sfc: Generate RX fill events based on RX queues, not channels
[deliverable/linux.git] / drivers / net / ethernet / sfc / nic.c
CommitLineData
8e730c15
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
0a6f40c6 4 * Copyright 2006-2011 Solarflare Communications Inc.
8e730c15
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/bitops.h>
12#include <linux/delay.h>
a6b7a407 13#include <linux/interrupt.h>
8e730c15
BH
14#include <linux/pci.h>
15#include <linux/module.h>
16#include <linux/seq_file.h>
17#include "net_driver.h"
18#include "bitfield.h"
19#include "efx.h"
20#include "nic.h"
21#include "regs.h"
22#include "io.h"
23#include "workarounds.h"
24
25/**************************************************************************
26 *
27 * Configurable values
28 *
29 **************************************************************************
30 */
31
32/* This is set to 16 for a good reason. In summary, if larger than
33 * 16, the descriptor cache holds more than a default socket
34 * buffer's worth of packets (for UDP we can only have at most one
35 * socket buffer's worth outstanding). This combined with the fact
36 * that we only get 1 TX event per descriptor cache means the NIC
37 * goes idle.
38 */
39#define TX_DC_ENTRIES 16
40#define TX_DC_ENTRIES_ORDER 1
41
42#define RX_DC_ENTRIES 64
43#define RX_DC_ENTRIES_ORDER 3
44
8e730c15
BH
45/* If EFX_MAX_INT_ERRORS internal errors occur within
46 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47 * disable it.
48 */
49#define EFX_INT_ERROR_EXPIRE 3600
50#define EFX_MAX_INT_ERRORS 5
51
52/* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
53 */
54#define EFX_FLUSH_INTERVAL 10
55#define EFX_FLUSH_POLL_COUNT 100
56
8e730c15
BH
57/* Depth of RX flush request fifo */
58#define EFX_RX_FLUSH_COUNT 4
59
4ef594eb
BH
60/* Driver generated events */
61#define _EFX_CHANNEL_MAGIC_TEST 0x000101
62#define _EFX_CHANNEL_MAGIC_FILL 0x000102
d730dc52 63
4ef594eb
BH
64#define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
65#define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
66
67#define EFX_CHANNEL_MAGIC_TEST(_channel) \
68 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
2ae75dac
BH
69#define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
70 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
71 efx_rx_queue_index(_rx_queue))
90d683af 72
8e730c15
BH
73/**************************************************************************
74 *
75 * Solarstorm hardware access
76 *
77 **************************************************************************/
78
79static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
80 unsigned int index)
81{
82 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
83 value, index);
84}
85
86/* Read the current event from the event queue */
87static inline efx_qword_t *efx_event(struct efx_channel *channel,
88 unsigned int index)
89{
d4fabcc8
BH
90 return ((efx_qword_t *) (channel->eventq.addr)) +
91 (index & channel->eventq_mask);
8e730c15
BH
92}
93
94/* See if an event is present
95 *
96 * We check both the high and low dword of the event for all ones. We
97 * wrote all ones when we cleared the event, and no valid event can
98 * have all ones in either its high or low dwords. This approach is
99 * robust against reordering.
100 *
101 * Note that using a single 64-bit comparison is incorrect; even
102 * though the CPU read will be atomic, the DMA write may not be.
103 */
104static inline int efx_event_present(efx_qword_t *event)
105{
807540ba
ED
106 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
107 EFX_DWORD_IS_ALL_ONES(event->dword[1]));
8e730c15
BH
108}
109
110static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
111 const efx_oword_t *mask)
112{
113 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
114 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
115}
116
117int efx_nic_test_registers(struct efx_nic *efx,
118 const struct efx_nic_register_test *regs,
119 size_t n_regs)
120{
121 unsigned address = 0, i, j;
122 efx_oword_t mask, imask, original, reg, buf;
123
124 /* Falcon should be in loopback to isolate the XMAC from the PHY */
125 WARN_ON(!LOOPBACK_INTERNAL(efx));
126
127 for (i = 0; i < n_regs; ++i) {
128 address = regs[i].address;
129 mask = imask = regs[i].mask;
130 EFX_INVERT_OWORD(imask);
131
132 efx_reado(efx, &original, address);
133
134 /* bit sweep on and off */
135 for (j = 0; j < 128; j++) {
136 if (!EFX_EXTRACT_OWORD32(mask, j, j))
137 continue;
138
139 /* Test this testable bit can be set in isolation */
140 EFX_AND_OWORD(reg, original, mask);
141 EFX_SET_OWORD32(reg, j, j, 1);
142
143 efx_writeo(efx, &reg, address);
144 efx_reado(efx, &buf, address);
145
146 if (efx_masked_compare_oword(&reg, &buf, &mask))
147 goto fail;
148
149 /* Test this testable bit can be cleared in isolation */
150 EFX_OR_OWORD(reg, original, mask);
151 EFX_SET_OWORD32(reg, j, j, 0);
152
153 efx_writeo(efx, &reg, address);
154 efx_reado(efx, &buf, address);
155
156 if (efx_masked_compare_oword(&reg, &buf, &mask))
157 goto fail;
158 }
159
160 efx_writeo(efx, &original, address);
161 }
162
163 return 0;
164
165fail:
62776d03
BH
166 netif_err(efx, hw, efx->net_dev,
167 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
168 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
169 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
8e730c15
BH
170 return -EIO;
171}
172
173/**************************************************************************
174 *
175 * Special buffer handling
176 * Special buffers are used for event queues and the TX and RX
177 * descriptor rings.
178 *
179 *************************************************************************/
180
181/*
182 * Initialise a special buffer
183 *
184 * This will define a buffer (previously allocated via
185 * efx_alloc_special_buffer()) in the buffer table, allowing
186 * it to be used for event queues, descriptor rings etc.
187 */
188static void
189efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
190{
191 efx_qword_t buf_desc;
192 int index;
193 dma_addr_t dma_addr;
194 int i;
195
196 EFX_BUG_ON_PARANOID(!buffer->addr);
197
198 /* Write buffer descriptors to NIC */
199 for (i = 0; i < buffer->entries; i++) {
200 index = buffer->index + i;
5b6262d0 201 dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
62776d03
BH
202 netif_dbg(efx, probe, efx->net_dev,
203 "mapping special buffer %d at %llx\n",
204 index, (unsigned long long)dma_addr);
8e730c15
BH
205 EFX_POPULATE_QWORD_3(buf_desc,
206 FRF_AZ_BUF_ADR_REGION, 0,
207 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
208 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
209 efx_write_buf_tbl(efx, &buf_desc, index);
210 }
211}
212
213/* Unmaps a buffer and clears the buffer table entries */
214static void
215efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
216{
217 efx_oword_t buf_tbl_upd;
218 unsigned int start = buffer->index;
219 unsigned int end = (buffer->index + buffer->entries - 1);
220
221 if (!buffer->entries)
222 return;
223
62776d03
BH
224 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
225 buffer->index, buffer->index + buffer->entries - 1);
8e730c15
BH
226
227 EFX_POPULATE_OWORD_4(buf_tbl_upd,
228 FRF_AZ_BUF_UPD_CMD, 0,
229 FRF_AZ_BUF_CLR_CMD, 1,
230 FRF_AZ_BUF_CLR_END_ID, end,
231 FRF_AZ_BUF_CLR_START_ID, start);
232 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
233}
234
235/*
236 * Allocate a new special buffer
237 *
238 * This allocates memory for a new buffer, clears it and allocates a
239 * new buffer ID range. It does not write into the buffer table.
240 *
241 * This call will allocate 4KB buffers, since 8KB buffers can't be
242 * used for event queues and descriptor rings.
243 */
244static int efx_alloc_special_buffer(struct efx_nic *efx,
245 struct efx_special_buffer *buffer,
246 unsigned int len)
247{
248 len = ALIGN(len, EFX_BUF_SIZE);
249
58758aa5
BH
250 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
251 &buffer->dma_addr, GFP_KERNEL);
8e730c15
BH
252 if (!buffer->addr)
253 return -ENOMEM;
254 buffer->len = len;
255 buffer->entries = len / EFX_BUF_SIZE;
256 BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
257
258 /* All zeros is a potentially valid event so memset to 0xff */
259 memset(buffer->addr, 0xff, len);
260
261 /* Select new buffer ID */
262 buffer->index = efx->next_buffer_table;
263 efx->next_buffer_table += buffer->entries;
264
62776d03
BH
265 netif_dbg(efx, probe, efx->net_dev,
266 "allocating special buffers %d-%d at %llx+%x "
267 "(virt %p phys %llx)\n", buffer->index,
268 buffer->index + buffer->entries - 1,
269 (u64)buffer->dma_addr, len,
270 buffer->addr, (u64)virt_to_phys(buffer->addr));
8e730c15
BH
271
272 return 0;
273}
274
275static void
276efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
277{
278 if (!buffer->addr)
279 return;
280
62776d03
BH
281 netif_dbg(efx, hw, efx->net_dev,
282 "deallocating special buffers %d-%d at %llx+%x "
283 "(virt %p phys %llx)\n", buffer->index,
284 buffer->index + buffer->entries - 1,
285 (u64)buffer->dma_addr, buffer->len,
286 buffer->addr, (u64)virt_to_phys(buffer->addr));
8e730c15 287
58758aa5
BH
288 dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
289 buffer->dma_addr);
8e730c15
BH
290 buffer->addr = NULL;
291 buffer->entries = 0;
292}
293
294/**************************************************************************
295 *
296 * Generic buffer handling
297 * These buffers are used for interrupt status and MAC stats
298 *
299 **************************************************************************/
300
301int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
302 unsigned int len)
303{
304 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
305 &buffer->dma_addr);
306 if (!buffer->addr)
307 return -ENOMEM;
308 buffer->len = len;
309 memset(buffer->addr, 0, len);
310 return 0;
311}
312
313void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
314{
315 if (buffer->addr) {
316 pci_free_consistent(efx->pci_dev, buffer->len,
317 buffer->addr, buffer->dma_addr);
318 buffer->addr = NULL;
319 }
320}
321
322/**************************************************************************
323 *
324 * TX path
325 *
326 **************************************************************************/
327
328/* Returns a pointer to the specified transmit descriptor in the TX
329 * descriptor queue belonging to the specified channel.
330 */
331static inline efx_qword_t *
332efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
333{
807540ba 334 return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
8e730c15
BH
335}
336
337/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
338static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
339{
340 unsigned write_ptr;
341 efx_dword_t reg;
342
ecc910f5 343 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
8e730c15
BH
344 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
345 efx_writed_page(tx_queue->efx, &reg,
346 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
347}
348
cd38557d
BH
349/* Write pointer and first descriptor for TX descriptor ring */
350static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
351 const efx_qword_t *txd)
352{
353 unsigned write_ptr;
354 efx_oword_t reg;
355
356 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
357 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
358
359 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
360 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
361 FRF_AZ_TX_DESC_WPTR, write_ptr);
362 reg.qword[0] = *txd;
363 efx_writeo_page(tx_queue->efx, &reg,
364 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
365}
366
367static inline bool
368efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
369{
370 unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
371
372 if (empty_read_count == 0)
373 return false;
374
375 tx_queue->empty_read_count = 0;
376 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
377}
8e730c15
BH
378
379/* For each entry inserted into the software descriptor ring, create a
380 * descriptor in the hardware TX descriptor ring (in host memory), and
381 * write a doorbell.
382 */
383void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
384{
385
386 struct efx_tx_buffer *buffer;
387 efx_qword_t *txd;
388 unsigned write_ptr;
cd38557d 389 unsigned old_write_count = tx_queue->write_count;
8e730c15
BH
390
391 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
392
393 do {
ecc910f5 394 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
8e730c15
BH
395 buffer = &tx_queue->buffer[write_ptr];
396 txd = efx_tx_desc(tx_queue, write_ptr);
397 ++tx_queue->write_count;
398
399 /* Create TX descriptor ring entry */
400 EFX_POPULATE_QWORD_4(*txd,
401 FSF_AZ_TX_KER_CONT, buffer->continuation,
402 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
403 FSF_AZ_TX_KER_BUF_REGION, 0,
404 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
405 } while (tx_queue->write_count != tx_queue->insert_count);
406
407 wmb(); /* Ensure descriptors are written before they are fetched */
cd38557d
BH
408
409 if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
410 txd = efx_tx_desc(tx_queue,
411 old_write_count & tx_queue->ptr_mask);
412 efx_push_tx_desc(tx_queue, txd);
413 ++tx_queue->pushes;
414 } else {
415 efx_notify_tx_desc(tx_queue);
416 }
8e730c15
BH
417}
418
419/* Allocate hardware resources for a TX queue */
420int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
421{
422 struct efx_nic *efx = tx_queue->efx;
ecc910f5
SH
423 unsigned entries;
424
425 entries = tx_queue->ptr_mask + 1;
8e730c15 426 return efx_alloc_special_buffer(efx, &tx_queue->txd,
ecc910f5 427 entries * sizeof(efx_qword_t));
8e730c15
BH
428}
429
430void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
431{
8e730c15 432 struct efx_nic *efx = tx_queue->efx;
94b274bf 433 efx_oword_t reg;
8e730c15
BH
434
435 tx_queue->flushed = FLUSH_NONE;
436
437 /* Pin TX descriptor ring */
438 efx_init_special_buffer(efx, &tx_queue->txd);
439
440 /* Push TX descriptor ring to card */
94b274bf 441 EFX_POPULATE_OWORD_10(reg,
8e730c15
BH
442 FRF_AZ_TX_DESCQ_EN, 1,
443 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
444 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
445 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
446 FRF_AZ_TX_DESCQ_EVQ_ID,
447 tx_queue->channel->channel,
448 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
449 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
450 FRF_AZ_TX_DESCQ_SIZE,
451 __ffs(tx_queue->txd.entries),
452 FRF_AZ_TX_DESCQ_TYPE, 0,
453 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
454
455 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
a4900ac9 456 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
94b274bf
BH
457 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
458 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
8e730c15
BH
459 !csum);
460 }
461
94b274bf 462 efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
8e730c15
BH
463 tx_queue->queue);
464
465 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
8e730c15 466 /* Only 128 bits in this register */
a4900ac9 467 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
8e730c15
BH
468
469 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
a4900ac9 470 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
8e730c15
BH
471 clear_bit_le(tx_queue->queue, (void *)&reg);
472 else
473 set_bit_le(tx_queue->queue, (void *)&reg);
474 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
475 }
94b274bf
BH
476
477 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
478 EFX_POPULATE_OWORD_1(reg,
479 FRF_BZ_TX_PACE,
480 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
481 FFE_BZ_TX_PACE_OFF :
482 FFE_BZ_TX_PACE_RESERVED);
483 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
484 tx_queue->queue);
485 }
8e730c15
BH
486}
487
488static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
489{
490 struct efx_nic *efx = tx_queue->efx;
491 efx_oword_t tx_flush_descq;
492
493 tx_queue->flushed = FLUSH_PENDING;
494
495 /* Post a flush command */
496 EFX_POPULATE_OWORD_2(tx_flush_descq,
497 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
498 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
499 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
500}
501
502void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
503{
504 struct efx_nic *efx = tx_queue->efx;
505 efx_oword_t tx_desc_ptr;
506
507 /* The queue should have been flushed */
508 WARN_ON(tx_queue->flushed != FLUSH_DONE);
509
510 /* Remove TX descriptor ring from card */
511 EFX_ZERO_OWORD(tx_desc_ptr);
512 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
513 tx_queue->queue);
514
515 /* Unpin TX descriptor ring */
516 efx_fini_special_buffer(efx, &tx_queue->txd);
517}
518
519/* Free buffers backing TX queue */
520void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
521{
522 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
523}
524
525/**************************************************************************
526 *
527 * RX path
528 *
529 **************************************************************************/
530
531/* Returns a pointer to the specified descriptor in the RX descriptor queue */
532static inline efx_qword_t *
533efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
534{
807540ba 535 return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
8e730c15
BH
536}
537
538/* This creates an entry in the RX descriptor queue */
539static inline void
540efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
541{
542 struct efx_rx_buffer *rx_buf;
543 efx_qword_t *rxd;
544
545 rxd = efx_rx_desc(rx_queue, index);
546 rx_buf = efx_rx_buffer(rx_queue, index);
547 EFX_POPULATE_QWORD_3(*rxd,
548 FSF_AZ_RX_KER_BUF_SIZE,
549 rx_buf->len -
550 rx_queue->efx->type->rx_buffer_padding,
551 FSF_AZ_RX_KER_BUF_REGION, 0,
552 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
553}
554
555/* This writes to the RX_DESC_WPTR register for the specified receive
556 * descriptor ring.
557 */
558void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
559{
ecc910f5 560 struct efx_nic *efx = rx_queue->efx;
8e730c15
BH
561 efx_dword_t reg;
562 unsigned write_ptr;
563
564 while (rx_queue->notified_count != rx_queue->added_count) {
ecc910f5
SH
565 efx_build_rx_desc(
566 rx_queue,
567 rx_queue->notified_count & rx_queue->ptr_mask);
8e730c15
BH
568 ++rx_queue->notified_count;
569 }
570
571 wmb();
ecc910f5 572 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
8e730c15 573 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
ecc910f5 574 efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
ba1e8a35 575 efx_rx_queue_index(rx_queue));
8e730c15
BH
576}
577
578int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
579{
580 struct efx_nic *efx = rx_queue->efx;
ecc910f5
SH
581 unsigned entries;
582
583 entries = rx_queue->ptr_mask + 1;
8e730c15 584 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
ecc910f5 585 entries * sizeof(efx_qword_t));
8e730c15
BH
586}
587
588void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
589{
590 efx_oword_t rx_desc_ptr;
591 struct efx_nic *efx = rx_queue->efx;
592 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
593 bool iscsi_digest_en = is_b0;
594
62776d03
BH
595 netif_dbg(efx, hw, efx->net_dev,
596 "RX queue %d ring in special buffers %d-%d\n",
ba1e8a35 597 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
62776d03 598 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
8e730c15
BH
599
600 rx_queue->flushed = FLUSH_NONE;
601
602 /* Pin RX descriptor ring */
603 efx_init_special_buffer(efx, &rx_queue->rxd);
604
605 /* Push RX descriptor ring to card */
606 EFX_POPULATE_OWORD_10(rx_desc_ptr,
607 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
608 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
609 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
610 FRF_AZ_RX_DESCQ_EVQ_ID,
ba1e8a35 611 efx_rx_queue_channel(rx_queue)->channel,
8e730c15 612 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
ba1e8a35
BH
613 FRF_AZ_RX_DESCQ_LABEL,
614 efx_rx_queue_index(rx_queue),
8e730c15
BH
615 FRF_AZ_RX_DESCQ_SIZE,
616 __ffs(rx_queue->rxd.entries),
617 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
618 /* For >=B0 this is scatter so disable */
619 FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
620 FRF_AZ_RX_DESCQ_EN, 1);
621 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
ba1e8a35 622 efx_rx_queue_index(rx_queue));
8e730c15
BH
623}
624
625static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
626{
627 struct efx_nic *efx = rx_queue->efx;
628 efx_oword_t rx_flush_descq;
629
630 rx_queue->flushed = FLUSH_PENDING;
631
632 /* Post a flush command */
633 EFX_POPULATE_OWORD_2(rx_flush_descq,
634 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
ba1e8a35
BH
635 FRF_AZ_RX_FLUSH_DESCQ,
636 efx_rx_queue_index(rx_queue));
8e730c15
BH
637 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
638}
639
640void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
641{
642 efx_oword_t rx_desc_ptr;
643 struct efx_nic *efx = rx_queue->efx;
644
645 /* The queue should already have been flushed */
646 WARN_ON(rx_queue->flushed != FLUSH_DONE);
647
648 /* Remove RX descriptor ring from card */
649 EFX_ZERO_OWORD(rx_desc_ptr);
650 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
ba1e8a35 651 efx_rx_queue_index(rx_queue));
8e730c15
BH
652
653 /* Unpin RX descriptor ring */
654 efx_fini_special_buffer(efx, &rx_queue->rxd);
655}
656
657/* Free buffers backing RX queue */
658void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
659{
660 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
661}
662
663/**************************************************************************
664 *
665 * Event queue processing
666 * Event queues are processed by per-channel tasklets.
667 *
668 **************************************************************************/
669
670/* Update a channel's event queue's read pointer (RPTR) register
671 *
672 * This writes the EVQ_RPTR_REG register for the specified channel's
673 * event queue.
8e730c15
BH
674 */
675void efx_nic_eventq_read_ack(struct efx_channel *channel)
676{
677 efx_dword_t reg;
678 struct efx_nic *efx = channel->efx;
679
d4fabcc8
BH
680 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
681 channel->eventq_read_ptr & channel->eventq_mask);
8e730c15
BH
682 efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
683 channel->channel);
684}
685
686/* Use HW to insert a SW defined event */
d215697f 687static void efx_generate_event(struct efx_channel *channel, efx_qword_t *event)
8e730c15
BH
688{
689 efx_oword_t drv_ev_reg;
690
691 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
692 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
693 drv_ev_reg.u32[0] = event->u32[0];
694 drv_ev_reg.u32[1] = event->u32[1];
695 drv_ev_reg.u32[2] = 0;
696 drv_ev_reg.u32[3] = 0;
697 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
698 efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
699}
700
4ef594eb
BH
701static void efx_magic_event(struct efx_channel *channel, u32 magic)
702{
703 efx_qword_t event;
704
705 EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
706 FSE_AZ_EV_CODE_DRV_GEN_EV,
707 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
708 efx_generate_event(channel, &event);
709}
710
8e730c15
BH
711/* Handle a transmit completion event
712 *
713 * The NIC batches TX completion events; the message we receive is of
714 * the form "complete all TX events up to this index".
715 */
fa236e18 716static int
8e730c15
BH
717efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
718{
719 unsigned int tx_ev_desc_ptr;
720 unsigned int tx_ev_q_label;
721 struct efx_tx_queue *tx_queue;
722 struct efx_nic *efx = channel->efx;
fa236e18 723 int tx_packets = 0;
8e730c15
BH
724
725 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
726 /* Transmit completion */
727 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
728 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
f7d12cdc
BH
729 tx_queue = efx_channel_get_tx_queue(
730 channel, tx_ev_q_label % EFX_TXQ_TYPES);
fa236e18 731 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
ecc910f5 732 tx_queue->ptr_mask);
fa236e18 733 channel->irq_mod_score += tx_packets;
8e730c15
BH
734 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
735 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
736 /* Rewrite the FIFO write pointer */
737 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
f7d12cdc
BH
738 tx_queue = efx_channel_get_tx_queue(
739 channel, tx_ev_q_label % EFX_TXQ_TYPES);
8e730c15 740
73ba7b68 741 netif_tx_lock(efx->net_dev);
8e730c15 742 efx_notify_tx_desc(tx_queue);
73ba7b68 743 netif_tx_unlock(efx->net_dev);
8e730c15
BH
744 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
745 EFX_WORKAROUND_10727(efx)) {
746 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
747 } else {
62776d03
BH
748 netif_err(efx, tx_err, efx->net_dev,
749 "channel %d unexpected TX event "
750 EFX_QWORD_FMT"\n", channel->channel,
751 EFX_QWORD_VAL(*event));
8e730c15 752 }
fa236e18
BH
753
754 return tx_packets;
8e730c15
BH
755}
756
757/* Detect errors included in the rx_evt_pkt_ok bit. */
db339569
BH
758static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
759 const efx_qword_t *event)
8e730c15 760{
ba1e8a35 761 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
8e730c15
BH
762 struct efx_nic *efx = rx_queue->efx;
763 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
764 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
765 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
766 bool rx_ev_other_err, rx_ev_pause_frm;
767 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
768 unsigned rx_ev_pkt_type;
769
770 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
771 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
772 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
773 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
774 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
775 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
776 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
777 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
778 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
779 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
780 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
781 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
782 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
783 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
784 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
785
786 /* Every error apart from tobe_disc and pause_frm */
787 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
788 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
789 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
790
791 /* Count errors that are not in MAC stats. Ignore expected
792 * checksum errors during self-test. */
793 if (rx_ev_frm_trunc)
ba1e8a35 794 ++channel->n_rx_frm_trunc;
8e730c15 795 else if (rx_ev_tobe_disc)
ba1e8a35 796 ++channel->n_rx_tobe_disc;
8e730c15
BH
797 else if (!efx->loopback_selftest) {
798 if (rx_ev_ip_hdr_chksum_err)
ba1e8a35 799 ++channel->n_rx_ip_hdr_chksum_err;
8e730c15 800 else if (rx_ev_tcp_udp_chksum_err)
ba1e8a35 801 ++channel->n_rx_tcp_udp_chksum_err;
8e730c15
BH
802 }
803
8e730c15
BH
804 /* TOBE_DISC is expected on unicast mismatches; don't print out an
805 * error message. FRM_TRUNC indicates RXDP dropped the packet due
806 * to a FIFO overflow.
807 */
5f3f9d6c 808#ifdef DEBUG
62776d03
BH
809 if (rx_ev_other_err && net_ratelimit()) {
810 netif_dbg(efx, rx_err, efx->net_dev,
811 " RX queue %d unexpected RX event "
812 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
ba1e8a35 813 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
62776d03
BH
814 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
815 rx_ev_ip_hdr_chksum_err ?
816 " [IP_HDR_CHKSUM_ERR]" : "",
817 rx_ev_tcp_udp_chksum_err ?
818 " [TCP_UDP_CHKSUM_ERR]" : "",
819 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
820 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
821 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
822 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
823 rx_ev_pause_frm ? " [PAUSE]" : "");
8e730c15
BH
824 }
825#endif
db339569
BH
826
827 /* The frame must be discarded if any of these are true. */
828 return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
829 rx_ev_tobe_disc | rx_ev_pause_frm) ?
830 EFX_RX_PKT_DISCARD : 0;
8e730c15
BH
831}
832
833/* Handle receive events that are not in-order. */
834static void
835efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
836{
837 struct efx_nic *efx = rx_queue->efx;
838 unsigned expected, dropped;
839
ecc910f5
SH
840 expected = rx_queue->removed_count & rx_queue->ptr_mask;
841 dropped = (index - expected) & rx_queue->ptr_mask;
62776d03
BH
842 netif_info(efx, rx_err, efx->net_dev,
843 "dropped %d events (index=%d expected=%d)\n",
844 dropped, index, expected);
8e730c15
BH
845
846 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
847 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
848}
849
850/* Handle a packet received event
851 *
852 * The NIC gives a "discard" flag if it's a unicast packet with the
853 * wrong destination address
854 * Also "is multicast" and "matches multicast filter" flags can be used to
855 * discard non-matching multicast packets.
856 */
857static void
858efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
859{
860 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
861 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
862 unsigned expected_ptr;
db339569
BH
863 bool rx_ev_pkt_ok;
864 u16 flags;
8e730c15 865 struct efx_rx_queue *rx_queue;
8e730c15
BH
866
867 /* Basic packet information */
868 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
869 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
870 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
871 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
872 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
873 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
874 channel->channel);
875
f7d12cdc 876 rx_queue = efx_channel_get_rx_queue(channel);
8e730c15
BH
877
878 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
ecc910f5 879 expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
8e730c15
BH
880 if (unlikely(rx_ev_desc_ptr != expected_ptr))
881 efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
882
883 if (likely(rx_ev_pkt_ok)) {
884 /* If packet is marked as OK and packet type is TCP/IP or
885 * UDP/IP, then we can rely on the hardware checksum.
886 */
db339569
BH
887 flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
888 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
889 EFX_RX_PKT_CSUMMED : 0;
8e730c15 890 } else {
db339569 891 flags = efx_handle_rx_not_ok(rx_queue, event);
8e730c15
BH
892 }
893
894 /* Detect multicast packets that didn't match the filter */
895 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
896 if (rx_ev_mcast_pkt) {
897 unsigned int rx_ev_mcast_hash_match =
898 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
899
900 if (unlikely(!rx_ev_mcast_hash_match)) {
901 ++channel->n_rx_mcast_mismatch;
db339569 902 flags |= EFX_RX_PKT_DISCARD;
8e730c15
BH
903 }
904 }
905
906 channel->irq_mod_score += 2;
907
908 /* Handle received packet */
db339569 909 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags);
8e730c15
BH
910}
911
90d683af
SH
912static void
913efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
914{
915 struct efx_nic *efx = channel->efx;
2ae75dac
BH
916 struct efx_rx_queue *rx_queue =
917 efx_channel_has_rx_queue(channel) ?
918 efx_channel_get_rx_queue(channel) : NULL;
4ef594eb 919 unsigned magic;
90d683af 920
4ef594eb
BH
921 magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
922
923 if (magic == EFX_CHANNEL_MAGIC_TEST(channel))
d4fabcc8 924 ; /* ignore */
2ae75dac 925 else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue))
90d683af
SH
926 /* The queue must be empty, so we won't receive any rx
927 * events, so efx_process_channel() won't refill the
928 * queue. Refill it here */
2ae75dac 929 efx_fast_push_rx_descriptors(rx_queue);
90d683af 930 else
62776d03
BH
931 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
932 "generated event "EFX_QWORD_FMT"\n",
933 channel->channel, EFX_QWORD_VAL(*event));
90d683af
SH
934}
935
8e730c15
BH
936static void
937efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
938{
939 struct efx_nic *efx = channel->efx;
940 unsigned int ev_sub_code;
941 unsigned int ev_sub_data;
942
943 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
944 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
945
946 switch (ev_sub_code) {
947 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
62776d03
BH
948 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
949 channel->channel, ev_sub_data);
8e730c15
BH
950 break;
951 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
62776d03
BH
952 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
953 channel->channel, ev_sub_data);
8e730c15
BH
954 break;
955 case FSE_AZ_EVQ_INIT_DONE_EV:
62776d03
BH
956 netif_dbg(efx, hw, efx->net_dev,
957 "channel %d EVQ %d initialised\n",
958 channel->channel, ev_sub_data);
8e730c15
BH
959 break;
960 case FSE_AZ_SRM_UPD_DONE_EV:
62776d03
BH
961 netif_vdbg(efx, hw, efx->net_dev,
962 "channel %d SRAM update done\n", channel->channel);
8e730c15
BH
963 break;
964 case FSE_AZ_WAKE_UP_EV:
62776d03
BH
965 netif_vdbg(efx, hw, efx->net_dev,
966 "channel %d RXQ %d wakeup event\n",
967 channel->channel, ev_sub_data);
8e730c15
BH
968 break;
969 case FSE_AZ_TIMER_EV:
62776d03
BH
970 netif_vdbg(efx, hw, efx->net_dev,
971 "channel %d RX queue %d timer expired\n",
972 channel->channel, ev_sub_data);
8e730c15
BH
973 break;
974 case FSE_AA_RX_RECOVER_EV:
62776d03
BH
975 netif_err(efx, rx_err, efx->net_dev,
976 "channel %d seen DRIVER RX_RESET event. "
8e730c15
BH
977 "Resetting.\n", channel->channel);
978 atomic_inc(&efx->rx_reset);
979 efx_schedule_reset(efx,
980 EFX_WORKAROUND_6555(efx) ?
981 RESET_TYPE_RX_RECOVERY :
982 RESET_TYPE_DISABLE);
983 break;
984 case FSE_BZ_RX_DSC_ERROR_EV:
62776d03
BH
985 netif_err(efx, rx_err, efx->net_dev,
986 "RX DMA Q %d reports descriptor fetch error."
987 " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
8e730c15
BH
988 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
989 break;
990 case FSE_BZ_TX_DSC_ERROR_EV:
62776d03
BH
991 netif_err(efx, tx_err, efx->net_dev,
992 "TX DMA Q %d reports descriptor fetch error."
993 " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
8e730c15
BH
994 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
995 break;
996 default:
62776d03
BH
997 netif_vdbg(efx, hw, efx->net_dev,
998 "channel %d unknown driver event code %d "
999 "data %04x\n", channel->channel, ev_sub_code,
1000 ev_sub_data);
8e730c15
BH
1001 break;
1002 }
1003}
1004
fa236e18 1005int efx_nic_process_eventq(struct efx_channel *channel, int budget)
8e730c15 1006{
ecc910f5 1007 struct efx_nic *efx = channel->efx;
8e730c15
BH
1008 unsigned int read_ptr;
1009 efx_qword_t event, *p_event;
1010 int ev_code;
fa236e18
BH
1011 int tx_packets = 0;
1012 int spent = 0;
8e730c15
BH
1013
1014 read_ptr = channel->eventq_read_ptr;
1015
fa236e18 1016 for (;;) {
8e730c15
BH
1017 p_event = efx_event(channel, read_ptr);
1018 event = *p_event;
1019
1020 if (!efx_event_present(&event))
1021 /* End of events */
1022 break;
1023
62776d03
BH
1024 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1025 "channel %d event is "EFX_QWORD_FMT"\n",
1026 channel->channel, EFX_QWORD_VAL(event));
8e730c15
BH
1027
1028 /* Clear this event by marking it all ones */
1029 EFX_SET_QWORD(*p_event);
1030
d4fabcc8 1031 ++read_ptr;
fa236e18 1032
8e730c15
BH
1033 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1034
1035 switch (ev_code) {
1036 case FSE_AZ_EV_CODE_RX_EV:
1037 efx_handle_rx_event(channel, &event);
fa236e18
BH
1038 if (++spent == budget)
1039 goto out;
8e730c15
BH
1040 break;
1041 case FSE_AZ_EV_CODE_TX_EV:
fa236e18 1042 tx_packets += efx_handle_tx_event(channel, &event);
ecc910f5 1043 if (tx_packets > efx->txq_entries) {
fa236e18
BH
1044 spent = budget;
1045 goto out;
1046 }
8e730c15
BH
1047 break;
1048 case FSE_AZ_EV_CODE_DRV_GEN_EV:
90d683af 1049 efx_handle_generated_event(channel, &event);
8e730c15 1050 break;
8e730c15
BH
1051 case FSE_AZ_EV_CODE_DRIVER_EV:
1052 efx_handle_driver_event(channel, &event);
1053 break;
8880f4ec
BH
1054 case FSE_CZ_EV_CODE_MCDI_EV:
1055 efx_mcdi_process_event(channel, &event);
1056 break;
40641ed9
BH
1057 case FSE_AZ_EV_CODE_GLOBAL_EV:
1058 if (efx->type->handle_global_event &&
1059 efx->type->handle_global_event(channel, &event))
1060 break;
1061 /* else fall through */
8e730c15 1062 default:
62776d03
BH
1063 netif_err(channel->efx, hw, channel->efx->net_dev,
1064 "channel %d unknown event type %d (data "
1065 EFX_QWORD_FMT ")\n", channel->channel,
1066 ev_code, EFX_QWORD_VAL(event));
8e730c15 1067 }
fa236e18 1068 }
8e730c15 1069
fa236e18 1070out:
8e730c15 1071 channel->eventq_read_ptr = read_ptr;
fa236e18 1072 return spent;
8e730c15
BH
1073}
1074
d4fabcc8
BH
1075/* Check whether an event is present in the eventq at the current
1076 * read pointer. Only useful for self-test.
1077 */
1078bool efx_nic_event_present(struct efx_channel *channel)
1079{
1080 return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1081}
8e730c15
BH
1082
1083/* Allocate buffer table entries for event queue */
1084int efx_nic_probe_eventq(struct efx_channel *channel)
1085{
1086 struct efx_nic *efx = channel->efx;
ecc910f5
SH
1087 unsigned entries;
1088
1089 entries = channel->eventq_mask + 1;
8e730c15 1090 return efx_alloc_special_buffer(efx, &channel->eventq,
ecc910f5 1091 entries * sizeof(efx_qword_t));
8e730c15
BH
1092}
1093
1094void efx_nic_init_eventq(struct efx_channel *channel)
1095{
8880f4ec 1096 efx_oword_t reg;
8e730c15
BH
1097 struct efx_nic *efx = channel->efx;
1098
62776d03
BH
1099 netif_dbg(efx, hw, efx->net_dev,
1100 "channel %d event queue in special buffers %d-%d\n",
1101 channel->channel, channel->eventq.index,
1102 channel->eventq.index + channel->eventq.entries - 1);
8e730c15 1103
8880f4ec
BH
1104 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1105 EFX_POPULATE_OWORD_3(reg,
1106 FRF_CZ_TIMER_Q_EN, 1,
1107 FRF_CZ_HOST_NOTIFY_MODE, 0,
1108 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1109 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1110 }
1111
8e730c15
BH
1112 /* Pin event queue buffer */
1113 efx_init_special_buffer(efx, &channel->eventq);
1114
1115 /* Fill event queue with all ones (i.e. empty events) */
1116 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1117
1118 /* Push event queue to card */
8880f4ec 1119 EFX_POPULATE_OWORD_3(reg,
8e730c15
BH
1120 FRF_AZ_EVQ_EN, 1,
1121 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1122 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
8880f4ec 1123 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
8e730c15
BH
1124 channel->channel);
1125
1126 efx->type->push_irq_moderation(channel);
1127}
1128
1129void efx_nic_fini_eventq(struct efx_channel *channel)
1130{
8880f4ec 1131 efx_oword_t reg;
8e730c15
BH
1132 struct efx_nic *efx = channel->efx;
1133
1134 /* Remove event queue from card */
8880f4ec
BH
1135 EFX_ZERO_OWORD(reg);
1136 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
8e730c15 1137 channel->channel);
8880f4ec
BH
1138 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1139 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
8e730c15
BH
1140
1141 /* Unpin event queue */
1142 efx_fini_special_buffer(efx, &channel->eventq);
1143}
1144
1145/* Free buffers backing event queue */
1146void efx_nic_remove_eventq(struct efx_channel *channel)
1147{
1148 efx_free_special_buffer(channel->efx, &channel->eventq);
1149}
1150
1151
d730dc52 1152void efx_nic_generate_test_event(struct efx_channel *channel)
8e730c15 1153{
4ef594eb 1154 efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
90d683af
SH
1155}
1156
2ae75dac 1157void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
90d683af 1158{
2ae75dac
BH
1159 efx_magic_event(efx_rx_queue_channel(rx_queue),
1160 EFX_CHANNEL_MAGIC_FILL(rx_queue));
8e730c15
BH
1161}
1162
1163/**************************************************************************
1164 *
1165 * Flush handling
1166 *
1167 **************************************************************************/
1168
1169
1170static void efx_poll_flush_events(struct efx_nic *efx)
1171{
f7d12cdc 1172 struct efx_channel *channel = efx_get_channel(efx, 0);
8e730c15
BH
1173 struct efx_tx_queue *tx_queue;
1174 struct efx_rx_queue *rx_queue;
1175 unsigned int read_ptr = channel->eventq_read_ptr;
d4fabcc8 1176 unsigned int end_ptr = read_ptr + channel->eventq_mask - 1;
8e730c15
BH
1177
1178 do {
1179 efx_qword_t *event = efx_event(channel, read_ptr);
1180 int ev_code, ev_sub_code, ev_queue;
1181 bool ev_failed;
1182
1183 if (!efx_event_present(event))
1184 break;
1185
1186 ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1187 ev_sub_code = EFX_QWORD_FIELD(*event,
1188 FSF_AZ_DRIVER_EV_SUBCODE);
1189 if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1190 ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1191 ev_queue = EFX_QWORD_FIELD(*event,
1192 FSF_AZ_DRIVER_EV_SUBDATA);
a4900ac9 1193 if (ev_queue < EFX_TXQ_TYPES * efx->n_tx_channels) {
f7d12cdc
BH
1194 tx_queue = efx_get_tx_queue(
1195 efx, ev_queue / EFX_TXQ_TYPES,
1196 ev_queue % EFX_TXQ_TYPES);
8e730c15
BH
1197 tx_queue->flushed = FLUSH_DONE;
1198 }
1199 } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1200 ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1201 ev_queue = EFX_QWORD_FIELD(
1202 *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1203 ev_failed = EFX_QWORD_FIELD(
1204 *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
a4900ac9 1205 if (ev_queue < efx->n_rx_channels) {
f7d12cdc 1206 rx_queue = efx_get_rx_queue(efx, ev_queue);
8e730c15
BH
1207 rx_queue->flushed =
1208 ev_failed ? FLUSH_FAILED : FLUSH_DONE;
1209 }
1210 }
1211
1212 /* We're about to destroy the queue anyway, so
1213 * it's ok to throw away every non-flush event */
1214 EFX_SET_QWORD(*event);
1215
d4fabcc8 1216 ++read_ptr;
8e730c15
BH
1217 } while (read_ptr != end_ptr);
1218
1219 channel->eventq_read_ptr = read_ptr;
1220}
1221
1222/* Handle tx and rx flushes at the same time, since they run in
1223 * parallel in the hardware and there's no reason for us to
1224 * serialise them */
1225int efx_nic_flush_queues(struct efx_nic *efx)
1226{
f7d12cdc 1227 struct efx_channel *channel;
8e730c15
BH
1228 struct efx_rx_queue *rx_queue;
1229 struct efx_tx_queue *tx_queue;
1230 int i, tx_pending, rx_pending;
1231
1232 /* If necessary prepare the hardware for flushing */
1233 efx->type->prepare_flush(efx);
1234
1235 /* Flush all tx queues in parallel */
f7d12cdc 1236 efx_for_each_channel(channel, efx) {
94b274bf
BH
1237 efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
1238 if (tx_queue->initialised)
1239 efx_flush_tx_queue(tx_queue);
1240 }
f7d12cdc 1241 }
8e730c15
BH
1242
1243 /* The hardware supports four concurrent rx flushes, each of which may
1244 * need to be retried if there is an outstanding descriptor fetch */
1245 for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) {
1246 rx_pending = tx_pending = 0;
f7d12cdc
BH
1247 efx_for_each_channel(channel, efx) {
1248 efx_for_each_channel_rx_queue(rx_queue, channel) {
1249 if (rx_queue->flushed == FLUSH_PENDING)
1250 ++rx_pending;
8e730c15
BH
1251 }
1252 }
f7d12cdc
BH
1253 efx_for_each_channel(channel, efx) {
1254 efx_for_each_channel_rx_queue(rx_queue, channel) {
1255 if (rx_pending == EFX_RX_FLUSH_COUNT)
1256 break;
1257 if (rx_queue->flushed == FLUSH_FAILED ||
1258 rx_queue->flushed == FLUSH_NONE) {
1259 efx_flush_rx_queue(rx_queue);
1260 ++rx_pending;
1261 }
1262 }
94b274bf
BH
1263 efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
1264 if (tx_queue->initialised &&
1265 tx_queue->flushed != FLUSH_DONE)
f7d12cdc
BH
1266 ++tx_pending;
1267 }
8e730c15
BH
1268 }
1269
1270 if (rx_pending == 0 && tx_pending == 0)
1271 return 0;
1272
1273 msleep(EFX_FLUSH_INTERVAL);
1274 efx_poll_flush_events(efx);
1275 }
1276
1277 /* Mark the queues as all flushed. We're going to return failure
1278 * leading to a reset, or fake up success anyway */
f7d12cdc 1279 efx_for_each_channel(channel, efx) {
94b274bf
BH
1280 efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
1281 if (tx_queue->initialised &&
1282 tx_queue->flushed != FLUSH_DONE)
f7d12cdc
BH
1283 netif_err(efx, hw, efx->net_dev,
1284 "tx queue %d flush command timed out\n",
1285 tx_queue->queue);
1286 tx_queue->flushed = FLUSH_DONE;
1287 }
1288 efx_for_each_channel_rx_queue(rx_queue, channel) {
1289 if (rx_queue->flushed != FLUSH_DONE)
1290 netif_err(efx, hw, efx->net_dev,
1291 "rx queue %d flush command timed out\n",
1292 efx_rx_queue_index(rx_queue));
1293 rx_queue->flushed = FLUSH_DONE;
1294 }
8e730c15
BH
1295 }
1296
8e730c15
BH
1297 return -ETIMEDOUT;
1298}
1299
1300/**************************************************************************
1301 *
1302 * Hardware interrupts
1303 * The hardware interrupt handler does very little work; all the event
1304 * queue processing is carried out by per-channel tasklets.
1305 *
1306 **************************************************************************/
1307
1308/* Enable/disable/generate interrupts */
1309static inline void efx_nic_interrupts(struct efx_nic *efx,
1310 bool enabled, bool force)
1311{
1312 efx_oword_t int_en_reg_ker;
8880f4ec
BH
1313
1314 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1646a6f3 1315 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
8e730c15
BH
1316 FRF_AZ_KER_INT_KER, force,
1317 FRF_AZ_DRV_INT_EN_KER, enabled);
1318 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1319}
1320
1321void efx_nic_enable_interrupts(struct efx_nic *efx)
1322{
1323 struct efx_channel *channel;
1324
1325 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1326 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1327
1328 /* Enable interrupts */
1329 efx_nic_interrupts(efx, true, false);
1330
1331 /* Force processing of all the channels to get the EVQ RPTRs up to
1332 date */
1333 efx_for_each_channel(channel, efx)
1334 efx_schedule_channel(channel);
1335}
1336
1337void efx_nic_disable_interrupts(struct efx_nic *efx)
1338{
1339 /* Disable interrupts */
1340 efx_nic_interrupts(efx, false, false);
1341}
1342
1343/* Generate a test interrupt
1344 * Interrupt must already have been enabled, otherwise nasty things
1345 * may happen.
1346 */
1347void efx_nic_generate_interrupt(struct efx_nic *efx)
1348{
1349 efx_nic_interrupts(efx, true, true);
1350}
1351
1352/* Process a fatal interrupt
1353 * Disable bus mastering ASAP and schedule a reset
1354 */
1355irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1356{
1357 struct falcon_nic_data *nic_data = efx->nic_data;
1358 efx_oword_t *int_ker = efx->irq_status.addr;
1359 efx_oword_t fatal_intr;
1360 int error, mem_perr;
1361
1362 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1363 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1364
62776d03
BH
1365 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1366 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1367 EFX_OWORD_VAL(fatal_intr),
1368 error ? "disabling bus mastering" : "no recognised error");
8e730c15
BH
1369
1370 /* If this is a memory parity error dump which blocks are offending */
97e1eaa0
SH
1371 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1372 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
8e730c15
BH
1373 if (mem_perr) {
1374 efx_oword_t reg;
1375 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
62776d03
BH
1376 netif_err(efx, hw, efx->net_dev,
1377 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1378 EFX_OWORD_VAL(reg));
8e730c15
BH
1379 }
1380
1381 /* Disable both devices */
1382 pci_clear_master(efx->pci_dev);
1383 if (efx_nic_is_dual_func(efx))
1384 pci_clear_master(nic_data->pci_dev2);
1385 efx_nic_disable_interrupts(efx);
1386
1387 /* Count errors and reset or disable the NIC accordingly */
1388 if (efx->int_error_count == 0 ||
1389 time_after(jiffies, efx->int_error_expire)) {
1390 efx->int_error_count = 0;
1391 efx->int_error_expire =
1392 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1393 }
1394 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
62776d03
BH
1395 netif_err(efx, hw, efx->net_dev,
1396 "SYSTEM ERROR - reset scheduled\n");
8e730c15
BH
1397 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1398 } else {
62776d03
BH
1399 netif_err(efx, hw, efx->net_dev,
1400 "SYSTEM ERROR - max number of errors seen."
1401 "NIC will be disabled\n");
8e730c15
BH
1402 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1403 }
63695459 1404
8e730c15
BH
1405 return IRQ_HANDLED;
1406}
1407
1408/* Handle a legacy interrupt
1409 * Acknowledges the interrupt and schedule event queue processing.
1410 */
1411static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1412{
1413 struct efx_nic *efx = dev_id;
1414 efx_oword_t *int_ker = efx->irq_status.addr;
1415 irqreturn_t result = IRQ_NONE;
1416 struct efx_channel *channel;
1417 efx_dword_t reg;
1418 u32 queues;
1419 int syserr;
1420
94dec6a2
BH
1421 /* Could this be ours? If interrupts are disabled then the
1422 * channel state may not be valid.
1423 */
1424 if (!efx->legacy_irq_enabled)
1425 return result;
1426
8e730c15
BH
1427 /* Read the ISR which also ACKs the interrupts */
1428 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1429 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1430
1646a6f3
BH
1431 /* Handle non-event-queue sources */
1432 if (queues & (1U << efx->irq_level)) {
63695459
SH
1433 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1434 if (unlikely(syserr))
1435 return efx_nic_fatal_interrupt(efx);
1646a6f3 1436 efx->last_irq_cpu = raw_smp_processor_id();
63695459 1437 }
8e730c15 1438
8880f4ec
BH
1439 if (queues != 0) {
1440 if (EFX_WORKAROUND_15783(efx))
1441 efx->irq_zero_count = 0;
1442
1443 /* Schedule processing of any interrupting queues */
1444 efx_for_each_channel(channel, efx) {
1445 if (queues & 1)
1646a6f3 1446 efx_schedule_channel_irq(channel);
8880f4ec 1447 queues >>= 1;
8e730c15 1448 }
8880f4ec
BH
1449 result = IRQ_HANDLED;
1450
41b7e4c3 1451 } else if (EFX_WORKAROUND_15783(efx)) {
8880f4ec
BH
1452 efx_qword_t *event;
1453
41b7e4c3
SH
1454 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1455 * because this might be a shared interrupt. */
1456 if (efx->irq_zero_count++ == 0)
1457 result = IRQ_HANDLED;
1458
1459 /* Ensure we schedule or rearm all event queues */
8880f4ec
BH
1460 efx_for_each_channel(channel, efx) {
1461 event = efx_event(channel, channel->eventq_read_ptr);
1462 if (efx_event_present(event))
1646a6f3 1463 efx_schedule_channel_irq(channel);
41b7e4c3
SH
1464 else
1465 efx_nic_eventq_read_ack(channel);
8880f4ec 1466 }
8e730c15
BH
1467 }
1468
1646a6f3 1469 if (result == IRQ_HANDLED)
62776d03
BH
1470 netif_vdbg(efx, intr, efx->net_dev,
1471 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1472 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
8e730c15
BH
1473
1474 return result;
1475}
1476
1477/* Handle an MSI interrupt
1478 *
1479 * Handle an MSI hardware interrupt. This routine schedules event
1480 * queue processing. No interrupt acknowledgement cycle is necessary.
1481 * Also, we never need to check that the interrupt is for us, since
1482 * MSI interrupts cannot be shared.
1483 */
1484static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1485{
4642610c 1486 struct efx_channel *channel = *(struct efx_channel **)dev_id;
8e730c15
BH
1487 struct efx_nic *efx = channel->efx;
1488 efx_oword_t *int_ker = efx->irq_status.addr;
1489 int syserr;
1490
62776d03
BH
1491 netif_vdbg(efx, intr, efx->net_dev,
1492 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1493 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
8e730c15 1494
1646a6f3
BH
1495 /* Handle non-event-queue sources */
1496 if (channel->channel == efx->irq_level) {
63695459
SH
1497 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1498 if (unlikely(syserr))
1499 return efx_nic_fatal_interrupt(efx);
1646a6f3 1500 efx->last_irq_cpu = raw_smp_processor_id();
63695459 1501 }
8e730c15
BH
1502
1503 /* Schedule processing of the channel */
1646a6f3 1504 efx_schedule_channel_irq(channel);
8e730c15
BH
1505
1506 return IRQ_HANDLED;
1507}
1508
1509
1510/* Setup RSS indirection table.
1511 * This maps from the hash value of the packet to RXQ
1512 */
765c9f46 1513void efx_nic_push_rx_indir_table(struct efx_nic *efx)
8e730c15 1514{
765c9f46 1515 size_t i = 0;
8e730c15
BH
1516 efx_dword_t dword;
1517
1518 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1519 return;
1520
765c9f46
BH
1521 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1522 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1523
1524 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
8e730c15 1525 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
765c9f46
BH
1526 efx->rx_indir_table[i]);
1527 efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
8e730c15
BH
1528 }
1529}
1530
1531/* Hook interrupt handler(s)
1532 * Try MSI and then legacy interrupts.
1533 */
1534int efx_nic_init_interrupt(struct efx_nic *efx)
1535{
1536 struct efx_channel *channel;
1537 int rc;
1538
1539 if (!EFX_INT_MODE_USE_MSI(efx)) {
1540 irq_handler_t handler;
1541 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1542 handler = efx_legacy_interrupt;
1543 else
1544 handler = falcon_legacy_interrupt_a1;
1545
1546 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1547 efx->name, efx);
1548 if (rc) {
62776d03
BH
1549 netif_err(efx, drv, efx->net_dev,
1550 "failed to hook legacy IRQ %d\n",
1551 efx->pci_dev->irq);
8e730c15
BH
1552 goto fail1;
1553 }
1554 return 0;
1555 }
1556
1557 /* Hook MSI or MSI-X interrupt */
1558 efx_for_each_channel(channel, efx) {
1559 rc = request_irq(channel->irq, efx_msi_interrupt,
1560 IRQF_PROBE_SHARED, /* Not shared */
4642610c
BH
1561 efx->channel_name[channel->channel],
1562 &efx->channel[channel->channel]);
8e730c15 1563 if (rc) {
62776d03
BH
1564 netif_err(efx, drv, efx->net_dev,
1565 "failed to hook IRQ %d\n", channel->irq);
8e730c15
BH
1566 goto fail2;
1567 }
1568 }
1569
1570 return 0;
1571
1572 fail2:
1573 efx_for_each_channel(channel, efx)
4642610c 1574 free_irq(channel->irq, &efx->channel[channel->channel]);
8e730c15
BH
1575 fail1:
1576 return rc;
1577}
1578
1579void efx_nic_fini_interrupt(struct efx_nic *efx)
1580{
1581 struct efx_channel *channel;
1582 efx_oword_t reg;
1583
1584 /* Disable MSI/MSI-X interrupts */
1585 efx_for_each_channel(channel, efx) {
1586 if (channel->irq)
4642610c 1587 free_irq(channel->irq, &efx->channel[channel->channel]);
8e730c15
BH
1588 }
1589
1590 /* ACK legacy interrupt */
1591 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1592 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1593 else
1594 falcon_irq_ack_a1(efx);
1595
1596 /* Disable legacy interrupt */
1597 if (efx->legacy_irq)
1598 free_irq(efx->legacy_irq, efx);
1599}
1600
1601u32 efx_nic_fpga_ver(struct efx_nic *efx)
1602{
1603 efx_oword_t altera_build;
1604 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1605 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1606}
1607
1608void efx_nic_init_common(struct efx_nic *efx)
1609{
1610 efx_oword_t temp;
1611
1612 /* Set positions of descriptor caches in SRAM. */
1613 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
1614 efx->type->tx_dc_base / 8);
1615 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1616 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
1617 efx->type->rx_dc_base / 8);
1618 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1619
1620 /* Set TX descriptor cache size. */
1621 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1622 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1623 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1624
1625 /* Set RX descriptor cache size. Set low watermark to size-8, as
1626 * this allows most efficient prefetching.
1627 */
1628 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1629 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1630 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1631 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1632 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1633
1634 /* Program INT_KER address */
1635 EFX_POPULATE_OWORD_2(temp,
1636 FRF_AZ_NORM_INT_VEC_DIS_KER,
1637 EFX_INT_MODE_USE_MSI(efx),
1638 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1639 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1640
63695459
SH
1641 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1642 /* Use an interrupt level unused by event queues */
1646a6f3 1643 efx->irq_level = 0x1f;
63695459
SH
1644 else
1645 /* Use a valid MSI-X vector */
1646a6f3 1646 efx->irq_level = 0;
63695459 1647
8e730c15
BH
1648 /* Enable all the genuinely fatal interrupts. (They are still
1649 * masked by the overall interrupt mask, controlled by
1650 * falcon_interrupts()).
1651 *
1652 * Note: All other fatal interrupts are enabled
1653 */
1654 EFX_POPULATE_OWORD_3(temp,
1655 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1656 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1657 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
b17424b0
SH
1658 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1659 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
8e730c15
BH
1660 EFX_INVERT_OWORD(temp);
1661 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1662
765c9f46 1663 efx_nic_push_rx_indir_table(efx);
8e730c15
BH
1664
1665 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1666 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1667 */
1668 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1669 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1670 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1671 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
cd38557d 1672 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
8e730c15
BH
1673 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1674 /* Enable SW_EV to inherit in char driver - assume harmless here */
1675 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1676 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1677 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
286d47ba
BH
1678 /* Disable hardware watchdog which can misfire */
1679 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
8e730c15
BH
1680 /* Squash TX of packets of 16 bytes or less */
1681 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1682 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1683 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
94b274bf
BH
1684
1685 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1686 EFX_POPULATE_OWORD_4(temp,
1687 /* Default values */
1688 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1689 FRF_BZ_TX_PACE_SB_AF, 0xb,
1690 FRF_BZ_TX_PACE_FB_BASE, 0,
1691 /* Allow large pace values in the
1692 * fast bin. */
1693 FRF_BZ_TX_PACE_BIN_TH,
1694 FFE_BZ_TX_PACE_RESERVED);
1695 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1696 }
8e730c15 1697}
5b98c1bf
BH
1698
1699/* Register dump */
1700
1701#define REGISTER_REVISION_A 1
1702#define REGISTER_REVISION_B 2
1703#define REGISTER_REVISION_C 3
1704#define REGISTER_REVISION_Z 3 /* latest revision */
1705
1706struct efx_nic_reg {
1707 u32 offset:24;
1708 u32 min_revision:2, max_revision:2;
1709};
1710
1711#define REGISTER(name, min_rev, max_rev) { \
1712 FR_ ## min_rev ## max_rev ## _ ## name, \
1713 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
1714}
1715#define REGISTER_AA(name) REGISTER(name, A, A)
1716#define REGISTER_AB(name) REGISTER(name, A, B)
1717#define REGISTER_AZ(name) REGISTER(name, A, Z)
1718#define REGISTER_BB(name) REGISTER(name, B, B)
1719#define REGISTER_BZ(name) REGISTER(name, B, Z)
1720#define REGISTER_CZ(name) REGISTER(name, C, Z)
1721
1722static const struct efx_nic_reg efx_nic_regs[] = {
1723 REGISTER_AZ(ADR_REGION),
1724 REGISTER_AZ(INT_EN_KER),
1725 REGISTER_BZ(INT_EN_CHAR),
1726 REGISTER_AZ(INT_ADR_KER),
1727 REGISTER_BZ(INT_ADR_CHAR),
1728 /* INT_ACK_KER is WO */
1729 /* INT_ISR0 is RC */
1730 REGISTER_AZ(HW_INIT),
1731 REGISTER_CZ(USR_EV_CFG),
1732 REGISTER_AB(EE_SPI_HCMD),
1733 REGISTER_AB(EE_SPI_HADR),
1734 REGISTER_AB(EE_SPI_HDATA),
1735 REGISTER_AB(EE_BASE_PAGE),
1736 REGISTER_AB(EE_VPD_CFG0),
1737 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1738 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1739 /* PCIE_CORE_INDIRECT is indirect */
1740 REGISTER_AB(NIC_STAT),
1741 REGISTER_AB(GPIO_CTL),
1742 REGISTER_AB(GLB_CTL),
1743 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1744 REGISTER_BZ(DP_CTRL),
1745 REGISTER_AZ(MEM_STAT),
1746 REGISTER_AZ(CS_DEBUG),
1747 REGISTER_AZ(ALTERA_BUILD),
1748 REGISTER_AZ(CSR_SPARE),
1749 REGISTER_AB(PCIE_SD_CTL0123),
1750 REGISTER_AB(PCIE_SD_CTL45),
1751 REGISTER_AB(PCIE_PCS_CTL_STAT),
1752 /* DEBUG_DATA_OUT is not used */
1753 /* DRV_EV is WO */
1754 REGISTER_AZ(EVQ_CTL),
1755 REGISTER_AZ(EVQ_CNT1),
1756 REGISTER_AZ(EVQ_CNT2),
1757 REGISTER_AZ(BUF_TBL_CFG),
1758 REGISTER_AZ(SRM_RX_DC_CFG),
1759 REGISTER_AZ(SRM_TX_DC_CFG),
1760 REGISTER_AZ(SRM_CFG),
1761 /* BUF_TBL_UPD is WO */
1762 REGISTER_AZ(SRM_UPD_EVQ),
1763 REGISTER_AZ(SRAM_PARITY),
1764 REGISTER_AZ(RX_CFG),
1765 REGISTER_BZ(RX_FILTER_CTL),
1766 /* RX_FLUSH_DESCQ is WO */
1767 REGISTER_AZ(RX_DC_CFG),
1768 REGISTER_AZ(RX_DC_PF_WM),
1769 REGISTER_BZ(RX_RSS_TKEY),
1770 /* RX_NODESC_DROP is RC */
1771 REGISTER_AA(RX_SELF_RST),
1772 /* RX_DEBUG, RX_PUSH_DROP are not used */
1773 REGISTER_CZ(RX_RSS_IPV6_REG1),
1774 REGISTER_CZ(RX_RSS_IPV6_REG2),
1775 REGISTER_CZ(RX_RSS_IPV6_REG3),
1776 /* TX_FLUSH_DESCQ is WO */
1777 REGISTER_AZ(TX_DC_CFG),
1778 REGISTER_AA(TX_CHKSM_CFG),
1779 REGISTER_AZ(TX_CFG),
1780 /* TX_PUSH_DROP is not used */
1781 REGISTER_AZ(TX_RESERVED),
1782 REGISTER_BZ(TX_PACE),
1783 /* TX_PACE_DROP_QID is RC */
1784 REGISTER_BB(TX_VLAN),
1785 REGISTER_BZ(TX_IPFIL_PORTEN),
1786 REGISTER_AB(MD_TXD),
1787 REGISTER_AB(MD_RXD),
1788 REGISTER_AB(MD_CS),
1789 REGISTER_AB(MD_PHY_ADR),
1790 REGISTER_AB(MD_ID),
1791 /* MD_STAT is RC */
1792 REGISTER_AB(MAC_STAT_DMA),
1793 REGISTER_AB(MAC_CTRL),
1794 REGISTER_BB(GEN_MODE),
1795 REGISTER_AB(MAC_MC_HASH_REG0),
1796 REGISTER_AB(MAC_MC_HASH_REG1),
1797 REGISTER_AB(GM_CFG1),
1798 REGISTER_AB(GM_CFG2),
1799 /* GM_IPG and GM_HD are not used */
1800 REGISTER_AB(GM_MAX_FLEN),
1801 /* GM_TEST is not used */
1802 REGISTER_AB(GM_ADR1),
1803 REGISTER_AB(GM_ADR2),
1804 REGISTER_AB(GMF_CFG0),
1805 REGISTER_AB(GMF_CFG1),
1806 REGISTER_AB(GMF_CFG2),
1807 REGISTER_AB(GMF_CFG3),
1808 REGISTER_AB(GMF_CFG4),
1809 REGISTER_AB(GMF_CFG5),
1810 REGISTER_BB(TX_SRC_MAC_CTL),
1811 REGISTER_AB(XM_ADR_LO),
1812 REGISTER_AB(XM_ADR_HI),
1813 REGISTER_AB(XM_GLB_CFG),
1814 REGISTER_AB(XM_TX_CFG),
1815 REGISTER_AB(XM_RX_CFG),
1816 REGISTER_AB(XM_MGT_INT_MASK),
1817 REGISTER_AB(XM_FC),
1818 REGISTER_AB(XM_PAUSE_TIME),
1819 REGISTER_AB(XM_TX_PARAM),
1820 REGISTER_AB(XM_RX_PARAM),
1821 /* XM_MGT_INT_MSK (note no 'A') is RC */
1822 REGISTER_AB(XX_PWR_RST),
1823 REGISTER_AB(XX_SD_CTL),
1824 REGISTER_AB(XX_TXDRV_CTL),
1825 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1826 /* XX_CORE_STAT is partly RC */
1827};
1828
1829struct efx_nic_reg_table {
1830 u32 offset:24;
1831 u32 min_revision:2, max_revision:2;
1832 u32 step:6, rows:21;
1833};
1834
1835#define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1836 offset, \
1837 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
1838 step, rows \
1839}
9c636baf 1840#define REGISTER_TABLE(name, min_rev, max_rev) \
5b98c1bf
BH
1841 REGISTER_TABLE_DIMENSIONS( \
1842 name, FR_ ## min_rev ## max_rev ## _ ## name, \
1843 min_rev, max_rev, \
1844 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
1845 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1846#define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1847#define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1848#define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1849#define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1850#define REGISTER_TABLE_BB_CZ(name) \
1851 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
1852 FR_BZ_ ## name ## _STEP, \
1853 FR_BB_ ## name ## _ROWS), \
1854 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
1855 FR_BZ_ ## name ## _STEP, \
1856 FR_CZ_ ## name ## _ROWS)
1857#define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1858
1859static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
1860 /* DRIVER is not used */
1861 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1862 REGISTER_TABLE_BB(TX_IPFIL_TBL),
1863 REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
1864 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
1865 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
1866 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
1867 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
1868 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
1869 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
75abc51c 1870 /* We can't reasonably read all of the buffer table (up to 8MB!).
5b98c1bf
BH
1871 * However this driver will only use a few entries. Reading
1872 * 1K entries allows for some expansion of queue count and
1873 * size before we need to change the version. */
1874 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
1875 A, A, 8, 1024),
1876 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
1877 B, Z, 8, 1024),
5b98c1bf
BH
1878 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
1879 REGISTER_TABLE_BB_CZ(TIMER_TBL),
1880 REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
1881 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
1882 /* TX_FILTER_TBL0 is huge and not used by this driver */
1883 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
1884 REGISTER_TABLE_CZ(MC_TREG_SMEM),
1885 /* MSIX_PBA_TABLE is not mapped */
1886 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
75abc51c 1887 REGISTER_TABLE_BZ(RX_FILTER_TBL0),
5b98c1bf
BH
1888};
1889
1890size_t efx_nic_get_regs_len(struct efx_nic *efx)
1891{
1892 const struct efx_nic_reg *reg;
1893 const struct efx_nic_reg_table *table;
1894 size_t len = 0;
1895
1896 for (reg = efx_nic_regs;
1897 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1898 reg++)
1899 if (efx->type->revision >= reg->min_revision &&
1900 efx->type->revision <= reg->max_revision)
1901 len += sizeof(efx_oword_t);
1902
1903 for (table = efx_nic_reg_tables;
1904 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1905 table++)
1906 if (efx->type->revision >= table->min_revision &&
1907 efx->type->revision <= table->max_revision)
1908 len += table->rows * min_t(size_t, table->step, 16);
1909
1910 return len;
1911}
1912
1913void efx_nic_get_regs(struct efx_nic *efx, void *buf)
1914{
1915 const struct efx_nic_reg *reg;
1916 const struct efx_nic_reg_table *table;
1917
1918 for (reg = efx_nic_regs;
1919 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1920 reg++) {
1921 if (efx->type->revision >= reg->min_revision &&
1922 efx->type->revision <= reg->max_revision) {
1923 efx_reado(efx, (efx_oword_t *)buf, reg->offset);
1924 buf += sizeof(efx_oword_t);
1925 }
1926 }
1927
1928 for (table = efx_nic_reg_tables;
1929 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1930 table++) {
1931 size_t size, i;
1932
1933 if (!(efx->type->revision >= table->min_revision &&
1934 efx->type->revision <= table->max_revision))
1935 continue;
1936
1937 size = min_t(size_t, table->step, 16);
1938
1939 for (i = 0; i < table->rows; i++) {
1940 switch (table->step) {
1941 case 4: /* 32-bit register or SRAM */
1942 efx_readd_table(efx, buf, table->offset, i);
1943 break;
1944 case 8: /* 64-bit SRAM */
1945 efx_sram_readq(efx,
1946 efx->membase + table->offset,
1947 buf, i);
1948 break;
1949 case 16: /* 128-bit register */
1950 efx_reado_table(efx, buf, table->offset, i);
1951 break;
1952 case 32: /* 128-bit register, interleaved */
1953 efx_reado_table(efx, buf, table->offset, 2 * i);
1954 break;
1955 default:
1956 WARN_ON(1);
1957 return;
1958 }
1959 buf += size;
1960 }
1961 }
1962}
This page took 0.454515 seconds and 5 git commands to generate.