sfc: Initialise efx_ptp_data::phc_clock_info from a static template
[deliverable/linux.git] / drivers / net / ethernet / sfc / ptp.c
CommitLineData
7c236c43 1/****************************************************************************
f7a6d2c4
BH
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2011-2013 Solarflare Communications Inc.
7c236c43
SH
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10/* Theory of operation:
11 *
12 * PTP support is assisted by firmware running on the MC, which provides
13 * the hardware timestamping capabilities. Both transmitted and received
14 * PTP event packets are queued onto internal queues for subsequent processing;
15 * this is because the MC operations are relatively long and would block
16 * block NAPI/interrupt operation.
17 *
18 * Receive event processing:
19 * The event contains the packet's UUID and sequence number, together
20 * with the hardware timestamp. The PTP receive packet queue is searched
21 * for this UUID/sequence number and, if found, put on a pending queue.
22 * Packets not matching are delivered without timestamps (MCDI events will
23 * always arrive after the actual packet).
24 * It is important for the operation of the PTP protocol that the ordering
25 * of packets between the event and general port is maintained.
26 *
27 * Work queue processing:
28 * If work waiting, synchronise host/hardware time
29 *
30 * Transmit: send packet through MC, which returns the transmission time
31 * that is converted to an appropriate timestamp.
32 *
33 * Receive: the packet's reception time is converted to an appropriate
34 * timestamp.
35 */
36#include <linux/ip.h>
37#include <linux/udp.h>
38#include <linux/time.h>
39#include <linux/ktime.h>
40#include <linux/module.h>
41#include <linux/net_tstamp.h>
42#include <linux/pps_kernel.h>
43#include <linux/ptp_clock_kernel.h>
44#include "net_driver.h"
45#include "efx.h"
46#include "mcdi.h"
47#include "mcdi_pcol.h"
48#include "io.h"
8b8a95a1 49#include "farch_regs.h"
7c236c43
SH
50#include "nic.h"
51
52/* Maximum number of events expected to make up a PTP event */
53#define MAX_EVENT_FRAGS 3
54
55/* Maximum delay, ms, to begin synchronisation */
56#define MAX_SYNCHRONISE_WAIT_MS 2
57
58/* How long, at most, to spend synchronising */
59#define SYNCHRONISE_PERIOD_NS 250000
60
61/* How often to update the shared memory time */
62#define SYNCHRONISATION_GRANULARITY_NS 200
63
64/* Minimum permitted length of a (corrected) synchronisation time */
65#define MIN_SYNCHRONISATION_NS 120
66
67/* Maximum permitted length of a (corrected) synchronisation time */
68#define MAX_SYNCHRONISATION_NS 1000
69
70/* How many (MC) receive events that can be queued */
71#define MAX_RECEIVE_EVENTS 8
72
73/* Length of (modified) moving average. */
74#define AVERAGE_LENGTH 16
75
76/* How long an unmatched event or packet can be held */
77#define PKT_EVENT_LIFETIME_MS 10
78
79/* Offsets into PTP packet for identification. These offsets are from the
80 * start of the IP header, not the MAC header. Note that neither PTP V1 nor
81 * PTP V2 permit the use of IPV4 options.
82 */
83#define PTP_DPORT_OFFSET 22
84
85#define PTP_V1_VERSION_LENGTH 2
86#define PTP_V1_VERSION_OFFSET 28
87
88#define PTP_V1_UUID_LENGTH 6
89#define PTP_V1_UUID_OFFSET 50
90
91#define PTP_V1_SEQUENCE_LENGTH 2
92#define PTP_V1_SEQUENCE_OFFSET 58
93
94/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
95 * includes IP header.
96 */
97#define PTP_V1_MIN_LENGTH 64
98
99#define PTP_V2_VERSION_LENGTH 1
100#define PTP_V2_VERSION_OFFSET 29
101
c939a316
LE
102#define PTP_V2_UUID_LENGTH 8
103#define PTP_V2_UUID_OFFSET 48
104
7c236c43
SH
105/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
106 * the MC only captures the last six bytes of the clock identity. These values
107 * reflect those, not the ones used in the standard. The standard permits
108 * mapping of V1 UUIDs to V2 UUIDs with these same values.
109 */
110#define PTP_V2_MC_UUID_LENGTH 6
111#define PTP_V2_MC_UUID_OFFSET 50
112
113#define PTP_V2_SEQUENCE_LENGTH 2
114#define PTP_V2_SEQUENCE_OFFSET 58
115
116/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
117 * includes IP header.
118 */
119#define PTP_V2_MIN_LENGTH 63
120
121#define PTP_MIN_LENGTH 63
122
123#define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */
124#define PTP_EVENT_PORT 319
125#define PTP_GENERAL_PORT 320
126
127/* Annoyingly the format of the version numbers are different between
128 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
129 */
130#define PTP_VERSION_V1 1
131
132#define PTP_VERSION_V2 2
133#define PTP_VERSION_V2_MASK 0x0f
134
135enum ptp_packet_state {
136 PTP_PACKET_STATE_UNMATCHED = 0,
137 PTP_PACKET_STATE_MATCHED,
138 PTP_PACKET_STATE_TIMED_OUT,
139 PTP_PACKET_STATE_MATCH_UNWANTED
140};
141
142/* NIC synchronised with single word of time only comprising
143 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
144 */
145#define MC_NANOSECOND_BITS 30
146#define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1)
147#define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
148
149/* Maximum parts-per-billion adjustment that is acceptable */
150#define MAX_PPB 1000000
151
152/* Number of bits required to hold the above */
153#define MAX_PPB_BITS 20
154
155/* Number of extra bits allowed when calculating fractional ns.
156 * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
157 * be less than 63.
158 */
159#define PPB_EXTRA_BITS 2
160
161/* Precalculate scale word to avoid long long division at runtime */
162#define PPB_SCALE_WORD ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
163 MAX_PPB_BITS)) / 1000000000LL)
164
165#define PTP_SYNC_ATTEMPTS 4
166
167/**
168 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
169 * @words: UUID and (partial) sequence number
170 * @expiry: Time after which the packet should be delivered irrespective of
171 * event arrival.
172 * @state: The state of the packet - whether it is ready for processing or
173 * whether that is of no interest.
174 */
175struct efx_ptp_match {
176 u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
177 unsigned long expiry;
178 enum ptp_packet_state state;
179};
180
181/**
182 * struct efx_ptp_event_rx - A PTP receive event (from MC)
183 * @seq0: First part of (PTP) UUID
184 * @seq1: Second part of (PTP) UUID and sequence number
185 * @hwtimestamp: Event timestamp
186 */
187struct efx_ptp_event_rx {
188 struct list_head link;
189 u32 seq0;
190 u32 seq1;
191 ktime_t hwtimestamp;
192 unsigned long expiry;
193};
194
195/**
196 * struct efx_ptp_timeset - Synchronisation between host and MC
197 * @host_start: Host time immediately before hardware timestamp taken
198 * @seconds: Hardware timestamp, seconds
199 * @nanoseconds: Hardware timestamp, nanoseconds
200 * @host_end: Host time immediately after hardware timestamp taken
201 * @waitns: Number of nanoseconds between hardware timestamp being read and
202 * host end time being seen
203 * @window: Difference of host_end and host_start
204 * @valid: Whether this timeset is valid
205 */
206struct efx_ptp_timeset {
207 u32 host_start;
208 u32 seconds;
209 u32 nanoseconds;
210 u32 host_end;
211 u32 waitns;
212 u32 window; /* Derived: end - start, allowing for wrap */
213};
214
215/**
216 * struct efx_ptp_data - Precision Time Protocol (PTP) state
ac36baf8
BH
217 * @efx: The NIC context
218 * @channel: The PTP channel (Siena only)
7c236c43
SH
219 * @rxq: Receive queue (awaiting timestamps)
220 * @txq: Transmit queue
221 * @evt_list: List of MC receive events awaiting packets
222 * @evt_free_list: List of free events
223 * @evt_lock: Lock for manipulating evt_list and evt_free_list
f3211600 224 * @evt_overflow: Boolean indicating that event list has overflowed
7c236c43
SH
225 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
226 * @workwq: Work queue for processing pending PTP operations
227 * @work: Work task
228 * @reset_required: A serious error has occurred and the PTP task needs to be
229 * reset (disable, enable).
230 * @rxfilter_event: Receive filter when operating
231 * @rxfilter_general: Receive filter when operating
232 * @config: Current timestamp configuration
233 * @enabled: PTP operation enabled
234 * @mode: Mode in which PTP operating (PTP version)
235 * @evt_frags: Partly assembled PTP events
236 * @evt_frag_idx: Current fragment number
237 * @evt_code: Last event code
238 * @start: Address at which MC indicates ready for synchronisation
239 * @host_time_pps: Host time at last PPS
240 * @last_sync_ns: Last number of nanoseconds between readings when synchronising
241 * @base_sync_ns: Number of nanoseconds for last synchronisation.
242 * @base_sync_valid: Whether base_sync_time is valid.
243 * @current_adjfreq: Current ppb adjustment.
244 * @phc_clock: Pointer to registered phc device
245 * @phc_clock_info: Registration structure for phc device
246 * @pps_work: pps work task for handling pps events
247 * @pps_workwq: pps work queue
248 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
249 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
250 * allocations in main data path).
251 * @debug_ptp_dir: PTP debugfs directory
252 * @missed_rx_sync: Number of packets received without syncrhonisation.
253 * @good_syncs: Number of successful synchronisations.
254 * @no_time_syncs: Number of synchronisations with no good times.
255 * @bad_sync_durations: Number of synchronisations with bad durations.
256 * @bad_syncs: Number of failed synchronisations.
257 * @last_sync_time: Number of nanoseconds for last synchronisation.
258 * @sync_timeouts: Number of synchronisation timeouts
259 * @fast_syncs: Number of synchronisations requiring short delay
260 * @min_sync_delta: Minimum time between event and synchronisation
261 * @max_sync_delta: Maximum time between event and synchronisation
262 * @average_sync_delta: Average time between event and synchronisation.
263 * Modified moving average.
264 * @last_sync_delta: Last time between event and synchronisation
265 * @mc_stats: Context value for MC statistics
266 * @timeset: Last set of synchronisation statistics.
267 */
268struct efx_ptp_data {
ac36baf8 269 struct efx_nic *efx;
7c236c43
SH
270 struct efx_channel *channel;
271 struct sk_buff_head rxq;
272 struct sk_buff_head txq;
273 struct list_head evt_list;
274 struct list_head evt_free_list;
275 spinlock_t evt_lock;
f3211600 276 bool evt_overflow;
7c236c43
SH
277 struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
278 struct workqueue_struct *workwq;
279 struct work_struct work;
280 bool reset_required;
281 u32 rxfilter_event;
282 u32 rxfilter_general;
283 bool rxfilter_installed;
284 struct hwtstamp_config config;
285 bool enabled;
286 unsigned int mode;
287 efx_qword_t evt_frags[MAX_EVENT_FRAGS];
288 int evt_frag_idx;
289 int evt_code;
290 struct efx_buffer start;
291 struct pps_event_time host_time_pps;
292 unsigned last_sync_ns;
293 unsigned base_sync_ns;
294 bool base_sync_valid;
295 s64 current_adjfreq;
296 struct ptp_clock *phc_clock;
297 struct ptp_clock_info phc_clock_info;
298 struct work_struct pps_work;
299 struct workqueue_struct *pps_workwq;
300 bool nic_ts_enabled;
c5bb0e98 301 MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
7c236c43
SH
302 struct efx_ptp_timeset
303 timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
304};
305
306static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
307static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
308static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts);
309static int efx_phc_settime(struct ptp_clock_info *ptp,
310 const struct timespec *e_ts);
311static int efx_phc_enable(struct ptp_clock_info *ptp,
312 struct ptp_clock_request *request, int on);
313
314/* Enable MCDI PTP support. */
315static int efx_ptp_enable(struct efx_nic *efx)
316{
59cfc479 317 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
1e0b8120
EC
318 MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, 0);
319 int rc;
7c236c43
SH
320
321 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
c1d828bd 322 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
7c236c43 323 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
ac36baf8
BH
324 efx->ptp_data->channel ?
325 efx->ptp_data->channel->channel : 0);
7c236c43
SH
326 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
327
1e0b8120
EC
328 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
329 outbuf, sizeof(outbuf), NULL);
330 rc = (rc == -EALREADY) ? 0 : rc;
331 if (rc)
332 efx_mcdi_display_error(efx, MC_CMD_PTP,
333 MC_CMD_PTP_IN_ENABLE_LEN,
334 outbuf, sizeof(outbuf), rc);
335 return rc;
7c236c43
SH
336}
337
338/* Disable MCDI PTP support.
339 *
340 * Note that this function should never rely on the presence of ptp_data -
341 * may be called before that exists.
342 */
343static int efx_ptp_disable(struct efx_nic *efx)
344{
59cfc479 345 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
1e0b8120
EC
346 MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, 0);
347 int rc;
7c236c43
SH
348
349 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
c1d828bd 350 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
1e0b8120
EC
351 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
352 outbuf, sizeof(outbuf), NULL);
353 rc = (rc == -EALREADY) ? 0 : rc;
354 if (rc)
355 efx_mcdi_display_error(efx, MC_CMD_PTP,
356 MC_CMD_PTP_IN_DISABLE_LEN,
357 outbuf, sizeof(outbuf), rc);
358 return rc;
7c236c43
SH
359}
360
361static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
362{
363 struct sk_buff *skb;
364
365 while ((skb = skb_dequeue(q))) {
366 local_bh_disable();
367 netif_receive_skb(skb);
368 local_bh_enable();
369 }
370}
371
372static void efx_ptp_handle_no_channel(struct efx_nic *efx)
373{
374 netif_err(efx, drv, efx->net_dev,
375 "ERROR: PTP requires MSI-X and 1 additional interrupt"
376 "vector. PTP disabled\n");
377}
378
379/* Repeatedly send the host time to the MC which will capture the hardware
380 * time.
381 */
382static void efx_ptp_send_times(struct efx_nic *efx,
383 struct pps_event_time *last_time)
384{
385 struct pps_event_time now;
386 struct timespec limit;
387 struct efx_ptp_data *ptp = efx->ptp_data;
388 struct timespec start;
389 int *mc_running = ptp->start.addr;
390
391 pps_get_ts(&now);
392 start = now.ts_real;
393 limit = now.ts_real;
394 timespec_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
395
396 /* Write host time for specified period or until MC is done */
397 while ((timespec_compare(&now.ts_real, &limit) < 0) &&
398 ACCESS_ONCE(*mc_running)) {
399 struct timespec update_time;
400 unsigned int host_time;
401
402 /* Don't update continuously to avoid saturating the PCIe bus */
403 update_time = now.ts_real;
404 timespec_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
405 do {
406 pps_get_ts(&now);
407 } while ((timespec_compare(&now.ts_real, &update_time) < 0) &&
408 ACCESS_ONCE(*mc_running));
409
410 /* Synchronise NIC with single word of time only */
411 host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
412 now.ts_real.tv_nsec);
413 /* Update host time in NIC memory */
977a5d5d 414 efx->type->ptp_write_host_time(efx, host_time);
7c236c43
SH
415 }
416 *last_time = now;
417}
418
419/* Read a timeset from the MC's results and partial process. */
c5bb0e98
BH
420static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
421 struct efx_ptp_timeset *timeset)
7c236c43
SH
422{
423 unsigned start_ns, end_ns;
424
425 timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
426 timeset->seconds = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_SECONDS);
427 timeset->nanoseconds = MCDI_DWORD(data,
428 PTP_OUT_SYNCHRONIZE_NANOSECONDS);
429 timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
430 timeset->waitns = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
431
432 /* Ignore seconds */
433 start_ns = timeset->host_start & MC_NANOSECOND_MASK;
434 end_ns = timeset->host_end & MC_NANOSECOND_MASK;
435 /* Allow for rollover */
436 if (end_ns < start_ns)
437 end_ns += NSEC_PER_SEC;
438 /* Determine duration of operation */
439 timeset->window = end_ns - start_ns;
440}
441
442/* Process times received from MC.
443 *
444 * Extract times from returned results, and establish the minimum value
445 * seen. The minimum value represents the "best" possible time and events
446 * too much greater than this are rejected - the machine is, perhaps, too
447 * busy. A number of readings are taken so that, hopefully, at least one good
448 * synchronisation will be seen in the results.
449 */
c5bb0e98
BH
450static int
451efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
452 size_t response_length,
453 const struct pps_event_time *last_time)
7c236c43 454{
c5bb0e98
BH
455 unsigned number_readings =
456 MCDI_VAR_ARRAY_LEN(response_length,
457 PTP_OUT_SYNCHRONIZE_TIMESET);
7c236c43 458 unsigned i;
7c236c43
SH
459 unsigned total;
460 unsigned ngood = 0;
461 unsigned last_good = 0;
462 struct efx_ptp_data *ptp = efx->ptp_data;
7c236c43
SH
463 u32 last_sec;
464 u32 start_sec;
465 struct timespec delta;
466
467 if (number_readings == 0)
468 return -EAGAIN;
469
9230451a
LE
470 /* Read the set of results and increment stats for any results that
471 * appera to be erroneous.
7c236c43
SH
472 */
473 for (i = 0; i < number_readings; i++) {
c5bb0e98
BH
474 efx_ptp_read_timeset(
475 MCDI_ARRAY_STRUCT_PTR(synch_buf,
476 PTP_OUT_SYNCHRONIZE_TIMESET, i),
477 &ptp->timeset[i]);
7c236c43
SH
478 }
479
9230451a
LE
480 /* Find the last good host-MC synchronization result. The MC times
481 * when it finishes reading the host time so the corrected window time
482 * should be fairly constant for a given platform.
7c236c43
SH
483 */
484 total = 0;
485 for (i = 0; i < number_readings; i++)
486 if (ptp->timeset[i].window > ptp->timeset[i].waitns) {
487 unsigned win;
488
489 win = ptp->timeset[i].window - ptp->timeset[i].waitns;
490 if (win >= MIN_SYNCHRONISATION_NS &&
491 win < MAX_SYNCHRONISATION_NS) {
492 total += ptp->timeset[i].window;
493 ngood++;
494 last_good = i;
495 }
496 }
497
498 if (ngood == 0) {
499 netif_warn(efx, drv, efx->net_dev,
9230451a
LE
500 "PTP no suitable synchronisations %dns\n",
501 ptp->base_sync_ns);
7c236c43
SH
502 return -EAGAIN;
503 }
504
505 /* Average minimum this synchronisation */
506 ptp->last_sync_ns = DIV_ROUND_UP(total, ngood);
507 if (!ptp->base_sync_valid || (ptp->last_sync_ns < ptp->base_sync_ns)) {
508 ptp->base_sync_valid = true;
509 ptp->base_sync_ns = ptp->last_sync_ns;
510 }
511
512 /* Calculate delay from actual PPS to last_time */
513 delta.tv_nsec =
514 ptp->timeset[last_good].nanoseconds +
515 last_time->ts_real.tv_nsec -
516 (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
517
518 /* It is possible that the seconds rolled over between taking
519 * the start reading and the last value written by the host. The
520 * timescales are such that a gap of more than one second is never
521 * expected.
522 */
523 start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
524 last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
525 if (start_sec != last_sec) {
526 if (((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
527 netif_warn(efx, hw, efx->net_dev,
528 "PTP bad synchronisation seconds\n");
529 return -EAGAIN;
530 } else {
531 delta.tv_sec = 1;
532 }
533 } else {
534 delta.tv_sec = 0;
535 }
536
537 ptp->host_time_pps = *last_time;
538 pps_sub_ts(&ptp->host_time_pps, delta);
539
540 return 0;
541}
542
543/* Synchronize times between the host and the MC */
544static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
545{
546 struct efx_ptp_data *ptp = efx->ptp_data;
59cfc479 547 MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
7c236c43
SH
548 size_t response_length;
549 int rc;
550 unsigned long timeout;
551 struct pps_event_time last_time = {};
552 unsigned int loops = 0;
553 int *start = ptp->start.addr;
554
555 MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
c1d828bd 556 MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
7c236c43
SH
557 MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
558 num_readings);
338f74df
BH
559 MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
560 ptp->start.dma_addr);
7c236c43
SH
561
562 /* Clear flag that signals MC ready */
563 ACCESS_ONCE(*start) = 0;
df2cd8af
BH
564 rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
565 MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
566 EFX_BUG_ON_PARANOID(rc);
7c236c43
SH
567
568 /* Wait for start from MCDI (or timeout) */
569 timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
570 while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) {
571 udelay(20); /* Usually start MCDI execution quickly */
572 loops++;
573 }
574
575 if (ACCESS_ONCE(*start))
576 efx_ptp_send_times(efx, &last_time);
577
578 /* Collect results */
579 rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
580 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
581 synch_buf, sizeof(synch_buf),
582 &response_length);
583 if (rc == 0)
584 rc = efx_ptp_process_times(efx, synch_buf, response_length,
585 &last_time);
586
587 return rc;
588}
589
590/* Transmit a PTP packet, via the MCDI interface, to the wire. */
591static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
592{
c5bb0e98 593 struct efx_ptp_data *ptp_data = efx->ptp_data;
7c236c43
SH
594 struct skb_shared_hwtstamps timestamps;
595 int rc = -EIO;
59cfc479 596 MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
9528b921 597 size_t len;
7c236c43 598
c5bb0e98 599 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
c1d828bd 600 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
c5bb0e98 601 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
7c236c43
SH
602 if (skb_shinfo(skb)->nr_frags != 0) {
603 rc = skb_linearize(skb);
604 if (rc != 0)
605 goto fail;
606 }
607
608 if (skb->ip_summed == CHECKSUM_PARTIAL) {
609 rc = skb_checksum_help(skb);
610 if (rc != 0)
611 goto fail;
612 }
613 skb_copy_from_linear_data(skb,
c5bb0e98
BH
614 MCDI_PTR(ptp_data->txbuf,
615 PTP_IN_TRANSMIT_PACKET),
9528b921
BH
616 skb->len);
617 rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
618 ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
619 txtime, sizeof(txtime), &len);
7c236c43
SH
620 if (rc != 0)
621 goto fail;
622
623 memset(&timestamps, 0, sizeof(timestamps));
624 timestamps.hwtstamp = ktime_set(
625 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_SECONDS),
626 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_NANOSECONDS));
627
628 skb_tstamp_tx(skb, &timestamps);
629
630 rc = 0;
631
632fail:
633 dev_kfree_skb(skb);
634
635 return rc;
636}
637
638static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
639{
640 struct efx_ptp_data *ptp = efx->ptp_data;
641 struct list_head *cursor;
642 struct list_head *next;
643
644 /* Drop time-expired events */
645 spin_lock_bh(&ptp->evt_lock);
646 if (!list_empty(&ptp->evt_list)) {
647 list_for_each_safe(cursor, next, &ptp->evt_list) {
648 struct efx_ptp_event_rx *evt;
649
650 evt = list_entry(cursor, struct efx_ptp_event_rx,
651 link);
652 if (time_after(jiffies, evt->expiry)) {
9545f4e2 653 list_move(&evt->link, &ptp->evt_free_list);
7c236c43
SH
654 netif_warn(efx, hw, efx->net_dev,
655 "PTP rx event dropped\n");
656 }
657 }
658 }
f3211600
LE
659 /* If the event overflow flag is set and the event list is now empty
660 * clear the flag to re-enable the overflow warning message.
661 */
662 if (ptp->evt_overflow && list_empty(&ptp->evt_list))
663 ptp->evt_overflow = false;
7c236c43
SH
664 spin_unlock_bh(&ptp->evt_lock);
665}
666
667static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
668 struct sk_buff *skb)
669{
670 struct efx_ptp_data *ptp = efx->ptp_data;
671 bool evts_waiting;
672 struct list_head *cursor;
673 struct list_head *next;
674 struct efx_ptp_match *match;
675 enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
676
677 spin_lock_bh(&ptp->evt_lock);
678 evts_waiting = !list_empty(&ptp->evt_list);
679 spin_unlock_bh(&ptp->evt_lock);
680
681 if (!evts_waiting)
682 return PTP_PACKET_STATE_UNMATCHED;
683
684 match = (struct efx_ptp_match *)skb->cb;
685 /* Look for a matching timestamp in the event queue */
686 spin_lock_bh(&ptp->evt_lock);
687 list_for_each_safe(cursor, next, &ptp->evt_list) {
688 struct efx_ptp_event_rx *evt;
689
690 evt = list_entry(cursor, struct efx_ptp_event_rx, link);
691 if ((evt->seq0 == match->words[0]) &&
692 (evt->seq1 == match->words[1])) {
693 struct skb_shared_hwtstamps *timestamps;
694
695 /* Match - add in hardware timestamp */
696 timestamps = skb_hwtstamps(skb);
697 timestamps->hwtstamp = evt->hwtimestamp;
698
699 match->state = PTP_PACKET_STATE_MATCHED;
700 rc = PTP_PACKET_STATE_MATCHED;
9545f4e2 701 list_move(&evt->link, &ptp->evt_free_list);
7c236c43
SH
702 break;
703 }
704 }
f3211600
LE
705 /* If the event overflow flag is set and the event list is now empty
706 * clear the flag to re-enable the overflow warning message.
707 */
708 if (ptp->evt_overflow && list_empty(&ptp->evt_list))
709 ptp->evt_overflow = false;
7c236c43
SH
710 spin_unlock_bh(&ptp->evt_lock);
711
712 return rc;
713}
714
715/* Process any queued receive events and corresponding packets
716 *
717 * q is returned with all the packets that are ready for delivery.
718 * true is returned if at least one of those packets requires
719 * synchronisation.
720 */
721static bool efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
722{
723 struct efx_ptp_data *ptp = efx->ptp_data;
724 bool rc = false;
725 struct sk_buff *skb;
726
727 while ((skb = skb_dequeue(&ptp->rxq))) {
728 struct efx_ptp_match *match;
729
730 match = (struct efx_ptp_match *)skb->cb;
731 if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
732 __skb_queue_tail(q, skb);
733 } else if (efx_ptp_match_rx(efx, skb) ==
734 PTP_PACKET_STATE_MATCHED) {
735 rc = true;
736 __skb_queue_tail(q, skb);
737 } else if (time_after(jiffies, match->expiry)) {
738 match->state = PTP_PACKET_STATE_TIMED_OUT;
35f9a7a3
BH
739 if (net_ratelimit())
740 netif_warn(efx, rx_err, efx->net_dev,
741 "PTP packet - no timestamp seen\n");
7c236c43
SH
742 __skb_queue_tail(q, skb);
743 } else {
744 /* Replace unprocessed entry and stop */
745 skb_queue_head(&ptp->rxq, skb);
746 break;
747 }
748 }
749
750 return rc;
751}
752
753/* Complete processing of a received packet */
754static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
755{
756 local_bh_disable();
757 netif_receive_skb(skb);
758 local_bh_enable();
759}
760
62a1c703
BH
761static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
762{
763 struct efx_ptp_data *ptp = efx->ptp_data;
764
765 if (ptp->rxfilter_installed) {
766 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
767 ptp->rxfilter_general);
768 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
769 ptp->rxfilter_event);
770 ptp->rxfilter_installed = false;
771 }
772}
773
774static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
7c236c43
SH
775{
776 struct efx_ptp_data *ptp = efx->ptp_data;
777 struct efx_filter_spec rxfilter;
778 int rc;
779
ac36baf8 780 if (!ptp->channel || ptp->rxfilter_installed)
62a1c703 781 return 0;
7c236c43
SH
782
783 /* Must filter on both event and general ports to ensure
784 * that there is no packet re-ordering.
785 */
786 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
787 efx_rx_queue_index(
788 efx_channel_get_rx_queue(ptp->channel)));
789 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
790 htonl(PTP_ADDRESS),
791 htons(PTP_EVENT_PORT));
792 if (rc != 0)
793 return rc;
794
795 rc = efx_filter_insert_filter(efx, &rxfilter, true);
796 if (rc < 0)
797 return rc;
798 ptp->rxfilter_event = rc;
799
800 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
801 efx_rx_queue_index(
802 efx_channel_get_rx_queue(ptp->channel)));
803 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
804 htonl(PTP_ADDRESS),
805 htons(PTP_GENERAL_PORT));
806 if (rc != 0)
807 goto fail;
808
809 rc = efx_filter_insert_filter(efx, &rxfilter, true);
810 if (rc < 0)
811 goto fail;
812 ptp->rxfilter_general = rc;
813
62a1c703
BH
814 ptp->rxfilter_installed = true;
815 return 0;
816
817fail:
818 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
819 ptp->rxfilter_event);
820 return rc;
821}
822
823static int efx_ptp_start(struct efx_nic *efx)
824{
825 struct efx_ptp_data *ptp = efx->ptp_data;
826 int rc;
827
828 ptp->reset_required = false;
829
830 rc = efx_ptp_insert_multicast_filters(efx);
831 if (rc)
832 return rc;
833
7c236c43
SH
834 rc = efx_ptp_enable(efx);
835 if (rc != 0)
62a1c703 836 goto fail;
7c236c43
SH
837
838 ptp->evt_frag_idx = 0;
839 ptp->current_adjfreq = 0;
7c236c43
SH
840
841 return 0;
842
7c236c43 843fail:
62a1c703 844 efx_ptp_remove_multicast_filters(efx);
7c236c43
SH
845 return rc;
846}
847
848static int efx_ptp_stop(struct efx_nic *efx)
849{
850 struct efx_ptp_data *ptp = efx->ptp_data;
7c236c43
SH
851 struct list_head *cursor;
852 struct list_head *next;
2ea4dc28
AR
853 int rc;
854
855 if (ptp == NULL)
856 return 0;
857
858 rc = efx_ptp_disable(efx);
7c236c43 859
62a1c703 860 efx_ptp_remove_multicast_filters(efx);
7c236c43
SH
861
862 /* Make sure RX packets are really delivered */
863 efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
864 skb_queue_purge(&efx->ptp_data->txq);
865
866 /* Drop any pending receive events */
867 spin_lock_bh(&efx->ptp_data->evt_lock);
868 list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
9545f4e2 869 list_move(cursor, &efx->ptp_data->evt_free_list);
7c236c43 870 }
f3211600 871 ptp->evt_overflow = false;
7c236c43
SH
872 spin_unlock_bh(&efx->ptp_data->evt_lock);
873
874 return rc;
875}
876
2ea4dc28
AR
877static int efx_ptp_restart(struct efx_nic *efx)
878{
879 if (efx->ptp_data && efx->ptp_data->enabled)
880 return efx_ptp_start(efx);
881 return 0;
882}
883
7c236c43
SH
884static void efx_ptp_pps_worker(struct work_struct *work)
885{
886 struct efx_ptp_data *ptp =
887 container_of(work, struct efx_ptp_data, pps_work);
ac36baf8 888 struct efx_nic *efx = ptp->efx;
7c236c43
SH
889 struct ptp_clock_event ptp_evt;
890
891 if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
892 return;
893
894 ptp_evt.type = PTP_CLOCK_PPSUSR;
895 ptp_evt.pps_times = ptp->host_time_pps;
896 ptp_clock_event(ptp->phc_clock, &ptp_evt);
897}
898
899/* Process any pending transmissions and timestamp any received packets.
900 */
901static void efx_ptp_worker(struct work_struct *work)
902{
903 struct efx_ptp_data *ptp_data =
904 container_of(work, struct efx_ptp_data, work);
ac36baf8 905 struct efx_nic *efx = ptp_data->efx;
7c236c43
SH
906 struct sk_buff *skb;
907 struct sk_buff_head tempq;
908
909 if (ptp_data->reset_required) {
910 efx_ptp_stop(efx);
911 efx_ptp_start(efx);
912 return;
913 }
914
915 efx_ptp_drop_time_expired_events(efx);
916
917 __skb_queue_head_init(&tempq);
918 if (efx_ptp_process_events(efx, &tempq) ||
919 !skb_queue_empty(&ptp_data->txq)) {
920
921 while ((skb = skb_dequeue(&ptp_data->txq)))
922 efx_ptp_xmit_skb(efx, skb);
923 }
924
925 while ((skb = __skb_dequeue(&tempq)))
926 efx_ptp_process_rx(efx, skb);
927}
928
5d0dab01
BH
929static const struct ptp_clock_info efx_phc_clock_info = {
930 .owner = THIS_MODULE,
931 .name = "sfc",
932 .max_adj = MAX_PPB,
933 .n_alarm = 0,
934 .n_ext_ts = 0,
935 .n_per_out = 0,
936 .pps = 1,
937 .adjfreq = efx_phc_adjfreq,
938 .adjtime = efx_phc_adjtime,
939 .gettime = efx_phc_gettime,
940 .settime = efx_phc_settime,
941 .enable = efx_phc_enable,
942};
943
ac36baf8
BH
944/* Initialise PTP state. */
945int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
7c236c43 946{
7c236c43
SH
947 struct efx_ptp_data *ptp;
948 int rc = 0;
949 unsigned int pos;
950
7c236c43
SH
951 ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
952 efx->ptp_data = ptp;
953 if (!efx->ptp_data)
954 return -ENOMEM;
955
ac36baf8
BH
956 ptp->efx = efx;
957 ptp->channel = channel;
958
0d19a540 959 rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
7c236c43
SH
960 if (rc != 0)
961 goto fail1;
962
7c236c43
SH
963 skb_queue_head_init(&ptp->rxq);
964 skb_queue_head_init(&ptp->txq);
965 ptp->workwq = create_singlethread_workqueue("sfc_ptp");
966 if (!ptp->workwq) {
967 rc = -ENOMEM;
968 goto fail2;
969 }
970
971 INIT_WORK(&ptp->work, efx_ptp_worker);
972 ptp->config.flags = 0;
973 ptp->config.tx_type = HWTSTAMP_TX_OFF;
974 ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
975 INIT_LIST_HEAD(&ptp->evt_list);
976 INIT_LIST_HEAD(&ptp->evt_free_list);
977 spin_lock_init(&ptp->evt_lock);
978 for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
979 list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
f3211600 980 ptp->evt_overflow = false;
7c236c43 981
5d0dab01 982 ptp->phc_clock_info = efx_phc_clock_info;
1ef76158
RC
983 ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
984 &efx->pci_dev->dev);
155d940a
WY
985 if (IS_ERR(ptp->phc_clock)) {
986 rc = PTR_ERR(ptp->phc_clock);
7c236c43 987 goto fail3;
155d940a 988 }
7c236c43
SH
989
990 INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
991 ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
992 if (!ptp->pps_workwq) {
993 rc = -ENOMEM;
994 goto fail4;
995 }
996 ptp->nic_ts_enabled = false;
997
998 return 0;
999fail4:
1000 ptp_clock_unregister(efx->ptp_data->phc_clock);
1001
1002fail3:
1003 destroy_workqueue(efx->ptp_data->workwq);
1004
1005fail2:
1006 efx_nic_free_buffer(efx, &ptp->start);
1007
1008fail1:
1009 kfree(efx->ptp_data);
1010 efx->ptp_data = NULL;
1011
1012 return rc;
1013}
1014
ac36baf8
BH
1015/* Initialise PTP channel.
1016 *
1017 * Setting core_index to zero causes the queue to be initialised and doesn't
1018 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1019 */
1020static int efx_ptp_probe_channel(struct efx_channel *channel)
7c236c43
SH
1021{
1022 struct efx_nic *efx = channel->efx;
1023
ac36baf8
BH
1024 channel->irq_moderation = 0;
1025 channel->rx_queue.core_index = 0;
1026
1027 return efx_ptp_probe(efx, channel);
1028}
1029
1030void efx_ptp_remove(struct efx_nic *efx)
1031{
7c236c43
SH
1032 if (!efx->ptp_data)
1033 return;
1034
ac36baf8 1035 (void)efx_ptp_disable(efx);
7c236c43
SH
1036
1037 cancel_work_sync(&efx->ptp_data->work);
1038 cancel_work_sync(&efx->ptp_data->pps_work);
1039
1040 skb_queue_purge(&efx->ptp_data->rxq);
1041 skb_queue_purge(&efx->ptp_data->txq);
1042
1043 ptp_clock_unregister(efx->ptp_data->phc_clock);
1044
1045 destroy_workqueue(efx->ptp_data->workwq);
1046 destroy_workqueue(efx->ptp_data->pps_workwq);
1047
1048 efx_nic_free_buffer(efx, &efx->ptp_data->start);
1049 kfree(efx->ptp_data);
1050}
1051
ac36baf8
BH
1052static void efx_ptp_remove_channel(struct efx_channel *channel)
1053{
1054 efx_ptp_remove(channel->efx);
1055}
1056
7c236c43
SH
1057static void efx_ptp_get_channel_name(struct efx_channel *channel,
1058 char *buf, size_t len)
1059{
1060 snprintf(buf, len, "%s-ptp", channel->efx->name);
1061}
1062
1063/* Determine whether this packet should be processed by the PTP module
1064 * or transmitted conventionally.
1065 */
1066bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1067{
1068 return efx->ptp_data &&
1069 efx->ptp_data->enabled &&
1070 skb->len >= PTP_MIN_LENGTH &&
1071 skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1072 likely(skb->protocol == htons(ETH_P_IP)) &&
e5a498e9
BH
1073 skb_transport_header_was_set(skb) &&
1074 skb_network_header_len(skb) >= sizeof(struct iphdr) &&
7c236c43 1075 ip_hdr(skb)->protocol == IPPROTO_UDP &&
e5a498e9
BH
1076 skb_headlen(skb) >=
1077 skb_transport_offset(skb) + sizeof(struct udphdr) &&
7c236c43
SH
1078 udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1079}
1080
1081/* Receive a PTP packet. Packets are queued until the arrival of
1082 * the receive timestamp from the MC - this will probably occur after the
1083 * packet arrival because of the processing in the MC.
1084 */
4a74dc65 1085static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
7c236c43
SH
1086{
1087 struct efx_nic *efx = channel->efx;
1088 struct efx_ptp_data *ptp = efx->ptp_data;
1089 struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
c939a316 1090 u8 *match_data_012, *match_data_345;
7c236c43
SH
1091 unsigned int version;
1092
1093 match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1094
1095 /* Correct version? */
1096 if (ptp->mode == MC_CMD_PTP_MODE_V1) {
97d48a10 1097 if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
4a74dc65 1098 return false;
7c236c43
SH
1099 }
1100 version = ntohs(*(__be16 *)&skb->data[PTP_V1_VERSION_OFFSET]);
1101 if (version != PTP_VERSION_V1) {
4a74dc65 1102 return false;
7c236c43 1103 }
c939a316
LE
1104
1105 /* PTP V1 uses all six bytes of the UUID to match the packet
1106 * to the timestamp
1107 */
1108 match_data_012 = skb->data + PTP_V1_UUID_OFFSET;
1109 match_data_345 = skb->data + PTP_V1_UUID_OFFSET + 3;
7c236c43 1110 } else {
97d48a10 1111 if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
4a74dc65 1112 return false;
7c236c43
SH
1113 }
1114 version = skb->data[PTP_V2_VERSION_OFFSET];
7c236c43 1115 if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
4a74dc65 1116 return false;
7c236c43 1117 }
c939a316
LE
1118
1119 /* The original V2 implementation uses bytes 2-7 of
1120 * the UUID to match the packet to the timestamp. This
1121 * discards two of the bytes of the MAC address used
1122 * to create the UUID (SF bug 33070). The PTP V2
1123 * enhanced mode fixes this issue and uses bytes 0-2
1124 * and byte 5-7 of the UUID.
1125 */
1126 match_data_345 = skb->data + PTP_V2_UUID_OFFSET + 5;
1127 if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1128 match_data_012 = skb->data + PTP_V2_UUID_OFFSET + 2;
1129 } else {
1130 match_data_012 = skb->data + PTP_V2_UUID_OFFSET + 0;
1131 BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1132 }
7c236c43
SH
1133 }
1134
1135 /* Does this packet require timestamping? */
1136 if (ntohs(*(__be16 *)&skb->data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1137 struct skb_shared_hwtstamps *timestamps;
1138
1139 match->state = PTP_PACKET_STATE_UNMATCHED;
1140
1141 /* Clear all timestamps held: filled in later */
1142 timestamps = skb_hwtstamps(skb);
1143 memset(timestamps, 0, sizeof(*timestamps));
1144
c939a316
LE
1145 /* We expect the sequence number to be in the same position in
1146 * the packet for PTP V1 and V2
1147 */
1148 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1149 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1150
7c236c43 1151 /* Extract UUID/Sequence information */
c939a316
LE
1152 match->words[0] = (match_data_012[0] |
1153 (match_data_012[1] << 8) |
1154 (match_data_012[2] << 16) |
1155 (match_data_345[0] << 24));
1156 match->words[1] = (match_data_345[1] |
1157 (match_data_345[2] << 8) |
7c236c43
SH
1158 (skb->data[PTP_V1_SEQUENCE_OFFSET +
1159 PTP_V1_SEQUENCE_LENGTH - 1] <<
1160 16));
1161 } else {
1162 match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1163 }
1164
1165 skb_queue_tail(&ptp->rxq, skb);
1166 queue_work(ptp->workwq, &ptp->work);
4a74dc65
BH
1167
1168 return true;
7c236c43
SH
1169}
1170
1171/* Transmit a PTP packet. This has to be transmitted by the MC
1172 * itself, through an MCDI call. MCDI calls aren't permitted
1173 * in the transmit path so defer the actual transmission to a suitable worker.
1174 */
1175int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1176{
1177 struct efx_ptp_data *ptp = efx->ptp_data;
1178
1179 skb_queue_tail(&ptp->txq, skb);
1180
1181 if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1182 (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1183 efx_xmit_hwtstamp_pending(skb);
1184 queue_work(ptp->workwq, &ptp->work);
1185
1186 return NETDEV_TX_OK;
1187}
1188
1189static int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1190 unsigned int new_mode)
1191{
1192 if ((enable_wanted != efx->ptp_data->enabled) ||
1193 (enable_wanted && (efx->ptp_data->mode != new_mode))) {
2ea4dc28 1194 int rc = 0;
7c236c43
SH
1195
1196 if (enable_wanted) {
1197 /* Change of mode requires disable */
1198 if (efx->ptp_data->enabled &&
1199 (efx->ptp_data->mode != new_mode)) {
1200 efx->ptp_data->enabled = false;
1201 rc = efx_ptp_stop(efx);
1202 if (rc != 0)
1203 return rc;
1204 }
1205
1206 /* Set new operating mode and establish
1207 * baseline synchronisation, which must
1208 * succeed.
1209 */
1210 efx->ptp_data->mode = new_mode;
2ea4dc28
AR
1211 if (netif_running(efx->net_dev))
1212 rc = efx_ptp_start(efx);
7c236c43
SH
1213 if (rc == 0) {
1214 rc = efx_ptp_synchronize(efx,
1215 PTP_SYNC_ATTEMPTS * 2);
1216 if (rc != 0)
1217 efx_ptp_stop(efx);
1218 }
1219 } else {
1220 rc = efx_ptp_stop(efx);
1221 }
1222
1223 if (rc != 0)
1224 return rc;
1225
1226 efx->ptp_data->enabled = enable_wanted;
1227 }
1228
1229 return 0;
1230}
1231
1232static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1233{
1234 bool enable_wanted = false;
1235 unsigned int new_mode;
1236 int rc;
1237
1238 if (init->flags)
1239 return -EINVAL;
1240
1241 if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1242 (init->tx_type != HWTSTAMP_TX_ON))
1243 return -ERANGE;
1244
1245 new_mode = efx->ptp_data->mode;
1246 /* Determine whether any PTP HW operations are required */
1247 switch (init->rx_filter) {
1248 case HWTSTAMP_FILTER_NONE:
1249 break;
1250 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1251 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1252 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1253 init->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1254 new_mode = MC_CMD_PTP_MODE_V1;
1255 enable_wanted = true;
1256 break;
1257 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1258 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1259 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1260 /* Although these three are accepted only IPV4 packets will be
1261 * timestamped
1262 */
1263 init->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
c939a316 1264 new_mode = MC_CMD_PTP_MODE_V2_ENHANCED;
7c236c43
SH
1265 enable_wanted = true;
1266 break;
1267 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1268 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1269 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1270 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1271 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1272 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1273 /* Non-IP + IPv6 timestamping not supported */
1274 return -ERANGE;
1275 break;
1276 default:
1277 return -ERANGE;
1278 }
1279
1280 if (init->tx_type != HWTSTAMP_TX_OFF)
1281 enable_wanted = true;
1282
c939a316
LE
1283 /* Old versions of the firmware do not support the improved
1284 * UUID filtering option (SF bug 33070). If the firmware does
1285 * not accept the enhanced mode, fall back to the standard PTP
1286 * v2 UUID filtering.
1287 */
7c236c43 1288 rc = efx_ptp_change_mode(efx, enable_wanted, new_mode);
c939a316
LE
1289 if ((rc != 0) && (new_mode == MC_CMD_PTP_MODE_V2_ENHANCED))
1290 rc = efx_ptp_change_mode(efx, enable_wanted, MC_CMD_PTP_MODE_V2);
7c236c43
SH
1291 if (rc != 0)
1292 return rc;
1293
1294 efx->ptp_data->config = *init;
1295
1296 return 0;
1297}
1298
62ebac92 1299void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
7c236c43 1300{
7c236c43
SH
1301 struct efx_ptp_data *ptp = efx->ptp_data;
1302
1303 if (!ptp)
62ebac92 1304 return;
7c236c43 1305
62ebac92
BH
1306 ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1307 SOF_TIMESTAMPING_RX_HARDWARE |
1308 SOF_TIMESTAMPING_RAW_HARDWARE);
7c236c43
SH
1309 ts_info->phc_index = ptp_clock_index(ptp->phc_clock);
1310 ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1311 ts_info->rx_filters = (1 << HWTSTAMP_FILTER_NONE |
1312 1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT |
1313 1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC |
1314 1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ |
1315 1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT |
1316 1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC |
1317 1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ);
7c236c43
SH
1318}
1319
433dc9b3 1320int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
7c236c43
SH
1321{
1322 struct hwtstamp_config config;
1323 int rc;
1324
1325 /* Not a PTP enabled port */
1326 if (!efx->ptp_data)
1327 return -EOPNOTSUPP;
1328
1329 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1330 return -EFAULT;
1331
1332 rc = efx_ptp_ts_init(efx, &config);
1333 if (rc != 0)
1334 return rc;
1335
1336 return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1337 ? -EFAULT : 0;
1338}
1339
433dc9b3
BH
1340int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1341{
1342 if (!efx->ptp_data)
1343 return -EOPNOTSUPP;
1344
1345 return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1346 sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1347}
1348
7c236c43
SH
1349static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1350{
1351 struct efx_ptp_data *ptp = efx->ptp_data;
1352
1353 netif_err(efx, hw, efx->net_dev,
1354 "PTP unexpected event length: got %d expected %d\n",
1355 ptp->evt_frag_idx, expected_frag_len);
1356 ptp->reset_required = true;
1357 queue_work(ptp->workwq, &ptp->work);
1358}
1359
1360/* Process a completed receive event. Put it on the event queue and
1361 * start worker thread. This is required because event and their
1362 * correspoding packets may come in either order.
1363 */
1364static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1365{
1366 struct efx_ptp_event_rx *evt = NULL;
1367
1368 if (ptp->evt_frag_idx != 3) {
1369 ptp_event_failure(efx, 3);
1370 return;
1371 }
1372
1373 spin_lock_bh(&ptp->evt_lock);
1374 if (!list_empty(&ptp->evt_free_list)) {
1375 evt = list_first_entry(&ptp->evt_free_list,
1376 struct efx_ptp_event_rx, link);
1377 list_del(&evt->link);
1378
1379 evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1380 evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1381 MCDI_EVENT_SRC) |
1382 (EFX_QWORD_FIELD(ptp->evt_frags[1],
1383 MCDI_EVENT_SRC) << 8) |
1384 (EFX_QWORD_FIELD(ptp->evt_frags[0],
1385 MCDI_EVENT_SRC) << 16));
1386 evt->hwtimestamp = ktime_set(
1387 EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1388 EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA));
1389 evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1390 list_add_tail(&evt->link, &ptp->evt_list);
1391
1392 queue_work(ptp->workwq, &ptp->work);
f3211600
LE
1393 } else if (!ptp->evt_overflow) {
1394 /* Log a warning message and set the event overflow flag.
1395 * The message won't be logged again until the event queue
1396 * becomes empty.
1397 */
1398 netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
1399 ptp->evt_overflow = true;
7c236c43
SH
1400 }
1401 spin_unlock_bh(&ptp->evt_lock);
1402}
1403
1404static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1405{
1406 int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1407 if (ptp->evt_frag_idx != 1) {
1408 ptp_event_failure(efx, 1);
1409 return;
1410 }
1411
1412 netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1413}
1414
1415static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1416{
1417 if (ptp->nic_ts_enabled)
1418 queue_work(ptp->pps_workwq, &ptp->pps_work);
1419}
1420
1421void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1422{
1423 struct efx_ptp_data *ptp = efx->ptp_data;
1424 int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1425
1426 if (!ptp->enabled)
1427 return;
1428
1429 if (ptp->evt_frag_idx == 0) {
1430 ptp->evt_code = code;
1431 } else if (ptp->evt_code != code) {
1432 netif_err(efx, hw, efx->net_dev,
1433 "PTP out of sequence event %d\n", code);
1434 ptp->evt_frag_idx = 0;
1435 }
1436
1437 ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1438 if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1439 /* Process resulting event */
1440 switch (code) {
1441 case MCDI_EVENT_CODE_PTP_RX:
1442 ptp_event_rx(efx, ptp);
1443 break;
1444 case MCDI_EVENT_CODE_PTP_FAULT:
1445 ptp_event_fault(efx, ptp);
1446 break;
1447 case MCDI_EVENT_CODE_PTP_PPS:
1448 ptp_event_pps(efx, ptp);
1449 break;
1450 default:
1451 netif_err(efx, hw, efx->net_dev,
1452 "PTP unknown event %d\n", code);
1453 break;
1454 }
1455 ptp->evt_frag_idx = 0;
1456 } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1457 netif_err(efx, hw, efx->net_dev,
1458 "PTP too many event fragments\n");
1459 ptp->evt_frag_idx = 0;
1460 }
1461}
1462
1463static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
1464{
1465 struct efx_ptp_data *ptp_data = container_of(ptp,
1466 struct efx_ptp_data,
1467 phc_clock_info);
ac36baf8 1468 struct efx_nic *efx = ptp_data->efx;
59cfc479 1469 MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
7c236c43
SH
1470 s64 adjustment_ns;
1471 int rc;
1472
1473 if (delta > MAX_PPB)
1474 delta = MAX_PPB;
1475 else if (delta < -MAX_PPB)
1476 delta = -MAX_PPB;
1477
1478 /* Convert ppb to fixed point ns. */
1479 adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >>
1480 (PPB_EXTRA_BITS + MAX_PPB_BITS));
1481
1482 MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
c1d828bd 1483 MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
338f74df 1484 MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
7c236c43
SH
1485 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
1486 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
1487 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
1488 NULL, 0, NULL);
1489 if (rc != 0)
1490 return rc;
1491
cd6fe65e 1492 ptp_data->current_adjfreq = adjustment_ns;
7c236c43
SH
1493 return 0;
1494}
1495
1496static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
1497{
1498 struct efx_ptp_data *ptp_data = container_of(ptp,
1499 struct efx_ptp_data,
1500 phc_clock_info);
ac36baf8 1501 struct efx_nic *efx = ptp_data->efx;
7c236c43 1502 struct timespec delta_ts = ns_to_timespec(delta);
59cfc479 1503 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
7c236c43
SH
1504
1505 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
c1d828bd 1506 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
cd6fe65e 1507 MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
7c236c43
SH
1508 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_SECONDS, (u32)delta_ts.tv_sec);
1509 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_NANOSECONDS, (u32)delta_ts.tv_nsec);
1510 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1511 NULL, 0, NULL);
1512}
1513
1514static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
1515{
1516 struct efx_ptp_data *ptp_data = container_of(ptp,
1517 struct efx_ptp_data,
1518 phc_clock_info);
ac36baf8 1519 struct efx_nic *efx = ptp_data->efx;
59cfc479
BH
1520 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
1521 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
7c236c43
SH
1522 int rc;
1523
1524 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
c1d828bd 1525 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
7c236c43
SH
1526
1527 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1528 outbuf, sizeof(outbuf), NULL);
1529 if (rc != 0)
1530 return rc;
1531
1532 ts->tv_sec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_SECONDS);
1533 ts->tv_nsec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_NANOSECONDS);
1534 return 0;
1535}
1536
1537static int efx_phc_settime(struct ptp_clock_info *ptp,
1538 const struct timespec *e_ts)
1539{
1540 /* Get the current NIC time, efx_phc_gettime.
1541 * Subtract from the desired time to get the offset
1542 * call efx_phc_adjtime with the offset
1543 */
1544 int rc;
1545 struct timespec time_now;
1546 struct timespec delta;
1547
1548 rc = efx_phc_gettime(ptp, &time_now);
1549 if (rc != 0)
1550 return rc;
1551
1552 delta = timespec_sub(*e_ts, time_now);
1553
56567c6f 1554 rc = efx_phc_adjtime(ptp, timespec_to_ns(&delta));
7c236c43
SH
1555 if (rc != 0)
1556 return rc;
1557
1558 return 0;
1559}
1560
1561static int efx_phc_enable(struct ptp_clock_info *ptp,
1562 struct ptp_clock_request *request,
1563 int enable)
1564{
1565 struct efx_ptp_data *ptp_data = container_of(ptp,
1566 struct efx_ptp_data,
1567 phc_clock_info);
1568 if (request->type != PTP_CLK_REQ_PPS)
1569 return -EOPNOTSUPP;
1570
1571 ptp_data->nic_ts_enabled = !!enable;
1572 return 0;
1573}
1574
1575static const struct efx_channel_type efx_ptp_channel_type = {
1576 .handle_no_channel = efx_ptp_handle_no_channel,
1577 .pre_probe = efx_ptp_probe_channel,
1578 .post_remove = efx_ptp_remove_channel,
1579 .get_name = efx_ptp_get_channel_name,
1580 /* no copy operation; there is no need to reallocate this channel */
1581 .receive_skb = efx_ptp_rx,
1582 .keep_eventq = false,
1583};
1584
ac36baf8 1585void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
7c236c43
SH
1586{
1587 /* Check whether PTP is implemented on this NIC. The DISABLE
1588 * operation will succeed if and only if it is implemented.
1589 */
1590 if (efx_ptp_disable(efx) == 0)
1591 efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
1592 &efx_ptp_channel_type;
1593}
2ea4dc28
AR
1594
1595void efx_ptp_start_datapath(struct efx_nic *efx)
1596{
1597 if (efx_ptp_restart(efx))
1598 netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
1599}
1600
1601void efx_ptp_stop_datapath(struct efx_nic *efx)
1602{
1603 efx_ptp_stop(efx);
1604}
This page took 0.190901 seconds and 5 git commands to generate.