPROM
1107 *
1108 * Reads 16 bit value from EEPROM through bit-bang method
1109 **/
1110s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1111 u16 *data)
1112{
1113 s32 status;
c44ade9e 1114
68c7005d
ET
1115 hw->eeprom.ops.init_params(hw);
1116
1117 if (offset >= hw->eeprom.word_size) {
1118 status = IXGBE_ERR_EEPROM;
1119 goto out;
c44ade9e
JB
1120 }
1121
68c7005d
ET
1122 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1123
c44ade9e
JB
1124out:
1125 return status;
1126}
1127
1128/**
68c7005d 1129 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
9a799d71 1130 * @hw: pointer to hardware structure
68c7005d
ET
1131 * @offset: offset of word in the EEPROM to read
1132 * @words: number of word(s)
1133 * @data: 16 bit word(s) from the EEPROM
9a799d71 1134 *
68c7005d 1135 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
9a799d71 1136 **/
68c7005d
ET
1137s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1138 u16 words, u16 *data)
9a799d71
AK
1139{
1140 u32 eerd;
68c7005d
ET
1141 s32 status = 0;
1142 u32 i;
9a799d71 1143
c44ade9e
JB
1144 hw->eeprom.ops.init_params(hw);
1145
68c7005d
ET
1146 if (words == 0) {
1147 status = IXGBE_ERR_INVALID_ARGUMENT;
1148 goto out;
1149 }
1150
c44ade9e
JB
1151 if (offset >= hw->eeprom.word_size) {
1152 status = IXGBE_ERR_EEPROM;
1153 goto out;
1154 }
1155
68c7005d 1156 for (i = 0; i < words; i++) {
d0111575 1157 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
68c7005d 1158 IXGBE_EEPROM_RW_REG_START;
9a799d71 1159
68c7005d
ET
1160 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1161 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
9a799d71 1162
68c7005d
ET
1163 if (status == 0) {
1164 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1165 IXGBE_EEPROM_RW_REG_DATA);
1166 } else {
1167 hw_dbg(hw, "Eeprom read timed out\n");
1168 goto out;
1169 }
1170 }
1171out:
1172 return status;
1173}
9a799d71 1174
68c7005d
ET
1175/**
1176 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1177 * @hw: pointer to hardware structure
1178 * @offset: offset within the EEPROM to be used as a scratch pad
1179 *
1180 * Discover EEPROM page size by writing marching data at given offset.
1181 * This function is called only when we are writing a new large buffer
1182 * at given offset so the data would be overwritten anyway.
1183 **/
1184static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1185 u16 offset)
1186{
1187 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1188 s32 status = 0;
1189 u16 i;
1190
1191 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1192 data[i] = i;
1193
1194 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1195 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1196 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1197 hw->eeprom.word_page_size = 0;
1198 if (status != 0)
1199 goto out;
1200
1201 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1202 if (status != 0)
1203 goto out;
1204
1205 /*
1206 * When writing in burst more than the actual page size
1207 * EEPROM address wraps around current page.
1208 */
1209 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1210
1211 hw_dbg(hw, "Detected EEPROM page size = %d words.",
1212 hw->eeprom.word_page_size);
c44ade9e 1213out:
9a799d71
AK
1214 return status;
1215}
1216
eb9c3e3e 1217/**
68c7005d
ET
1218 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1219 * @hw: pointer to hardware structure
1220 * @offset: offset of word in the EEPROM to read
1221 * @data: word read from the EEPROM
1222 *
1223 * Reads a 16 bit word from the EEPROM using the EERD register.
1224 **/
1225s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1226{
1227 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1228}
1229
1230/**
1231 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
eb9c3e3e
ET
1232 * @hw: pointer to hardware structure
1233 * @offset: offset of word in the EEPROM to write
68c7005d
ET
1234 * @words: number of words
1235 * @data: word(s) write to the EEPROM
eb9c3e3e 1236 *
68c7005d 1237 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
eb9c3e3e 1238 **/
68c7005d
ET
1239s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1240 u16 words, u16 *data)
eb9c3e3e
ET
1241{
1242 u32 eewr;
68c7005d
ET
1243 s32 status = 0;
1244 u16 i;
eb9c3e3e
ET
1245
1246 hw->eeprom.ops.init_params(hw);
1247
68c7005d
ET
1248 if (words == 0) {
1249 status = IXGBE_ERR_INVALID_ARGUMENT;
1250 goto out;
1251 }
1252
eb9c3e3e
ET
1253 if (offset >= hw->eeprom.word_size) {
1254 status = IXGBE_ERR_EEPROM;
1255 goto out;
1256 }
1257
68c7005d
ET
1258 for (i = 0; i < words; i++) {
1259 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1260 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1261 IXGBE_EEPROM_RW_REG_START;
eb9c3e3e 1262
68c7005d
ET
1263 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1264 if (status != 0) {
1265 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1266 goto out;
1267 }
eb9c3e3e 1268
68c7005d 1269 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
eb9c3e3e 1270
68c7005d
ET
1271 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1272 if (status != 0) {
1273 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1274 goto out;
1275 }
eb9c3e3e
ET
1276 }
1277
1278out:
1279 return status;
1280}
1281
68c7005d
ET
1282/**
1283 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1284 * @hw: pointer to hardware structure
1285 * @offset: offset of word in the EEPROM to write
1286 * @data: word write to the EEPROM
1287 *
1288 * Write a 16 bit word to the EEPROM using the EEWR register.
1289 **/
1290s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1291{
1292 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1293}
1294
9a799d71 1295/**
21ce849b 1296 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
9a799d71 1297 * @hw: pointer to hardware structure
21ce849b 1298 * @ee_reg: EEPROM flag for polling
9a799d71 1299 *
21ce849b
MC
1300 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1301 * read or write is done respectively.
9a799d71 1302 **/
eb9c3e3e 1303static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
9a799d71
AK
1304{
1305 u32 i;
1306 u32 reg;
1307 s32 status = IXGBE_ERR_EEPROM;
1308
21ce849b
MC
1309 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1310 if (ee_reg == IXGBE_NVM_POLL_READ)
1311 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1312 else
1313 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1314
1315 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
9a799d71
AK
1316 status = 0;
1317 break;
1318 }
1319 udelay(5);
1320 }
1321 return status;
1322}
1323
c44ade9e
JB
1324/**
1325 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1326 * @hw: pointer to hardware structure
1327 *
1328 * Prepares EEPROM for access using bit-bang method. This function should
1329 * be called before issuing a command to the EEPROM.
1330 **/
1331static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1332{
1333 s32 status = 0;
dbf893ee 1334 u32 eec;
c44ade9e
JB
1335 u32 i;
1336
5e655105 1337 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
c44ade9e
JB
1338 status = IXGBE_ERR_SWFW_SYNC;
1339
1340 if (status == 0) {
1341 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1342
1343 /* Request EEPROM Access */
1344 eec |= IXGBE_EEC_REQ;
1345 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1346
1347 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1348 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1349 if (eec & IXGBE_EEC_GNT)
1350 break;
1351 udelay(5);
1352 }
1353
1354 /* Release if grant not acquired */
1355 if (!(eec & IXGBE_EEC_GNT)) {
1356 eec &= ~IXGBE_EEC_REQ;
1357 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1358 hw_dbg(hw, "Could not acquire EEPROM grant\n");
1359
5e655105 1360 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
c44ade9e
JB
1361 status = IXGBE_ERR_EEPROM;
1362 }
c44ade9e 1363
dbf893ee
ET
1364 /* Setup EEPROM for Read/Write */
1365 if (status == 0) {
1366 /* Clear CS and SK */
1367 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1368 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1369 IXGBE_WRITE_FLUSH(hw);
1370 udelay(1);
1371 }
c44ade9e
JB
1372 }
1373 return status;
1374}
1375
9a799d71
AK
1376/**
1377 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1378 * @hw: pointer to hardware structure
1379 *
1380 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1381 **/
1382static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1383{
1384 s32 status = IXGBE_ERR_EEPROM;
dbf893ee 1385 u32 timeout = 2000;
9a799d71
AK
1386 u32 i;
1387 u32 swsm;
1388
9a799d71
AK
1389 /* Get SMBI software semaphore between device drivers first */
1390 for (i = 0; i < timeout; i++) {
1391 /*
1392 * If the SMBI bit is 0 when we read it, then the bit will be
1393 * set and we have the semaphore
1394 */
1395 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1396 if (!(swsm & IXGBE_SWSM_SMBI)) {
1397 status = 0;
1398 break;
1399 }
dbf893ee 1400 udelay(50);
9a799d71
AK
1401 }
1402
51275d37
ET
1403 if (i == timeout) {
1404 hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore "
1405 "not granted.\n");
1406 /*
1407 * this release is particularly important because our attempts
1408 * above to get the semaphore may have succeeded, and if there
1409 * was a timeout, we should unconditionally clear the semaphore
1410 * bits to free the driver to make progress
1411 */
1412 ixgbe_release_eeprom_semaphore(hw);
1413
1414 udelay(50);
1415 /*
1416 * one last try
1417 * If the SMBI bit is 0 when we read it, then the bit will be
1418 * set and we have the semaphore
1419 */
1420 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1421 if (!(swsm & IXGBE_SWSM_SMBI))
1422 status = 0;
1423 }
1424
9a799d71
AK
1425 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1426 if (status == 0) {
1427 for (i = 0; i < timeout; i++) {
1428 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1429
1430 /* Set the SW EEPROM semaphore bit to request access */
1431 swsm |= IXGBE_SWSM_SWESMBI;
1432 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1433
1434 /*
1435 * If we set the bit successfully then we got the
1436 * semaphore.
1437 */
1438 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1439 if (swsm & IXGBE_SWSM_SWESMBI)
1440 break;
1441
1442 udelay(50);
1443 }
1444
1445 /*
1446 * Release semaphores and return error if SW EEPROM semaphore
1447 * was not granted because we don't have access to the EEPROM
1448 */
1449 if (i >= timeout) {
dbf893ee 1450 hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
b4617240 1451 "not granted.\n");
9a799d71
AK
1452 ixgbe_release_eeprom_semaphore(hw);
1453 status = IXGBE_ERR_EEPROM;
1454 }
dbf893ee
ET
1455 } else {
1456 hw_dbg(hw, "Software semaphore SMBI between device drivers "
1457 "not granted.\n");
9a799d71
AK
1458 }
1459
1460 return status;
1461}
1462
1463/**
1464 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1465 * @hw: pointer to hardware structure
1466 *
1467 * This function clears hardware semaphore bits.
1468 **/
1469static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1470{
1471 u32 swsm;
1472
1473 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1474
1475 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1476 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1477 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
3957d63d 1478 IXGBE_WRITE_FLUSH(hw);
9a799d71
AK
1479}
1480
c44ade9e
JB
1481/**
1482 * ixgbe_ready_eeprom - Polls for EEPROM ready
1483 * @hw: pointer to hardware structure
1484 **/
1485static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1486{
1487 s32 status = 0;
1488 u16 i;
1489 u8 spi_stat_reg;
1490
1491 /*
1492 * Read "Status Register" repeatedly until the LSB is cleared. The
1493 * EEPROM will signal that the command has been completed by clearing
1494 * bit 0 of the internal status register. If it's not cleared within
1495 * 5 milliseconds, then error out.
1496 */
1497 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1498 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1499 IXGBE_EEPROM_OPCODE_BITS);
1500 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1501 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1502 break;
1503
1504 udelay(5);
1505 ixgbe_standby_eeprom(hw);
6403eab1 1506 }
c44ade9e
JB
1507
1508 /*
1509 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1510 * devices (and only 0-5mSec on 5V devices)
1511 */
1512 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1513 hw_dbg(hw, "SPI EEPROM Status error\n");
1514 status = IXGBE_ERR_EEPROM;
1515 }
1516
1517 return status;
1518}
1519
1520/**
1521 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1522 * @hw: pointer to hardware structure
1523 **/
1524static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1525{
1526 u32 eec;
1527
1528 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1529
1530 /* Toggle CS to flush commands */
1531 eec |= IXGBE_EEC_CS;
1532 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1533 IXGBE_WRITE_FLUSH(hw);
1534 udelay(1);
1535 eec &= ~IXGBE_EEC_CS;
1536 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1537 IXGBE_WRITE_FLUSH(hw);
1538 udelay(1);
1539}
1540
1541/**
1542 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1543 * @hw: pointer to hardware structure
1544 * @data: data to send to the EEPROM
1545 * @count: number of bits to shift out
1546 **/
1547static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1548 u16 count)
1549{
1550 u32 eec;
1551 u32 mask;
1552 u32 i;
1553
1554 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1555
1556 /*
1557 * Mask is used to shift "count" bits of "data" out to the EEPROM
1558 * one bit at a time. Determine the starting bit based on count
1559 */
1560 mask = 0x01 << (count - 1);
1561
1562 for (i = 0; i < count; i++) {
1563 /*
1564 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1565 * "1", and then raising and then lowering the clock (the SK
1566 * bit controls the clock input to the EEPROM). A "0" is
1567 * shifted out to the EEPROM by setting "DI" to "0" and then
1568 * raising and then lowering the clock.
1569 */
1570 if (data & mask)
1571 eec |= IXGBE_EEC_DI;
1572 else
1573 eec &= ~IXGBE_EEC_DI;
1574
1575 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1576 IXGBE_WRITE_FLUSH(hw);
1577
1578 udelay(1);
1579
1580 ixgbe_raise_eeprom_clk(hw, &eec);
1581 ixgbe_lower_eeprom_clk(hw, &eec);
1582
1583 /*
1584 * Shift mask to signify next bit of data to shift in to the
1585 * EEPROM
1586 */
1587 mask = mask >> 1;
6403eab1 1588 }
c44ade9e
JB
1589
1590 /* We leave the "DI" bit set to "0" when we leave this routine. */
1591 eec &= ~IXGBE_EEC_DI;
1592 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1593 IXGBE_WRITE_FLUSH(hw);
1594}
1595
1596/**
1597 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1598 * @hw: pointer to hardware structure
1599 **/
1600static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1601{
1602 u32 eec;
1603 u32 i;
1604 u16 data = 0;
1605
1606 /*
1607 * In order to read a register from the EEPROM, we need to shift
1608 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1609 * the clock input to the EEPROM (setting the SK bit), and then reading
1610 * the value of the "DO" bit. During this "shifting in" process the
1611 * "DI" bit should always be clear.
1612 */
1613 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1614
1615 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1616
1617 for (i = 0; i < count; i++) {
1618 data = data << 1;
1619 ixgbe_raise_eeprom_clk(hw, &eec);
1620
1621 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1622
1623 eec &= ~(IXGBE_EEC_DI);
1624 if (eec & IXGBE_EEC_DO)
1625 data |= 1;
1626
1627 ixgbe_lower_eeprom_clk(hw, &eec);
1628 }
1629
1630 return data;
1631}
1632
1633/**
1634 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1635 * @hw: pointer to hardware structure
1636 * @eec: EEC register's current value
1637 **/
1638static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1639{
1640 /*
1641 * Raise the clock input to the EEPROM
1642 * (setting the SK bit), then delay
1643 */
1644 *eec = *eec | IXGBE_EEC_SK;
1645 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1646 IXGBE_WRITE_FLUSH(hw);
1647 udelay(1);
1648}
1649
1650/**
1651 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1652 * @hw: pointer to hardware structure
1653 * @eecd: EECD's current value
1654 **/
1655static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1656{
1657 /*
1658 * Lower the clock input to the EEPROM (clearing the SK bit), then
1659 * delay
1660 */
1661 *eec = *eec & ~IXGBE_EEC_SK;
1662 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1663 IXGBE_WRITE_FLUSH(hw);
1664 udelay(1);
1665}
1666
1667/**
1668 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1669 * @hw: pointer to hardware structure
1670 **/
1671static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1672{
1673 u32 eec;
1674
1675 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1676
1677 eec |= IXGBE_EEC_CS; /* Pull CS high */
1678 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1679
1680 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1681 IXGBE_WRITE_FLUSH(hw);
1682
1683 udelay(1);
1684
1685 /* Stop requesting EEPROM access */
1686 eec &= ~IXGBE_EEC_REQ;
1687 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1688
90827996 1689 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
dbf893ee 1690
032b4325
DS
1691 /*
1692 * Delay before attempt to obtain semaphore again to allow FW
1693 * access. semaphore_delay is in ms we need us for usleep_range
1694 */
1695 usleep_range(hw->eeprom.semaphore_delay * 1000,
1696 hw->eeprom.semaphore_delay * 2000);
c44ade9e
JB
1697}
1698
9a799d71 1699/**
dbf893ee 1700 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
9a799d71
AK
1701 * @hw: pointer to hardware structure
1702 **/
a391f1d5 1703u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
9a799d71
AK
1704{
1705 u16 i;
1706 u16 j;
1707 u16 checksum = 0;
1708 u16 length = 0;
1709 u16 pointer = 0;
1710 u16 word = 0;
1711
1712 /* Include 0x0-0x3F in the checksum */
1713 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
c44ade9e 1714 if (hw->eeprom.ops.read(hw, i, &word) != 0) {
9a799d71
AK
1715 hw_dbg(hw, "EEPROM read failed\n");
1716 break;
1717 }
1718 checksum += word;
1719 }
1720
1721 /* Include all data from pointers except for the fw pointer */
1722 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
c44ade9e 1723 hw->eeprom.ops.read(hw, i, &pointer);
9a799d71
AK
1724
1725 /* Make sure the pointer seems valid */
1726 if (pointer != 0xFFFF && pointer != 0) {
c44ade9e 1727 hw->eeprom.ops.read(hw, pointer, &length);
9a799d71
AK
1728
1729 if (length != 0xFFFF && length != 0) {
1730 for (j = pointer+1; j <= pointer+length; j++) {
c44ade9e 1731 hw->eeprom.ops.read(hw, j, &word);
9a799d71
AK
1732 checksum += word;
1733 }
1734 }
1735 }
1736 }
1737
1738 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1739
1740 return checksum;
1741}
1742
1743/**
c44ade9e 1744 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
9a799d71
AK
1745 * @hw: pointer to hardware structure
1746 * @checksum_val: calculated checksum
1747 *
1748 * Performs checksum calculation and validates the EEPROM checksum. If the
1749 * caller does not need checksum_val, the value can be NULL.
1750 **/
c44ade9e
JB
1751s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1752 u16 *checksum_val)
9a799d71
AK
1753{
1754 s32 status;
1755 u16 checksum;
1756 u16 read_checksum = 0;
1757
1758 /*
1759 * Read the first word from the EEPROM. If this times out or fails, do
1760 * not continue or we could be in for a very long wait while every
1761 * EEPROM read fails
1762 */
c44ade9e 1763 status = hw->eeprom.ops.read(hw, 0, &checksum);
9a799d71
AK
1764
1765 if (status == 0) {
a391f1d5 1766 checksum = hw->eeprom.ops.calc_checksum(hw);
9a799d71 1767
c44ade9e 1768 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
9a799d71
AK
1769
1770 /*
1771 * Verify read checksum from EEPROM is the same as
1772 * calculated checksum
1773 */
1774 if (read_checksum != checksum)
1775 status = IXGBE_ERR_EEPROM_CHECKSUM;
1776
1777 /* If the user cares, return the calculated checksum */
1778 if (checksum_val)
1779 *checksum_val = checksum;
1780 } else {
1781 hw_dbg(hw, "EEPROM read failed\n");
1782 }
1783
1784 return status;
1785}
1786
c44ade9e
JB
1787/**
1788 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1789 * @hw: pointer to hardware structure
1790 **/
1791s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1792{
1793 s32 status;
1794 u16 checksum;
1795
1796 /*
1797 * Read the first word from the EEPROM. If this times out or fails, do
1798 * not continue or we could be in for a very long wait while every
1799 * EEPROM read fails
1800 */
1801 status = hw->eeprom.ops.read(hw, 0, &checksum);
1802
1803 if (status == 0) {
a391f1d5 1804 checksum = hw->eeprom.ops.calc_checksum(hw);
c44ade9e 1805 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
8c7bea32 1806 checksum);
c44ade9e
JB
1807 } else {
1808 hw_dbg(hw, "EEPROM read failed\n");
1809 }
1810
1811 return status;
1812}
1813
9a799d71 1814/**
c44ade9e 1815 * ixgbe_set_rar_generic - Set Rx address register
9a799d71 1816 * @hw: pointer to hardware structure
9a799d71 1817 * @index: Receive address register to write
c44ade9e
JB
1818 * @addr: Address to put into receive address register
1819 * @vmdq: VMDq "set" or "pool" index
9a799d71
AK
1820 * @enable_addr: set flag that address is active
1821 *
1822 * Puts an ethernet address into a receive address register.
1823 **/
c44ade9e
JB
1824s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1825 u32 enable_addr)
9a799d71
AK
1826{
1827 u32 rar_low, rar_high;
c44ade9e
JB
1828 u32 rar_entries = hw->mac.num_rar_entries;
1829
c700f4e6
ET
1830 /* Make sure we are using a valid rar index range */
1831 if (index >= rar_entries) {
1832 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1833 return IXGBE_ERR_INVALID_ARGUMENT;
1834 }
1835
c44ade9e
JB
1836 /* setup VMDq pool selection before this RAR gets enabled */
1837 hw->mac.ops.set_vmdq(hw, index, vmdq);
9a799d71 1838
c700f4e6
ET
1839 /*
1840 * HW expects these in little endian so we reverse the byte
1841 * order from network order (big endian) to little endian
1842 */
1843 rar_low = ((u32)addr[0] |
1844 ((u32)addr[1] << 8) |
1845 ((u32)addr[2] << 16) |
1846 ((u32)addr[3] << 24));
1847 /*
1848 * Some parts put the VMDq setting in the extra RAH bits,
1849 * so save everything except the lower 16 bits that hold part
1850 * of the address and the address valid bit.
1851 */
1852 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1853 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1854 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
9a799d71 1855
c700f4e6
ET
1856 if (enable_addr != 0)
1857 rar_high |= IXGBE_RAH_AV;
9a799d71 1858
c700f4e6
ET
1859 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1860 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
c44ade9e
JB
1861
1862 return 0;
1863}
1864
1865/**
1866 * ixgbe_clear_rar_generic - Remove Rx address register
1867 * @hw: pointer to hardware structure
1868 * @index: Receive address register to write
1869 *
1870 * Clears an ethernet address from a receive address register.
1871 **/
1872s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1873{
1874 u32 rar_high;
1875 u32 rar_entries = hw->mac.num_rar_entries;
1876
1877 /* Make sure we are using a valid rar index range */
c700f4e6 1878 if (index >= rar_entries) {
c44ade9e 1879 hw_dbg(hw, "RAR index %d is out of range.\n", index);
c700f4e6 1880 return IXGBE_ERR_INVALID_ARGUMENT;
c44ade9e
JB
1881 }
1882
c700f4e6
ET
1883 /*
1884 * Some parts put the VMDq setting in the extra RAH bits,
1885 * so save everything except the lower 16 bits that hold part
1886 * of the address and the address valid bit.
1887 */
1888 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1889 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1890
1891 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1892 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1893
c44ade9e
JB
1894 /* clear VMDq pool/queue selection for this RAR */
1895 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
9a799d71
AK
1896
1897 return 0;
1898}
1899
c44ade9e
JB
1900/**
1901 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
9a799d71
AK
1902 * @hw: pointer to hardware structure
1903 *
1904 * Places the MAC address in receive address register 0 and clears the rest
c44ade9e 1905 * of the receive address registers. Clears the multicast table. Assumes
9a799d71
AK
1906 * the receiver is in reset when the routine is called.
1907 **/
c44ade9e 1908s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
9a799d71
AK
1909{
1910 u32 i;
2c5645cf 1911 u32 rar_entries = hw->mac.num_rar_entries;
9a799d71
AK
1912
1913 /*
1914 * If the current mac address is valid, assume it is a software override
1915 * to the permanent address.
1916 * Otherwise, use the permanent address from the eeprom.
1917 */
f8ebc683 1918 if (!is_valid_ether_addr(hw->mac.addr)) {
9a799d71 1919 /* Get the MAC address from the RAR0 for later reference */
c44ade9e 1920 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
9a799d71 1921
ce7194d8 1922 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
9a799d71
AK
1923 } else {
1924 /* Setup the receive address. */
1925 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
ce7194d8 1926 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
9a799d71 1927
c44ade9e 1928 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
96cc6372
AD
1929
1930 /* clear VMDq pool/queue selection for RAR 0 */
1931 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
9a799d71 1932 }
c44ade9e 1933 hw->addr_ctrl.overflow_promisc = 0;
9a799d71
AK
1934
1935 hw->addr_ctrl.rar_used_count = 1;
1936
1937 /* Zero out the other receive addresses. */
c44ade9e 1938 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
9a799d71
AK
1939 for (i = 1; i < rar_entries; i++) {
1940 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1941 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1942 }
1943
1944 /* Clear the MTA */
9a799d71
AK
1945 hw->addr_ctrl.mta_in_use = 0;
1946 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1947
1948 hw_dbg(hw, " Clearing MTA\n");
2c5645cf 1949 for (i = 0; i < hw->mac.mcft_size; i++)
9a799d71
AK
1950 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1951
c44ade9e
JB
1952 if (hw->mac.ops.init_uta_tables)
1953 hw->mac.ops.init_uta_tables(hw);
1954
9a799d71
AK
1955 return 0;
1956}
1957
1958/**
1959 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1960 * @hw: pointer to hardware structure
1961 * @mc_addr: the multicast address
1962 *
1963 * Extracts the 12 bits, from a multicast address, to determine which
1964 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1965 * incoming rx multicast addresses, to determine the bit-vector to check in
1966 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
c44ade9e 1967 * by the MO field of the MCSTCTRL. The MO field is set during initialization
9a799d71
AK
1968 * to mc_filter_type.
1969 **/
1970static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1971{
1972 u32 vector = 0;
1973
1974 switch (hw->mac.mc_filter_type) {
b4617240 1975 case 0: /* use bits [47:36] of the address */
9a799d71
AK
1976 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1977 break;
b4617240 1978 case 1: /* use bits [46:35] of the address */
9a799d71
AK
1979 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1980 break;
b4617240 1981 case 2: /* use bits [45:34] of the address */
9a799d71
AK
1982 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1983 break;
b4617240 1984 case 3: /* use bits [43:32] of the address */
9a799d71
AK
1985 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1986 break;
b4617240 1987 default: /* Invalid mc_filter_type */
9a799d71
AK
1988 hw_dbg(hw, "MC filter type param set incorrectly\n");
1989 break;
1990 }
1991
1992 /* vector can only be 12-bits or boundary will be exceeded */
1993 vector &= 0xFFF;
1994 return vector;
1995}
1996
1997/**
1998 * ixgbe_set_mta - Set bit-vector in multicast table
1999 * @hw: pointer to hardware structure
2000 * @hash_value: Multicast address hash value
2001 *
2002 * Sets the bit-vector in the multicast table.
2003 **/
2004static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2005{
2006 u32 vector;
2007 u32 vector_bit;
2008 u32 vector_reg;
9a799d71
AK
2009
2010 hw->addr_ctrl.mta_in_use++;
2011
2012 vector = ixgbe_mta_vector(hw, mc_addr);
2013 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2014
2015 /*
2016 * The MTA is a register array of 128 32-bit registers. It is treated
2017 * like an array of 4096 bits. We want to set bit
2018 * BitArray[vector_value]. So we figure out what register the bit is
2019 * in, read it, OR in the new bit, then write back the new value. The
2020 * register is determined by the upper 7 bits of the vector value and
2021 * the bit within that register are determined by the lower 5 bits of
2022 * the value.
2023 */
2024 vector_reg = (vector >> 5) & 0x7F;
2025 vector_bit = vector & 0x1F;
80960ab0 2026 hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
9a799d71
AK
2027}
2028
9a799d71 2029/**
c44ade9e 2030 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
9a799d71 2031 * @hw: pointer to hardware structure
2853eb89 2032 * @netdev: pointer to net device structure
9a799d71
AK
2033 *
2034 * The given list replaces any existing list. Clears the MC addrs from receive
c44ade9e 2035 * address registers and the multicast table. Uses unused receive address
9a799d71
AK
2036 * registers for the first multicast addresses, and hashes the rest into the
2037 * multicast table.
2038 **/
2853eb89
JP
2039s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2040 struct net_device *netdev)
9a799d71 2041{
22bedad3 2042 struct netdev_hw_addr *ha;
9a799d71 2043 u32 i;
9a799d71
AK
2044
2045 /*
2046 * Set the new number of MC addresses that we are being requested to
2047 * use.
2048 */
2853eb89 2049 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
9a799d71
AK
2050 hw->addr_ctrl.mta_in_use = 0;
2051
80960ab0 2052 /* Clear mta_shadow */
9a799d71 2053 hw_dbg(hw, " Clearing MTA\n");
80960ab0 2054 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
9a799d71 2055
80960ab0 2056 /* Update mta shadow */
22bedad3 2057 netdev_for_each_mc_addr(ha, netdev) {
9a799d71 2058 hw_dbg(hw, " Adding the multicast addresses:\n");
22bedad3 2059 ixgbe_set_mta(hw, ha->addr);
9a799d71
AK
2060 }
2061
2062 /* Enable mta */
80960ab0
ET
2063 for (i = 0; i < hw->mac.mcft_size; i++)
2064 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2065 hw->mac.mta_shadow[i]);
2066
9a799d71
AK
2067 if (hw->addr_ctrl.mta_in_use > 0)
2068 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
b4617240 2069 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
9a799d71 2070
c44ade9e 2071 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
9a799d71
AK
2072 return 0;
2073}
2074
2075/**
c44ade9e 2076 * ixgbe_enable_mc_generic - Enable multicast address in RAR
9a799d71
AK
2077 * @hw: pointer to hardware structure
2078 *
c44ade9e 2079 * Enables multicast address in RAR and the use of the multicast hash table.
9a799d71 2080 **/
c44ade9e 2081s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
9a799d71 2082{
c44ade9e 2083 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
9a799d71 2084
c44ade9e
JB
2085 if (a->mta_in_use > 0)
2086 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2087 hw->mac.mc_filter_type);
9a799d71
AK
2088
2089 return 0;
2090}
2091
2092/**
c44ade9e 2093 * ixgbe_disable_mc_generic - Disable multicast address in RAR
9a799d71 2094 * @hw: pointer to hardware structure
9a799d71 2095 *
c44ade9e 2096 * Disables multicast address in RAR and the use of the multicast hash table.
9a799d71 2097 **/
c44ade9e 2098s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
9a799d71 2099{
c44ade9e 2100 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2b9ade93 2101
c44ade9e
JB
2102 if (a->mta_in_use > 0)
2103 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
9a799d71
AK
2104
2105 return 0;
2106}
2107
11afc1b1 2108/**
620fa036 2109 * ixgbe_fc_enable_generic - Enable flow control
11afc1b1 2110 * @hw: pointer to hardware structure
11afc1b1
PW
2111 *
2112 * Enable flow control according to the current settings.
2113 **/
041441d0 2114s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
11afc1b1
PW
2115{
2116 s32 ret_val = 0;
620fa036 2117 u32 mflcn_reg, fccfg_reg;
11afc1b1 2118 u32 reg;
16b61beb 2119 u32 fcrtl, fcrth;
041441d0 2120 int i;
70b77628 2121
041441d0
AD
2122 /*
2123 * Validate the water mark configuration for packet buffer 0. Zero
2124 * water marks indicate that the packet buffer was not configured
2125 * and the watermarks for packet buffer 0 should always be configured.
2126 */
2127 if (!hw->fc.low_water ||
2128 !hw->fc.high_water[0] ||
2129 !hw->fc.pause_time) {
2130 hw_dbg(hw, "Invalid water mark configuration\n");
2131 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
70b77628 2132 goto out;
041441d0 2133 }
70b77628 2134
620fa036 2135 /* Negotiate the fc mode to use */
786e9a5f 2136 ixgbe_fc_autoneg(hw);
11afc1b1 2137
620fa036 2138 /* Disable any previous flow control settings */
11afc1b1 2139 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
041441d0 2140 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
11afc1b1
PW
2141
2142 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2143 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2144
2145 /*
2146 * The possible values of fc.current_mode are:
2147 * 0: Flow control is completely disabled
2148 * 1: Rx flow control is enabled (we can receive pause frames,
2149 * but not send pause frames).
bb3daa4a
PW
2150 * 2: Tx flow control is enabled (we can send pause frames but
2151 * we do not support receiving pause frames).
11afc1b1
PW
2152 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2153 * other: Invalid.
2154 */
2155 switch (hw->fc.current_mode) {
2156 case ixgbe_fc_none:
620fa036
MC
2157 /*
2158 * Flow control is disabled by software override or autoneg.
2159 * The code below will actually disable it in the HW.
2160 */
11afc1b1
PW
2161 break;
2162 case ixgbe_fc_rx_pause:
2163 /*
2164 * Rx Flow control is enabled and Tx Flow control is
2165 * disabled by software override. Since there really
2166 * isn't a way to advertise that we are capable of RX
2167 * Pause ONLY, we will advertise that we support both
2168 * symmetric and asymmetric Rx PAUSE. Later, we will
2169 * disable the adapter's ability to send PAUSE frames.
2170 */
2171 mflcn_reg |= IXGBE_MFLCN_RFCE;
2172 break;
2173 case ixgbe_fc_tx_pause:
2174 /*
2175 * Tx Flow control is enabled, and Rx Flow control is
2176 * disabled by software override.
2177 */
2178 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2179 break;
2180 case ixgbe_fc_full:
2181 /* Flow control (both Rx and Tx) is enabled by SW override. */
2182 mflcn_reg |= IXGBE_MFLCN_RFCE;
2183 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2184 break;
2185 default:
2186 hw_dbg(hw, "Flow control param set incorrectly\n");
539e5f02 2187 ret_val = IXGBE_ERR_CONFIG;
11afc1b1
PW
2188 goto out;
2189 break;
2190 }
2191
620fa036 2192 /* Set 802.3x based flow control settings. */
2132d381 2193 mflcn_reg |= IXGBE_MFLCN_DPF;
11afc1b1
PW
2194 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2195 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2196
041441d0 2197 fcrtl = (hw->fc.low_water << 10) | IXGBE_FCRTL_XONE;
264857b8 2198
041441d0
AD
2199 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2200 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2201 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2202 hw->fc.high_water[i]) {
2203 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2204 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2205 } else {
2206 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2207 /*
2208 * In order to prevent Tx hangs when the internal Tx
2209 * switch is enabled we must set the high water mark
2210 * to the maximum FCRTH value. This allows the Tx
2211 * switch to function even under heavy Rx workloads.
2212 */
2213 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2214 }
11afc1b1 2215
041441d0
AD
2216 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2217 }
16b61beb 2218
11afc1b1 2219 /* Configure pause time (2 TCs per register) */
041441d0
AD
2220 reg = hw->fc.pause_time * 0x00010001;
2221 for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2222 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2223
2224 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
11afc1b1
PW
2225
2226out:
2227 return ret_val;
2228}
2229
0ecc061d 2230/**
67a79df2 2231 * ixgbe_negotiate_fc - Negotiate flow control
0ecc061d 2232 * @hw: pointer to hardware structure
67a79df2
AD
2233 * @adv_reg: flow control advertised settings
2234 * @lp_reg: link partner's flow control settings
2235 * @adv_sym: symmetric pause bit in advertisement
2236 * @adv_asm: asymmetric pause bit in advertisement
2237 * @lp_sym: symmetric pause bit in link partner advertisement
2238 * @lp_asm: asymmetric pause bit in link partner advertisement
0ecc061d 2239 *
67a79df2
AD
2240 * Find the intersection between advertised settings and link partner's
2241 * advertised settings
0ecc061d 2242 **/
67a79df2
AD
2243static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2244 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
0ecc061d 2245{
67a79df2
AD
2246 if ((!(adv_reg)) || (!(lp_reg)))
2247 return IXGBE_ERR_FC_NOT_NEGOTIATED;
0b0c2b31 2248
67a79df2
AD
2249 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2250 /*
2251 * Now we need to check if the user selected Rx ONLY
2252 * of pause frames. In this case, we had to advertise
2253 * FULL flow control because we could not advertise RX
2254 * ONLY. Hence, we must now check to see if we need to
2255 * turn OFF the TRANSMISSION of PAUSE frames.
2256 */
2257 if (hw->fc.requested_mode == ixgbe_fc_full) {
2258 hw->fc.current_mode = ixgbe_fc_full;
2259 hw_dbg(hw, "Flow Control = FULL.\n");
2260 } else {
2261 hw->fc.current_mode = ixgbe_fc_rx_pause;
2262 hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2263 }
2264 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2265 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2266 hw->fc.current_mode = ixgbe_fc_tx_pause;
2267 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2268 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2269 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2270 hw->fc.current_mode = ixgbe_fc_rx_pause;
2271 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
0b0c2b31 2272 } else {
67a79df2
AD
2273 hw->fc.current_mode = ixgbe_fc_none;
2274 hw_dbg(hw, "Flow Control = NONE.\n");
539e5f02 2275 }
67a79df2 2276 return 0;
0b0c2b31
ET
2277}
2278
2279/**
2280 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2281 * @hw: pointer to hardware structure
2282 *
2283 * Enable flow control according on 1 gig fiber.
2284 **/
2285static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2286{
2287 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
786e9a5f 2288 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
539e5f02
PWJ
2289
2290 /*
2291 * On multispeed fiber at 1g, bail out if
2292 * - link is up but AN did not complete, or if
2293 * - link is up and AN completed but timed out
2294 */
0b0c2b31
ET
2295
2296 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
53f096de 2297 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
786e9a5f 2298 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
0b0c2b31 2299 goto out;
539e5f02 2300
0b0c2b31
ET
2301 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2302 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2303
2304 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2305 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2306 IXGBE_PCS1GANA_ASM_PAUSE,
2307 IXGBE_PCS1GANA_SYM_PAUSE,
2308 IXGBE_PCS1GANA_ASM_PAUSE);
2309
2310out:
2311 return ret_val;
2312}
2313
2314/**
2315 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2316 * @hw: pointer to hardware structure
2317 *
2318 * Enable flow control according to IEEE clause 37.
2319 **/
2320static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2321{
2322 u32 links2, anlp1_reg, autoc_reg, links;
786e9a5f 2323 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
0b0c2b31 2324
9bbe3a57 2325 /*
0b0c2b31
ET
2326 * On backplane, bail out if
2327 * - backplane autoneg was not completed, or if
2328 * - we are 82599 and link partner is not AN enabled
9bbe3a57 2329 */
0b0c2b31 2330 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
786e9a5f 2331 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
9bbe3a57 2332 goto out;
9bbe3a57 2333
0b0c2b31
ET
2334 if (hw->mac.type == ixgbe_mac_82599EB) {
2335 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
786e9a5f 2336 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
0b0c2b31 2337 goto out;
0b0c2b31 2338 }
0ecc061d 2339 /*
0b0c2b31 2340 * Read the 10g AN autoc and LP ability registers and resolve
0ecc061d
PWJ
2341 * local flow control settings accordingly
2342 */
0b0c2b31
ET
2343 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2344 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
539e5f02 2345
0b0c2b31
ET
2346 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2347 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2348 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2349
2350out:
2351 return ret_val;
2352}
2353
2354/**
2355 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2356 * @hw: pointer to hardware structure
2357 *
2358 * Enable flow control according to IEEE clause 37.
2359 **/
2360static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2361{
2362 u16 technology_ability_reg = 0;
2363 u16 lp_technology_ability_reg = 0;
2364
2365 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2366 MDIO_MMD_AN,
2367 &technology_ability_reg);
2368 hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2369 MDIO_MMD_AN,
2370 &lp_technology_ability_reg);
2371
2372 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2373 (u32)lp_technology_ability_reg,
2374 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2375 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2376}
2377
2378/**
67a79df2 2379 * ixgbe_fc_autoneg - Configure flow control
11afc1b1
PW
2380 * @hw: pointer to hardware structure
2381 *
67a79df2
AD
2382 * Compares our advertised flow control capabilities to those advertised by
2383 * our link partner, and determines the proper flow control mode to use.
11afc1b1 2384 **/
67a79df2 2385void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
11afc1b1 2386{
67a79df2
AD
2387 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2388 ixgbe_link_speed speed;
2389 bool link_up;
11afc1b1
PW
2390
2391 /*
67a79df2
AD
2392 * AN should have completed when the cable was plugged in.
2393 * Look for reasons to bail out. Bail out if:
2394 * - FC autoneg is disabled, or if
2395 * - link is not up.
2396 *
2397 * Since we're being called from an LSC, link is already known to be up.
2398 * So use link_up_wait_to_complete=false.
11afc1b1 2399 */
67a79df2 2400 if (hw->fc.disable_fc_autoneg)
620fa036 2401 goto out;
11afc1b1 2402
67a79df2
AD
2403 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2404 if (!link_up)
11afc1b1 2405 goto out;
0b0c2b31
ET
2406
2407 switch (hw->phy.media_type) {
67a79df2 2408 /* Autoneg flow control on fiber adapters */
4e8e1bca 2409 case ixgbe_media_type_fiber_fixed:
0b0c2b31 2410 case ixgbe_media_type_fiber:
67a79df2
AD
2411 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2412 ret_val = ixgbe_fc_autoneg_fiber(hw);
2413 break;
2414
2415 /* Autoneg flow control on backplane adapters */
0b0c2b31 2416 case ixgbe_media_type_backplane:
67a79df2 2417 ret_val = ixgbe_fc_autoneg_backplane(hw);
0b0c2b31
ET
2418 break;
2419
67a79df2 2420 /* Autoneg flow control on copper adapters */
0b0c2b31 2421 case ixgbe_media_type_copper:
73d80953 2422 if (ixgbe_device_supports_autoneg_fc(hw))
67a79df2 2423 ret_val = ixgbe_fc_autoneg_copper(hw);
0b0c2b31
ET
2424 break;
2425
2426 default:
620fa036 2427 break;
0b0c2b31 2428 }
539e5f02 2429
11afc1b1 2430out:
67a79df2
AD
2431 if (ret_val == 0) {
2432 hw->fc.fc_was_autonegged = true;
2433 } else {
2434 hw->fc.fc_was_autonegged = false;
2435 hw->fc.current_mode = hw->fc.requested_mode;
2436 }
11afc1b1
PW
2437}
2438
9a799d71
AK
2439/**
2440 * ixgbe_disable_pcie_master - Disable PCI-express master access
2441 * @hw: pointer to hardware structure
2442 *
2443 * Disables PCI-Express master access and verifies there are no pending
2444 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2445 * bit hasn't caused the master requests to be disabled, else 0
2446 * is returned signifying master requests disabled.
2447 **/
ff9d1a5a 2448static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
9a799d71 2449{
a4297dc2 2450 struct ixgbe_adapter *adapter = hw->back;
a4297dc2 2451 s32 status = 0;
ff9d1a5a
ET
2452 u32 i;
2453 u16 value;
2454
2455 /* Always set this bit to ensure any future transactions are blocked */
2456 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
a4297dc2 2457
ff9d1a5a 2458 /* Exit if master requests are blocked */
a4297dc2
ET
2459 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2460 goto out;
9a799d71 2461
ff9d1a5a 2462 /* Poll for master request bit to clear */
9a799d71 2463 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
a4297dc2 2464 udelay(100);
ff9d1a5a
ET
2465 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2466 goto out;
a4297dc2
ET
2467 }
2468
ff9d1a5a
ET
2469 /*
2470 * Two consecutive resets are required via CTRL.RST per datasheet
2471 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2472 * of this need. The first reset prevents new master requests from
2473 * being issued by our device. We then must wait 1usec or more for any
2474 * remaining completions from the PCIe bus to trickle in, and then reset
2475 * again to clear out any effects they may have had on our device.
2476 */
a4297dc2 2477 hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
ff9d1a5a 2478 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
a4297dc2
ET
2479
2480 /*
2481 * Before proceeding, make sure that the PCIe block does not have
2482 * transactions pending.
2483 */
a4297dc2 2484 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
9a799d71 2485 udelay(100);
ff9d1a5a
ET
2486 pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS,
2487 &value);
2488 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2489 goto out;
9a799d71
AK
2490 }
2491
ff9d1a5a
ET
2492 hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2493 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
a4297dc2
ET
2494
2495out:
9a799d71
AK
2496 return status;
2497}
2498
9a799d71 2499/**
c44ade9e 2500 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
9a799d71 2501 * @hw: pointer to hardware structure
c44ade9e 2502 * @mask: Mask to specify which semaphore to acquire
9a799d71 2503 *
da74cd4a 2504 * Acquires the SWFW semaphore through the GSSR register for the specified
9a799d71
AK
2505 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2506 **/
2507s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2508{
674c18b2 2509 u32 gssr = 0;
9a799d71
AK
2510 u32 swmask = mask;
2511 u32 fwmask = mask << 5;
674c18b2
ET
2512 u32 timeout = 200;
2513 u32 i;
9a799d71 2514
674c18b2 2515 for (i = 0; i < timeout; i++) {
dbf893ee 2516 /*
674c18b2
ET
2517 * SW NVM semaphore bit is used for access to all
2518 * SW_FW_SYNC bits (not just NVM)
dbf893ee 2519 */
9a799d71 2520 if (ixgbe_get_eeprom_semaphore(hw))
539e5f02 2521 return IXGBE_ERR_SWFW_SYNC;
9a799d71
AK
2522
2523 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
674c18b2
ET
2524 if (!(gssr & (fwmask | swmask))) {
2525 gssr |= swmask;
2526 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2527 ixgbe_release_eeprom_semaphore(hw);
2528 return 0;
2529 } else {
2530 /* Resource is currently in use by FW or SW */
2531 ixgbe_release_eeprom_semaphore(hw);
2532 usleep_range(5000, 10000);
2533 }
9a799d71
AK
2534 }
2535
674c18b2
ET
2536 /* If time expired clear the bits holding the lock and retry */
2537 if (gssr & (fwmask | swmask))
2538 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
9a799d71 2539
674c18b2
ET
2540 usleep_range(5000, 10000);
2541 return IXGBE_ERR_SWFW_SYNC;
9a799d71
AK
2542}
2543
2544/**
2545 * ixgbe_release_swfw_sync - Release SWFW semaphore
2546 * @hw: pointer to hardware structure
c44ade9e 2547 * @mask: Mask to specify which semaphore to release
9a799d71 2548 *
da74cd4a 2549 * Releases the SWFW semaphore through the GSSR register for the specified
9a799d71
AK
2550 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2551 **/
2552void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2553{
2554 u32 gssr;
2555 u32 swmask = mask;
2556
2557 ixgbe_get_eeprom_semaphore(hw);
2558
2559 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2560 gssr &= ~swmask;
2561 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2562
2563 ixgbe_release_eeprom_semaphore(hw);
2564}
2565
d2f5e7f3
AS
2566/**
2567 * ixgbe_disable_rx_buff_generic - Stops the receive data path
2568 * @hw: pointer to hardware structure
2569 *
2570 * Stops the receive data path and waits for the HW to internally
2571 * empty the Rx security block.
2572 **/
2573s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2574{
2575#define IXGBE_MAX_SECRX_POLL 40
2576 int i;
2577 int secrxreg;
2578
2579 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2580 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2581 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2582 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2583 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2584 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2585 break;
2586 else
2587 /* Use interrupt-safe sleep just in case */
db76ad47 2588 udelay(1000);
d2f5e7f3
AS
2589 }
2590
2591 /* For informational purposes only */
2592 if (i >= IXGBE_MAX_SECRX_POLL)
2593 hw_dbg(hw, "Rx unit being enabled before security "
2594 "path fully disabled. Continuing with init.\n");
2595
2596 return 0;
2597
2598}
2599
2600/**
2601 * ixgbe_enable_rx_buff - Enables the receive data path
2602 * @hw: pointer to hardware structure
2603 *
2604 * Enables the receive data path
2605 **/
2606s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2607{
2608 int secrxreg;
2609
2610 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2611 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2612 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2613 IXGBE_WRITE_FLUSH(hw);
2614
2615 return 0;
2616}
2617
11afc1b1
PW
2618/**
2619 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2620 * @hw: pointer to hardware structure
2621 * @regval: register value to write to RXCTRL
2622 *
2623 * Enables the Rx DMA unit
2624 **/
2625s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2626{
2627 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2628
2629 return 0;
2630}
87c12017
PW
2631
2632/**
2633 * ixgbe_blink_led_start_generic - Blink LED based on index.
2634 * @hw: pointer to hardware structure
2635 * @index: led number to blink
2636 **/
2637s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2638{
2639 ixgbe_link_speed speed = 0;
3db1cd5c 2640 bool link_up = false;
87c12017
PW
2641 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2642 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
d7bbcd32 2643 s32 ret_val = 0;
87c12017
PW
2644
2645 /*
2646 * Link must be up to auto-blink the LEDs;
2647 * Force it if link is down.
2648 */
2649 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2650
2651 if (!link_up) {
d7bbcd32
DS
2652 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
2653 * LESM is on.
2654 */
2655 bool got_lock = false;
2656
2657 if ((hw->mac.type == ixgbe_mac_82599EB) &&
2658 ixgbe_verify_lesm_fw_enabled_82599(hw)) {
2659 ret_val = hw->mac.ops.acquire_swfw_sync(hw,
2660 IXGBE_GSSR_MAC_CSR_SM);
2661 if (ret_val)
2662 goto out;
2663
2664 got_lock = true;
2665 }
50ac58ba 2666 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
87c12017
PW
2667 autoc_reg |= IXGBE_AUTOC_FLU;
2668 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
945a5151 2669 IXGBE_WRITE_FLUSH(hw);
d7bbcd32
DS
2670
2671 if (got_lock)
2672 hw->mac.ops.release_swfw_sync(hw,
2673 IXGBE_GSSR_MAC_CSR_SM);
032b4325 2674 usleep_range(10000, 20000);
87c12017
PW
2675 }
2676
2677 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2678 led_reg |= IXGBE_LED_BLINK(index);
2679 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2680 IXGBE_WRITE_FLUSH(hw);
2681
d7bbcd32
DS
2682out:
2683 return ret_val;
87c12017
PW
2684}
2685
2686/**
2687 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2688 * @hw: pointer to hardware structure
2689 * @index: led number to stop blinking
2690 **/
2691s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2692{
2693 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2694 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
d7bbcd32
DS
2695 s32 ret_val = 0;
2696 bool got_lock = false;
2697
2698 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
2699 * LESM is on.
2700 */
2701 if ((hw->mac.type == ixgbe_mac_82599EB) &&
2702 ixgbe_verify_lesm_fw_enabled_82599(hw)) {
2703 ret_val = hw->mac.ops.acquire_swfw_sync(hw,
2704 IXGBE_GSSR_MAC_CSR_SM);
2705 if (ret_val)
2706 goto out;
2707
2708 got_lock = true;
2709 }
87c12017
PW
2710
2711 autoc_reg &= ~IXGBE_AUTOC_FLU;
2712 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2713 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2714
d7bbcd32
DS
2715 if (hw->mac.type == ixgbe_mac_82599EB)
2716 ixgbe_reset_pipeline_82599(hw);
2717
2718 if (got_lock)
2719 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
2720
87c12017
PW
2721 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2722 led_reg &= ~IXGBE_LED_BLINK(index);
2723 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2724 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2725 IXGBE_WRITE_FLUSH(hw);
2726
d7bbcd32
DS
2727out:
2728 return ret_val;
87c12017 2729}
21ce849b
MC
2730
2731/**
2732 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2733 * @hw: pointer to hardware structure
2734 * @san_mac_offset: SAN MAC address offset
2735 *
2736 * This function will read the EEPROM location for the SAN MAC address
2737 * pointer, and returns the value at that location. This is used in both
2738 * get and set mac_addr routines.
2739 **/
2740static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2741 u16 *san_mac_offset)
2742{
2743 /*
2744 * First read the EEPROM pointer to see if the MAC addresses are
2745 * available.
2746 */
2747 hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2748
2749 return 0;
2750}
2751
2752/**
2753 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2754 * @hw: pointer to hardware structure
2755 * @san_mac_addr: SAN MAC address
2756 *
2757 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2758 * per-port, so set_lan_id() must be called before reading the addresses.
2759 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2760 * upon for non-SFP connections, so we must call it here.
2761 **/
2762s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2763{
2764 u16 san_mac_data, san_mac_offset;
2765 u8 i;
2766
2767 /*
2768 * First read the EEPROM pointer to see if the MAC addresses are
2769 * available. If they're not, no point in calling set_lan_id() here.
2770 */
2771 ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2772
2773 if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2774 /*
2775 * No addresses available in this EEPROM. It's not an
2776 * error though, so just wipe the local address and return.
2777 */
2778 for (i = 0; i < 6; i++)
2779 san_mac_addr[i] = 0xFF;
2780
2781 goto san_mac_addr_out;
2782 }
2783
2784 /* make sure we know which port we need to program */
2785 hw->mac.ops.set_lan_id(hw);
2786 /* apply the port offset to the address offset */
2787 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2788 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2789 for (i = 0; i < 3; i++) {
2790 hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2791 san_mac_addr[i * 2] = (u8)(san_mac_data);
2792 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2793 san_mac_offset++;
2794 }
2795
2796san_mac_addr_out:
2797 return 0;
2798}
2799
2800/**
2801 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2802 * @hw: pointer to hardware structure
2803 *
2804 * Read PCIe configuration space, and get the MSI-X vector count from
2805 * the capabilities table.
2806 **/
71161302 2807u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
21ce849b
MC
2808{
2809 struct ixgbe_adapter *adapter = hw->back;
71161302
ET
2810 u16 msix_count = 1;
2811 u16 max_msix_count;
2812 u16 pcie_offset;
2813
2814 switch (hw->mac.type) {
2815 case ixgbe_mac_82598EB:
2816 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2817 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2818 break;
2819 case ixgbe_mac_82599EB:
2820 case ixgbe_mac_X540:
2821 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2822 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2823 break;
2824 default:
2825 return msix_count;
2826 }
2827
2828 pci_read_config_word(adapter->pdev, pcie_offset, &msix_count);
21ce849b
MC
2829 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2830
71161302 2831 /* MSI-X count is zero-based in HW */
21ce849b
MC
2832 msix_count++;
2833
71161302
ET
2834 if (msix_count > max_msix_count)
2835 msix_count = max_msix_count;
2836
21ce849b
MC
2837 return msix_count;
2838}
2839
2840/**
2841 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2842 * @hw: pointer to hardware struct
2843 * @rar: receive address register index to disassociate
2844 * @vmdq: VMDq pool index to remove from the rar
2845 **/
2846s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2847{
2848 u32 mpsar_lo, mpsar_hi;
2849 u32 rar_entries = hw->mac.num_rar_entries;
2850
c700f4e6
ET
2851 /* Make sure we are using a valid rar index range */
2852 if (rar >= rar_entries) {
2853 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2854 return IXGBE_ERR_INVALID_ARGUMENT;
2855 }
21ce849b 2856
c700f4e6
ET
2857 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2858 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
21ce849b 2859
c700f4e6
ET
2860 if (!mpsar_lo && !mpsar_hi)
2861 goto done;
21ce849b 2862
c700f4e6
ET
2863 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2864 if (mpsar_lo) {
2865 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2866 mpsar_lo = 0;
2867 }
2868 if (mpsar_hi) {
2869 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2870 mpsar_hi = 0;
2871 }
2872 } else if (vmdq < 32) {
2873 mpsar_lo &= ~(1 << vmdq);
2874 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
21ce849b 2875 } else {
c700f4e6
ET
2876 mpsar_hi &= ~(1 << (vmdq - 32));
2877 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
21ce849b
MC
2878 }
2879
c700f4e6
ET
2880 /* was that the last pool using this rar? */
2881 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2882 hw->mac.ops.clear_rar(hw, rar);
21ce849b
MC
2883done:
2884 return 0;
2885}
2886
2887/**
2888 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2889 * @hw: pointer to hardware struct
2890 * @rar: receive address register index to associate with a VMDq index
2891 * @vmdq: VMDq pool index
2892 **/
2893s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2894{
2895 u32 mpsar;
2896 u32 rar_entries = hw->mac.num_rar_entries;
2897
c700f4e6
ET
2898 /* Make sure we are using a valid rar index range */
2899 if (rar >= rar_entries) {
21ce849b 2900 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
c700f4e6
ET
2901 return IXGBE_ERR_INVALID_ARGUMENT;
2902 }
2903
2904 if (vmdq < 32) {
2905 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2906 mpsar |= 1 << vmdq;
2907 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2908 } else {
2909 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2910 mpsar |= 1 << (vmdq - 32);
2911 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
21ce849b
MC
2912 }
2913 return 0;
2914}
2915
7fa7c9dc
AD
2916/**
2917 * This function should only be involved in the IOV mode.
2918 * In IOV mode, Default pool is next pool after the number of
2919 * VFs advertized and not 0.
2920 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2921 *
2922 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2923 * @hw: pointer to hardware struct
2924 * @vmdq: VMDq pool index
2925 **/
2926s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2927{
2928 u32 rar = hw->mac.san_mac_rar_index;
2929
2930 if (vmdq < 32) {
2931 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
2932 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2933 } else {
2934 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2935 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
2936 }
2937
2938 return 0;
2939}
2940
21ce849b
MC
2941/**
2942 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2943 * @hw: pointer to hardware structure
2944 **/
2945s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2946{
2947 int i;
2948
21ce849b
MC
2949 for (i = 0; i < 128; i++)
2950 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2951
2952 return 0;
2953}
2954
2955/**
2956 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2957 * @hw: pointer to hardware structure
2958 * @vlan: VLAN id to write to VLAN filter
2959 *
2960 * return the VLVF index where this VLAN id should be placed
2961 *
2962 **/
5d5b7c39 2963static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
21ce849b
MC
2964{
2965 u32 bits = 0;
2966 u32 first_empty_slot = 0;
2967 s32 regindex;
2968
2969 /* short cut the special case */
2970 if (vlan == 0)
2971 return 0;
2972
2973 /*
2974 * Search for the vlan id in the VLVF entries. Save off the first empty
2975 * slot found along the way
2976 */
2977 for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2978 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2979 if (!bits && !(first_empty_slot))
2980 first_empty_slot = regindex;
2981 else if ((bits & 0x0FFF) == vlan)
2982 break;
2983 }
2984
2985 /*
2986 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2987 * in the VLVF. Else use the first empty VLVF register for this
2988 * vlan id.
2989 */
2990 if (regindex >= IXGBE_VLVF_ENTRIES) {
2991 if (first_empty_slot)
2992 regindex = first_empty_slot;
2993 else {
2994 hw_dbg(hw, "No space in VLVF.\n");
2995 regindex = IXGBE_ERR_NO_SPACE;
2996 }
2997 }
2998
2999 return regindex;
3000}
3001
3002/**
3003 * ixgbe_set_vfta_generic - Set VLAN filter table
3004 * @hw: pointer to hardware structure
3005 * @vlan: VLAN id to write to VLAN filter
3006 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3007 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3008 *
3009 * Turn on/off specified VLAN in the VLAN filter table.
3010 **/
3011s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3012 bool vlan_on)
3013{
3014 s32 regindex;
3015 u32 bitindex;
3016 u32 vfta;
3017 u32 bits;
3018 u32 vt;
3019 u32 targetbit;
3020 bool vfta_changed = false;
3021
3022 if (vlan > 4095)
3023 return IXGBE_ERR_PARAM;
3024
3025 /*
3026 * this is a 2 part operation - first the VFTA, then the
3027 * VLVF and VLVFB if VT Mode is set
3028 * We don't write the VFTA until we know the VLVF part succeeded.
3029 */
3030
3031 /* Part 1
3032 * The VFTA is a bitstring made up of 128 32-bit registers
3033 * that enable the particular VLAN id, much like the MTA:
3034 * bits[11-5]: which register
3035 * bits[4-0]: which bit in the register
3036 */
3037 regindex = (vlan >> 5) & 0x7F;
3038 bitindex = vlan & 0x1F;
3039 targetbit = (1 << bitindex);
3040 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3041
3042 if (vlan_on) {
3043 if (!(vfta & targetbit)) {
3044 vfta |= targetbit;
3045 vfta_changed = true;
3046 }
3047 } else {
3048 if ((vfta & targetbit)) {
3049 vfta &= ~targetbit;
3050 vfta_changed = true;
3051 }
3052 }
3053
3054 /* Part 2
3055 * If VT Mode is set
3056 * Either vlan_on
3057 * make sure the vlan is in VLVF
3058 * set the vind bit in the matching VLVFB
3059 * Or !vlan_on
3060 * clear the pool bit and possibly the vind
3061 */
3062 vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3063 if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3064 s32 vlvf_index;
3065
3066 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3067 if (vlvf_index < 0)
3068 return vlvf_index;
3069
3070 if (vlan_on) {
3071 /* set the pool bit */
3072 if (vind < 32) {
3073 bits = IXGBE_READ_REG(hw,
3074 IXGBE_VLVFB(vlvf_index*2));
3075 bits |= (1 << vind);
3076 IXGBE_WRITE_REG(hw,
3077 IXGBE_VLVFB(vlvf_index*2),
3078 bits);
3079 } else {
3080 bits = IXGBE_READ_REG(hw,
3081 IXGBE_VLVFB((vlvf_index*2)+1));
3082 bits |= (1 << (vind-32));
3083 IXGBE_WRITE_REG(hw,
3084 IXGBE_VLVFB((vlvf_index*2)+1),
3085 bits);
3086 }
3087 } else {
3088 /* clear the pool bit */
3089 if (vind < 32) {
3090 bits = IXGBE_READ_REG(hw,
3091 IXGBE_VLVFB(vlvf_index*2));
3092 bits &= ~(1 << vind);
3093 IXGBE_WRITE_REG(hw,
3094 IXGBE_VLVFB(vlvf_index*2),
3095 bits);
3096 bits |= IXGBE_READ_REG(hw,
3097 IXGBE_VLVFB((vlvf_index*2)+1));
3098 } else {
3099 bits = IXGBE_READ_REG(hw,
3100 IXGBE_VLVFB((vlvf_index*2)+1));
3101 bits &= ~(1 << (vind-32));
3102 IXGBE_WRITE_REG(hw,
3103 IXGBE_VLVFB((vlvf_index*2)+1),
3104 bits);
3105 bits |= IXGBE_READ_REG(hw,
3106 IXGBE_VLVFB(vlvf_index*2));
3107 }
3108 }
3109
3110 /*
3111 * If there are still bits set in the VLVFB registers
3112 * for the VLAN ID indicated we need to see if the
3113 * caller is requesting that we clear the VFTA entry bit.
3114 * If the caller has requested that we clear the VFTA
3115 * entry bit but there are still pools/VFs using this VLAN
3116 * ID entry then ignore the request. We're not worried
3117 * about the case where we're turning the VFTA VLAN ID
3118 * entry bit on, only when requested to turn it off as
3119 * there may be multiple pools and/or VFs using the
3120 * VLAN ID entry. In that case we cannot clear the
3121 * VFTA bit until all pools/VFs using that VLAN ID have also
3122 * been cleared. This will be indicated by "bits" being
3123 * zero.
3124 */
3125 if (bits) {
3126 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3127 (IXGBE_VLVF_VIEN | vlan));
3128 if (!vlan_on) {
3129 /* someone wants to clear the vfta entry
3130 * but some pools/VFs are still using it.
3131 * Ignore it. */
3132 vfta_changed = false;
3133 }
3134 }
3135 else
3136 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3137 }
3138
3139 if (vfta_changed)
3140 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3141
3142 return 0;
3143}
3144
3145/**
3146 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3147 * @hw: pointer to hardware structure
3148 *
3149 * Clears the VLAN filer table, and the VMDq index associated with the filter
3150 **/
3151s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3152{
3153 u32 offset;
3154
3155 for (offset = 0; offset < hw->mac.vft_size; offset++)
3156 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3157
3158 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3159 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3160 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3161 IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3162 }
3163
3164 return 0;
3165}
3166
3167/**
3168 * ixgbe_check_mac_link_generic - Determine link and speed status
3169 * @hw: pointer to hardware structure
3170 * @speed: pointer to link speed
3171 * @link_up: true when link is up
3172 * @link_up_wait_to_complete: bool used to wait for link up or not
3173 *
3174 * Reads the links register to determine if link is up and the current speed
3175 **/
3176s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
8c7bea32 3177 bool *link_up, bool link_up_wait_to_complete)
21ce849b 3178{
48de36c5 3179 u32 links_reg, links_orig;
21ce849b
MC
3180 u32 i;
3181
48de36c5
ET
3182 /* clear the old state */
3183 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3184
21ce849b 3185 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
48de36c5
ET
3186
3187 if (links_orig != links_reg) {
3188 hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3189 links_orig, links_reg);
3190 }
3191
21ce849b
MC
3192 if (link_up_wait_to_complete) {
3193 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3194 if (links_reg & IXGBE_LINKS_UP) {
3195 *link_up = true;
3196 break;
3197 } else {
3198 *link_up = false;
3199 }
3200 msleep(100);
3201 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3202 }
3203 } else {
3204 if (links_reg & IXGBE_LINKS_UP)
3205 *link_up = true;
3206 else
3207 *link_up = false;
3208 }
3209
3210 if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3211 IXGBE_LINKS_SPEED_10G_82599)
3212 *speed = IXGBE_LINK_SPEED_10GB_FULL;
3213 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
63d778df 3214 IXGBE_LINKS_SPEED_1G_82599)
21ce849b 3215 *speed = IXGBE_LINK_SPEED_1GB_FULL;
63d778df
ET
3216 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3217 IXGBE_LINKS_SPEED_100_82599)
21ce849b 3218 *speed = IXGBE_LINK_SPEED_100_FULL;
63d778df
ET
3219 else
3220 *speed = IXGBE_LINK_SPEED_UNKNOWN;
21ce849b 3221
21ce849b
MC
3222 return 0;
3223}
a391f1d5
DS
3224
3225/**
49ce9c2c 3226 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
a391f1d5
DS
3227 * the EEPROM
3228 * @hw: pointer to hardware structure
3229 * @wwnn_prefix: the alternative WWNN prefix
3230 * @wwpn_prefix: the alternative WWPN prefix
3231 *
3232 * This function will read the EEPROM from the alternative SAN MAC address
3233 * block to check the support for the alternative WWNN/WWPN prefix support.
3234 **/
3235s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3236 u16 *wwpn_prefix)
3237{
3238 u16 offset, caps;
3239 u16 alt_san_mac_blk_offset;
3240
3241 /* clear output first */
3242 *wwnn_prefix = 0xFFFF;
3243 *wwpn_prefix = 0xFFFF;
3244
3245 /* check if alternative SAN MAC is supported */
3246 hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3247 &alt_san_mac_blk_offset);
3248
3249 if ((alt_san_mac_blk_offset == 0) ||
3250 (alt_san_mac_blk_offset == 0xFFFF))
3251 goto wwn_prefix_out;
3252
3253 /* check capability in alternative san mac address block */
3254 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3255 hw->eeprom.ops.read(hw, offset, &caps);
3256 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3257 goto wwn_prefix_out;
3258
3259 /* get the corresponding prefix for WWNN/WWPN */
3260 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3261 hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3262
3263 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3264 hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3265
3266wwn_prefix_out:
3267 return 0;
3268}
a985b6c3
GR
3269
3270/**
3271 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3272 * @hw: pointer to hardware structure
3273 * @enable: enable or disable switch for anti-spoofing
3274 * @pf: Physical Function pool - do not enable anti-spoofing for the PF
3275 *
3276 **/
3277void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3278{
3279 int j;
3280 int pf_target_reg = pf >> 3;
3281 int pf_target_shift = pf % 8;
3282 u32 pfvfspoof = 0;
3283
3284 if (hw->mac.type == ixgbe_mac_82598EB)
3285 return;
3286
3287 if (enable)
3288 pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3289
3290 /*
3291 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3292 * MAC anti-spoof enables in each register array element.
3293 */
ef89e0a2 3294 for (j = 0; j < pf_target_reg; j++)
a985b6c3
GR
3295 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3296
a985b6c3
GR
3297 /*
3298 * The PF should be allowed to spoof so that it can support
ef89e0a2
AD
3299 * emulation mode NICs. Do not set the bits assigned to the PF
3300 */
3301 pfvfspoof &= (1 << pf_target_shift) - 1;
3302 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3303
3304 /*
3305 * Remaining pools belong to the PF so they do not need to have
3306 * anti-spoofing enabled.
a985b6c3 3307 */
ef89e0a2
AD
3308 for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3309 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
a985b6c3
GR
3310}
3311
3312/**
3313 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3314 * @hw: pointer to hardware structure
3315 * @enable: enable or disable switch for VLAN anti-spoofing
3316 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3317 *
3318 **/
3319void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3320{
3321 int vf_target_reg = vf >> 3;
3322 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3323 u32 pfvfspoof;
3324
3325 if (hw->mac.type == ixgbe_mac_82598EB)
3326 return;
3327
3328 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3329 if (enable)
3330 pfvfspoof |= (1 << vf_target_shift);
3331 else
3332 pfvfspoof &= ~(1 << vf_target_shift);
3333 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3334}
b776d104
ET
3335
3336/**
3337 * ixgbe_get_device_caps_generic - Get additional device capabilities
3338 * @hw: pointer to hardware structure
3339 * @device_caps: the EEPROM word with the extra device capabilities
3340 *
3341 * This function will read the EEPROM location for the device capabilities,
3342 * and return the word through device_caps.
3343 **/
3344s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3345{
3346 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3347
3348 return 0;
3349}
80605c65
JF
3350
3351/**
3352 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3353 * @hw: pointer to hardware structure
3354 * @num_pb: number of packet buffers to allocate
3355 * @headroom: reserve n KB of headroom
3356 * @strategy: packet buffer allocation strategy
3357 **/
3358void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3359 int num_pb,
3360 u32 headroom,
3361 int strategy)
3362{
3363 u32 pbsize = hw->mac.rx_pb_size;
3364 int i = 0;
3365 u32 rxpktsize, txpktsize, txpbthresh;
3366
3367 /* Reserve headroom */
3368 pbsize -= headroom;
3369
3370 if (!num_pb)
3371 num_pb = 1;
3372
3373 /* Divide remaining packet buffer space amongst the number
3374 * of packet buffers requested using supplied strategy.
3375 */
3376 switch (strategy) {
3377 case (PBA_STRATEGY_WEIGHTED):
3378 /* pba_80_48 strategy weight first half of packet buffer with
3379 * 5/8 of the packet buffer space.
3380 */
3381 rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3382 pbsize -= rxpktsize * (num_pb / 2);
3383 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3384 for (; i < (num_pb / 2); i++)
3385 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3386 /* Fall through to configure remaining packet buffers */
3387 case (PBA_STRATEGY_EQUAL):
3388 /* Divide the remaining Rx packet buffer evenly among the TCs */
3389 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3390 for (; i < num_pb; i++)
3391 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3392 break;
3393 default:
3394 break;
3395 }
3396
3397 /*
3398 * Setup Tx packet buffer and threshold equally for all TCs
3399 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3400 * 10 since the largest packet we support is just over 9K.
3401 */
3402 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3403 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3404 for (i = 0; i < num_pb; i++) {
3405 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3406 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3407 }
3408
3409 /* Clear unused TCs, if any, to zero buffer size*/
3410 for (; i < IXGBE_MAX_PB; i++) {
3411 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3412 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3413 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3414 }
3415}
9612de92
ET
3416
3417/**
3418 * ixgbe_calculate_checksum - Calculate checksum for buffer
3419 * @buffer: pointer to EEPROM
3420 * @length: size of EEPROM to calculate a checksum for
49ce9c2c 3421 *
9612de92
ET
3422 * Calculates the checksum for some buffer on a specified length. The
3423 * checksum calculated is returned.
3424 **/
3425static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3426{
3427 u32 i;
3428 u8 sum = 0;
3429
3430 if (!buffer)
3431 return 0;
3432
3433 for (i = 0; i < length; i++)
3434 sum += buffer[i];
3435
3436 return (u8) (0 - sum);
3437}
3438
3439/**
3440 * ixgbe_host_interface_command - Issue command to manageability block
3441 * @hw: pointer to the HW structure
3442 * @buffer: contains the command to write and where the return status will
3443 * be placed
c466d7a7 3444 * @length: length of buffer, must be multiple of 4 bytes
9612de92
ET
3445 *
3446 * Communicates with the manageability block. On success return 0
3447 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3448 **/
79488c58 3449static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
9612de92
ET
3450 u32 length)
3451{
331bcf45 3452 u32 hicr, i, bi;
9612de92
ET
3453 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3454 u8 buf_len, dword_len;
3455
3456 s32 ret_val = 0;
3457
3458 if (length == 0 || length & 0x3 ||
3459 length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3460 hw_dbg(hw, "Buffer length failure.\n");
3461 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3462 goto out;
3463 }
3464
3465 /* Check that the host interface is enabled. */
3466 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3467 if ((hicr & IXGBE_HICR_EN) == 0) {
3468 hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3469 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3470 goto out;
3471 }
3472
3473 /* Calculate length in DWORDs */
3474 dword_len = length >> 2;
3475
3476 /*
3477 * The device driver writes the relevant command block
3478 * into the ram area.
3479 */
3480 for (i = 0; i < dword_len; i++)
3481 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
79488c58 3482 i, cpu_to_le32(buffer[i]));
9612de92
ET
3483
3484 /* Setting this bit tells the ARC that a new command is pending. */
3485 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3486
3487 for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3488 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3489 if (!(hicr & IXGBE_HICR_C))
3490 break;
3491 usleep_range(1000, 2000);
3492 }
3493
3494 /* Check command successful completion. */
3495 if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3496 (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3497 hw_dbg(hw, "Command has failed with no status valid.\n");
3498 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3499 goto out;
3500 }
3501
3502 /* Calculate length in DWORDs */
3503 dword_len = hdr_size >> 2;
3504
3505 /* first pull in the header so we know the buffer length */
331bcf45
ET
3506 for (bi = 0; bi < dword_len; bi++) {
3507 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3508 le32_to_cpus(&buffer[bi]);
79488c58 3509 }
9612de92
ET
3510
3511 /* If there is any thing in data position pull it in */
3512 buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3513 if (buf_len == 0)
3514 goto out;
3515
3516 if (length < (buf_len + hdr_size)) {
3517 hw_dbg(hw, "Buffer not large enough for reply message.\n");
3518 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3519 goto out;
3520 }
3521
331bcf45
ET
3522 /* Calculate length in DWORDs, add 3 for odd lengths */
3523 dword_len = (buf_len + 3) >> 2;
9612de92 3524
331bcf45
ET
3525 /* Pull in the rest of the buffer (bi is where we left off)*/
3526 for (; bi <= dword_len; bi++) {
3527 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3528 le32_to_cpus(&buffer[bi]);
3529 }
9612de92
ET
3530
3531out:
3532 return ret_val;
3533}
3534
3535/**
3536 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3537 * @hw: pointer to the HW structure
3538 * @maj: driver version major number
3539 * @min: driver version minor number
3540 * @build: driver version build number
3541 * @sub: driver version sub build number
3542 *
3543 * Sends driver version number to firmware through the manageability
3544 * block. On success return 0
3545 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3546 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3547 **/
3548s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3549 u8 build, u8 sub)
3550{
3551 struct ixgbe_hic_drv_info fw_cmd;
3552 int i;
3553 s32 ret_val = 0;
3554
3555 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) {
3556 ret_val = IXGBE_ERR_SWFW_SYNC;
3557 goto out;
3558 }
3559
3560 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3561 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3562 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3563 fw_cmd.port_num = (u8)hw->bus.func;
3564 fw_cmd.ver_maj = maj;
3565 fw_cmd.ver_min = min;
3566 fw_cmd.ver_build = build;
3567 fw_cmd.ver_sub = sub;
3568 fw_cmd.hdr.checksum = 0;
3569 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3570 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3571 fw_cmd.pad = 0;
3572 fw_cmd.pad2 = 0;
3573
3574 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
79488c58 3575 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
9612de92
ET
3576 sizeof(fw_cmd));
3577 if (ret_val != 0)
3578 continue;
3579
3580 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3581 FW_CEM_RESP_STATUS_SUCCESS)
3582 ret_val = 0;
3583 else
3584 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3585
3586 break;
3587 }
3588
3589 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3590out:
3591 return ret_val;
3592}
ff9d1a5a
ET
3593
3594/**
3595 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3596 * @hw: pointer to the hardware structure
3597 *
3598 * The 82599 and x540 MACs can experience issues if TX work is still pending
3599 * when a reset occurs. This function prevents this by flushing the PCIe
3600 * buffers on the system.
3601 **/
3602void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3603{
3604 u32 gcr_ext, hlreg0;
3605
3606 /*
3607 * If double reset is not requested then all transactions should
3608 * already be clear and as such there is no work to do
3609 */
3610 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3611 return;
3612
3613 /*
3614 * Set loopback enable to prevent any transmits from being sent
3615 * should the link come up. This assumes that the RXCTRL.RXEN bit
3616 * has already been cleared.
3617 */
3618 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3619 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3620
3621 /* initiate cleaning flow for buffers in the PCIe transaction layer */
3622 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3623 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3624 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3625
3626 /* Flush all writes and allow 20usec for all transactions to clear */
3627 IXGBE_WRITE_FLUSH(hw);
3628 udelay(20);
3629
3630 /* restore previous register values */
3631 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3632 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3633}
e1ea9158
DS
3634
3635static const u8 ixgbe_emc_temp_data[4] = {
3636 IXGBE_EMC_INTERNAL_DATA,
3637 IXGBE_EMC_DIODE1_DATA,
3638 IXGBE_EMC_DIODE2_DATA,
3639 IXGBE_EMC_DIODE3_DATA
3640};
3641static const u8 ixgbe_emc_therm_limit[4] = {
3642 IXGBE_EMC_INTERNAL_THERM_LIMIT,
3643 IXGBE_EMC_DIODE1_THERM_LIMIT,
3644 IXGBE_EMC_DIODE2_THERM_LIMIT,
3645 IXGBE_EMC_DIODE3_THERM_LIMIT
3646};
3647
3648/**
3649 * ixgbe_get_ets_data - Extracts the ETS bit data
3650 * @hw: pointer to hardware structure
3651 * @ets_cfg: extected ETS data
3652 * @ets_offset: offset of ETS data
3653 *
3654 * Returns error code.
3655 **/
3656static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3657 u16 *ets_offset)
3658{
3659 s32 status = 0;
3660
3661 status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3662 if (status)
3663 goto out;
3664
3665 if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF)) {
3666 status = IXGBE_NOT_IMPLEMENTED;
3667 goto out;
3668 }
3669
3670 status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3671 if (status)
3672 goto out;
3673
3674 if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED) {
3675 status = IXGBE_NOT_IMPLEMENTED;
3676 goto out;
3677 }
3678
3679out:
3680 return status;
3681}
3682
3683/**
3684 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3685 * @hw: pointer to hardware structure
3686 *
3687 * Returns the thermal sensor data structure
3688 **/
3689s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3690{
3691 s32 status = 0;
3692 u16 ets_offset;
3693 u16 ets_cfg;
3694 u16 ets_sensor;
3695 u8 num_sensors;
3696 u8 i;
3697 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3698
3ca8bc6d
DS
3699 /* Only support thermal sensors attached to physical port 0 */
3700 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
e1ea9158
DS
3701 status = IXGBE_NOT_IMPLEMENTED;
3702 goto out;
3703 }
3704
3705 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3706 if (status)
3707 goto out;
3708
3709 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3710 if (num_sensors > IXGBE_MAX_SENSORS)
3711 num_sensors = IXGBE_MAX_SENSORS;
3712
3713 for (i = 0; i < num_sensors; i++) {
3714 u8 sensor_index;
3715 u8 sensor_location;
3716
3717 status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3718 &ets_sensor);
3719 if (status)
3720 goto out;
3721
3722 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3723 IXGBE_ETS_DATA_INDEX_SHIFT);
3724 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3725 IXGBE_ETS_DATA_LOC_SHIFT);
3726
3727 if (sensor_location != 0) {
3728 status = hw->phy.ops.read_i2c_byte(hw,
3729 ixgbe_emc_temp_data[sensor_index],
3730 IXGBE_I2C_THERMAL_SENSOR_ADDR,
3731 &data->sensor[i].temp);
3732 if (status)
3733 goto out;
3734 }
3735 }
3736out:
3737 return status;
3738}
3739
3740/**
3741 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3742 * @hw: pointer to hardware structure
3743 *
3744 * Inits the thermal sensor thresholds according to the NVM map
3745 * and save off the threshold and location values into mac.thermal_sensor_data
3746 **/
3747s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3748{
3749 s32 status = 0;
3750 u16 ets_offset;
3751 u16 ets_cfg;
3752 u16 ets_sensor;
3753 u8 low_thresh_delta;
3754 u8 num_sensors;
3755 u8 therm_limit;
3756 u8 i;
3757 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3758
3759 memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3760
3ca8bc6d
DS
3761 /* Only support thermal sensors attached to physical port 0 */
3762 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
e1ea9158
DS
3763 status = IXGBE_NOT_IMPLEMENTED;
3764 goto out;
3765 }
3766
3767 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3768 if (status)
3769 goto out;
3770
3771 low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3772 IXGBE_ETS_LTHRES_DELTA_SHIFT);
3773 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3774 if (num_sensors > IXGBE_MAX_SENSORS)
3775 num_sensors = IXGBE_MAX_SENSORS;
3776
3777 for (i = 0; i < num_sensors; i++) {
3778 u8 sensor_index;
3779 u8 sensor_location;
3780
3781 hw->eeprom.ops.read(hw, (ets_offset + 1 + i), &ets_sensor);
3782 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3783 IXGBE_ETS_DATA_INDEX_SHIFT);
3784 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3785 IXGBE_ETS_DATA_LOC_SHIFT);
3786 therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3787
3788 hw->phy.ops.write_i2c_byte(hw,
3789 ixgbe_emc_therm_limit[sensor_index],
3790 IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3791
3792 if (sensor_location == 0)
3793 continue;
3794
3795 data->sensor[i].location = sensor_location;
3796 data->sensor[i].caution_thresh = therm_limit;
3797 data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3798 }
3799out:
3800 return status;
3801}
3802
This page took 0.941598 seconds and 5 git commands to generate.