net: ptp: mark filter as __initdata
[deliverable/linux.git] / drivers / net / ethernet / sfc / efx.c
CommitLineData
8ceee660 1/****************************************************************************
f7a6d2c4 2 * Driver for Solarflare network controllers and boards
8ceee660 3 * Copyright 2005-2006 Fen Systems Ltd.
f7a6d2c4 4 * Copyright 2005-2013 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
8ceee660 20#include <linux/ethtool.h>
aa6ef27e 21#include <linux/topology.h>
5a0e3ad6 22#include <linux/gfp.h>
626950db 23#include <linux/aer.h>
b28405b0 24#include <linux/interrupt.h>
8ceee660 25#include "net_driver.h"
8ceee660 26#include "efx.h"
744093c9 27#include "nic.h"
dd40781e 28#include "selftest.h"
8ceee660 29
8880f4ec 30#include "mcdi.h"
fd371e32 31#include "workarounds.h"
8880f4ec 32
c459302d
BH
33/**************************************************************************
34 *
35 * Type name strings
36 *
37 **************************************************************************
38 */
39
40/* Loopback mode names (see LOOPBACK_MODE()) */
41const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
18e83e4c 42const char *const efx_loopback_mode_names[] = {
c459302d 43 [LOOPBACK_NONE] = "NONE",
e58f69f4 44 [LOOPBACK_DATA] = "DATAPATH",
c459302d
BH
45 [LOOPBACK_GMAC] = "GMAC",
46 [LOOPBACK_XGMII] = "XGMII",
47 [LOOPBACK_XGXS] = "XGXS",
9c636baf
BH
48 [LOOPBACK_XAUI] = "XAUI",
49 [LOOPBACK_GMII] = "GMII",
50 [LOOPBACK_SGMII] = "SGMII",
e58f69f4
BH
51 [LOOPBACK_XGBR] = "XGBR",
52 [LOOPBACK_XFI] = "XFI",
53 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
54 [LOOPBACK_GMII_FAR] = "GMII_FAR",
55 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
56 [LOOPBACK_XFI_FAR] = "XFI_FAR",
c459302d
BH
57 [LOOPBACK_GPHY] = "GPHY",
58 [LOOPBACK_PHYXS] = "PHYXS",
9c636baf
BH
59 [LOOPBACK_PCS] = "PCS",
60 [LOOPBACK_PMAPMD] = "PMA/PMD",
e58f69f4
BH
61 [LOOPBACK_XPORT] = "XPORT",
62 [LOOPBACK_XGMII_WS] = "XGMII_WS",
9c636baf 63 [LOOPBACK_XAUI_WS] = "XAUI_WS",
e58f69f4
BH
64 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
65 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
9c636baf 66 [LOOPBACK_GMII_WS] = "GMII_WS",
e58f69f4
BH
67 [LOOPBACK_XFI_WS] = "XFI_WS",
68 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
9c636baf 69 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
c459302d
BH
70};
71
c459302d 72const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
18e83e4c 73const char *const efx_reset_type_names[] = {
626950db
AR
74 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
75 [RESET_TYPE_ALL] = "ALL",
76 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
77 [RESET_TYPE_WORLD] = "WORLD",
78 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
e283546c 79 [RESET_TYPE_MC_BIST] = "MC_BIST",
626950db
AR
80 [RESET_TYPE_DISABLE] = "DISABLE",
81 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
82 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
83 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
3de82b91 84 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR",
626950db
AR
85 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
86 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
e283546c 87 [RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)",
c459302d
BH
88};
89
1ab00629
SH
90/* Reset workqueue. If any NIC has a hardware failure then a reset will be
91 * queued onto this work queue. This is not a per-nic work queue, because
92 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
93 */
94static struct workqueue_struct *reset_workqueue;
95
74cd60a4
JC
96/* How often and how many times to poll for a reset while waiting for a
97 * BIST that another function started to complete.
98 */
99#define BIST_WAIT_DELAY_MS 100
100#define BIST_WAIT_DELAY_COUNT 100
101
8ceee660
BH
102/**************************************************************************
103 *
104 * Configurable values
105 *
106 *************************************************************************/
107
8ceee660
BH
108/*
109 * Use separate channels for TX and RX events
110 *
28b581ab
NT
111 * Set this to 1 to use separate channels for TX and RX. It allows us
112 * to control interrupt affinity separately for TX and RX.
8ceee660 113 *
28b581ab 114 * This is only used in MSI-X interrupt mode
8ceee660 115 */
b9cc977d
BH
116static bool separate_tx_channels;
117module_param(separate_tx_channels, bool, 0444);
28b581ab
NT
118MODULE_PARM_DESC(separate_tx_channels,
119 "Use separate channels for TX and RX");
8ceee660
BH
120
121/* This is the weight assigned to each of the (per-channel) virtual
122 * NAPI devices.
123 */
124static int napi_weight = 64;
125
126/* This is the time (in jiffies) between invocations of the hardware
626950db
AR
127 * monitor.
128 * On Falcon-based NICs, this will:
e254c274
BH
129 * - Check the on-board hardware monitor;
130 * - Poll the link state and reconfigure the hardware as necessary.
626950db
AR
131 * On Siena-based NICs for power systems with EEH support, this will give EEH a
132 * chance to start.
8ceee660 133 */
d215697f 134static unsigned int efx_monitor_interval = 1 * HZ;
8ceee660 135
8ceee660
BH
136/* Initial interrupt moderation settings. They can be modified after
137 * module load with ethtool.
138 *
139 * The default for RX should strike a balance between increasing the
140 * round-trip latency and reducing overhead.
141 */
142static unsigned int rx_irq_mod_usec = 60;
143
144/* Initial interrupt moderation settings. They can be modified after
145 * module load with ethtool.
146 *
147 * This default is chosen to ensure that a 10G link does not go idle
148 * while a TX queue is stopped after it has become full. A queue is
149 * restarted when it drops below half full. The time this takes (assuming
150 * worst case 3 descriptors per packet and 1024 descriptors) is
151 * 512 / 3 * 1.2 = 205 usec.
152 */
153static unsigned int tx_irq_mod_usec = 150;
154
155/* This is the first interrupt mode to try out of:
156 * 0 => MSI-X
157 * 1 => MSI
158 * 2 => legacy
159 */
160static unsigned int interrupt_mode;
161
162/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
163 * i.e. the number of CPUs among which we may distribute simultaneous
164 * interrupt handling.
165 *
166 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
cdb08f8f 167 * The default (0) means to assign an interrupt to each core.
8ceee660
BH
168 */
169static unsigned int rss_cpus;
170module_param(rss_cpus, uint, 0444);
171MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
172
b9cc977d
BH
173static bool phy_flash_cfg;
174module_param(phy_flash_cfg, bool, 0644);
84ae48fe
BH
175MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
176
e7bed9c8 177static unsigned irq_adapt_low_thresh = 8000;
6fb70fd1
BH
178module_param(irq_adapt_low_thresh, uint, 0644);
179MODULE_PARM_DESC(irq_adapt_low_thresh,
180 "Threshold score for reducing IRQ moderation");
181
e7bed9c8 182static unsigned irq_adapt_high_thresh = 16000;
6fb70fd1
BH
183module_param(irq_adapt_high_thresh, uint, 0644);
184MODULE_PARM_DESC(irq_adapt_high_thresh,
185 "Threshold score for increasing IRQ moderation");
186
62776d03
BH
187static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
188 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
189 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
190 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
191module_param(debug, uint, 0);
192MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
193
8ceee660
BH
194/**************************************************************************
195 *
196 * Utility functions and prototypes
197 *
198 *************************************************************************/
4642610c 199
261e4d96 200static int efx_soft_enable_interrupts(struct efx_nic *efx);
d8291187 201static void efx_soft_disable_interrupts(struct efx_nic *efx);
7f967c01 202static void efx_remove_channel(struct efx_channel *channel);
4642610c 203static void efx_remove_channels(struct efx_nic *efx);
7f967c01 204static const struct efx_channel_type efx_default_channel_type;
8ceee660 205static void efx_remove_port(struct efx_nic *efx);
7f967c01 206static void efx_init_napi_channel(struct efx_channel *channel);
8ceee660 207static void efx_fini_napi(struct efx_nic *efx);
e8f14992 208static void efx_fini_napi_channel(struct efx_channel *channel);
4642610c
BH
209static void efx_fini_struct(struct efx_nic *efx);
210static void efx_start_all(struct efx_nic *efx);
211static void efx_stop_all(struct efx_nic *efx);
8ceee660
BH
212
213#define EFX_ASSERT_RESET_SERIALISED(efx) \
214 do { \
f16aeea0 215 if ((efx->state == STATE_READY) || \
626950db 216 (efx->state == STATE_RECOVERY) || \
332c1ce9 217 (efx->state == STATE_DISABLED)) \
8ceee660
BH
218 ASSERT_RTNL(); \
219 } while (0)
220
8b7325b4
BH
221static int efx_check_disabled(struct efx_nic *efx)
222{
626950db 223 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
8b7325b4
BH
224 netif_err(efx, drv, efx->net_dev,
225 "device is disabled due to earlier errors\n");
226 return -EIO;
227 }
228 return 0;
229}
230
8ceee660
BH
231/**************************************************************************
232 *
233 * Event queue processing
234 *
235 *************************************************************************/
236
237/* Process channel's event queue
238 *
239 * This function is responsible for processing the event queue of a
240 * single channel. The caller must guarantee that this function will
241 * never be concurrently called more than once on the same channel,
242 * though different channels may be being processed concurrently.
243 */
fa236e18 244static int efx_process_channel(struct efx_channel *channel, int budget)
8ceee660 245{
fa236e18 246 int spent;
8ceee660 247
9f2cb71c 248 if (unlikely(!channel->enabled))
42cbe2d7 249 return 0;
8ceee660 250
fa236e18 251 spent = efx_nic_process_eventq(channel, budget);
d9ab7007
BH
252 if (spent && efx_channel_has_rx_queue(channel)) {
253 struct efx_rx_queue *rx_queue =
254 efx_channel_get_rx_queue(channel);
255
ff734ef4 256 efx_rx_flush_packet(channel);
cce28794 257 efx_fast_push_rx_descriptors(rx_queue, true);
8ceee660
BH
258 }
259
fa236e18 260 return spent;
8ceee660
BH
261}
262
8ceee660
BH
263/* NAPI poll handler
264 *
265 * NAPI guarantees serialisation of polls of the same device, which
266 * provides the guarantee required by efx_process_channel().
267 */
268static int efx_poll(struct napi_struct *napi, int budget)
269{
270 struct efx_channel *channel =
271 container_of(napi, struct efx_channel, napi_str);
62776d03 272 struct efx_nic *efx = channel->efx;
fa236e18 273 int spent;
8ceee660 274
62776d03
BH
275 netif_vdbg(efx, intr, efx->net_dev,
276 "channel %d NAPI poll executing on CPU %d\n",
277 channel->channel, raw_smp_processor_id());
8ceee660 278
fa236e18 279 spent = efx_process_channel(channel, budget);
8ceee660 280
fa236e18 281 if (spent < budget) {
9d9a6973 282 if (efx_channel_has_rx_queue(channel) &&
6fb70fd1
BH
283 efx->irq_rx_adaptive &&
284 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
285 if (unlikely(channel->irq_mod_score <
286 irq_adapt_low_thresh)) {
0d86ebd8
BH
287 if (channel->irq_moderation > 1) {
288 channel->irq_moderation -= 1;
ef2b90ee 289 efx->type->push_irq_moderation(channel);
0d86ebd8 290 }
6fb70fd1
BH
291 } else if (unlikely(channel->irq_mod_score >
292 irq_adapt_high_thresh)) {
0d86ebd8
BH
293 if (channel->irq_moderation <
294 efx->irq_rx_moderation) {
295 channel->irq_moderation += 1;
ef2b90ee 296 efx->type->push_irq_moderation(channel);
0d86ebd8 297 }
6fb70fd1 298 }
6fb70fd1
BH
299 channel->irq_count = 0;
300 channel->irq_mod_score = 0;
301 }
302
64d8ad6d
BH
303 efx_filter_rfs_expire(channel);
304
8ceee660 305 /* There is no race here; although napi_disable() will
288379f0 306 * only wait for napi_complete(), this isn't a problem
514bedbc 307 * since efx_nic_eventq_read_ack() will have no effect if
8ceee660
BH
308 * interrupts have already been disabled.
309 */
288379f0 310 napi_complete(napi);
514bedbc 311 efx_nic_eventq_read_ack(channel);
8ceee660
BH
312 }
313
fa236e18 314 return spent;
8ceee660
BH
315}
316
8ceee660
BH
317/* Create event queue
318 * Event queue memory allocations are done only once. If the channel
319 * is reset, the memory buffer will be reused; this guards against
320 * errors during channel reset and also simplifies interrupt handling.
321 */
322static int efx_probe_eventq(struct efx_channel *channel)
323{
ecc910f5
SH
324 struct efx_nic *efx = channel->efx;
325 unsigned long entries;
326
86ee5302 327 netif_dbg(efx, probe, efx->net_dev,
62776d03 328 "chan %d create event queue\n", channel->channel);
8ceee660 329
ecc910f5
SH
330 /* Build an event queue with room for one event per tx and rx buffer,
331 * plus some extra for link state events and MCDI completions. */
332 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
333 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
334 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
335
152b6a62 336 return efx_nic_probe_eventq(channel);
8ceee660
BH
337}
338
339/* Prepare channel's event queue */
261e4d96 340static int efx_init_eventq(struct efx_channel *channel)
8ceee660 341{
15acb1ce 342 struct efx_nic *efx = channel->efx;
261e4d96
JC
343 int rc;
344
345 EFX_WARN_ON_PARANOID(channel->eventq_init);
346
15acb1ce 347 netif_dbg(efx, drv, efx->net_dev,
62776d03 348 "chan %d init event queue\n", channel->channel);
8ceee660 349
261e4d96
JC
350 rc = efx_nic_init_eventq(channel);
351 if (rc == 0) {
15acb1ce 352 efx->type->push_irq_moderation(channel);
261e4d96
JC
353 channel->eventq_read_ptr = 0;
354 channel->eventq_init = true;
355 }
356 return rc;
8ceee660
BH
357}
358
9f2cb71c
BH
359/* Enable event queue processing and NAPI */
360static void efx_start_eventq(struct efx_channel *channel)
361{
362 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
363 "chan %d start event queue\n", channel->channel);
364
514bedbc 365 /* Make sure the NAPI handler sees the enabled flag set */
9f2cb71c
BH
366 channel->enabled = true;
367 smp_wmb();
368
369 napi_enable(&channel->napi_str);
370 efx_nic_eventq_read_ack(channel);
371}
372
373/* Disable event queue processing and NAPI */
374static void efx_stop_eventq(struct efx_channel *channel)
375{
376 if (!channel->enabled)
377 return;
378
379 napi_disable(&channel->napi_str);
380 channel->enabled = false;
381}
382
8ceee660
BH
383static void efx_fini_eventq(struct efx_channel *channel)
384{
be3fc09c
BH
385 if (!channel->eventq_init)
386 return;
387
62776d03
BH
388 netif_dbg(channel->efx, drv, channel->efx->net_dev,
389 "chan %d fini event queue\n", channel->channel);
8ceee660 390
152b6a62 391 efx_nic_fini_eventq(channel);
be3fc09c 392 channel->eventq_init = false;
8ceee660
BH
393}
394
395static void efx_remove_eventq(struct efx_channel *channel)
396{
62776d03
BH
397 netif_dbg(channel->efx, drv, channel->efx->net_dev,
398 "chan %d remove event queue\n", channel->channel);
8ceee660 399
152b6a62 400 efx_nic_remove_eventq(channel);
8ceee660
BH
401}
402
403/**************************************************************************
404 *
405 * Channel handling
406 *
407 *************************************************************************/
408
7f967c01 409/* Allocate and initialise a channel structure. */
4642610c
BH
410static struct efx_channel *
411efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
412{
413 struct efx_channel *channel;
414 struct efx_rx_queue *rx_queue;
415 struct efx_tx_queue *tx_queue;
416 int j;
417
7f967c01
BH
418 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
419 if (!channel)
420 return NULL;
4642610c 421
7f967c01
BH
422 channel->efx = efx;
423 channel->channel = i;
424 channel->type = &efx_default_channel_type;
4642610c 425
7f967c01
BH
426 for (j = 0; j < EFX_TXQ_TYPES; j++) {
427 tx_queue = &channel->tx_queue[j];
428 tx_queue->efx = efx;
429 tx_queue->queue = i * EFX_TXQ_TYPES + j;
430 tx_queue->channel = channel;
431 }
4642610c 432
7f967c01
BH
433 rx_queue = &channel->rx_queue;
434 rx_queue->efx = efx;
435 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
436 (unsigned long)rx_queue);
4642610c 437
7f967c01
BH
438 return channel;
439}
440
441/* Allocate and initialise a channel structure, copying parameters
442 * (but not resources) from an old channel structure.
443 */
444static struct efx_channel *
445efx_copy_channel(const struct efx_channel *old_channel)
446{
447 struct efx_channel *channel;
448 struct efx_rx_queue *rx_queue;
449 struct efx_tx_queue *tx_queue;
450 int j;
4642610c 451
7f967c01
BH
452 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
453 if (!channel)
454 return NULL;
455
456 *channel = *old_channel;
457
458 channel->napi_dev = NULL;
459 memset(&channel->eventq, 0, sizeof(channel->eventq));
4642610c 460
7f967c01
BH
461 for (j = 0; j < EFX_TXQ_TYPES; j++) {
462 tx_queue = &channel->tx_queue[j];
463 if (tx_queue->channel)
4642610c 464 tx_queue->channel = channel;
7f967c01
BH
465 tx_queue->buffer = NULL;
466 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
4642610c
BH
467 }
468
4642610c 469 rx_queue = &channel->rx_queue;
7f967c01
BH
470 rx_queue->buffer = NULL;
471 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
4642610c
BH
472 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
473 (unsigned long)rx_queue);
474
475 return channel;
476}
477
8ceee660
BH
478static int efx_probe_channel(struct efx_channel *channel)
479{
480 struct efx_tx_queue *tx_queue;
481 struct efx_rx_queue *rx_queue;
482 int rc;
483
62776d03
BH
484 netif_dbg(channel->efx, probe, channel->efx->net_dev,
485 "creating channel %d\n", channel->channel);
8ceee660 486
7f967c01
BH
487 rc = channel->type->pre_probe(channel);
488 if (rc)
489 goto fail;
490
8ceee660
BH
491 rc = efx_probe_eventq(channel);
492 if (rc)
7f967c01 493 goto fail;
8ceee660
BH
494
495 efx_for_each_channel_tx_queue(tx_queue, channel) {
496 rc = efx_probe_tx_queue(tx_queue);
497 if (rc)
7f967c01 498 goto fail;
8ceee660
BH
499 }
500
501 efx_for_each_channel_rx_queue(rx_queue, channel) {
502 rc = efx_probe_rx_queue(rx_queue);
503 if (rc)
7f967c01 504 goto fail;
8ceee660
BH
505 }
506
8ceee660
BH
507 return 0;
508
7f967c01
BH
509fail:
510 efx_remove_channel(channel);
8ceee660
BH
511 return rc;
512}
513
7f967c01
BH
514static void
515efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
516{
517 struct efx_nic *efx = channel->efx;
518 const char *type;
519 int number;
520
521 number = channel->channel;
522 if (efx->tx_channel_offset == 0) {
523 type = "";
524 } else if (channel->channel < efx->tx_channel_offset) {
525 type = "-rx";
526 } else {
527 type = "-tx";
528 number -= efx->tx_channel_offset;
529 }
530 snprintf(buf, len, "%s%s-%d", efx->name, type, number);
531}
8ceee660 532
56536e9c
BH
533static void efx_set_channel_names(struct efx_nic *efx)
534{
535 struct efx_channel *channel;
56536e9c 536
7f967c01
BH
537 efx_for_each_channel(channel, efx)
538 channel->type->get_name(channel,
d8291187
BH
539 efx->msi_context[channel->channel].name,
540 sizeof(efx->msi_context[0].name));
56536e9c
BH
541}
542
4642610c
BH
543static int efx_probe_channels(struct efx_nic *efx)
544{
545 struct efx_channel *channel;
546 int rc;
547
548 /* Restart special buffer allocation */
549 efx->next_buffer_table = 0;
550
c92aaff1
BH
551 /* Probe channels in reverse, so that any 'extra' channels
552 * use the start of the buffer table. This allows the traffic
553 * channels to be resized without moving them or wasting the
554 * entries before them.
555 */
556 efx_for_each_channel_rev(channel, efx) {
4642610c
BH
557 rc = efx_probe_channel(channel);
558 if (rc) {
559 netif_err(efx, probe, efx->net_dev,
560 "failed to create channel %d\n",
561 channel->channel);
562 goto fail;
563 }
564 }
565 efx_set_channel_names(efx);
566
567 return 0;
568
569fail:
570 efx_remove_channels(efx);
571 return rc;
572}
573
8ceee660
BH
574/* Channels are shutdown and reinitialised whilst the NIC is running
575 * to propagate configuration changes (mtu, checksum offload), or
576 * to clear hardware error conditions
577 */
9f2cb71c 578static void efx_start_datapath(struct efx_nic *efx)
8ceee660 579{
85740cdf 580 bool old_rx_scatter = efx->rx_scatter;
8ceee660
BH
581 struct efx_tx_queue *tx_queue;
582 struct efx_rx_queue *rx_queue;
583 struct efx_channel *channel;
85740cdf 584 size_t rx_buf_len;
8ceee660 585
f7f13b0b
BH
586 /* Calculate the rx buffer allocation parameters required to
587 * support the current MTU, including padding for header
588 * alignment and overruns.
589 */
43a3739d 590 efx->rx_dma_len = (efx->rx_prefix_size +
272baeeb
BH
591 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
592 efx->type->rx_buffer_padding);
85740cdf 593 rx_buf_len = (sizeof(struct efx_rx_page_state) +
2ec03014 594 efx->rx_ip_align + efx->rx_dma_len);
85740cdf 595 if (rx_buf_len <= PAGE_SIZE) {
e8c68c0a 596 efx->rx_scatter = efx->type->always_rx_scatter;
85740cdf 597 efx->rx_buffer_order = 0;
85740cdf 598 } else if (efx->type->can_rx_scatter) {
950c54df 599 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
85740cdf 600 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
950c54df
BH
601 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
602 EFX_RX_BUF_ALIGNMENT) >
603 PAGE_SIZE);
85740cdf
BH
604 efx->rx_scatter = true;
605 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
606 efx->rx_buffer_order = 0;
85740cdf
BH
607 } else {
608 efx->rx_scatter = false;
609 efx->rx_buffer_order = get_order(rx_buf_len);
85740cdf
BH
610 }
611
1648a23f
DP
612 efx_rx_config_page_split(efx);
613 if (efx->rx_buffer_order)
614 netif_dbg(efx, drv, efx->net_dev,
615 "RX buf len=%u; page order=%u batch=%u\n",
616 efx->rx_dma_len, efx->rx_buffer_order,
617 efx->rx_pages_per_batch);
618 else
619 netif_dbg(efx, drv, efx->net_dev,
620 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
621 efx->rx_dma_len, efx->rx_page_buf_step,
622 efx->rx_bufs_per_page, efx->rx_pages_per_batch);
2768935a 623
e8c68c0a 624 /* RX filters may also have scatter-enabled flags */
85740cdf 625 if (efx->rx_scatter != old_rx_scatter)
add72477 626 efx->type->filter_update_rx_scatter(efx);
8ceee660 627
14bf718f
BH
628 /* We must keep at least one descriptor in a TX ring empty.
629 * We could avoid this when the queue size does not exactly
630 * match the hardware ring size, but it's not that important.
631 * Therefore we stop the queue when one more skb might fill
632 * the ring completely. We wake it when half way back to
633 * empty.
634 */
635 efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
636 efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
637
8ceee660
BH
638 /* Initialise the channels */
639 efx_for_each_channel(channel, efx) {
3881d8ab 640 efx_for_each_channel_tx_queue(tx_queue, channel) {
bc3c90a2 641 efx_init_tx_queue(tx_queue);
3881d8ab
AR
642 atomic_inc(&efx->active_queues);
643 }
8ceee660 644
9f2cb71c 645 efx_for_each_channel_rx_queue(rx_queue, channel) {
bc3c90a2 646 efx_init_rx_queue(rx_queue);
3881d8ab 647 atomic_inc(&efx->active_queues);
cce28794
JC
648 efx_stop_eventq(channel);
649 efx_fast_push_rx_descriptors(rx_queue, false);
650 efx_start_eventq(channel);
9f2cb71c 651 }
8ceee660 652
85740cdf 653 WARN_ON(channel->rx_pkt_n_frags);
8ceee660 654 }
8ceee660 655
2ea4dc28
AR
656 efx_ptp_start_datapath(efx);
657
9f2cb71c
BH
658 if (netif_device_present(efx->net_dev))
659 netif_tx_wake_all_queues(efx->net_dev);
8ceee660
BH
660}
661
9f2cb71c 662static void efx_stop_datapath(struct efx_nic *efx)
8ceee660
BH
663{
664 struct efx_channel *channel;
665 struct efx_tx_queue *tx_queue;
666 struct efx_rx_queue *rx_queue;
6bc5d3a9 667 int rc;
8ceee660
BH
668
669 EFX_ASSERT_RESET_SERIALISED(efx);
670 BUG_ON(efx->port_enabled);
671
2ea4dc28
AR
672 efx_ptp_stop_datapath(efx);
673
d8aec745
BH
674 /* Stop RX refill */
675 efx_for_each_channel(channel, efx) {
676 efx_for_each_channel_rx_queue(rx_queue, channel)
677 rx_queue->refill_enabled = false;
678 }
679
8ceee660 680 efx_for_each_channel(channel, efx) {
9f2cb71c
BH
681 /* RX packet processing is pipelined, so wait for the
682 * NAPI handler to complete. At least event queue 0
683 * might be kept active by non-data events, so don't
684 * use napi_synchronize() but actually disable NAPI
685 * temporarily.
686 */
687 if (efx_channel_has_rx_queue(channel)) {
688 efx_stop_eventq(channel);
689 efx_start_eventq(channel);
690 }
e42c3d85 691 }
8ceee660 692
e42c3d85
BH
693 rc = efx->type->fini_dmaq(efx);
694 if (rc && EFX_WORKAROUND_7803(efx)) {
695 /* Schedule a reset to recover from the flush failure. The
696 * descriptor caches reference memory we're about to free,
697 * but falcon_reconfigure_mac_wrapper() won't reconnect
698 * the MACs because of the pending reset.
699 */
700 netif_err(efx, drv, efx->net_dev,
701 "Resetting to recover from flush failure\n");
702 efx_schedule_reset(efx, RESET_TYPE_ALL);
703 } else if (rc) {
704 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
705 } else {
706 netif_dbg(efx, drv, efx->net_dev,
707 "successfully flushed all queues\n");
708 }
709
710 efx_for_each_channel(channel, efx) {
8ceee660
BH
711 efx_for_each_channel_rx_queue(rx_queue, channel)
712 efx_fini_rx_queue(rx_queue);
94b274bf 713 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
8ceee660 714 efx_fini_tx_queue(tx_queue);
8ceee660
BH
715 }
716}
717
718static void efx_remove_channel(struct efx_channel *channel)
719{
720 struct efx_tx_queue *tx_queue;
721 struct efx_rx_queue *rx_queue;
722
62776d03
BH
723 netif_dbg(channel->efx, drv, channel->efx->net_dev,
724 "destroy chan %d\n", channel->channel);
8ceee660
BH
725
726 efx_for_each_channel_rx_queue(rx_queue, channel)
727 efx_remove_rx_queue(rx_queue);
94b274bf 728 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
8ceee660
BH
729 efx_remove_tx_queue(tx_queue);
730 efx_remove_eventq(channel);
c31e5f9f 731 channel->type->post_remove(channel);
8ceee660
BH
732}
733
4642610c
BH
734static void efx_remove_channels(struct efx_nic *efx)
735{
736 struct efx_channel *channel;
737
738 efx_for_each_channel(channel, efx)
739 efx_remove_channel(channel);
740}
741
742int
743efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
744{
745 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
746 u32 old_rxq_entries, old_txq_entries;
7f967c01 747 unsigned i, next_buffer_table = 0;
261e4d96 748 int rc, rc2;
8b7325b4
BH
749
750 rc = efx_check_disabled(efx);
751 if (rc)
752 return rc;
7f967c01
BH
753
754 /* Not all channels should be reallocated. We must avoid
755 * reallocating their buffer table entries.
756 */
757 efx_for_each_channel(channel, efx) {
758 struct efx_rx_queue *rx_queue;
759 struct efx_tx_queue *tx_queue;
760
761 if (channel->type->copy)
762 continue;
763 next_buffer_table = max(next_buffer_table,
764 channel->eventq.index +
765 channel->eventq.entries);
766 efx_for_each_channel_rx_queue(rx_queue, channel)
767 next_buffer_table = max(next_buffer_table,
768 rx_queue->rxd.index +
769 rx_queue->rxd.entries);
770 efx_for_each_channel_tx_queue(tx_queue, channel)
771 next_buffer_table = max(next_buffer_table,
772 tx_queue->txd.index +
773 tx_queue->txd.entries);
774 }
4642610c 775
29c69a48 776 efx_device_detach_sync(efx);
4642610c 777 efx_stop_all(efx);
d8291187 778 efx_soft_disable_interrupts(efx);
4642610c 779
7f967c01 780 /* Clone channels (where possible) */
4642610c
BH
781 memset(other_channel, 0, sizeof(other_channel));
782 for (i = 0; i < efx->n_channels; i++) {
7f967c01
BH
783 channel = efx->channel[i];
784 if (channel->type->copy)
785 channel = channel->type->copy(channel);
4642610c
BH
786 if (!channel) {
787 rc = -ENOMEM;
788 goto out;
789 }
790 other_channel[i] = channel;
791 }
792
793 /* Swap entry counts and channel pointers */
794 old_rxq_entries = efx->rxq_entries;
795 old_txq_entries = efx->txq_entries;
796 efx->rxq_entries = rxq_entries;
797 efx->txq_entries = txq_entries;
798 for (i = 0; i < efx->n_channels; i++) {
799 channel = efx->channel[i];
800 efx->channel[i] = other_channel[i];
801 other_channel[i] = channel;
802 }
803
7f967c01
BH
804 /* Restart buffer table allocation */
805 efx->next_buffer_table = next_buffer_table;
e8f14992 806
e8f14992 807 for (i = 0; i < efx->n_channels; i++) {
7f967c01
BH
808 channel = efx->channel[i];
809 if (!channel->type->copy)
810 continue;
811 rc = efx_probe_channel(channel);
812 if (rc)
813 goto rollback;
814 efx_init_napi_channel(efx->channel[i]);
e8f14992 815 }
7f967c01 816
4642610c 817out:
7f967c01
BH
818 /* Destroy unused channel structures */
819 for (i = 0; i < efx->n_channels; i++) {
820 channel = other_channel[i];
821 if (channel && channel->type->copy) {
822 efx_fini_napi_channel(channel);
823 efx_remove_channel(channel);
824 kfree(channel);
825 }
826 }
4642610c 827
261e4d96
JC
828 rc2 = efx_soft_enable_interrupts(efx);
829 if (rc2) {
830 rc = rc ? rc : rc2;
831 netif_err(efx, drv, efx->net_dev,
832 "unable to restart interrupts on channel reallocation\n");
833 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
834 } else {
835 efx_start_all(efx);
836 netif_device_attach(efx->net_dev);
837 }
4642610c
BH
838 return rc;
839
840rollback:
841 /* Swap back */
842 efx->rxq_entries = old_rxq_entries;
843 efx->txq_entries = old_txq_entries;
844 for (i = 0; i < efx->n_channels; i++) {
845 channel = efx->channel[i];
846 efx->channel[i] = other_channel[i];
847 other_channel[i] = channel;
848 }
849 goto out;
850}
851
90d683af 852void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
8ceee660 853{
90d683af 854 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
8ceee660
BH
855}
856
7f967c01
BH
857static const struct efx_channel_type efx_default_channel_type = {
858 .pre_probe = efx_channel_dummy_op_int,
c31e5f9f 859 .post_remove = efx_channel_dummy_op_void,
7f967c01
BH
860 .get_name = efx_get_channel_name,
861 .copy = efx_copy_channel,
862 .keep_eventq = false,
863};
864
865int efx_channel_dummy_op_int(struct efx_channel *channel)
866{
867 return 0;
868}
869
c31e5f9f
SH
870void efx_channel_dummy_op_void(struct efx_channel *channel)
871{
872}
873
8ceee660
BH
874/**************************************************************************
875 *
876 * Port handling
877 *
878 **************************************************************************/
879
880/* This ensures that the kernel is kept informed (via
881 * netif_carrier_on/off) of the link status, and also maintains the
882 * link status's stop on the port's TX queue.
883 */
fdaa9aed 884void efx_link_status_changed(struct efx_nic *efx)
8ceee660 885{
eb50c0d6
BH
886 struct efx_link_state *link_state = &efx->link_state;
887
8ceee660
BH
888 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
889 * that no events are triggered between unregister_netdev() and the
890 * driver unloading. A more general condition is that NETDEV_CHANGE
891 * can only be generated between NETDEV_UP and NETDEV_DOWN */
892 if (!netif_running(efx->net_dev))
893 return;
894
eb50c0d6 895 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
896 efx->n_link_state_changes++;
897
eb50c0d6 898 if (link_state->up)
8ceee660
BH
899 netif_carrier_on(efx->net_dev);
900 else
901 netif_carrier_off(efx->net_dev);
902 }
903
904 /* Status message for kernel log */
2aa9ef11 905 if (link_state->up)
62776d03 906 netif_info(efx, link, efx->net_dev,
964e6135 907 "link up at %uMbps %s-duplex (MTU %d)\n",
62776d03 908 link_state->speed, link_state->fd ? "full" : "half",
964e6135 909 efx->net_dev->mtu);
2aa9ef11 910 else
62776d03 911 netif_info(efx, link, efx->net_dev, "link down\n");
8ceee660
BH
912}
913
d3245b28
BH
914void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
915{
916 efx->link_advertising = advertising;
917 if (advertising) {
918 if (advertising & ADVERTISED_Pause)
919 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
920 else
921 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
922 if (advertising & ADVERTISED_Asym_Pause)
923 efx->wanted_fc ^= EFX_FC_TX;
924 }
925}
926
b5626946 927void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
d3245b28
BH
928{
929 efx->wanted_fc = wanted_fc;
930 if (efx->link_advertising) {
931 if (wanted_fc & EFX_FC_RX)
932 efx->link_advertising |= (ADVERTISED_Pause |
933 ADVERTISED_Asym_Pause);
934 else
935 efx->link_advertising &= ~(ADVERTISED_Pause |
936 ADVERTISED_Asym_Pause);
937 if (wanted_fc & EFX_FC_TX)
938 efx->link_advertising ^= ADVERTISED_Asym_Pause;
939 }
940}
941
115122af
BH
942static void efx_fini_port(struct efx_nic *efx);
943
d3245b28
BH
944/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
945 * the MAC appropriately. All other PHY configuration changes are pushed
946 * through phy_op->set_settings(), and pushed asynchronously to the MAC
947 * through efx_monitor().
948 *
949 * Callers must hold the mac_lock
950 */
951int __efx_reconfigure_port(struct efx_nic *efx)
8ceee660 952{
d3245b28
BH
953 enum efx_phy_mode phy_mode;
954 int rc;
8ceee660 955
d3245b28 956 WARN_ON(!mutex_is_locked(&efx->mac_lock));
8ceee660 957
d3245b28
BH
958 /* Disable PHY transmit in mac level loopbacks */
959 phy_mode = efx->phy_mode;
177dfcd8
BH
960 if (LOOPBACK_INTERNAL(efx))
961 efx->phy_mode |= PHY_MODE_TX_DISABLED;
962 else
963 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
177dfcd8 964
d3245b28 965 rc = efx->type->reconfigure_port(efx);
8ceee660 966
d3245b28
BH
967 if (rc)
968 efx->phy_mode = phy_mode;
177dfcd8 969
d3245b28 970 return rc;
8ceee660
BH
971}
972
973/* Reinitialise the MAC to pick up new PHY settings, even if the port is
974 * disabled. */
d3245b28 975int efx_reconfigure_port(struct efx_nic *efx)
8ceee660 976{
d3245b28
BH
977 int rc;
978
8ceee660
BH
979 EFX_ASSERT_RESET_SERIALISED(efx);
980
981 mutex_lock(&efx->mac_lock);
d3245b28 982 rc = __efx_reconfigure_port(efx);
8ceee660 983 mutex_unlock(&efx->mac_lock);
d3245b28
BH
984
985 return rc;
8ceee660
BH
986}
987
8be4f3e6
BH
988/* Asynchronous work item for changing MAC promiscuity and multicast
989 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
990 * MAC directly. */
766ca0fa
BH
991static void efx_mac_work(struct work_struct *data)
992{
993 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
994
995 mutex_lock(&efx->mac_lock);
30b81cda 996 if (efx->port_enabled)
710b208d 997 efx->type->reconfigure_mac(efx);
766ca0fa
BH
998 mutex_unlock(&efx->mac_lock);
999}
1000
8ceee660
BH
1001static int efx_probe_port(struct efx_nic *efx)
1002{
1003 int rc;
1004
62776d03 1005 netif_dbg(efx, probe, efx->net_dev, "create port\n");
8ceee660 1006
ff3b00a0
SH
1007 if (phy_flash_cfg)
1008 efx->phy_mode = PHY_MODE_SPECIAL;
1009
ef2b90ee
BH
1010 /* Connect up MAC/PHY operations table */
1011 rc = efx->type->probe_port(efx);
8ceee660 1012 if (rc)
e42de262 1013 return rc;
8ceee660 1014
e332bcb3 1015 /* Initialise MAC address to permanent address */
cd84ff4d 1016 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
8ceee660
BH
1017
1018 return 0;
8ceee660
BH
1019}
1020
1021static int efx_init_port(struct efx_nic *efx)
1022{
1023 int rc;
1024
62776d03 1025 netif_dbg(efx, drv, efx->net_dev, "init port\n");
8ceee660 1026
1dfc5cea
BH
1027 mutex_lock(&efx->mac_lock);
1028
177dfcd8 1029 rc = efx->phy_op->init(efx);
8ceee660 1030 if (rc)
1dfc5cea 1031 goto fail1;
8ceee660 1032
dc8cfa55 1033 efx->port_initialized = true;
1dfc5cea 1034
d3245b28
BH
1035 /* Reconfigure the MAC before creating dma queues (required for
1036 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
710b208d 1037 efx->type->reconfigure_mac(efx);
d3245b28
BH
1038
1039 /* Ensure the PHY advertises the correct flow control settings */
1040 rc = efx->phy_op->reconfigure(efx);
1041 if (rc)
1042 goto fail2;
1043
1dfc5cea 1044 mutex_unlock(&efx->mac_lock);
8ceee660 1045 return 0;
177dfcd8 1046
1dfc5cea 1047fail2:
177dfcd8 1048 efx->phy_op->fini(efx);
1dfc5cea
BH
1049fail1:
1050 mutex_unlock(&efx->mac_lock);
177dfcd8 1051 return rc;
8ceee660
BH
1052}
1053
8ceee660
BH
1054static void efx_start_port(struct efx_nic *efx)
1055{
62776d03 1056 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
8ceee660
BH
1057 BUG_ON(efx->port_enabled);
1058
1059 mutex_lock(&efx->mac_lock);
dc8cfa55 1060 efx->port_enabled = true;
8be4f3e6 1061
d615c039 1062 /* Ensure MAC ingress/egress is enabled */
710b208d 1063 efx->type->reconfigure_mac(efx);
8be4f3e6 1064
8ceee660
BH
1065 mutex_unlock(&efx->mac_lock);
1066}
1067
d615c039
BH
1068/* Cancel work for MAC reconfiguration, periodic hardware monitoring
1069 * and the async self-test, wait for them to finish and prevent them
1070 * being scheduled again. This doesn't cover online resets, which
1071 * should only be cancelled when removing the device.
1072 */
8ceee660
BH
1073static void efx_stop_port(struct efx_nic *efx)
1074{
62776d03 1075 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
8ceee660 1076
d615c039
BH
1077 EFX_ASSERT_RESET_SERIALISED(efx);
1078
8ceee660 1079 mutex_lock(&efx->mac_lock);
dc8cfa55 1080 efx->port_enabled = false;
8ceee660
BH
1081 mutex_unlock(&efx->mac_lock);
1082
1083 /* Serialise against efx_set_multicast_list() */
73ba7b68
BH
1084 netif_addr_lock_bh(efx->net_dev);
1085 netif_addr_unlock_bh(efx->net_dev);
d615c039
BH
1086
1087 cancel_delayed_work_sync(&efx->monitor_work);
1088 efx_selftest_async_cancel(efx);
1089 cancel_work_sync(&efx->mac_work);
8ceee660
BH
1090}
1091
1092static void efx_fini_port(struct efx_nic *efx)
1093{
62776d03 1094 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
8ceee660
BH
1095
1096 if (!efx->port_initialized)
1097 return;
1098
177dfcd8 1099 efx->phy_op->fini(efx);
dc8cfa55 1100 efx->port_initialized = false;
8ceee660 1101
eb50c0d6 1102 efx->link_state.up = false;
8ceee660
BH
1103 efx_link_status_changed(efx);
1104}
1105
1106static void efx_remove_port(struct efx_nic *efx)
1107{
62776d03 1108 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
8ceee660 1109
ef2b90ee 1110 efx->type->remove_port(efx);
8ceee660
BH
1111}
1112
1113/**************************************************************************
1114 *
1115 * NIC handling
1116 *
1117 **************************************************************************/
1118
0bcf4a64
BH
1119static LIST_HEAD(efx_primary_list);
1120static LIST_HEAD(efx_unassociated_list);
1121
1122static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
1123{
1124 return left->type == right->type &&
1125 left->vpd_sn && right->vpd_sn &&
1126 !strcmp(left->vpd_sn, right->vpd_sn);
1127}
1128
1129static void efx_associate(struct efx_nic *efx)
1130{
1131 struct efx_nic *other, *next;
1132
1133 if (efx->primary == efx) {
1134 /* Adding primary function; look for secondaries */
1135
1136 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1137 list_add_tail(&efx->node, &efx_primary_list);
1138
1139 list_for_each_entry_safe(other, next, &efx_unassociated_list,
1140 node) {
1141 if (efx_same_controller(efx, other)) {
1142 list_del(&other->node);
1143 netif_dbg(other, probe, other->net_dev,
1144 "moving to secondary list of %s %s\n",
1145 pci_name(efx->pci_dev),
1146 efx->net_dev->name);
1147 list_add_tail(&other->node,
1148 &efx->secondary_list);
1149 other->primary = efx;
1150 }
1151 }
1152 } else {
1153 /* Adding secondary function; look for primary */
1154
1155 list_for_each_entry(other, &efx_primary_list, node) {
1156 if (efx_same_controller(efx, other)) {
1157 netif_dbg(efx, probe, efx->net_dev,
1158 "adding to secondary list of %s %s\n",
1159 pci_name(other->pci_dev),
1160 other->net_dev->name);
1161 list_add_tail(&efx->node,
1162 &other->secondary_list);
1163 efx->primary = other;
1164 return;
1165 }
1166 }
1167
1168 netif_dbg(efx, probe, efx->net_dev,
1169 "adding to unassociated list\n");
1170 list_add_tail(&efx->node, &efx_unassociated_list);
1171 }
1172}
1173
1174static void efx_dissociate(struct efx_nic *efx)
1175{
1176 struct efx_nic *other, *next;
1177
1178 list_del(&efx->node);
1179 efx->primary = NULL;
1180
1181 list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1182 list_del(&other->node);
1183 netif_dbg(other, probe, other->net_dev,
1184 "moving to unassociated list\n");
1185 list_add_tail(&other->node, &efx_unassociated_list);
1186 other->primary = NULL;
1187 }
1188}
1189
8ceee660
BH
1190/* This configures the PCI device to enable I/O and DMA. */
1191static int efx_init_io(struct efx_nic *efx)
1192{
1193 struct pci_dev *pci_dev = efx->pci_dev;
1194 dma_addr_t dma_mask = efx->type->max_dma_mask;
b105798f 1195 unsigned int mem_map_size = efx->type->mem_map_size(efx);
8ceee660
BH
1196 int rc;
1197
62776d03 1198 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
8ceee660
BH
1199
1200 rc = pci_enable_device(pci_dev);
1201 if (rc) {
62776d03
BH
1202 netif_err(efx, probe, efx->net_dev,
1203 "failed to enable PCI device\n");
8ceee660
BH
1204 goto fail1;
1205 }
1206
1207 pci_set_master(pci_dev);
1208
1209 /* Set the PCI DMA mask. Try all possibilities from our
1210 * genuine mask down to 32 bits, because some architectures
1211 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1212 * masks event though they reject 46 bit masks.
1213 */
1214 while (dma_mask > 0x7fffffffUL) {
0e33d870 1215 if (dma_supported(&pci_dev->dev, dma_mask)) {
9663deda 1216 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
e9e01846
BH
1217 if (rc == 0)
1218 break;
1219 }
8ceee660
BH
1220 dma_mask >>= 1;
1221 }
1222 if (rc) {
62776d03
BH
1223 netif_err(efx, probe, efx->net_dev,
1224 "could not find a suitable DMA mask\n");
8ceee660
BH
1225 goto fail2;
1226 }
62776d03
BH
1227 netif_dbg(efx, probe, efx->net_dev,
1228 "using DMA mask %llx\n", (unsigned long long) dma_mask);
8ceee660 1229
dc803df8
BH
1230 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1231 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
8ceee660 1232 if (rc) {
62776d03
BH
1233 netif_err(efx, probe, efx->net_dev,
1234 "request for memory BAR failed\n");
8ceee660
BH
1235 rc = -EIO;
1236 goto fail3;
1237 }
b105798f 1238 efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
8ceee660 1239 if (!efx->membase) {
62776d03
BH
1240 netif_err(efx, probe, efx->net_dev,
1241 "could not map memory BAR at %llx+%x\n",
b105798f 1242 (unsigned long long)efx->membase_phys, mem_map_size);
8ceee660
BH
1243 rc = -ENOMEM;
1244 goto fail4;
1245 }
62776d03
BH
1246 netif_dbg(efx, probe, efx->net_dev,
1247 "memory BAR at %llx+%x (virtual %p)\n",
b105798f
BH
1248 (unsigned long long)efx->membase_phys, mem_map_size,
1249 efx->membase);
8ceee660
BH
1250
1251 return 0;
1252
1253 fail4:
dc803df8 1254 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
8ceee660 1255 fail3:
2c118e0f 1256 efx->membase_phys = 0;
8ceee660
BH
1257 fail2:
1258 pci_disable_device(efx->pci_dev);
1259 fail1:
1260 return rc;
1261}
1262
1263static void efx_fini_io(struct efx_nic *efx)
1264{
62776d03 1265 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
8ceee660
BH
1266
1267 if (efx->membase) {
1268 iounmap(efx->membase);
1269 efx->membase = NULL;
1270 }
1271
1272 if (efx->membase_phys) {
dc803df8 1273 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
2c118e0f 1274 efx->membase_phys = 0;
8ceee660
BH
1275 }
1276
1277 pci_disable_device(efx->pci_dev);
1278}
1279
a9a52506 1280static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
46123d04 1281{
cdb08f8f 1282 cpumask_var_t thread_mask;
a16e5b24 1283 unsigned int count;
46123d04 1284 int cpu;
5b874e25 1285
cd2d5b52
BH
1286 if (rss_cpus) {
1287 count = rss_cpus;
1288 } else {
1289 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1290 netif_warn(efx, probe, efx->net_dev,
1291 "RSS disabled due to allocation failure\n");
1292 return 1;
1293 }
46123d04 1294
cd2d5b52
BH
1295 count = 0;
1296 for_each_online_cpu(cpu) {
1297 if (!cpumask_test_cpu(cpu, thread_mask)) {
1298 ++count;
1299 cpumask_or(thread_mask, thread_mask,
1300 topology_thread_cpumask(cpu));
1301 }
1302 }
1303
1304 free_cpumask_var(thread_mask);
2f8975fb
RR
1305 }
1306
cd2d5b52
BH
1307 /* If RSS is requested for the PF *and* VFs then we can't write RSS
1308 * table entries that are inaccessible to VFs
1309 */
1310 if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1311 count > efx_vf_size(efx)) {
1312 netif_warn(efx, probe, efx->net_dev,
1313 "Reducing number of RSS channels from %u to %u for "
1314 "VF support. Increase vf-msix-limit to use more "
1315 "channels on the PF.\n",
1316 count, efx_vf_size(efx));
1317 count = efx_vf_size(efx);
46123d04
BH
1318 }
1319
1320 return count;
1321}
1322
1323/* Probe the number and type of interrupts we are able to obtain, and
1324 * the resulting numbers of channels and RX queues.
1325 */
64d8ad6d 1326static int efx_probe_interrupts(struct efx_nic *efx)
8ceee660 1327{
7f967c01
BH
1328 unsigned int extra_channels = 0;
1329 unsigned int i, j;
a16e5b24 1330 int rc;
8ceee660 1331
7f967c01
BH
1332 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1333 if (efx->extra_channel_type[i])
1334 ++extra_channels;
1335
8ceee660 1336 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04 1337 struct msix_entry xentries[EFX_MAX_CHANNELS];
a16e5b24 1338 unsigned int n_channels;
aa6ef27e 1339
a9a52506 1340 n_channels = efx_wanted_parallelism(efx);
a4900ac9
BH
1341 if (separate_tx_channels)
1342 n_channels *= 2;
7f967c01 1343 n_channels += extra_channels;
b105798f 1344 n_channels = min(n_channels, efx->max_channels);
8ceee660 1345
a4900ac9 1346 for (i = 0; i < n_channels; i++)
8ceee660 1347 xentries[i].entry = i;
184603d8
AG
1348 rc = pci_enable_msix_range(efx->pci_dev,
1349 xentries, 1, n_channels);
1350 if (rc < 0) {
1351 /* Fall back to single channel MSI */
1352 efx->interrupt_mode = EFX_INT_MODE_MSI;
1353 netif_err(efx, drv, efx->net_dev,
1354 "could not enable MSI-X\n");
1355 } else if (rc < n_channels) {
62776d03
BH
1356 netif_err(efx, drv, efx->net_dev,
1357 "WARNING: Insufficient MSI-X vectors"
a16e5b24 1358 " available (%d < %u).\n", rc, n_channels);
62776d03
BH
1359 netif_err(efx, drv, efx->net_dev,
1360 "WARNING: Performance may be reduced.\n");
a4900ac9 1361 n_channels = rc;
8ceee660
BH
1362 }
1363
184603d8 1364 if (rc > 0) {
a4900ac9 1365 efx->n_channels = n_channels;
7f967c01
BH
1366 if (n_channels > extra_channels)
1367 n_channels -= extra_channels;
a4900ac9 1368 if (separate_tx_channels) {
7f967c01
BH
1369 efx->n_tx_channels = max(n_channels / 2, 1U);
1370 efx->n_rx_channels = max(n_channels -
1371 efx->n_tx_channels,
1372 1U);
a4900ac9 1373 } else {
7f967c01
BH
1374 efx->n_tx_channels = n_channels;
1375 efx->n_rx_channels = n_channels;
a4900ac9 1376 }
7f967c01 1377 for (i = 0; i < efx->n_channels; i++)
f7d12cdc
BH
1378 efx_get_channel(efx, i)->irq =
1379 xentries[i].vector;
8ceee660
BH
1380 }
1381 }
1382
1383 /* Try single interrupt MSI */
1384 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
28b581ab 1385 efx->n_channels = 1;
a4900ac9
BH
1386 efx->n_rx_channels = 1;
1387 efx->n_tx_channels = 1;
8ceee660
BH
1388 rc = pci_enable_msi(efx->pci_dev);
1389 if (rc == 0) {
f7d12cdc 1390 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
8ceee660 1391 } else {
62776d03
BH
1392 netif_err(efx, drv, efx->net_dev,
1393 "could not enable MSI\n");
8ceee660
BH
1394 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1395 }
1396 }
1397
1398 /* Assume legacy interrupts */
1399 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
28b581ab 1400 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
a4900ac9
BH
1401 efx->n_rx_channels = 1;
1402 efx->n_tx_channels = 1;
8ceee660
BH
1403 efx->legacy_irq = efx->pci_dev->irq;
1404 }
64d8ad6d 1405
7f967c01
BH
1406 /* Assign extra channels if possible */
1407 j = efx->n_channels;
1408 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1409 if (!efx->extra_channel_type[i])
1410 continue;
1411 if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1412 efx->n_channels <= extra_channels) {
1413 efx->extra_channel_type[i]->handle_no_channel(efx);
1414 } else {
1415 --j;
1416 efx_get_channel(efx, j)->type =
1417 efx->extra_channel_type[i];
1418 }
1419 }
1420
cd2d5b52 1421 /* RSS might be usable on VFs even if it is disabled on the PF */
3132d282 1422 efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
cd2d5b52
BH
1423 efx->n_rx_channels : efx_vf_size(efx));
1424
64d8ad6d 1425 return 0;
8ceee660
BH
1426}
1427
261e4d96 1428static int efx_soft_enable_interrupts(struct efx_nic *efx)
9f2cb71c 1429{
261e4d96
JC
1430 struct efx_channel *channel, *end_channel;
1431 int rc;
9f2cb71c 1432
8b7325b4
BH
1433 BUG_ON(efx->state == STATE_DISABLED);
1434
d8291187
BH
1435 efx->irq_soft_enabled = true;
1436 smp_wmb();
9f2cb71c
BH
1437
1438 efx_for_each_channel(channel, efx) {
261e4d96
JC
1439 if (!channel->type->keep_eventq) {
1440 rc = efx_init_eventq(channel);
1441 if (rc)
1442 goto fail;
1443 }
9f2cb71c
BH
1444 efx_start_eventq(channel);
1445 }
1446
1447 efx_mcdi_mode_event(efx);
261e4d96
JC
1448
1449 return 0;
1450fail:
1451 end_channel = channel;
1452 efx_for_each_channel(channel, efx) {
1453 if (channel == end_channel)
1454 break;
1455 efx_stop_eventq(channel);
1456 if (!channel->type->keep_eventq)
1457 efx_fini_eventq(channel);
1458 }
1459
1460 return rc;
9f2cb71c
BH
1461}
1462
d8291187 1463static void efx_soft_disable_interrupts(struct efx_nic *efx)
9f2cb71c
BH
1464{
1465 struct efx_channel *channel;
1466
8b7325b4
BH
1467 if (efx->state == STATE_DISABLED)
1468 return;
1469
9f2cb71c
BH
1470 efx_mcdi_mode_poll(efx);
1471
d8291187
BH
1472 efx->irq_soft_enabled = false;
1473 smp_wmb();
1474
1475 if (efx->legacy_irq)
9f2cb71c 1476 synchronize_irq(efx->legacy_irq);
9f2cb71c
BH
1477
1478 efx_for_each_channel(channel, efx) {
1479 if (channel->irq)
1480 synchronize_irq(channel->irq);
1481
1482 efx_stop_eventq(channel);
d8291187 1483 if (!channel->type->keep_eventq)
7f967c01 1484 efx_fini_eventq(channel);
9f2cb71c 1485 }
cade715f
BH
1486
1487 /* Flush the asynchronous MCDI request queue */
1488 efx_mcdi_flush_async(efx);
9f2cb71c
BH
1489}
1490
261e4d96 1491static int efx_enable_interrupts(struct efx_nic *efx)
d8291187 1492{
261e4d96
JC
1493 struct efx_channel *channel, *end_channel;
1494 int rc;
d8291187
BH
1495
1496 BUG_ON(efx->state == STATE_DISABLED);
1497
1498 if (efx->eeh_disabled_legacy_irq) {
1499 enable_irq(efx->legacy_irq);
1500 efx->eeh_disabled_legacy_irq = false;
1501 }
1502
86094f7f 1503 efx->type->irq_enable_master(efx);
d8291187
BH
1504
1505 efx_for_each_channel(channel, efx) {
261e4d96
JC
1506 if (channel->type->keep_eventq) {
1507 rc = efx_init_eventq(channel);
1508 if (rc)
1509 goto fail;
1510 }
1511 }
1512
1513 rc = efx_soft_enable_interrupts(efx);
1514 if (rc)
1515 goto fail;
1516
1517 return 0;
1518
1519fail:
1520 end_channel = channel;
1521 efx_for_each_channel(channel, efx) {
1522 if (channel == end_channel)
1523 break;
d8291187 1524 if (channel->type->keep_eventq)
261e4d96 1525 efx_fini_eventq(channel);
d8291187
BH
1526 }
1527
261e4d96
JC
1528 efx->type->irq_disable_non_ev(efx);
1529
1530 return rc;
d8291187
BH
1531}
1532
1533static void efx_disable_interrupts(struct efx_nic *efx)
1534{
1535 struct efx_channel *channel;
1536
1537 efx_soft_disable_interrupts(efx);
1538
1539 efx_for_each_channel(channel, efx) {
1540 if (channel->type->keep_eventq)
1541 efx_fini_eventq(channel);
1542 }
1543
86094f7f 1544 efx->type->irq_disable_non_ev(efx);
d8291187
BH
1545}
1546
8ceee660
BH
1547static void efx_remove_interrupts(struct efx_nic *efx)
1548{
1549 struct efx_channel *channel;
1550
1551 /* Remove MSI/MSI-X interrupts */
64ee3120 1552 efx_for_each_channel(channel, efx)
8ceee660
BH
1553 channel->irq = 0;
1554 pci_disable_msi(efx->pci_dev);
1555 pci_disable_msix(efx->pci_dev);
1556
1557 /* Remove legacy interrupt */
1558 efx->legacy_irq = 0;
1559}
1560
8831da7b 1561static void efx_set_channels(struct efx_nic *efx)
8ceee660 1562{
602a5322
BH
1563 struct efx_channel *channel;
1564 struct efx_tx_queue *tx_queue;
1565
97653431 1566 efx->tx_channel_offset =
a4900ac9 1567 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
602a5322 1568
79d68b37
SH
1569 /* We need to mark which channels really have RX and TX
1570 * queues, and adjust the TX queue numbers if we have separate
602a5322
BH
1571 * RX-only and TX-only channels.
1572 */
1573 efx_for_each_channel(channel, efx) {
79d68b37
SH
1574 if (channel->channel < efx->n_rx_channels)
1575 channel->rx_queue.core_index = channel->channel;
1576 else
1577 channel->rx_queue.core_index = -1;
1578
602a5322
BH
1579 efx_for_each_channel_tx_queue(tx_queue, channel)
1580 tx_queue->queue -= (efx->tx_channel_offset *
1581 EFX_TXQ_TYPES);
1582 }
8ceee660
BH
1583}
1584
1585static int efx_probe_nic(struct efx_nic *efx)
1586{
765c9f46 1587 size_t i;
8ceee660
BH
1588 int rc;
1589
62776d03 1590 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
8ceee660
BH
1591
1592 /* Carry out hardware-type specific initialisation */
ef2b90ee 1593 rc = efx->type->probe(efx);
8ceee660
BH
1594 if (rc)
1595 return rc;
1596
a4900ac9 1597 /* Determine the number of channels and queues by trying to hook
8ceee660 1598 * in MSI-X interrupts. */
64d8ad6d
BH
1599 rc = efx_probe_interrupts(efx);
1600 if (rc)
c15eed22 1601 goto fail1;
8ceee660 1602
52ad762b
DP
1603 efx_set_channels(efx);
1604
c15eed22
BH
1605 rc = efx->type->dimension_resources(efx);
1606 if (rc)
1607 goto fail2;
28e47c49 1608
5d3a6fca
BH
1609 if (efx->n_channels > 1)
1610 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
765c9f46 1611 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
278bc429 1612 efx->rx_indir_table[i] =
cd2d5b52 1613 ethtool_rxfh_indir_default(i, efx->rss_spread);
5d3a6fca 1614
c4f4adc7
BH
1615 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1616 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
8ceee660
BH
1617
1618 /* Initialise the interrupt moderation settings */
9e393b30
BH
1619 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1620 true);
8ceee660
BH
1621
1622 return 0;
64d8ad6d 1623
c15eed22
BH
1624fail2:
1625 efx_remove_interrupts(efx);
1626fail1:
64d8ad6d
BH
1627 efx->type->remove(efx);
1628 return rc;
8ceee660
BH
1629}
1630
1631static void efx_remove_nic(struct efx_nic *efx)
1632{
62776d03 1633 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
8ceee660
BH
1634
1635 efx_remove_interrupts(efx);
ef2b90ee 1636 efx->type->remove(efx);
8ceee660
BH
1637}
1638
add72477
BH
1639static int efx_probe_filters(struct efx_nic *efx)
1640{
1641 int rc;
1642
1643 spin_lock_init(&efx->filter_lock);
1644
1645 rc = efx->type->filter_table_probe(efx);
1646 if (rc)
1647 return rc;
1648
1649#ifdef CONFIG_RFS_ACCEL
1650 if (efx->type->offload_features & NETIF_F_NTUPLE) {
1651 efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
1652 sizeof(*efx->rps_flow_id),
1653 GFP_KERNEL);
1654 if (!efx->rps_flow_id) {
1655 efx->type->filter_table_remove(efx);
1656 return -ENOMEM;
1657 }
1658 }
1659#endif
1660
1661 return 0;
1662}
1663
1664static void efx_remove_filters(struct efx_nic *efx)
1665{
1666#ifdef CONFIG_RFS_ACCEL
1667 kfree(efx->rps_flow_id);
1668#endif
1669 efx->type->filter_table_remove(efx);
1670}
1671
1672static void efx_restore_filters(struct efx_nic *efx)
1673{
1674 efx->type->filter_table_restore(efx);
1675}
1676
8ceee660
BH
1677/**************************************************************************
1678 *
1679 * NIC startup/shutdown
1680 *
1681 *************************************************************************/
1682
1683static int efx_probe_all(struct efx_nic *efx)
1684{
8ceee660
BH
1685 int rc;
1686
8ceee660
BH
1687 rc = efx_probe_nic(efx);
1688 if (rc) {
62776d03 1689 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
8ceee660
BH
1690 goto fail1;
1691 }
1692
8ceee660
BH
1693 rc = efx_probe_port(efx);
1694 if (rc) {
62776d03 1695 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
8ceee660
BH
1696 goto fail2;
1697 }
1698
7e6d06f0
BH
1699 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1700 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1701 rc = -EINVAL;
1702 goto fail3;
1703 }
ecc910f5 1704 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
8ceee660 1705
64eebcfd
BH
1706 rc = efx_probe_filters(efx);
1707 if (rc) {
1708 netif_err(efx, probe, efx->net_dev,
1709 "failed to create filter tables\n");
7f967c01 1710 goto fail3;
64eebcfd
BH
1711 }
1712
7f967c01
BH
1713 rc = efx_probe_channels(efx);
1714 if (rc)
1715 goto fail4;
1716
8ceee660
BH
1717 return 0;
1718
64eebcfd 1719 fail4:
7f967c01 1720 efx_remove_filters(efx);
8ceee660 1721 fail3:
8ceee660
BH
1722 efx_remove_port(efx);
1723 fail2:
1724 efx_remove_nic(efx);
1725 fail1:
1726 return rc;
1727}
1728
8b7325b4
BH
1729/* If the interface is supposed to be running but is not, start
1730 * the hardware and software data path, regular activity for the port
1731 * (MAC statistics, link polling, etc.) and schedule the port to be
1732 * reconfigured. Interrupts must already be enabled. This function
1733 * is safe to call multiple times, so long as the NIC is not disabled.
1734 * Requires the RTNL lock.
9f2cb71c 1735 */
8ceee660
BH
1736static void efx_start_all(struct efx_nic *efx)
1737{
8ceee660 1738 EFX_ASSERT_RESET_SERIALISED(efx);
8b7325b4 1739 BUG_ON(efx->state == STATE_DISABLED);
8ceee660
BH
1740
1741 /* Check that it is appropriate to restart the interface. All
1742 * of these flags are safe to read under just the rtnl lock */
e283546c
EC
1743 if (efx->port_enabled || !netif_running(efx->net_dev) ||
1744 efx->reset_pending)
8ceee660
BH
1745 return;
1746
8ceee660 1747 efx_start_port(efx);
9f2cb71c 1748 efx_start_datapath(efx);
8880f4ec 1749
626950db
AR
1750 /* Start the hardware monitor if there is one */
1751 if (efx->type->monitor != NULL)
8ceee660
BH
1752 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1753 efx_monitor_interval);
626950db
AR
1754
1755 /* If link state detection is normally event-driven, we have
1756 * to poll now because we could have missed a change
1757 */
1758 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
78c1f0a0
SH
1759 mutex_lock(&efx->mac_lock);
1760 if (efx->phy_op->poll(efx))
1761 efx_link_status_changed(efx);
1762 mutex_unlock(&efx->mac_lock);
1763 }
55edc6e6 1764
ef2b90ee 1765 efx->type->start_stats(efx);
f8f3b5ae
JC
1766 efx->type->pull_stats(efx);
1767 spin_lock_bh(&efx->stats_lock);
1768 efx->type->update_stats(efx, NULL, NULL);
1769 spin_unlock_bh(&efx->stats_lock);
8ceee660
BH
1770}
1771
8b7325b4
BH
1772/* Quiesce the hardware and software data path, and regular activity
1773 * for the port without bringing the link down. Safe to call multiple
1774 * times with the NIC in almost any state, but interrupts should be
1775 * enabled. Requires the RTNL lock.
1776 */
8ceee660
BH
1777static void efx_stop_all(struct efx_nic *efx)
1778{
8ceee660
BH
1779 EFX_ASSERT_RESET_SERIALISED(efx);
1780
1781 /* port_enabled can be read safely under the rtnl lock */
1782 if (!efx->port_enabled)
1783 return;
1784
f8f3b5ae
JC
1785 /* update stats before we go down so we can accurately count
1786 * rx_nodesc_drops
1787 */
1788 efx->type->pull_stats(efx);
1789 spin_lock_bh(&efx->stats_lock);
1790 efx->type->update_stats(efx, NULL, NULL);
1791 spin_unlock_bh(&efx->stats_lock);
ef2b90ee 1792 efx->type->stop_stats(efx);
8ceee660
BH
1793 efx_stop_port(efx);
1794
29c69a48
BH
1795 /* Stop the kernel transmit interface. This is only valid if
1796 * the device is stopped or detached; otherwise the watchdog
1797 * may fire immediately.
1798 */
1799 WARN_ON(netif_running(efx->net_dev) &&
1800 netif_device_present(efx->net_dev));
9f2cb71c
BH
1801 netif_tx_disable(efx->net_dev);
1802
1803 efx_stop_datapath(efx);
8ceee660
BH
1804}
1805
1806static void efx_remove_all(struct efx_nic *efx)
1807{
4642610c 1808 efx_remove_channels(efx);
7f967c01 1809 efx_remove_filters(efx);
8ceee660
BH
1810 efx_remove_port(efx);
1811 efx_remove_nic(efx);
1812}
1813
8ceee660
BH
1814/**************************************************************************
1815 *
1816 * Interrupt moderation
1817 *
1818 **************************************************************************/
1819
cc180b69 1820static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
0d86ebd8 1821{
b548f976
BH
1822 if (usecs == 0)
1823 return 0;
cc180b69 1824 if (usecs * 1000 < quantum_ns)
0d86ebd8 1825 return 1; /* never round down to 0 */
cc180b69 1826 return usecs * 1000 / quantum_ns;
0d86ebd8
BH
1827}
1828
8ceee660 1829/* Set interrupt moderation parameters */
9e393b30
BH
1830int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1831 unsigned int rx_usecs, bool rx_adaptive,
1832 bool rx_may_override_tx)
8ceee660 1833{
f7d12cdc 1834 struct efx_channel *channel;
cc180b69
BH
1835 unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1836 efx->timer_quantum_ns,
1837 1000);
1838 unsigned int tx_ticks;
1839 unsigned int rx_ticks;
8ceee660
BH
1840
1841 EFX_ASSERT_RESET_SERIALISED(efx);
1842
cc180b69 1843 if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
9e393b30
BH
1844 return -EINVAL;
1845
cc180b69
BH
1846 tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1847 rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1848
9e393b30
BH
1849 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1850 !rx_may_override_tx) {
1851 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1852 "RX and TX IRQ moderation must be equal\n");
1853 return -EINVAL;
1854 }
1855
6fb70fd1 1856 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1857 efx->irq_rx_moderation = rx_ticks;
f7d12cdc 1858 efx_for_each_channel(channel, efx) {
525da907 1859 if (efx_channel_has_rx_queue(channel))
f7d12cdc 1860 channel->irq_moderation = rx_ticks;
525da907 1861 else if (efx_channel_has_tx_queues(channel))
f7d12cdc
BH
1862 channel->irq_moderation = tx_ticks;
1863 }
9e393b30
BH
1864
1865 return 0;
8ceee660
BH
1866}
1867
a0c4faf5
BH
1868void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1869 unsigned int *rx_usecs, bool *rx_adaptive)
1870{
cc180b69
BH
1871 /* We must round up when converting ticks to microseconds
1872 * because we round down when converting the other way.
1873 */
1874
a0c4faf5 1875 *rx_adaptive = efx->irq_rx_adaptive;
cc180b69
BH
1876 *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1877 efx->timer_quantum_ns,
1878 1000);
a0c4faf5
BH
1879
1880 /* If channels are shared between RX and TX, so is IRQ
1881 * moderation. Otherwise, IRQ moderation is the same for all
1882 * TX channels and is not adaptive.
1883 */
1884 if (efx->tx_channel_offset == 0)
1885 *tx_usecs = *rx_usecs;
1886 else
cc180b69 1887 *tx_usecs = DIV_ROUND_UP(
a0c4faf5 1888 efx->channel[efx->tx_channel_offset]->irq_moderation *
cc180b69
BH
1889 efx->timer_quantum_ns,
1890 1000);
a0c4faf5
BH
1891}
1892
8ceee660
BH
1893/**************************************************************************
1894 *
1895 * Hardware monitor
1896 *
1897 **************************************************************************/
1898
e254c274 1899/* Run periodically off the general workqueue */
8ceee660
BH
1900static void efx_monitor(struct work_struct *data)
1901{
1902 struct efx_nic *efx = container_of(data, struct efx_nic,
1903 monitor_work.work);
8ceee660 1904
62776d03
BH
1905 netif_vdbg(efx, timer, efx->net_dev,
1906 "hardware monitor executing on CPU %d\n",
1907 raw_smp_processor_id());
ef2b90ee 1908 BUG_ON(efx->type->monitor == NULL);
8ceee660 1909
8ceee660
BH
1910 /* If the mac_lock is already held then it is likely a port
1911 * reconfiguration is already in place, which will likely do
e254c274
BH
1912 * most of the work of monitor() anyway. */
1913 if (mutex_trylock(&efx->mac_lock)) {
1914 if (efx->port_enabled)
1915 efx->type->monitor(efx);
1916 mutex_unlock(&efx->mac_lock);
1917 }
8ceee660 1918
8ceee660
BH
1919 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1920 efx_monitor_interval);
1921}
1922
1923/**************************************************************************
1924 *
1925 * ioctls
1926 *
1927 *************************************************************************/
1928
1929/* Net device ioctl
1930 * Context: process, rtnl_lock() held.
1931 */
1932static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1933{
767e468c 1934 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 1935 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660 1936
7c236c43 1937 if (cmd == SIOCSHWTSTAMP)
433dc9b3
BH
1938 return efx_ptp_set_ts_config(efx, ifr);
1939 if (cmd == SIOCGHWTSTAMP)
1940 return efx_ptp_get_ts_config(efx, ifr);
7c236c43 1941
68e7f45e
BH
1942 /* Convert phy_id from older PRTAD/DEVAD format */
1943 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1944 (data->phy_id & 0xfc00) == 0x0400)
1945 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1946
1947 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
1948}
1949
1950/**************************************************************************
1951 *
1952 * NAPI interface
1953 *
1954 **************************************************************************/
1955
7f967c01
BH
1956static void efx_init_napi_channel(struct efx_channel *channel)
1957{
1958 struct efx_nic *efx = channel->efx;
1959
1960 channel->napi_dev = efx->net_dev;
1961 netif_napi_add(channel->napi_dev, &channel->napi_str,
1962 efx_poll, napi_weight);
1963}
1964
e8f14992 1965static void efx_init_napi(struct efx_nic *efx)
8ceee660
BH
1966{
1967 struct efx_channel *channel;
8ceee660 1968
7f967c01
BH
1969 efx_for_each_channel(channel, efx)
1970 efx_init_napi_channel(channel);
e8f14992
BH
1971}
1972
1973static void efx_fini_napi_channel(struct efx_channel *channel)
1974{
1975 if (channel->napi_dev)
1976 netif_napi_del(&channel->napi_str);
1977 channel->napi_dev = NULL;
8ceee660
BH
1978}
1979
1980static void efx_fini_napi(struct efx_nic *efx)
1981{
1982 struct efx_channel *channel;
1983
e8f14992
BH
1984 efx_for_each_channel(channel, efx)
1985 efx_fini_napi_channel(channel);
8ceee660
BH
1986}
1987
1988/**************************************************************************
1989 *
1990 * Kernel netpoll interface
1991 *
1992 *************************************************************************/
1993
1994#ifdef CONFIG_NET_POLL_CONTROLLER
1995
1996/* Although in the common case interrupts will be disabled, this is not
1997 * guaranteed. However, all our work happens inside the NAPI callback,
1998 * so no locking is required.
1999 */
2000static void efx_netpoll(struct net_device *net_dev)
2001{
767e468c 2002 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
2003 struct efx_channel *channel;
2004
64ee3120 2005 efx_for_each_channel(channel, efx)
8ceee660
BH
2006 efx_schedule_channel(channel);
2007}
2008
2009#endif
2010
2011/**************************************************************************
2012 *
2013 * Kernel net device interface
2014 *
2015 *************************************************************************/
2016
2017/* Context: process, rtnl_lock() held. */
2018static int efx_net_open(struct net_device *net_dev)
2019{
767e468c 2020 struct efx_nic *efx = netdev_priv(net_dev);
8b7325b4
BH
2021 int rc;
2022
62776d03
BH
2023 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2024 raw_smp_processor_id());
8ceee660 2025
8b7325b4
BH
2026 rc = efx_check_disabled(efx);
2027 if (rc)
2028 return rc;
f8b87c17
BH
2029 if (efx->phy_mode & PHY_MODE_SPECIAL)
2030 return -EBUSY;
8880f4ec
BH
2031 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
2032 return -EIO;
f8b87c17 2033
78c1f0a0
SH
2034 /* Notify the kernel of the link state polled during driver load,
2035 * before the monitor starts running */
2036 efx_link_status_changed(efx);
2037
8ceee660 2038 efx_start_all(efx);
dd40781e 2039 efx_selftest_async_start(efx);
8ceee660
BH
2040 return 0;
2041}
2042
2043/* Context: process, rtnl_lock() held.
2044 * Note that the kernel will ignore our return code; this method
2045 * should really be a void.
2046 */
2047static int efx_net_stop(struct net_device *net_dev)
2048{
767e468c 2049 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 2050
62776d03
BH
2051 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2052 raw_smp_processor_id());
8ceee660 2053
8b7325b4
BH
2054 /* Stop the device and flush all the channels */
2055 efx_stop_all(efx);
8ceee660
BH
2056
2057 return 0;
2058}
2059
5b9e207c 2060/* Context: process, dev_base_lock or RTNL held, non-blocking. */
2aa9ef11
BH
2061static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
2062 struct rtnl_link_stats64 *stats)
8ceee660 2063{
767e468c 2064 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 2065
55edc6e6 2066 spin_lock_bh(&efx->stats_lock);
cd0ecc9a 2067 efx->type->update_stats(efx, NULL, stats);
1cb34522
BH
2068 spin_unlock_bh(&efx->stats_lock);
2069
8ceee660
BH
2070 return stats;
2071}
2072
2073/* Context: netif_tx_lock held, BHs disabled. */
2074static void efx_watchdog(struct net_device *net_dev)
2075{
767e468c 2076 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 2077
62776d03
BH
2078 netif_err(efx, tx_err, efx->net_dev,
2079 "TX stuck with port_enabled=%d: resetting channels\n",
2080 efx->port_enabled);
8ceee660 2081
739bb23d 2082 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
2083}
2084
2085
2086/* Context: process, rtnl_lock() held. */
2087static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2088{
767e468c 2089 struct efx_nic *efx = netdev_priv(net_dev);
8b7325b4 2090 int rc;
8ceee660 2091
8b7325b4
BH
2092 rc = efx_check_disabled(efx);
2093 if (rc)
2094 return rc;
8ceee660
BH
2095 if (new_mtu > EFX_MAX_MTU)
2096 return -EINVAL;
2097
62776d03 2098 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
8ceee660 2099
29c69a48
BH
2100 efx_device_detach_sync(efx);
2101 efx_stop_all(efx);
2102
d3245b28 2103 mutex_lock(&efx->mac_lock);
8ceee660 2104 net_dev->mtu = new_mtu;
710b208d 2105 efx->type->reconfigure_mac(efx);
d3245b28
BH
2106 mutex_unlock(&efx->mac_lock);
2107
8ceee660 2108 efx_start_all(efx);
29c69a48 2109 netif_device_attach(efx->net_dev);
6c8eef4a 2110 return 0;
8ceee660
BH
2111}
2112
2113static int efx_set_mac_address(struct net_device *net_dev, void *data)
2114{
767e468c 2115 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 2116 struct sockaddr *addr = data;
e0b3ae30 2117 u8 *new_addr = addr->sa_data;
8ceee660 2118
8ceee660 2119 if (!is_valid_ether_addr(new_addr)) {
62776d03
BH
2120 netif_err(efx, drv, efx->net_dev,
2121 "invalid ethernet MAC address requested: %pM\n",
2122 new_addr);
504f9b5a 2123 return -EADDRNOTAVAIL;
8ceee660
BH
2124 }
2125
cd84ff4d 2126 ether_addr_copy(net_dev->dev_addr, new_addr);
cd2d5b52 2127 efx_sriov_mac_address_changed(efx);
8ceee660
BH
2128
2129 /* Reconfigure the MAC */
d3245b28 2130 mutex_lock(&efx->mac_lock);
710b208d 2131 efx->type->reconfigure_mac(efx);
d3245b28 2132 mutex_unlock(&efx->mac_lock);
8ceee660
BH
2133
2134 return 0;
2135}
2136
a816f75a 2137/* Context: netif_addr_lock held, BHs disabled. */
0fca8c97 2138static void efx_set_rx_mode(struct net_device *net_dev)
8ceee660 2139{
767e468c 2140 struct efx_nic *efx = netdev_priv(net_dev);
a816f75a 2141
8be4f3e6
BH
2142 if (efx->port_enabled)
2143 queue_work(efx->workqueue, &efx->mac_work);
2144 /* Otherwise efx_start_port() will do this */
8ceee660
BH
2145}
2146
c8f44aff 2147static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
abfe9039
BH
2148{
2149 struct efx_nic *efx = netdev_priv(net_dev);
2150
2151 /* If disabling RX n-tuple filtering, clear existing filters */
2152 if (net_dev->features & ~data & NETIF_F_NTUPLE)
fbd79120 2153 return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
abfe9039
BH
2154
2155 return 0;
2156}
2157
8127d661 2158static const struct net_device_ops efx_farch_netdev_ops = {
c3ecb9f3
SH
2159 .ndo_open = efx_net_open,
2160 .ndo_stop = efx_net_stop,
4472702e 2161 .ndo_get_stats64 = efx_net_stats,
c3ecb9f3
SH
2162 .ndo_tx_timeout = efx_watchdog,
2163 .ndo_start_xmit = efx_hard_start_xmit,
2164 .ndo_validate_addr = eth_validate_addr,
2165 .ndo_do_ioctl = efx_ioctl,
2166 .ndo_change_mtu = efx_change_mtu,
2167 .ndo_set_mac_address = efx_set_mac_address,
0fca8c97 2168 .ndo_set_rx_mode = efx_set_rx_mode,
abfe9039 2169 .ndo_set_features = efx_set_features,
cd2d5b52
BH
2170#ifdef CONFIG_SFC_SRIOV
2171 .ndo_set_vf_mac = efx_sriov_set_vf_mac,
2172 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan,
2173 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk,
2174 .ndo_get_vf_config = efx_sriov_get_vf_config,
2175#endif
c3ecb9f3
SH
2176#ifdef CONFIG_NET_POLL_CONTROLLER
2177 .ndo_poll_controller = efx_netpoll,
2178#endif
94b274bf 2179 .ndo_setup_tc = efx_setup_tc,
64d8ad6d
BH
2180#ifdef CONFIG_RFS_ACCEL
2181 .ndo_rx_flow_steer = efx_filter_rfs,
2182#endif
c3ecb9f3
SH
2183};
2184
8127d661
BH
2185static const struct net_device_ops efx_ef10_netdev_ops = {
2186 .ndo_open = efx_net_open,
2187 .ndo_stop = efx_net_stop,
2188 .ndo_get_stats64 = efx_net_stats,
2189 .ndo_tx_timeout = efx_watchdog,
2190 .ndo_start_xmit = efx_hard_start_xmit,
2191 .ndo_validate_addr = eth_validate_addr,
2192 .ndo_do_ioctl = efx_ioctl,
2193 .ndo_change_mtu = efx_change_mtu,
2194 .ndo_set_mac_address = efx_set_mac_address,
2195 .ndo_set_rx_mode = efx_set_rx_mode,
2196 .ndo_set_features = efx_set_features,
2197#ifdef CONFIG_NET_POLL_CONTROLLER
2198 .ndo_poll_controller = efx_netpoll,
2199#endif
2200#ifdef CONFIG_RFS_ACCEL
2201 .ndo_rx_flow_steer = efx_filter_rfs,
2202#endif
2203};
2204
7dde596e
BH
2205static void efx_update_name(struct efx_nic *efx)
2206{
2207 strcpy(efx->name, efx->net_dev->name);
2208 efx_mtd_rename(efx);
2209 efx_set_channel_names(efx);
2210}
2211
8ceee660
BH
2212static int efx_netdev_event(struct notifier_block *this,
2213 unsigned long event, void *ptr)
2214{
351638e7 2215 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
8ceee660 2216
8127d661
BH
2217 if ((net_dev->netdev_ops == &efx_farch_netdev_ops ||
2218 net_dev->netdev_ops == &efx_ef10_netdev_ops) &&
7dde596e
BH
2219 event == NETDEV_CHANGENAME)
2220 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
2221
2222 return NOTIFY_DONE;
2223}
2224
2225static struct notifier_block efx_netdev_notifier = {
2226 .notifier_call = efx_netdev_event,
2227};
2228
06d5e193
BH
2229static ssize_t
2230show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2231{
2232 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2233 return sprintf(buf, "%d\n", efx->phy_type);
2234}
776fbcc9 2235static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
06d5e193 2236
8ceee660
BH
2237static int efx_register_netdev(struct efx_nic *efx)
2238{
2239 struct net_device *net_dev = efx->net_dev;
c04bfc6b 2240 struct efx_channel *channel;
8ceee660
BH
2241 int rc;
2242
2243 net_dev->watchdog_timeo = 5 * HZ;
2244 net_dev->irq = efx->pci_dev->irq;
8127d661
BH
2245 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
2246 net_dev->netdev_ops = &efx_ef10_netdev_ops;
2247 net_dev->priv_flags |= IFF_UNICAST_FLT;
2248 } else {
2249 net_dev->netdev_ops = &efx_farch_netdev_ops;
2250 }
8ceee660 2251 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
7e6d06f0 2252 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
8ceee660 2253
7dde596e 2254 rtnl_lock();
aed0628d 2255
7153f623
BH
2256 /* Enable resets to be scheduled and check whether any were
2257 * already requested. If so, the NIC is probably hosed so we
2258 * abort.
2259 */
2260 efx->state = STATE_READY;
2261 smp_mb(); /* ensure we change state before checking reset_pending */
2262 if (efx->reset_pending) {
2263 netif_err(efx, probe, efx->net_dev,
2264 "aborting probe due to scheduled reset\n");
2265 rc = -EIO;
2266 goto fail_locked;
2267 }
2268
aed0628d
BH
2269 rc = dev_alloc_name(net_dev, net_dev->name);
2270 if (rc < 0)
2271 goto fail_locked;
7dde596e 2272 efx_update_name(efx);
aed0628d 2273
8f8b3d51
BH
2274 /* Always start with carrier off; PHY events will detect the link */
2275 netif_carrier_off(net_dev);
2276
aed0628d
BH
2277 rc = register_netdevice(net_dev);
2278 if (rc)
2279 goto fail_locked;
2280
c04bfc6b
BH
2281 efx_for_each_channel(channel, efx) {
2282 struct efx_tx_queue *tx_queue;
60031fcc
BH
2283 efx_for_each_channel_tx_queue(tx_queue, channel)
2284 efx_init_tx_queue_core_txq(tx_queue);
c04bfc6b
BH
2285 }
2286
0bcf4a64
BH
2287 efx_associate(efx);
2288
7dde596e 2289 rtnl_unlock();
8ceee660 2290
06d5e193
BH
2291 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2292 if (rc) {
62776d03
BH
2293 netif_err(efx, drv, efx->net_dev,
2294 "failed to init net dev attributes\n");
06d5e193
BH
2295 goto fail_registered;
2296 }
2297
8ceee660 2298 return 0;
06d5e193 2299
7153f623
BH
2300fail_registered:
2301 rtnl_lock();
0bcf4a64 2302 efx_dissociate(efx);
7153f623 2303 unregister_netdevice(net_dev);
aed0628d 2304fail_locked:
7153f623 2305 efx->state = STATE_UNINIT;
aed0628d 2306 rtnl_unlock();
62776d03 2307 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
aed0628d 2308 return rc;
8ceee660
BH
2309}
2310
2311static void efx_unregister_netdev(struct efx_nic *efx)
2312{
8ceee660
BH
2313 if (!efx->net_dev)
2314 return;
2315
767e468c 2316 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660 2317
73ba7b68
BH
2318 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2319 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
7153f623
BH
2320
2321 rtnl_lock();
2322 unregister_netdevice(efx->net_dev);
2323 efx->state = STATE_UNINIT;
2324 rtnl_unlock();
8ceee660
BH
2325}
2326
2327/**************************************************************************
2328 *
2329 * Device reset and suspend
2330 *
2331 **************************************************************************/
2332
2467ca46
BH
2333/* Tears down the entire software state and most of the hardware state
2334 * before reset. */
d3245b28 2335void efx_reset_down(struct efx_nic *efx, enum reset_type method)
8ceee660 2336{
8ceee660
BH
2337 EFX_ASSERT_RESET_SERIALISED(efx);
2338
e283546c
EC
2339 if (method == RESET_TYPE_MCDI_TIMEOUT)
2340 efx->type->prepare_flr(efx);
2341
2467ca46 2342 efx_stop_all(efx);
d8291187 2343 efx_disable_interrupts(efx);
5642ceef
BH
2344
2345 mutex_lock(&efx->mac_lock);
4b988280
SH
2346 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2347 efx->phy_op->fini(efx);
ef2b90ee 2348 efx->type->fini(efx);
8ceee660
BH
2349}
2350
2467ca46
BH
2351/* This function will always ensure that the locks acquired in
2352 * efx_reset_down() are released. A failure return code indicates
2353 * that we were unable to reinitialise the hardware, and the
2354 * driver should be disabled. If ok is false, then the rx and tx
2355 * engines are not restarted, pending a RESET_DISABLE. */
d3245b28 2356int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
8ceee660
BH
2357{
2358 int rc;
2359
2467ca46 2360 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 2361
e283546c
EC
2362 if (method == RESET_TYPE_MCDI_TIMEOUT)
2363 efx->type->finish_flr(efx);
2364
2365 /* Ensure that SRAM is initialised even if we're disabling the device */
ef2b90ee 2366 rc = efx->type->init(efx);
8ceee660 2367 if (rc) {
62776d03 2368 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
eb9f6744 2369 goto fail;
8ceee660
BH
2370 }
2371
eb9f6744
BH
2372 if (!ok)
2373 goto fail;
2374
4b988280 2375 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
eb9f6744
BH
2376 rc = efx->phy_op->init(efx);
2377 if (rc)
2378 goto fail;
2379 if (efx->phy_op->reconfigure(efx))
62776d03
BH
2380 netif_err(efx, drv, efx->net_dev,
2381 "could not restore PHY settings\n");
4b988280
SH
2382 }
2383
261e4d96
JC
2384 rc = efx_enable_interrupts(efx);
2385 if (rc)
2386 goto fail;
64eebcfd 2387 efx_restore_filters(efx);
cd2d5b52 2388 efx_sriov_reset(efx);
eb9f6744 2389
eb9f6744
BH
2390 mutex_unlock(&efx->mac_lock);
2391
2392 efx_start_all(efx);
2393
2394 return 0;
2395
2396fail:
2397 efx->port_initialized = false;
2467ca46
BH
2398
2399 mutex_unlock(&efx->mac_lock);
2400
8ceee660
BH
2401 return rc;
2402}
2403
eb9f6744
BH
2404/* Reset the NIC using the specified method. Note that the reset may
2405 * fail, in which case the card will be left in an unusable state.
8ceee660 2406 *
eb9f6744 2407 * Caller must hold the rtnl_lock.
8ceee660 2408 */
eb9f6744 2409int efx_reset(struct efx_nic *efx, enum reset_type method)
8ceee660 2410{
eb9f6744
BH
2411 int rc, rc2;
2412 bool disabled;
8ceee660 2413
62776d03
BH
2414 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2415 RESET_TYPE(method));
8ceee660 2416
c2f3b8e3 2417 efx_device_detach_sync(efx);
d3245b28 2418 efx_reset_down(efx, method);
8ceee660 2419
ef2b90ee 2420 rc = efx->type->reset(efx, method);
8ceee660 2421 if (rc) {
62776d03 2422 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
eb9f6744 2423 goto out;
8ceee660
BH
2424 }
2425
a7d529ae
BH
2426 /* Clear flags for the scopes we covered. We assume the NIC and
2427 * driver are now quiescent so that there is no race here.
2428 */
e283546c
EC
2429 if (method < RESET_TYPE_MAX_METHOD)
2430 efx->reset_pending &= -(1 << (method + 1));
2431 else /* it doesn't fit into the well-ordered scope hierarchy */
2432 __clear_bit(method, &efx->reset_pending);
8ceee660
BH
2433
2434 /* Reinitialise bus-mastering, which may have been turned off before
2435 * the reset was scheduled. This is still appropriate, even in the
2436 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2437 * can respond to requests. */
2438 pci_set_master(efx->pci_dev);
2439
eb9f6744 2440out:
8ceee660 2441 /* Leave device stopped if necessary */
626950db
AR
2442 disabled = rc ||
2443 method == RESET_TYPE_DISABLE ||
2444 method == RESET_TYPE_RECOVER_OR_DISABLE;
eb9f6744
BH
2445 rc2 = efx_reset_up(efx, method, !disabled);
2446 if (rc2) {
2447 disabled = true;
2448 if (!rc)
2449 rc = rc2;
8ceee660
BH
2450 }
2451
eb9f6744 2452 if (disabled) {
f49a4589 2453 dev_close(efx->net_dev);
62776d03 2454 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
f4bd954e 2455 efx->state = STATE_DISABLED;
f4bd954e 2456 } else {
62776d03 2457 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
e4abce85 2458 netif_device_attach(efx->net_dev);
f4bd954e 2459 }
8ceee660
BH
2460 return rc;
2461}
2462
626950db
AR
2463/* Try recovery mechanisms.
2464 * For now only EEH is supported.
2465 * Returns 0 if the recovery mechanisms are unsuccessful.
2466 * Returns a non-zero value otherwise.
2467 */
b28405b0 2468int efx_try_recovery(struct efx_nic *efx)
626950db
AR
2469{
2470#ifdef CONFIG_EEH
2471 /* A PCI error can occur and not be seen by EEH because nothing
2472 * happens on the PCI bus. In this case the driver may fail and
2473 * schedule a 'recover or reset', leading to this recovery handler.
2474 * Manually call the eeh failure check function.
2475 */
2476 struct eeh_dev *eehdev =
2477 of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));
2478
2479 if (eeh_dev_check_failure(eehdev)) {
2480 /* The EEH mechanisms will handle the error and reset the
2481 * device if necessary.
2482 */
2483 return 1;
2484 }
2485#endif
2486 return 0;
2487}
2488
74cd60a4
JC
2489static void efx_wait_for_bist_end(struct efx_nic *efx)
2490{
2491 int i;
2492
2493 for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2494 if (efx_mcdi_poll_reboot(efx))
2495 goto out;
2496 msleep(BIST_WAIT_DELAY_MS);
2497 }
2498
2499 netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2500out:
2501 /* Either way unset the BIST flag. If we found no reboot we probably
2502 * won't recover, but we should try.
2503 */
2504 efx->mc_bist_for_other_fn = false;
2505}
2506
8ceee660
BH
2507/* The worker thread exists so that code that cannot sleep can
2508 * schedule a reset for later.
2509 */
2510static void efx_reset_work(struct work_struct *data)
2511{
eb9f6744 2512 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
626950db
AR
2513 unsigned long pending;
2514 enum reset_type method;
2515
2516 pending = ACCESS_ONCE(efx->reset_pending);
2517 method = fls(pending) - 1;
2518
74cd60a4
JC
2519 if (method == RESET_TYPE_MC_BIST)
2520 efx_wait_for_bist_end(efx);
2521
626950db
AR
2522 if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2523 method == RESET_TYPE_RECOVER_OR_ALL) &&
2524 efx_try_recovery(efx))
2525 return;
8ceee660 2526
a7d529ae 2527 if (!pending)
319ba649
SH
2528 return;
2529
eb9f6744 2530 rtnl_lock();
7153f623
BH
2531
2532 /* We checked the state in efx_schedule_reset() but it may
2533 * have changed by now. Now that we have the RTNL lock,
2534 * it cannot change again.
2535 */
2536 if (efx->state == STATE_READY)
626950db 2537 (void)efx_reset(efx, method);
7153f623 2538
eb9f6744 2539 rtnl_unlock();
8ceee660
BH
2540}
2541
2542void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2543{
2544 enum reset_type method;
2545
626950db
AR
2546 if (efx->state == STATE_RECOVERY) {
2547 netif_dbg(efx, drv, efx->net_dev,
2548 "recovering: skip scheduling %s reset\n",
2549 RESET_TYPE(type));
2550 return;
2551 }
2552
8ceee660
BH
2553 switch (type) {
2554 case RESET_TYPE_INVISIBLE:
2555 case RESET_TYPE_ALL:
626950db 2556 case RESET_TYPE_RECOVER_OR_ALL:
8ceee660
BH
2557 case RESET_TYPE_WORLD:
2558 case RESET_TYPE_DISABLE:
626950db 2559 case RESET_TYPE_RECOVER_OR_DISABLE:
74cd60a4 2560 case RESET_TYPE_MC_BIST:
e283546c 2561 case RESET_TYPE_MCDI_TIMEOUT:
8ceee660 2562 method = type;
0e2a9c7c
BH
2563 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2564 RESET_TYPE(method));
8ceee660 2565 break;
8ceee660 2566 default:
0e2a9c7c 2567 method = efx->type->map_reset_reason(type);
62776d03
BH
2568 netif_dbg(efx, drv, efx->net_dev,
2569 "scheduling %s reset for %s\n",
2570 RESET_TYPE(method), RESET_TYPE(type));
0e2a9c7c
BH
2571 break;
2572 }
8ceee660 2573
a7d529ae 2574 set_bit(method, &efx->reset_pending);
7153f623
BH
2575 smp_mb(); /* ensure we change reset_pending before checking state */
2576
2577 /* If we're not READY then just leave the flags set as the cue
2578 * to abort probing or reschedule the reset later.
2579 */
2580 if (ACCESS_ONCE(efx->state) != STATE_READY)
2581 return;
8ceee660 2582
8880f4ec
BH
2583 /* efx_process_channel() will no longer read events once a
2584 * reset is scheduled. So switch back to poll'd MCDI completions. */
2585 efx_mcdi_mode_poll(efx);
2586
1ab00629 2587 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
2588}
2589
2590/**************************************************************************
2591 *
2592 * List of NICs we support
2593 *
2594 **************************************************************************/
2595
2596/* PCI device ID table */
a3aa1884 2597static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
937383a5
BH
2598 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2599 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
daeda630 2600 .driver_data = (unsigned long) &falcon_a1_nic_type},
937383a5
BH
2601 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2602 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
daeda630 2603 .driver_data = (unsigned long) &falcon_b0_nic_type},
547c474f 2604 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
8880f4ec 2605 .driver_data = (unsigned long) &siena_a0_nic_type},
547c474f 2606 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
8880f4ec 2607 .driver_data = (unsigned long) &siena_a0_nic_type},
8127d661
BH
2608 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */
2609 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
8ceee660
BH
2610 {0} /* end of list */
2611};
2612
2613/**************************************************************************
2614 *
3759433d 2615 * Dummy PHY/MAC operations
8ceee660 2616 *
01aad7b6 2617 * Can be used for some unimplemented operations
8ceee660
BH
2618 * Needed so all function pointers are valid and do not have to be tested
2619 * before use
2620 *
2621 **************************************************************************/
2622int efx_port_dummy_op_int(struct efx_nic *efx)
2623{
2624 return 0;
2625}
2626void efx_port_dummy_op_void(struct efx_nic *efx) {}
d215697f 2627
2628static bool efx_port_dummy_op_poll(struct efx_nic *efx)
fdaa9aed
SH
2629{
2630 return false;
2631}
8ceee660 2632
6c8c2513 2633static const struct efx_phy_operations efx_dummy_phy_operations = {
8ceee660 2634 .init = efx_port_dummy_op_int,
d3245b28 2635 .reconfigure = efx_port_dummy_op_int,
fdaa9aed 2636 .poll = efx_port_dummy_op_poll,
8ceee660 2637 .fini = efx_port_dummy_op_void,
8ceee660
BH
2638};
2639
8ceee660
BH
2640/**************************************************************************
2641 *
2642 * Data housekeeping
2643 *
2644 **************************************************************************/
2645
2646/* This zeroes out and then fills in the invariants in a struct
2647 * efx_nic (including all sub-structures).
2648 */
adeb15aa 2649static int efx_init_struct(struct efx_nic *efx,
8ceee660
BH
2650 struct pci_dev *pci_dev, struct net_device *net_dev)
2651{
4642610c 2652 int i;
8ceee660
BH
2653
2654 /* Initialise common structures */
0bcf4a64
BH
2655 INIT_LIST_HEAD(&efx->node);
2656 INIT_LIST_HEAD(&efx->secondary_list);
8ceee660 2657 spin_lock_init(&efx->biu_lock);
76884835
BH
2658#ifdef CONFIG_SFC_MTD
2659 INIT_LIST_HEAD(&efx->mtd_list);
2660#endif
8ceee660
BH
2661 INIT_WORK(&efx->reset_work, efx_reset_work);
2662 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
dd40781e 2663 INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
8ceee660 2664 efx->pci_dev = pci_dev;
62776d03 2665 efx->msg_enable = debug;
f16aeea0 2666 efx->state = STATE_UNINIT;
8ceee660 2667 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
2668
2669 efx->net_dev = net_dev;
43a3739d 2670 efx->rx_prefix_size = efx->type->rx_prefix_size;
2ec03014
AR
2671 efx->rx_ip_align =
2672 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
43a3739d
JC
2673 efx->rx_packet_hash_offset =
2674 efx->type->rx_hash_offset - efx->type->rx_prefix_size;
bd9a265d
JC
2675 efx->rx_packet_ts_offset =
2676 efx->type->rx_ts_offset - efx->type->rx_prefix_size;
8ceee660
BH
2677 spin_lock_init(&efx->stats_lock);
2678 mutex_init(&efx->mac_lock);
2679 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 2680 efx->mdio.dev = net_dev;
766ca0fa 2681 INIT_WORK(&efx->mac_work, efx_mac_work);
9f2cb71c 2682 init_waitqueue_head(&efx->flush_wq);
8ceee660
BH
2683
2684 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
4642610c
BH
2685 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2686 if (!efx->channel[i])
2687 goto fail;
d8291187
BH
2688 efx->msi_context[i].efx = efx;
2689 efx->msi_context[i].index = i;
8ceee660
BH
2690 }
2691
8ceee660
BH
2692 /* Higher numbered interrupt modes are less capable! */
2693 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2694 interrupt_mode);
2695
6977dc63
BH
2696 /* Would be good to use the net_dev name, but we're too early */
2697 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2698 pci_name(pci_dev));
2699 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629 2700 if (!efx->workqueue)
4642610c 2701 goto fail;
8d9853d9 2702
8ceee660 2703 return 0;
4642610c
BH
2704
2705fail:
2706 efx_fini_struct(efx);
2707 return -ENOMEM;
8ceee660
BH
2708}
2709
2710static void efx_fini_struct(struct efx_nic *efx)
2711{
8313aca3
BH
2712 int i;
2713
2714 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2715 kfree(efx->channel[i]);
2716
ef215e64
BH
2717 kfree(efx->vpd_sn);
2718
8ceee660
BH
2719 if (efx->workqueue) {
2720 destroy_workqueue(efx->workqueue);
2721 efx->workqueue = NULL;
2722 }
2723}
2724
2725/**************************************************************************
2726 *
2727 * PCI interface
2728 *
2729 **************************************************************************/
2730
2731/* Main body of final NIC shutdown code
2732 * This is called only at module unload (or hotplug removal).
2733 */
2734static void efx_pci_remove_main(struct efx_nic *efx)
2735{
7153f623
BH
2736 /* Flush reset_work. It can no longer be scheduled since we
2737 * are not READY.
2738 */
2739 BUG_ON(efx->state == STATE_READY);
2740 cancel_work_sync(&efx->reset_work);
2741
d8291187 2742 efx_disable_interrupts(efx);
152b6a62 2743 efx_nic_fini_interrupt(efx);
8ceee660 2744 efx_fini_port(efx);
ef2b90ee 2745 efx->type->fini(efx);
8ceee660
BH
2746 efx_fini_napi(efx);
2747 efx_remove_all(efx);
2748}
2749
2750/* Final NIC shutdown
2751 * This is called only at module unload (or hotplug removal).
2752 */
2753static void efx_pci_remove(struct pci_dev *pci_dev)
2754{
2755 struct efx_nic *efx;
2756
2757 efx = pci_get_drvdata(pci_dev);
2758 if (!efx)
2759 return;
2760
2761 /* Mark the NIC as fini, then stop the interface */
2762 rtnl_lock();
0bcf4a64 2763 efx_dissociate(efx);
8ceee660 2764 dev_close(efx->net_dev);
d8291187 2765 efx_disable_interrupts(efx);
8ceee660
BH
2766 rtnl_unlock();
2767
cd2d5b52 2768 efx_sriov_fini(efx);
8ceee660
BH
2769 efx_unregister_netdev(efx);
2770
7dde596e
BH
2771 efx_mtd_remove(efx);
2772
8ceee660
BH
2773 efx_pci_remove_main(efx);
2774
8ceee660 2775 efx_fini_io(efx);
62776d03 2776 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
8ceee660 2777
8ceee660
BH
2778 efx_fini_struct(efx);
2779 free_netdev(efx->net_dev);
626950db
AR
2780
2781 pci_disable_pcie_error_reporting(pci_dev);
8ceee660
BH
2782};
2783
460eeaa0
BH
2784/* NIC VPD information
2785 * Called during probe to display the part number of the
2786 * installed NIC. VPD is potentially very large but this should
2787 * always appear within the first 512 bytes.
2788 */
2789#define SFC_VPD_LEN 512
ef215e64 2790static void efx_probe_vpd_strings(struct efx_nic *efx)
460eeaa0
BH
2791{
2792 struct pci_dev *dev = efx->pci_dev;
2793 char vpd_data[SFC_VPD_LEN];
2794 ssize_t vpd_size;
ef215e64 2795 int ro_start, ro_size, i, j;
460eeaa0
BH
2796
2797 /* Get the vpd data from the device */
2798 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2799 if (vpd_size <= 0) {
2800 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2801 return;
2802 }
2803
2804 /* Get the Read only section */
ef215e64
BH
2805 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2806 if (ro_start < 0) {
460eeaa0
BH
2807 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2808 return;
2809 }
2810
ef215e64
BH
2811 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
2812 j = ro_size;
2813 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
460eeaa0
BH
2814 if (i + j > vpd_size)
2815 j = vpd_size - i;
2816
2817 /* Get the Part number */
2818 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2819 if (i < 0) {
2820 netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2821 return;
2822 }
2823
2824 j = pci_vpd_info_field_size(&vpd_data[i]);
2825 i += PCI_VPD_INFO_FLD_HDR_SIZE;
2826 if (i + j > vpd_size) {
2827 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2828 return;
2829 }
2830
2831 netif_info(efx, drv, efx->net_dev,
2832 "Part Number : %.*s\n", j, &vpd_data[i]);
ef215e64
BH
2833
2834 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2835 j = ro_size;
2836 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
2837 if (i < 0) {
2838 netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
2839 return;
2840 }
2841
2842 j = pci_vpd_info_field_size(&vpd_data[i]);
2843 i += PCI_VPD_INFO_FLD_HDR_SIZE;
2844 if (i + j > vpd_size) {
2845 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
2846 return;
2847 }
2848
2849 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
2850 if (!efx->vpd_sn)
2851 return;
2852
2853 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
460eeaa0
BH
2854}
2855
2856
8ceee660
BH
2857/* Main body of NIC initialisation
2858 * This is called at module load (or hotplug insertion, theoretically).
2859 */
2860static int efx_pci_probe_main(struct efx_nic *efx)
2861{
2862 int rc;
2863
2864 /* Do start-of-day initialisation */
2865 rc = efx_probe_all(efx);
2866 if (rc)
2867 goto fail1;
2868
e8f14992 2869 efx_init_napi(efx);
8ceee660 2870
ef2b90ee 2871 rc = efx->type->init(efx);
8ceee660 2872 if (rc) {
62776d03
BH
2873 netif_err(efx, probe, efx->net_dev,
2874 "failed to initialise NIC\n");
278c0621 2875 goto fail3;
8ceee660
BH
2876 }
2877
2878 rc = efx_init_port(efx);
2879 if (rc) {
62776d03
BH
2880 netif_err(efx, probe, efx->net_dev,
2881 "failed to initialise port\n");
278c0621 2882 goto fail4;
8ceee660
BH
2883 }
2884
152b6a62 2885 rc = efx_nic_init_interrupt(efx);
8ceee660 2886 if (rc)
278c0621 2887 goto fail5;
261e4d96
JC
2888 rc = efx_enable_interrupts(efx);
2889 if (rc)
2890 goto fail6;
8ceee660
BH
2891
2892 return 0;
2893
261e4d96
JC
2894 fail6:
2895 efx_nic_fini_interrupt(efx);
278c0621 2896 fail5:
8ceee660 2897 efx_fini_port(efx);
8ceee660 2898 fail4:
ef2b90ee 2899 efx->type->fini(efx);
8ceee660
BH
2900 fail3:
2901 efx_fini_napi(efx);
8ceee660
BH
2902 efx_remove_all(efx);
2903 fail1:
2904 return rc;
2905}
2906
2907/* NIC initialisation
2908 *
2909 * This is called at module load (or hotplug insertion,
73ba7b68 2910 * theoretically). It sets up PCI mappings, resets the NIC,
8ceee660
BH
2911 * sets up and registers the network devices with the kernel and hooks
2912 * the interrupt service routine. It does not prepare the device for
2913 * transmission; this is left to the first time one of the network
2914 * interfaces is brought up (i.e. efx_net_open).
2915 */
87d1fc11 2916static int efx_pci_probe(struct pci_dev *pci_dev,
1dd06ae8 2917 const struct pci_device_id *entry)
8ceee660 2918{
8ceee660
BH
2919 struct net_device *net_dev;
2920 struct efx_nic *efx;
fadac6aa 2921 int rc;
8ceee660
BH
2922
2923 /* Allocate and initialise a struct net_device and struct efx_nic */
94b274bf
BH
2924 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2925 EFX_MAX_RX_QUEUES);
8ceee660
BH
2926 if (!net_dev)
2927 return -ENOMEM;
adeb15aa
BH
2928 efx = netdev_priv(net_dev);
2929 efx->type = (const struct efx_nic_type *) entry->driver_data;
2930 net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
97bc5415 2931 NETIF_F_HIGHDMA | NETIF_F_TSO |
abfe9039 2932 NETIF_F_RXCSUM);
adeb15aa 2933 if (efx->type->offload_features & NETIF_F_V6_CSUM)
738a8f4b 2934 net_dev->features |= NETIF_F_TSO6;
28506563
BH
2935 /* Mask for features that also apply to VLAN devices */
2936 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
abfe9039
BH
2937 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2938 NETIF_F_RXCSUM);
2939 /* All offloads can be toggled */
2940 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
8ceee660 2941 pci_set_drvdata(pci_dev, efx);
62776d03 2942 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
adeb15aa 2943 rc = efx_init_struct(efx, pci_dev, net_dev);
8ceee660
BH
2944 if (rc)
2945 goto fail1;
2946
62776d03 2947 netif_info(efx, probe, efx->net_dev,
ff79c8ac 2948 "Solarflare NIC detected\n");
8ceee660 2949
ef215e64 2950 efx_probe_vpd_strings(efx);
460eeaa0 2951
8ceee660
BH
2952 /* Set up basic I/O (BAR mappings etc) */
2953 rc = efx_init_io(efx);
2954 if (rc)
2955 goto fail2;
2956
fadac6aa 2957 rc = efx_pci_probe_main(efx);
fadac6aa
BH
2958 if (rc)
2959 goto fail3;
8ceee660 2960
8ceee660
BH
2961 rc = efx_register_netdev(efx);
2962 if (rc)
fadac6aa 2963 goto fail4;
8ceee660 2964
cd2d5b52
BH
2965 rc = efx_sriov_init(efx);
2966 if (rc)
2967 netif_err(efx, probe, efx->net_dev,
2968 "SR-IOV can't be enabled rc %d\n", rc);
2969
62776d03 2970 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
a5211bb5 2971
7c43161c 2972 /* Try to create MTDs, but allow this to fail */
a5211bb5 2973 rtnl_lock();
7c43161c 2974 rc = efx_mtd_probe(efx);
a5211bb5 2975 rtnl_unlock();
7c43161c
BH
2976 if (rc)
2977 netif_warn(efx, probe, efx->net_dev,
2978 "failed to create MTDs (%d)\n", rc);
2979
626950db
AR
2980 rc = pci_enable_pcie_error_reporting(pci_dev);
2981 if (rc && rc != -EINVAL)
2982 netif_warn(efx, probe, efx->net_dev,
2983 "pci_enable_pcie_error_reporting failed (%d)\n", rc);
2984
8ceee660
BH
2985 return 0;
2986
8ceee660 2987 fail4:
fadac6aa 2988 efx_pci_remove_main(efx);
8ceee660
BH
2989 fail3:
2990 efx_fini_io(efx);
2991 fail2:
2992 efx_fini_struct(efx);
2993 fail1:
5e2a911c 2994 WARN_ON(rc > 0);
62776d03 2995 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
8ceee660
BH
2996 free_netdev(net_dev);
2997 return rc;
2998}
2999
89c758fa
BH
3000static int efx_pm_freeze(struct device *dev)
3001{
3002 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3003
61da026d
BH
3004 rtnl_lock();
3005
6032fb56
BH
3006 if (efx->state != STATE_DISABLED) {
3007 efx->state = STATE_UNINIT;
89c758fa 3008
c2f3b8e3 3009 efx_device_detach_sync(efx);
89c758fa 3010
6032fb56 3011 efx_stop_all(efx);
d8291187 3012 efx_disable_interrupts(efx);
6032fb56 3013 }
89c758fa 3014
61da026d
BH
3015 rtnl_unlock();
3016
89c758fa
BH
3017 return 0;
3018}
3019
3020static int efx_pm_thaw(struct device *dev)
3021{
261e4d96 3022 int rc;
89c758fa
BH
3023 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3024
61da026d
BH
3025 rtnl_lock();
3026
6032fb56 3027 if (efx->state != STATE_DISABLED) {
261e4d96
JC
3028 rc = efx_enable_interrupts(efx);
3029 if (rc)
3030 goto fail;
89c758fa 3031
6032fb56
BH
3032 mutex_lock(&efx->mac_lock);
3033 efx->phy_op->reconfigure(efx);
3034 mutex_unlock(&efx->mac_lock);
89c758fa 3035
6032fb56 3036 efx_start_all(efx);
89c758fa 3037
6032fb56 3038 netif_device_attach(efx->net_dev);
89c758fa 3039
6032fb56 3040 efx->state = STATE_READY;
89c758fa 3041
6032fb56
BH
3042 efx->type->resume_wol(efx);
3043 }
89c758fa 3044
61da026d
BH
3045 rtnl_unlock();
3046
319ba649
SH
3047 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3048 queue_work(reset_workqueue, &efx->reset_work);
3049
89c758fa 3050 return 0;
261e4d96
JC
3051
3052fail:
3053 rtnl_unlock();
3054
3055 return rc;
89c758fa
BH
3056}
3057
3058static int efx_pm_poweroff(struct device *dev)
3059{
3060 struct pci_dev *pci_dev = to_pci_dev(dev);
3061 struct efx_nic *efx = pci_get_drvdata(pci_dev);
3062
3063 efx->type->fini(efx);
3064
a7d529ae 3065 efx->reset_pending = 0;
89c758fa
BH
3066
3067 pci_save_state(pci_dev);
3068 return pci_set_power_state(pci_dev, PCI_D3hot);
3069}
3070
3071/* Used for both resume and restore */
3072static int efx_pm_resume(struct device *dev)
3073{
3074 struct pci_dev *pci_dev = to_pci_dev(dev);
3075 struct efx_nic *efx = pci_get_drvdata(pci_dev);
3076 int rc;
3077
3078 rc = pci_set_power_state(pci_dev, PCI_D0);
3079 if (rc)
3080 return rc;
3081 pci_restore_state(pci_dev);
3082 rc = pci_enable_device(pci_dev);
3083 if (rc)
3084 return rc;
3085 pci_set_master(efx->pci_dev);
3086 rc = efx->type->reset(efx, RESET_TYPE_ALL);
3087 if (rc)
3088 return rc;
3089 rc = efx->type->init(efx);
3090 if (rc)
3091 return rc;
261e4d96
JC
3092 rc = efx_pm_thaw(dev);
3093 return rc;
89c758fa
BH
3094}
3095
3096static int efx_pm_suspend(struct device *dev)
3097{
3098 int rc;
3099
3100 efx_pm_freeze(dev);
3101 rc = efx_pm_poweroff(dev);
3102 if (rc)
3103 efx_pm_resume(dev);
3104 return rc;
3105}
3106
18e83e4c 3107static const struct dev_pm_ops efx_pm_ops = {
89c758fa
BH
3108 .suspend = efx_pm_suspend,
3109 .resume = efx_pm_resume,
3110 .freeze = efx_pm_freeze,
3111 .thaw = efx_pm_thaw,
3112 .poweroff = efx_pm_poweroff,
3113 .restore = efx_pm_resume,
3114};
3115
626950db
AR
3116/* A PCI error affecting this device was detected.
3117 * At this point MMIO and DMA may be disabled.
3118 * Stop the software path and request a slot reset.
3119 */
debd0034 3120static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3121 enum pci_channel_state state)
626950db
AR
3122{
3123 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3124 struct efx_nic *efx = pci_get_drvdata(pdev);
3125
3126 if (state == pci_channel_io_perm_failure)
3127 return PCI_ERS_RESULT_DISCONNECT;
3128
3129 rtnl_lock();
3130
3131 if (efx->state != STATE_DISABLED) {
3132 efx->state = STATE_RECOVERY;
3133 efx->reset_pending = 0;
3134
3135 efx_device_detach_sync(efx);
3136
3137 efx_stop_all(efx);
d8291187 3138 efx_disable_interrupts(efx);
626950db
AR
3139
3140 status = PCI_ERS_RESULT_NEED_RESET;
3141 } else {
3142 /* If the interface is disabled we don't want to do anything
3143 * with it.
3144 */
3145 status = PCI_ERS_RESULT_RECOVERED;
3146 }
3147
3148 rtnl_unlock();
3149
3150 pci_disable_device(pdev);
3151
3152 return status;
3153}
3154
3155/* Fake a successfull reset, which will be performed later in efx_io_resume. */
debd0034 3156static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
626950db
AR
3157{
3158 struct efx_nic *efx = pci_get_drvdata(pdev);
3159 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3160 int rc;
3161
3162 if (pci_enable_device(pdev)) {
3163 netif_err(efx, hw, efx->net_dev,
3164 "Cannot re-enable PCI device after reset.\n");
3165 status = PCI_ERS_RESULT_DISCONNECT;
3166 }
3167
3168 rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3169 if (rc) {
3170 netif_err(efx, hw, efx->net_dev,
3171 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3172 /* Non-fatal error. Continue. */
3173 }
3174
3175 return status;
3176}
3177
3178/* Perform the actual reset and resume I/O operations. */
3179static void efx_io_resume(struct pci_dev *pdev)
3180{
3181 struct efx_nic *efx = pci_get_drvdata(pdev);
3182 int rc;
3183
3184 rtnl_lock();
3185
3186 if (efx->state == STATE_DISABLED)
3187 goto out;
3188
3189 rc = efx_reset(efx, RESET_TYPE_ALL);
3190 if (rc) {
3191 netif_err(efx, hw, efx->net_dev,
3192 "efx_reset failed after PCI error (%d)\n", rc);
3193 } else {
3194 efx->state = STATE_READY;
3195 netif_dbg(efx, hw, efx->net_dev,
3196 "Done resetting and resuming IO after PCI error.\n");
3197 }
3198
3199out:
3200 rtnl_unlock();
3201}
3202
3203/* For simplicity and reliability, we always require a slot reset and try to
3204 * reset the hardware when a pci error affecting the device is detected.
3205 * We leave both the link_reset and mmio_enabled callback unimplemented:
3206 * with our request for slot reset the mmio_enabled callback will never be
3207 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3208 */
3209static struct pci_error_handlers efx_err_handlers = {
3210 .error_detected = efx_io_error_detected,
3211 .slot_reset = efx_io_slot_reset,
3212 .resume = efx_io_resume,
3213};
3214
8ceee660 3215static struct pci_driver efx_pci_driver = {
c5d5f5fd 3216 .name = KBUILD_MODNAME,
8ceee660
BH
3217 .id_table = efx_pci_table,
3218 .probe = efx_pci_probe,
3219 .remove = efx_pci_remove,
89c758fa 3220 .driver.pm = &efx_pm_ops,
626950db 3221 .err_handler = &efx_err_handlers,
8ceee660
BH
3222};
3223
3224/**************************************************************************
3225 *
3226 * Kernel module interface
3227 *
3228 *************************************************************************/
3229
3230module_param(interrupt_mode, uint, 0444);
3231MODULE_PARM_DESC(interrupt_mode,
3232 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3233
3234static int __init efx_init_module(void)
3235{
3236 int rc;
3237
3238 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3239
3240 rc = register_netdevice_notifier(&efx_netdev_notifier);
3241 if (rc)
3242 goto err_notifier;
3243
cd2d5b52
BH
3244 rc = efx_init_sriov();
3245 if (rc)
3246 goto err_sriov;
3247
1ab00629
SH
3248 reset_workqueue = create_singlethread_workqueue("sfc_reset");
3249 if (!reset_workqueue) {
3250 rc = -ENOMEM;
3251 goto err_reset;
3252 }
8ceee660
BH
3253
3254 rc = pci_register_driver(&efx_pci_driver);
3255 if (rc < 0)
3256 goto err_pci;
3257
3258 return 0;
3259
3260 err_pci:
1ab00629
SH
3261 destroy_workqueue(reset_workqueue);
3262 err_reset:
cd2d5b52
BH
3263 efx_fini_sriov();
3264 err_sriov:
8ceee660
BH
3265 unregister_netdevice_notifier(&efx_netdev_notifier);
3266 err_notifier:
3267 return rc;
3268}
3269
3270static void __exit efx_exit_module(void)
3271{
3272 printk(KERN_INFO "Solarflare NET driver unloading\n");
3273
3274 pci_unregister_driver(&efx_pci_driver);
1ab00629 3275 destroy_workqueue(reset_workqueue);
cd2d5b52 3276 efx_fini_sriov();
8ceee660
BH
3277 unregister_netdevice_notifier(&efx_netdev_notifier);
3278
3279}
3280
3281module_init(efx_init_module);
3282module_exit(efx_exit_module);
3283
906bb26c
BH
3284MODULE_AUTHOR("Solarflare Communications and "
3285 "Michael Brown <mbrown@fensystems.co.uk>");
6a350fdb 3286MODULE_DESCRIPTION("Solarflare network driver");
8ceee660
BH
3287MODULE_LICENSE("GPL");
3288MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.896448 seconds and 5 git commands to generate.