Merge branch 'netdev-name'
[deliverable/linux.git] / drivers / net / ethernet / sfc / tx.c
CommitLineData
8ceee660 1/****************************************************************************
f7a6d2c4 2 * Driver for Solarflare network controllers and boards
8ceee660 3 * Copyright 2005-2006 Fen Systems Ltd.
f7a6d2c4 4 * Copyright 2005-2013 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/pci.h>
12#include <linux/tcp.h>
13#include <linux/ip.h>
14#include <linux/in.h>
738a8f4b 15#include <linux/ipv6.h>
5a0e3ad6 16#include <linux/slab.h>
738a8f4b 17#include <net/ipv6.h>
8ceee660
BH
18#include <linux/if_ether.h>
19#include <linux/highmem.h>
183233be 20#include <linux/cache.h>
8ceee660 21#include "net_driver.h"
8ceee660 22#include "efx.h"
183233be 23#include "io.h"
744093c9 24#include "nic.h"
8ceee660 25#include "workarounds.h"
dfa50be9 26#include "ef10_regs.h"
8ceee660 27
183233be
BH
28#ifdef EFX_USE_PIO
29
30#define EFX_PIOBUF_SIZE_MAX ER_DZ_TX_PIOBUF_SIZE
31#define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
32unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
33
34#endif /* EFX_USE_PIO */
35
0fe5565b
BH
36static inline unsigned int
37efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
38{
39 return tx_queue->insert_count & tx_queue->ptr_mask;
40}
41
42static inline struct efx_tx_buffer *
43__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
44{
45 return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
46}
47
48static inline struct efx_tx_buffer *
49efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
50{
51 struct efx_tx_buffer *buffer =
52 __efx_tx_queue_get_insert_buffer(tx_queue);
53
54 EFX_BUG_ON_PARANOID(buffer->len);
55 EFX_BUG_ON_PARANOID(buffer->flags);
56 EFX_BUG_ON_PARANOID(buffer->unmap_len);
57
58 return buffer;
59}
60
4d566063 61static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
c3940999
TH
62 struct efx_tx_buffer *buffer,
63 unsigned int *pkts_compl,
64 unsigned int *bytes_compl)
8ceee660
BH
65{
66 if (buffer->unmap_len) {
0e33d870 67 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
2acdb92e 68 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
7668ff9c 69 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
0e33d870
BH
70 dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
71 DMA_TO_DEVICE);
8ceee660 72 else
0e33d870
BH
73 dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
74 DMA_TO_DEVICE);
8ceee660 75 buffer->unmap_len = 0;
8ceee660
BH
76 }
77
7668ff9c 78 if (buffer->flags & EFX_TX_BUF_SKB) {
c3940999
TH
79 (*pkts_compl)++;
80 (*bytes_compl) += buffer->skb->len;
8ceee660 81 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
62776d03
BH
82 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
83 "TX queue %d transmission id %x complete\n",
84 tx_queue->queue, tx_queue->read_count);
f7251a9c
BH
85 } else if (buffer->flags & EFX_TX_BUF_HEAP) {
86 kfree(buffer->heap_buf);
8ceee660 87 }
7668ff9c 88
f7251a9c
BH
89 buffer->len = 0;
90 buffer->flags = 0;
8ceee660
BH
91}
92
b9b39b62 93static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
740847da 94 struct sk_buff *skb);
8ceee660 95
63f19884
BH
96static inline unsigned
97efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
98{
99 /* Depending on the NIC revision, we can use descriptor
100 * lengths up to 8K or 8K-1. However, since PCI Express
101 * devices must split read requests at 4K boundaries, there is
102 * little benefit from using descriptors that cross those
103 * boundaries and we keep things simple by not doing so.
104 */
5b6262d0 105 unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
63f19884
BH
106
107 /* Work around hardware bug for unaligned buffers. */
108 if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
109 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
110
111 return len;
112}
113
7e6d06f0
BH
114unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
115{
116 /* Header and payload descriptor for each output segment, plus
117 * one for every input fragment boundary within a segment
118 */
119 unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
120
dfa50be9
BH
121 /* Possibly one more per segment for the alignment workaround,
122 * or for option descriptors
123 */
124 if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
7e6d06f0
BH
125 max_descs += EFX_TSO_MAX_SEGS;
126
127 /* Possibly more for PCIe page boundaries within input fragments */
128 if (PAGE_SIZE > EFX_PAGE_SIZE)
129 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
130 DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
131
132 return max_descs;
133}
134
14bf718f
BH
135/* Get partner of a TX queue, seen as part of the same net core queue */
136static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
137{
138 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
139 return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
140 else
141 return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
142}
143
144static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
145{
146 /* We need to consider both queues that the net core sees as one */
147 struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
148 struct efx_nic *efx = txq1->efx;
149 unsigned int fill_level;
150
151 fill_level = max(txq1->insert_count - txq1->old_read_count,
152 txq2->insert_count - txq2->old_read_count);
153 if (likely(fill_level < efx->txq_stop_thresh))
154 return;
155
156 /* We used the stale old_read_count above, which gives us a
157 * pessimistic estimate of the fill level (which may even
158 * validly be >= efx->txq_entries). Now try again using
159 * read_count (more likely to be a cache miss).
160 *
161 * If we read read_count and then conditionally stop the
162 * queue, it is possible for the completion path to race with
163 * us and complete all outstanding descriptors in the middle,
164 * after which there will be no more completions to wake it.
165 * Therefore we stop the queue first, then read read_count
166 * (with a memory barrier to ensure the ordering), then
167 * restart the queue if the fill level turns out to be low
168 * enough.
169 */
170 netif_tx_stop_queue(txq1->core_txq);
171 smp_mb();
172 txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
173 txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
174
175 fill_level = max(txq1->insert_count - txq1->old_read_count,
176 txq2->insert_count - txq2->old_read_count);
177 EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
178 if (likely(fill_level < efx->txq_stop_thresh)) {
179 smp_mb();
180 if (likely(!efx->loopback_selftest))
181 netif_tx_start_queue(txq1->core_txq);
182 }
183}
184
ee45fd92
JC
185#ifdef EFX_USE_PIO
186
187struct efx_short_copy_buffer {
188 int used;
189 u8 buf[L1_CACHE_BYTES];
190};
191
daf37b55
JC
192/* Copy in explicit 64-bit writes. */
193static void efx_memcpy_64(void __iomem *dest, void *src, size_t len)
194{
195 u64 *src64 = src;
196 u64 __iomem *dest64 = dest;
197 size_t l64 = len / 8;
198 size_t i;
199
200 for (i = 0; i < l64; i++)
201 writeq(src64[i], &dest64[i]);
202}
203
ee45fd92
JC
204/* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
205 * Advances piobuf pointer. Leaves additional data in the copy buffer.
206 */
207static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
208 u8 *data, int len,
209 struct efx_short_copy_buffer *copy_buf)
210{
211 int block_len = len & ~(sizeof(copy_buf->buf) - 1);
212
daf37b55 213 efx_memcpy_64(*piobuf, data, block_len);
ee45fd92
JC
214 *piobuf += block_len;
215 len -= block_len;
216
217 if (len) {
218 data += block_len;
219 BUG_ON(copy_buf->used);
220 BUG_ON(len > sizeof(copy_buf->buf));
221 memcpy(copy_buf->buf, data, len);
222 copy_buf->used = len;
223 }
224}
225
226/* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
227 * Advances piobuf pointer. Leaves additional data in the copy buffer.
228 */
229static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
230 u8 *data, int len,
231 struct efx_short_copy_buffer *copy_buf)
232{
233 if (copy_buf->used) {
234 /* if the copy buffer is partially full, fill it up and write */
235 int copy_to_buf =
236 min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
237
238 memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
239 copy_buf->used += copy_to_buf;
240
241 /* if we didn't fill it up then we're done for now */
242 if (copy_buf->used < sizeof(copy_buf->buf))
243 return;
244
daf37b55 245 efx_memcpy_64(*piobuf, copy_buf->buf, sizeof(copy_buf->buf));
ee45fd92
JC
246 *piobuf += sizeof(copy_buf->buf);
247 data += copy_to_buf;
248 len -= copy_to_buf;
249 copy_buf->used = 0;
250 }
251
252 efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
253}
254
255static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
256 struct efx_short_copy_buffer *copy_buf)
257{
258 /* if there's anything in it, write the whole buffer, including junk */
259 if (copy_buf->used)
daf37b55 260 efx_memcpy_64(piobuf, copy_buf->buf, sizeof(copy_buf->buf));
ee45fd92
JC
261}
262
263/* Traverse skb structure and copy fragments in to PIO buffer.
264 * Advances piobuf pointer.
265 */
266static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
267 u8 __iomem **piobuf,
268 struct efx_short_copy_buffer *copy_buf)
269{
270 int i;
271
272 efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
273 copy_buf);
274
275 for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
276 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
277 u8 *vaddr;
278
279 vaddr = kmap_atomic(skb_frag_page(f));
280
281 efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
282 skb_frag_size(f), copy_buf);
283 kunmap_atomic(vaddr);
284 }
285
286 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->frag_list);
287}
288
289static struct efx_tx_buffer *
290efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
291{
292 struct efx_tx_buffer *buffer =
293 efx_tx_queue_get_insert_buffer(tx_queue);
294 u8 __iomem *piobuf = tx_queue->piobuf;
295
296 /* Copy to PIO buffer. Ensure the writes are padded to the end
297 * of a cache line, as this is required for write-combining to be
298 * effective on at least x86.
299 */
300
301 if (skb_shinfo(skb)->nr_frags) {
302 /* The size of the copy buffer will ensure all writes
303 * are the size of a cache line.
304 */
305 struct efx_short_copy_buffer copy_buf;
306
307 copy_buf.used = 0;
308
309 efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
310 &piobuf, &copy_buf);
311 efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
312 } else {
313 /* Pad the write to the size of a cache line.
314 * We can do this because we know the skb_shared_info sruct is
315 * after the source, and the destination buffer is big enough.
316 */
317 BUILD_BUG_ON(L1_CACHE_BYTES >
318 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
daf37b55
JC
319 efx_memcpy_64(tx_queue->piobuf, skb->data,
320 ALIGN(skb->len, L1_CACHE_BYTES));
ee45fd92
JC
321 }
322
323 EFX_POPULATE_QWORD_5(buffer->option,
324 ESF_DZ_TX_DESC_IS_OPT, 1,
325 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
326 ESF_DZ_TX_PIO_CONT, 0,
327 ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
328 ESF_DZ_TX_PIO_BUF_ADDR,
329 tx_queue->piobuf_offset);
330 ++tx_queue->pio_packets;
331 ++tx_queue->insert_count;
332 return buffer;
333}
334#endif /* EFX_USE_PIO */
335
8ceee660
BH
336/*
337 * Add a socket buffer to a TX queue
338 *
339 * This maps all fragments of a socket buffer for DMA and adds them to
340 * the TX queue. The queue's insert pointer will be incremented by
341 * the number of fragments in the socket buffer.
342 *
343 * If any DMA mapping fails, any mapped fragments will be unmapped,
344 * the queue's insert pointer will be restored to its original value.
345 *
497f5ba3
BH
346 * This function is split out from efx_hard_start_xmit to allow the
347 * loopback test to direct packets via specific TX queues.
348 *
14bf718f 349 * Returns NETDEV_TX_OK.
8ceee660
BH
350 * You must hold netif_tx_lock() to call this function.
351 */
497f5ba3 352netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
8ceee660
BH
353{
354 struct efx_nic *efx = tx_queue->efx;
0e33d870 355 struct device *dma_dev = &efx->pci_dev->dev;
8ceee660
BH
356 struct efx_tx_buffer *buffer;
357 skb_frag_t *fragment;
0fe5565b 358 unsigned int len, unmap_len = 0;
8ceee660
BH
359 dma_addr_t dma_addr, unmap_addr = 0;
360 unsigned int dma_len;
7668ff9c 361 unsigned short dma_flags;
14bf718f 362 int i = 0;
8ceee660
BH
363
364 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
365
9bc183d7 366 if (skb_shinfo(skb)->gso_size)
b9b39b62
BH
367 return efx_enqueue_skb_tso(tx_queue, skb);
368
8ceee660
BH
369 /* Get size of the initial fragment */
370 len = skb_headlen(skb);
371
bb145a9e
BH
372 /* Pad if necessary */
373 if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
374 EFX_BUG_ON_PARANOID(skb->data_len);
375 len = 32 + 1;
376 if (skb_pad(skb, len - skb->len))
377 return NETDEV_TX_OK;
378 }
379
ee45fd92
JC
380 /* Consider using PIO for short packets */
381#ifdef EFX_USE_PIO
382 if (skb->len <= efx_piobuf_size && tx_queue->piobuf &&
383 efx_nic_tx_is_empty(tx_queue) &&
384 efx_nic_tx_is_empty(efx_tx_queue_partner(tx_queue))) {
385 buffer = efx_enqueue_skb_pio(tx_queue, skb);
386 dma_flags = EFX_TX_BUF_OPTION;
387 goto finish_packet;
388 }
389#endif
390
0e33d870 391 /* Map for DMA. Use dma_map_single rather than dma_map_page
8ceee660
BH
392 * since this is more efficient on machines with sparse
393 * memory.
394 */
7668ff9c 395 dma_flags = EFX_TX_BUF_MAP_SINGLE;
0e33d870 396 dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
8ceee660
BH
397
398 /* Process all fragments */
399 while (1) {
0e33d870
BH
400 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
401 goto dma_err;
8ceee660
BH
402
403 /* Store fields for marking in the per-fragment final
404 * descriptor */
405 unmap_len = len;
406 unmap_addr = dma_addr;
407
408 /* Add to TX queue, splitting across DMA boundaries */
409 do {
0fe5565b 410 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
8ceee660 411
63f19884
BH
412 dma_len = efx_max_tx_len(efx, dma_addr);
413 if (likely(dma_len >= len))
8ceee660
BH
414 dma_len = len;
415
8ceee660
BH
416 /* Fill out per descriptor fields */
417 buffer->len = dma_len;
418 buffer->dma_addr = dma_addr;
7668ff9c 419 buffer->flags = EFX_TX_BUF_CONT;
8ceee660
BH
420 len -= dma_len;
421 dma_addr += dma_len;
422 ++tx_queue->insert_count;
423 } while (len);
424
425 /* Transfer ownership of the unmapping to the final buffer */
7668ff9c 426 buffer->flags = EFX_TX_BUF_CONT | dma_flags;
8ceee660 427 buffer->unmap_len = unmap_len;
2acdb92e 428 buffer->dma_offset = buffer->dma_addr - unmap_addr;
8ceee660
BH
429 unmap_len = 0;
430
431 /* Get address and size of next fragment */
432 if (i >= skb_shinfo(skb)->nr_frags)
433 break;
434 fragment = &skb_shinfo(skb)->frags[i];
9e903e08 435 len = skb_frag_size(fragment);
8ceee660
BH
436 i++;
437 /* Map for DMA */
7668ff9c 438 dma_flags = 0;
0e33d870 439 dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
5d6bcdfe 440 DMA_TO_DEVICE);
8ceee660
BH
441 }
442
443 /* Transfer ownership of the skb to the final buffer */
440b87ea 444#ifdef EFX_USE_PIO
ee45fd92 445finish_packet:
440b87ea 446#endif
8ceee660 447 buffer->skb = skb;
7668ff9c 448 buffer->flags = EFX_TX_BUF_SKB | dma_flags;
8ceee660 449
c3940999
TH
450 netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
451
8ceee660 452 /* Pass off to hardware */
152b6a62 453 efx_nic_push_buffers(tx_queue);
8ceee660 454
8ccf3800
AR
455 tx_queue->tx_packets++;
456
14bf718f
BH
457 efx_tx_maybe_stop_queue(tx_queue);
458
8ceee660
BH
459 return NETDEV_TX_OK;
460
0e33d870 461 dma_err:
62776d03
BH
462 netif_err(efx, tx_err, efx->net_dev,
463 " TX queue %d could not map skb with %d bytes %d "
464 "fragments for DMA\n", tx_queue->queue, skb->len,
465 skb_shinfo(skb)->nr_frags + 1);
8ceee660
BH
466
467 /* Mark the packet as transmitted, and free the SKB ourselves */
9bc183d7 468 dev_kfree_skb_any(skb);
8ceee660 469
8ceee660
BH
470 /* Work backwards until we hit the original insert pointer value */
471 while (tx_queue->insert_count != tx_queue->write_count) {
c3940999 472 unsigned int pkts_compl = 0, bytes_compl = 0;
8ceee660 473 --tx_queue->insert_count;
0fe5565b 474 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
c3940999 475 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
8ceee660
BH
476 }
477
478 /* Free the fragment we were mid-way through pushing */
ecbd95c1 479 if (unmap_len) {
7668ff9c 480 if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
0e33d870
BH
481 dma_unmap_single(dma_dev, unmap_addr, unmap_len,
482 DMA_TO_DEVICE);
ecbd95c1 483 else
0e33d870
BH
484 dma_unmap_page(dma_dev, unmap_addr, unmap_len,
485 DMA_TO_DEVICE);
ecbd95c1 486 }
8ceee660 487
14bf718f 488 return NETDEV_TX_OK;
8ceee660
BH
489}
490
491/* Remove packets from the TX queue
492 *
493 * This removes packets from the TX queue, up to and including the
494 * specified index.
495 */
4d566063 496static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
c3940999
TH
497 unsigned int index,
498 unsigned int *pkts_compl,
499 unsigned int *bytes_compl)
8ceee660
BH
500{
501 struct efx_nic *efx = tx_queue->efx;
502 unsigned int stop_index, read_ptr;
8ceee660 503
ecc910f5
SH
504 stop_index = (index + 1) & tx_queue->ptr_mask;
505 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
8ceee660
BH
506
507 while (read_ptr != stop_index) {
508 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
ba8977bd
BH
509
510 if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
511 unlikely(buffer->len == 0)) {
62776d03
BH
512 netif_err(efx, tx_err, efx->net_dev,
513 "TX queue %d spurious TX completion id %x\n",
514 tx_queue->queue, read_ptr);
8ceee660
BH
515 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
516 return;
517 }
518
c3940999 519 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
8ceee660
BH
520
521 ++tx_queue->read_count;
ecc910f5 522 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
8ceee660
BH
523 }
524}
525
8ceee660
BH
526/* Initiate a packet transmission. We use one channel per CPU
527 * (sharing when we have more CPUs than channels). On Falcon, the TX
528 * completion events will be directed back to the CPU that transmitted
529 * the packet, which should be cache-efficient.
530 *
531 * Context: non-blocking.
532 * Note that returning anything other than NETDEV_TX_OK will cause the
533 * OS to free the skb.
534 */
61357325 535netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
2d0cc56d 536 struct net_device *net_dev)
8ceee660 537{
767e468c 538 struct efx_nic *efx = netdev_priv(net_dev);
60ac1065 539 struct efx_tx_queue *tx_queue;
94b274bf 540 unsigned index, type;
60ac1065 541
e4abce85 542 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
a7ef5933 543
7c236c43
SH
544 /* PTP "event" packet */
545 if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
546 unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
547 return efx_ptp_tx(efx, skb);
548 }
549
94b274bf
BH
550 index = skb_get_queue_mapping(skb);
551 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
552 if (index >= efx->n_tx_channels) {
553 index -= efx->n_tx_channels;
554 type |= EFX_TXQ_TYPE_HIGHPRI;
555 }
556 tx_queue = efx_get_tx_queue(efx, index, type);
60ac1065 557
497f5ba3 558 return efx_enqueue_skb(tx_queue, skb);
8ceee660
BH
559}
560
60031fcc
BH
561void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
562{
94b274bf
BH
563 struct efx_nic *efx = tx_queue->efx;
564
60031fcc 565 /* Must be inverse of queue lookup in efx_hard_start_xmit() */
94b274bf
BH
566 tx_queue->core_txq =
567 netdev_get_tx_queue(efx->net_dev,
568 tx_queue->queue / EFX_TXQ_TYPES +
569 ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
570 efx->n_tx_channels : 0));
571}
572
573int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
574{
575 struct efx_nic *efx = netdev_priv(net_dev);
576 struct efx_channel *channel;
577 struct efx_tx_queue *tx_queue;
578 unsigned tc;
579 int rc;
580
581 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
582 return -EINVAL;
583
584 if (num_tc == net_dev->num_tc)
585 return 0;
586
587 for (tc = 0; tc < num_tc; tc++) {
588 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
589 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
590 }
591
592 if (num_tc > net_dev->num_tc) {
593 /* Initialise high-priority queues as necessary */
594 efx_for_each_channel(channel, efx) {
595 efx_for_each_possible_channel_tx_queue(tx_queue,
596 channel) {
597 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
598 continue;
599 if (!tx_queue->buffer) {
600 rc = efx_probe_tx_queue(tx_queue);
601 if (rc)
602 return rc;
603 }
604 if (!tx_queue->initialised)
605 efx_init_tx_queue(tx_queue);
606 efx_init_tx_queue_core_txq(tx_queue);
607 }
608 }
609 } else {
610 /* Reduce number of classes before number of queues */
611 net_dev->num_tc = num_tc;
612 }
613
614 rc = netif_set_real_num_tx_queues(net_dev,
615 max_t(int, num_tc, 1) *
616 efx->n_tx_channels);
617 if (rc)
618 return rc;
619
620 /* Do not destroy high-priority queues when they become
621 * unused. We would have to flush them first, and it is
622 * fairly difficult to flush a subset of TX queues. Leave
623 * it to efx_fini_channels().
624 */
625
626 net_dev->num_tc = num_tc;
627 return 0;
60031fcc
BH
628}
629
8ceee660
BH
630void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
631{
632 unsigned fill_level;
633 struct efx_nic *efx = tx_queue->efx;
14bf718f 634 struct efx_tx_queue *txq2;
c3940999 635 unsigned int pkts_compl = 0, bytes_compl = 0;
8ceee660 636
ecc910f5 637 EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
8ceee660 638
c3940999
TH
639 efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
640 netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
8ceee660 641
02e12165
BH
642 if (pkts_compl > 1)
643 ++tx_queue->merge_events;
644
14bf718f
BH
645 /* See if we need to restart the netif queue. This memory
646 * barrier ensures that we write read_count (inside
647 * efx_dequeue_buffers()) before reading the queue status.
648 */
8ceee660 649 smp_mb();
c04bfc6b 650 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
9d1aea62 651 likely(efx->port_enabled) &&
e4abce85 652 likely(netif_device_present(efx->net_dev))) {
14bf718f
BH
653 txq2 = efx_tx_queue_partner(tx_queue);
654 fill_level = max(tx_queue->insert_count - tx_queue->read_count,
655 txq2->insert_count - txq2->read_count);
656 if (fill_level <= efx->txq_wake_thresh)
c04bfc6b 657 netif_tx_wake_queue(tx_queue->core_txq);
8ceee660 658 }
cd38557d
BH
659
660 /* Check whether the hardware queue is now empty */
661 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
662 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
663 if (tx_queue->read_count == tx_queue->old_write_count) {
664 smp_mb();
665 tx_queue->empty_read_count =
666 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
667 }
668 }
8ceee660
BH
669}
670
f7251a9c
BH
671/* Size of page-based TSO header buffers. Larger blocks must be
672 * allocated from the heap.
673 */
674#define TSOH_STD_SIZE 128
675#define TSOH_PER_PAGE (PAGE_SIZE / TSOH_STD_SIZE)
676
677/* At most half the descriptors in the queue at any time will refer to
678 * a TSO header buffer, since they must always be followed by a
679 * payload descriptor referring to an skb.
680 */
681static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
682{
683 return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
684}
685
8ceee660
BH
686int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
687{
688 struct efx_nic *efx = tx_queue->efx;
ecc910f5 689 unsigned int entries;
7668ff9c 690 int rc;
8ceee660 691
ecc910f5
SH
692 /* Create the smallest power-of-two aligned ring */
693 entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
694 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
695 tx_queue->ptr_mask = entries - 1;
696
697 netif_dbg(efx, probe, efx->net_dev,
698 "creating TX queue %d size %#x mask %#x\n",
699 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
8ceee660
BH
700
701 /* Allocate software ring */
c2e4e25a 702 tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
ecc910f5 703 GFP_KERNEL);
60ac1065
BH
704 if (!tx_queue->buffer)
705 return -ENOMEM;
8ceee660 706
f7251a9c
BH
707 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
708 tx_queue->tsoh_page =
709 kcalloc(efx_tsoh_page_count(tx_queue),
710 sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
711 if (!tx_queue->tsoh_page) {
712 rc = -ENOMEM;
713 goto fail1;
714 }
715 }
716
8ceee660 717 /* Allocate hardware ring */
152b6a62 718 rc = efx_nic_probe_tx(tx_queue);
8ceee660 719 if (rc)
f7251a9c 720 goto fail2;
8ceee660
BH
721
722 return 0;
723
f7251a9c
BH
724fail2:
725 kfree(tx_queue->tsoh_page);
726 tx_queue->tsoh_page = NULL;
727fail1:
8ceee660
BH
728 kfree(tx_queue->buffer);
729 tx_queue->buffer = NULL;
8ceee660
BH
730 return rc;
731}
732
bc3c90a2 733void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
8ceee660 734{
62776d03
BH
735 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
736 "initialising TX queue %d\n", tx_queue->queue);
8ceee660
BH
737
738 tx_queue->insert_count = 0;
739 tx_queue->write_count = 0;
cd38557d 740 tx_queue->old_write_count = 0;
8ceee660
BH
741 tx_queue->read_count = 0;
742 tx_queue->old_read_count = 0;
cd38557d 743 tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
8ceee660
BH
744
745 /* Set up TX descriptor ring */
152b6a62 746 efx_nic_init_tx(tx_queue);
94b274bf
BH
747
748 tx_queue->initialised = true;
8ceee660
BH
749}
750
e42c3d85 751void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
8ceee660
BH
752{
753 struct efx_tx_buffer *buffer;
754
e42c3d85
BH
755 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
756 "shutting down TX queue %d\n", tx_queue->queue);
757
8ceee660
BH
758 if (!tx_queue->buffer)
759 return;
760
761 /* Free any buffers left in the ring */
762 while (tx_queue->read_count != tx_queue->write_count) {
c3940999 763 unsigned int pkts_compl = 0, bytes_compl = 0;
ecc910f5 764 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
c3940999 765 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
8ceee660
BH
766
767 ++tx_queue->read_count;
768 }
c3940999 769 netdev_tx_reset_queue(tx_queue->core_txq);
8ceee660
BH
770}
771
8ceee660
BH
772void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
773{
f7251a9c
BH
774 int i;
775
94b274bf
BH
776 if (!tx_queue->buffer)
777 return;
778
62776d03
BH
779 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
780 "destroying TX queue %d\n", tx_queue->queue);
152b6a62 781 efx_nic_remove_tx(tx_queue);
8ceee660 782
f7251a9c
BH
783 if (tx_queue->tsoh_page) {
784 for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
785 efx_nic_free_buffer(tx_queue->efx,
786 &tx_queue->tsoh_page[i]);
787 kfree(tx_queue->tsoh_page);
788 tx_queue->tsoh_page = NULL;
789 }
790
8ceee660
BH
791 kfree(tx_queue->buffer);
792 tx_queue->buffer = NULL;
8ceee660
BH
793}
794
795
b9b39b62
BH
796/* Efx TCP segmentation acceleration.
797 *
798 * Why? Because by doing it here in the driver we can go significantly
799 * faster than the GSO.
800 *
801 * Requires TX checksum offload support.
802 */
803
b9b39b62 804#define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
b9b39b62
BH
805
806/**
807 * struct tso_state - TSO state for an SKB
23d9e60b 808 * @out_len: Remaining length in current segment
b9b39b62 809 * @seqnum: Current sequence number
23d9e60b 810 * @ipv4_id: Current IPv4 ID, host endian
b9b39b62 811 * @packet_space: Remaining space in current packet
23d9e60b
BH
812 * @dma_addr: DMA address of current position
813 * @in_len: Remaining length in current SKB fragment
814 * @unmap_len: Length of SKB fragment
815 * @unmap_addr: DMA address of SKB fragment
7668ff9c 816 * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
738a8f4b 817 * @protocol: Network protocol (after any VLAN header)
9714284f
BH
818 * @ip_off: Offset of IP header
819 * @tcp_off: Offset of TCP header
23d9e60b 820 * @header_len: Number of bytes of header
53cb13c6 821 * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
dfa50be9
BH
822 * @header_dma_addr: Header DMA address, when using option descriptors
823 * @header_unmap_len: Header DMA mapped length, or 0 if not using option
824 * descriptors
b9b39b62
BH
825 *
826 * The state used during segmentation. It is put into this data structure
827 * just to make it easy to pass into inline functions.
828 */
829struct tso_state {
23d9e60b
BH
830 /* Output position */
831 unsigned out_len;
b9b39b62 832 unsigned seqnum;
dfa50be9 833 u16 ipv4_id;
b9b39b62
BH
834 unsigned packet_space;
835
23d9e60b
BH
836 /* Input position */
837 dma_addr_t dma_addr;
838 unsigned in_len;
839 unsigned unmap_len;
840 dma_addr_t unmap_addr;
7668ff9c 841 unsigned short dma_flags;
23d9e60b 842
738a8f4b 843 __be16 protocol;
9714284f
BH
844 unsigned int ip_off;
845 unsigned int tcp_off;
23d9e60b 846 unsigned header_len;
53cb13c6 847 unsigned int ip_base_len;
dfa50be9
BH
848 dma_addr_t header_dma_addr;
849 unsigned int header_unmap_len;
b9b39b62
BH
850};
851
852
853/*
854 * Verify that our various assumptions about sk_buffs and the conditions
738a8f4b 855 * under which TSO will be attempted hold true. Return the protocol number.
b9b39b62 856 */
738a8f4b 857static __be16 efx_tso_check_protocol(struct sk_buff *skb)
b9b39b62 858{
740847da
BH
859 __be16 protocol = skb->protocol;
860
b9b39b62 861 EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
740847da
BH
862 protocol);
863 if (protocol == htons(ETH_P_8021Q)) {
740847da
BH
864 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
865 protocol = veh->h_vlan_encapsulated_proto;
740847da
BH
866 }
867
738a8f4b
BH
868 if (protocol == htons(ETH_P_IP)) {
869 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
870 } else {
871 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
872 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
873 }
b9b39b62
BH
874 EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
875 + (tcp_hdr(skb)->doff << 2u)) >
876 skb_headlen(skb));
738a8f4b
BH
877
878 return protocol;
b9b39b62
BH
879}
880
f7251a9c
BH
881static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
882 struct efx_tx_buffer *buffer, unsigned int len)
b9b39b62 883{
f7251a9c 884 u8 *result;
b9b39b62 885
f7251a9c
BH
886 EFX_BUG_ON_PARANOID(buffer->len);
887 EFX_BUG_ON_PARANOID(buffer->flags);
888 EFX_BUG_ON_PARANOID(buffer->unmap_len);
b9b39b62 889
0bdadad1 890 if (likely(len <= TSOH_STD_SIZE - NET_IP_ALIGN)) {
f7251a9c
BH
891 unsigned index =
892 (tx_queue->insert_count & tx_queue->ptr_mask) / 2;
893 struct efx_buffer *page_buf =
894 &tx_queue->tsoh_page[index / TSOH_PER_PAGE];
895 unsigned offset =
0bdadad1 896 TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + NET_IP_ALIGN;
b9b39b62 897
f7251a9c 898 if (unlikely(!page_buf->addr) &&
0d19a540
BH
899 efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
900 GFP_ATOMIC))
f7251a9c 901 return NULL;
b9b39b62 902
f7251a9c
BH
903 result = (u8 *)page_buf->addr + offset;
904 buffer->dma_addr = page_buf->dma_addr + offset;
905 buffer->flags = EFX_TX_BUF_CONT;
906 } else {
907 tx_queue->tso_long_headers++;
b9b39b62 908
0bdadad1 909 buffer->heap_buf = kmalloc(NET_IP_ALIGN + len, GFP_ATOMIC);
f7251a9c
BH
910 if (unlikely(!buffer->heap_buf))
911 return NULL;
0bdadad1 912 result = (u8 *)buffer->heap_buf + NET_IP_ALIGN;
f7251a9c 913 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
b9b39b62
BH
914 }
915
f7251a9c 916 buffer->len = len;
b9b39b62 917
f7251a9c 918 return result;
b9b39b62
BH
919}
920
921/**
922 * efx_tx_queue_insert - push descriptors onto the TX queue
923 * @tx_queue: Efx TX queue
924 * @dma_addr: DMA address of fragment
925 * @len: Length of fragment
ecbd95c1 926 * @final_buffer: The final buffer inserted into the queue
b9b39b62 927 *
14bf718f 928 * Push descriptors onto the TX queue.
b9b39b62 929 */
14bf718f
BH
930static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
931 dma_addr_t dma_addr, unsigned len,
932 struct efx_tx_buffer **final_buffer)
b9b39b62
BH
933{
934 struct efx_tx_buffer *buffer;
935 struct efx_nic *efx = tx_queue->efx;
0fe5565b 936 unsigned dma_len;
b9b39b62
BH
937
938 EFX_BUG_ON_PARANOID(len <= 0);
939
b9b39b62 940 while (1) {
0fe5565b 941 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
b9b39b62
BH
942 ++tx_queue->insert_count;
943
944 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
ecc910f5
SH
945 tx_queue->read_count >=
946 efx->txq_entries);
b9b39b62 947
b9b39b62
BH
948 buffer->dma_addr = dma_addr;
949
63f19884 950 dma_len = efx_max_tx_len(efx, dma_addr);
b9b39b62
BH
951
952 /* If there is enough space to send then do so */
953 if (dma_len >= len)
954 break;
955
7668ff9c
BH
956 buffer->len = dma_len;
957 buffer->flags = EFX_TX_BUF_CONT;
b9b39b62
BH
958 dma_addr += dma_len;
959 len -= dma_len;
960 }
961
962 EFX_BUG_ON_PARANOID(!len);
963 buffer->len = len;
ecbd95c1 964 *final_buffer = buffer;
b9b39b62
BH
965}
966
967
968/*
969 * Put a TSO header into the TX queue.
970 *
971 * This is special-cased because we know that it is small enough to fit in
972 * a single fragment, and we know it doesn't cross a page boundary. It
973 * also allows us to not worry about end-of-packet etc.
974 */
f7251a9c
BH
975static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
976 struct efx_tx_buffer *buffer, u8 *header)
b9b39b62 977{
f7251a9c
BH
978 if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
979 buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
980 header, buffer->len,
981 DMA_TO_DEVICE);
982 if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
983 buffer->dma_addr))) {
984 kfree(buffer->heap_buf);
985 buffer->len = 0;
986 buffer->flags = 0;
987 return -ENOMEM;
988 }
989 buffer->unmap_len = buffer->len;
2acdb92e 990 buffer->dma_offset = 0;
f7251a9c
BH
991 buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
992 }
b9b39b62
BH
993
994 ++tx_queue->insert_count;
f7251a9c 995 return 0;
b9b39b62
BH
996}
997
998
f7251a9c
BH
999/* Remove buffers put into a tx_queue. None of the buffers must have
1000 * an skb attached.
1001 */
b9b39b62
BH
1002static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
1003{
1004 struct efx_tx_buffer *buffer;
1005
1006 /* Work backwards until we hit the original insert pointer value */
1007 while (tx_queue->insert_count != tx_queue->write_count) {
1008 --tx_queue->insert_count;
0fe5565b 1009 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
f7251a9c 1010 efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
b9b39b62
BH
1011 }
1012}
1013
1014
1015/* Parse the SKB header and initialise state. */
c78c39e6
BH
1016static int tso_start(struct tso_state *st, struct efx_nic *efx,
1017 const struct sk_buff *skb)
b9b39b62 1018{
93413f50 1019 bool use_opt_desc = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
dfa50be9 1020 struct device *dma_dev = &efx->pci_dev->dev;
c78c39e6 1021 unsigned int header_len, in_len;
dfa50be9 1022 dma_addr_t dma_addr;
c78c39e6 1023
9714284f
BH
1024 st->ip_off = skb_network_header(skb) - skb->data;
1025 st->tcp_off = skb_transport_header(skb) - skb->data;
c78c39e6
BH
1026 header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
1027 in_len = skb_headlen(skb) - header_len;
1028 st->header_len = header_len;
1029 st->in_len = in_len;
53cb13c6 1030 if (st->protocol == htons(ETH_P_IP)) {
9714284f 1031 st->ip_base_len = st->header_len - st->ip_off;
738a8f4b 1032 st->ipv4_id = ntohs(ip_hdr(skb)->id);
53cb13c6 1033 } else {
9714284f 1034 st->ip_base_len = st->header_len - st->tcp_off;
738a8f4b 1035 st->ipv4_id = 0;
53cb13c6 1036 }
b9b39b62
BH
1037 st->seqnum = ntohl(tcp_hdr(skb)->seq);
1038
1039 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
1040 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
1041 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
1042
c78c39e6
BH
1043 st->out_len = skb->len - header_len;
1044
93413f50 1045 if (!use_opt_desc) {
dfa50be9
BH
1046 st->header_unmap_len = 0;
1047
1048 if (likely(in_len == 0)) {
1049 st->dma_flags = 0;
1050 st->unmap_len = 0;
1051 return 0;
1052 }
1053
1054 dma_addr = dma_map_single(dma_dev, skb->data + header_len,
1055 in_len, DMA_TO_DEVICE);
1056 st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
1057 st->dma_addr = dma_addr;
1058 st->unmap_addr = dma_addr;
1059 st->unmap_len = in_len;
1060 } else {
1061 dma_addr = dma_map_single(dma_dev, skb->data,
1062 skb_headlen(skb), DMA_TO_DEVICE);
1063 st->header_dma_addr = dma_addr;
1064 st->header_unmap_len = skb_headlen(skb);
c78c39e6 1065 st->dma_flags = 0;
dfa50be9
BH
1066 st->dma_addr = dma_addr + header_len;
1067 st->unmap_len = 0;
c78c39e6
BH
1068 }
1069
dfa50be9 1070 return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
b9b39b62
BH
1071}
1072
4d566063
BH
1073static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
1074 skb_frag_t *frag)
b9b39b62 1075{
4a22c4c9 1076 st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
9e903e08 1077 skb_frag_size(frag), DMA_TO_DEVICE);
5d6bcdfe 1078 if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
7668ff9c 1079 st->dma_flags = 0;
9e903e08
ED
1080 st->unmap_len = skb_frag_size(frag);
1081 st->in_len = skb_frag_size(frag);
23d9e60b 1082 st->dma_addr = st->unmap_addr;
ecbd95c1
BH
1083 return 0;
1084 }
1085 return -ENOMEM;
1086}
1087
b9b39b62
BH
1088
1089/**
1090 * tso_fill_packet_with_fragment - form descriptors for the current fragment
1091 * @tx_queue: Efx TX queue
1092 * @skb: Socket buffer
1093 * @st: TSO state
1094 *
1095 * Form descriptors for the current fragment, until we reach the end
14bf718f 1096 * of fragment or end-of-packet.
b9b39b62 1097 */
14bf718f
BH
1098static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
1099 const struct sk_buff *skb,
1100 struct tso_state *st)
b9b39b62 1101{
ecbd95c1 1102 struct efx_tx_buffer *buffer;
14bf718f 1103 int n;
b9b39b62 1104
23d9e60b 1105 if (st->in_len == 0)
14bf718f 1106 return;
b9b39b62 1107 if (st->packet_space == 0)
14bf718f 1108 return;
b9b39b62 1109
23d9e60b 1110 EFX_BUG_ON_PARANOID(st->in_len <= 0);
b9b39b62
BH
1111 EFX_BUG_ON_PARANOID(st->packet_space <= 0);
1112
23d9e60b 1113 n = min(st->in_len, st->packet_space);
b9b39b62
BH
1114
1115 st->packet_space -= n;
23d9e60b
BH
1116 st->out_len -= n;
1117 st->in_len -= n;
b9b39b62 1118
14bf718f 1119 efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
b9b39b62 1120
14bf718f
BH
1121 if (st->out_len == 0) {
1122 /* Transfer ownership of the skb */
1123 buffer->skb = skb;
1124 buffer->flags = EFX_TX_BUF_SKB;
1125 } else if (st->packet_space != 0) {
1126 buffer->flags = EFX_TX_BUF_CONT;
1127 }
1128
1129 if (st->in_len == 0) {
1130 /* Transfer ownership of the DMA mapping */
1131 buffer->unmap_len = st->unmap_len;
2acdb92e 1132 buffer->dma_offset = buffer->unmap_len - buffer->len;
14bf718f
BH
1133 buffer->flags |= st->dma_flags;
1134 st->unmap_len = 0;
ecbd95c1
BH
1135 }
1136
23d9e60b 1137 st->dma_addr += n;
b9b39b62
BH
1138}
1139
1140
1141/**
1142 * tso_start_new_packet - generate a new header and prepare for the new packet
1143 * @tx_queue: Efx TX queue
1144 * @skb: Socket buffer
1145 * @st: TSO state
1146 *
1147 * Generate a new header and prepare for the new packet. Return 0 on
f7251a9c 1148 * success, or -%ENOMEM if failed to alloc header.
b9b39b62 1149 */
4d566063
BH
1150static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1151 const struct sk_buff *skb,
1152 struct tso_state *st)
b9b39b62 1153{
f7251a9c 1154 struct efx_tx_buffer *buffer =
0fe5565b 1155 efx_tx_queue_get_insert_buffer(tx_queue);
dfa50be9
BH
1156 bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
1157 u8 tcp_flags_clear;
b9b39b62 1158
dfa50be9 1159 if (!is_last) {
53cb13c6 1160 st->packet_space = skb_shinfo(skb)->gso_size;
dfa50be9 1161 tcp_flags_clear = 0x09; /* mask out FIN and PSH */
b9b39b62 1162 } else {
53cb13c6 1163 st->packet_space = st->out_len;
dfa50be9 1164 tcp_flags_clear = 0x00;
b9b39b62 1165 }
b9b39b62 1166
dfa50be9
BH
1167 if (!st->header_unmap_len) {
1168 /* Allocate and insert a DMA-mapped header buffer. */
1169 struct tcphdr *tsoh_th;
1170 unsigned ip_length;
1171 u8 *header;
1172 int rc;
738a8f4b 1173
dfa50be9
BH
1174 header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
1175 if (!header)
1176 return -ENOMEM;
738a8f4b 1177
dfa50be9
BH
1178 tsoh_th = (struct tcphdr *)(header + st->tcp_off);
1179
1180 /* Copy and update the headers. */
1181 memcpy(header, skb->data, st->header_len);
1182
1183 tsoh_th->seq = htonl(st->seqnum);
1184 ((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;
1185
1186 ip_length = st->ip_base_len + st->packet_space;
1187
1188 if (st->protocol == htons(ETH_P_IP)) {
1189 struct iphdr *tsoh_iph =
1190 (struct iphdr *)(header + st->ip_off);
1191
1192 tsoh_iph->tot_len = htons(ip_length);
1193 tsoh_iph->id = htons(st->ipv4_id);
1194 } else {
1195 struct ipv6hdr *tsoh_iph =
1196 (struct ipv6hdr *)(header + st->ip_off);
1197
1198 tsoh_iph->payload_len = htons(ip_length);
1199 }
1200
1201 rc = efx_tso_put_header(tx_queue, buffer, header);
1202 if (unlikely(rc))
1203 return rc;
738a8f4b 1204 } else {
dfa50be9
BH
1205 /* Send the original headers with a TSO option descriptor
1206 * in front
1207 */
1208 u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;
1209
1210 buffer->flags = EFX_TX_BUF_OPTION;
1211 buffer->len = 0;
1212 buffer->unmap_len = 0;
1213 EFX_POPULATE_QWORD_5(buffer->option,
1214 ESF_DZ_TX_DESC_IS_OPT, 1,
1215 ESF_DZ_TX_OPTION_TYPE,
1216 ESE_DZ_TX_OPTION_DESC_TSO,
1217 ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
1218 ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
1219 ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
1220 ++tx_queue->insert_count;
738a8f4b 1221
dfa50be9
BH
1222 /* We mapped the headers in tso_start(). Unmap them
1223 * when the last segment is completed.
1224 */
0fe5565b 1225 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
dfa50be9
BH
1226 buffer->dma_addr = st->header_dma_addr;
1227 buffer->len = st->header_len;
1228 if (is_last) {
1229 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
1230 buffer->unmap_len = st->header_unmap_len;
2acdb92e 1231 buffer->dma_offset = 0;
dfa50be9
BH
1232 /* Ensure we only unmap them once in case of a
1233 * later DMA mapping error and rollback
1234 */
1235 st->header_unmap_len = 0;
1236 } else {
1237 buffer->flags = EFX_TX_BUF_CONT;
1238 buffer->unmap_len = 0;
1239 }
1240 ++tx_queue->insert_count;
738a8f4b 1241 }
b9b39b62 1242
dfa50be9
BH
1243 st->seqnum += skb_shinfo(skb)->gso_size;
1244
1245 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1246 ++st->ipv4_id;
f7251a9c 1247
b9b39b62
BH
1248 ++tx_queue->tso_packets;
1249
8ccf3800
AR
1250 ++tx_queue->tx_packets;
1251
b9b39b62
BH
1252 return 0;
1253}
1254
1255
1256/**
1257 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1258 * @tx_queue: Efx TX queue
1259 * @skb: Socket buffer
1260 *
1261 * Context: You must hold netif_tx_lock() to call this function.
1262 *
1263 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1264 * @skb was not enqueued. In all cases @skb is consumed. Return
14bf718f 1265 * %NETDEV_TX_OK.
b9b39b62
BH
1266 */
1267static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
740847da 1268 struct sk_buff *skb)
b9b39b62 1269{
ecbd95c1 1270 struct efx_nic *efx = tx_queue->efx;
14bf718f 1271 int frag_i, rc;
b9b39b62 1272 struct tso_state state;
b9b39b62 1273
738a8f4b
BH
1274 /* Find the packet protocol and sanity-check it */
1275 state.protocol = efx_tso_check_protocol(skb);
b9b39b62
BH
1276
1277 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1278
c78c39e6
BH
1279 rc = tso_start(&state, efx, skb);
1280 if (rc)
1281 goto mem_err;
b9b39b62 1282
c78c39e6 1283 if (likely(state.in_len == 0)) {
b9b39b62
BH
1284 /* Grab the first payload fragment. */
1285 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1286 frag_i = 0;
ecbd95c1
BH
1287 rc = tso_get_fragment(&state, efx,
1288 skb_shinfo(skb)->frags + frag_i);
b9b39b62
BH
1289 if (rc)
1290 goto mem_err;
1291 } else {
c78c39e6 1292 /* Payload starts in the header area. */
b9b39b62
BH
1293 frag_i = -1;
1294 }
1295
1296 if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1297 goto mem_err;
1298
1299 while (1) {
14bf718f 1300 tso_fill_packet_with_fragment(tx_queue, skb, &state);
b9b39b62
BH
1301
1302 /* Move onto the next fragment? */
23d9e60b 1303 if (state.in_len == 0) {
b9b39b62
BH
1304 if (++frag_i >= skb_shinfo(skb)->nr_frags)
1305 /* End of payload reached. */
1306 break;
ecbd95c1
BH
1307 rc = tso_get_fragment(&state, efx,
1308 skb_shinfo(skb)->frags + frag_i);
b9b39b62
BH
1309 if (rc)
1310 goto mem_err;
1311 }
1312
1313 /* Start at new packet? */
1314 if (state.packet_space == 0 &&
1315 tso_start_new_packet(tx_queue, skb, &state) < 0)
1316 goto mem_err;
1317 }
1318
449fa023
ED
1319 netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1320
b9b39b62 1321 /* Pass off to hardware */
152b6a62 1322 efx_nic_push_buffers(tx_queue);
b9b39b62 1323
14bf718f
BH
1324 efx_tx_maybe_stop_queue(tx_queue);
1325
b9b39b62
BH
1326 tx_queue->tso_bursts++;
1327 return NETDEV_TX_OK;
1328
1329 mem_err:
62776d03 1330 netif_err(efx, tx_err, efx->net_dev,
0e33d870 1331 "Out of memory for TSO headers, or DMA mapping error\n");
9bc183d7 1332 dev_kfree_skb_any(skb);
b9b39b62 1333
5988b63a 1334 /* Free the DMA mapping we were in the process of writing out */
23d9e60b 1335 if (state.unmap_len) {
7668ff9c 1336 if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
0e33d870
BH
1337 dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1338 state.unmap_len, DMA_TO_DEVICE);
ecbd95c1 1339 else
0e33d870
BH
1340 dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1341 state.unmap_len, DMA_TO_DEVICE);
ecbd95c1 1342 }
5988b63a 1343
dfa50be9
BH
1344 /* Free the header DMA mapping, if using option descriptors */
1345 if (state.header_unmap_len)
1346 dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
1347 state.header_unmap_len, DMA_TO_DEVICE);
1348
b9b39b62 1349 efx_enqueue_unwind(tx_queue);
14bf718f 1350 return NETDEV_TX_OK;
b9b39b62 1351}
This page took 0.690676 seconds and 5 git commands to generate.